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SMASH-NILPOTENT CYCLES ON ABELIAN 3-FOLDS

Bruno Kahn and Ronnie Sebastian

Abstract. We show that homologically trivial algebraic cycles on a 3-dimensional

abelian variety are smash-nilpotent.

Introduction

LetX be a smooth projective variety over a field k. An algebraic cycle Z onX (with
rational coefficients) is smash-nilpotent if there exists n > 0 such that Zn is rationally
equivalent to 0 on Xn. Smash-nilpotent cycles have the following properties:

(1) The sum of two smash-nilpotent cycles is smash-nilpotent.
(2) The subgroup of smash-nilpotent cycles forms an ideal under the intersection

product as (x · y)× (x · y) · · · × (x · y) = (x× x× · · · × x) · (y × y × · · · × y).
(3) On an abelian variety, the subgroup of smash-nilpotent cycles forms an ideal

under the Pontryagin product as (x ∗ y) × (x ∗ y) × · · · × (x ∗ y) = (x × x ×
· · · × x) ∗ (y × y × · · · × y) where ∗ denotes the Pontryagin product.

Voevodsky [11, Cor. 3.3] and Voisin [12, Lemma 2.3] proved that any cycle alge-
braically equivalent to 0 is smash-nilpotent. On the other hand, because of cohomol-
ogy, any smash-nilpotent cycle is numerically equivalent to 0; Voevodsky conjectured
that the converse is true [11, Conj. 4.2].

This conjecture is open in general. The main result of this note is:

Theorem 1. Let A be an abelian variety of dimension ≤ 3. Any homologically trivial
cycle on A is smash-nilpotent.

In characteristic 0 we can improve “homologivally trivial” to “numerically trivial”,
thanks to Lieberman’s theorem [7].

Nori’s results in [8] give an example of a group of smash-nilpotent cycles which is
not finitely generated modulo algebraic equivalence. The proof of Theorem 1 actually
gives the uniform bound 21 for the degree of smash-nilpotence on this group, see
Remark 2. See Proposition 2 for partial results in dimension 4.

1. Beauville’s decomposition, motivically

For any smooth projective variety X and any integer n ≥ 0, we write as in [1]
CHn

Q(X) = CHn(X)⊗Q, where CHn(X) is the Chow group of cycles of codimension
n on X modulo rational equivalence.

Let A be an abelian variety of dimension g. For m ∈ Z, we denote by 〈m〉 the
endomorphism of multiplication by m on A, viewed as an algebraic correspondence.
In [1], Beauville introduces an eigenspace decomposition of the rational Chow groups

2000 Mathematics Subject Classification. 14C15, 14K05.

10001



10002 Bruno Kahn and Ronnie Sebastian

of A for the actions of the operators 〈m〉, using the Fourier transform. Here is an
equivalent definition: in the category of Chow motives with rational coefficients, the
endomorphism 1A ∈ End(h(A)) = CHg

Q(A× A) is given by the class of the diagonal
∆A. We have the canonical Chow-Künneth decomposition of Deninger-Murre

1A =
2g∑

i=0

πi

[4, Th. 3.1], where the πi are orthogonal idempotents and πi is characterised by
πi〈m〉∗ = miπi for any m ∈ Z. This yields a canonical Chow-Künneth decomposition
of the Chow motive h(A) of A:

h(A) =
2g⊕

i=0

hi(A), hi(A) = (A, πi)

(see [10, Th. 5.2]). Then, under the isomorphism

CHn
Q(A) = Hom(Ln, h(A))

(where L is the Lefschetz motive) we have

CHn(A)[r] := {x ∈ CHn
Q(A) | 〈m〉∗x = mrx ∀m ∈ Z} = Hom(Ln, hr(A)).

Remark 1. In Beauville’s notation, we have

CHn(A)[r] = CHn
2n−r(A).

We shall use his notation in §3.

2. Skew cycles on abelian varieties

Let β ∈ CH∗
Q(A). Assume that 〈−1〉∗β = −β: we say that β is skew. This implies

that β is homologically equivalent to 0.
For g ≤ 2, the Griffiths group of A is 0 and there is nothing to prove. For g = 3,

the Griffiths group of A is a quotient of CH2(A)[3] [1, Prop. 6]; thus Theorem 1
follows from the more general

Proposition 1. Any skew cycle on an abelian variety is smash-nilpotent.

This applies notably to the Ceresa cycle [3], for any genus.

Proof. We may assume β homogeneous, say, β ∈ CHn
Q(A). View β as a morphism

Ln → h(A) in the category of Chow motives. Thus, for all i:

−πiβ = πi〈−1〉∗β = (−1)iπiβ

hence πiβ = 0 for i even.
This shows that β factors through a morphism

β̃ : Ln → hodd(A)

with hodd(A) =
⊕

i odd h
i(A).

But Ln is evenly finite-dimensional and hodd(A) is oddly finite-dimensional in the
sense of S.-I. Kimura. (Indeed, S2g+1(h1(A)) = h2g+1(A) = 0 by [9, Theorem], and
a direct summand of an odd tensor power of an oddly finite-dimensional motive is
oddly finite dimensional by [6, Prop. 5.10 p. 186].) Hence the conclusion follows from
[6, prop. 6.1 p. 188]. �
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Remark 2. Kimura’s proposition 6.1 shows in fact that all z ∈ Hom(Ln, hodd(A))
verify z⊗N+1 = 0 for a fixed N , namely, the sum of the odd Betti numbers of A. If
z ∈ Hom(Ln, hi(A)) for some odd i, then we may take for N the i-th Betti number
of A. Thus, for i = 3 and if A is a 3-fold, we find that all z ∈ Hom(L, h3(A)) verify
z⊗21 = 0.

3. The 4-dimensional case

Proposition 2. If g = 4, homologically trivial cycles on A, except perhaps those
which occur in parts CH2

0 (A) or CH3
2 (A) of the Beauville decomposition, are smash-

nilpotent.

Proof. Let A be an abelian variety and let Â denote its dual abelian variety. We
know, from [1], the following:

(1) CHp
s (A) = 0 for p ∈ {0, 1, g − 2, g − 1, g} and s < 0. [1, Prop. 3a].

(2) CHp
p (A) and CHg

s (A) consist of cycles algebraically equivalent to 0 for all
values of p and all values of s > 0. [1, Prop. 4].

For g = 4, using these results and Proposition 1 one can conclude smash nilpotence
for homologically trivial cycles which are not in CH2

0 (A) or CH3
2 (A). Note that, with

the notation of §1,

CH3
2 (A) = Hom(L3, h4(A)), CH2

0 (A) = Hom(L2, h4(A)).

In the case of CH2
0 (A), the problem is whether there are any homologically trivial

cycles: in view of the above expression, this is conjecturally not the case, cf. [5, Prop.
5.8]. �

Remark 3. Some of these arguments also follow from a paper of Bloch and Srinivas
[2].
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