Lefschetz pencils and crossed homomorphisms

Bruno Kahn

Workshop on Chow groups, motives and derived categories IAS, 9-13 March 2015.

1. Galois action on l-adic cohomology

k finitely generated field, X/k smooth projective variety, l prime number \neq char k: action of $G_k = Gal(k_s/k)$ on l-adic cohomology

$$H_l^i(X) = H_{\text{\'et}}^i(\bar{X}, \mathbf{Q}_l), \quad \bar{X} = X \times_k k_s.$$

Conjecture 1 (Grothendieck, Serre). This action is semi-simple.

Special cases:

- (1) Stable under products.
- (2) True over E/k finite \Rightarrow true over k.
- (3) True for i = 1 (Tate, Zarhin-Mori, Faltings), hence for all i if X abelian variety, product of curves...
- (4) k finite or number field: true for K3 surfaces.
- (5) Deligne [Weil II]: $k \supset \mathbf{F}_p \Rightarrow Gal(k_s/k\bar{\mathbf{F}}_p)$ acts semi-simply.
- (6) Conjecture over $\mathbf{F}_p \Rightarrow \text{conjecture in characteristic } p$ (follows from (5)).

Can reduce to cohomology of vanishing cycles for a Lefschetz pencil as in [Weil I, §7] (similar remark by Lei Fu, 2001):

Induction on $d = \dim X$:

- (a) Can always take k large enough to have rational points.
- (b) Poincaré duality + weak Lefschetz \Rightarrow crucial case: $H_l^d(X)$.
- (c) May replace X by X^2 because of Serre's inverse semi-simplicity theorems $(V \otimes W \text{ semi-simple}) \Rightarrow V, W \text{ semi-simple}$. Hence may assume d even. (Now induction will be on even d.)

2. Review of Lefschetz Pencils

Choose projective embedding $X \hookrightarrow \mathbf{P}$ and take $A \subset \mathbf{P}$, linear subspace of codimension 2. Write $\check{\mathbf{P}}$ for dual projective space, so the line $D \subset \check{\mathbf{P}}$ dual to A parametrises the hyperplanes of \mathbf{P} , i.e. $D \in t \mapsto H_t \supset A$. Then $\{X_t = X \cap H_t\}$ is the *pencil of hyperplane sections* associated to A (the axis). Hence incidence variety:

$$\tilde{X} = \{(x,t) \in X \times D \mid x \in H_t\}$$

sitting in a diagram

$$\begin{array}{ccc}
X & \stackrel{\pi}{\longleftarrow} \tilde{X} \\
f \downarrow \\
D
\end{array}$$

with
$$f^{-1}(t) \xrightarrow{\sim} X_t$$
.

One says that $(X_t)_{t\in A}$ is a Lefschetz pencil if:

- A) A is transverse to X, hence intersects X in a smooth sub-variety Δ . Then $\tilde{X} = Bl_{\Delta}(X)$ smooth and f geometrically connected.
- B) There exists a finite subset S of D and for every $s \in S$ a point $x_s \in X_s$, such that f is smooth away from the x_s 's.
- C) x_s is an ordinary singular quadratic point of X_s .

By [SGA7, exp. XVII], the open subset of those $A \in Gr_2(\mathbf{P})$ defining a Lefschetz pencil is nonempty if char k = 0. If char k > 0, still true if one composes the embedding $X \hookrightarrow \mathbf{P}$ with a Veronese embedding of degree > 2.

- May assume "condition (A)" holds for the Lefschetz pencil (take large enough Veronese embedding, [SGA7, Exp. XVIII, Cor. 6.4]). Implies that the vanishing cycles are $\neq 0$.
- Semi-simplicity for $X \Rightarrow$ semi-simplicity for X.
- By [SGA7, Exp. XVIII, Th. 5.6], the Leray spectral sequence for f degenerates (uses Hard Lefschetz and condition (A)!). So suffices to prove semi-simplicity for $E_2^{p,q}$, p+q=d.
- $E_2^{2,d-2}$ (resp. $E_2^{0,d}$) subspace (resp. quotient) of $H^{d-2}(\bar{Y}, \mathbf{Q}_l)$, Y smooth hyperplane section of $X_u = f^{-1}(u)$, $u \in D(k) S$ (note: $\dim Y = d 2$ even!). So crucial case: $E_2^{1,d-1}$.

3. Vanishing cycles.

We set d = n + 1 = 2m + 2, U = D - S, take $u \in U(k)$ and let $\Pi := \pi_1(U \otimes_k k_s, u)$ (geometric fundamental group).

- $s \in S \mapsto vanishing \ cycle \ \delta_s \in H^n(X_u, \mathbf{Q}_l(m))$, well-defined up to sign.
- If I_s inertia group of at s, for $g \in I_s$ and $x \in H^n(X_u, \mathbf{Q}_l(m))$, Picard-Lefschetz formula [SGA7, exp. XV, th. 3.4]:

(2)
$$gx = x + (-1)^{m+1}t_l(g)(x, \delta_s)\delta_s$$

where $(x, \delta_s) \in \mathbf{Q}_l(-1)$ intersection product, $t_l : I_s \to \mathbf{Q}_l(1)$ character given by action on l^{ν} -th roots of a uniformising parameter. In particular, tame action of Π .

- The $\pm \delta_s$ are conjugate under the action of Π .
- Exact sequence (ibid.)

(3)
$$0 \to H^n(X_s, \mathbf{Q}_l(m)) \to H^n(X_u, \mathbf{Q}_l(m)) \xrightarrow{(-,\delta_s)} \mathbf{Q}_l(-1)$$

 $\to H^{n+1}(X_s, \mathbf{Q}_l(m)) \to H^{n+1}(X_u\mathbf{Q}_l(m)) \to 0.$

Write $E := \text{subspace of } H_l^n(X_u)$ generated by the δ_s (vanishing part of cohomology). Then

- $\bullet E^{\perp} = H_l^n(X_u)^{\prod}.$
- $E \cap E^{\perp} = 0$ (uses Hard Lefschetz [Weil II, Th. 4.1.1]).
- Action of Π on E absolutely irreductible [SGA7, exp. XVIII, cor. 6.7 p. 326].
- Kazhdan-Margulis theorem: $\operatorname{Im}(\Pi \to \operatorname{Sp}(E))$ open [Weil I, 5.10].
- Condition (A) \iff $R^n f_* \mathbf{Q}_l \xrightarrow{\sim} j_* j^* R^n f_* \mathbf{Q}_l$.

Then $R^n f_* \mathbf{Q}_l = j_* E \oplus \text{constant sheaf, hence}$

$$E_2^{1,d-1} = E_2^{1,n} = H^1(\bar{D}, j_*E).$$

So far, nothing new...

4. Description of $H^1(\bar{D}, j_*E)$

Start from Leray exact sequence for j

(4)
$$0 \to H^1(\bar{D}, j_*E) \to H^1(\bar{U}, E) \to \bigoplus_{s \in S} H^1(I_s, E) \to 0$$

Recall: action of Π factors through tame fundamental group $\Pi^t = \Pi/$ images of wild inertias at $s \in S$. Then $I_s^t = \operatorname{Im}(I_s \to \Pi^t) \simeq \prod_{l \neq p} \mathbf{Z}_l(1)$. Easy to show:

$$H^1(\Pi^t, E) \xrightarrow{\sim} H^1(\bar{U}, E); \quad H^1(\mathbf{Z}_l(1), E) \xrightarrow{\sim} H^1(I_s^t, E) \xrightarrow{\sim} H^1(I_s, E).$$

Now Π^t almost free profinite group with |S|-1 generators; presentation as follows [SGA1, exp. XIII, cor. 2.12]: choose a numbering of $S = \{s_1, \ldots, s_r\}$ with r = |S|. Then there are generators γ_i de $I_{s_i}^t$ which generate Π^t , subject to only relation $\gamma_1 \ldots \gamma_r = 1$.

Theorem 1. $H^1(\bar{D}, j_*E)$ canonically isomorphic to middle homology of a complex

$$0 \to E \xrightarrow{\alpha} \bigoplus_{s \in S} \mathbf{Q}_l \xrightarrow{\tilde{\Sigma}} E \to 0$$

with $\alpha(e)_s = t_l(\gamma_s)(\delta_s, e)$ and $\tilde{\Sigma}(1_{s_j}) = \gamma_1 \dots \gamma_{j-1} \delta_{s_j}$.

Proof: Chase in commutative diagram of exact sequences

$$(5) \qquad 0 \rightarrow B^{1}(\Pi^{t}, E) \rightarrow Z^{1}(\Pi^{t}, E) \rightarrow H^{1}(\Pi^{t}, E) \rightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \rightarrow \bigoplus_{s \in S} B^{1}(I_{s}^{t}, E) \rightarrow \bigoplus_{s \in S} Z^{1}(I_{s}^{t}, E) \rightarrow \bigoplus_{s \in S} H^{1}(I_{s}^{t}, E) \rightarrow 0.$$

Corollary 1. dim $H^{1}(\bar{D}, j_{*}E) = |S| - 2 \dim E$.

5. Geometric Galois action

Want action of $\pi_1(U, u)$ on the exact sequence of Theorem 1.

G profinite group, E continuous G-module: G-action on $Z^1(G, E)$? On $Z^1(H, E)$ for $H \triangleleft G$?

Yes, because $Z^1(G, E) = \text{Hom}_G(I_G, E)$, I_G augmentation ideal in $\hat{\mathbf{Z}}[[G]]$.

Exact sequence $0 \to I(G) \to \hat{\mathbf{Z}}[[G]] \to \hat{\mathbf{Z}} \to 0$ of left-right G-modules yields Ext exact sequence of left G-modules

(6)
$$0 \to E^G \to E \xrightarrow{\eta} Z^1(G, E) \to H^1(G, E) \to 0$$

where E/E^G identified with group of coboboundaries $B^1(G,E)$ via $\eta: e \mapsto (g \mapsto (g-1)e)$.

Action of $g \in G$ on $f \in Z^1(G, E)$ (crossed homomorphism) given by

$$(7) (gf)(h) = gf(g^{-1}hg)$$

or also

(8)
$$gf = f + \eta(f(g)).$$

 $H \triangleleft G$: (7) defines action of G on $Z^1(H, E)$ (but (8) no longer valid.)

Still a problem: in (5), how can $G = \pi_1(U, u)$ act on $\bigoplus_{s \in S} Z^1(I_s^t, E)$???

A trick: $\tilde{\Pi}^t$ (almost) free profinite group with generators $\gamma_1, \ldots, \gamma_r$, then

$$Z^1(\tilde{\Pi}^t, E) \xrightarrow{\sim} \bigoplus_{s \in S} Z^1(I_s^t, E).$$

But can realise $\tilde{\Pi}^t$ as $\pi_1(\bar{U} - \{u_0\}, u)$, u_0 suitable rational point, then middle map of (5) corresponds to

$$Z^{1}(\pi_{1}(\bar{U},u),E) \to Z^{1}(\pi_{1}(\bar{U}-\{u_{0}\},u),E).$$

So get natural Galois action in this way.

Theorem 2. Complex of Theorem 1 is complex of Π^t -modules for following actions:

- (i) First term E: natural action.
- (ii) Central term: γ_i acts by matrix

$$\begin{pmatrix}
1 & \dots & \varepsilon t_l(\gamma_i)(\delta_1, \delta_i) & \dots & 0 \\
\vdots & \ddots & \vdots & & \vdots \\
0 & \dots & 1 & \dots & 0 \\
\vdots & & \vdots & \ddots & \vdots \\
0 & \dots & \varepsilon t_l(\gamma_i)(\delta_r, \delta_i) & \dots & 1
\end{pmatrix} \qquad \varepsilon = (-1)^{m+1}$$

(iii) Last term E: trivial action.

6. Arithmetic Galois action

Situation:

with

$$\Gamma = Gal(k_s/k)$$

$$G = \pi_1^t(U, u)$$

$$\tilde{G} = \pi_1^t(U - \{u_0\}, u)$$

$$\tilde{\Pi}^t = \pi_1^t(\bar{U}, u)$$

$$\tilde{\Pi}^t = \pi_1^t(\bar{U} - \{u_0\}, u).$$

 \tilde{G} acts on complex of Theorem 1: want to describe this action.

Note: \tilde{G} acts on $\tilde{\Pi}^t$ by

$$g\gamma_i g^{-1} = \lambda_i(g)\gamma_i^{\kappa(g)}\lambda_i(g)^{-1}, \quad g\gamma g^{-1} = \lambda(g)\gamma^{\kappa(g)}\lambda(g)^{-1}$$

 $(\gamma = (\gamma_1 \dots \gamma_r)^{-1} \in \tilde{\Pi}^t)$, with $\lambda_i(g), \lambda(g) \in \tilde{\Pi}^t$ and $\kappa : G \to \hat{\mathbf{Z}}^*$ cyclotomic character. $\lambda_i(g)$ (resp. $\lambda(g)$) unique up to right multiplication by power of γ_i (resp. γ).

Normalise it so that $w_i(\lambda_i(g)) = 0$ (w_i : weight at γ_i).

Remark 1 (not essential for the sequel). Setting $\tilde{\lambda}(g) = \pi(\lambda(g)^{-1}g)$ induces well-defined section $\Gamma \to G$ of the projection $G \to \Gamma$: corresponds geometrically to the section given by the rational point u_0 .

Lemma 1. (Maybe after finite extension of k), if $g \in \tilde{G}$ normalises γ_i , then $g\delta_i = \delta_i$.

Proof. Follows from the construction of the vanishing cycles (and implicit in Illusie's paper [III]). \Box

7. Fox derivatives

Theorem 3 (Anderson, Ihara). Let $\Lambda = \hat{\mathbf{Z}}[[\tilde{\Pi}^t]]$. For i = 1, ..., r, there exists a unique function $d_i : \Lambda \to \Lambda$ (Fox derivative at γ_i) verifying the identities

$$d_i(\lambda \lambda') = d_i(\lambda) + \lambda d_i(\lambda'), \quad d_i(\gamma_j) = \delta_{ij}.$$

For all $\lambda \in \Lambda$, one has

(10)
$$\lambda = s(\lambda)1 + \sum_{i=1}^{r} d_i \lambda (\gamma_i - 1)$$

("profinite Euler-Fox formula").

Universal property:

Lemma 2. M topological $\tilde{\Pi}^t$ -module, $f: G \to M$ continuous 1-cocycle, $i \in \{1, \dots, r\}$. Then

$$f(g) = \sum_{i=1}^{r} d_i g \cdot f(\gamma_i)$$

for any $g \in \tilde{\Pi}^t$.

Also, profinite Blanchfield-Lyndon theorem (Ihara [Ih]):

Theorem 4. N closed normal subgroup of $\tilde{\Pi}^t$; write $\pi: \tilde{\Pi}^t \to \tilde{\Pi}^t/N$ for the projection. Exact sequence of $\tilde{\Pi}^t/N$ -modules:

$$0 \to N^{\mathrm{ab}} \xrightarrow{\varphi} \hat{\mathbf{Z}}[[\tilde{\Pi}^t/N]]^r \xrightarrow{\psi} I(\tilde{\Pi}^t/N) \to 0$$

with

$$\varphi(n) = (\pi(d_1n), \dots, \pi(d_rn)), \quad \psi(a_1, \dots, a_r) = \sum a_i(\pi(\gamma_i) - 1).$$

Theorem 5. Action of $g \in \tilde{G}$ on $\bigoplus \mathbf{Q}_l$ in the complex of Theorem 1 given by matrix

$$a_{ij}(g) = \kappa_l(g)^{-1} \left(\delta_{ij} + (-1)^{m+1} t_l(\gamma_j) (d_i(g^{-1}\lambda_j(g)g)\delta_i, \delta_j) \right)$$

 δ_{ij} Kronecker symbol.

(Cf. Theorem 3 for d_i).

(Verification: for $g = \gamma_k$, can take $\lambda_j(g) = \gamma_k$ for all j, then $d_i(g^{-1}\lambda_j(g)g) = \delta_{ik}$ and get back formula of Theorem 1.)

Note: also have $g^{-1}\lambda_j(g)g = \lambda_j(g^{-1})^{-1}$.

- [Weil I] P. Deligne La conjecture de Weil, I, Publ. Math. IHÉS 43 (1974), 273–307.
- [Weil II] P. Deligne La conjecture de Weil, II, Publ. Math. IHÉS 52 (1980), 137–252.
- [Ih] Y. Ihara On beta and gamma functions associated with the Grothendieck-Teichmüller groups, in Aspects of Galois theory (H. Völklein, P. Müller, D. Harbater, J.G. Thompson, eds.), LMS Lect. Notes Series 256, Cambridge University Press, 1999, 144–179.
- [III] L. Illusie Sur la formule de Picard-Lefschetz, Algebraic geometry 2000, Azumino (Hotaka), 249–268, Adv. Stud. Pure Math., 36, Math. Soc. Japan, Tokyo, 2002.
- [SGA1] Revêtements étales et groupe fondamental (SGA 1), nouvelle édition, Doc. Math. 3, SMF, 2003.
- [SGA7] Groupes de monodromie en géométrie algébrique (SGA 7), Vol. I: Lect. Notes in Math. 288, Springer, 1972; Vol. II: Lect. Notes in Math. 340, Springer, 1972.