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Abstract. Using recent major advances in algebraic K-theory, we prove the
Quillen-Lichtenbaum conjecture at the prime 2 for rings of S-integers of totally
imaginary number fields. For formally real number fields, we get corresponding
results under a compatibility assumption of certain spectral sequences with prod-
ucts.

Introduction

Let F be a number field, l a prime number, S a finite set of places of F containing
the places at infinity and the places dividing l, and OS the rings of S-integers in F . If
l is odd, the Quillen-Lichtenbaum conjecture predicts the existence of isomorphisms
[15, conj. 2.5]:

K2i−j(OS)⊗ Zl
chi,j−−→ Hj

ét(OS,Zl(i)) (j = 1, 2, i ≥ j).

Here K∗(OS) denotes Quillen’s K-theory of OS [20] and Hj
ét(OS,Zl(i)) its l-adic

étale cohomology.

Such homomorphisms have been constructed by Soulé and Dwyer-Friedlander,
and proven surjective with finite kernel [25], [5]. Soulé used higher Chern class
maps, which approximate the chi,j, and Dwyer-Friedlander used étale K-theory.

For l = 2, such a conjecture is reasonable only if F is totally imaginary: the
Dwyer-Friedlander proof works in fact when

√
−1 ∈ F .
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In this paper, we establish such isomorphisms for l = 2 when F is totally imag-
inary; we also draw a number of consequences. Our proof does not rely on the
above-mentioned work, but on more recent fundamental work by several authors,
the most notable being Vladimir Voevodsky’s proof of the Milnor conjecture [39].
We get similar results when F is formally real; for this, however, we have to assume
a compatibility of certain spectral sequences with products, see below. We now state
our results (under this assumption in the formally real case).

Theorem 1. Let r1 be the number of real places of F . Then there exist homomor-
phisms

K2i−j(OS)⊗ Z2
chi,j−−→ Hj

ét(OS,Z2(i)) (j = 1, 2, i ≥ j)

which are

(i) bijective for 2i− j ≡ 0, 1, 2, 7 (mod 8)
(ii) surjective with kernel isomorphic to (Z/2)r1 for 2i− j ≡ 3 (mod 8)
(iii) injective with cokernel isomorphic to (Z/2)r1 for 2i− j ≡ 6 (mod 8).

Moreover, for i ≡ 3 (mod 4) there is an exact sequence

0→ K2i−1(OS)⊗ Z2 → H1
ét(OS,Z2(i))→ (Z/2)r1

→ K2i−2(OS)⊗ Z2 → H2
ét(OS,Z2(i))→ 0

in which Im(H1
ét(OS,Z2(i))→ (Z/2)r1) has 2-rank ρi ≥ 1 if r1 ≥ 1.

The homomorphisms chi,j are natural in OS.

One may ask:

Question. Let F be a number field. Is it true that ρi = 1 if r1 ≥ 1?

This amounts to asking whether, for i ≡ 3 (mod 4), the image of H1(OS,Z2(i))
in H1(OS,Z/2) ⊂ F ∗/F ∗2 is contained in {±1} × {totally positive elements}.

Theorem 1 has a number of corollaries, the first of them being arithmetic:

Corollary 1. (“Lichtenbaum’s conjecture” at l = 2, compare [15, question 4.2])
Let F be totally real. Assume Federer’s “main conjecture” for l = 2 [7, 3.4] holds
for F (by [18], this is true if F is “2-regular”1). Then, for i even > 0, one has

ζF (1− i) =2 2r1
|K2i−2(OF )|
|K2i−1(OF )|

where ζF is the zeta function of F and =2 means that the two sides have the same
2-primary part.

Corollary 2. Let N be a power of 2. Then there are natural homomorphisms

K2i−2(OS)/N → H2
ét(OS, µ

⊗i
N )

which are

(i) injective with cokernel isomorphic to (Z/2)r1 for 2i− 2 ≡ 0 (mod 8)

1See also [42, footnote p. 499] for abelian fields.
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(ii) bijective for 2i− 2 ≡ 2 (mod 8)
(iii) with kernel isomorphic to (Z/2)r1−ρi and cokernel isomorphic to (Z/2)r1 for

2i− 2 ≡ 4 (mod 8)
(iv) surjective with kernel a quotient of (Z/2)r1 for 2i− 2 ≡ 6 (mod 8).

Corollary 3. a) (compare [37, th. 6.2] for 2i − 2 = 2) Let r(F, S) = rg2 PicOS +
|Sf | − 1, where rg2 denotes the 2-rank of a finite abelian group and Sf is the set of
finite places in S. Then the 2-rank of K2i−2(OS) is

(i) r(F, S) for 2i− 2 ≡ 0 (mod 8), 2i− 2 > 0
(ii) r(F, S) + r1 for 2i− 2 ≡ 2 (mod 8)
(iii) between r(F, S) and r(F, S) + r1 − ρi for 2i− 2 ≡ 4 (mod 8)
(iv) between r(F, S) and r(F, S) + r1 for 2i− 2 ≡ 6 (mod 8).

b) Suppose F formally real and let N be the number of 2-primary roots of unity
in F (

√
−1). Then the 2-torsion of K2i−1(OS) is

(i) cyclic of order N
|i|2

for i ≡ 0 (mod 4), where |i|2 is the dyadic absolute value of

i
(ii) cyclic of order 2 for i ≡ 1 (mod 4)
(iii) isomorphic to (Z/2)r1−1 ⊕ C with C cyclic of order 4N for i ≡ 2 (mod 4)
(iv) 0 for i ≡ 3 (mod 4).

Corollary 4. If F is totally imaginary, the product Ki(OS)×Kj(OS)→ Ki+j(OS)
is identically 0 after localization at 2 if i and j are both > 0 and one of them is even.

Corollary 5. Suppose
√
−1 ∈ F . Let S be the sphere spectrum and j2(OS) be

the cyclotomic spectrum defined in [14]. Then the unit map S → K(OS) factors
canonically through a map of spectra j2(OS)→ K(OS)(2). Here (2) denotes Bousfield
localization at 2.

In [6], Dwyer and Mitchell give a description of the Bousfield localization ofK(OS)
with respect to mod l complex K-theory as a module spectrum over what is essen-
tially the localization of jl(OS) with respect to mod l complex K-theory. It seems
that theorem 1 and corollary 5, together with their work, yield a similar description
of K(OS)(2) as module spectrum over j2(OS), at least after 2-completion.

The case F = Q of corollaries 1 and 3 was obtained earlier by Weibel [41].

As by-products of the proof, we also get some results of independent interest:

Theorem 2. The Beilinson-Soulé conjecture holds after localization at 2 for any
subfield F of Q: H i(F,Z(2)(n)) = 0 for i ≤ 0 and n ≥ 1.

Theorem 3. For any field F of characteristic 0,
a) The map KM

3 (F )→ K3(F ) is injective.
b) 3 Ker(KM

4 (F )→ K4(F )) is a quotient of 3 Ker(KM
4 (F0)→ K4(F0)), where F0 is

the algebraic closure of Q in F . In particular, this group is 0 if
√
−1 ∈ F and finite

if F is finitely generated.
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A positive answer to the question above would imply that, for any field F of
characteristic 0, the sequence

KM
4 (Q)→ KM

4 (F )→ K4(F )

is exact up to 3-torsion.

We also get a new (although expensive) proof of the Bass-Tate theorem KM
i (F ) '

(Z/2)r1 for F a number field and i ≥ 3 [1], after localization at 2.

As indicated above, our proofs rely on major recent work done, among others, by
S. Bloch, E. Friedlander, S. Lichtenbaum, A. Suslin and V. Voevodsky, alone and
in collaboration. We refer to section 2 for a detailed description of what we use: in
this introduction we confine to a quick outline of our proof.

Our strategy is to use the Bloch-Lichtenbaum-Friedlander-Suslin-Voevodsky spec-
tral sequences [3], [33], [8], [38]

Hp−q(F,Z(−q))⇒ K−p−q(F ) (p, q ≤ 0) (0.1)

Hp−q(F,Z/m(−q))⇒ K−p−q(F,Z/m) (p, q ≤ 0) (0.2)

together with the Suslin-Voevodsky theorem [35], [39]

H i(F,Z/m(n))
∼−→ H i

ét(F, µ
⊗n
m ) (i ≤ n) (0.3)

for m a power of 2 (see section 2). Here H i(F,Z(n)) and H i(F,Z/m(n)) are Vo-
evodsky’s motivic cohomology groups. Using a little technique from topology and
(in an essential way) Quillen’s finiteness result for K∗(OS) [21], we prove in theorem
4.2 a motivic version of theorem 1 for F .

The difficulty is now to descend from F to OS. In an perfect world, we wouldn’t
have this difficulty, working directly with spectral sequences analogous to (0.1) and
(0.2) for OS, together with the analogue of (0.3) for OS. However, none of these
results is available at the moment and we have to use a rather convoluted argument,
whose crux is proposition 5.2.

As indicated above, our approach is conditional in the formally real case, because
it appeals to a multiplicative property of the spectral sequences (0.1) and (0.2) (in
fact, a rather weak property: see section 2.1). This multiplicative property appears
non-trivial to prove given the present construction of these spectral sequences. It
has been quietly used also by other authors earlier (e.g. [34, p. 350], [41, proof
of prop. 4]). However, there is the hope that the BLFSV spectral sequences can
be constructed more naturally as Atiyah-Hirzebruch spectral sequences, using the
homotopy theory of schemes currently developed by Morel and Voevodsky [17]; this
would make obvious the property we need.

While I was completing this paper, I learnt from J. Rognes and C. Weibel that
they were preparing a paper which contained closely related material, including
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corollary 1. We considered joining efforts; however the idea was rejected for practi-
cal reasons, so that their work will appear separately [23].

Theorem 1 is proved in section 5. We don’t bother to give a proof of theorem 2,
which follows from theorem 4.1 a) (i) by a direct limit argument. Theorem 3 a) is
proven in section 3 and theorem 3 b) is proven in section 7. Corollaries 1, 2, 3, 4
and 5 are proven in section 6.

Finally, it will be clear to the reader that our results extend to fields of positive
characteristic 6= 2, provided one admits resolution of singularities.

1. Notation

We denote by Z(2) (resp. Z2) the localization (resp. the completion) of Z at 2. If
A is an abelian group, we shall sometimes denote the group A⊗ Z(2) by A(2).

Let α be the projection of the big étale site of Spec Z[1/2] onto its big Zariski
site. Following Suslin and Voevodsky [35], if m is a power of 2 and n ≥ 0, we denote
by B/m(n) the truncation τ≤nRα∗µ

⊗n
m of the total direct image by α of the étale

sheaf of twisted m-th roots of unity. This is a complex of Zariski sheaves (up to
quasi-isomorphism), acyclic in degrees > n. For any field F of characteristic 6= 2,
one has

H i(F,B/m(n)) =

{

H i
ét(F, µ

⊗n
m ) if i ≤ n

0 if i > n.

For n ≥ 0, we denote by Z(n) the n-th motivic complex of Voevodsky: this
is a complex of sheaves over the big Zariski site of SpecZ. One has Z(0) = Z,
Z(1) ' Gm[−1] and Z(n) is acyclic in degrees > n [35]. We have [35, §3]

Hn(F,Z(n)) ' KM
n (F ). (1.1)

For m > 0, we denote the complex Z(n)
L
⊗Z/m by Z/m(n). For m a power of

2, there is a natural morphism of complexes over the big Zariski site of Spec Z[1/2]
[35], [39]

Z/m(n)→ B/m(n) (1.2)

which for m = 1 corresponds to the Kummer exact sequence for multiplication by
m on Gm.

We also denote the complex Z(n)⊗ Z(2) by Z(2)(n).

We define

Z2(n) = R lim←−Z/2ν(n)

B2(n) = R lim←−B/2
ν(n) ' τ≤nRα∗Z2(n)ét
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where

Z2(n)ét = lim←−µ
⊗n
2ν .

There are natural morphisms

Z(2)(n)→ Z(2)(n)⊗Z(2)
Z2 → Z2(n)→ B2(n). (1.3)

We shall need two kinds of continuous dyadic étale cohomology theories for a
subfield F of Q. The first is

H i
Zar(F,B2(n)) =

{

H i
ét(F,Z2(n)ét) if i ≤ n

0 if i > n

where H i
ét(F,Z2(n)ét) is Tate’s continuous cohomology [37]. For the second, we

define a group H̃ i(F,B2(n)) as follows:

• If F is a number field,

H̃ i(F,B2(n)) = lim−→H i(OS, B2(n))

where S runs through the finite sets of places of F .
• In general,

H̃ i(F,B2(n)) = lim−→ H̃ i(Fα, B2(n))

where Fα runs through the finitely generated subfields of F .

This is closely related to Jannsen’s “tame” p-adic étale cohomology [9, 11.6]. Since
motivic cohomology commutes with direct limits, the natural maps H i(F,Z(n)) ⊗
Z2 → H i(F,B2(n)) factor as

H i(F,Z(n))⊗ Z2 → H̃ i(F,B2(n))→ H i(F,B2(n)). (1.4)

Finally, we shall use for convenience a nonstandard definition of “local field”.

1.1. Definition. (for this paper) A local field of characteristic 0 is a subfield of Q,
henselian for a discrete valuation and with finite residue field.

2. Foundational results

2.1. The Bloch-Lichtenbaum-Friedlander-Suslin-Voevodsky spectral sequences.
Recall Bloch’s higher Chow groups CH i(X,m) [2]. In [3], Bloch and Lichtenbaum
construct a strongly convergent spectral sequence

Ep,q
2 = CH−q(F,−p− q)⇒ K−p−q(F )

for any field F . There is a similar spectral sequence with finite coefficients:

CH−q(F,−p− q;Z/n)⇒ K−p−q(F,Z/n).

On the other hand, it follows from the work of Suslin [33], Friedlander-Voevodsky
[8] and Voevodsky [38] that there are isomorphisms

CH i(X, n) ' H2i−n(X,Z(i))

CH i(X, n;Z/n) ' H2i−n(X,Z/n(i)).
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for any smooth variety X over a field F with resolution of singularities (e.g. charF =
0). For the convenience of the reader, we give some details: by [33] and [38],
for any quasiprojective F -scheme X, equidimensional of dimension d, there is an
isomorphism

CH i(X, j) ' HBM
j+2(d−i)(X,Z(d− i))

where HBM
j+2(d−i)(X,Z(d − i)) is Borel-Moore motivic homology ([33] deals with the

affine case and [38] with the general case). If X is moreover smooth, there is an
isomorphism [8], [38]

HBM
j (X,Z(i)) ' H2d−j(X,Z(d− i)).

These isomorphisms stem from quasi-isomorphisms between certain complexes of
abelian groups. There are similar isomorphisms for finite coefficients, obtained by
tensoring the quasi-isomorphisms between the relevant complexes by Z/m (in the
derived sense).

Putting all this together, we get for any field F with resolution of singularities
two spectral sequences

Ep,q
2 = Hp−q(F,Z(−q))⇒ K−p−q(F ) (2.1)

Ep,q
2 = Hp−q(F,Z/m(−q))⇒ K−p−q(F,Z/m) (2.2)

that we call the Bloch-Lichtenbaum-Friedlander-Suslin-Voevodsky (or BLFSV) spec-
tral sequences. By the 2-local BLFSV spectral sequence, we shall mean the spectral
sequence (2.1) tensored by Z(2).

These spectral sequences are compatible with transfer, which follows easily from
their construction. For F formally real, we shall moreover have to assume the
following property in the proof of lemma 4.3: cup-product by a cycle of the E2-
terms commutes with d2-differentials.

2.2. Soulé’s contribution. Soulé [28] uses the Adams operations to split the
BLFSV spectral sequence up to torsion. His result is:

2.1. Theorem. (Soulé) For every k > 0 there is an action of the Adams operation ψk

on the spectral sequence (2.1). It converges to the action of ψk on K−p−q(F ) and
acts upon Ep,q

r , r ≥ 2, by multiplication by k−q.

From this, one deduces in a standard way:

2.2. Corollary. For any field F with resolution of singularities, the differentials of the
BLFSV spectral sequence are torsion. For any q, there is an isomorphism

Kq(F ) ' Hq(F,Z(q))⊕Hq−2(F,Z(q − 1))⊕ · · · ⊕Hq−2r(F,Z(q − r))⊕ . . .

(a finite sum), up to groups of finite exponent. 2
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2.3. The Suslin-Voevodsky theorems. Recall the Kato conjecture: the natural
map (norm residue homomorphism)

KM
n (F )/m→ Hn

ét(F, µ
⊗n
m )

is an isomorphism for any field F . In [35], Suslin and Voevodsky prove

2.3. Theorem. (Suslin-Voevodsky) Let the Kato conjecture hold mod m in degree n.
Then the map (1.2) is a quasi-isomorphism when restricted to any smooth scheme
over a field with resolution of singularities.

On the other hand, Voevodsky proves in [39]:

2.4. Theorem. (Voevodsky) The Kato conjecture holds when m is a power of 2.

2.5. Corollary. Over any field with resolution of singularities, the map (1.2) is a quasi-
isomorphism when m is a power of 2, and the map

Z2(n)→ B2(n)

from (1.3) is a quasi-isomorphism as well. 2

2.4. Other results. We collect here various results that we shall need in the rest
of the paper.

2.6. Theorem. (Suslin [29, cor. 5.3]) For any field F , the kernel of KM
n (F ) → Kn(F )

is killed by (n− 1)!.

2.7. Theorem. (Soulé [27, th. 1]) For any i > 1, the sequence from Quillen’s localization
exact sequence

0→ Ki(OS)→ Ki(F )→
∐

v/∈S

Ki−1(κ(v))→ 0

is exact, where κ(v) is the residue field at v.

Similarly, passing to the inverse limit on the localization exact sequences for étale
cohomology, one gets:

2.8. Theorem. Let T be a finite set of places of F containing S. Then the sequence

0→ Hj(OS, B2(i))→ Hj(OT , B2(i))→
∐

v∈T−S

Hj−1(κ(v), B2(i− 1))→ 0

is exact for j = 1, 2 and i ≥ 2.

3. Divisibility of motivic cohomology; proof of theorem 3 a)

3.1. Theorem. Let F be a field of characteristic 0.
a) For i ≤ 0, H i(F,Z(n)) is uniquely 2-divisible.
b) If F has étale 2-cohomological dimension d < +∞, then H i(F,Z(n)) is 2-divisible
for i ≥ d+ 1 and uniquely 2-divisible for i ≥ d+ 2.
c) If F is finitely generated and has étale 2-cohomological dimension d < +∞, then
H i(F,Z(n)) is uniquely 2-divisible for i ≥ d+ 1 and Hd(F,Z(n)) is an extension of
a uniquely 2-divisible group by a torsion group.
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Proof. In a), it is obvious that H i(F,Z(n)) is uniquely 2-divisible for i < 0 and that
H0(F,Z(n)) is 2-torsion-free, since H i(F,Z/2(n)) = 0 for i < 0 by corollary 2.5. To
prove that H0(F,Z(n)) is 2-divisible, we may assume F finitely generated. There is
a commutative diagram with injective horizontal arrows (coming from multiplication
by 2 on Z(n) and Z2(n))

H0(F,Z2(n))/2↪−→H0(F,Z/2(n))
x





||

x





H0(F,Z(n))/2 ↪−→H0(F,Z/2(n)).

We have H0(F,B2(n)) = 0 since F contains only finitely many roots of unity,
hence H0(F,Z2(n)) = 0 as well.

b) This is clear since H i(F,Z/2(n))
∼−→ H i

ét(F, µ
⊗n
2 ) = 0 for i > d.

c) By [12, prop. 4], Hd
ét(F, lim−→µ⊗n

2ν ) = 0 for n 6= d− 1. This gives the claim when

n 6= d− 1. But if n = d− 1, the group H i(F,Z(d− 1)) is 0 for i > d, so the claim
also holds (trivially) in this case. 2

3.2. Corollary. Let notation and hypotheses be as in theorem 3.1. Then in the 2-local
BLFSV spectral sequence, all differentials starting from Ep,q

r for p ≤ q are 0. If
cd2(F ) = d, this is also true for the differentials arriving at Ep,q

r for p− q ≥ d + 2;
if moreover F is finitely generated we can replace this inequality by p− q ≥ d+ 1.

Indeed, all differentials in the spectral sequence are torsion by corollary 2.2; on
the other hand, Ep,q

2 is divisible for p ≤ q by theorem 3.1 a) and torsion-free in the
cases considered by theorem 3.1 b) and c). 2

Proof of theorem 3 a). By theorem 2.6, it is sufficient to prove this after localiza-
tion at 2. The 2-local BLFSV spectral sequence yields an exact sequence (compare
(1.1))

H0(F,Z(2)(2))
d−2,−2
2−−−→ KM

3 (F )(2) → K3(F )(2) → H1(F,Z(2)(2))→ 0
(3.1)

in which the differential d−2,−2
2 is 0 by corollary 3.2. We note that the middle map, an

edge homomorphism, is indeed the natural map from Milnor to Quillen’s K-theory:
this follows from the multiplicativity of the spectral sequence and the similar fact
for the edge homomorphism in degree 1. Theorem 3 a) follows. 2

4. Generic results

4.1. Theorem. Let F be a number field with r1 real embeddings and r2 complex embed-
dings. Then
a) H i(F,Z(2)(n)) is

(i) 0 if i ≤ 0 or i > n.
(ii) 0 if i ≥ 3, n 6≡ i (mod 2).
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(iii) isomorphic to (Z/2)r1 if i ≥ 3, n ≡ i (mod 2), i ≤ n.
(iv) torsion if i = 2.
(v) finitely generated over Z(2) if i = 1. In this case, its rank is r2 if n is even and

r1 + r2 if n is odd; its 2-torsion subgroup is isomorphic to H0(F, lim−→µ⊗n
2ν ).

Moreover, let ε be the class of −1 in H1(F,Z(1)) = F ∗. Then cup-product by ε

induces isomorphisms H i(F,Z2(n))
∼−→ H i+1(F,Z2(n + 1)) for 3 ≤ i ≤ n and cup-

product by ε2 induces a surjection H1(F,Z(1))→→ H3(F,Z(3)).
b) The homomorphisms

H i(F,Z(n))⊗Z Z2 → H̃ i(F,B2(n))

from (1.4) are isomorphisms for all n ≥ 1.

Proof. a) By Quillen and Borel’s theorems [21], [4], K2q(F ) is torsion for q > 0 and
K2q−1(F ) is finitely generated of rank r2 or r1 + r2 according as q is even or odd.
Applying theorem 3.1 and corollary 2.2, this gives (i) and the fact that H i(F,Z(n))
is torsion for i ≥ 2.2 To compute it in cases (ii) and (iii), consider the exact sequence

· · · → H i−1(F,Q2/Z2(n))→ H i(F,Z(2)(n))→ H i(F,Q(n))→ H i(F,Q2/Z2(n))→ . . .

Since H i(F,Z(n)) is torsion for i ≥ 2, H i(F,Q(n)) = 0 and this exact sequence
degenerates into isomorphisms

H i−1(F,Q2/Z2(n))
∼−→ H i(F,Z(2)(n)) (i ≥ 3).

Claim (iii) now follows from corollary 2.5 and the well-known value of Galois co-
homology of number fields [36, th. 3.1].

To prove (v) we use the BLFSV spectral sequence and the above results.

Finally, let us prove the claims concerning cup-product by ε. In the first claim,
there is nothing to prove if i 6≡ n (mod 2) in view of (ii). If i ≡ n (mod 2), we have
a commutative diagram

H i(F,Z(2)(n))
ε−−−→ H i+1(F,Z(2)(n+ 1))

o





y

o





y

H i(F,Z/2(n))
ε−−−→ H i+1(F,Z/2(n+ 1))

in which the vertical maps are isomorphisms in view of (iii). So we reduce to prov-
ing the bijectivity of the bottom horizontal map, which follows from corollary 2.5
and the well-known corresponding result in Galois cohomology [36, th. 3.1]. In
the second claim, we use a similar diagram plus the surjectivity of H1(F,Z(1)) →
H1(F,Z/2(1)).

2Actually we cannot apply theorem 3.1 c) directly if F is formally real; however, cd2(F (
√
−1)) =

2 in any case and we can get back to F by a transfer argument.
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b) Observe that there is a commutative diagram of long exact sequences

. . .
2−−−→ H i(F,Z(n))⊗ Z2 −−−→ H i(F,Z/2(n)) −−−→ H i+1(F,Z(n))⊗ Z2

2−−−→ . . .

fi





y

o





y

fi+1





y

. . .
2−−−→ H̃ i(F,B2(n)) −−−→ H i(F,B/2(n)) −−−→ H̃ i+1(F,B2(n))

2−−−→ . . .

The top row is the long cohomology exact sequence for multiplication by 2 on Z(n),
tensored by the flat Z-module Z2. The bottom row is the direct limit of the corre-
sponding long exact sequences for OS. By a cone argument (compare [13, proof of
th. 7.2]), we get that, for all i:

• Ker fi is divisible;
• Coker fi is torsion-free;
• (Ker fi+1)tors

∼−→ Coker fi ⊗Q/Z.

We now proceed to prove that fi is an isomorphism inductively on i. If i ≤ 0,
both sides are 0 and there is nothing to prove. This implies that Ker f1 is uniquely
divisible. If n = 1, the bijectivity of f1 is checked directly. If n > 1, since the source
and target of f1 are finitely generated Z2-modules of the same rank [26], Ker f1 = 0
and Coker f1 is torsion, hence 0. SinceH2(F,Z(n)) is torsion, this implies Ker f2 = 0.

Since H̃2(F,B2(n)) is also torsion [26], we also have Coker f2 = 0. Finally, for i ≥ 3,
both the source and target of fi are killed by 2, hence fi is bijective as well. 2

Remark. As a special case of theorem 4.1 b) (iii), we recover the Bass-Tate theorem
localized at 2: KM

i (F )⊗ Z(2) ' (Z/2)r1 for i ≥ 3 (compare (1.1)).

4.2. Theorem. For any number field, the 2-local BLFSV spectral sequence degenerates
from E3 on. There are homomorphisms

K2i−j(F )(2) → Hj(F,Z(2)(i)) (j = 1, 2, i ≥ j)

which are

(i) bijective for 2i− j ≡ 0, 1, 2, 7 (mod 8)
(ii) surjective with kernel isomorphic to (Z/2)r1 for 2i− j ≡ 3 (mod 8)
(iii) injective with cokernel isomorphic to (Z/2)r1 for 2i− j ≡ 6 (mod 8).

Moreover, for i ≡ 3 (mod 4) there is an exact sequence

0→ K2i−1(F )(2) → H1(F,Z(2)(i))→ (Z/2)r1 → K2i−2(F )(2) → H2(F,Z(i)(2))→ 0

in which Im(H1(F,Z(2)(i))→ (Z/2)r1) has 2-rank ρi ≥ 1 if r1 ≥ 1.

Proof. (compare [11, appendix]) The homomorphisms K2i−j(F )→ Hj(F,Z(i)) are
edge homomorphisms in the BLFSV spectral sequence, whose existence follows from
theorem 4.1 a) (i). To prove the rest of theorem 4.2, we need:

4.3. Lemma. Let p ≡ 2 (mod 4). In the BLFSV spectral sequence localized at 2, the
differential dp,q

2 is surjective for q = p− 2 and bijective for q < p− 2.
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It is in the proof of this lemma that we use our assumption that cup-product by
a cycle of the E2-terms commutes with d2-differentials.

Proof. We first deal with the case p = −2. By topology [22], we know that
KM

4 (Q) → K4(Q) is 0. Since KM
i (F ) = {−1}i−1K1(F ) for i ≥ 3 (Bass-Tate), we

get that KM
i (F ) → Ki(F ) is 0 for i ≥ 5. This implies that the differential d−2,−i+1

2

is surjective for i = 5. We now observe that ε ∈ H1(F,Z(1)) is a cycle in E0,−1
2 , be-

cause it comes from {−1} ∈ K1(F ). By our compatibility assumption, cup-product
by ε commutes with the d2-differentials. It follows that d−2,−i+1

2 is also surjective for
i ≥ 6, hence bijective by theorem 4.1 a) (iii).

In general, we shall use a generator β̄ of H0(F,Z/16(4)) = E−4,−4
2 in the BLFSV

spectral sequence with Z/16 coefficients to reduce to the special case above. To
show that β̄ is a d2-cycle, we show that it comes from an element of order 16

β ∈ K8(F,Z/16)

via the edge homomorphism. To construct β, we lift an element of order 16, β̃ ∈
πS

7 (pt) ' Z/240, to πS
8 (pt,Z/16); since πS

8 (pt) ' Z/2 × Z/2, there are 4 choices

for such a lift. By Quillen’s computation [22], the image of β̃ in π8(BU,Z/16)

generates the latter group. We take for β the image of β̃ in K8(F,Z/16). (The
above ambiguity then disappears by [40] and [16], although we won’t need this.)
The claim now follows from the commutative diagram

π8(BU,Z/16)

o

x





K8(C,Z/16)

o

x





K8(Q,Z/16)
∼−−−→ H0(Q,Z/16(4))

x





o

x





K8(F,Z/16) −−−→ H0(F,Z/16(4)).

Here the left vertical isomorphisms follow from Suslin’s results [30], [31], the hor-
izontal one follows, say, from the BLFSV spectral sequence while the right vertical
one follows from corollary 2.5 plus the obvious fact that µ⊗4

16 is a trivial Galois mod-
ule.

Consider the natural morphism from the 2-local BLFSV spectral sequence to the
mod 16 BLFSV spectral sequence. By theorem 4.1 b) (iii), this morphism is bijec-
tive on the Ep,q

2 -terms for p− q ≥ 3 and p− q even. It follows that the differential
d−2,−i+1

2 is still surjective for i = 5 and bijective for i > 5 in the mod 16 spectral
sequence. Using the bijective operator β̄, we find that d−2+4q,−i+1+4q

2 is surjective
for i = 5 and bijective for i > 5 and for any q ≥ 0 in the mod 16 spectral sequence.
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The morphism of spectral sequences is also surjective on the E−2,−4−4q
2 -terms as

H3(F,Z(4 + 4q)) = 0 (theorem 4.1 a) (ii)). Therefore, going back we get the same
result in the 2-local spectral sequence. 2

Lemma 4.3 implies that, in the 2-local BLFSV spectral sequence, the differentials
Ep,q

2 are 0 for p ≡ 0 (mod 4), q ≤ p, and that Ep,q
3 = 0 for p− q > 2, except perhaps

for Ep,p−3
3 and Ep,p−4

3 if p ≡ 0 (mod 4). The rest of theorem 4.2 easily follows, except
for the fact that ρi(F ) > 0 for i ≡ 3 (mod 4) when r1 > 0. This will follow from

4.4. Lemma. Let r1 > 0. For i ≡ 3 (mod 4), the differential

H1(F,Z(i))
d1−i,−i
2−−−−→ H4(F,Z(i+ 1))

of the BLFSV spectral sequence is nonzero on the 2-torsion element of H 1(F,Z(i)).

Proof. Let v be a real place of F and Fv ⊂ Q be the corresponding real closure. In
view of the commutative diagram

H0(Fv,Z/2(i))
∼−−−→ 2H

1(Fv,Z(2)(i))

o

x





x





H0(F,Z/2(i))
∼−−−→ 2H

1(F,Z(2)(i))

it is sufficient to show the same fact when replacing F by Fv. Since Fv is a direct
limit of number fields, we get a similar exact sequence

0→ K2i−1(Fv)→ H1(Fv,Z(2)(i))→ H4(Fv,Z(2)(i+ 1))

→ K2i−2(Fv)⊗ Z(2) → H2(Fv,Z(2)(i))→ 0.

The map Kq(Fv) → Kq(R) is an isomorphism on torsion (Jannsen [10]), and by
Suslin’s theorem [31], K2i−2(R) is torsion-free for i ≡ 3 (mod 4). (We could avoid
the recourse to Jannsen’s theorem at the price of a slightly uglier argument.) Since
K2i−2(Fv) is torsion, it is 0. This implies that H2(Fv,Z(2)(i)) = 0. One checks easily,
by comparing with the exact sequence of Galois modules

0→ µ2 → µ⊗i
4 → µ2 → 0

that the composition H0(Fv,Z/2(i)) → H1(Fv,Z(2)(i)) → H1(Fv,Z/2(i)) is an iso-
morphism. This implies that H1(Fv,Z(2)(i)) is the direct sum of a cyclic group
of order 2 and a uniquely 2-divisible group. Since the map H1(Fv,Z(2)(i)) →
H4(Fv,Z(2)(i+ 1)) is surjective, it must be nonzero on 2-torsion.

This completes the proof of lemma 4.4, hence of theorem 4.2. 2

4.5. Corollary. Let K be a local field (see definition 1.1). Then the 2-local BLFSV
spectral sequence degenerates from E3 on. There are natural isomorphisms

K2i−j(K)⊗ Z(2)
∼−→ Hj(K,Z(2)(i)) (i ≥ 1, j = 1, 2).

Moreover, the natural map H j(K,Z(i))⊗Z2 → H̃j(K,B2(i)) is an isomorphism for
j ≤ i.
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Proof. This follows from theorem 4.1 b) and theorem 4.2 by a passage to the limit,
as K is a union of non-formally real global fields. 2

5. Proof of theorem 1

First we define the maps chi,j : K2i−j(OS)⊗Z2 → Hj(OS, B2(i)) ' Hj
ét(OS,Z2(i)).

For j = 1 this is easy, since K2i−1(OS)
∼−→ K2i−1(F ) (theorem 2.7) and similarly

H1(OS, B2(i))
∼−→ H̃1(F,B2(i)) (theorem 2.8).

Suppose j = 2. We shall need some preparation:

5.1. Lemma. The sequence

0→ H2(OS, B2(i))→ H̃2(F,B2(i))→
∐

v/∈S

H1(κ(v), B2(i− 1))→ 0

is exact.

This follows from theorem 2.8. 2

Let κ be a finite field of characteristic 6= 2 with q elements. By Quillen’s theorem
[19], then K2i−1(κ)

∼−→ K2i−1(κ̄)
Gκ, where κ̄ is an algebraic closure of κ and Gκ =

Gal(κ̄/κ). Moreover, Frobenius acts on K2i−1(κ̄) by multiplication by qi. It follows
that the Galois module K2i−1(κ̄)(2) can be identified with lim−→µ⊗i

2ν . Using the exact

sequence 0→ B2(i)→ B2(i)⊗Q→ B2(i)⊗Q/Z→ 0, this yields an isomorphism

ρ : K2i−1(κ)
∼−→ H1(κ,B2(i)).

5.2. Proposition. Let i > 1 and K be a local field with residue field κ. There is an odd
integer m such that the diagram

K2i−2(K)⊗ Z2 −−−→ K2i−3(κ)⊗ Z2




y

mρ





y

H2(K,B2(i)) −−−→ H1(κ,B2(i− 1))

commutes. Here the horizontal maps are the residue maps in K-theory and étale
cohomology, while the left vertical map is the map of corollary 4.5 composed with
H2(K,Z(2)(i))⊗Z(2)

Z2 → H2(K,B2(i)).

Proof. Note that the right vertical and bottom horizontal maps are isomorphisms.
The three groups K2i−3(κ) ⊗ Z2, H

2(K,B2(i)) and H1(κ,B2(i − 1)) are therefore
cyclic of the same order, say, N .

5.3. Lemma. The induced map K2i−2(K)/N → H2(K,B2(i)) is bijective.

This follows from the commutative diagram

K2i−2(K)⊗ Z(2)
∼−−−→ H2(K,Z(2)(i)) −−−→ H2(K,B2(i))





y





y

o





y

K2i−2(K)/N
∼−−−→ H2(K,Z(2)(i))/N

∼−−−→ H2(K,Z/N(i))
∼−−−→ H2(K,B/N(i))
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in which the top left horizontal map is an isomorphism by corollary 4.5, the right
vertical map is an isomorphism because cd2(K) = 2, the bottom left horizontal map
is the top left isomorphism tensored by Z/N , the bottom middle horizontal map
is an isomorphism by the vanishing of H3(K,Z(2)(i)) (which follows from corollary
4.5) and the bottom right horizontal map is an isomorphism by corollary 2.5. 2

Going back to proposition 5.2, we get a diagram

K2i−2(K)/N −→→ K2i−3(κ)⊗ Z2

o





y

o





y

H2(K,B2(i))
∼−−−→ H1(κ,B2(i− 1))

in which the top horizontal map is surjective by the localization exact sequence for
local fields. Therefore all edges of the square are isomorphisms. Since all vertices are
finite cyclic groups, the two composite isomorphisms K2i−2(K)/N → H1(κ,B2(i−
1)) must differ by an invertible constant. 2

Remark. With more work one can show that m = 1.

From proposition 5.2 one deduces a commutative diagram

0→ K2i−2(OS)⊗ Z2 −−−→ K2i−2(F )⊗ Z2 −−−→
∐

v/∈S

K2i−3(κ(v))⊗ Z2 → 0





y

(mvρv)





y

0→ H2(OS, B2(i)) −−−→ H̃2(F,B2(i)) −−−→
∐

v/∈S

H1(κ(v), B2(i− 1))→ 0

where the mvs are odd integers and the ρvs are the isomorphisms defined just before
proposition 5.2. The right vertical map is an isomorphism, hence there is a unique
map chi,2 : K2i−2(OS) ⊗ Z2 → H2(OS, B2(i)) making the diagram commute. By
construction, this map has the same kernel and cokernel as the corresponding map
for F , and the same holds for chi,1, hence theorem 4.2. 2

6. Proofs of corollaries 1, 2, 3, 4 and 5

Proof of corollary 1. Let S be the set of real and dyadic places of F . Note that
K2i−1(OF ) is finite and that we have a chain of equalities

|K2i−2(OF ){2}|
|K2i−1(OF ){2}| =

|K2i−2(OS){2}|
|K2i−1(OS){2}| = 2−r1

|H2
ét(OS,Z2(i))|

|H1(OS,Z2(i))|
= 2−r1

|H1
ét(OS,Q2/Z2(i))|

|H0(OS,Q2/Z2(i))|
.

Here the first equality comes from the localization exact sequence, the second
one follows from theorem 1 and the third follows from the finiteness of the dyadic
cohomology groups. The proof now goes exactly as in [18, §2]. 2
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Proof of corollary 2. This follows easily from theorem 1 and the fact that

H3
ét(OS,Z2(i)) '

{

(Z/2)r1 if i is odd

0 if i is even.
2

Proof of corollary 3. a) This follows easily from theorem 1 and the exact sequences

0→ H2(OS,Z2(i))/2→ H2(OS, µ
⊗i
2 )→ 2H

3(OS,Z2(i))→ 0

observing that the last group is 0 or elementary abelian of rank r1 according as i is
even or odd, and the 2-rank of the middle group can be computed by identifying it
to H2(OS, µ2) and using the Kummer exact sequence, which gives

rk2H
2(OS, µ2) = r(F, S) + r1.

(Note that the Brauer groupH2(OS,Gm) is isomorphic to Ker((Z/2)r1⊕(Q/Z)Sf
Σ−→

Q/Z).)

b) Everything follows easily from theorem 1, except for (iii) and (iv). The latter
follows from lemma 4.4. For the former, theorem 1 gives an exact sequence

0 −→(Z/2)r1 −→K2i−1(OS){2} −→H0(F,Q2/Z2(i)) −→0

where H0(F,Q2/Z2(i)) is cyclic of order 2N , and we have to show that this sequence
is not split. Choose a real place v of F . We get correspondingly a commutative
diagram of exact sequences

0 −−−→ Z/2 −−−→ K2i−1(R){2} −−−→ H0(R,Q2/Z2(i)) −−−→ 0
x





x





x





0 −−−→ (Z/2)r1 −−−→ K2i−1(OS){2} −−−→ H0(F,Q2/Z2(i)) −−−→ 0.

Here the top row is a non-split exact sequence, as follows from Suslin’s compu-
tation of K∗(R) [31]. Since the left vertical map is surjective and the right vertical
map is injective, this forces the bottom sequence to be non-split as well. 2

Proof of corollary 4. Let (x, y) ∈ Ki(OS)(2) × Kj(OS)(2), where i, j are as in
the statement of corollary 4. By theorems 1 and 2.1, x (resp. y) is pure of weight
[i/2] + 1 (resp. [j/2] + 1), where [α] denotes the integral part of α. Hence their
product x · y ∈ Ki+j(OS)(2) is pure of weight [i/2] + [j/2] + 2, and also of weight

[ i+j
2

] + 1. The assumption on (i, j) implies that these two weights differ by 1. For
any k ∈ Z− {0}, we have

ψk(x · y) = k[i/2]+[j/2]+2x · y = k[ i+j

2
]+1x · y.

Taking k = −1 gives 2x · y = 0. To get rid of the factor 2, we need a lemma:

6.1. Lemma. Let m > 0.
a) For any x ∈ Km(F ), there exists a finite extension E/F such that xE is divisible
by 2 in Km(E).
b) For any finite extension E/F , the transfer map NE/F : K2m(E)(2) → K2m(F )(2)

is surjective.
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Proof. a) follows from Suslin’s theorem that Km(Q) is divisible [31]. For b), it
suffices to prove the corresponding result for K2m(F )/N , where N is the 2-primary
part of [E : F ]: this follows from the fact that NE/F (xE) = [E : F ]x for x ∈ K2m(F ).
But corollary 2 gives us an isomorphism

K2m(F )/N
∼−→ H2(F, µ

⊗(m+1)
N ).

This isomorphism is compatible with transfer because the BLFST spectral se-
quences are. The conclusion now follows from the fact that cd2(F ) = 2 [24, p. 17,
lemma 4]. 2

Getting back to the proof of corollary 4, let (x, y) ∈ Ki(OS)(2) × Kj(OS)(2) as
before. We may assume that j is even. To prove that x · y = 0, it is sufficient
by theorem 2.7 to show that its image in Ki+j(F )(2) is 0. Denote the images of x
and y in Ki(F )(2) and Kj(F )(2) still be x, y, and let by lemma 6.1 a) E be a finite
extension of F such that xE = 2ξ for some ξ ∈ Ki(E)(2). By lemma 6.1 b), there
exists η ∈ Kj(E)(2) such that y = NE/Fη. By the projection formula,

x · y = x ·NE/Fη = NE/F (xE · η) = NE/F (2ξ · η) = 0

from the first part of the proof. 2

Proof of corollary 5. This follows directly from [14, th. D.2]. 2

7. An application; proof of theorem 3 b)

7.1. Theorem. Let F be a field of characteristic 0 and F0 its field of constants, i.e. the
algebraic closure of Q in F . Then, for n ≥ 2, the natural map H 1(F0,Z(2)(n)) →
H1(F,Z(2)(n)) is injective with uniquely divisible cokernel, and the mapH 2(F0,Z(2)(n))
→ H2(F,Z(2)(n)) is injective.

Proof. We may assume F to be finitely generated. We first prove that there is an
exact sequence

0→ H1(F0,Z(2)(n))/2→ H1(F,Z(2)(n))/2→ 2H
2(F0,Z(2)(n))→ 2H

2(F,Z(2)(n)).
(7.1)

The commutative diagram with exact rows

0 −−−→ H1(F,Z2(n))/2 −−−→ H1(F,Z/2(n)) −−−→ 2H
2(F,Z2(n)) −−−→ 0

x





||

x





x





0 −−−→ H1(F,Z(2)(n))/2 −−−→ H1(F,Z/2(n)) −−−→ 2H
2(F,Z(2)(n)) −−−→ 0

and the snake lemma yield an exact sequence

0→ H1(F,Z(2)(n))/2→ H1(F,Z2(n))/2→ 2H
2(F,Z(2)(n)) −→2H

2(F,Z2(n)) −→0.

By a result of Suslin [32, cor. 2.7], H1(F0, B2(n)) → H1(F,B2(n)) is an iso-
morphism and H2(F0, B2(n))→ H2(F,B2(n)) is injective, hence the same holds by
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replacing B2(n) by Z2(n) by corollary 2.5. The commutative diagram with exact
rows

0→H1(F,Z(2)(n))/2 −−−→ H1(F,Z2(n))/2 −−−→ 2H2(F,Z(2)(n)) −−−→ 2H2(F,Z2(n))→0
x





o

x





x





inj

x





0→H1(F0,Z(2)(n))/2 −−−→ H1(F0,Z2(n))/2 −−−→ 2H2(F0,Z(2)(n)) −−−→ 2H2(F0,Z2(n))→0

then yields (7.1).

We now show that the map H1(F0,Z(2)(n))/2→ H1(F0,Z2(n))/2 is surjective; in
view of the commutative diagram

H1(F,Z(2)(n))/2 ↪−→ H1(F,Z2(n))/2
x





o

x





H1(F0,Z(2)(n))/2 −−−→ H1(F0,Z2(n))/2

this will show that H1(F0,Z(2)(n))/2 → H1(F,Z(2)(n))/2 is surjective, hence theo-
rem 7.1, using (7.1) and the classical fact that Ker(H i(F0,Z(2)(n))→ H i(F,Z(2)(n)))
is a priori a torsion group.

From the morphism Z(2)(n)⊗Z(2)
Z2 → Z2(n), we get a commutative diagram

H1(F0,Z2(n)) −−−→ lim←−H
1(F0,Z2(n))/2ν −−−→ lim←−H

1(F0,Z/2
ν(n))

x





x





||

x





H1(F0,Z(2)(n))⊗Z(2)
Z2 −−−→ lim←−H

1(F0,Z(2)(n))/2ν −−−→ lim←−H
1(F0,Z/2

ν(n)).

By theorem 4.1 a) (v), the bottom left horizontal map is an isomorphism. On the
other hand, it is classical that the Tate module T2(K2n−2(F )) is 0, and in view of
theorem 4.2, the same holds for H2(F,Z(2)(n)). Using the short exact sequences

0→ H1(F0,Z(2)(n))/2ν → H1(F0,Z/2
ν(n))→ 2νH2(F0,Z(2)(n))→ 0

this implies that the bottom right map is an isomorphism as well. In the top
row, the composite of both maps is bijective because lim←−

1H0(F0,Z/2
ν(n)) = 0.

This implies that H1(F0,Z(2)(n))⊗Z(2)
Z2 → H1(F0,Z2(n)) is bijective, hence so is

H1(F0,Z(2)(n))/2 = (H1(F0,Z(2)(n))⊗Z(2)
Z2)/2→ H1(F0,Z2(n))/2. 2

Proof of theorem 3 b). Using the 2-local BLFSV spectral sequence and corollary
3.2, we get a commutative diagram with exact rows

H1(F,Z(2)(3)) −−−→ KM
4 (F )(2) −−−→ K4(F )(2)

x





x





x





H1(F0,Z(2)(3)) −−−→ KM
4 (F0)(2) −−−→ K4(F0)(2)

where F0 is the field of constants of F . By theorem 2.6, the map KM
4 (F ) −→K4(F )

is killed by 6. By theorem 7.1, the left vertical map has uniquely divisible cokernel.
This concludes the proof. 2
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[27] C. Soulé Groupes de Chow et K-théorie des variétés sur un corps fini, Math. Ann. 268 (1984),

317–345.
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[35] A. Suslin, V. Voevodsky Bloch-Kato conjecture and motivic cohomology with finite coefficients,
preprint, 1995.

[36] J. Tate Duality theorems in Galois cohomology of number fields, Proc. Intern. Congress Math.
Stockholm (1962), 234–241.

[37] J. Tate Relations between K2 and Galois cohomology, Invent. Math. 36 (1976), 257–274.
[38] V. Voevodsky Triangulated category of motives over a field, preprint, 1994.
[39] V. Voevodsky The Milnor conjecture, preprint, 1996.
[40] F. Waldhausen Algebraic K-theory of spaces, a manifold approach, Current Trends in Alge-

braic Topology I (1982), 141–184.
[41] C. Weibel The 2-torsion in the K-theory of the integers, C.R. Acad. Sci. Paris 324 (1997),

615–620.
[42] A. Wiles The Iwasawa conjecture for totally real fields, Annals of Math. 131 (1990), 493–540.
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