PURE MOTIVES

BRUNO KAHN

This and the next file are slightly revised versions of my talks at the Palo Alto workshop. I have basically added references.

1. EQUIVALENCE RELATIONS ON ALGEBRAIC CYCLES [4]

k field, $\operatorname{SmProj}(k)$ category of smooth projective varieties; $X \in \operatorname{SmProj}(k)$ has $\mathcal{Z}(X)$, group of algebraic cycles on X :

$$
\begin{gathered}
\mathcal{Z}^{n}(X)=\mathbf{Z}\left[X^{(n)}\right] \\
X^{(n)}=\{\text { points of codimension } n\} .
\end{gathered}
$$

$\mathcal{Z}(X)$ is

- contravariant for flat morphisms
- covariant for all morphisms (with change of codimension). But:
- not contravariant for arbitrary morphisms
- intersection product not well-behaved.

Both problems: codimension does not behave well by pull-back. Classically solved by moving cycles:

Proposition 1 (Chow [1]). Z, Z^{\prime} cycles on X. Then there exists a cycle \tilde{Z} on $X \times \mathbf{P}^{1}$ such that

- $\tilde{Z}(0)=Z$
- $\tilde{Z}(\infty)$ meets Z^{\prime} properly.

If two cycles meet properly, their intersection product is well-defined.

Definition 1 (Samuel [9]). Adequate pair: a pair (A, \sim), A commutative ring, \sim_{X} equivalence relation on $\mathcal{Z}^{*}(X) \otimes A$ for all X :

- compatible with A-linear structure and gradation
- $\forall Z, Z^{\prime} \in \mathcal{Z}^{*}(X) \otimes A, \exists Z_{1} \sim_{X} Z: Z_{1}$ and Z^{\prime} meet properly
- $\forall Z \in \mathcal{Z}^{*}(X) \otimes A, \forall \gamma \in \mathcal{Z}^{*}(X \times Y) \otimes A$ meeting $Z \times Y$ properly, $Z \sim_{X} 0 \Rightarrow$ $\gamma_{*}(Z):=p_{Y}^{X Y}(\gamma \cdot(Z \times Y)) \sim_{Y} 0$.
(A, \sim) adequate pair: get groups $\mathcal{Z}_{\sim}^{*}(X, A)$ contravariant for all morphisms, covariant (with codim shift) for all morphisms and with intersection products.

Examples 1 (from finest to coarsest).

Rational equivalence: parametrize with \mathbf{P}^{1}
Algebraic equivalence: parametrize with curves
Smash-nilpotence equivalence (Voevodsky [11]): Z smash-nilpotent on $X \Longleftrightarrow Z^{\otimes n} \sim_{\text {rat }} 0$ on X^{n} for $n \gg 0$
Homological equivalence: see below Numerical equivalence: $Z \sim_{\text {num }} 0 \Longleftrightarrow \operatorname{deg}\left(Z \cdot Z^{\prime}\right)=0 \forall Z^{\prime}$ of complementary codimension (meeting Z properly)

Rational equivalence finest adequate equivalence relation and numerical equivalence coarsest if A is a field.

Usual notation: $\mathcal{Z}_{\text {rat }}^{*}(X, \mathbf{Z})=C H^{*}(X)$ (Chow groups).

Homological equivalence involves a Weil cohomology theory:
Definition 2. A Weil cohomology theory with coefficients in a field K is a functor

$$
H^{*}: \operatorname{SmProj}(k)^{o p} \rightarrow V e c_{K}^{*} \text { (fd graded vector spaces) }
$$

with

- $\operatorname{dim} H^{2}\left(\mathbf{P}^{1}\right)=1$
- Künneth formula $H^{*}(X \times Y) \simeq H^{*}(X) \otimes H^{*}(Y)$
- Multiplicative trace map $\operatorname{Tr}: H^{2 d}(X) \rightarrow K$ if $\operatorname{dim} X=d$ inducing
- Poincaré duality
- Multiplicative, contravariant and normalised cycle class maps

$$
c l: \mathcal{Z}^{n}(X) \otimes A \rightarrow H^{2 n}(X)
$$

(given homomorphism $A \rightarrow K$)
(Normalised means: degree and trace are compatible.)
Then: $Z \sim_{H} 0 \Longleftrightarrow c l(Z)=0$
1.1. Examples of Weil cohomologies:
(1) In all characteristics: l-adic cohomology $H_{l}(X)=H_{e t}^{*}\left(\bar{X}, \mathbf{Q}_{l}\right), l \neq \operatorname{char} k .\left(K=\mathbf{Q}_{l}.\right)$
(2) In characteristic p, k perfect: crystalline cohomology $H_{\text {cris }}(X)$. $(K=\operatorname{Quot}(W(k))$.)
(3) In characteristic 0:
(a) algebraic de Rham cohomology $H_{d R}(X)=\mathbb{H}^{*}\left(X, \Omega_{X}\right)$. $(K=k$.)
(b) Betti cohomology: given $\sigma: k \hookrightarrow \mathbf{C}, H_{\sigma}(X)=H_{B e t t i}^{*}(\sigma X(\mathbf{C}), \mathbf{Q}) .(K=\mathbf{Q}$.

These are the classical Weil cohomologies.

Given an adequate pair (A, \sim), get a category of pure motives as end of string of functors: varieties correspondences effective motives motives

$\operatorname{SmProj}(k)$	\longrightarrow	$\operatorname{Cor}_{\sim}(k, A)$	$\xrightarrow{\text { ps-ab envelope }}$	$\operatorname{Mot}_{\sim}^{\text {eff }}(k, A)$	$\xrightarrow{\text { invert } L}$	$\operatorname{Mot}_{\sim}(k, A)$
X	\mapsto	$[X]$	\mapsto	$h(X)$	\mapsto	$h(X)$
f	\mapsto	$\left[\Gamma_{f}\right]$				

$$
\begin{aligned}
& h(\operatorname{Spec} k)=: \mathbf{1} \\
& h\left(\mathbf{P}^{1}\right)=\mathbf{1} \oplus L
\end{aligned}
$$

2. Algebraic correspondences [4]

X, Y smooth projective, $\operatorname{dim} Y=d$:
Definition 3. $\operatorname{Cor}_{\sim}([X],[Y])=\mathcal{Z}_{\sim}^{d}(X \times Y, A)$.
2.1. Composition of correspondences:
$X, Y, Z 3$ varieties, $\alpha \in \operatorname{Cor}_{\sim}([X],[Y]), \beta \in \operatorname{Cor}_{\sim}([Y],[Z]):$

Then $\operatorname{Cor}_{\sim}(k, A)$ is an A-linear category and $f \mapsto\left[\Gamma_{f}\right]$ (graph) is a functor.
Warning 1. Here this functor is covariant as in Fulton and Voevodsky; it is contravariant with Grothendieck and his school.

varieties		correspondences		effective motives		motives
$\operatorname{SmProj}(k)$	\longrightarrow	$\operatorname{Cor}_{\sim}(k, A)$	$\xrightarrow{\text { ps-ab envelope }}$	$\mathrm{Mot}_{\sim}^{\mathrm{eff}}(k, A)$	$\xrightarrow{\text { invert } L}$	$\operatorname{Mot}_{\sim}(k, A)$
X	\longmapsto	$[X]$	\longmapsto	$h(X)$	\longmapsto	$h(X)$
f	\longmapsto	$\left[\Gamma_{f}\right]$				
				$h(\operatorname{Spec} k)=: \mathbf{1}$		
				$h\left(\mathbf{P}^{1}\right)=\mathbf{1} \oplus L$		

3. Effective motives

Definition 4. \mathcal{A} additive category: \mathcal{A} is pseudo-abelian if every idempotent endomorphism has a kernel (hence also an image).
An additive category \mathcal{A} has a pseudo-abelian envelope $\natural: \mathcal{A} \rightarrow \mathcal{A}^{\natural}: \mathcal{A}^{\natural}$ pseudo-abelian, \square additive and universal for additive functors to pseudo-abelian categories. $\mathcal{A} A$-linear \Rightarrow $\mathcal{A}^{\natural}, \curvearrowleft A$-linear.

3.1. Description of \mathcal{A}^{\natural} :

- Objects: pairs $(M, p), M \in \mathcal{A}, p=p^{2} \in \operatorname{End}(M)$.
- Morphisms: $\operatorname{Hom}((M, p),(N, q))=q \operatorname{Hom}(M, N) p$.

The functor \hbar is fully faithful.
Definition 5. $\operatorname{Mot}_{\sim}^{\mathrm{eff}}(k, A)=\operatorname{Cor}_{\sim}(k, A)^{\mathrm{\natural}}$.

varieties		correspondences		effective motives		motives
$\operatorname{SmProj}(k)$	\longrightarrow	$\operatorname{Cor}_{\sim}(k, A)$	$\xrightarrow{\text { ps-ab envelope }}$	$\operatorname{Mot}_{\sim}^{\mathrm{eff}}(k, A)$	$\xrightarrow{\text { invert } L}$	$\operatorname{Mot}_{\sim}(k, A)$
X	\longmapsto	$[X]$	\mapsto	$h(X)$	\longmapsto	$h(X)$
f	\mapsto	$\left[\Gamma_{f}\right]$				
				$h(\operatorname{Spec} k)=: \mathbf{1}$		
				$h\left(\mathbf{P}^{1}\right)=\mathbf{1} \oplus L$		

L is the Lefschetz motive.

4. Tensor structure

The symmetric monoidal structure $(X, Y) \mapsto X \times Y$ on $\operatorname{SmProj}(k)$ extends to an A-linear unital symmetric monoidal structure $\left(:=\right.$ tensor structure) on $\operatorname{Cor}_{\sim}(k, A)$ (unit: [Spec $\left.k\right]$). \mathcal{A} tensor category $\Rightarrow \mathcal{A}^{\natural}$ tensor category and \square tensor functor. \mathcal{A} category, $L: \mathcal{A} \rightarrow \mathcal{A}$ endofunctor: universal construction

$$
\mathcal{A} \rightarrow \mathcal{A}\left[L^{-1}\right]
$$

such that $M \mapsto L(M)$ becomes equivalence of categories.

4.1. Description of $\mathcal{A}\left[L^{-1}\right]$:

- Objects: pairs $(M, m), M \in \mathcal{A}, m \in \mathbf{Z}$.
- Morphisms: $\operatorname{Hom}((M, m),(N, n))=\underset{\longrightarrow}{\lim } \operatorname{Hom}\left(L^{k+m}(M), L^{k+n}(N)\right)$.

If \mathcal{A} tensor category and $L \in \mathcal{A}$, apply this to $L(M)=M \otimes L$ and get $\mathcal{A}\left[L^{-1}\right]$.
Lemma 1 (Voevodsky). $\mathcal{A}\left[L^{-1}\right]$ is tensor if and only if the cycle (123) acts on $L^{\otimes 3}$ as the identity.

5. Motives

Definition 6. $\operatorname{Mot}_{\sim}(k, A)=\operatorname{Mot}_{\sim}^{e f f}(k, A)\left[L^{-1}\right]$ (L the Lefschetz motive $)$.
$T:=L^{-1}$ the Tate motive.
Notation 1. $M(n)=M \otimes L^{\otimes n}$.
Warning 2. Grothendieck writes $M(-n)$ instead of $M(n)$.
Projective bundle formula $\Rightarrow M \mapsto M(1)$ fully faithful on $\operatorname{Mot}_{\sim}^{\mathrm{eff}}(k, A) \Rightarrow \operatorname{Mot}_{\sim}^{\mathrm{eff}}(k, A) \rightarrow$ $\operatorname{Mot}_{\sim}(k, A)$ fully faithful.

varieties		correspondences		effective motives		motives
$\operatorname{SmProj}(k)$	\longrightarrow	$\operatorname{Cor}_{\sim}(k, A)$	$\xrightarrow{\text { ps-ab envelope }}$	$\mathrm{Mot}_{\sim}^{\mathrm{eff}}(k, A)$	$\xrightarrow{\text { invert } L}$	$\operatorname{Mot}_{\sim}(k, A)$
X	\longmapsto	$[X]$	\longmapsto	$h(X)$	\longmapsto	$h(X)$
f	\longmapsto	$\left[\Gamma_{f}\right]$				
				$h(\operatorname{Spec} k)=: \mathbf{1}$		
				$h\left(\mathbf{P}^{1}\right)=\mathbf{1} \oplus L$		

6. DUALS AND RIGIDITY

Definition 7 (Dold-Puppe [3]). \mathcal{A} tensor category.
a) $M \in \mathcal{A}: M$ has a dual if $\exists M^{*} \in \mathcal{A}, \eta_{M}: \mathbf{1} \rightarrow M^{*} \otimes M, \varepsilon_{M}: M \otimes M^{*} \rightarrow \mathbf{1}$ such that both compositions

$$
\begin{array}{cc}
M & \xrightarrow{1_{M} \otimes \eta_{M}}
\end{array} M \otimes M^{*} \otimes M \xrightarrow{\varepsilon_{M} \otimes 1_{M}} \quad M
$$

equal the identity.
b) \mathcal{A} is rigid if every object has a dual.

Proposition 2 (not difficult). $\operatorname{Mot}_{\sim}(k, A)$ is rigid.
Dual of $h(X): h(X)(-\operatorname{dim} X) ; \eta, \varepsilon$ both given by $\Delta_{X} \in \mathcal{Z}_{\sim}^{\operatorname{dim}}(X \times X)$.

7. Traces

\mathcal{A} tensor category, $M \in \mathcal{A}$ has a dual: $\forall N \in \mathcal{A}$, isomorphism

$$
\begin{aligned}
& \iota_{M, N}: \operatorname{Hom}\left(\mathbf{1}, M^{*} \otimes N\right) \rightarrow \operatorname{Hom}(M, N) \\
& \iota_{M, N}(f)=\left(\varepsilon_{M} \otimes 1_{N}\right) \circ\left(1_{M} \otimes f\right) \\
& \iota_{M, N}^{-1}(g)=\left(1_{M^{*}} \otimes g\right) \circ \eta_{M}
\end{aligned}
$$

Definition 8. a) $f \in \operatorname{End}(M)$:

$$
\operatorname{tr}(f) \in \operatorname{End}(\mathbf{1})
$$

defined by composition

$$
\mathbf{1} \xrightarrow{c_{M, M}^{-1}(f)} M^{*} \otimes M \xrightarrow{\text { switch }} M \otimes M^{*} \rightarrow \mathbf{1} .
$$

b) $\operatorname{dim} M:=\operatorname{tr}\left(1_{M}\right)$.
$H: \mathcal{A} \rightarrow \mathcal{B}$ tensor functor: $\operatorname{tr}(H(f))=H(\operatorname{tr}(f))$ (obvious) \Rightarrow if $\operatorname{End}_{\mathcal{A}}(\mathbf{1}) \hookrightarrow \operatorname{End}_{\mathcal{B}}(\mathbf{1})$, may compute $\operatorname{tr}(f)$ via H.

7.1. Application: the trace formula.

H Weil cohomology with coefficients $K, A \hookrightarrow K$: take $\mathcal{A}=\operatorname{Mot}_{\text {rat }}(k, A), \mathcal{B}=V e c_{K}^{*}$, $H=H$. For X smooth projective and $f \in \operatorname{Cor}_{\sim}([X],[X])=\operatorname{Mot}_{\sim}(h(X), h(X))$,

$$
\operatorname{tr}(f)=\operatorname{tr}(H(f))
$$

This is the trace formula:

- Left hand side $=f \cdot \Delta_{X}$
- Right hand side $=\sum_{i=0}^{2 d}(-1)^{i} \operatorname{Tr}\left(f \mid H^{i}(X)\right)$.

Corollary 1. $\sum_{i=0}^{2 d}(-1)^{i} \operatorname{Tr}\left(f \quad \mid \quad H^{i}(X)\right)$ independent of H. In particular, $\operatorname{dim}_{\text {rigid }} h_{H}(X)=\chi_{H}(X)$ independent of H.
Corollary 2. $f \in \operatorname{Mot}_{\text {num }}(h(X), h(X))$: may compute $\operatorname{tr}(f)$ by lifting f to H equivalence (for some H) and computing the trace via H. E.g. $\operatorname{dim}_{\text {rigid }} h_{\mathrm{num}}(X)=$ $\operatorname{dim}_{\text {rigid }} h_{H}(X)=\chi_{H}(X)$.
How about the Betti numbers of X themselves?
7.1.1. In characteristic 0: Comparison theorems

- Betti-de Rham: $H_{\sigma}^{i}(X) \otimes_{\mathbf{Q}} \mathbf{C} \simeq H_{d R}^{i}(X) \otimes_{k} \mathbf{C}$ (period isomorphisms, Grothendieck [5])
- Betti-l-adic: $H_{\sigma}^{i}(X) \otimes_{\mathbf{Q}} \mathbf{Q}_{l} \simeq H_{l}^{i}(X)$ (Grothendieck-Artin [12])
7.1.2. In characteristic p : Weil conjectures
- Deligne [2]: $\forall i \operatorname{det}\left(1-t F \mid H_{l}^{i}(X)\right)$ independent of l
- Katz-Messing [7]: also true for $H_{\text {cris }}^{i}(X)$.

In particular, the ranks are all equal. . .
Much deeper than for Euler-Poincaré characteristic!
7.1.3. Cheaper approach: Chow-Künneth decomposition

- Šermenev [10]: X abelian variety of dimension $d \Rightarrow h_{\text {rat }}(X) \simeq \bigoplus_{i=0}^{2 d} h^{i}(X)$ with $H\left(h^{i}(X)\right)=H^{i}(X)$ for any Weil cohomology.
- Murre [8]: true for any X if $d \leq 2$.

In both cases, Betti numbers only depend on X for any Weil cohomology, not only classical ones. Same for trace of an endomorphism. (Independence of l in characteristic $p!$)
Conjecturally true for any X.

8. Jannsen's theorem

Theorem 1 (Jannsen [6]). For any $k, \operatorname{Mot}_{\text {num }}(k, \mathbf{Q})$ is abelian semi-simple. Moreover num is the only adequate equivalence relation with this property. Proof not really difficult but uses existence of a Weil cohomology.
[1] W. L. Chow On the equivalence classes of cycles in an algebraic variety, Ann. of Math. 64 (1956), 450-479.
[2] P. Deligne La conjecture de Weil, I, Publ. Math. IHÉS 43 (1974), 5-77.
[3] A. Dold, D. Puppe Duality, trace and transfer Proceedings of the International Conference on Geometric Topology (Warsaw, 1978), PWN, Warsaw, 1980, 81-102.
[4] W. Fulton Intersection theory, Springer, 1984.
[5] A. Grothendieck On the de Rham cohomology of algebraic varieties, Publ. Math. IHÉS 29 (1966), 93-103.
[6] U. Jannsen Motives, numerical equivalence, and semi-simplicity, Invent. Math. 107 (1992), 447-452.
[7] N. Katz, W. Messing Some consequences of the Riemann hypothesis for varieties over finite fields, Invent. Math. 23 (1974), 73-77.
[8] J. P. Murre On the motive of an algebraic surface, J. reine angew. Math. (Crelle) 409 (1990), 190-204.
[9] C. Samuel Relations d'équivalence en géométrie algébrique, Proc. ICM 1958, Cambridge Univ. Press, 1960, 470-487.
[10] A. Šermenev The motive of an abelian variety, Funct. Anal. 8 (1974), 47-53.
[11] V. Voevodsky A nilpotence theorem for cycles algebraically equivalent to 0, Int. Math. Res. Notices 4 (1995), 1-12.
[12] Séminaire de géométrie algébrique du Bois-Marie: Cohomologie étale (SGA4), Vol. III, Lect. Notes in Math. 305, Springer, 1973.

