
B. Kahn and R. Sujatha (2017) “Birational Motives, II: Triangulated Birational Motives,”
International Mathematics Research Notices, Vol. 2017, No. 22, pp. 6778–6831
Advance Access Publication October 6, 2016
doi: 10.1093/imrn/rnw184

Birational Motives, II: Triangulated Birational Motives

Bruno Kahn1,∗ and Ramdorai Sujatha2

1IMJ-PRG, Case 247, 4, Place Jussieu, 75251 Paris Cedex 05, France and
2Department of Mathematics, University of British Columbia, Vancouver
V6T1Z2 Canada

∗Correspondence to be sent to: e-mail: bruno.kahn@imj-prg.fr or e-mail: sujatha@math.ubc.ca

We develop birational versions of Voevodsky’s triangulated categories of motives over

a field, and relate them with the pure birational motives studied in [23]. We also get an

interpretation of unramified cohomology in this framework, leading to “higher derived

functors of unramified cohomology.”

1 Introduction

This is the last part of our project on birationalmotives: it develops a birational analogue

to Voevodsky’s theory of triangulated motives. We work over a field F . A summary of

our results may be read in the following commutative diagram of categories:

Choweff

��

�� DMeff
gm

��

�� DMeff

ν≤0
��

Chowo �� DMo
gm

�� DMo .

In the top row, Choweff is the category of effective Chow motives over F (with

integer coefficients), DMeff
gm is Voevodsky’s triangulated category of effective geometric

motives [45, Section 2], and DMeff is an unbounded version of his triangulated category

of motivic complexes [45, Section 3].
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Birational Motives, II: Triangulated Birational Motives 6779

In the bottom row, Chowo is the category of pure birational motives intro-

duced in [23, Definition 2.3.6]: if X ,Y are smooth projective varieties with motives

ho(X),ho(Y) ∈ Chowo, we have an isomorphism Hom(ho(X),ho(Y)) = CH0(YF(X)). The

categories DMo
gm and DMo are, respectively, obtained from DMeff

gm and DMeff by inverting

birational morphisms (Definition 4.2.1).

When F is perfect, the functors in the top row are full embeddings as a conse-

quence of Voevodsky’s main theorems on homotopy invariant pretheories [44]; by the

same theorems, DMeff enjoys a canonical “homotopy t-structure.” All these facts turn

out to be true also in the bottom row, without assuming F perfect (Theorem 4.2.2); their

proofs are much more elementary and do not rely on the results of [44].

The heart of the homotopy t-structure on DMo is the category HIo of birational

presheaves with transfers: these are simply the presheaves with transfers of [45, Defini-

tion 3.1.1] which invert birational morphisms. This abelian category has truly excellent

properties:

• HIo is a category of modules over an additive category; as such it has

enough injectives, enough projectives, exact infinite direct sums, and (quite

unusually) exact infinite direct products (cf. Proposition 2.2.1).

• A birational presheaf with transfers is automatically a Nisnevich sheaf,

and is homotopy invariant; it has no higher Nisnevich cohomology (Proposi-

tion 2.3.3).

The functor ν≤0 has a right adjoint io, which in turn has a right adjoint Rnr. When F is

perfect, one can compare the t-structures of DMeff and DMo: then ν≤0 is right t-exact, io

is t-exact, and Rnr is left t-exact. In particular, if F is a homotopy invariant Nisnevich

sheaf with transfers, the complex RnrF is concentrated in degrees ≥0. We compute its

0-cohomology sheaf R0
nrF as follows:

Theorem 1 (cf. Theorem 7.3.1). For any smooth connected F-variety X , one has

R0
nrF(X) = Ker

(
F(K)

(∂v )−→
∏
v

F−1(F(v))

)
,

whereK = F(X) and v runs through all the F-divisorial valuations onK. HereF−1 denotes

Voevodsky’s contraction of F , cf. Section 2.4. �

Thus we recover unramified cohomology in the sense of Colliot-Thélène–

Ojanguren [10]: this was one of the initial aims of our project, which was not achieved in
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6780 B. Kahn and R. Sujatha

the 2002 preprint version [20]. This also shows that unramified cohomology has, in some

fashion, higher derived functorswhich define new birational invariants: these functors

are partly studied in [24].

Given the long period of gestation of this work, there have been other exposi-

tions of triangulated birational motives, notably in [16] and [19]: they are essentially

independent from the present one. We would like to finish this introduction by pointing

a mistake in the initial version:

In [20], Theorem7.7, Corollary 7.8, andCorollary 7.9 (c) are false: seeRemark 4.6.4

below as concerns Theorem 7.7. The “upper half” of Corollary 7.9 (c) remains true, as

in Theorem 4.2.2 (e). The contents of Section 4.7 may be viewed as a comment on this

mistake.

1.1 Notation

F is the base field. All varieties are F-varieties and all morphisms are F-morphisms. If

X is an irreducible variety, ηX denotes its generic point. We write Sm for the category

of smooth varieties (= smooth separated F-schemes of finite type).

If A is an abelian group and p is a prime number, we write A[1/p] := A⊗ Z[1/p].
If C is a category and X ,Y are objects of C, we write C(X ,Y) or HomC(X ,Y) for the set of

morphisms from X to Y , depending on which of these notations is most convenient. If

A is an additive category, we write A� for its pseudo-abelian envelope; if p is a prime

number, we write A[1/p] for the category with the same objects and Hom groups given

by A[1/p](A,B) = A(A,B)[1/p].

2 Birational Sheaves with Transfers

In this section, we study modules over the category BFC of birational finite corre-

spondences, which is (Definition 2.1.1) the localisation of Voevodsky’s category of finite

correspondences obtained by inverting birational morphisms. This category has several

incarnations; elementary ones are given in Theorem 2.1.3, while less elementary ones

will be given in Proposition 3.3.3 and Theorem 3.4.1. This is what gives a pivotal rôle to

the categoryHIo =Mod–BFC of birational presheaves with transfers. These presheaves

turn out to be automatically sheaves for the Nisnevich topology, and homotopy invari-

ant; moreover they are acyclic for Nisnevich cohomology (Proposition 2.3.3). When F is

perfect, they can be characterised as those homotopy invariant Nisnevich sheaves with

transfers whose Voevodsky contraction vanishes (Proposition 2.5.2).
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2.1 Birational finite correspondences

We start from the category SmCor introduced by Voevodsky in [45]; its objects are

smooth F-varieties and its morphisms are finite correspondences: for X ,Y ∈ SmCor,

SmCor(X ,Y) is the free abelian group c(X ,Y) with basis the set of closed integral sub-

schemes ofX×Y which are finite and surjective over a connected component ofX . In [30],

the notation was changed from SmCor to Cor: we retain the original notation to avoid

confusion with Chow correspondences between smooth projective varieties, which are

also used here (see Section 3.2). In contrast to the latter, finite correspondences compose

“on the nose” [30, Lemma 1.7]; together with the product of varieties and cycles, they

make SmCor an additive ⊗-category. The “graph” functor Sm→ SmCor is the identity

on objects and sends a morphism to its graph.

Definition 2.1.1. The category of birational finite correspondences is BFC =
S−1b SmCor, where Sb is the class of (graphs of) birational morphisms. (More correctly,

a morphism f : X → Y is in Sb if it is dominant and its restriction to any connected

component of X yields a birational morphism to some connected component of Y ; we

would get the same localisation by using the class So of dense open immersions. See

[22, 1.7] and [23, 2.1] for detailed discussions.) �

We note that Sb is closed under disjoint unions and products; hence, by [23,

Proposition A.1.2 and Theorem A.3.1 ], the additive and tensor structures of SmCor pass

to BFC.

We shall use other incarnations of BFC. It is helpful to use the category of

[30, Definition 2.25]: its objects are smooth varieties andmorphisms between two smooth

varieties X ,Y are given by

h0(X ,Y) = Coker(c(X × A1,Y)
i1(X)∗−i0(X)∗−−−−−−−→ c(X ,Y)), (2.1)

where it : Speck → A1 is the inclusion of the point t and it(X) = it × 1X . We denote this

category by H(SmCor).

Lemma 2.1.2. Let Sh be the class of projections πX : X × A1 → X . Then H(SmCor) is

isomorphic to S−1h SmCor. �

Proof. Let us show thatH(SmCor) and S−1h SmCor have each other’s universal property.

Let F : SmCor→ C be a functor. If F factors through S−1h SmCor, then F(i0(X)) = F(i1(X))

for any X , as both are inverse to F(πX ). Hence F factors through H(SmCor). On the other
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hand, πX is invertible in H(SmCor) (see comment after [30, Definition 2.25]). Hence, if

F factors through H(SmCor), it also factors through S−1h SmCor. �

Theorem 2.1.3. In the diagram

BFC = S−1b SmCor −−−−→ S−1b H(SmCor)⏐⏐� ⏐⏐�
S−1r SmCor −−−−→ S−1r H(SmCor)

(2.2)

all functors are isomorphisms of categories. Here Sr denotes the class of [graphs of]

stable birational morphisms. �

(Amorphismbetween connected smooth varieties is stably birational if it is dom-

inant and induces a purely transcendental extension of function fields; this is extended

to nonconnected smooth varieties as in def. 2.1.1.)

Proof. It follows from Lemma 2.1.2 and [22, Lemma 1.7.1] that the bottom horizontal

functor is an isomorphism of categories; on the other hand, the vertical functors are

isomorphisms of categories by [22, Theorem 1.7.2]. �

We shall get further descriptions of BFC in Theorem 3.4.1 and Remark 3.4.3.

2.2 Review of modules over additive categories

We refer to [1, Section 1] and [25, Appendix A] for this additive version of [2, I.5.3]. Let

A be an (essentially small) additive category: we recall the fully faithful additive Yoneda

functor

A y−→Mod–A,

where Mod–A is the category of right A-modules (=contravariant additive functors from

A to abelian groups). Let us call an object of Mod–A representable if it is in the image

of the Yoneda functor y : A → Mod–A and free if it is a direct sum of representable

objects. Also recall that an object X of a category C is compact if C(X ,−) commutes with

arbitrary direct limits (representable in C). We then have the following general facts ([1,

Proposition 1.3.6 and A.1.4], see also [2, Exp. 1, p. 97, Example 8.7.8] in the nonadditive

case):
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Proposition 2.2.1.

(a) The category Mod–A is abelian, has enough projectives and enough injec-

tives and admits arbitrary direct and inverse limits. Filtering direct limits

and products are exact.

(b) Let A� be the pseudo-abelian envelope of A; then y extends to a full embed-

ding A� ↪→ Mod–A. Its image consists of all compact objects, and these

objects are projective.

(c) Any free object is projective and there are enough free objects. �

If f : A → B is an additive functor, it induces a triple of adjoint functors, with

(f ∗F)(A) = F(f (A)) for F ∈Mod–B:

Mod–A
f!−→
f ∗←−
f∗−→

Mod–B

(each functor is left adjoint to the one below it), and f! naturally commutes with f rel-

atively to the Yoneda embeddings. If F ∈ Mod–A, the unit (resp. counit) morphism

F η−→ f ∗f!F (resp. f ∗f∗F
ε−→ F) (2.3)

is then universal among morphisms from F to (resp. to F from) presheaves of the form

f ∗G. Note that f ∗, hence f!, is an equivalence of categories for f : A → A� the canonical

embedding.

The functor f ∗ is fully faithful in two cases: when f is a localisation, or when

f is full and essentially surjective. These facts are left to the readers as exercises. This

persists if one further passes to pseudo-abelian envelopes.

If A is monoidal, its tensor structure extends to Mod–A in such a way that the

Yoneda embedding is monoidal; if f : A → B is a monoidal functor between (additive)

monoidal categories, then f! is monoidal [25, A.8, A.12].

2.3 Elementary properties of birational sheaves

With the notation of Section 2.2, the category PST of presheaves with transfers of [45,

Definition 3.1.1] or [30, Definition 2.1] is none other than Mod–SmCor.
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Definition 2.3.1. We denote by HIo the full subcategory of PST consisting of those

presheaves F that are birationally invariant, that is, such that F(X)
∼−→ F(U) for

any dense open immersion j : U → X . We call an object of HIo a birationally invari-

ant homotopy invariant presheaf with transfers, or for short, a birational sheaf (with

transfers). �

By definition, the obvious functor

HIo →Mod–BFC =Mod–BFC�

is an isomorphism of categories; Proposition 2.2.1 therefore applies.

Let PHI denote the full subcategory of PST consisting of homotopy invariant

presheaves with transfers. We may identify PHI with Mod–H(SmCor) (see Section 2.1).

In view of Proposition 2.2.1 (a), the string of functors SmCor
α−→ H(SmCor)

β−→ BFC

yields a naturally commutative diagram of categories (ibid.)

SmCor
L−−−−→ PST

α

⏐⏐� α!
⏐⏐�

H(SmCor)
h0−−−−→ PHI

β

⏐⏐� β!
⏐⏐�

BFC
ho0−−−−→ HIo .

(2.4)

Herewe follow the notation of [45, p. 199 and 207] for the two topYoneda functors

(in [30], the notation L is replaced by Ztr ): for Y ∈ Sm, h0(Y) is the presheaf X 
→ h0(X ,Y)

(cf. (2.1)). As in [45], we also write α!F = h0(F) for F ∈ PST. We will sometimes write

Fo = β!α!F , so that the canonical map F → α∗β∗Fo is universal among morphisms from

F to birational presheaves. If F ∈ PHI, we have

Fo = β!α!α∗F = β!F .

We shall also use the category of Nisnevich sheaves with transfers [45, Def-

inition 3.1.1], [30, Lecture 13] that we denote here by NST: by definition, this is the

full subcategory of PST formed by those presheaves with transfers which are sheaves

in the Nisnevich topology. We also write HI = NST∩PHI for the category of homo-

topy invariant Nisnevich sheaves with transfers (see [45, Prop. 3.1.13]). Recall the exact
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sheafification functor [45, Theorem 3.1.4]

a : PST→ NST (2.5)

which is left adjoint of the inclusion functor k : NST ↪→ PST.

The following innocent-looking lemma turns out to be very powerful, and

justifies the terminology “birational sheaf.”

Lemma 2.3.2.

(a) Any presheaf of sets F on Sm which transforms coproducts into products

and is birationally invariant in the sense that F(X)
∼−→ F(U) for any dense

open immersion U ↪→ X is a sheaf for the Nisnevich topology.

(b) If F is moreover a (pre)sheaf of abelian groups, then Hi
Nis(X ,F) = 0 for all

X ∈ Sm and all i �= 0. �

Proof. (a) This follows from [34, p. 96, Proposition 1.4]. (b) This follows from [37,

Lemma 1.40]. �

Proposition 2.3.3.

(a) One has HIo ⊂ HI.

(b) For any F ∈ HIo and any X ∈ Sm, one has Hi
Nis(X ,F) = 0 for all i �= 0. �

Proof. (a) Let F ∈ HIo. By Lemma 2.3.2 (a), F is a sheaf in the Nisnevich topology. The

fact that it is homotopy invariant follows from [22, Theorem 1.7.2]. (b) merely repeats

Lemma 2.3.2 (b). (In particular it is not necessary to invoke [45, Theorem 3.1.12] as we

did in [20]: we owe this remark to Joël Riou.) �

2.4 Contractions

Recall the following definition from [44, p. 96] or [30, Lecture 23]:

Definition 2.4.1. Let F ∈ PST. Then F−1 ∈ PST is the presheaf with transfers defined by

F−1(X) = Coker
(
F(X × A1)→ F(X × (A1 − {0}))).

This is the contraction of F . �
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If F ∈ PHI, F−1(X) is a functorial direct summand of F(X × (A1 − {0})) because
the map F(X) → F(X × (A1 − {0})) has a section given by 1 ∈ A1 − {0}; in particular,

F−1 ∈ PHI. If F ∈ HI, this argument shows that F−1 ∈ HI, hence F 
→ F−1 defines an

exact endofunctor of HI.

We may extend F to smooth separated F-schemes essentially of finite type by

taking direct limits over open sets, in a standard way; in particular, we write F(K) for

F(SpecK) = lim−→F(U) if K is the function field of a smooth irreducible variety X and

U runs through its open subsets. Recall the following theorem of Voevodsky, a special

case of his Gersten resolution [44, Theorem 4.37]:

Theorem 2.4.2. Let F be perfect and suppose F ∈ HI. Then there is an exact sequence

for any X ∈ Sm:

0→ F(X)→ F(F(X))
(∂x )−→

⊕
x∈X (1)

F−1(F(x)). (2.6)

�
Here ∂x is defined from the purity isomorphism of ibid., Lemma 4.36.

2.5 Further characterisations of birational sheaves

The following characterisations are sometimes useful: they assume F to be perfect. The

first one is extracted from [25, Lemma 10.3 b)]:

Proposition 2.5.1. Assume F perfect, and let F ∈ HI. Then F ∈ HIo if and only if the

following holds:

For any function field K/F , for any regular curve C over K and any closed point

c ∈ C, the induced map F(OC,c)→ F(K(C)) is surjective. �
(These sheaves are called universally proper in [25].)

The second one uses the notion of contraction that we just recalled:

Proposition 2.5.2. Let F ∈ HI. Consider the following conditions:

(i) F ∈ HIo.

(ii) F(X)
∼−→ F(X × (A1 − {0})) for any X ∈ Sm.

(iii) F−1 = 0.

Then (i)⇒ (ii) ⇐⇒ (iii); if F is perfect, (iii)⇒ (i). �

Proof. The first implications are obvious; the last one follows from Theorem 2.4.2. �
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2.6 Serre embeddings

Let A be an abelian category. Recall that a full subcategory B ⊆ A is a Serre subcategory

if it is additive and if, given an exact sequence 0 → A′ → A → A′′ → 0 in A, we have

A ∈ B ⇐⇒ A′,A′′ ∈ B. We say that B → A is a Serre embedding. We have:

Proposition 2.6.1. Let f ∗ : B → A be a Serre embedding. Suppose that f ∗ has a left

adjoint f! (resp. a right adjoint f∗). Then, for any F ∈ A the unit (resp. counit) morphism

of (2.3) is an epimorphism (resp. a monomorphism). �

Proof. By duality, it suffices to prove this for f∗. This is [4, Proposition E.4.1(1)], whose

proof we reproduce here for completeness. Since in particular f ∗ is fully faithful, the

unit morphism G → f∗f ∗G is an isomorphism for any G ∈ B. Let F ∈ A and let C =
Ker(f ∗f∗F → F): by hypothesis, C � f ∗C ′ for some C ′ ∈ B. Applying the left exact functor

f∗ to the exact sequence 0→ C → f ∗f∗F → F yields a diagram

0 −−−−→ f∗f ∗C ′ −−−−→ f∗f ∗f∗F
a−−−−→ f∗F

�

⏐⏐ �


⏐⏐b
C ′ f∗F

in which ab = 1f∗F by the adjunction identities. Hence in the top exact row, a is an

isomorphism and f∗f ∗C ′ = 0. �

For the sequel it is important to know that some inclusions of abelian subcate-

gories of PST are Serre embeddings. We treat all of them in a unified way.

Proposition 2.6.2. Suppose F is perfect. Then the inclusions ι : PHI ⊂ PST, i : HI ⊂ NST,

and io : HIo ⊂ HI are Serre embeddings. �

Proof. Let F ∈ PST. For any smooth variety X , the map

F(X)→ F(X × A1)

is split by using the rational point 0 ∈ A1. This defines an idempotent endomorphism of

F(X × A1), whose kernel we denote by F̃(X): this is a presheaf in X . So F ∈ PHI ⇐⇒
F̃ = 0.

The construction F 
→ F̃ is clearly functorial in F , and exact. In particular, if

0→ F ′ → F → F ′′ → 0 is a short exact sequence in PST and X ∈ SmCor, we get a short

Downloaded from https://academic.oup.com/imrn/article-abstract/2017/22/6778/3056833
by guest
on 13 November 2017



6788 B. Kahn and R. Sujatha

exact sequence

0→ F̃ ′(X)→ F̃(X)→ F̃ ′′(X)→ 0.

That ι is a Serre embedding follows immediately. (In this case, the perfectness

of F is not used.)

Suppose now that 0 → F ′ → F → F ′′ → 0 is an exact sequence in NST. Given

X ∈ SmCor, the cohomology exact sequence induces an exact sequence

0→ F̃ ′(X)→ F̃(X)→ F̃ ′′(X)→ H̃1
Nis(X ,F ′).

(Here we viewed G = H1
Nis(−,F ′) as a presheaf on Sm, and wrote H̃1

Nis(X ,F ′) for

G̃(X).) This shows that HI is closed under extensions in NST. Conversely, suppose that

F ∈ HI. Then F ′ ∈ HI. But a theorem of Voevodsky [45, Theorem 3.1.12] implies that

X 
→ H1
Nis(X ,F ′) is homotopy invariant, hence F ′′ ∈ HI as well.

To deal with the last case, we argue as above using this time A1 − {0}. Thus, for
F ∈ PST, write F̌(X) for the kernel of the idempotent on F(X × (A1− {0})) defined by the

rational point 1 ∈ A1 − {0}. Suppose F ∈ HI: by Proposition 2.5.2, F ∈ HIo ⇐⇒ F̌ = 0.

Suppose that 0→ F ′ → F → F ′′ → 0 is an exact sequence inHI. For any X ∈ Sm,

we have an exact sequence

0→ F̌ ′(X)→ F̌(X)→ F̌ ′′(X)→ Ȟ1
Nis(X ,F ′).

This exact sequence shows that HIo is closed under extensions in HI. Now sup-

pose that F ∈ HIo. Then F ′ ∈ HIo. But Lemma 2.3.2 (b) implies that H1
Nis(X ,F ′) = 0, and

a fortiori Ȟ1
Nis(X ,F ′) = 0. So F ′′ ∈ HIo as well. �

Recall that in Proposition 2.6.2, i has a left adjoint: this nontrivial fact amounts

to say that a(PHI) ⊆ HI [45, Proposition 3.1.12]. More easily:

Proposition 2.6.3. In Proposition 2.6.2, io has a left adjoint ν0 and a right adjoint R0
nr.

If F is perfect, the canonical morphism F → ν0F (resp. R0
nrF → F ) is an epimorphism

(resp. a monomorphism) for any F ∈ HI. �

Proof. Since HIo ⊂ HI, it is clear with the notation of (2.4) that the composition HI ↪→
PHI

β!−→ HIo (resp.HI ↪→ PHI
β∗−→ HIo) yields the desired left (resp. right) adjoint (see also

Proposition 4.3.6). The last two claims now follow from Propositions 2.6.1 and 2.6.2. �
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3 Birational sheaves and pure birational motives

We construct in Proposition 3.3.3 a full embedding of the category Cororat of birational

Chow correspondences, introduced in [23], into the category BFC studied in the previ-

ous section. This relies on an explicit formula for the Nisnevich sheaf with transfers

hNis
0 (Y) attached to a smooth proper variety Y , which implies that it is birational (The-

orem 3.1.2); when F is perfect, this was proven differently in [16, Proof of Theorem 2.2].

The full embedding Cororat ↪→ BFC becomes an equivalence of categories after inverting

the exponential characteristic and passing to idempotent completions (Corollary 3.3.4).

As a first byproduct, we get in Corollary 3.4.2 a functor

S−1b Sm→ Chowo[1/p],

where S−1b Sm is the category which was studied in [22] and Chowo is the category of

birational Chowmotives which was studied in [23]; this functor could not be construced

by the methods of [23].

3.1 Birational sheaves and smooth projective varieties

Lemma 3.1.1. Let X ,Y ∈ Sm. Then we have a natural homomorphism (cf. (2.1))

h0(X ,Y)→ CHdimY (X × Y) (3.1)

which is bijective if X = SpecF and Y is proper. �

Proof. The first claim is obvious from the commutative diagram

c(X × A1,Y)
i∗0−i∗1−−−−→ c(X ,Y)⏐⏐� ⏐⏐�

CHdimY (X × A1 × Y)
i∗0−i∗1−−−−→ CHdimY (X × Y)

and the homotopy invariance of Chow groups. Suppose that X = SpecF . Then c(X ,Y) =
Z0(Y); if Y is proper, any irreducible one-cycle on A1 × Y which is not constant over A1

defines an element of c(A1,Y), hence the second claim. �

Let Y be a smooth variety. As in [45, p. 207] we write hNis
0 (Y) for the Nisnevich

sheaf with transfers associated with the presheaf h0(Y) ∈ PHI (see (2.4)). Note that

hNis
0 (Y) ∈ HI by [45, Theorem 3.1.12].
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Theorem 3.1.2. Let Y be a smooth proper variety. Then hNis
0 (Y) is given by the formula

hNis
0 (Y)(X) = CH0(YF(X))

for any connected X ∈ Sm. In particular, hNis
0 (Y) ∈ HIo. �

Proof. For X smooth, consider the composition

c(X ,Y)→ CHdimY (X × Y)→ CHdimY (YF(X)) = CH0(YF(X)).

Let α ∈ c(Z,X) be a finite correspondence, with Z connected. We claim that the

usual composition of correspondences yields a commutative diagram

c(X ,Y) −−−−→ CHdimY (X × Y) −−−−→ CH0(YF(X))

α∗
⏐⏐�(1) α∗

⏐⏐�(2) α∗
⏐⏐�(3)

c(Z,Y) −−−−→ CHdimY (Z × Y) −−−−→ CH0(YF(Z)).

(3.2)

Indeed, α∗ is well-defined at (2) because Y is proper and the components of α are

proper over Z. It obviously commutes with (1).

For (3), we must show that if W ∈ ZdimX (X × Y) is supported on a proper closed

subset X ′ of X , then α∗W goes to 0 in CH0(YF(Z)). We argue as in the proof of [23, Propo-

sition 2.3.5]: by passing to the generic point of Z and by base change, we reduce to the

case where Z = SpecF . Then α is a 0-cycle on X that we may assume to be a closed point.

Shrinking around α, we may also assume X to be quasi-projective.

If α /∈ X ′, then α ∩W = ∅ and we are done; otherwise we may move α outside X ′

up to rational equivalence [38]: this does not change the value of α∗W in CH0(Y).

Thus we have defined a presheaf with transfers

h̄0(Y) : X 
→ CH0(YF(X))
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which is clearly birationally invariant. Hence, by Proposition 2.3.3 (a), h̄0(Y) ∈ HIo, and

the morphism L(Y)→ h̄0(Y) described in (3.2) induces a morphism

ϕ : hNis
0 (Y)→ h̄0(Y)

in HI.

To prove that ϕ is an isomorphism, it is sufficient by [44, Proposition 4.20] to

check that it is an isomorphism at SpecK for any extension K of F . Noting that

hNis
0 (Y)(SpecK) = h0(Y)(SpecK) = h0(YK)(SpecK),

h̄0(Y)(SpecK) = h̄0(YK)(SpecK),

the statement follows from Lemma 3.1.1, where F is replaced by K and Y by YK . �

A first consequence is:

Corollary 3.1.3. Let Y be a smooth proper variety viewed as an object of BFC. Then the

associated presheaf of abelian groups ho
0(Y) ∈ HIo (compare Diagram (2.4)) is canonically

isomorphic to hNis
0 (Y). In particular, hNis

0 (Y) is a projective object of HIo. �

Proof. By definition, hNis
0 (Y) is the Nisnevich sheaf associated with the presheaf h0(Y).

Let F ∈ HIo. By Lemma 2.3.2 (a), F is a Nisnevich sheaf, hence any map h0(Y) → F
factors uniquely through hNis

0 (Y). Since the latter is birational by Theorem 3.1.2, hNis
0 (Y)

has the same universal property as ho
0(Y), so they coincide. The last statement follows

from Proposition 2.2.1 (b). �

3.2 Review of some results of [23]

LetCorrat andChoweff denote, respectively, the category of Chow correspondences and of

effective Chowmotives over F , with integral coefficients, so that by definition Choweff =
Cor�

rat. In [23, Definitions 2.2.8 and 2.3.6], we defined two new categories:

Chowb = (Choweff
/L)�, Chowo = (Corrat /I)�.

Here L is the ⊗-ideal generated by the Lefschetz motive L while, for two smooth

projective varieties X ,Y , I(X ,Y) is the subgroup of CHdimX (X × Y) generated by cor-

respondences with support in Z × Y for some proper closed subset Z ⊂ X . Writing
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Cororat = Corrat /I, Hom groups in Cororat are given by the formula [23, Lemma 2.3.7]

Cororat(X ,Y) = CH0(YF(X)).

There is a string of full functors

Chowb → (S−1b Choweff
)� → Chowo

which become equivalences of categories after inverting the exponential characteristic

p of F [23, Theorem 2.4.2].

3.3 A full embedding

We now draw other consequences from Theorem 3.1.2. For the reader’s convenience, we

include a proof of the following generalisation of Lemma 3.1.1, which is in [45, proof of

Proposition 2.1.4]:

Theorem 3.3.1. Let X ,Y be two smooth projective F-varieties. Then (3.1) is an

isomorphism. �

Proof. Let L(Y) and Lc(Y) be the presheaves with transfers defined in [45, Section 4.1].

Then the cokernel of i∗0− i∗1 is clearly isomorphic to h0(L(Y))(X). On the other hand, since

Y is projective, the morphism of presheaves L(Y)→ Lc(Y) is an isomorphism. The latter

presheaf is canonically isomorphic to zequi(Y , 0) (compare [45, Section 4.2]). The group

CHdimY (X × Y), in its turn, is canonically isomorphic to h0(zequi(X × Y , dimX))(SpecF).

We therefore have to see that the natural map

h0(zequi(Y , 0))(X)→ h0(zequi(X × Y , dimX))(SpecF)

is an isomorphism. But the left-hand side may be further rewritten

h0(zequi(Y , 0))(X) = h0(zequi(X ,Y , 0))(SpecF)

(cf. [13, bottom p. 142]). The result now follows from [13, Theorem 7.1]. �

Remark 3.3.2. Under resolution of singularities, Theorem 3.3.1 remains true if X is

only smooth quasiprojective by replacing [13, Theorem 7.1] by [13, Theorem 7.4] in the

above proof. We shall not need this more refined result. �
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Consider the full subcategory Smproj Cor ⊂ SmCor whose objects are smooth

projective varieties, and its associated homotopy category H(Smproj Cor) ⊂ H(SmCor).

Then Theorem 3.3.1 yields an isomorphism of categories

H(Smproj Cor)
∼−→ Corrat, (3.3)

where Corrat is the category of Chow correspondences (see Section 3.2).

Proposition 3.3.3. Let Cororat be the category of birational Chow correspondences (see

Section 3.2). Then the identity map on objects extends to a full embedding

Cororat
D−→ BFC

which fits in the commutative diagram

S−1b H(Smproj Cor)
A−−−−→ BFC

C

⏐⏐�� D


⏐⏐
S−1b Corrat

B−−−−→ Cororat .

(3.4)

Here A is the obvious functor, C is induced by (3.3) and B is the functor from [23,

Proposition 2.3.8 (c)]. �

Proof. Indeed, in view of Corollary 3.1.3 and [23, Lemma 2.3.7], the isomorphism of The-

orem 3.1.2 yields an isomorphism between Hom groups of the two categories Cororat and

BFC. The proof of Theorem 3.1.2 also shows that this isomorphism defines a (fully faith-

ful) functor, and that (3.4) commutes if we remove S−1b from the left vertical. Therefore,

(3.4) commutes. �

From Propositions 2.2.1 (a) and 3.3.3, we deduce:

Corollary 3.3.4. We have a full embedding

Chowo
↪→ HIo

which sends the birational motive ho(X) of a smooth projective variety X to hNis
0 (X). �
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3.4 More equivalences of categories

Theorem 3.4.1. In Diagram (3.4), all functors become equivalences of categories

after inverting the exponential characteristic p and passing to the pseudo-abelian

envelopes. �

Thus, after inverting p, the categories Chowb, S−1b Choweff, Chowo, and BFC�

become equivalent.

Proof. Let A′,B′,C ′,D′ be the corresponding functors. Then C ′ is an isomorphism of

categories by (3.3), B′ is an isomorphism of categories by [23, Theorem 2.4.2] and D′ is

fully faithful by Proposition 3.3.3. To conclude, it remains to show that D′ is essentially

surjective.

Let X ∈ Sm, and let X̄0 be a compactification of X . For each prime number l �= p,

choose by [17] an alteration X̄l → X̄0 of generic degree prime to l, with X̄l smooth. Choose

a finite number of primes l1, . . . , lr such that the gcd of the corresponding degrees di is

a power of p, say ps. Choose a dense open subset U ⊆ X such that pi : X̄li → X̄0 is finite

over U for all i. Let Ui = p−1i (U) ⊆ X̄li and let V =∐s
i=1Ui.

Let γi ∈ c(Ui,U) be the graph of pi|Ui , so that its transpose tγi is still a finite

correspondence. Choose integers ni such that
∑

nidi = ps. As γi ◦ tγi = di1U , we have

∑
niγi ◦ tγi = ps1U .

Thus, if a = ⊕
γi ∈ c(V ,U)[1/p] and b = 1

ps

⊕
ni

tγi ∈ c(U ,V)[1/p], then ba is a

projector on V in SmCor[1/p], with image isomorphic to U .

Let X̄ = ∐
X̄li ∈ SmCor. The inclusion V → X̄ becomes an isomorphism in

BFC[1/p], hence the projector ba yields a projector π ∈ End(X̄) in the latter category,

with image isomorphic to U , hence to X . Since D is fully faithful, π lifts to a projector in

Cororat(X̄ , X̄)[1/p], thereby concluding the proof. �

Corollary 3.4.2. The graph functor Sm→ SmCor induces a functor

S−1b Sm = S−1r Sm→ Chowo[1/p]. �

(See [22, Theorem 1.7.2] for the equality S−1b Sm = S−1r Sm.)
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Remark 3.4.3. In [20, Proposition 4.1], we also proved that the functor

S−1b Smproj Cor→ S−1b SmCor = BFC

is an equivalence of categories if char F = 0. Extending this result to positive charac-

teristic (after inverting p and adjoining idempotents) has defied all our attempts, even

with the help of [21, Theorem 5.1.4]. Fortunately we do not need such a result here, and

leave it as a challenge for the interested readers. �

4 Triangulated Birational Motives

In this section, we construct a triangulated category of birational geometric motives

DMo
gm that we compare with Voevodsky’s category DMeff

gm of [45]. We also construct a

full embedding BFC ↪→ DMo
gm; this turns out to be much more elementary than Voevod-

sky’s theory of (effective) triangulated motives, the main reason being that a birational

presheaf is automatically aNisnevich sheaf (Lemma2.3.2 (a)).We organise the exposition

in order to highlight this.

In contrast to Voevodsky’s approach but like Beilinson–Vologodsky [6], we use

unbounded derived categories in order to take advantage of Neeman’s yoga of compactly

generated triangulated categories [35, 36], which generalises results of Thomason-

Trobaugh and Yao. We refer to Section A.1 for general notation and terminology on

the latter.

4.1 Review of effective triangulated motives

We start by recalling Voevodsky’s construction of the category DMeff
gm. In [45], DMeff

gm is

defined as the pseudo-abelian envelope of the Verdier quotient of Kb(SmCor) by the

thick subcategory generated by the complexes of the form

Rh: [A1
X ]

[p]−→ [X ], X smooth;

RMV : [U ∩V ] → [U]⊕[V ] → [X ], where X is smooth and U ,V are two open subsets

such that X = U ∪ V .

By Balmer–Schlichting [3], DMeff
gm is triangulated. The obvious tensor structure

on Kb(SmCor) induces a tensor structure on DMeff
gm.

The canonical embedding of SmCor into Kb(SmCor) sends SmCor to DMeff
gm; the

image of [X ] under this functor is denoted by Mgm(X), or simply here by M(X). The

Downloaded from https://academic.oup.com/imrn/article-abstract/2017/22/6778/3056833
by guest
on 13 November 2017



6796 B. Kahn and R. Sujatha

relations Rh and the isomorphism of categories (3.3) yield after pseudo-abelianisation a

functor [45, Proposition 2.1.4]

Choweff → DMeff
gm (4.1)

which sends the Chow motive h(X) of a smooth projective variety X to M(X).

To go further, Voevodsky constructs when F is perfect a full embedding of DMeff
gm

into a larger triangulated category DMeff
− of sheaf-theoretic nature; this allows him to

compute Hom groups of DMeff
gm in terms of Nisnevich (or even Zariski) hypercohomology

of certain complexes. As a byproduct, the functor (4.1) is fully faithful. We recall part of

this story in Section 4.4.

We shall now see that the perfectness of F is not needed for the corresponding

properties of triangulated birational motives.

4.2 Triangulated birational motives

Let us apply Proposition A.4.1 withA = SmCor. In this case, Mod–A = PST, the category

of presheaves with transfers. Thus we get that the Yoneda functor

Kb(SmCor)→ D(PST) (4.2)

is fully faithful and has dense image, whose pseudo-abelian envelope consists precisely

of the compact objects of the right-hand side.

Definition 4.2.1. Let Ro ⊂ Kb(SmCor) be the class of complexes [U] j−→ [X ], where j is

an open immersion with dense image. We denote by (cf. Definition A.1.2 for the notation

〈Ro〉, 〈L(Ro)〉⊕):

• DMo
gm the pseudo-abelian envelope of the Verdier quotient of Kb(SmCor) by

〈Ro〉. We denote the image of [X ] in DMo
gm byMo(X). (It is triangulated by [3].)

• DMo the localisation of D(PST) with respect to 〈L(Ro)〉⊕. We define DMo
−

similarly, using D−(PST) instead of D(PST). �

For the next theorem, recall the notation

DB(A) = {C ∈ D(A) | Hi(C) ∈ B ∀i ∈ Z} (4.3)

if B is a strictly full subcategory of an abelian category A: this is a triangulated sub-

category of D(A) provided B is thick in A, that is, given a short exact sequence in A, if
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two terms belong to B then so does the third. Note that HIo is thick in PST by the snake

lemma.

Theorem 4.2.2. Let γ : SmCor→ BFC be the localisation functor.

(a) The functor Kb(γ )� : Kb(SmCor)� → Kb(BFC)� factors through DMo
gm. The

total derived functor Lγ! : D(PST)→ D(HIo) factors throughDMo. This yields

a naturally commutative diagram

SmCor

γ

��

η
�� Kb(SmCor)�

γ̄

��

ι �� D(PST)

γ̄!
��

Chowo
D�

�� BFC�
ηo

��

η′

�������������
DMo

gm

ιo ��

w

��

DMo

w⊕
��

Kb(BFC)�
ι′ �� D(HIo)

in which all functors not starting from Chowo, SmCor, or BFC� are triangu-

lated.

(b) The functors η, ηo, and η′ are fully faithful. The functors ι, ιo and ι′ are

fully faithful with dense images, and identify their domains with the full

subcategory of compact objects of their ranges.

(c) The functor γ̄! has a (fully faithful) right adjoint γ̄ ∗, which itself has a right

adjoint γ̄∗. The essential image of γ̄ ∗ is DHIo(PST), where HIo is embedded in

PST by means of γ ∗.

(d) Via γ̄ ∗, the natural t-structure of D(PST) induces a t-structure on DMo, with

heart HIo; the functor γ̄! (resp. γ̄∗) is right (resp. left) t-exact.

(e) For X ,Y ∈ Sm and F ∈ HIo, we have:

DMo(Mo(X),F[q]) =
⎧⎨
⎩0 for q �= 0

F(X) for q = 0,

DMo(Mo(X),Mo(Y)[i]) = 0 for i > 0,

Hi(γ̄ ∗Mo(Y)) = 0 for i > 0.

(f) If Y is proper, we have

DMo(Mo(X),Mo(Y)) = CH0(YF(X))
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H0(γ̄ ∗Mo(Y)) = hNis
0 (Y).

The functor D� is fully faithful (hence so is ηoD�).

(g) The obvious functor

ϕ : D(HIo)→ DHIo(PST) � DMo

is right adjoint to w⊕, t-exact and conservative; it induces the identity on

the hearts.

(h) The functor w⊕ is right t-exact and induces the identity on the hearts;

its restriction to DMo
− is conservative. The functor w is conservative

as well. �

Proof. Everything follows directly from Proposition A.4.1 and Theorem A.4.2, except

for (f) which follows from Theorem 3.1.2, Corollary 3.1.3, and Proposition 3.3.3. �

Remark 4.2.3. By theorem 3.4.1, D� becomes essentially surjective after inverting the

exponential characteristic p. �

To Theorem 4.2.2, we add:

Proposition 4.2.4. The ⊗-structure on SmCor induces a ⊗-structure on all categories

in the diagram of Theorem 4.2.2, and all functors in this diagram are ⊗-functors. The
⊗-structures are compatible with the triangulated structures when applicable. �

Proof. Indeed, if U
j−→ X is a dense open immersion, then U × Y

j×1Y−→ X × Y is also a

dense open immersion for any Y ∈ Sm. �

The next result is deeper:

Proposition 4.2.5. The thick subcategory 〈Ro〉� ⊂ DMeff
gm contains all motives of the form

M(1) := M ⊗ Z(1). If F is perfect, this is an equality and the functor DMeff
gm → 〈Ro〉� given

by M 
→ M(1) is an equivalence of categories. Similarly, DMeff(1) ⊆ 〈Ro〉⊕ with equality

when F is perfect. �

Proof. By density, the case of 〈Ro〉⊕ reduces to that of 〈Ro〉�. LetD be the full subcategory

ofDMeff
gm consisting of themotives of the formM(1). SinceZ⊕Z(1)[2] = Mo(P1) = Mo(A1) =

Z in DMo
gm, Z(1) = 0 in DMo

gm. Therefore D ⊆ 〈Ro〉� by Proposition 4.2.4.
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To see the converse inclusion when F is perfect, we first prove that D is a

triangulated subcategory of DMeff
gm. We have to show that, if M ,N ∈ DMeff

gm and f ∈
Hom(M(1),N(1)), then the cone of f is of the form P(1). This follows from the cancel-

lation theorem of [46]. The cancellation theorem also shows that M 
→ M(1) yields an

equivalence of categories DMeff
gm

∼−→ D.

We nowhave to prove thatM(U)
j∗−→ M(X) is an isomorphism inDMeff

gm /D for any

open immersion j.We argue byNoetherian induction on the (reduced) closed complement

Z in a standard way. For simplicity, let us say that the open immersion j is pure if Z is

smooth. If j is pure, then the cone of j∗ is isomorphic toM(Z)(c)[2c], where c = codimX Z

by the Gysin exact triangle of [45, Proposition 3.5.4], so the claim is true in this case. In

general, filtering Z by its successive singular loci, we may write j as a composition of

pure open immersions, and the claim follows. �

4.3 Relationship between effective and birational triangulated motives

We already introduced three classes Rh,RMV , and Ro of objects of Kb(SmCor). Here we

shall use two others:

• RNis = {[B] → [A] ⊕ [Y ] → [X ]}, where

B
j′−−−−→ Y

π ′
⏐⏐� π

⏐⏐�
A

j−−−−→ X

(4.4)

is an upper-distinguished square in the sense of [30, Definition 12.5] (also

called elementary distinguished square in [34, p. 96, Definition 1.3]).

• R = Rh ∪ RNis.

Lemma 4.3.1. We have the following inclusions:

(i) RMV ⊂ RNis;

(ii) 〈RNis〉 ⊂ 〈Ro〉;
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(iii) 〈Rh〉 ⊂ 〈Ro〉;
(iv) 〈R〉 ⊂ 〈Ro〉.

Moreover, the classes Rh,RMV ,RNis,R, and Ro are stable under − ⊗ [X ] for any

X ∈ Sm. �

Proof. This is essentially a reformulation of Lemmas 2.3.2 and 2.3.3. (i) is obvious. (ii)

follows from the fact that, in (4.4), j and j′ are open immersions. (iii) follows from [22,

Theorem 1.7.2]. (iv) follows from (ii) and (iii). The last statement is obvious (and already

observed for Ro). �

We also recall the following important fact [6, p. 1749, (4.3.1)]:

Proposition 4.3.2. Let La : D(PST) → D(NST) be the functor induced by the exact

functor a of (2.5). Then La is a localisation, with kernel 〈RNis〉⊕. �

It is now convenient for the exposition to introduce the “Nisnevich competitor"

of DMeff
gm:

Definition 4.3.3. The category (DMeff
gm)Nis is the pseudo-abelian envelope of the

Verdier quotient Kb(SmCor)/〈R〉. We also define DMeff = D(PST)/〈L(R)〉⊕ and DMeff
− =

D−(PST)/〈L(R)〉⊕. �

From Proposition 4.3.2, we deduce:

Proposition 4.3.4. The categories DMeff and DMeff
− are, respectively, equivalent to

D(NST)/〈L(Rh)〉⊕ and D−(NST)/〈L(Rh)〉⊕. In particular, DMeff
− coincides with the category

defined in [30, Definition 14.1]. �

Proposition 4.3.2 and Lemma 4.3.1 yield the following naturally commutative

diagram, which summarises what we got so far (the notations LC and ν≤0 will be

explained in Section 4.6): (In [45, Proposition 3.2.3], the bounded above version of the
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first functor is denoted by RC, but we prefer the notation LC as it is a left adjoint.)

SmCor
� � ��

�������������

��

Kb(SmCor)� � � c ��

�����

D(PST)

La

����(
Kb(SmCor)

〈RNis〉
)�

� � c ��

�

����

D(NST)

LC

����

Choweff

��

� � �� H(SmCor) ��

��������������

��

DMeff
gm

�
���� ��������������

(DMeff
gm)Nis

� � c ��

�
����

DMeff

ν≤0
����

Chowo � � �� BFC� � � �� DMo
gm

� � c �� DMo .

(4.5)

In (4.5), all categories are⊗ categories and all functors are⊗-functors. In the two

right columns, the categories and functors are triangulated.We use ↪−→ (resp.−→→,
�−→→)

to denote a full embedding (resp. a localisation, a localisation followed by taking pseudo-

abelian envelope), and the letter c means that the corresponding functor is a dense

embedding of the full subcategory of compact objects (see Section A.1).

The full and dense embeddings on the top and bottom rows come from The-

orem 4.2.2, while the two other full and dense embeddings follow from applying

Theorem A.2.2.

We also have:

Theorem 4.3.5. The functors La, LC and ν≤0 of Diagram 4.5 have (fully faithful) right

adjoints Rk, i and io, which in turn have right adjoints. �

Proof. For La and the compositions LCLa, ν≤0LCLa, this follows from the dense embed-

ding (4.2) and Theorem A.2.6. For the individual functors, we now get the adjoints from

Proposition 4.3.6 below. �

Proposition 4.3.6. Let

C F−→ D G−→ E

be a sequence of categories and functors; let H = GF .
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(a) Suppose that H has a right adjoint H∗ and that G is fully faithful. Then F has

a right adjoint, given by F∗ = H∗G.

(b) Suppose that H and F have right adjoints H ∗ and F ∗ and that F is a

localisation. Then G has a right adjoint, given by G∗ = FH ∗. �

Proof. (a) For c ∈ C and d ∈ D, we have a map

D(Fc,d)
G−→ E(GFc,Gd)

∼−→ C(c,H∗Gd)

which is natural in d and c, and G : D(Fc,d) → E(GFc,Gd) is bijective since G is fully

faithful.

(b) The argument is similar but a little more delicate: let d ∈ D and e ∈ E . Since
F is a localisation, it is surjective so that d = Fc for some c ∈ C. We then have a map

E(Gd, e) = E(GFc, e)
∼−→ C(c,H ∗e)

F−→ D(Fc,FH ∗e) = D(d,FH ∗e).

By adjunction, the map F : C(c,H ∗e) → D(Fc,FH ∗e) is converted into the map

C(c,H ∗e)→ C(c,F ∗FH ∗e) induced by the unit morphism H ∗e→ F ∗FH ∗e. Let us show that

the latter is an isomorphism. Since F is a localisation, F ∗ is fully faithful [14, I.1.4] and

it suffices to see that H ∗e ∈ Im F ∗, which is true since

Im F ∗ = {γ ∈ C | C(s, γ ) is bijective for all s

such that F(s) is invertible} ⊇ ImH ∗. �

Remarks 4.3.7. (1) Passing to the categories of presheaves, one can see that the

existence of F ∗ is not necessary in the hypothesis of Proposition 4.3.6 (b).

(2) Using standard arguments for unbounded triangulated categories [41], one

sees that the right adjoint Rk of La is the total derived functor of k : NST ↪→ PST. �

4.4 The case of a perfect field

We have:

Theorem 4.4.1. Suppose F perfect. Then, in Diagram (4.5):

(1) The composite functor DMeff
gm → (DMeff

gm)Nis → DMeff is fully faithful.

(2) The functor DMeff
gm → (DMeff

gm)Nis is an equivalence of categories.

(3) The functor Choweff → DMeff
gm is fully faithful.
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All this is summarised in the following simpler diagram:

Kb(SmCor)� � � c ��

�����

D(PST)

La

����(
Kb(SmCor)

〈RNis〉
)�

� � c ��

�

����

D(NST)

LC

����

Choweff

��

� � �� DMeff
gm

�
����

� � c �� DMeff

ν≤0
����

Chowo � � �� DMo
gm

� � c �� DMo .

(4.6)

Finally, the canonical t-structure ofD(NST) induces a t-structure with heartHI onDMeff

via the right adjoint i to LC; the latter induces on DMo the t-structure of Theorem 4.2.2

(d) via the right adjoint io to ν≤0. �

Proof. This summarises some of the main results of Voevodsky. Namely, (1) is [45,

Theorem 3.2.6 1], and (2) follows from (1) since the first (resp. second) functor in (1) is

a localisation (resp. is fully faithful) by Diagram (4.5). (3) is proven in [45, Corollary

4.2.6] and [30, Proposition 20.1] under resolution of singularities; in [6, Corollary 6.7.3],

this is extended to any perfect field by a simple duality argument. As for t-structures,

the first statement is [45, comment after Proposition 3.1.13]. (Recall that all the above

relies on the highly nontrivial fact that a homotopy invariant Nisnevich sheaf with

transfers is strictly homotopy invariant: [45, Theorem 3.1.12 1] or [30, Theorem 13.8].)

The second one amounts to say that io is t-exact. This follows from Theorem 4.2.2 (d),

namely the t-exactness of γ̄ ∗ = Rkiio, and from the exactness of the sheafification functor

a : PST→ NST. Namely, let C ∈ (DMo)≤0. By Theorem 4.2.2 (d), Hi(RkiioC) = 0 for i > 0,

hence Hi(iioC) = aHi(RkiioC) = 0 for i > 0 as well, and ioC ∈ (DMeff)≤0. The reasoning is

the same to get io(DMo)≥0 ⊂ (DMeff)≥0. �

Remarks 4.4.2. (1) Consider the t-structures of Theorem 4.4.1. The right adjoint iio of

ν≤0LC is t-exact. On the other hand, a : D(PST)→ D(NST) is t-exact but its right adjoint

Rk is clearly not t-exact. Neither is the composition Rk◦iwhen F is perfect: for example,

H1(Rk◦i(Gm)) is the presheaf X 
→ Pic(X). However, the composition of all right adjoints

Rk ◦ i ◦ io is t-exact, as just used in the above proof.
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(2) In [23, Theorem 4.3.3], we showed that the functor Choweff → Chowo does not

have a right adjoint, even after tensoring Hom groups with Q; more precisely, this

right adjoint is not defined at the motive of a suitable smooth projective three-fold.

We shall strengthen this result in Remark 4.6.5 by showing that the right adjoint of

DMeff
gm → DMo

gm is not defined at the motive of a suitable smooth projective three-fold,

even after tensoring with Q. �

4.5 The essential images of i and io

The following proposition computes some Hom groups in D(NST),DMeff, and DMo:

Proposition 4.5.1. Let X be a smooth scheme over F and let C be an object of D(NST)

(resp. DMeff,DMo). Then there is a canonical isomorphism

D(NST)(L(X),C) � H0
Nis(X ,C)

(resp.DMeff(M(X),C) � H0
Nis(X ,C),

DMo(Mo(X),C) � H0
Nis(X ,C)). �

(WewriteHi
Nis(X ,C) for theNisnevich hypercohomology of C, which is sometimes

written H
i
Nis(X ,C).)

Proof. This is [45, Proposition 3.1.8] when C is bounded above; but the same argument

works for an unbounded C by replacing an injective resolution of C by a K-injective

resolution in the sense of Spaltenstein [41, Theorem 4.5 and Remark 4.6], compare [30,

Example 13.5]. The other statements follow by adjunction. �

We shall also need:

Proposition 4.5.2. The internal Hom of D(NST) induces an internal Hom on DMeff via

i. We denote it by Homeff. �

Proof. This follows by adjunction from the fact that LC : D(NST) → DMeff is a ⊗-
functor, as observed just below (4.5). �

Corollary 4.5.3. The essential image of i : DMeff → D(NST) (resp. io : DMo → DMeff) is

the full subcategory of those complexes C such that

H ∗
Nis(X ,C)

∼−→ H ∗
Nis(X × A1,C)
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for all smooth X (resp. such that

H ∗
Nis(X ,C)

∼−→ H ∗
Nis(U ,C)

for any dense open immersion U → X of smooth varieties). �

Proof. This follows from Proposition 4.5.1 and Theorem A.2.6 (ii). �

Here is an alternate description of io DMo. The following lemma follows from

Proposition 4.2.5 and Theorem A.2.6:

Lemma 4.5.4. io DMo ⊆ {C ∈ DMeff | Homeff(Z(1),C) = 0} (see Proposition 4.5.2). If F is

perfect, this inclusion is an equality. �

As was already observed in [16, 19], this implies that the terms of the “associated

graded of the slice filtration” on an object of DMeff are twists of birational motives.

4.6 Computing ioν≤0

In this subsection, we assume F perfect. We first recall Voevodsky’s computation of iLC

in this case. Recall that, if F ∈ NST, the Suslin complex C∗(F) of F is the (chain) complex

of Nisnevich sheaves with transfers given in degree n by

Cn(F)(X) = F(X ×�n),

where the differentials are induced by linear combinations of the face maps [45, p. 207]

and [30, Definition 2.12]. IfK is a bounded below chain complex (=bounded above cochain

complex) of Nisnevich sheaves with transfers, we can extend this definition by

C∗(K) = Tot(p 
→ C∗(Kp)).

Finally, if K ∈ C(NST), we define

C∗(K) = hocolimTotC∗(τ≤nK)

(see [7] for hocolim).
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This defines an endofunctor of D(NST). Then:

Proposition 4.6.1 ([45, Proposition 3.2.3]). For any K ∈ D(NST), we have a natural

isomorphism

iLC(K) � C∗(K). �

We now study the functor ν≤0 along with its right adjoint io. In this case, the

story is much simpler.

Consider the inclusion functor DMeff(1) ↪→ DMeff. Using the cancellation

theorem, its right adjoint is trivial to write down: it is given by

M 
→ Homeff(Z(1),M)(1),

where Homeff is the internal Hom in DMeff (see Proposition 4.5.2). From Proposition 4.2.5

and Theorem A.2.6 (iii), we then immediately get a formula for ioν≤0:

Proposition 4.6.2. If F is perfect, we have an exact triangle for any M ∈ DMeff

Homeff(Z(1),M)(1)→ M → ioν≤0M
+1−→ . �

In [16], this appears as part of the description of the slice filtration on M .

Remark 4.6.3. In [19, Remark 2.2.6] there is a different “computation" of the functor

ioν≤0, in the spirit of Proposition 4.6.1: for a smooth F-variety X with function field

K, write �̂n
X = �̂n

K for the semi-localisation of �n
K at the vertices. This defines a sub-

cosimplicial scheme of �∗
K and �∗

X . Thus, for F ∈ PST, we may define

Ĉ∗(F)(X) = F(�̂∗
X );

the nth term of this chain complex is Ĉn(F)(X) = F(�̂n
X ) (defined by an inductive limit),

and the differentials are induced by the face maps. We may then extend Ĉ∗ to C(PST) as

above. Then, for N ∈ C(PST) with homotopy invariant homology presheaves, we have a

canonical isomorphism

ioν≤0LaN(X) � Ĉ∗(N) ∈ D(Ab). �

Remark 4.6.4. Theorem 4.2.2 (e) and (f) identifies some of the homology (pre)sheaves

ho
q(Y) of Mo(Y) for a smooth proper variety Y : they are 0 for q < 0 and ho

0(Y) = hNis
0 (Y).
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One may wonder about q > 0. If Y is a curve, we have hNis
q (Y) = 0 for q > 1 and

hNis
1 (Y) = p∗p∗Gm by [45, Theorem 3.4.2], where p is the structural morphism. Thus we

get an exact triangle

(p∗Z)(1)[2] → M(Y)→ hNis
0 (Y)[0] +1−→

whenceMo(Y)
∼−→ hNis

0 (Y)[0] by Corollary 3.1.3. In this case, we therefore find ho
q(Y) = 0

for all q �= 0.

This is no longer true when Y is a surface. Indeed, at least if F is algebraically

closed, one can then produce an isomorphism

ho
1(Y) � H3

ind(Y ,Z(2)),

where the right-hand side is the quotient of H3(Y ,Z(2)) � H1(Y ,K2) by the image of

Pic(Y)⊗ F ∗. See [24, Theorem 4.1]. �

Remark 4.6.5. We can now justify Remark 4.4.2 2): let M ∈ DMeff
gm. By the universal

property of a right adjoint and the full faithfulness of DMo
gm → DMo, the right adjoint

of DMeff
gm → DMo

gm is defined at ν≤0M if and only if ioν≤0M ∈ DMeff
gm (and then ioν≤0M is the

value of this right adjoint). Suppose F perfect. By the exact triangle of Proposition 4.6.2,

the latter is equivalent to Homeff(Z(1),M)(1) ∈ DMeff
gm.

Let us show that this fails for M = M(X), X a suitable 3-dimensional smooth

projective variety.1 In [15, App. A], Ayoub proved that if the Griffiths group of X is not

finitely generated, then Homeff(Z(1),M(X)) is not compact in DMeff, hence is not in DMeff
gm;

this works evenwithQ-coefficients. (There are several examples of such X , starting from

a general quintic hypersurface in P4 over F = Cwhich is the original example of Clemens

and Griffiths.) It suffices to show that the same then holds for Homeff(Z(1),M(X))(1): but

this is clear by the cancellation theorem [46], since K 
→ K(1) commutes with infinite

direct sums. �

4.7 t-structures and projective objects (Compare [6, p. 1737, Footnote 17])

Let S be a triangulated category with a t-structure, with heart A. Let us say that an

object S ∈ S is projective (with respect to the t-structure) if S(S,A[i]) = 0 for all A ∈ A

1Recall that the right adjoint is defined at ν≤0M(X) for X smooth projective of dimension ≤ 2, at least after
tensoring Hom groups with Q, by [18, Th. 7.8.4 b)].
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and i �= 0. Theorem 4.2.2 (e), and more generally Theorem A.4.2 (e), gives such examples.

If S is bounded above (i.e., S ∈ S≤n for some n), an inductive Yoneda-style argument

shows that S ∈ S≤0. Moreover, for any A ∈ A, one has

S(H0(S),A)
∼−→ S(S,A), S(H0(S),A[1]) = 0.

The second equality implies that Ext1A(H0(S),A) = 0, hence H0(S) is a projective

object in A.

Then, ExtiA(H0(S),A) = 0 for all i > 0. However, if S(H0(S),A[i]) = 0 for all

i > 0 and the t-structure is non-degenerate, the same Yoneda argument shows that

S
∼−→ H0(S)[0].

This applies to show that the natural functor D(HI) → DMeff is not full: take

S = Z(2)[2], use Proposition 5.2.1 below to see that S is projective, and then the fact that

H−1(S) � Kind
3 �= 0 [29, 32] to get a contradiction.

By Remark 4.6.4, the isomorphism S
∼−→ H0(S)[0] also fails in general for S =

DMo and S = Mo(X), X smooth proper. In particular, the conservative functor D(HIo)→
DMo of Theorem 4.2.2 (g) is not full.

5 Further Examples of Birational Sheaves

Throughout this section, F is supposed perfect.

5.1 Constant sheaves, abelian varieties, and 0-cycles

All these are examples of birational sheaves. For the first ones, this is obvious. If A is

an abelian variety, then X 
→ A(X) defines an object of HI [4, Lemma 1.3.2], and this

sheaf is birational by [33, Theorem 3.1]. Finally, for any smooth proper variety Y , the

assignment X 
→ CH0(YF(X)) defines an object of HIo by Theorem 3.1.2.

5.2 Birational sheaves and contractions

Recall:

Proposition 5.2.1 ([25, Proposition 4.3 and Remark 4.4]). The exact endofunctor F 
→
F−1 of HI (see Section 2.4) is given by the formulas

F−1 = H0
(
Homeff(Z(1)[1],F[0])) = HomHI(Gm,F),
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where HomHI is the internal Hom of the category HI. Moreover, Homeff(Z(1)[1],F[0]) is
acyclic in degrees �= 0. �

By this proposition, one has canonical isomorphisms for any C ∈ DMeff

Hn(Homeff(Z(1)[1],C)) � Hn(C)−1 (n ∈ Z). (5.1)

The next proposition gives some handle on the functor ioν≤0. We shall use the

following notation: for F ,G ∈ HI, we write

TorDMi (F ,G) = Hi(F[0] ⊗ G[0]), F ⊗HI G = TorDM0 (F ,G) (5.2)

where the tensor product F[0] ⊗ G[0] is computed in DMeff.

Note that ⊗HI is the tensor product on HI induced by the one on DMeff; it is right

t-exact because the tensor product in D(PST) is right t-exact and the functor LC ◦ La :

D(PST) → DMeff is right t-exact. In particular, TorDMi (F ,G) = 0 for i < 0. On the other

hand, TorDMi (−,−) need not yield the ith derived functor of ⊗HI (assuming it exists), see

Section 4.7.

Let F ∈ HI. By adjunction, Proposition 5.2.1 yields a map

εF : Gm ⊗HI F−1 → F . (5.3)

Proposition 5.2.2. (a) Let C ∈ DMeff be such that Hq(C) = 0 for q < 0. Then H0(ioν≤0C) =
Coker εH0(C).

(b) If C is a sheaf F concentrated in degree 0, we have

Hq(i
oν≤0F[0]) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

TorDMq−1(Gm,F−1) for q > 1

Ker εF for q = 1

Coker εF for q = 0

0 for q < 0.

In particular, the sheaves on the right-hand side belong to HIo. �

Proof. Using Proposition 4.6.2, (5.1) gives (a) for n = 0 and (b) if C = F[0]. �

We can strengthen this proposition as follows, thus giving an interesting way

to produce birational sheaves:
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Proposition 5.2.3. Let F ∈ HI. Then

(a) For all q > 0, TorDMq (Gm,F) ∈ HIo.

(b) The adjunction map

F → (Gm ⊗HI F)−1

is an isomorphism. �

Proof. We shall prove (a) and (b) together. By quasi-invertibility of Z(1) [46], the

adjunction map

F → Homeff(Z(1),F(1))

is an isomorphism. The right-hand side may be rewritten Homeff(Gm,Gm⊗F). By Propo-

sition 5.2.1, its qth homology sheaf is TorDMq (Gm,F)−1, which is therefore 0 for q > 0.

The conclusion now follows from Proposition 2.5.2. �

5.3 Birational sheaves and tensor products

In this subsection, we show that the tensor product in HI of two birational sheaves is

birational.

More correctly, let ν0 : HI → HIo be the left adjoint of io (Proposition 2.6.3):

by Lemma A.3.1, ν0F = H0(ν≤0F[0]). Then ν0 induces on HIo a tensor structure ⊗HIo

characterised by

ν0F ⊗HIo ν0G = ν0(F ⊗HI G)

and this tensor product is right t-exact.

Let F ,G ∈ HIo. From the isomorphism

ν0(i
oF ⊗HI i

oG) � ν0i
oF ⊗HIo ν0i

oG ∼−→ F ⊗HIo G

we get by adjunction a morphism

ioF ⊗HI i
oG → io (F ⊗HIo G). (5.4)

Theorem 5.3.1. (5.4) is an isomorphism. �
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The analogous result for the inclusion HI ↪→ NST is well-known to be false:

for example, Gm ⊗NST Gm is not homotopy invariant. Indeed, its quotient Gm ⊗HI Gm

verifies Gm ⊗HI Gm(F) = KM
2 (F) [30, Theorem 5.1], while Gm ⊗NST Gm(F) = F ∗ ⊗ F ∗ if F is

algebraically closed.

Proof. For ease of notation, let us suppress the use of io. So we must show that the

sheaf H = F ⊗HI G is birational. We shall use the characterisation of birational sheaves

given in Proposition 2.5.1.

So, let K/F be a function field, C/K be a (proper) regular curve, and c ∈ C be a

closed point. We must show that the map

H(OC,c)→ H(K(C))

is surjective.

By the surjectivity of the map in [25, (2.10)], the composition

⊕
[E:K(C)]<∞

F(E)⊗ G(E)→
⊕

[E:K(C)]<∞
H(E)

(TrE/K(C))−→ H(K(C))

is surjective.

For each E as above, let CE be the proper regular model of E/K; let fE : CE → C

be the canonical map and let cE = f −1E (c). Then OCE ,cE is finite over OC,c, hence we have a

commutative diagram

⊕
[E:K(C)]<∞

F(OCE ,cE )⊗ G(OCE ,cE )
∼−−−−→

⊕
[E:K(C)]<∞

F(E)⊗ G(E)

⏐⏐� ⏐⏐�
H(OC,c) −−−−→ H(K(C)),

where the top map is an isomorphism because F and G are birational. The theorem

follows. �

Remark 5.3.2. LetE be an elliptic curve: one can show that TorDM1 (E,E) is not birational,

see [24, Proposition 4.2]. Hence the functor io : DMo → DMeff is not monoidal. �
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6 Birational Sheaves and Cycle Modules

Let CM denote the category of cycle modules in the sense of Rost [39]. In [23,

Theorem 6.2.4] we defined a pair of adjoint functors

K? : Mod–Chowo � CM : A0,

where A0 sends a cycle module M = (Mn)n∈Z to a functor extending the assignment

X 
→ A0(X ,M0), and K? is fully faithful. The description of the essential image of K? was

left open; we now have the material to answer this question.

6.1 Cycle modules and Somekawa K-groups

To formulate the answer, we need some preparation. Recall that, in [40], Somekawa

associated an abelian group K(F ;G1, . . . ,Gn) with n semi-abelian varieties G1, . . . ,Gn

over F ; this definition was extended in [25] to objects G1, . . . ,Gn of HI. (Recall that a

semi-abelian variety defines an object of HI by [42, Lemma 3.2] and [4, Lemma 1.3.2].)

Let M be a cycle module. Recall now that Déglise associated with M a graded

object (Mn) of HI such that

Mn(X) = A0(X ,Mn) (6.1)

for any X ∈ Sm. We then have:

Lemma 6.1.1. For any extension E/F , the map E∗ ⊗ Mn(E) → Mn+1(E) from [39, D3]

induces a homomorphism

θn : K(E;Gm,Mn)→ Mn+1(E). �

Proof. Recall from [25, Definition 5.1] thatK(E;Gm,Mn) has generators {f ,m}E ′/E where

E ′ runs through the finite extensions of E, f ∈ E∗ and m ∈ Mn(SpecE) = Mn(E), subject

to three types of relations directly generalising those of [40, (1.2.0), (1.2.1), and (1.2.2)]:

bilinearity, the projection formula, and relations “of Somekawa type.” Write ϕ : E → E ′

for the inclusion. We define θn({m, f }) = ϕ∗(f · m), where ϕ∗ is the transfer map from

[39, D2] and the f · m is the product from [39, D3]. We need to check that θn respects

the relations. Bilinearity is obvious and the projection formula follows from [39, R2b

and R2c]. By [25, Remark 6.3], to prove the relations of Somekawa type it now suffices
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to prove the finer relations “of geometric type” from loc. cit., Definition 6.1; these follow

directly from [39, (RC) in Proposition 2.2]. �

Theorem 6.1.2. Let M ∈ CM. Then M is in the essential image of K? if and only if:

(i) Mn = 0 for n < 0;

(ii) for any n ≥ 0, the map θn of Lemma 6.1.1 is an isomorphism. �

6.2 A reformulation

We first translate Theorem 6.1.2 into a statement involving homotopy invariant Nis-

nevich sheaves with transfers, whose proof is then rather straightforward. For this, we

need to recall Déglise’s theory from [12] in further detail:

By a construction going back to Morel and Voevodsky, the category DMeff can be

fully embedded into a larger ⊗-triangulated category DM of “Z(1)-spectra.” There is an

adjunction [12, Proposition 4.7]:

�∞ : DMeff � DM : �∞

where �∞ is fully faithful, monoidal and �∞Z(1) is invertible. Moreover the homo-

topy t-structure of DMeff extends to a t-structure on DM, with heart the category HI∗
of homotopic modules [12, Theorem 5.11]; the functor �∞ is t-exact.

By [12, Definition 1.17], an object ofHI∗ is a sequence (Mn, εn)n∈Z, where Mn ∈ HI

and εn is an isomorphism Mn
∼−→ HomHI(Gm,Mn+1). By Proposition 5.2.1, this may

also be written Mn
∼−→ (Mn+1)−1. (In [12], Déglise writes S1

t for Gm. These sheaves

are isomorphic, as follows, e.g. from [45, Theorem 3.4.2 (iii)] applied to C = A1 − {0}.)
Morphisms are given componentwise. The adjoint functors

σ∞ : HI � HI∗ : ω∞

induced by �∞ and �∞ are given by

ω∞M∗ =M0

(σ∞F)n =
⎧⎨
⎩F ⊗HI G

⊗n
m if n ≥ 0

Fn (Voevodsky’s contraction) if n < 0.

Déglise’s main result, [12, Theorem 3.7], provides an equivalence of categories

betweenHI∗ and CM. More precisely, his functor CM→ HI∗ sends a cycle moduleM∗ to a
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homotopic module M∗ given by (6.1). His functor HI∗ → CM sends a homotopic module

M∗ to a cycle module M∗ such that

Mn(K) = lim−→Mn(U)

for any function field K/F , where U runs through the collection of smooth models of K

and transition maps are open immersions [12, 2.10 and 3.1].

On the other hand, the full embedding D : Cororat → BFC of Proposition 3.3.3

yields a pair of adjoint functors

D! : Mod–Chowo � HIo : D∗.

Recall finally that by [25, (1.1)], we have an isomorphism

K(E;Gm,Mn) � (Gm ⊗HI Mn)(SpecE)

where Mn is associated with a given cycle moduleM as in (6.1). The translation we need

for proving Theorem 6.1.2 is now provided by:

Proposition 6.2.1. The functors K? and A0 are, respectively, isomorphic to the compo-

sitions σ∞ ◦ io ◦ D! and D∗ ◦ R0
nr ◦ ω∞. �

Proof. By adjunction, it suffices to construct a natural isomorphism K? � σ∞ ◦ io ◦ D!.
By construction, K? is obtained as the left Kan extension of Merkurjev’s functor

X 
→ KX

where, for a smooth projective variety X , KX is a cycle module such that KX
∗ (E) =

A0(XE ,K∗) for any function field E/F . Here K denotes the cycle module given by Mil-

nor K-theory. As KX represents the functorM∗ 
→ A0(X ,M0) [31, Theorem 2.10], its image

in HI∗ represents the functor M∗ 
→ H0
Nis(X ,M0). But

H0(X ,M0) � HomHI(h
Nis
0 (X),M0)

= HomHI(h
Nis
0 (X),ω∞M∗) � HomHI∗(σ

∞hNis
0 (X),M∗)

so that the image of KX inHI∗ is σ∞hNis
0 (X). Since D!y(ho(X)) = hNis

0 (X) by Corollary 3.3.4,

this concludes the proof. �
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6.3 Proof of Theorem 6.1.2

In view of Proposition 6.2.1, we have to show that the essential image of the composite

functor HIo
io−→ HI

σ∞−→ HI∗ consists of those homotopic modules F∗ such that

(i) Fn = 0 for n < 0;

(ii) for any n ≥ 0, the canonical map F0 ⊗HI G
⊗n
m → Fn is an isomorphism.

Any homotopic module in the essential image if σ∞io verifies (i) by Proposition

2.5.2 and (ii) by the above description of σ∞. For the converse, we use the fact that io has

a right adjoint R0
nr (Proposition 2.6.3). Let F∗ ∈ HI∗ verify (i) and (ii): we must show that

the counit map

σ∞ioR0
nrω

∞F∗ → F∗

is an isomorphism. We have ω∞F∗ = F0; by Proposition 2.5.2, F0 ∈ HIo, hence ioR0
nrF0 =

F0 and the claim.

7 Unramified Cohomology

7.1 The functor Rnr

In this section, we assume F perfect. We study here the right adjoint to io : DMo → DMeff

from Theorem 4.3.5: this right adjoint is denoted by Rnr.

For any C ∈ DMeff and q ∈ Z, we write Rq
nrC for Hq(RnrC) ∈ HIo, where Hq cor-

responds to the homotopy t-structure on DMo. By Theorem 4.4.1 and Lemma A.3.1, Rnr

is left exact with respect to the homotopy t-structures of DMeff and DMo. In particular,

Rq
nrF = 0 for q < 0 if F ∈ HI, and Lemma A.3.1 shows that the functor

F 
→ R0
nrF

from HI to HIo is the right adjoint to the inclusion functor io : HIo → HI from

Proposition 2.6.3.

The main result of this section is Theorem 7.3.1: for any F ∈ HI, R0
nrF coincides

with the unramified part of F in the sense of classical unramified cohomology [10].

See [24] for computations of the “higher derived functors of unramified cohomol-

ogy" Rq
nrF , for q > 0 and certain F ’s.
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7.2 The group Fnr(X)

Definition 7.2.1. Let K/F be a finitely generated field extension.

(a) A valuation v onK (trivial on F ) is divisorial if it is discrete of rank 1 and its valuation

ring is of the form OV ,x , for V a smooth F-scheme of finite type with function field K.

(These are the prime divisors of Zariski-Samuel, [47, Chapter VI, Section 14].)

(b) For F ∈ HI, we set

Fnr(K/F) = Ker

(
F(K)

(∂v )−→
∏
v

F−1(F(v))

)

where v runs through all the divisorial valuations on K.

(c) If X is a smooth model of K, we set Fnr(X) = Fnr(K/F). �

The exact sequence (2.6) implies:

Lemma 7.2.2. For any X ∈ Sm, Fnr(X) ⊆ F(X). �

We are going to show that Fnr is preserved by finite correspondences. We begin

with a series of lemmas.

Lemma 7.2.3. Let f : Y → X be a dominant morphism of smooth irreducible varieties.

Then f ∗Fnr(X) ⊂ Fnr(Y). �

Proof. Let α ∈ Fnr(X), and let w be a divisorial valuation on the function field L of Y .

Since f is dominant, L is an extension of K. Let v be the restriction of w to K. Then

∂w(f ∗α) = ef ∗∂v(α),

where e is the ramification index if v is nontrivial and e = 0 if v is trivial; we simply

write f : SpecF(w) → SpecF(v) for the map induced by f . This formula follows from

examining the purity isomorphism of [44, Lemma 4.36]. It also follows from Déglise’s

theory of generic motives [11, Lemma 5.4.7], since the residues ∂ may be expressed in

their terms [12, 3.1]. �

Lemma 7.2.4. Let f : X → Y be a finite surjective morphism of smooth F-varieties. Let
tf ∈ c(Y ,X) be the transpose of its graph. Then (tf )∗Fnr(X) ⊆ Fnr(Y). �
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Proof. Here, K = F(X) is a finite extension of L = F(Y). Let α ∈ Fnr(X), and let v be a

divisorial valuation of L. Then

∂v((
tf )∗α) =

∑
w|v

(tf )∗∂w(α)

[11, Lemma 5.4.7]. �

We need the following version of a theorem of Knaf–Kuhlmann [28, Theorem 1.1].

(Its proof obviously extends to compositions of more than 2 divisorial valuations.)

Proposition 7.2.5. LetK/F be a function field,w a divisorial valuation ofK with residue

field L, v a divisorial valuation of L. Then there is a closed immersion i : Z ↪→W of smooth

F-varieties such that K � F(W), L � F(Z), OW ,Z � Ow , and v is finite on Z. �

Proof. Let u be the composite valuation, which is discrete of rank 2 (here we identify

valuations with the associated surjective places): it is an Abyankhar place in the sense

of [28]. The residue field of u is separably generated since F is perfect. Let Ou ⊂ K be the

local ring of u and a,b ∈ Ou be two elements such that u(a) = (1, 0) and u(b) = (0, 1).

By [28, Theorem 1.1], there is a smooth model W of K on which u has a centre t of

codimension 2, and such that a,b are OW ,t-monomials in a1,a2 (in the sense of [28, p.

234]) for some regular system of parameters (a1,a2) of OW ,t. This easily implies that

u(a1) = (1, 0) and u(a2) = (0, 1), up to permuting (a1,a2). Then OW ,t/a1OX ,t is regular [47,

Chapter VIII, Section 11, Theorem 26], and is the local ring of t on Z, the closure of the

centre of w on W . Thus Z is regular at t, hence smooth around t since F is perfect, and

we can make it smooth by shrinking W . �

Lemma 7.2.6 (Main lemma). Let i : Y → X be a closed immersion of codimension 1.

Then i∗Fnr(X) ⊆ Fnr(Y). �

Proof. Let v be a divisorial valuation of F(Y), and let w be the divisorial valuation

on K = F(X) defined by i : Y → X . Let u be the composite valuation, and let (W ,Z)

be as in the conclusion of Proposition 7.2.5. We thus have two closed immersions of

codimension 1:

i :Y → X

i′ :Z →W .
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6818 B. Kahn and R. Sujatha

Since w is finite on X and W , they share an open neighbourhood U of SpecOw .

Let T be the closure of the centre of w in U . Since Y ,Z and T are birational, they share

a nonempty open subset U ′. We now have the following situation:

Y
i−−−−→ X
⏐⏐ 
⏐⏐

U ′ i′′−−−−→ U⏐⏐� ⏐⏐�
Z

i′−−−−→ W

where all varieties are smooth, vertical maps are open immersions, i and i′ are closed

immersions while i′′ is locally closed. This in turn gives a commutative diagram

F(Y)
i∗←−−−− Fnr(X)⋂ ||

F(U ′)
i′′∗←−−−− Fnr(U)⋃ ||

F(Z)
i′∗←−−−− Fnr(W).

Here we identified the three left-hand terms with subgroups of F(L) thanks to

(2.6), where L = F(Y). Let α ∈ Fnr(X). The diagram shows that i∗α ∈ F(Y) lies in F(Z).

Since v is finite on Z, we have ∂v(i∗α) = 0 by (2.6) applied to Z. Since v was an arbitrary

divisorial valuation of L, this shows that i∗α is unramified, as requested. �

7.3 Fnr and R0
nrF

The following theorem justifies the notation RnrF :

Theorem 7.3.1. Let F ∈ HI. Let X ∈ Sm be irreducible with function field K. Then there

is a natural isomorphism

R0
nrF(X) = Fnr(X). �

Proof. Recall that, by Proposition 2.6.3, the counit map

ioR0
nrF → F
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is a monomorphism. By Lemma 7.2.2, we may thus identify both groups with subgroups

of F(X). We proceed in two steps:

(1) R0
nrF(X) ⊂ Fnr(X).

(2) X 
→ Fnr(X) defines an object of HIo.

Granting (1) and (2), the theorem follows from the universal property of R0
nrF .

(1) Let α ∈ R0
nrF(X), and let v be a divisorial valuation of K. We want to show

that ∂v(α) = 0. Choose a smooth model V of K on which v is finite, with centre a point

x of codimension 1. Let U be a common open subset of X and V . Since R0
nrF ∈ HIo, we

have isomorphisms

R0
nrF(X)

∼←− R0
nrF(U)

∼−→ R0
nrF(V) ⊂ F(V)

and the claim follows from the complex (2.6).

(2) By Proposition 2.3.3 (a), it suffices to show thatFnr defines a sub-presheafwith

transfers of F . Let ϕ ∈ c(Y ,X) be a finite correspondence, with Y smooth irreducible.

We have to show that ϕ∗Fnr(X) ⊆ Fnr(Y). For this, we may assume that ϕ is defined by

an irreducible subset Z ⊂ Y × X .

Let p : Z → Y be the projection. There is a nonempty open subsetU ⊆ Y such that

p−1(U) is smooth. The transpose of the graph of p|p−1(U) defines a finite correspondence
tp ∈ c(U ,p−1(U)). Let k be the immersion p−1(U) → Z → Y × X and γk : p−1(U) →
p−1(U)× Y × X be the associated graph map. Then the diagram

p−1(U)
γk�� p−1(U)× Y × X

π

��

U

tp

��

��
Y

ϕ
�� X

commutes in SmCor. Note that γk is a regular embedding, hence may be locally writ-

ten as a composition of closed embeddings of smooth varieties, of relative dimension

1. Lemmas 7.2.3, 7.2.6 and 7.2.4 then, respectively, show that π∗, γ ∗k and (tp)∗ respect

unramified elements, and thus so does ϕ∗. �
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Corollary 7.3.2. Let F ∈ HI. Suppose that a smooth variety X has a smooth compacti-

fication X̄ . Then R0
nrF(X) is given by the formula

R0
nrF(X) = F(X̄). �

Proof. By Theorem 7.3.1, we may replace R0
nrF(X) by Fnr(X); the conclusion is then

classical [10, Proposition 2.1.8 (e)]. The “codimension 1 purity” hypothesis is satisfied in

view of Theorem 2.4.2. �

Appendix. Localisation, Brown Representability and t-Structures

In this appendix, we collect technical results on triangulated categories which are used

in the main body of the paper. Section A.2 recollects results of Neeman on compactly

generated triangulated categories [35, 36], also revisited byBeilinson–Vologodsky [6]; the

existence of the functor Rnr rests on Theorem A.2.6 (v). Section A.3 recalls the behaviour

of t-structures under adjoints and localisations. The main result is Theorem A.4.2, from

which Theorem 4.2.2 is deduced almost directly.

A.1. Terminology

It is worthwhile to first recall and fix some terminology on triangulated categories: we

follow Neeman in [36]. As has become widespread, we replace the old terminology “exact

functor” by “triangulated functor,” and “distinguished triangle” by “exact triangle.”

Let T be a triangulated category. Recall that a strictly full subcategory S of T is

triangulated if it is additive and closed under the formation of shifts and cones. Then

one can define the Verdier quotient T /S [43]: this is a triangulated category which comes

with a triangulated functor T → T /S, universal among triangulated functors sending all

objects of S to 0 [43, Corollary II.2.2.11 (c)]. We say that a triangulated functor T : T → U
is a localisation if it induces an equivalence of categories T /T−1(0)

∼−→ U . A triangulated

subcategory S of T is thick (resp. localising) if it is stable under representable direct

summands (resp. and under representable direct sums). If S� ⊆ T is the smallest thick

subcategory of T containing S, the functor T /S → T /S� is an equivalence of categories

[43, Corollary II.2.2.11 (a)]. We have:

Lemma A.1.1 ([36, Corollary 3.2.11]). Let T be a triangulated category with small direct

sums. Let S be a localising subcategory. Then T /S has small direct sums, and the

universal functor T → T /S preserves coproducts. �
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Recall that an object X of T is compact if T (X ,−) commutes with representable

direct sums. A triangulated functor T : T → T ′ is dense if the image of T generates T ′

in the sense that T ′ is the smallest localising subcategory of itself that contains this

image: this is the same notion as in [45].

Definition A.1.2. Let B be a class of objects in T . We write

B⊥ = {X ∈ T | T (B[i],X) = 0∀i ∈ Z}
⊥B = {X ∈ T | T (X ,B[i]) = 0∀i ∈ Z}.

These are triangulated subcategories of T . We also write

• 〈B〉 for the triangulated subcategory of T generated by B (i.e., the smallest

triangulated subcategory of T which contains B);

• 〈B〉� for the thick subcategory of T generated by B;

• 〈B〉⊕ for the localising subcategory of T generated by B. �

A.2. Some results of Neeman

Below we shall use results from Amnon Neeman’s book [36], especially loc. cit., Lemma

4.4.5 andTheorem4.4.9.Most of themare stated therewith respect to an infinite cardinal

α; here, we shall only need the case where α = ℵ0 as in [35]. For the reader’s convenience,

we now state these results in this special case.

Theorem A.2.1 ([36, Theorem 4.3.3 and Corollary 4.4.5]). Let T be a triangulated

category with small direct sums, T c its (thick) subcategory of compact objects, S a

thick subcategory of T c, and 〈S〉⊕ the localising subcategory of T generated by S. Let

(x, z) ∈ T c×〈S〉⊕, and let f ∈ T (x, z). Then f factors through an object of S. In particular,

〈S〉⊕ = T ⇒ S = T c. �

Let us sketch the proof: “in particular" is obtained by applying the theorem to the

identity map of a compact object. The proof of A.2.1 goes as follows: Neeman introduces

the full subcategory S of T consisting of those objects z for which the conclusion of

the theorem is valid for any compact x. He successively proves that S contains S, is

triangulated, and is closed under coproducts. Therefore S contains 〈S〉⊕.
This theorem is used in the proof of Proposition A.4.1 below.
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Theorem A.2.2 ([36, Theorem 4.4.9]). Let S be a compactly generated triangulated cate-

gory with small direct sums, and let R be a set of objects of Sc. Write R for the localising

subcategory generated by R. Then:

(i) Rc = R ∩ Sc. In particular, R = 〈Rc〉⊕.
(ii) The natural functor Sc/Rc → S/R factors through a full embedding

Sc/Rc → (S/R)c.

(iii) Any object of (S/R)c is isomorphic to a direct summand of an object

of Sc/Rc. �

The next result we shall use is Neeman’s “Brown representability theorem,"

which gives sufficient conditions for the existence of a right adjoint.

Definition A.2.3 ([36, Definition 8.2.1]). Let T be a triangulated category. We say that

T has the Brown representability property if

(i) It has small direct sums.

(ii) Any homological functor H : T op → Ab which converts infinite direct sums

into products is representable. �

Lemma A.2.4.

(a) Any adjoint (left or right) of a triangulated functor is triangulated.

(b) Suppose that T has the Brown representability property. Let f : T → U be a

triangulated functor. Then, f has a right adjoint if and only if it commutes

with infinite direct sums. �

Proof. (a) is proven in [36, Lemma 5.3.6]. We give the proof of (b) since it is very simple.

If f has a right adjoint, it commutes with all representable colimits. Conversely, let

U ∈ U . We must prove that the functor T 
→ U(fT ,U) is representable. But if f commutes

with infinite direct sums, this functor converts infinite direct sums into products. �

Theorem A.2.5 ([36, Proposition 8.4.2]). If T has small direct sums and is compactly

generated, it has the Brown representability property. �
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We now get the following complement to Theorem A.2.2:

Theorem A.2.6. With the assumptions and notation of Theorem A.2.2,

(i) The localisation functor S π−→ S/R has a right adjoint j.

(ii) The essential image of j is R⊥.

(iii) Let i : R → S be the inclusion functor. Then i has a right adjoint p, and for

any object X ∈ S, the sequence

ipX → X → jπX

defines an exact triangle.

(iv) 〈(S/R)c〉⊕ = S/R.

(v) The functor j itself has a right adjoint. �

Proof. By assumption, R has small direct sums. It is compactly generated by Theo-

rem A.2.2. Hence it has the Brown representability property by Theorem A.2.5. Lemma

A.2.4 now implies that the functor i of (iii) has a right adjoint.

Given this, assertions (i), (ii), and (iii) are part of a general theorem of Verdier

[43, Proposition 2.3.3].

For (iv), we have S/R = (Sc/Rc)⊕ since S = (Sc)⊕ and π commutes with small

direct sums (Lemma A.1.1), and we conclude by Theorem A.2.2 (iii).

For (v), let j′ : R⊥ → S be the inclusion. Observe that R⊥ = (Rc)⊥ by denseness;

by Theorem A.2.2 (i) this implies that j′ commutes with small direct sums, hence, by (ii),

so does j. Since, by (iv), S/R is compactly generated, it has the Brown representability

property which guarantees that j has a right adjoint by Lemma A.2.4 (b). �

Remark A.2.7. The proposition p. 1714 of Beilinson–Vologodsky [6] wraps up all the

above, except for the existence of the right adjoint to j in Theorem A.2.6 (v). It adds a

nice explicit description of the objects of R: every such object can be represented as

hocolim(Ma, ia) where M0 and each cone(ia) is a direct sum of translations of objects

from R. We shall not use this result here. �

A.3. Localisation and t-structures

The standard reference for t-structures is [5], whose notations we follow. We shall

mainly use the following lemma [5, Proposition 1.3.17 (i), (iii)]:
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Lemma A.3.1. Let F ∗ : S � T : F∗ be a pair of adjoint triangulated functors between

t-categories S, T with hearts A,B. Then F ∗ is right t-exact (i.e., F ∗(S≤0) ⊆ T ≤0) if and only

if F∗ is left exact (i.e., F∗(T ≥0) ⊆ S≥0). In this case, the functor pF ∗ : A # A 
→ H0F ∗(A) ∈ B
is right exact, pF∗ : B # B 
→ H0F∗(B) ∈ A is left exact, and pF ∗ : A � B : pF∗ form a pair

of adjoint functors. �

We shall also need this lemma in the proof of Theorem A.4.2:

Lemma A.3.2. Let F : S → T be a right exact t-functor between t-categories S, T
with hearts A,B. Assume that pF : A → B has kernel 0 and that the t-structure of S is

non-degenerate. Then F is conservative in the following two cases:

(i) F is t-exact;

(ii) the t-structure of S is bounded above. �

Proof. Let X ∈ S be such that F(X) = 0: we must show that X = 0. In case (i), we just

use the isomorphism pHi(F(X)) = pF(pHi(X)) for any i ∈ Z. In case (ii), let i be an integer

such that pHj(X) = 0 for j > i. By right exactness,

0 = pHi(F(X)) = pF(pHi(X))

hence pHi(X) = 0 and we conclude. �

A.4. The homotopy category of an additive category

Throughout this section, A is an essentially small additive category and Mod–A is the

category of right A-modules (see Section 2.2).

The following derived analogue of Proposition 2.2.1 is a special case of a theorem

of Bernhard Keller (see [27, Remark 5.3 (a)]).

Proposition A.4.1. The functor

Kb(A)
ιA−→ D(Mod–A)

inducedby theYoneda embedding is fully faithful, has dense image, and identifiesKb(A)�

with the full subcategory of compact objects of D(Mod–A). �

(For a self-contained proof, see the first version of this paper at

https://arxiv.org/abs/1506.08385.)
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Note that D(Mod–A) is pseudo-abelian since it has representable infinite direct

sums, which justifies the last assertion. Also, by Balmer–Schlichting [3], the categories

Kb(A)� and Kb(A�) are equivalent, although we shall not use it.

We now go back to the results of Section A.2. By Proposition A.4.1, the category

S = D(Mod–A) verifies the hypotheses of Theorem A.2.2, with Sc = Kb(A)�. Thus, ifR is a

set of objects of Kb(A), R = 〈R〉 ⊆ Kb(A) and R⊕ = 〈y(R)〉⊕ ⊆ D(Mod–A), the conclusions

of Theorems A.2.2 and A.2.6 apply. So:

(1) Rc = R� and (D(Mod–A)/R⊕)c = (Kb(A)/R)�; in particular, Kb(A)/R →
D(Mod–A)/R⊕ is fully faithful and dense.

(2) The projection functor D(Mod–A) → D(Mod–A)/R⊕ has a right adjoint,

which itself has a right adjoint.

Let S be a set of morphisms in A which contains all identities and is stable under

direct sums. By [23, Theorem A.3.4], the category B = S−1A is additive, as well as the

localisation functor Q : A → B. Thus the setting of Section 2.2 applies, and the functor

Q∗ : Mod–B →Mod–A is fully faithful. Wemay identify S to a set of morphisms in Kb(A)

via the natural embedding η : A # A 
→ A[0] ∈ Kb(A). If we take for R = RS the set of

cones of η(s) for s ∈ S, it is natural to ask about the relationship between the above

localisations and the categories Kb(B), D(Mod–B). The answer is given by the following

theorem.

TheoremA.4.2. LetRS be as above, andwriteRS,R⊕
S for the corresponding triangulated

subcategories of Kb(A) and D(Mod–A).

(a) The functor Kb(Q) : Kb(A) → Kb(B) factors through Kb(A)/RS. The functor

LQ! : D(Mod–A) → D(Mod–B) factors through D(Mod–A)/R⊕
S . This yields a

naturally commutative diagram

A

Q

��

ηA �� Kb(A)

Q̄
��

ιA �� D(Mod–A)

Q̄!
��

B
η̄A��

ηB

������������ Kb(A)/RS

ῑA ��

w

��

D(Mod–A)/R⊕
S

w⊕
��

Kb(B)
ιB �� D(Mod–B)

in which all functors not starting from A or B are triangulated.
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(b) The functor ῑA is fully faithful, has dense image, and identifies (Kb(A)/RS)
�

with the full subcategory of compact objects of D(Mod–A)/R⊕
S .

(c) The functor Q̄! has a (fully faithful) right adjoint Q̄∗, which itself has a right

adjoint Q̄∗. The essential image of Q̄∗ is DMod–B(Mod–A) (see (4.3)), where

Mod–B is embedded in Mod–A by means of Q∗.

(d) Via Q̄∗, the natural t-structure of D(Mod–A) induces a t-structure on

D(Mod–A)/R⊕
S , with heart Mod–B; the functor Q̄! (resp. Q̄∗) is right (resp.

left) t-exact.

(e) The functor η̄A is fully faithful; for B1,B2 ∈ B and M ∈Mod–B, we have

(Kb(A)/RS)(η̄A(B1),M[i]) = 0 for i �= 0

(Kb(A)/RS)(η̄A(B1), η̄A(B2)[i]) = 0 for i > 0.

(f) The obvious functor

ϕ : D(Mod–B)→ DMod–B(Mod–A) � D(Mod–A)/R⊕
S

is right adjoint to w⊕, t-exact, and conservative; it induces the identity on

the hearts.

(g) The functor w⊕ is right t-exact and induces the identity on the hearts; its

restriction to D−(Mod–A)/R⊕
S is conservative. The functorw is conservative

as well.

(h) If Q! : Mod–A →Mod–B is exact,w⊕ is an equivalence of categories, and so

is w after pseudo-abelian completions. �

In part (a) if this theorem, note that the total left derived functor LQ! exists, for

example, by [26, Theorem 14.4.3].

Proof. (a) is obvious since S gets inverted in Kb(B) and LQ!y(A)[0] = y(Q(A))[0] for
A ∈ A. (b) and (c) only repeat the points (1) and (2) above, except for the description of

the image of Q̄∗.

Let C ∈ D(Mod–A): by definition, C ∈ Im Q̄∗ if and only if the map

D(Mod–A)(y(B)[i],C)
s∗−→ D(Mod–A)(y(A)[i],C) is an isomorphism for any s ∈ S, s : A→

B, and any i ∈ Z. Since y(A) and y(B) are projective in Mod–A, this isomorphism may

be rewritten: Hi(C)(B)
∼−→ Hi(C)(A). Thus C ∈ Im Q̄∗ ⇐⇒ Hi(C) ∈ ImQ∗ for all i ∈ Z. (d)

follows from (c) via Lemma A.3.1.
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In (e), since Q : A → B is essentially surjective we may write Bi � Q(Ai) for

A1,A2 ∈ A. Using the full faithfulness of ῑA, the first vanishing then follows from adjunc-

tion and the projectivity of y(A1), and the second one follows from the first and the right

t-exactness of Q̄!. It remains to prove the full faithfulness of η̄A: we have

(Kb(A)/RS)(η̄A(Q(A1)), η̄A(Q(A2)))
∼−→

(D(Mod–A)/R⊕
S )(Q̄!y(A1)[0], Q̄!y(A2)[0])

� D(Mod–A)(y(A1)[0], Q̄∗Q̄!y(A2)[0])
� H0(Q̄∗Q̄!y(A2))(A1) = Q∗Q!y(A2)(A1).

Here we used again the right t-exactness of Q̄!, plus Lemma A.3.1. But we have

Q∗Q!y(A2)(A1) = Q!y(A2)(Q(A1))

= y(Q(A2)(Q(A1)) = B(Q(A1),Q(A2))

which concludes the proof.

(f) follows from the adjunction (Q̄!, Q̄∗), the adjunction (LQ!,RQ∗), and the dual

of Proposition 4.3.6 (a); conservativity follows from Lemma A.3.2 (i).

In (g), the first two assertions follow from (f) in view of Lemma A.3.1. The next

claim is a special case of Lemma A.3.2 (ii). The conservativity ofw now follows from the

full faithfulness of ιB.

Let us prove (h). In view of (f), to show thatw⊕ is an equivalence of categories it

suffices to show that so is ϕ. Since Q! and Q∗ are exact, the identity

L(Q!Q∗) � LQ!LQ∗

holds trivially in D(Mod–B). In particular, the counit map LQ!LQ∗ ⇒ Id is an isomor-

phism and LQ∗ is fully faithful. Since Q̄∗ is also fully faithful, we find that ϕ is fully

faithful. Since it clearly commutes with infinite direct sums, its essential image I is

localising and to prove the essential surjectivity of ϕ it remains to show that I is dense.

Using (b), we reduce to prove that I contains the image of ῑAη̄A.

Let B ∈ B and A ∈ A such that B = Q(A). Then ῑAη̄A(B) = Q̄!y(A)[0], while

ϕιBηB(B) = LQ∗y(B)[0] = LQ∗LQ!y(A)[0]. We must show that the cone of the counit map

LQ∗LQ!y(A)[0] → y(A)[0] belongs to R⊕
S , or equivalently that it is left orthogonal to I. It

suffices to show that it is left orthogonal to LQ∗M[i] for any M ∈ Mod–B and any i ∈ Z.

This follows easily from the full faithfulness of LQ∗.
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The claim for w now follows, since the equivalence w⊕ induces an equivalence

between the subcategories of compact objects (see (b) and Proposition A.4.1). �

Remarks A.4.3. (1) One can show that, in (h), Q! is exact provided S admits a calculus

of right fractions (compare [14, I.3, Proposition 1.1]).

(2) In the terminology of Bondarko [8, Definition 4.3.1 1], Theorem A.4.2 (e) says that

the full subcategory B η̄A−→ Kb(A)/Ro
S is negative. Since η̄A(B) generates Kb(A)/Ro

S, the

latter carries a weight structure with heart η̄A(B)� by loc. cit., Theorem 4.3.2. One can

then check that the functor w coincides with the weight complex functor t of loc. cit.,

Theorem 3.3.1, which is conservative by part V of the latter theorem. Theorem A.4.2

provides an alternative proof of this conservativity, using the natural t-structure of

D(Mod–A)/RS: this seems related to Bondarko’s notion of adjacence between a weight

structure and a t-structure [8, Section 4.4]. In [9, Theorem 4.2.2], Bondarko and Sosnilo

give a direct proof of Theorem A.4.2 (e), without using the full embedding Kb(A)/RS ↪→
D(Mod–A)/R⊕

S . �

Example A.4.4. Let X be an additive subcategory of A and let IX be the ideal of

morphisms in A which factor through an object of X , compare [1, Example 1.3.1]: the

projection functor Q : A → A/IX is universal among additive functors mapping all

objects of X to 0. Then Q is a localisation. Indeed, let

SX = {s ∈ Ar(A) | s becomes invertible in A/IX }.

Since SX contains all identities and is stable under direct sums, the localisation

S−1X A is additive [23, Theorem A.3.4]; to show that the natural functor S−1X A → A/IX is

an equivalence of categories, it suffices to show that any object X ∈ X maps to 0 in S−1X A.

Let s : 0→ X and t : X → 0 be the canonical maps. Then st and ts both become invertible

in A/IX , hence s ∈ SX . �

Funding

This work was supported by Agence Nationale de la Recherche (ANR) under reference ANR-12-

BL01-0005 to B.K. and National Science and Engineering Research Council (NSERC) 402071/2011

to R.S.

Acknowledgements

The authors acknowledge the support of CEFIPRA project 2501-1. While writing this paper,

we benefited from discussions and exchanges with a large number of colleagues. We would

Downloaded from https://academic.oup.com/imrn/article-abstract/2017/22/6778/3056833
by guest
on 13 November 2017



Birational Motives, II: Triangulated Birational Motives 6829

like to especially thank Joseph Ayoub, Alexander Beilinson, Frédéric Déglise, Eric Friedlander,

Dennis Gaitsgory, Jens Hornbostel, Annette Huber-Klawitter, Bernhard Keller, Marc Levine, Geor-

gesMaltsiniotis, FabienMorel, AmnonNeeman, Joël Riou, Raphaël Rouquier, Vladimir Voevodsky

and Chuck Weibel. We also thank the referees for helpful comments.

References
[1] André, Y., and B. Kahn. “Nilpotence, radicaux et structuresmonoïdales” (with an appendix of

P. O’Sullivan), Rendiconti del Seminario Matematico della Università di Padova 108 (2002):

107–291.

[2] Artin, E., A. Grothendieck, and J.-L. Verdier. Théorie des Topos et Cohomologie Étale des

Schémas (SGA4), vol. 1. Lecture Notes in Mathematics 269. Springer, 1972.

[3] Balmer, P., andM. Schlichting. “Idempotent completion of triangulated categories.” Journal

of Algebra 236 (2001): 819–34.

[4] Barbieri-Viale, L., and B. Kahn. “On the derived category of 1-motives.”Astérisque 381 (2016).

[5] Beilinson, A., J. Bernstein, and P. Deligne. “Faisceaux pervers.” Astérisque 100 (1984).

[6] Beilinson, A., and V. Vologodsky. “A DG guide to Voevodsky’s motives.” GAFA (Geometric

and Functional Analysis) 17 (2008): 1709–87.

[7] Bökstedt, M., and A. Neeman. “Homotopy limits in triangulated categories.” Compositio

Mathematica 86 (1993): 209–34.

[8] Bondarko,M. “Weight structures vs. t-structures; weight filtrations, spectral sequences, and

complexes (for motives and in general).” Journal of K-Theory 6 (2010): 387–504.

[9] Bondarko, M., and V. Sosnilo. “Non-commutative localizations of additive categories and

weight structures; applications to birational motives.” http://arxiv.org/abs/1304.6059.

[10] Colliot-Thélène, J.-L. (F-PARIS11). “Birational invariants, purity and theGersten conjecture.”

K-theory and algebraic geometry: connections with quadratic forms and division algebras

(Santa Barbara, CA, 1992), 1–64, Proceedings of Symposia in Pure Mathematics 58, Part 1,

Providence, RI, American Mathematical Society 1995.

[11] Déglise, F. “Motifs génériques.” Rendiconti del Seminario Matematico della Università di

Padova 119 (2008): 173–244.

[12] Déglise, F. “Modules homotopiques.” Documenta Mathematica 16 (2011): 411–55.

[13] Friedlander, E., and V. Voevodsky. “Bivariant cycle cohomology.” In Cycles, Transfers and

Motivic Cohomology Theories, edited by E. Friedlander, A. Suslin and V. Voevodsky, Annals

of Mathematics Studies 143, 138–87. Princeton University Press, 2000.

[14] Gabriel, P., and M. Zisman. Calculus of Fractions and Homotopy Theory. Springer, 1967.

[15] Huber, A. “Slice filtration on motives and the Hodge conjecture” (with an appendix by J.

Ayoub), Mathematische Nachrichten 281 (2008): 1764–76.

[16] Huber, A., and B. Kahn. “The slice filtration and mixed Tate motives.” Compositio Mathe-

matica 142 (2006): 907–36.

[17] Illusie, L., Y. Laszlo and F. Orgogozo. (avec la collaboration de F. Déglise, A. Moreau, V.

Pilloni, M. Raynaud, J. Riou, B. Stroh, M. Temkin et W. Zheng), Travaux de Gabber sur

Downloaded from https://academic.oup.com/imrn/article-abstract/2017/22/6778/3056833
by guest
on 13 November 2017

http://arxiv.org/abs/1304.6059


6830 B. Kahn and R. Sujatha

l’uniformisation locale et la cohomologie étale des schémas quasi-excellents. Séminaire à

l’École polytechnique 2006-2008. Astérisque 363–64 (2014): xxiv+619 pages.

[18] Kahn, B., J. P. Murre, and C. Pedrini. “On the transcendental part of the motive of a surface.”

In Algebraic Cycles and Motives, Part II. LMS Series 344, 143–202. Cambridge University

Press, 2007.

[19] Kahn, B., and M. Levine. “Motives of Azumaya algebras.” Journal of the Institute of

Mathematics of Jussieu 9 (2010): 481–599.

[20] Kahn, B., and R. Sujatha. “Birational motives, I (preliminary version).” (2002), preprint,

http://www.math.uiuc.edu/K-theory/0596/.

[21] Kahn, B., and R. Sujatha. “A few localisation theorems.” Homology, Homotopy and Applica-

tions 9 (2007): 137–61.

[22] Kahn, B., and R. Sujatha. “Birational geometry and localisation of categories.” Documenta

Mathematica – Extra Volume Merkurjev (2015): 167–224.

[23] Kahn, B., and R. Sujatha. “Birational motives, I: pure birational motives.”Annals of K-theory

1, no. 4 (2016): 379–440.

[24] Kahn, B., and R. Sujatha. “The derived functors of unramified cohomology.” Preprint.

https://arxiv.org/abs/1511.07072.

[25] Kahn, B., and T. Yamazaki. “Voevodsky’s motives andWeil reciprocity.” Duke Mathematical

Journal 162, no. 14 (2013): 2751–96.

[26] Kashiwara, M., and P. Schapira. Categories and Sheaves. Grundl. der Math. Wiss. 332.

Springer, 2006.

[27] Keller, B. “Deriving DG categories.” Annales Scientifiques de l’École Normale Supérieure 27

(1994): 63–102.

[28] Knaf, H., and F.-V. Kuhlmann. “Abhyankar places admit local uniformization in any

characteristic.” Annales Scientifiques de l’École Normale Supérieure 38 (2005): 833–46.

[29] Levine, M. “The indecomposable K3 of fields.” Annales Scientifiques de l’École Normale

Supérieure 22 (1989): 255–344.

[30] Mazza, C., V. Voevodsky, and C. Weibel. “Lecture Notes on Motivic Cohomology.” Clay

Mathematics Monographs 2, AMS, 2006.

[31] Merkurjev, A. S. “Unramified elements in cycle modules.” Journal of the London Mathemat-

ical Society 78 (2008): 51–64.

[32] Merkurjev, A., and A. Suslin. “The group K3 for a field (Russian).” Izvestiya Akademii Nauk

SSSR 54 (1990): 522–45; translation in Math. USSR-Izv. 36 (1991): 541–65.

[33] Milne, J. S. “Abelian varieties.” Chap. 5 of Arithmetic Geometry, edited by G. Cornell and J.

Silverman, 1986. Springer, 103–50.

[34] Morel, F., and V. Voevodsky. “A1-homotopy theory of schemes.” Publicationsmathématiques

de l’IHÉS 90 (1999): 45–143.

[35] Neeman, A. “The connection between the K-theory localisation theorem of Thomason-

Trobaugh and Yao and the smashing subcategories of Bousfield and Ravenel.” Annales

Scientifiques de l’École Normale Supérieure 25 (1992): 547–66.

Downloaded from https://academic.oup.com/imrn/article-abstract/2017/22/6778/3056833
by guest
on 13 November 2017

http://www.math.uiuc.edu/K-theory/0596/
https://arxiv.org/abs/1511.07072


Birational Motives, II: Triangulated Birational Motives 6831

[36] Neeman, A. Triangulated Categories. Annals of Mathematics Studies 148, Princeton Univer-

sity Press, 2001.

[37] Riou, J. Théorie homotopique des S-schémas, mémoire de DEA, Paris 7, 2002.

http://www.math.u-psud.fr/∼riou/dea/dea.pdf.
[38] Roberts, J. “Chow’s moving lemma.” Appendix 2 to Motives. Algebraic Geometry, Oslo 1970

(Proc. Fifth Nordic Summer School in Math.), eidted by S. L. Kleiman, 89–96. Groningen:

Wolters-Noordhoff, 1972.

[39] Rost, M. “Chow groups with coefficients.” Documenta Mathematica 1 (1996): 319–93.

[40] Somekawa M. “On Milnor K-groups attached to semi-abelian varieties.” K-theory 4 (1990):

105–19.

[41] Spaltenstein, N. “Resolutions of unbounded complexes.” Compositio Mathematica 65 (1988):

121–54.

[42] Spieß, M., and T. Szamuely. “On the Albanese map for smooth quasi-projective varieties.”

Mathematische Annalen 325 (2003): 1–17.

[43] Verdier, J.-L., “Des catégories dérivées des catégories abéliennes.” Astérisque 239, (1996).

[44] Voevodsky, V. “Cohomological Theory of Presheaves with transfers.” In Cycles, Transfers

and Motivic Cohomology Theories, edited by E. Friedlander, A. Suslin and V. Voevodsky,

Annals of Mathematics Studies 143, 87–137. Princeton University Press, 2000.

[45] Voevodsky, V. “Triangulated categories of motives over a field.” In Cycles, Transfers and

Motivic Cohomology Theories, edited by E. Friedlander, A. Suslin and V. Voevodsky, Annals

of Mathematics Studies 143, 188–238. Princeton University Press.

[46] Voevodsky, V. “Cancellation theorem.” Documenta Mathematica (2010): 671–85. Andrei A.

Suslin sixtieth birthday.

[47] Zariski, O., and P. Samuel. Commutative Algebra, vol. II. van Nostrand/Springer, 1960/1975.

Downloaded from https://academic.oup.com/imrn/article-abstract/2017/22/6778/3056833
by guest
on 13 November 2017

http://www.math.u-psud.fr/~riou/dea/dea.pdf

