Lefschetz pencils and crossed homomorphisms

Bruno Kahn
Workshop on Chow groups, motives and derived categories
IAS, 9-13 March 2015.

1. Galois action on l-adic Cohomology

k finitely generated field, X / k smooth projective variety, l prime number \neq char k : action of $G_{k}=G a l\left(k_{S} / k\right)$ on l-adic cohomology

$$
H_{l}^{i}(X)=H_{\text {ett }}^{i}\left(\bar{X}, \mathbf{Q}_{l}\right), \quad \bar{X}=X \times_{k} k_{s} .
$$

Conjecture 1 (Grothendieck, Serre). This action is semi-simple.

Special cases:
(1) Stable under products.
(2) True over E / k finite \Rightarrow true over k.
(3) True for $i=1$ (Tate, Zarhin-Mori, Faltings), hence for all i if X abelian variety, product of curves. . .
(4) k finite or number field: true for K3 surfaces.
(5) Deligne [Weil II]: $k \supset \mathbf{F}_{p} \Rightarrow \operatorname{Gal}\left(k_{s} / k \overline{\mathbf{F}}_{p}\right)$ acts semi-simply.
(6) Conjecture over $\mathbf{F}_{p} \Rightarrow$ conjecture in characteristic p (follows from (5)).

Can reduce to cohomology of vanishing cycles for a Lefschetz pencil as in [Weil I, §7] (similar remark by Lei Fu, 2001):

Induction on $d=\operatorname{dim} X$:
(a) Can always take k large enough to have rational points.
(b) Poincaré duality + weak Lefschetz \Rightarrow crucial case: $H_{l}^{d}(X)$.
(c) May replace X by X^{2} because of Serre's inverse semi-simplicity theorems ($V \otimes W$ semi-simple $\Rightarrow V, W$ semi-simple). Hence may assume d even. (Now induction will be on even d.)

2. Review of Lefschetz pencils

Choose projective embedding $X \hookrightarrow \mathbf{P}$ and take $A \subset \mathbf{P}$, linear subspace of codimension 2. Write $\check{\mathbf{P}}$ for dual projective space, so the line $D \subset \check{\mathbf{P}}$ dual to A parametrises the hyperplanes of \mathbf{P}, i.e. $D \in t \mapsto H_{t} \supset A$. Then $\left\{X_{t}=X \cap H_{t}\right\}$ is the pencil of hyperplane sections associated to A (the axis). Hence incidence variety:

$$
\tilde{X}=\left\{(x, t) \in X \times D \mid x \in H_{t}\right\}
$$

sitting in a diagram

$$
X \stackrel{\pi}{\leftarrow} \underset{r}{\tilde{X}} \begin{array}{r}
\tilde{D} \tag{1}\\
D
\end{array}
$$

with $f^{-1}(t) \xrightarrow{\sim} X_{t}$.

One says that $\left(X_{t}\right)_{t \in A}$ is a Lefschetz pencil if:
A) A is transverse to X, hence intersects X in a smooth sub-variety Δ. Then $\tilde{X}=B l_{\Delta}(X)$ smooth and f geometrically connected.
B) There exists a finite subset S of D and for every $s \in S$ a point $x_{s} \in X_{s}$, such that f is smooth away from the x_{s} 's.
C) x_{s} is an ordinary singular quadratic point of X_{s}.

By [SGA7, exp. XVII], the open subset of those $A \in G r_{2}(\mathbf{P})$ defining a Lefschetz pencil is nonempty if char $k=0$. If char $k>0$, still true if one composes the embedding $X \hookrightarrow \mathbf{P}$ with a Veronese embedding of degree ≥ 2.

- May assume "condition (A)" holds for the Lefschetz pencil (take large enough Veronese embedding, [SGA7, Exp. XVIII, Cor. 6.4]). Implies that the vanishing cycles are $\neq 0$.
- Semi-simplicity for $\tilde{X} \Rightarrow$ semi-simplicity for X.
- By [SGA7, Exp. XVIII, Th. 5.6], the Leray spectral sequence for f degenerates (uses Hard Lefschetz and condition (A)!). So suffices to prove semi-simplicity for $E_{2}^{p, q}, p+q=d$.
- $E_{2}^{2, d-2}$ (resp. $E_{2}^{0, d}$) subspace (resp. quotient) of $H^{d-2}\left(\bar{Y}, \mathbf{Q}_{l}\right)$, Y smooth hyperplane section of $X_{u}=f^{-1}(u), u \in D(k)-S$ (note: $\operatorname{dim} Y=d-2$ even!). So crucial case: $E_{2}^{1, d-1}$.

We set $d=n+1=2 m+2, U=D-S$, take $u \in U(k)$ and let $\Pi:=$ $\pi_{1}\left(U \otimes_{k} k_{s}, u\right)$ (geometric fundamental group).

- $s \in S \mapsto$ vanishing cycle $\delta_{s} \in H^{n}\left(X_{u}, \mathbf{Q}_{l}(m)\right)$, well-defined up to sign.
- If I_{s} inertia group of at s, for $g \in I_{s}$ and $x \in H^{n}\left(X_{u}, \mathbf{Q}_{l}(m)\right)$, PicardLefschetz formula [SGA7, exp. XV, th. 3.4]:

$$
\begin{equation*}
g x=x+(-1)^{m+1} t_{l}(g)\left(x, \delta_{s}\right) \delta_{s} \tag{2}
\end{equation*}
$$

where $\left(x, \delta_{s}\right) \in \mathbf{Q}_{l}(-1)$ intersection product, $t_{l}: I_{s} \rightarrow \mathbf{Q}_{l}(1)$ character given by action on l^{ν}-th roots of a uniformising parameter. In particular, tame action of Π.

- The $\pm \delta_{s}$ are conjugate under the action of Π.
- Exact sequence (ibid.)

$$
\begin{aligned}
(3) 0 \rightarrow H^{n}\left(X_{s}, \mathbf{Q}_{l}(m)\right) & \rightarrow H^{n}\left(X_{u}, \mathbf{Q}_{l}(m)\right) \xrightarrow{\left(-, \delta_{s}\right)} \mathbf{Q}_{l}(-1) \\
& \rightarrow H^{n+1}\left(X_{s}, \mathbf{Q}_{l}(m)\right) \rightarrow H^{n+1}\left(X_{u} \mathbf{Q}_{l}(m)\right) \rightarrow 0
\end{aligned}
$$

Write $E:=$ subspace of $H_{l}^{n}\left(X_{u}\right)$ generated by the δ_{s} (vanishing part of cohomology). Then

- $E^{\perp}=H_{l}^{n}\left(X_{u}\right)^{\Pi}$.
- $E \cap E^{\perp}=0$ (uses Hard Lefschetz [Weil II, Th. 4.1.1]).
- Action of Π on E absolutely irreductible [SGA7, exp. XVIII, cor. 6.7 p. 326].
- Kazhdan-Margulis theorem: $\operatorname{Im}(\Pi \rightarrow \operatorname{Sp}(E))$ open [Weil I, 5.10].
- Condition $(\mathrm{A}) \stackrel{\text { def }}{\Longleftrightarrow} R^{n} f_{*} \mathbf{Q}_{l} \xrightarrow{\sim} j_{*} j^{*} R^{n} f_{*} \mathbf{Q}_{l}$.

Then $R^{n} f_{*} \mathbf{Q}_{l}=j_{*} E \oplus$ constant sheaf, hence

$$
E_{2}^{1, d-1}=E_{2}^{1, n}=H^{1}\left(\bar{D}, j_{*} E\right)
$$

So far, nothing new. . .

4. Description of $H^{1}\left(\bar{D}, j_{*} E\right)$

Start from Leray exact sequence for j

$$
\begin{equation*}
0 \rightarrow H^{1}\left(\bar{D}, j_{*} E\right) \rightarrow H^{1}(\bar{U}, E) \rightarrow \bigoplus_{s \in S} H^{1}\left(I_{s}, E\right) \rightarrow 0 \tag{4}
\end{equation*}
$$

Recall: action of Π factors through tame fundamental group $\Pi^{t}=\Pi$ / images of wild inertias at $s \in S$. Then $I_{s}^{t}=\operatorname{Im}\left(I_{s} \rightarrow \Pi^{t}\right) \simeq \prod_{l \neq p} \mathbf{Z}_{l}(1)$. Easy to show:
$H^{1}\left(\Pi^{t}, E\right) \xrightarrow{\sim} H^{1}(\bar{U}, E) ; \quad H^{1}\left(\mathbf{Z}_{l}(1), E\right) \xrightarrow{\sim} H^{1}\left(I_{s}^{t}, E\right) \xrightarrow{\sim} H^{1}\left(I_{s}, E\right)$.
Now Π^{t} almost free profinite group with $|S|-1$ generators; presentation as follows [SGA1, exp. XIII, cor. 2.12]: choose a numbering of $S=\left\{s_{1}, \ldots, s_{r}\right\}$ with $r=|S|$. Then there are generators γ_{i} de $I_{s_{i}}^{t}$ which generate Π^{t}, subject to only relation $\gamma_{1} \ldots \gamma_{r}=1$.

Theorem 1. $H^{1}\left(\bar{D}, j_{*} E\right)$ canonically isomorphic to middle homology of a complex

$$
0 \rightarrow E \xrightarrow{\alpha} \bigoplus_{s \in S} \mathbf{Q}_{l} \xrightarrow{\tilde{\Sigma}} E \rightarrow 0
$$

with $\alpha(e)_{s}=t_{l}\left(\gamma_{s}\right)\left(\delta_{s}, e\right)$ and $\tilde{\Sigma}\left(1_{s_{j}}\right)=\gamma_{1} \ldots \gamma_{j-1} \delta_{s_{j}}$.

Proof: Chase in commutative diagram of exact sequences

$$
\begin{gather*}
0 \rightarrow B^{1}\left(\Pi^{t}, E\right) \rightarrow Z^{1}\left(\Pi^{t}, E\right) \rightarrow H_{s \in S}^{1}\left(\Pi^{t}, E\right) \rightarrow 0 \\
0 \rightarrow \bigoplus_{\bullet} B^{1}\left(I_{s}^{t}, E\right) \rightarrow \bigoplus_{s \in S} Z^{1}\left(I_{s}^{t}, E\right) \rightarrow \bigoplus_{s \in S} H^{1}\left(I_{s}^{t}, E\right) \rightarrow 0 \tag{5}
\end{gather*}
$$

Corollary 1. $\operatorname{dim} H^{1}\left(\bar{D}, j_{*} E\right)=|S|-2 \operatorname{dim} E$.

5. Geometric Galois action

Want action of $\pi_{1}(U, u)$ on the exact sequence of Theorem 1.
G profinite group, E continuous G-module: G-action on $Z^{1}(G, E)$? On $Z^{1}(H, E)$ for $H \triangleleft G$?
Yes, because $Z^{1}(G, E)=\operatorname{Hom}_{G}\left(I_{G}, E\right), I_{G}$ augmentation ideal in $\hat{\mathbf{Z}}[[G]]$.

Exact sequence $0 \rightarrow I(G) \rightarrow \hat{\mathbf{Z}}[[G]] \rightarrow \hat{\mathbf{Z}} \rightarrow 0$ of left-right G-modules yields Ext exact sequence of left G-modules

$$
\begin{equation*}
0 \rightarrow E^{G} \rightarrow E \xrightarrow{\eta} Z^{1}(G, E) \rightarrow H^{1}(G, E) \rightarrow 0 \tag{6}
\end{equation*}
$$

where E / E^{G} identified with group of coboboundaries $B^{1}(G, E)$ via $\eta: e \mapsto$ $(g \mapsto(g-1) e)$.

Action of $g \in G$ on $f \in Z^{1}(G, E)$ (crossed homomorphism) given by

$$
\begin{equation*}
(g f)(h)=g f\left(g^{-1} h g\right) \tag{7}
\end{equation*}
$$

or also

$$
\begin{equation*}
g f=f+\eta(f(g)) . \tag{8}
\end{equation*}
$$

$H \triangleleft G$: (7) defines action of G on $Z^{1}(H, E)$ (but (8) no longer valid.)

Still a problem: in (5), how can $G=\pi_{1}(U, u)$ act on $\bigoplus_{s \in S} Z^{1}\left(I_{s}^{t}, E\right) ? ? ?$
A trick: $\tilde{\Pi}^{t}$ (almost) free profinite group with generators $\gamma_{1}, \ldots, \gamma_{r}$, then

$$
Z^{1}\left(\tilde{\Pi}^{t}, E\right) \xrightarrow{\sim} \bigoplus_{c \in S} Z^{1}\left(I_{s}^{t}, E\right) .
$$

But can realise $\tilde{\Pi}^{t}$ as $\pi_{1}\left(\bar{U}-\left\{u_{0}\right\}, u\right), u_{0}$ suitable rational point, then middle map of (5) corresponds to

$$
Z^{1}\left(\pi_{1}(\bar{U}, u), E\right) \rightarrow Z^{1}\left(\pi_{1}\left(\bar{U}-\left\{u_{0}\right\}, u\right), E\right)
$$

So get natural Galois action in this way.

Theorem 2. Complex of Theorem 1 is complex of Π^{t}-modules for following actions:
(i) First term E: natural action.
(ii) Central term: γ_{i} acts by matrix

$$
\left(\begin{array}{ccccc}
1 & \ldots & \varepsilon t_{l}\left(\gamma_{i}\right)\left(\delta_{1}, \delta_{i}\right) & \ldots & 0 \\
\vdots & \ddots & \vdots & & \vdots \\
0 & \ldots & 1 & \ldots & 0 \\
\vdots & & \vdots & \ldots & \vdots \\
0 & \ldots & \varepsilon t_{l}\left(\gamma_{i}\right)\left(\delta_{r}, \delta_{i}\right) & \ldots & 1
\end{array}\right) \quad \varepsilon=(-1)^{m+1}
$$

(iii) Last term E: trivial action.

Situation:

$$
\begin{gather*}
1 \rightarrow \tilde{\Pi}^{t} \rightarrow \tilde{G} \rightarrow \Gamma \rightarrow 1 \tag{9}\\
1 \rightarrow \Pi^{t} \rightarrow \underset{G}{\tilde{\Pi}^{t}} \rightarrow \Gamma \rightarrow 1
\end{gather*}
$$

with

$$
\begin{aligned}
\Gamma & =G a l\left(k_{s} / k\right) & & \\
G & =\pi_{1}^{t}(U, u) & \tilde{G} & =\pi_{1}^{t}\left(U-\left\{u_{0}\right\}, u\right) \\
\Pi^{t} & =\pi_{1}^{t}(\bar{U}, u) & \tilde{\Pi}^{t} & =\pi_{1}^{t}\left(\bar{U}-\left\{u_{0}\right\}, u\right) .
\end{aligned}
$$

\tilde{G} acts on complex of Theorem 1: want to describe this action.
Note: \tilde{G} acts on $\tilde{\Pi}^{t}$ by

$$
g \gamma_{i} g^{-1}=\lambda_{i}(g) \gamma_{i}^{\kappa(g)} \lambda_{i}(g)^{-1}, \quad g \gamma g^{-1}=\lambda(g) \gamma^{\kappa(g)} \lambda(g)^{-1}
$$

$\left(\gamma=\left(\gamma_{1} \ldots \gamma_{r}\right)^{-1} \in \tilde{\Pi}^{t}\right)$, with $\lambda_{i}(g), \lambda(g) \in \tilde{\Pi}^{t}$ and $\kappa: G \rightarrow \hat{\mathbf{Z}}^{*}$ cyclotomic character. $\lambda_{i}(g)$ (resp. $\left.\lambda(g)\right)$ unique up to right multiplication by power of γ_{i} (resp. γ).
Normalise it so that $w_{i}\left(\lambda_{i}(g)\right)=0\left(w_{i}\right.$: weight at $\left.\gamma_{i}\right)$.

Remark 1 (not essential for the sequel). Setting $\tilde{\lambda}(g)=\pi\left(\lambda(g)^{-1} g\right)$ induces well-defined section $\Gamma \rightarrow G$ of the projection $G \rightarrow \Gamma$: corresponds geometrically to the section given by the rational point u_{0}.

Lemma 1. (Maybe after finite extension of k), if $g \in \tilde{G}$ normalises γ_{i}, then $g \delta_{i}=\delta_{i}$.

Proof. Follows from the construction of the vanishing cycles (and implicit in Illusie's paper [II1]).

7. Fox Derivatives

Theorem 3 (Anderson, Ihara). Let $\Lambda=\hat{\mathbf{Z}}\left[\left[\tilde{\Pi}^{t}\right]\right]$. For $i=1, \ldots, r$, there exists a unique function $d_{i}: \Lambda \rightarrow \Lambda$ (Fox derivative at γ_{i}) verifying the identities

$$
d_{i}\left(\lambda \lambda^{\prime}\right)=d_{i}(\lambda)+\lambda d_{i}\left(\lambda^{\prime}\right), \quad d_{i}\left(\gamma_{j}\right)=\delta_{i j} .
$$

For all $\lambda \in \Lambda$, one has

$$
\begin{equation*}
\lambda=s(\lambda) 1+\sum_{i=1}^{r} d_{i} \lambda\left(\gamma_{i}-1\right) \tag{10}
\end{equation*}
$$

("profinite Euler-Fox formula").
Universal property:
Lemma 2. M topological $\tilde{\Pi}^{t}$-module, $f: G \rightarrow M$ continuous 1-cocycle, $i \in\{1, \ldots, r\}$. Then

$$
f(g)=\sum_{i=1}^{r} d_{i} g \cdot f\left(\gamma_{i}\right)
$$

for any $g \in \tilde{\Pi}^{t}$.

Also, profinite Blanchfield-Lyndon theorem (Ihara [Ih]):
Theorem 4. N closed normal subgroup of $\tilde{\Pi}^{t}$; write $\pi: \tilde{\Pi}^{t} \rightarrow \tilde{\Pi}^{t} / N$ for the projection. Exact sequence of $\tilde{\Pi}^{t} / N$-modules:

$$
0 \rightarrow N^{\mathrm{ab}} \xrightarrow{\varphi} \hat{\mathbf{Z}}\left[\left[\tilde{\Pi}^{t} / N\right]\right]^{r} \xrightarrow{\psi} I\left(\tilde{\Pi}^{t} / N\right) \rightarrow 0
$$

with

$$
\varphi(n)=\left(\pi\left(d_{1} n\right), \ldots, \pi\left(d_{r} n\right)\right), \quad \psi\left(a_{1}, \ldots, a_{r}\right)=\sum a_{i}\left(\pi\left(\gamma_{i}\right)-1\right)
$$

Theorem 5. Action of $g \in \tilde{G}$ on $\bigoplus \mathbf{Q}_{l}$ in the complex of Theorem 1 given by matrix

$$
a_{i j}(g)=\kappa_{l}(g)^{-1}\left(\delta_{i j}+(-1)^{m+1} t_{l}\left(\gamma_{j}\right)\left(d_{i}\left(g^{-1} \lambda_{j}(g) g\right) \delta_{i}, \delta_{j}\right)\right)
$$

$\delta_{i j}$ Kronecker symbol.
(Cf. Theorem 3 for d_{i}).
(Verification: for $g=\gamma_{k}$, can take $\lambda_{j}(g)=\gamma_{k}$ for all j, then $d_{i}\left(g^{-1} \lambda_{j}(g) g\right)=\delta_{i k}$ and get back formula of Theorem 1.)
Note: also have $g^{-1} \lambda_{j}(g) g=\lambda_{j}\left(g^{-1}\right)^{-1}$.
[Weil I] P. Deligne La conjecture de Weil, I, Publ. Math. IHÉS 43 (1974), 273-307.
[Weil II] P. Deligne La conjecture de Weil, II, Publ. Math. IHÉS 52 (1980), 137-252.
[Ih] Y. Ihara On beta and gamma functions associated with the Grothendieck-Teichmüller groups, in Aspects of Galois theory (H. Völklein, P. Müller, D. Harbater, J.G. Thompson, eds.), LMS Lect. Notes Series 256, Cambridge University Press, 1999, 144-179.
[Ill] L. Illusie Sur la formule de Picard-Lefschetz, Algebraic geometry 2000, Azumino (Hotaka), 249-268, Adv. Stud. Pure Math., 36, Math. Soc. Japan, Tokyo, 2002.
[SGA1] Revêtements étales et groupe fondamental (SGA 1), nouvelle édition, Doc. Math. 3, SMF, 2003.
[SGA7] Groupes de monodromie en géométrie algébrique (SGA 7), Vol. I: Lect. Notes in Math. 288, Springer, 1972; Vol. II: Lect. Notes in Math. 340, Springer, 1972.

