ON “HORIZONTAL” INVARIANTS ATTACHED TO
QUADRATIC FORMS

BRUNO KAHN

ABSTRACT. We introduce series of invariants related to the dimen-
sion for quadratic forms over a field, study relationships between
them and prove a few results about them.

This is the TEX-ing of a manuscript from 1993 entitled Quadratic forms
and simple algebras of exponent two. The original manuscript contained an
appendix that has appeared in [K3]: I removed it and replaced references
to it by references to [K3]. T also extended Section 2 somewhat, improved
Proposition 3.3 a bit and removed a section that did not look too useful.
Finally I changed the title to a better-suited one. These are essentially the
only changes to the original manuscript.

The main reasons I have to exhume it are that 1) the notion of dimension
modulo I"*! has recently been used very conceptually by Vishik (e.g. [Vi],
to which the reader is referred for lots of highly nontrivial computations)
and 2) Question 1.1 has been answered positively by Parimala and Suresh
[P-S]. I have included a proof that is different from theirs (see Corollary
2.1).

Vishik has suggested that the invariant A which is studied here might be
replaced by a finer one: the “geometric length”, where one takes transfers
into account. Namely, if # € I"F/I""1F, its geometric length is the smallest
integer ¢ such that there exists an étale F-algebra F of degree ¢ and a Pfister
form y = (uy,...,up) € I"E/I"™ E such that « = Trpg/r(y). (By [TR],
the two invariants coincide for n = 2.) This invariant should definitely be
investigated as well.

Everything here is anterior to Voevodsky’s proof of the Milnor conjecture,
which is not used. I wish to thank Karim Becher for very helpful comments.

INTRODUCTION

Let F' be a field of characteristic # 2. The wu-invariant u(F') of
F' is the least integer n such that any quadratic form in more than
n variables over F' is isotropic, or 400 if no such integer exists. (A
finer version exists for formally real fields, but for simplicity we shall
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not consider it.) In [Me2] (see also [Ti]), Merkurjev disproved a long-
standing conjecture of Kaplansky, asserting that the u-invariant should
always be a power of 2. In fact, Merkurjev produced for any integer
m > 3 examples of fields of u-invariant 2m.

A remarkable feature of Merkurjev’s examples is that they can be
contrived to have 2-cohomological dimension 2. This destroys a naive
belief that u(F) would be 2*) where v(F), the v-invariant of F, is
the largest integer n such that I"F # 0, which was the case in all
previously known examples (see e.g. [K1, th. 1]). It hints that a good
understanding of the u-invariant involves not only the v-invariant, but
also ‘horizontal’ invariants attached to the quotients I"F/I"T1F.

Introducing such invariants and starting their study of is the ob-
ject of this paper. Given a quadratic form, one may approximate its
anisotropic dimension, the dimension of its kernel forms, by its ‘di-
mension modulo "™ for every n > 1 (the fact that this actually
is an approximation is a consequence of the Arason-Pfister theorem).
Given an element of I"F/I""'F, one may study its ‘length’ or ‘link-
age index’, the smallest number of classes of Pfister forms necessary to
express it. The suprema u, (F) of the former invariants (‘u-invariant
modulo I"*1’) approximate the u-invariant; the suprema A" (F) of the
latter help giving upper bounds for the former. More precisely, one can
bound w, (F') in terms of A\"(F') and u,,_1(F') (Proposition 1.2).

The only case in which I can prove a converse to these bounds is
n = 2, where uy(F) = 2)\*(F) + 2. However, it is not impossible that
all the A"(F'), as well as u(F') when F' is not formally real, can actually
be bounded in terms of A\*(F) (and n for \"(F)). At least this is the
case when \?(F') = 1, by a theorem of Elman-Lam [Lam, th. X1.4.10].
[ partially generalize this theorem in one direction (Propositions 3.2
and 3.3), but the general case seems quite open.

In all this paper, we use Lam’s [Lam]| notations for Pfister forms,
ie. (ar,...,a,) = (l,a1) ® -+~ ® (1,a,). We write = (resp. ~) for
isometry (resp. Witt-equivalence) of quadratic forms.

1. A FEW QUADRATIC INVARIANTS

As in Arason [A], for a quadratic form ¢ we denote by diman(q) the
rank of the unique anisotropic quadratic form whose class in W (F)
equals the class of ¢ (the kernel form of ¢). As will be seen in Propo-
sition 1.1, Definition 1.1 generalises this definition.

Definition 1.1. a) Let ¢ be a quadratic form over F' and J an ideal
of W(F). The J-dimension of ¢ is dim;(q) = inf{dim(¢’) | ¢ = ¢
(mod J)}.



ON “HORIZONTAL” INVARIANTS ATTACHED TO QUADRATIC FORMS 3

b) Let n > 0 be an integer. The n-dimension of ¢ is dim,(q) =
dim1n+1p(q).1

Remark 1.1. dim,(q) only depends on the class of ¢ modulo I""'F.
For all n, one has dim,(¢) < diman(q).

Definition 1.2. For J as in Definition 1.1 a), a quadratic form ¢ is
anisotropic modulo J if dim;(q) = dim(q).

It is clear that for two quadratic forms ¢, ¢’, one has dim, (¢ L ¢') <
dim,,(¢q) + dim,,(¢’). The following lemma strengthens this result when
¢ € I"F. Despite its simplicity, it is basic in much of this section.

Lemma 1.1. Let (q,¢") € W(F) x I"F with q,q # 0. Then dim,,(q L
¢) < dim,(q) + dim,(¢") — 2.

Proof. Without loss of generality, we may assume that ¢ and ¢’ are
anisotropic modulo I"™'F. Since ¢’ € I"F, ¢ = (a)q’ (mod I"T'F)
for any a € F*. For suitable a, the form ¢ L (a)q’ is isotropic. Hence
dim,(q L ¢") = dim,(q L {a)q") < diman(q L {(a)q’)
< dim(q) + dim(¢') — 2 = dim,,(¢q) + dim,,(¢') — 2.
O

Lemma 1.2. Let ¢ € W(F) be anisotropic modulo I"™ F. Then its
only subforms belonging to I"F are 0 and possibly q.

Proof. This follows from Lemma 1.1. U

Definition 1.3. Let n > 0 and x € I"F/I"" F. The length of x is
Az) = inf{r | z is a sum of r classes of n-fold Pfister forms}.

If ¢ € I"F, we write \(q) for A(z), where z is the image of ¢ in
["E/I"E,

0 if dim(q) is even
1 if dim(q) is odd.
0 4f dim(q) is even and di(q) =1
b) dim;(¢) =< 1 if dim(q) is odd
2 if dim(q) is even and d+(q) # 1.

c)Ifqge I"F — I""'F, then2"<d1mn( ) < (2" —2)A(q) + 2.
d) If ¢ & I"F, then dim,(q) < (2" — 2)A(¢') + dim,,_1(q) for some

Proposition 1.1. a) dimy(q) = {

!One should be careful that Vishik’s notation in [Vi, Def. 6.8] is different: our
dim,(g) is his dim,+1(q).
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q € I"F.
e) If g € I’F — I3F, then dimy(q) = 2A\(q) + 2.
f) If 2™ > diman(q), then dim,(q) = diman(q).

Proof. a) is obvious. Let dim(q) be odd. Then, for the right choice of
e=+1,q L (eds(q)) € I*F, sodim;(q) = 1. Let dim(q) be even. Then
q € I’F if and only if di(q) = 1; if ¢ € I?F, then ¢ L (—1,dx(q)) €
I’F, so dim;(q) = 2. This proves b).

In ¢), the lower bound for dim,(q) is a consequence of the Arason-
Pfister theorem [AP]. The upper bounds in ¢) and d) follow from
Lemma 1.1 by induction on A(q) (for d), take ¢ = q L —¢; with ¢; = ¢
(mod I"F) and dim¢; = dim,,_1 q). Let us prove equality in the case
n = 2 (c¢f. [Mel, lemma]). We may assume dim(q) = dimy(q) = 2m.
We argue by induction on m. The case m = 1 is impossible. Assume
m > 2. We may write ¢ = (a,b,c¢) L ¢’. Then ¢ is Witt-equivalent
to (a,b,c,abc) L ({(—abc) L ¢'). The first summand is (a){(ab, ac) =
{ab,ac) (mod I*F), while the second one ¢ = (—abc) L ¢’ has dimen-
sion 2m — 2, so that dimy(¢”) < 2m — 2. By induction, 2A(¢") + 2 <
dims(q”), so 2A(q) +2 < 2A(¢") + 4 < dimy(¢”) + 2 < dimy(q).

Note that this argument fails for n > 3.

Let us prove f). We may assume that ¢ is anisotropic. Assume
that dim,(q) < dim(q). Then there exists ¢’ with ¢ = ¢ (mod I""'F)
and dim(q’) < dim(q). Therefore, ¢ L —¢ € I"™'F. But dim(q L
—q¢') < 2dim(q) < 2"*!: therefore, by the Arason-Pfister theorem
[AP], ¢ L —¢ is hyperbolic. This means that ¢ is Witt-equivalent to
¢’: this is impossible, since ¢ is anisotropic and dim(q¢’) < dim(q). O

Definition 1.4. Let n > 1 and & < n. The k-restricted u-invariant
modulo I""! of F is uf(F) = sup{dim,(q) | ¢ € I*(F)}. If k = 0, we
write u,,(F) for u*(F) and call it the u-invariant of F modulo I"**,

Remark 1.2. When £ is fixed, the u?(F)’s form a non-decreasing se-
quence for increasing n. In particular the u, (F') form a non-decreasing
sequence. Similarly, when n is fixed, the u*(F) form a non-increasing
sequence for increasing k.

Definition 1.5. Let n > 1. The n-th A-invariant of F is \"(F) =
sup{\(z) | z € ["F/I""'F}.

Proposition 1.2. a) Fork >0 andn >k, ['F #£0 < uf(F) #0
> uF(F)>2% IfI"F #0, uk(F) > 2". In particular, if I"F # 0,
un(F) > 2",

b) For k >0, sup,s; ut(F) = u*(F) := sup{diman(q) | ¢ € I*(F)}; in

particular, sup,squ,(F) = u(F).
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c) ul(F) < (2" = 2)\"(F) + 2.

d) For any k < n, uf(F) < (2" = 2)N(F) +u*_(F) (if k = 0 we
assume n > 2).

e) up(F) = 1.

1) I TF £0, w(F) = ul(F) = 2.

g) If I’F # 0, then ua(F) = u3(F) = 2)*(F) + 2.

(I am indebted to O. Gabber for pointing out d).)

Proof. It is clear that I*F = 0 = u*(F) = 0 for all n > k. By Remark
1.2, uk(F) > uf¥(F) when n > k. Assume [*F = [**1F. Then any
k-fold Pfister form belongs to I**1F. By [AP], such a form must be
hyperbolic, hence I*F = 0. This shows that if I*F # 0, there exists a
form q € I*F — I*1F. By Proposition 1.1 ¢), we have dimy(q) > 2%,
hence uf(F) > 2% and u?(F) > 2*. The last two claims of a) follow by
Remark 1.2 (u,(F) > u*(F) > u*(F) when k < n). This proves a).

To prove b), first assume that u*(F) is finite. Let n be such that
2" > u*(F). By Proposition 1.1 f), dim,(q) = diman(q) for any ¢ €
I*F. In particular, u*(F) = u*(F) for all such n. Assume now that
the sequence (uf(F)),> is bounded, say by N. Let ¢ € I*F and
choose n such that 2" > dim(q). Applying Proposition 1.1 f) again, we
have dim,,(q) = diman(q). This shows that diman(q) < N, hence that
uF(F) < N.

Part c) is an immediate consequence of Proposition 1.1 ¢). To prove
d), we may assume that I F' # 0, otherwise it is trivial. We may further
assume that I*F # 0. Let ¢ € I*F. We distinguish two cases:

(i) g & I"F. By Proposition 1.1 d), dim,(q) < (2" — 2)A\"(F) +
dim,,_1(q) < (2" = 2)A"(F) +uF_[(F).

(ii) g € I"F. By Proposition 1.1 ¢), dim,(q) < (2" — 2)\"(F) + 2.
This is < (2" — 2)A(F) + u*_(F) provided u*_(F) > 2. If

k>1uf (F)>2F>2bya) lf k=0, u,_1(F)>u(F)>2

» Un—1
since I F' # 0 (see f)).

e) and f) follow from Proposition 1.1 a) and b). It remains to prove
g). First we prove that us(F) cannot be odd, i.e. uy(F) = ud(F).
This is a consequence of Proposition 1.1 e), Proposition 1.2 e) and the
following lemma.

Lemma 1.3. a) u3(F) =00 <= uy(F) =00 <= N(F) = cc.
b) Assume that us(F) < oo and IF # 0. Then uy(F) = ul(F).

Proof. a) is a consequence of Proposition 1.1, b) d) and e). For b), let
q be such that dim(q) = dimy(q) = u2(F'). We show that dim(g) cannot
be odd, unless I F' = 0. If it is, then as in the proof of Proposition 1.1 b)
we choose ¢ = +1 such that ¢ = ¢ L (ed+(q)) € I?F. By assumption,
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dimy(¢') < dim(q), so that ¢ = ¢’ (mod I*F), where ¢’ € I*F is
such that dim(¢”) < dim(q). Then ¢ = ¢ L (—ed+(q)) (mod I*F).
If ¢ = 0, then uy(F) = 1, which implies /F = 0 (Proposition 1.2,
b) and remark 1.2). Otherwise, by Lemma 1.1 we have dimy(q) <
dim(q”) — 1 < dim(q), a contradiction. O

We now prove that ul(F) = u3(F). By lemma 1.3 we may as-
sume that us(F) < oo. Let ¢ € IF be such that dimy(q) = ui(F).
We may assume that ¢ is anisotropic modulo I*F. Then ¢ = ¢ L
(—1,d+(q)) € I*F, with dim(¢’) = dim(q) + 2. Since dim(q) =
ud(F) = uy(F), we have ¢ L (—1) = ¢” (mod I*F), where ¢” is such
that dim(¢”) < dim(gq). But dim(¢”) = dim(q¢ L (—1)) (mod 2), so
that dim(¢”)(dim(q). Therefore, ¢ = ¢ (mod I*F), with dim(q")
dim(q) = dimy(q), and ¢ = ¢” L (1,—dx(q)) (mod I3F). If ¢" =
ud(F) = 2, but then I?F = 0. Otherwise, since ¢ € I’F, dimy(q)
dimy(¢” L (1,—d1(q))) < dimy(¢") by Lemma 1.1. Hence dims(¢")
dimy(q) and ui(F) = u3(F).

S A

Y

Ol

Remark 1.3. The proof of g) is borrowed from [Lam, ch XI, proof of
lemma 4.9].

Remark 1.4. The statement u,(F) = u.(F) is equivalent to “u,(F)
is even”.

Remark 1.5. These proofs prompt the definition of quadratic forms
universal modulo I"*!, round modulo I™*!. This is left to the reader.

Corollary 1.1 (cf [Lam, ch. XI, lemma 4.9]). If us(F) > 1, it is even.
Example 1.1. For all n > 0, u,(R) = 2.

Question 1.1. For n > 2, can one bound A\"*(F) in terms of n and
u,(F)? More precisely, let ¢ € I"F. Can one bound \(q) purely in
terms of dim,, ¢7

For n = 3, one would like to prove this by using the follow-
ing generic argument. Let k be a base field, m a fixed integer,
Fy = k(Ty,...,Ty,), @ the quadratic form (T%,...,7Ts,) over Fy,
= FO(\/(—l)mTl ... Tyy,) and Fy the function field of the Severi-
Brauer variety of the Clifford algebra of Q)p,. Then, by Merkurjev’s
theorem [Me] Qr, € I*F; and is a ‘generic element of rank 2m in I
Show that, for any field F' containing k¥ and any ¢ € I*F of rank 2m,
one has A\(q) < MQg,).
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This has been achieved by Parimala and Suresh [P-S] with a general
position argument: we shall give a different argument avoiding general
position in the next section (see Cor. 2.1).

Question 1.2. By Elman-Lam [EL2|, if F' is not formally real and
A2(F) =1 then u(F) = 1,2,4 or 8. Is it true that, if A*(F) = 2, one
has u(F) < co?

In the next section, we give some evidence that the answer to this
question might be positive.

2. DISCRETE VALUATIONS; ITERATED POWER SERIES

Let A be a complete discrete (rank 1) valuation ring, E its quotient
field anf F' its residue field. We assume that char F' # 2.

Proposition 2.1. a) For alln > 1, \"(E) < \"(F) + A" }(F).
b) For alln >1 and 0 < k <n, uf(E) < uF~Y(F) +u""1(F).

Note. In b), one should interpret u,'(F) as u,(F).

Proof. Let m be a prime element of E. Every quadratic form g over £
can be written ¢ = ¢; L mqs, where ¢; and ¢y are classes of unimodular
forms over A. Alternatively, ¢ can be written up to Witt equivalence
¢ L {(m)qo, still with ¢} integral. If ¢ € I"E, then ¢; € I"A and
g2 € I"1A [S]. Since W(A) — W(F) is a filtered isomorphism, this
proves a).

To see b), let ¢ € I"E and ¢}, ¢» as above. Let @y be the residue
image of ¢y over F. Take @ = ¢ (mod I"F) with g, € I*'F and
dim(g) < u*~1(F). Let ¢, be alift of @ to A. Then ¢}, = ¢, (mod I"A)
and ¢ = q; L (m)ay = ¢ L —q5 L (m)gp (mod I""'F). Now let ¢f =
q; L —q, € I*1A; choose ¢} € I*"'A such that ¢’ = ¢ (mod I"*'F)
and dim(g}') < ub~(F). Then ¢’ = ¢f (mod I"1A), q = ' 1 (m)g}
(mod I"'F) and dim(q} L (7)qh) < uF=Y(F) +uF=1(F). O

An example. Start from a field K and set K; = K((t1))...((ta)),
a field of iterated power series. Then K, is complete for a discrete
valuation, with residue field K;_;. Proposition 2.1 allows one to get
upper bounds for the invariants of K, in terms of d and those of K, by
induction on d.

However, these inductive bounds are by no means sharp in general.
Computing, or at least estimating A" (Kj) and w, (K ) turns out to be
“global” in d. To illustrate this, we now consider the case where K is
algebraically closed.

Definition 2.1. Let k be a field, V' a d-dimensional k-vector space and
n an integer < d. Let A"(V') be the n-th exterior power of V' and let
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x € A"(V) be an n-vector. The length of x is the smallest integer ¢(z)
such that x is the sum of ¢(z) pure n-vectors. We denote by N(k,d,n)
the supremum of ¢(x) when x runs through V' (this is independent of
V).

The following proposition is clear.

Proposition 2.2. a) Let V = K};/K3?, viewed as an Fa-vector space
with basis t1,...,tq. Then there are canonical isomorphisms

I"K /T Ky ~ A™(V)

mapping Pfister forms to pure n-vectors.

b) For x € I"K;/I"" K4, with image z’ in A™(V'), XN(z) = ('), where
M) is as in Definition 1.8 and €(x') is as in Definition 2.1.

c) \'(Ky) = N(Fq,d,n). O

The following information on N(k,d,n) is collected from [K2].

Proposition 2.3. a) N(k,d,n) = N(k,d,d —n).

b) N(k,d,0) = N(k,d,1) = 1.

c) N(k,d,2) = [d/2].

d) N(k,6,3) =3 for any field k.

e) If k is algebraically closed, N(k,7,3) < 4 (probably = 4);

N(R,7,3) =5; for any field k, N(k,7,3) <6 (probably <5).

f) If k is algebraically closed of characteristic 0, N(k,8,3) = b;

N(R,8,3) <8; for any k, N(k,8,3) < 10.

g) If k is algebraically closed of characteristic 0, N(k,9,3) < 0.

h) There exists a polynomial f, of degree < n — 2 such that, for
n—1

any field k, N(k,d,n) < m + fu(d). In particular, for any

N(k,d,n) 1
a1 = 2n— 1)

d
#- If k is finite with q cle-

A

k, limsup,_,

i) If k is infinite, N(k,d,n) >

(2)

ts, N(k,d > h
ments, N(k,d,n) > A=) + 152 where
e(q) =log,(JJ(1—¢7) - 1).
i=2
N(k,d
(Soe(2) ~ 0.75.) In particular, for any field k, liminf; % >

1

n.n!’
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This proposition enables us to list values of \*(Ky) for d < 6:

An[0[1[2[3[4[5]6]
1 ]1]1

2 |1]1]1

3 |1]1]1]|1

4 |11112]|1]1

5 111121211
6 [1[1[3[3[3]1[1]

From this table, we see that the inequality
d
u(Kq) < (2" = 2)A"(Ky) + 2
n=2
from Proposition 1.2 d) quickly becomes completely inaccurate.

More generally, let us consider a field F' provided with a discrete
valuation v of rgnk d. Let K be the residue field of v, L the value
group of v and F the completion of I’ at v. Assume that char K # 2.
Then we have

FeK(()). .. ((t))
where t1,...,t; € F are elements such that v(t1), ..., v(ty) form a basis
of L.

Let K be an algebraic closure of K and F' = K((t1))...((ts)). By
weak approximation, the map F*/F*? — F*/F*? is surjective, hence
so is the composition

I"F/I"MF — ["F/ " E — ["F/"F
for any n > 1. It follows that N(Fy,d,n) is a lower bound to \*(F). 1
don’t know if it is even true that
AYF) > \"(Fo) + N(Fa,d,n)?

We also have:

Proposition 2.4. Let i denote the place from F' to Fy associated to
v. Let Q € I"F have good reduction at pr. Then A(11.Q) < AM@Q).

Proof. Since v is a composition of discrete valuations of rank 1, we may

reduce to v of rank 1. Pick a prime element 7. Then we have a ring
homomorphism (e.g. see [M-H, Ch. IV, §1])

Ay W(F) — W(F)

(r"u) — (u)
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where u is a unit and @ is its image in Fjj. Clearly A, . preserves n-
fold Pfister forms, hence A(A, (Q)) < A(Q) for any Q € I"F, and the
claim is a special case. 0

Corollary 2.1. The answer to Question 1.1 is positive for n = 3.

Indeed, the strategy outlined just after the question works as follows:
given ¢ = {ay,...,as,) € I°F, consider the place o from Fy to F
sending T; to a;. It is well-known that F5 is a generic splitting field for
the Clifford algebra of Q) ; hence p extends to a place u from Fj to
F sending @), to g. Since the valuation associated to py is discrete, so
is the one associated to u, and we may apply Proposition 2.4.

If any element of I"F/I""'F has a generic splitting field also for
n > 3, then the above argument applies verbatim to answer Question
1.1 positively.

Question 2.1. Does Proposition 2.4 remain true when the valuation
v is not discrete?

3. RELATIONSHIPS BETWEEN THE u-INVARIANT, THE V/-INVARIANT
AND THE A-INVARIANTS

Lemma 3.1 ([EL1, th. 4.5]). Let ¢ be an m-fold Pfister form and v
be an n-fold Pfister form. Assume that @ and i are r-linked but not
(r + 1)-linked. Then, for any a,b € F*, i({a)p L (b)y)) = 2". Here i
denotes the Witt indez. U

Proposition 3.1. Assume that u(F) < 2". Then \"(F) < 1.

Proof. Let ¢ and ¢ be two n-fold Pfister forms. Then ¢ is universal,
so = —1, and i(o L) =i(p L —) > 2"t By Lemma 3.1, ¢ and
Y are (n — 1)-linked, so ¢ L % is isometric to an n-fold Pfister form.[]

Using a result of Bloch and independently Kato, we can deduce a
nice corollary to this proposition, generalising a well-kown result for
global fields:

Corollary 3.1. Let F' be a function field in n variables over an al-
gebraically closed field, or in n — 1 variables over a finite field. Then
every element of H"(F,Z/2) is a symbol.?

2As Karim Becher pointed out, thanks to Voevodsky’s theorem it is now sufficient
to assume that F is C,,.
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Proof. A theorem of Kato [Ka, p. 609, prop. 3| (see also Bloch’s
argument in [B, Lecture 5]) shows that, for a field as in the statement,
H"™(F,Z/2) is generated by symbols. It is then sufficient to prove that
every element of K (F)/2 is a symbol. Notice that F is C, in the
sense of Lang [G], hence u(F') < 2". In view of Proposition 3.1, it is
then sufficient to have:

Lemma 3.2 ([EL1, th. 6.1]). Let F be a field, n > 1 and x,y,z €
KM(F)/2 be three symbols. Assume that v,(x) + v,(y) = vn(2). Then
rT+y=-=z. U

In this lemma, v, : KM(F)/2 — ["F/I""F is the homomorphism
defined in [Mi].
The following is no more than [EL2, lemma 2.3 and cor. 2.5].

Proposition 3.2. Assume that \"(F) < 1. Then \""Y(F) < 1. If
furthermore F is not formally real, then I"?F = 0. O

The next proposition is the main result of this section.

Proposition 3.3. Assume that \"(F) = m < oo and that F' is not
formally real. Then I"™tVHE = 0. If —1 is a square in F, then
[ p =,

In other words, if F is not formally real then v(F) < n(A"(F) + 1)
for all n. For n = 2, the right hand side is us(F) by Proposition 1.2
d). When —1 is a square in F, this bound is improved to v(F) <
n(A"(F)+1)— 1.

Proof. By Milnor [Mi], there are surjective homomorphisms v, :
KM(F)/2 — I"F/I""'F, and v, is an isomorphism. Let KM (F) =
KM(F)/{-1}K,.(F): as explained in [K3, Appendix], the commuta-
tive ring KM (F)/2 enjoys graded divided power operations z + z’
which vanish on symbols: by [the argument of the proof of] [K3, Prop.
1(8)], K;%Hl)(F)/Z = 0, hence every element of ["(m+V f/[n(m+)+1 [
is a multiple of (the 1-fold Pfister form) ((1)). So

If —1 is a square in F, then (1) is hyperbolic and
[P P/t DA R — (: using the Arason-Pfister theorem, we de-
duce that I"™+DF = (0. Assume now that —1 is not a square in
F;let B = F(y=1). By [BT, Cor. 53], K}, .., (F) is generated
by symbols {a1, ..., @Gpmmi1)1}, With ar, ..., ap@my1) in F*. Since ev-
ery element of KM )(£)/2 is a multiple of {—1}, every element in

n(m+1
KM 141(E)/2 is a multiple of {1} = 0, i.e. K} (E)/2 = 0,

n(m+1)+1
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hence [MMFTVHLE/[mAD)+2F — (0 and [MMTDHLE = 0. If now F is
not formally real, [A, Satz 3.6 (ii)] implies that """V F =0. O

Remark 3.1. For n = 2 Prop. 3.3 is optimal, at least when —1 is
a square in F. For example, let F' = C((¢1))...((ts)) be the field of
iterated formal power series in d variables over C. Then v(F') = d and,
by Section 2, A2(F) = [d/2] which is also the least integer greater than

2

Question 3.1. Is there a universal bound for A"(F') in terms of n
and A\*(F)? In view of Propositions 1.2 and 3.3, this would provide a
negative answer to question 1.2. For example, it seems plausible that
if A"(F) = m, then X (F) < 1. This is true in the test example
of Remark 3.1. If one could prove it in general, then the estimate
v(F) < n(A(F)+1) or v(F) < n(A"(F)+ 1) — 1 of Proposition 3.3
would be improved to v(F) < nA"(F) + 1 thanks to Proposition 3.2
(note that this is no improvement if n = 2 and —1 is a square in F).

It is clear that divided power operations have not been used up to
their full potential.

REFERENCES

[A]  J. Kr. Arason Cohomologische Invarianten quadratischer Formen, J. Alg. 36
(1975), 448-491.

[AP] J. Kr. Arason, A. Pfister Beweis des Krull’schen Durchschnittsatzes fir den
Wittring, Invent. Math. 12 (1971), 173-176.

[B]  S. Bloch Lectures on algebraic cycles, Duke Univ. Math. Series IV, Durham
1980.

[BT] H. Bass, J. Tate The Milnor ring of a global field, Lect. Notes in Math. 342,
Springer, 1972, 349-446.

[EL1] R. Elman, T.Y. Lam Pfister forms and K -theory of fields, J. Alg. 23 (1972),
181-213.

[EL2] R.Elman, T.Y.Lam Quadratic forms and the u-invariant, II, Invent. Math.
21 (1976), 125-137.

[G] M. Greenberg Lectures on forms in many variables, Benjamin, 1969.

[K1] B. Kahn Quelques remarques sur le u-invariant, Sém. th. Nombres de Bor-
deaux 2 (1990), 155-161.

[K2] B. Kahn Sommes de vecteurs décomposables, preprint, Univ. Paris 7, 1991,
not to be published.

[K3] B. Kahn Comparison of some field invariants, J. of Algebra 232 (2000),
485-492.

[Ka] K. Kato A generalization of local class field theory by using K -groups, II, J.
Fac. Science, Univ. Tokyo 27 (1980), 603-683.

[Lam] T. Y. Lam The algebraic theory of quadratic forms, Benjamin, 1980.



ON “HORIZONTAL” INVARIANTS ATTACHED TO QUADRATIC FORMS 13

[Me]

A. S. Merkurjev On the norme residue symbol of degree 2 (in Russian), Dokl.
Akad. Nauk SSSR 261 (1981), 542-547. English translation: Soviet Math.
Dokl. 24 (1981), 546-551.

A. S. Merkurjev Untitled manuscript, Leningrad, 21-9-1988.

A. S. Merkurjev Simple algebras and quadratic forms, Math. USSR Izv. 38
(1992), 215-221 (Engl. Transl.).

J. Milnor Algebraic K-theory and quadratic forms, Invent. Math. 9 (1970),
318-344.

J. Milnor, D. Husemoéller Symmetric bilinear forms, Springer, 1973.

R. Parimala, V. Suresh On the length of a quadratic form, preprint, 2004.
T. A. Springer Quadratic forms over fields with a discrete valuation. I. Equiv-
alence classes of definite forms, Nederl. Akad. Wetensch. Proc. Ser. A. 58
= Indag. Math. 17 (1955), 352-362.

S. Rosset, J. Tate A reciprocity law for Ks-traces, Comment. Math. Helv.
58 (1983), 38-47.

J.-P. Tignol Réduction de l’indice d’une algébre centrale simple sur le corps
des fonctions d’une quadrique, Bull. Soc. Math. Belgique 42 (1990), 735-745.
A. Vishik Motives of quadrics with applications to the theory of quadratic
forms, in Geometric methods in the algebraic theory of quadratic forms (J.-
P. Tignol, ed.), Lect. Notes in Math. 1835, Springer, 2004, 25-101.

INSTITUT DE MATHEMATIQUES DE JUSSIEU, 175-179 RUE DU CHEVALERET,
75013 PARIS, FRANCE
E-mail address: kahn@math. jussieu.fr



