Sur la catégorie dérivée des 1-motifs
ON THE DERIVED CATEGORY OF 1-MOTIVES

LUCA BARBIERI-VIALE AND BRUNO KAHN

ABSTRACT. We embed the derived category of Deligne 1-motives
over a perfect field into the étale version of Voevodsky’s triangu-
lated category of geometric motives, after inverting the exponential
characteristic. We then show that this full embedding “almost" has
a left adjoint LAlb. Applying LAIb to the motive of a variety we
get a bounded complex of l-motives, that we compute fully for
smooth varieties and partly for singular varieties. Among applica-
tions, we give motivic proofs of Roitman type theorems and new
cases of Deligne’s conjectures on 1-motives.

RESUME. Nous plongeons la catégorie dérivée des 1-motifs de
Deligne sur un corps parfait dans la version étale de la catégorie
triangulée des motifs géométriques de Voevodsky, aprés avoir in-
versé 'exposant caractéristique. Nous montrons ensuite que ce
plongement a “presque” un adjoint a gauche LAlb. En appliquant
LAlb au motif d’une variété, on obtient un complexe de 1-motifs,
que nous calculons entiérement dans le cas des variétés lisses et
partiellement dans le cas des variétés singuliéres. Parmi les ap-
plications, nous donnons des preuves motiviques de théorémes de
type Roitman, et établissons de nouveaux cas des conjectures de
Deligne sur les 1-motifs.
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INTRODUCTION

In this book, we compare two categories of motivic nature: the de-
rived category of Deligne’s 1-motives and Voevodsky’s triangulated cat-
egory of motives, and draw several geometric applications.

Let us recall the players of this story. Inspired by his theory of mixed
Hodge structures, Deligne introduced 1-motives in [35] as an algebraic
version of “Hodge theory in level < 1”: they were the first nontrivial
examples of mixed motives (as opposed to Grothendieck’s pure motives
[76, 39, 67, 95, 1]). We shall denote the category of 1-motives over a
field k£ by M, (k) or M.

A different step towards mixed motives was taken much later by
Voevodsky, who defined in [109] a triangulated category of motives
DM‘;ffn(k:). Taken with rational coefficients, this category is conjectured
to have a “motivic" t-structure whose heart should be the searched-for
abelian category of mixed motives.

Since M (k) is expected to be contained in such a heart, it is natural
to try and relate it with DMZ&(/{:). This can be done rationally. Denote
by M (k) ® Q the abelian category of 1-motives up to isogeny over k.
When k is perfect, Voevodsky asserts in [109, p. 218] (see also [105,
Pretheorem 0.0.18]) that there exists a fully faithful functor

(1) Tot? : DP(M, (k) ® Q) — DMZi(k‘) ®Q

whose essential image is the thick subcategory generated by motives of
smooth curves. This is justified by F. Orgogozo in [85].

Our main result is that the functor Tot® has a left adjoint LAIbY
(Theorem 6.2.1). Much of this can in fact be done integrally, or more
accurately Z[1/pl-integrally where p is the exponential characteristic of
k. First, the embedding Tot® has a Z[1/pl-integral version Tot provided
we replace DMgffn(k) by its étale variant (Theorem 2.1.2). Then LAIbY

has an integral version LAID : DMggl(k:) — DP(M,(k)[1/p]) (Definition
5.2.1). It is convenient to denote by RPic the composition of LAlb with
the Cartier duality of D’(M;[1/p]). These notations want to suggest:
derived Albanese, derived Picard functor.

Applying LAIlb to an object M € DMgfIi(k) and taking l-motivic
homology, we get a series of 1-motives L;Alb(M), i € Z. Taking for
example M = M (X) for X a k-variety, we get new invariants L; Alb(X)
of X with values in the category of 1-motives, as well as their duals
RPic(X).

We then compute the L;Alb(X) when X is a smooth variety, jus-
tifying the notation (Theorem 9.2.2). We partly extend this compu-
tation to singular schemes in Section 10; in many cases, we recover
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for i = 1 the homological and cohomological Albanese and Picard 1-
motives Alb™(X), Alb¥(X), Pic™ (X) and Pic*(X) constructed in [12]
by the first author and Srinivas (Section 12).

This in turn sheds a new light on Roitman’s theorem on torsion in
groups of 0-cycles modulo rational equivalence and yields many gener-
alisations of it, as is done in Section 13.

Let us come back to Deligne’s 1-motives. In [35, (10.4.1)], he con-
jectured that some Hodge-theoretic constructions could be described
as realisations of a priori constructed 1-motives; he also conjectured
a compatibility with l-adic and de Rham cohomology. In [11], part of
the first conjecture was proven rationally (see also [90]).

What started us on this project was the desire to use the full embed-
ding Tot@ of (1) to give a natural proof of Deligne’s conjecture. In the
spirit of the present work, we tackle this problem by first considering
an axiomatically defined realisation functor and get an abstract result,
Theorem 14.5.4, by comparing LAIb? with a corresponding functor on
the level of categories of realisations.

To get to Deligne’s conjecture, we use Huber’s mixed realisation [52].
Using its Hodge component, we get the first part of Deligne’s conjec-
ture in Corollary 15.3.2. Using its Hodge and /-adic (resp. de Rham)
components, we then get the second part of Deligne’s conjecture in
Theorem 16.3.1.1 The latter is new relatively to the existing literature.

Finally, we examine what happens in characteristic p, using the [-
adic realisation functor of Ivorra [54] and Ayoub [6]. Not surprisingly,
we get a version of “Deligne’s conjecture”, whose truth depends this
time on the Tate conjecture in codimension 1: Theorem 17.7.1.

In the first version of this book, the proof of Proposition 4.4.1 con-
tained a gap, which was kindly pointed out by J. Riou and J. Ayoub.
One solution to save this proof was to tensor coefficients with Q and use
the comparison theorem? between motives with and without transfers.
Rather than doing this, we looked at Ext groups in more detail, which
added some length to Section 3 but saved Proposition 4.4.1 integrally.

IThis description is not completely correct, see Remark 15.3.3. Deligne’s con-
jecture in [35] concerns three cases I, 11, and IIn. We prove I and Iy but not
II,. On the other hand, we get many cases not considered by Deligne where the
obvious analogue of his conjecture is true.

2Established by F. Morel over a field, this comparison theorem was extended by
D.-C. Cisinski and F. Déglise [30] to a general base and J. Ayoub gave a simplified
proof in [5, Ann. BJ. See also [104].
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Let us stress that we have to invert the exponential characteristic p
of the base field k everywhere. This is due to several reasons:

e Since the category DM (k) of Definition 1.8.1 is Z[1/p]-linear
by [109, Prop. 3.3.3 2)|, we cannot expect better comparison
results.

e To be in the spirit of Voevodsky, we want to use only the étale
topology and not the fppf topology which would be more natu-
ral from the viewpoint of 1-motives. Trying to prove anything
meaningful without inverting p in this context seems doomed

to failure.

The basic reason why p is inverted in DMe_ffét(k) is homotopy invari-
ance (the Artin-Schreier exact sequence). In parallel, if one wants to
deal with non homotopy invariant phenomena, Deligne 1-motives are
not sufficient and one should enlarge them to include G, factors as in
Laumon’s 1-motives (c¢f. [69], [9]). See [16] and [17] for work in this
direction.
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General assumptions and notations. Throughout, k is a perfect
field of exponential characteristic p. We write Sm(k) for the category
of smooth separated k-schemes of finite type and Sch(k) for the category
of all separated k-schemes of finite type. If A is an additive category,
we let A[1/p] denote the corresponding Z[1/p|-linearised category (Hom
groups tensored with Z[1/p], compare Definitions 1.2.4 and 1.2.5).

OUTLINE

We now give a detailed overview of the contents of this work.

0.1. The derived category of 1-motives, integrally. While the
Z[1/p]-linear category M;[1/p| is not an abelian category, it fully
embeds into the abelian category *M;[1/p] of 1-motives with torsion
introduced in [11|, which makes it an exact category in the sense
of Quillen (see §1.10). Its derived category D’(M;[1/p]) with re-
spect to this exact structure makes sense, and moreover the functor
DP(My[1/p]) = D°(*M;[1/p]) turns out to be an equivalence (Theo-
rem 1.11.1).

0.2. Z[1/p|-integral equivalence. Let DM;{Lét = DMgﬁlvét(kz) be the
thick subcategory of DM";ffét(k:) generated by the image of DMZﬁl(k)
under the “change of topology” functor o : DM — Dl\/[e_‘cfét (see
Corollary 1.8.5 and Definition 2.1.1). Let d<; DM . be the thick

gm,ét
subcategory of DM;ff &« generated by motives of smooth curves. In

Theorem 2.1.2, we refine the full embedding Tot® of (1) to an equiva-
lence of categories

(2) D" (My[1/p]) = d<i DMy 4
0.3. Duality. Deligne’s extension of Cartier duality to 1-motives [35]
provides the category of 1-motives with a natural involution M +— M*
which extends to D’(M;[1/p]): see Proposition 1.13.5. This duality
exchanges the category "M;[1/p] of §0.1 with a new abelian category
+M[1/p] of 1-motives with cotorsion (see §1.13). Rationally, the two
t-structures give back the standard one, corresponding to the abelian
category M; ® Q.

We show in Theorem 4.5.3 that, under Tot, Deligne’s Cartier du-
ality is transformed into the involution M + Homg (M, Z (1)) on
d<1 DM;ﬁl,ét given by the internal (effective) Hom (see §2.5 and Propo-
sition 4.5.1). Of course, this result involves biextensions.
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0.4. Left adjoint. Composing (2) with the inclusion into DM = we

gm,ét)
obtain a “universal realisation functor"

Tot : D*(M,[1/p]) — DM

gm,ét *

It was conjectured by Voevodsky ([106]; this is also implicit in [105,
Preth. 0.0.18]) that, rationally, Tot has a left adjoint. We prove this
in Section 6.

It is shown in Remark 5.2.2 that Tot does not have a left adjoint
integrally. There is nevertheless an integral statement, which involves
an interplay between the étale and the Nisnevich topology. Considering
the functor o : Dl\/[gf][1 — DMg;fl,ét from Definition 2.1.1, we find a
functor

LAIb : DM — D*(M[1/p])
together with a motivic Albanese map
(3) ay : a*M — Tot LAIb(M)

natural in M € DMgffn. Thus if (M, N) € DMZ?H x D*(M,[1/p]), there
is a functorial homomorphism

Hom(LAlb M, N) — Hom(a®M, Tot(N))

which is an isomorphism rationally (but not integrally in general, see
Remark 5.2.2).
We give the construction of LAlb and the motivic Albanese map in
Section 5. This is the central result of the present work.
Experimentally, LAIb is best adapted to the t-structure with heart
+Mi[1/p] (see above): thus we define for any M € DMSL and i € Z

LAlb(M) = H;(LAIb(M))

the homology relative to this t-structure.

0.5. Smooth schemes. In Theorem 9.2.2, we compute LAIb(X) :=
LAIb(M (X)) for any smooth scheme X: in principle this determines
LAIb on the whole of DMZ‘El since this category is generated by the
M(X). It is related to the “Albanese scheme" A/ of [89] (extending
the Serre Albanese variety of [97]) in the following way: LAIb(X) is a
“3-extension" of Ax/; by the Cartier dual of the Néron-Severi group
of X, that we define as the étale sheaf given by cycles of codimension
1 on X modulo algebraic equivalence. We deduce that L;Alb(X) is
isomorphic to the 1-motive Alb™ (X) of [12] (corresponding to the Serre
Albanese).
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0.6. LAIb and RPic. Composing LAlb with duality, we obtain a con-
travariant functor

RPic : DMSL — D (M4[1/p))
such that
RiPic(M) :="H"(RPic(M)) ~ ,H;(LAIb(M))*

for any M € DM;?H. Here, ' H' is defined with respect to the t-structure
with heart “M;[1/p]. We call RPic the motivic Picard functor. We
define the cohomological Picard complex by RPic(X) := RPic(M(X)).

0.7. Singular schemes. When k is of characteristic 0 (but see §8.1
for the issue of positive characteristic), the motive and motive with
compact support M (X) and M¢(X) are defined for any k-scheme of
finite type X as objects of DMZ{;, so that LAIb(X) and the Borel-
Moore Albanese complex LAIb(X):= LAIb(M¢(X)) make sense. We
further define, for an equidimensional scheme X of dimension n, the
cohomological Albanese complex ALAIL*(X) := LAIb(M (X ™)*(n)[2n])
where X is the union of the n-dimensional components of X and
(—)* is the dual in DMg,. (Note that M (X™)*(n)[2n] is effective by
Lemma 8.6.1). Similarly with RPic. We give general properties of these
complexes in Section 8.

We then give some qualitative estimates for L; Alb(X) in Proposition
10.4.2 (see also Proposition 12.6.1) as well as L; AIb®(X) := , H;(LAIb“( X))
in Proposition 10.6.2. We prove that L; Alb(X) is canonically isomor-
phic to the 1-motive Alb™ (X)) of [12] if X is normal (Proposition 12.7.2)
or proper (Corollary 12.10.2). Here, the interplay between LAlb and
RPic (duality between Picard and Albanese) plays an essential role.
We also prove in Theorem 12.12.6 that R!'Pic’(X) ~ Pic™(X), hence
L, Alb*(X) ~ Alb*(X), for any X.

It is striking that L;Alb(X), L;Alb%(X) and L;Alb*(X) are actually
Deligne 1-motives for ¢+ < 1, but have cotorsion in general for ¢+ > 2
(already for X smooth projective).

0.8. Curves. We completely compute L; Alb(X) for any curve X, show-
ing that M(X) has a “Chow-Kiinneth decomposition" in DMZ?mét ®Q
and that the L;Alb(X) coincide with Deligne-Lichtenbaum motivic
homology of the curve X (see Theorem 11.2.1, c¢f. [71], [72] and
[22]). Dually, we recover Deligne’s 1-motivic H' of any curve: namely,
R'Pic(X) = H. (X)(1) as denoted in [35]. We also compute L;Alb*(X)
of a smooth curve X (see Theorem 11.3.1).
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0.9. Roitman’s theorem. If X is smooth projective, the motivic Al-
banese map (3) applied to M = M(X) gives back the Albanese map
from the 0-th Chow group to the rational points of the Albanese va-
riety. This translates very classical mathematics to a motivic setting.
When X is only smooth, we recover a generalised Albanese map from
Suslin homology

' Hy"8(X; Z)[1/p] — Axy(k)[1/p]

which was first constructed by Ramachandran [88] and Spief-Szamuely
[101].* The map a’"® is an isomorphism if dim(X) < 1 (see Proposi-
tion 13.1.2).

We then get a natural proof of the theorem of Roitman on torsion
0-cycles and its generalisation to open smooth varieties by Spiefs-Sza-
muely [101, Th. 1.1] (removing their hypothesis on the existence of a
smooth compactification): see Theorem 13.4.5.

We also deal with singular schemes when char £ = 0 (but see §8.1) in
Proposition 13.5.1 and its corollaries. We get a Borel-Moore version of
Roitman’s theorem as well, see Proposition 13.6.1 and its corollary. Fi-
nally, we obtain a “cohomological" Roitman theorem, involving torsion
in a motivic cohomology group: see Corollary 13.7.4.

0.10. The homotopy t-structure and 1-motivic sheaves. We al-
ready have two dual t-structures on D°(M;[1/p]), see 0.3. The ho-
motopy t-structure on Dl\/[e_ffét and the equivalence of categories (2)
induce a third t-structure (Theorem 3.10.1; see also Corollary 3.10.2).
Its heart is formed of so-called 1-motivic sheaves: their consideration
is central both for the duality theorem 4.5.3 and for the computation
of LAIb(X) for smooth X (Theorem 9.2.2). This idea was pursued by

Ayoub—Barbieri-Viale in [8] and by Bertapelle in [16].

0.11. Internal Hom and tensor structure. In Corollary 3.14.4, we
show that the internal Hom of Dl\/[e_ffét yields an internal Hom, Hom,,
on D°(M; ® Q) via the equivalence (2); for an integral refinement see
Remark 3.14.5. This internal Hom has cohomological dimension 1 with
respect to the homotopy t-structure (Corollary 3.13.4) and is exact with
respect to the standard t-structure (Theorem 3.15.1). In Proposition
7.1.2, we use LAIb to show that Hom, has a left adjoint ®;. This
tensor structure on D°(M; ®Q) is exact (for the standard t-structure),
respects the weight filtration and may be computed explicitly.

4The observation that Suslin homology is related to 1-motives is initially due to
Lichtenbaum [71].
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0.12. A conceptual proof of Deligne’s conjectures. We introduce
an axiomatic framework to formulate a version of Deligne’s conjectures
[35, (10.4.1)] for any suitable realisation functor. This involves an
abstract notion of weight filtration, which is given in Appendix D.

Assume given a triangulated category T provided with a t-structure,
with heart B with a weight filtration B<, (see D.7.2 for the definition)
and a t-exact functor D?(B) — T which is the identity on B. Consid-
ering “Lefschetz” objects in B, we define a full subcategory of level <1
objects By C B along with a left adjoint Alb®. Define Tay € T by
objects with H* in B(;): assuming that the t-structure is bounded, we
get a left adjoint LAIb7 (see 14.3.5).

Suppose now given a triangulated “realisation" functor R : DMZ?H ®RQ
— 7T which behaves as a usual homology theory in degrees < 1, as
explained in Hypotheses 14.4.1 and 14.5.1. Let Ry = R Tot. We then

get a “base change" natural transformation

(4) LAIb” R = R, LAIbY
and, for all M € DMg?n ®Q and i € Z, a map
(5) AIb® HE(M) — R, L;AIb%(M)

where HE(M):= H;(R(M)). Theorem 14.5.4 now gives an abstract
version of Deligne’s conjectures: (4) and (5) are isomorphisms if, in
addition, the “homological" equivalence induced by R coincides with
algebraic equivalence in codimension 1 and the corresponding geomet-
ric cycle class map satisfies a Lefschetz (1,1)-type theorem (or Tate
conjecture in codimension 1) for smooth projective varieties. If (5) is
an isomorphism for M = M(X), X smooth projective, then it is an
isomorphism for any M and (4) is an isomorphism of functors.

0.13. Hodge structures. For X smooth over C, Corollary 9.6.1 shows
that the 1-motive R'Pic(X) has a Hodge realisation abstractly isomor-
phic to H* (X, Z)=!, the largest 1-motivic part of the mixed Hodge
structure on H*(X,,,Z) Tate-twisted by 1. The above abstract frame-
work provides such an isomorphism in a functorial way.

Namely, if B = MHS is the category of (graded polarizable, Q-linear)
Deligne’s mixed Hodge structures and 7 = D’(MHS), the weight fil-
tration provides B with a weight structure. Then By = MHSy is
the full subcategory of MHS®® given by level < 1 mixed Hodge struc-
tures. By Theorem 15.2.1, Huber’s Hodge realisation [52| restricts to
an equivalence on l-motives.” The conditions of Theorem 14.5.4 are

SMoreover, Huber’s and Deligne’s Hodge realisation are naturally isomorphic:
see [112] and [7].
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satisfied thanks to Lefschetz’s theorem on (1,1)-classes. In the iso-
morphism (5) for M = M(X), X a complex variety, the mixed Hodge
structure AIb® HE(X) = H;(X,Q)<, is the largest quotient of level
< 1 so that (5) yields Deligne’s conjecture on a “purely algebraic” defi-
nition of this mixed Hodge structure. Similarly, L;Alb*(X) has Hodge
realisation AIb® H;(R(M(X)*(n)[2n])) = H*(X,Q(n))<;: this pro-
vides new cases where Deligne’s conjecture holds true (up to isogeny)
not included in [12], [11] or [90]. All this is Theorem 15.3.1 and its
Corollary 15.3.2, see also Remark 15.3.3.

0.14. Mixed realisations. Huber’s Hodge realisation functor is only
one component of her much richer mixed realisation functor [50, 52]. In
Section 16, we show that it fits with our axiomatic approach: this yields
a reasonable interpretation of the second part of Deligne’s conjecture
on comparison isomorphisms, see Corollaries 16.3.2 and 16.3.3.

0.15. (-adic. Here we use Ayoub’s f-adic realisation functor 6], which
is compatible with Deligne’s realisation functor from [35, (10.1.5)].
This provides, in characteristic p, an f-adic version of Deligne’s conjec-
tures, which depends on the Tate conjecture in codimension 1 (Theorem
17.7.1).

0.16. Going further. One could explore situations like the one around
the p-adic period isomorphism. We leave these developments to the
motivated reader. See also [113] and [26] for further developments con-
cerning weights.

0.17. Caveat. While one might hope that these results are a partial
template for a future theory of mixed motives (see e.g. [4]), we should
stress that some of them are definitely special to level < 1. Namely:

e It is succintly pointed out in [109, §3.4 p. 215| (see [8, §2.5] for
a proof) that the non finite generation of the Griffiths group
prevents higher-dimensional analogues of LAlb to exist. (This
goes against [105, Conj. 0.0.19].)

e Contrary to Theorem 3.10.1, the homotopy t-structure on Dl\/[e_ffét

does not induce a t-structure on d<,, DMZglvét for n > 2. This
can already be seen on Z(2), although its homology sheaves are

conjecturally ind-objects of d<o DM . (see [105, §6]).

gm,ét
These two issues seem related in a mysterious way! However, see |§|
for a possible approach to n-motivic sheaves and a conjectural picture
linking the subject to the Bloch-Beilinson motivic filtration.



12 LUCA BARBIERI-VIALE AND BRUNO KAHN

A small reading guide. We offer some suggestions to the reader,
hoping that they will be helpful.

One might start by quickly brushing through §1.2 to review the def-
inition of Deligne’s 1-motives, look up §1.10 to read the definition of
D*(My[1/p]) and then proceed directly to Theorem 2.1.2 (full em-
bedding), referring to Section 1 ad libitum to read the proof of this
theorem. The lengths of Sections 3 and 4 are necessary evils; they may
be skipped at first reading with a look at their main results (Theo-
rem 3.10.1: the homotopy t¢-structure, Corollary 3.14.4 and Theorem
3.15.1: internal Hom, and Theorem 4.5.3: agreement of the two Cartier
dualities).

One may then read Section 5 on the construction of LAlb and RPic
(which hopefully will be pleasant enough), glance through Section 6
(their rational versions) and have a look in passing at Section 7 for
the tensor structure on D’(M; ® Q). After this, the reader might
fly over the mostly formal Section 8, jump to Theorem 9.2.2 which
computes LAIb(X) for a smooth scheme X, read Sections 10 and 12
on LAIb of singular schemes where he or she will have a few surprises,
read Section 13 on Roitman’s theorem and its generalisations, have a
well-earned rest in recovering familiar objects in Section 11 (the case
of curves). Then jump to Section 15 and Corollary 15.3.2 which gives
the Hodge realisations of RPic(X) and LAIb*(X) for X a complex
algebraic variety, look at the main results in Section 16 and consult
Section 17. After which, one can backtrack to Section 14 to see the
technical details.

And never look at the appendices.

The reader will also find an index of notations at the end.
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Part 1. The universal realisation functor
1. THE DERIVED CATEGORY OF 1-MOTIVES

The main reference for (integral, free) 1-motives is [35, §10], see also
[12, §1]. We also provide an Appendix C on l-motives with torsion
which were introduced in |11, §1]. For the derived category of 1-motives
up to isogeny we refer to [109, Sect. 3.4] and [85]: here we are interested
in the integral version.

1.1. Commutative group schemes. In this subsection, we fix our
notation and recall some well-known and not so well-known facts on
commutative group schemes over a field.

We shall work within the category G* of commutative k-group sche-
mes locally of finite type. Let G be the full subcategory of smooth
k-group schemes. Recall that G} = G* if chark = 0 (Cartier, [SGA3,
Exp. VI, Th. 1.6.1]). If chark > 0, G € G* is smooth if and only if
Frg, ), G — GP" is faithfully flat for some (or any) n > 1 where Frg, .
is the relative Frobenius morphism of G by [SGA3, Exp. VIIA, Cor.
8.3.1 (iii)].

We shall have to juggle a little with nonreduced group schemes in
positive characteristic (see e.g. footnote 6), and invert the exponential
characteristic of k£ in much (but not all) of this book; the reader who is
only interested in characteristic 0 can completely discard these issues.

Let G C G* be the category of commutative algebraic k-groups (i.e.
commutative group schemes which are of finite type over k). Recall
that G € G is semi-abelian if G can be represented by an extension

0T —-G—-A—-0

where T is a torus and A is an abelian variety; A and T are then unique.
We have:
1.1.1. Lemma. The categories G and G* are abelian. The full subcate-
gory

Gsa = {G € G| the reduction of the connected component G’

of the identity in G is semi-abelian}

is a Serre subcategory of G, i.e. is closed under subobjects, quotients
and extensions. In particular, Gsyp is abelian.

Proof. The first statement is a well-known theorem of Grothendieck
the proof given in [SGA3, Exp. 6A, Th. 5.4.2] works for G and G*
as well. Note that any morphism f : G — H in G restricts to a map

6 Note that we use here the perfectness of k to ensure that the reduced part of
a k-group scheme is a k-group scheme, see [SGA3, Exp. 6A, 0.2]. Also, G’ € G for
any G € G by ibid., 2.2.
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f':G"— H'. If fis mono, f’ is mono, hence G’ is semi-abelian if H’
is. If f is epi, then f’ is epi (because H' is reduced and connected, and
Coker f’ is finite by a diagram chase); therefore, H’ is semi-abelian if
G' is. So Gy, is closed under subobjects and quotients in G. In the case
of an extension 0 - G — H — K — 0 with G, K € G, a diagram
chase shows that the homology of G' — H' — K’ is finite, hence H' is
semi-abelian. 0

We shall also work with the following full subcategories of G*:

1.1.2. Definition. a) A k-group scheme L is discrete if it is reduced,
the connected component of the identity is trivial and the abelian group

L(k) is finitely generated. This category is denoted by ‘Mo(k) = *Mo.

b) A lattice is a discrete k-group scheme L such that L(k) is torsion-
free. The full subcategory of lattices is denoted by Mg(k) = M.

1.1.3. Lemma. ‘M, is a Serre subcategory of G*, hence is abelian. [

1.1.4. Remark (Serre subcategories and thick subcategories). In Lem-
mas 1.1.1 and 1.1.3 we used the notion of a Serre subcategory of an
abelian category. There is a weaker notion; a full subcategory B of an
abelian category A is thick if the following condition holds: for any
short exact sequence 0 — A" - A — A” — 0 in A, if two among
A, A, A” belong to B, so does the third. This still implies that B is
abelian. The two notions are going to appear in this book.

1.1.5. Definition. We denote by  AbS(k) = * AbS the category of
commutative k-group schemes G such that the connected component
G" of the identity is (reduced and) semi-abelian and G/G° is discrete.
An object of * AbS is called a semi-abelian scheme with torsion. We
denote by AbS the full subcategory of * AbS formed by those G such
that G/G° is a lattice. Finally, we write SAb for the full subcategory
of semi-abelian varieties.

We summarise this array of subcategories in the following diagram:

M, C *M,
N N

SAb C AbS C * AbS
N N
Gsm - G
N N

gsab C g C Q*
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1.2. Deligne 1-motives. A Deligne 1-motive over k is a complex of
k-group schemes

M =[L > G|
where L € M is a lattice and G € SAb is semi-abelian.
As a complex, we shall place L in degree 0 and G in degree 1. Note
that this convention is only partially shared by the existing literature.
A map from M = [L 5% G] to M’ = [I' % ('] is a commutative
square

L 25 G

(1.2.1) d %

u/

L — &
in the category of group schemes. Denote by (f,g) : M — M’ such
a map. The natural composition of squares makes up the category of
Deligne’s 1-motives. We shall denote this category by M; (k). We shall
usually write M instead of M (k), unless it is necessary to specify k.
The following lemma is immediate:

1.2.1. Lemma. M is an idempotent complete additive category. U

In Proposition 1.2.6 below, we recall that M; becomes abelian if we
tensor morphisms with Q. For this we introduce the following cate-
gories:

1.2.2. Definition. Let M denote the category given by complexes of
group schemes [L — G] where L € "M, is discrete and G € G is a com-
mutative algebraic group. Morphisms are still commutative squares
(1.2.1) in the category of group schemes. Write Mg, = {[L — G |
G € Gap ;o the category Mg,y contains M as a full subcategory.

1.2.3. Proposition. The category M is abelian, and Mg,y is a Serre
subcategory of M (hence is abelian).

Proof. For a map ¢ = (f,g) : N — N’, consider Ker(yp) = [Ker(f) —
Ker(g)] and Coker(p) = [Coker(f) — Coker(g)] where kernels and
cokernels of f and ¢ are taken respectively in the abelian categories
Mgy and G (see Lemmas 1.1.3 and 1.1.1). It is immediately checked
that they verify the universal properties of kernel and cokernel in M.
Finally, the canonical map from image to coimage is an isomorphism,
since the obvious functor M — M, x G is conservative. We have
shown that M is abelian. The fact that Mg,, is a Serre subcategory
of M follows trivially from Lemma 1.1.1. O



16 LUCA BARBIERI-VIALE AND BRUNO KAHN

1.2.4. Definition. Let R be a commutative ring. For any additive
category A, we denote by A ® R the R-linear category obtained from
A by tensoring morphisms by R, and by AKX R the pseudo-abelian hull
(idempotent completion) of A ® R.

This distinction is useful as A ® R may not be idempotent complete
even if A is. We shall also use the following notation:

1.2.5. Definition. Let p be a prime number. If A is an abelian group,
we abbreviate A ® Z[1/p] into A[1/p]. Same convention for presheaves
of abelian groups, complexes of abelian groups, etc. If A is an additive
category, we abbreviate A ® Z[1/p] into A[1/p].

1.2.6. Proposition (cf. [85, 3.2.2]). The inclusion My — Mg, in-
duces an equivalence of categories

e:M1®Q%Msab®@~

In particular, the category M;®Q is abelian, hence M;RQ = M;XQ.

Proof. (See also Lemma B.1.4.) It is enough to show that e is essentially
surjective. Let [L = G] € Mg,,. We then have a diagram

[L, - Gl] — [L;r - G//U(Léor)]

l

[L — G

where L':= L xg G’ and L}, :=L'/L},,, L, being the torsion subgroup
of L' (note that L' < L is discrete). Both maps are isomorphisms in
Mgap, ® Q. The last assertion follows from the fact that Mg, ® Q is

abelian (see Proposition 1.2.3 and Corollary B.3.2). U

1.2.7. Lemma. Let p = (f,g9): M =[L 5G] - N =[K > H]| be a
morphism in My. The following conditions are equivalent:

(i) o becomes invertible in M; ® Q.
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(ii) f and g fit in a diagram

where F' and E are finite.
(iii) There exists an integer n > 0 such that nly and nly both
factor through .

Such a morphism is called an isogeny (cf. Def. B.1.1 c)).

Proof. This is essentially a special case of Proposition B.1.3 b):

(i) = (ii): if p ® Q is invertible, its kernel and cokernel are isomor-
phic to 0 in M; ® Q. As in the proof of Proposition 1.2.6, they are
computed as [Ker(f) — Ker(g)] and [Coker(f) — Coker(g)] respec-
tively. Thus Ker(f), Ker(g), Coker(f) and Coker(g) must be torsion in
G, hence finite. This forces Ker(f) = 0 and Coker(g) = 0.

(ii) = (iii): take for n some integer killing both £ and F.

(iii)= (i): if ¢ ® Q is left and right invertible, it is invertible. O

1.2.8. Remark. The category M has kernels and cokernels (see Propo-
sition C.1.3) but is not abelian. This easily follows from the diagram
in Lemma 1.2.7: (f, g) has vanishing kernel and cokernel but is not an
isomorphism in Mj.
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1.3. Weights and cohomological dimension. Recall that M =
[L — G] € M; has an increasing filtration by sub-1-motives as fol-
lows:

M i>0
WL(M) G[-1] i=-1
' T-1] i=-2
0 i< -3

where G is an extension of an abelian variety A by a torus 7. We then
have gr'V,(M) = T[-1], gt (M) = A[—1] and gr}/ (M) = L (according
to our convention of placing L in degree zero). We say that M is pure
of weight i if gr}’v M = 0 for all j # i. Note that for two pure 1-motives
M, M’', Hom(M, M') # 0 only if they have the same weight.

1.3.1. Proposition ([85, 3.2.4]). The category My ® Q is of cohomo-
logical dimension < 1, i.e. if Ext'(M,M") # 0, for M,M' € M; ® Q,
then t =0 or 1.

Recall a sketch of the proof in [85]. One first checks that Ext' (M, M")
= 0 if M, M’ are pure of weights i,7" and i < ¢’. This formally re-
duces the issue to checking that if M, M’, M" are pure respectively of
weights 0, —1, —2, then the Yoneda product of two classes (e1,e2) €
Ext' (M, M’) x Ext'(M’, M") is 0. Of course we may assume e; and
es integral. By a transfer argument, one may further reduce to k alge-
braically closed. Then the point is that e; and e, “glue" into a 1-motive,

so are induced by a 3 step filtration on a complex of length 1; after that,
it is formal to deduce that ey - e; = 0 (¢f. [SGAT, IX, Prop. 9.3.8 ¢)]).

1.3.2. Remark. We observe that Proposition 1.3.1 can be regarded as
an algebraic version of a well-known property of M;(C) ® Q. Namely,
M;(C)®Q can be realised as a Serre abelian sub-category of Q-mixed
Hodge structures, see [35]. Since the latter is of cohomological dimen-
sion < 1, so is M;(C) ® Q (use |74, Ch. III, Th. 9.1]).

1.4. Group schemes and sheaves with transfers.

1.4.1. Definition. We denote as in |77, Def. 2.1] by PST(k) = PST
the abelian category of presheaves with transfers on smooth k-varieties:
these are additive contravariant functors on the category Cor of fi-
nite correspondences from loc. cit. These categories were denoted by
SmCor(k) and PreShv(SmCor(k)) in [109]. We denote by EST(k),
or simply EST C PST (resp. NST), the full abelian subcategory
of étale (resp. Nisnevich) sheaves with transfers: it was denoted by
Shve(SmCor(k)) (resp. Shvyis(SmCor(k))) in [109].
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We shall also denote by ES = Shvg (Sm(k)) the category of abelian
¢tale sheaves on Sm(k).

We write F' — Fyis or F'+— Fy for the “associated sheaf” functors:
they preserve the transfer structure by |77, Th. 6.17 and 13.1].

We keep the old notation L(X) from [109] for the presheaf with
transfers represented by a k-scheme X: it was replaced by Z,(X) in
[77]. This is actually an étale sheaf by |77, Lemma 6.2].

1.4.2. Definition. Let G € G*. We denote by G € ES the correspond-
ing étale sheaf of abelian groups on Sm(k).

As is well-known, the restriction of this functor to ‘M, induces a
equivalence of categories between ' M, and the category of locally con-
stant Z-constructible étale sheaves over Sm(k) (i.e. with finitely gener-
ated geometric fibres), and also with the category of finitely generated
Gal(ks/k)-modules. More generally:

1.4.3. Lemma. The restriction of G — G to G, is fully faithful.

Proof. The presheaf defined by G on Sm(k) is an étale sheaf since G
is smooth; the claim then follows from a small extension of Yoneda’s
lemma (to allow for smooth group schemes locally of finite type). O

In fact, under a minor assumption, G is an étale sheaf with transfers,
as explained by Spief-Szamuely [101, Proof of Lemma 3.2|, ¢f. also
Orgogozo [85, 3.1.2]. Both references use symmetric powers, hence
deal only with smooth quasi-projective varieties. Here is a cheap way
to extend their construction to arbitrary smooth varieties.

1.4.4. Lemma. For G € G*, the étale sheaf G s provided with a canon-
ical structure of presheaf with transfers. Moreover, if G' is a semi-

abelian variety, then G is homotopy invariant (see Definition 1.7.1 be-
low).

Proof. Without loss of generality, we may assume G reduced (note
that Gyea = G); by [33, Cor. 1.2, the connected component G’ = G is
quasi-projective. For two smooth k-varieties X, Y, we have to provide
a pairing
(X, Y)®@G(X) = G(Y)

with the obvious compatibilities. As in |77, Ex. 2.4, it is enough to
construct a good transfer f, : G(W) — G(X) for any finite surjective
map f : W — X with X a normal k-variety. For X and W quasi-

projective, this is done in [101] or [85] using symmetric powers’. In

"Note that the symmetric powers of G exist as schemes since GO is quasi-
projective.
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general, cover X by affine opens U; and let V; = f~1(U;). Since f is
finite, V; is also affine, hence transfers G(V;) — G(U;) and G(V;NV}) —
G(U; NU;) are defined; the commutative diagram

0—>GW) — [IG(V)) —— [IGViNnVj)
‘| ‘|
0—=G(X) — [[GU:) —— [IGU:NTy)

uniquely defines the desired f,.
The second statement of the lemma is well-known (e.g. [85, 3.3.1]).
O

Actually, the proof of [101, Lemma 3.2| defines a homomorphism of
étale sheaves with transfers

(1.4.1) oc: LG)— G

using the sum maps on symmetric powers of G. It is split by the
obvious morphism of sheaves

Yo : G — L(G)

given by the graph of a morphism. Therefore o4 is an epimorphism of
sheaves. One should be careful, however, that v is not additive; note,
however, that both o4 and v are natural in G.

We shall need a little more. For X € Sm(k), write

L(X) = Ker(L(X) 2 7)
where px is induced by the structural morphism.

1.4.5. Lemma. Let m,py,po : G x G — G denote respectively the
multiplication and the first and second projection. Then the sequences

L(G x G) 2227 (@) -2 @ > 0
L(G x G) 2222 1@y 2% @ 0
are exact in PST, hence in EST.

Proof. We shall give a completely formal and general argument. The
second exactness reduces to the first one thanks to the commutative
diagram

L(G x G) 2227 (@)

PGxGl PGJ/

Z _ —— Z.
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The first sequence is a complex by naturality of G +— 0. Write L(G)
for the cokernel of p; + py —m: the induced morphism 7 : G — L(G)
is still a section of o : L(G) — G; moreover ¥, is now additive,
by naturality. It remains to prove that 7,0 is the identity. Using
the additivity of 7, a Yoneda argument in the category Corj reduces
us to test it on the universal section 1¢ € L(G)(G), for which it is

obvious. U

1.4.6. Remark. This is a variation“with transfers” on [SGA7, Exp.
VII, 3.5|.

1.5. Representable sheaves and exactness. Recall that the “rep-
resentable sheaf” functor G — Shvy,,¢(Sch(k)) is exact [SGA3, Exp.
6A, Th. 3.3.2 (i)]. We shall see that this remains as true as it can when
working with the étale topology.

More precisely, consider the functor induced by Lemma 1.4.4

p:G— EST
G — G[1/p]
where p is the exponential characteristic of k. The aim of this subsec-
tion is to prove the following

1.5.1. Theorem. The functor p is exact.

Inverting p cannot be avoided here: consider multiplication by p on
G-
We start with two lemmas.

1.5.2. Lemma. Let 0 — F — G —L5 H — 0 be an evact sequence in
G, with F' smooth. Then the sequence in EST

0—-F—>G—-H—=0
15 exact.
Proof. 1t suffices to prove the exactness in the category ES of étale
sheaves on Sm(k). The smoothness of F' implies the smoothness of f;

then it is classical that if R is a strictly henselian local ring, G(R) —
H(R) is surjective (cf. [EGA4, Th. 18.5.17]). O

1.5.3. Lemma. Let 0 - F — G — H — 0 be an exact sequence in G,
with F infinitesimal. Then F = 0 and the quotient sheaf H/G is killed
by some power of p.

Proof. The first claim is obvious (recall that we evaluate sheaves only
on smooth schemes). For the second one, let n be such that p™F = 0.
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There exists a morphism ¢ in G such that the diagram
G——H
TLL 7 j s
P p
G——H
commutes. This implies that multiplication by p™ is 0 on H/G. O

Proof of Theorem 1.5.1. Let 0 — F — G — H — 0 be an exact
sequence in G. Write FT = F/F,.q and GT = G/F,eq, so that we have
a commutative diagram of exact sequences in G

0 0
Fred:Fred
0O —— F —— @ H s 0
|
0 —— Ff — Gf H » 0
0 0

Note that F,.q is smooth and FT is infinitesimal. Sheafifying with
transfers and applying Lemma 1.5.2, we get a commutative diagram of
exact sequences in EST:

> H » H/G —— 0

L

» H » HIGT —— 0
|

0
which shows that f is an isomorphism. By Lemma 1.5.3, H/G" is killed
by p" for some integer n, which concludes the proof. O

1.6. Local Exts and global Exts. The Ext groups of the abelian
categories PST, NST and EST have the following properties. We start
with a basic result of Voevodsky:
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1.6.1. Proposition ([77, Lemma 6.23]). For any X € Sm(k) and any
F € NST (resp. EST), there are canonical isomorphisms

HYy (X, F) 2= Bxtigr (L(X), F) - (resp.Hy (X, F) = Extpgr(L(X), F)).

Recall now that PST has a canonical tensor structure extending the
one of Cor, see [109, §3.2] or [77, Def. 8.2]. This tensor product has a
right adjoint Hom ¢, given by the formula in loc. cit.

Hom (F,G)(X) = Hom(F @ L(X),G)
for F,G € PST, see |77, Lemma 8.3]. If G € NST (resp. EST), so does
Hom (F,G): this is the internal Hom of NST (resp. EST) as in |77,
Def. 8.2 and Lemma 8.3].
The categories NST and EST have enough injectives [109, Lemma
3.1.7] and |77, Prop. 6.19], which yields derived functors of Hom, in

these categories. We shall only consider the case of EST and write
Ext, for these derived functors (the case of NST is identical).

1.6.2. Proposition. Let F,G € EST and ¢ > 0. Then the étale sheaf
with transfers E'(F, G) associated to the presheaf with transfers

X +— Exthyr(F @ L(X),G)
is canonically isomorphic to Ext! (F,G).

Proof. The claim is clear for ¢ = 0. Since G — E*(F,G) is a é-functor,
it suffices to observe that E'(F,I) = 0 for 4 > 0 if I is injective in
EST. U

1.7. Homotopy invariance and strict homotopy invariance.

1.7.1. Definition (|77, Def. 2.15 and 9.22]). a) An object F' of PST,
NST or EST is homotopy invariant if F(X) — F(X x A!) for any
smooth k-variety X.
b) Let F € NST. Then F is strictly homotopy invariant if Hy, (X, F)
— Hi (X x Al F) for any smooth k-variety X and any i > 0.
c¢) Similarly, let F' € EST. Then F is strictly homotopy invariant if
H{(X,F) — H! (X x Al F) for any smooth k-variety X and any
1> 0.

We write Hlnis (resp. Hlg) for the full subcategory of NST (resp.
EST) formed of homotopy invariant sheaves.

One of the main results of Voevodsky concerning presheaves with
transfers is:

1.7.2. Theorem ([109, Th. 3.1.12], [77, Th. 24.1|). Over a perfect
field, any object of Hlyis is strictly homotopy invariant.
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In the étale topology, the same turns out to be true in characteristic
0, but the situation is slightly different in positive characteristic.

1.7.3. Definition. We denote by HI;, (k) = HIZ, the full subcategory
of Hlg consisting of strictly homotopy invariant sheaves.

The main example of a sheaf F' which is in Hlg but not in HIJ,
is F' = Z/p in characteristic p: because of the Artin-Schreier exact
sequence we have

k[t]/P(k[t]) — He (A, Z/p)

where P(z) = 2P — x.
We are going to show that this captures entirely the obstruction for
a sheaf in Hlg not to be in HIZ, (¢f. [109] and [77]).

1.7.4. Lemma. HL is a thick Z[1/p|-linear subcategory of EST (see
Remark 1.1.4). In particular, it is abelian.

Proof. The thickness follows immediately from the 5 lemma. For the
second statement, it suffices to show that if /' € HI}, verifies pF' = 0,
then ' = 0. From the Artin-Schreier exact sequence, we get an exact
sequence in EST:

0 — Hom(Ga, F) 2 Hom (G, F) — F
s Ext] (G,, F) 5 €2t (G, F) = 0

where Hom , and Ext |, are as in §1.6 above. So it is sufficient to show
that Hom (G, F) = Ext (G, F) = 0.

Let M be the kernel of the morphism og, from Lemma 1.4.5. By
this lemma, we have an exact sequence

0 = Hom (Gy, F) = Hom (L(G,), F) — Hom (M, F)
— Ext L(Gy, F) = Ext L(L(Gy,), F)
and a monomorphism
Hom (M, F) < Hom (L(G, x G,), F).

Since F € HI, Hom u(L(G,), F) = Homu(L(G, x G,), F) =
Ext! (L(G,),F) = 0 using Propositions 1.6.1 and 1.6.2, and we are
done. U

In fact:

1.7.5. Proposition (c¢f. [77, Th. 13.8]). A sheaf F € Hlg belongs
to HIZ, if and only if it is a sheaf of Z[1/p|-modules, where p is the
exponential characteristic of k.
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Proof. Necessity was proven in Lemma 1.7.4. For the converse, the
following method is classical: let F' € Hlg. Using the exact sequence

0= Fios > F=>FRQ—>F®Q/Z—0

and the fact that HI, is thick in EST (Lemma 1.7.4), we are reduced
to the following cases:

e [ is a sheaf of Q-vector spaces. Then the result is true by [77,
Lemma 14.25| (reduction to |77, Th. 13.8] by the comparison
theorem |77, Prop. 14.23)).

e [7is a sheaf of torsion abelian groups. Since, by assumption, this
torsion is prime to p, F is locally constant by Suslin-Voevodsky
rigidity |77, Th. 7.20]. Then the result follows from [SGA4, XV
2.2| (compare |77, Lemma 9.23]).

U

1.7.6. Remark. In positive characteristic, it is not clear whether Hlg;
is thick in EST, and actually whether it is abelian. The inclusion
Z C Z[1/p] shows that HI is not a Serre subcategory of EST (see
Remark 1.1.4). Also, Proposition 1.7.5 shows that the inclusion functor
HI;, — Hlg has a left adjoint, given by F' — F[1/p] (see Definition
1.2.5).

1.8. Etale motivic complexes. Let D~ (NST) be the bounded above
derived category of NST. Recall from [109] the full subcategory

(1.8.1) DM(k) = DMT ¢ D~(NST)

of complexes with homotopy invariant cohomology sheaves. Theorem
1.7.2 implies that DM®? is a triangulated subcategory of D~ (NST),
and that the canonical ¢-structure on the latter induces a t-structure
on DM®T with heart Hly;, called the homotopy t-structure. Voevodsky
also constructs a left adjoint to the inclusion in (1.8.1), with an explicit
formula.

Let now D~ (EST) be the bounded above derived category of EST.
In [109, §3.3|, Voevodsky considered the full subcategory of D~ (EST)
given by complexes with homotopy invariant cohomology sheaves, and
said that it is a triangulated subcategory. This is not clear in positive
characteristic (see Remark 1.7.6); in order to have a smoothly working
theory, we have to slightly change this definition. (See also |77, Lect.

9.)

1.8.1. Definition. We write DM, (k) = DM",, € D~(EST) for the
full subcategory of complexes with strictly homotopy invariant coho-
mology sheaves.
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With this definition, the following fact becomes trivial:

1.8.2. Proposition. The category DM'iffét is Z[1/p]-linear triangulated
subcategory of D~(EST). The canonical t-structure of D~ (EST) in-

duces a t-structure on DMe_ffét, with heart HIZ, . OJ

1.8.3. Definition. We call the above t-structure the homotopy t-struct-
ure. For C € DM, we denote by H"(C) € HI, the cohomology
objects relative to the homotopy t-structure.

We now follow Voevodsky’s construction in [109] of a left adjoint
RC': D™(NST) — DM

to the inclusion DM®™ ¢ D~(NST), working with the étale topology.
Only minimal changes are needed.

Recall the Suslin complex C,(F) associated to a presheaf F' € PST,
whose n-th term is given by

Co(F)(X) = F(X x A"), A" = Spec ([to, ... £,]/ St = 1).

If I € NST (resp. EST), so does C,,(F).
This can be extended to complexes of sheaves by taking total com-
plexes, as in the following theorem:

1.8.4. Theorem. The inclusion functor DMe_ffét(k) — D~ (EST) has a
left adjoint

RCy4 : D™ (EST) — DM,
which s given by the formula

RC4(K) = C.(K)[1/p] (see Definition 1.2.5)

for K € D=(EST). Here C.(K) is the total complex associated to the
double complex C,(K,).

Proof. We follow the template of [109, Proof of Prop. 3.2.3|, where
Voevodsky does this for the Nisnevich topology: let A be the localising

subcategory of D~ (EST) generated by complexes of the form L(X X
A" — L(X) for X € Sm(k). It is sufficient to prove:
(1) For any F € EST, the canonical morphism F — C.(F) is an
isomorphism in D~ (EST)/A.
(2) For any object T' € Dl\/[e_ffét and any object B € A, one has
Hom(B,T) = 0.
(3) For any F € EST, C.(F)[1/p] € DM,
(Concerning (1) and (3), see |77, Lemma 9.12] for the reduction from
complexes to sheaves.)
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The proof of (1) is identical to that in [109]. For (2), Voevodsky
reduces to the case where B is of the form L(X x A') — L(X) and
uses a hypercohomology spectral sequence argument. To avoid the
issue raised by infinite cohomological dimension when working with
the étale topology, we modify this as follows (cf. [63, C.5]): one needs
to show that the morphism

T — Rr,m*T

is an isomorphism in D~ (EST), where the morphism of étale sites = :
Sm(A)g — Sm(k) is induced by the structural morphism of Al.
Since this statement is local for the étale topology, we may reduce to
k separably closed, and then the issue disappears.

For (3), the homology presheaves h;(F) of C,(F') are homotopy in-
variant by [108, Prop. 3.6]. By [108, Cor. 5.29] (see also [8, Prop. 1.1.2
(3)]) aand Remark 1.7.6, the étale sheaves with transfers h;(F)«[1/p] =
hi(F[1/p])¢ are then in HI,. O

1.8.5. Corollary. Let o® denote the composition
DMT < D~(NST) <% D~ (EST) %% DMef,
where o is induced by the inverse image functor F — Fg (change of
topology) on sheaves. Then, o°F ~ Fg[1/p| for any F € Hly;s.
Proof. Indeed,
a’F = RCxa*F ~ C,.(a*F)[1/p] = Ci(a* F[1/p]) +— *F[1/p]
by Theorem 1.8.4 and its proof. U
Let X be a k-scheme. Recall that its motive in DM®T is defined by
M(X)=RCL(X).
Similarly:
1.8.6. Definition. We write
Me(X) = RC4L(X) € DM, .
Z(0) = Mg (Spec k) = Z[1/p
Zer(1) = RCL(PY)[-2).
1.8.7. Lemma. We have Mg (X) = o*M (X)) and Zg (1) ~ G,,[1/p][—1].

Proof. This follows immediately from Corollary 1.8.5 and the analogous
result for Z(1) in DMT ([109, Cor. 3.4.2], [77, Th. 4.1]). O
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(There are also objects Zg(n) = a*Z(n) for n > 1; we won’t use
them in this book, see [77, Lect. 3|.)

Let us come back to a commutative group scheme G, as in §1.4. Asin
[101, Remark 3.3|, when G is homotopy invariant, the homomorphism
og of (1.4.1) extends to a morphism in C~(EST)

C.L(G) = G
whence a morphism in Dl\/[e_ffét
(1.8.2) Mg (G) — G[1/p]
by using Theorem 1.8.4.
1.9. 1-motives with torsion and an exact structure on M;[1/p|.
Let HIZ ™Y be the category of complexes of length 1 (concentrated in

degrees 0 and 1) of objects of HI,. From Proposition 1.7.5 we get a
functor

(1.9.1) P Gull/p] = HIg
G = G[1/p]
where G, :={G € G* | G € Hlg}. From Lemma 1.4.4 the category G

contains G, and the induced functor p : Gep[1/p] — HIE, is exact by
Theorem 1.5.1. Hence a functor

p: Maap[1/p] — HI 0!

M — M][1/p]
and, by composing with the embedding M; — Mg,;,, another functor
(1.9.2) Mi[1/p] — HIE, OV,

1.9.1. Proposition. Let M be a complex of objects of Mgap[1/p]. The
following conditions are equivalent:
(i) The total complex Tot(pM) in C(HIL,) is acyclic.
(ii) For any q € Z, HI(M") is of the form [F? = F9], where F? is
finite.

Proof. (ii) = (i) is obvious. For the converse, let M9 = [L9 — G| for
all q. Let L' and G" be the two corresponding “column" complexes of
sheaves. By the exactness of p, we have a long exact sequence in HI},:

o= pHIY(L) — pHY(G") — HY(Tot(pM")) — pHI™ L) — ...

The assumption implies that pH?(L) — pHI(G") for all q. Since
HI(L) is discrete and H?(G") is a commutative algebraic group, both
must be finite. U
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We now restrict to complexes of M;[1/p].

1.9.2. Definition. A complex of M[1/p] is acyclic if it satisfies the
equivalent conditions of Proposition 1.9.1. An acyclic complex of the
form 0 - N' — N — N” — 0 is called a short exact sequence.

Recall that in [11] a category of 1-motives with torsion was intro-
duced. We shall denote it here by ‘M in order to distinguish it from
M. More precisely, denote by ‘ MST the full subcategory of Mgy, con-
sisting of the objects [L — G] where G is semi-abelian: these are the
effective 1-motives with torsion (c¢f. Definition C.1.1). The category of
l-motives with torsion ‘M, is the localisation of tMST with respect to
quasi-isomorphisms (cf. Definition C.3.1).

The main properties of M, are recalled in Appendix C. In particu-
lar, the category *M;[1/p] is abelian (Theorem C.5.3) and by Propo-
sition C.7.1 we have a full embedding

(1.9.3) M [1/p] = *Mi[1/p]

which makes M [1/p] an exact subcategory of *M;[1/p]. The following
lemma is a direct consequence of Proposition C.4.3 and Corollary C.5.5:

1.9.3. Lemma. A complez 0 — N’ 5 N % N” — 0 in My[1/p] is a
short exact sequence in the sense of Definition 1.9.2 if and only if it is
a short exact sequence for the exact structure given by (1.9.3).

Proof. Suppose that the given complex is a short exact sequence in the
sense of Definition 1.9.2. If j is a strict morphism in the sense of Defini-
tion C.4.1, then it is an exact sequence of complexes. In general we get

a factorisation of j given by N Iy N — N” where N is quasi-isomorphic

to N” and N % N is a strict epimorphism with kernel N’ (¢f. Propo-
sition C.4.3). Therefore it is also exact in *M;[1/p]. Conversely, note
that any short exact sequence in M [1/p] can be represented by a strict
effective epimorphism followed by a quasi-isomorphism (see Corollary

C.5.5). 0

1.9.4. Remark. There is another, much stronger, exact structure on
M;[1/p], induced by its full embedding in the abelian category Msap[1/p]
(Proposition 1.2.3): it amounts to require a complex [L° — G'] to be
exact if and only if both complexes L' and G are acyclic. We shall not
use this exact structure in the sequel. See also Remark 1.13.6.

1.10. The derived category of 1-motives.

1.10.1. Lemma. A complex in C(M;[1/p]) is acyclic in the sense of
Definition 1.9.2 if and only if it is acyclic with respect to the exact
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structure of My[1/p| provided by Lemma 1.9.3 in the sense of |14,
1.1.4] or [84, §1].

Proof. Let X° € C(M;y[1/p]). Viewing X as a complex of objects
of Mgap[1/p], we define D" = Im(d™ : X" — X"*!). Note that the
D™ are Deligne 1-motives. Let e, : X™ — D" be the projection and
My : D™ — X! be the inclusion. We have half-exact sequences

(1.10.1) 0— D" X S Dy

with middle cohomology equal to H™(X"). Thus, if X is acyclic in the
sense of Definition 1.9.2; the sequences (1.10.1) are short exact which
means that X" is acyclic with respect to the exact structure of M;[1/p].
Conversely, suppose that X is acyclic in the latter sense. Then, by
definition, we may find D", e/, m/, such that d" = m/e/, and that

the sequences analogous to (1.10.1) are short exact. Since Mg,p[1/p] is
abelian (Proposition 1.2.3), D" = D™ and we are done. O

From now on, we shall only say “acyclic" without further precision.

Let K(M;[1/p]) be the homotopy category of C(M;[1/p]). By [84,
Lemmas 1.1 and 1.2], the full subcategory of K(M;[1/p]) consisting
of acyclic complexes is triangulated and thick (the latter uses the fact
that M;[1/p] is idempotent-complete, c¢f. Lemma 1.2.1). Thus one
may define the derived category of M;[1/p| in the usual way:

1.10.2. Definition. a) The derived category of 1-motives is the locali-
sation D(M;[1/p]) of the homotopy category K (M;[1/p]) with respect
to the thick subcategory A(M;[1/p]) consisting of acyclic complexes.
Similarly for D=(M;[1/p]) and D*(M,[1/p]).

b) A morphism in C(M;[1/p]) is a quasi-isomorphism if its cone is
acyclic.

1.11. Torsion objects in the derived category of 1-motives. Let
M, be the category of lattices (see Definition 1.1.2): the inclusion

functor My [1/p] A M, [1/p] provides it with the structure of an exact
subcategory of M [1/p|. Moreover, the embedding

(1.11.1) Mo[1/p] 2 ' Mq[1/p]

is clearly exact, where ‘M is the abelian category of discrete group
schemes (see Lemma 1.1.3). In fact, we also have an exact functor

Mo[1/p] S M1 /p]
L [L — 0].
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Hence an induced diagram of triangulated categories:

DA (M[1/p]) —2— DY(Mo[1/p])

2| |
DA (M [1/p]) —Z— DP(EML[1/p)).

1.11.1. Theorem. In the above diagram

a) B and D are equivalence of categories.

b) A and C are fully faithful; restricted to torsion objects they are
equivalences of categories.

(For the notion of torsion objects, see Proposition B.2.1.)

Proof. a) For B, this follows from Proposition A.1.2 provided we check
that any object M in *M,[1/p] has a finite left resolution by objects in
Mo[1/p]. In fact M has a length 1 resolution: let E/k be a finite Galois
extension of group I such that the Galois action on M factors through
. Since M is finitely generated, it is a quotient of some power of Z[T'],
and the kernel is a lattice. Exactly the same argument works for D by
considering the lattice part of a 1-motive. (For M = [L — G, we get
L'—L with L' € My[1/p] as above so that M’ = [L' — G] obtained
by composition yields a projection M’'—»M with kernel a lattice.)

b) By a) it is sufficient to prove that C' is fully faithful. It suffices
to verify that the criterion of Proposition A.1.4 is verified by the full
embedding ‘Mo[1/p] — *M1[1/p].

Let [L — 0] — [L' — G’] be a monomorphism in *M;[1/p]. We may
assume that it is given by an effective map. The assumption implies
that L — L' is mono: composing with the projection [L/ — G'| —
[L" — 0], we get the requested factorisation.

It remains to show that A is essentially surjective on torsion objects.
Let X = [C" — G| € D"(My[1/p]), and let n > 0 be such that
nly = 0. Arguing as in the proof of Proposition 1.9.1, this implies
that the cohomology sheaves of both C" and G' are killed by some
possibly larger integer m prime to p. We have an exact triangle

[0—>G']—>X—>[(J'—>O]i1>

which leaves us to show that [0 — G| is in the essential image of C'. Let
q be the smallest integer such that G? # 0: we have an exact triangle

{GI > Imd"} - G = {0 G /Imd! —» ...} 5

(here we use curly braces in order to avoid confusion with the square
braces used for 1-motives). By descending induction on ¢, the right
term is in the essential image, hence we are reduced to the case where
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G is of length 1. Then d? : G — G9! is epi and p := Ker d? is finite
and locally constant. Consider the diagram in K°(Mg,,[1/p])

0 G1 0 G4 Ly G4 Ly 0
[L—= L]« [I= 0]« =1]=[t =]
0 Gatl 14 G4 Lo G4 Lo 0

where Ly — Ly is a resolution of u by lattices (see proof of a)). Clearly
all three maps are quasi-isomorphisms, which implies that the left ob-
ject is quasi-isomorphic to the right one on D®(M[1/p]). O

1.11.2. Corollary. Let A be a subring of Q containing 1/p. Then the
natural functor

D*(My[1/p]) @ A — D*(M; ® A)

is an equivalence of categories. These categories are idempotent-com-
plete for any A.

Proof. By Proposition B.4.1, this is true by replacing the category
Mi[1/p] by tM;[1/p]. On the other hand, the same argument as above
shows that the functor D*(M;® A) — D°(*M; ® A) is an equivalence.
This shows the first statement; the second one follows from the fact
that D of an abelian category is idempotent-complete. U

1.12. Discrete sheaves and permutation modules. The following
proposition will be used in §2.6.a.

1.12.1. Proposition. Let G be a profinite group. Denote by D°(G) the
derived category of finitely generated (topological discrete) G-modules.
Then D(G) is thickly generated by Z-free permutation modules.

Proof. The statement says that the smallest thick subcategory T of
D?%(@) which contains permutation modules is equal to D%(G). Let M
be a finitely generated G-module: to prove that M € T, we immedi-
ately reduce to the case where G is finite. Let M = M /Miors. Realise
M®Q as a direct summand of Q[G]™ for n large enough. Up to scaling,
we may assume that the image of M in Q[G]" is contained in Z[G]"
and that there exists a submodule N of Z[G]" such that M NN = 0
and M @ N is of finite index in Z[G]". This reduces us to the case
where M is finite. Moreover, we may assume that M is (-primary for
some prime /.
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Let S be a Sylow /-subgroup of GG. Recall that there exist two inverse
isomorphisms

@ Z[G] ®Z[S] M ;> HOIHZ[S] (Z[G], M)

~ Jgm ifyge S
plg@m)(y) = {0 if g ¢ 5.

w : Homz[g] (Z[G], M) ;> Z[G] ®Z[S] M
v = g e ).

geS\G
On the other hand, we have the obvious unit and counit homomor-
phisms

n: M — Homgs)(Z[G], M)

n(m)(g) = gm
e : Z|G] ®zg M — M
e(g ®@m) = gm.
It is immediate that
copon=(G:5S).

Since (G : S) is prime to ¢, this shows that M is a direct summand
of the induced module Z[G] ®z5) M ~ Homgs)(Z[G], M). But it is
well-known (see e.g. [100, §8.3, cor. to Prop. 26|) that M, as an
S-module, is a successive extension of trivial S-modules. Any trivial
torsion S-module has a length 1 resolution by trivial torsion-free S-

modules. Since the “induced module" functor is exact, this concludes
the proof. O

1.13. Cartier duality and 1-motives with cotorsion. Recall that
the Cartier duality between tori and lattices extends to a perfect duality
between discrete group schemes and groups of multiplicative type. We
now extend this to the framework of 1-motives, introducing a new
category ; Mi:

1.13.1. Definition. We denote by ;M5 the full subcategory of Mg,
of complexes of group schemes [L — G] such that L is a lattice and by
My its localisation with respect to quasi-isomorphisms. An object of
M is called a 1-motive with cotorsion.

We shall need the following lemma:

1.13.2. Lemma. For any G € Gsap, Grea 15 an extension of an abelian
variety by a group of multiplicative type.
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Proof. We may assume G reduced. Let G = G C G be the connected
component of the identity. The quotient G/G’ is finite and étale. Let n
be its order. If G’ is an extension of an abelian variety A by a torus T,
then multiplication by n on G/T induces an epimorphism G/T—»A.
Composing with G — G/T, we get an epimorphism G—»A, whose
kernel is an extension of a finite étale group by 7. U

Recall that Deligne [35, §10.2.11-13| (c¢f. [12, 1.5]) defined a self-
duality on the category M, that he called Cartier duality. The fol-
lowing facts elucidate the introduction of the category ;M;.

1.13.3. Lemma. Let I" be a k-group of multiplicative type, L its Cartier
dual and A a k-abelian variety. We have a Galois-equivariant isomor-
phism

7 Ext(A, ) = Hom(L, Pic"(A))
given by the canonical “pushout” mapping. Here the Hom and Ext are
computed in the category Geap (k).

Proof. Displaying L as an extension of Lg by L, denote the corre-
sponding torus by 7 := Hom(Lg, G,,) and let F':= Hom(Lyo, G,,) be
the dual finite group. We obtain a map of short exact sequences

0 — Ext(A,T7) — Ext(A, ) — Ext(A, F) — 0

Tfrl Tl TtorJ(
0 — Hom(Lg, Pic’(A4))—Hom(L, Pic’(A))—Hom( L., Pic’(A)) — 0.
Now 7, is an isomorphism by the classical Weil-Barsotti formula, i.e.
Ext(A,G,,) = Pic"(A), and 7y, is an isomorphism since the Néron-
Severi group of A is free: Hom(Li,, Pic’(A)) = Hom(Li,, Pic(A)) =
HY(A,F) = Ext(A, F) (cf [78, I11.4.20]). O

1.13.4. Lemma. Cartier duality on My (k) extends to a contravariant
additive functor

() M (k) — M (R)
which sends a q.i.to a q.i.

Proof. The key point is that Extg ¢ (—,Gy,) vanishes on discrete
group schemes (cf. |78, 111.4.17]). All Hom and Ext in this proof
are computed either in Gy, (E) or in Mgy, (E)

To define the functor, we proceed as Deligne, loc. cit. (see also [12,
1.5]): starting with M = [L = A] € *tMS(k), for A an abelian variety,
let G* be the extension of the dual abelian variety A* by the Cartier
dual L* of L given by Lemma 1.13.3 (note that G* € Gep(k)). We

u

define M* = [0 — G*] € ;JMST(k). For a general M = [L — G] €
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EMEE(K), with G an extension of A by T', the extension M of [L — A
by the toric part [0 — T provides the corresponding extension G" of
A’ by L* and a boundary map

w* : Hom(T, G,,) — Ext([L = A],[0 = G,.]).

Lemma 1.13.3 identifies the right hand side with G™(k); this defines
M* € (MST(k). This construction is clearly contravariant in M.

For a quasi-isomorphism M = [L = G]—M' = [L/ i G'] with
kernel [ = F] for a finite group F, cf. (C.2.1), the quotient [L —

Al (L U A'| has kernel [F—»F4| where F,:= Ker(A—»A’). The
commutative diagram of exact sequences

0 — Hom(7",G,,) — Hom(T,G,,) — Hom(Fr,G,,)—0

ol ‘| I

H/

0 — Bxt([L/ 5 A'),Gpn)—Ext([L = A], Gp)—Ext([F—F4),G,,) — 0
is then equivalent to an exact sequence in Mg,

0> M"=> M —[F=F]=0
with F” the Cartier dual of Fr:= Ker(T—T"). O

1.13.5. Proposition. a) The functor of Lemma 1.13.4 induces an anti-
equivalence of categories

()" Mu1/p] — My[1/p).

b) The category «Mi[1/p] is abelian; the functor of a) and its quasi-
inverse are exact.

c) Cartier duality on My[1/p] is an ezxact functor, hence induces a
triangulated self-duality on D°(M[1/p]).

Proof. a) The said functor exists by Lemma 1.13.4, and it is clearly
additive. Let us prove that it is i) essentially surjective, ii) faithful and
iii) full.

i) Let M = [L — G] € JMSE[1/p]. Since G/Gheq is killed by a power
of p, the map [L — Gieq| = [L — G] is an isomorphism, hence we may
assume G reduced. Applying Lemma 1.13.2 to G and proceeding as
in the proof of Lemma 1.13.4, we construct an object N € *MST[1/p],
and a direct computation shows that N* is quasi-isomorphic to M.
(Note that N is well-defined only up to a q.i. because we have to make
a choice when applying Lemma 1.13.2.)

ii) We reduce to show that the functor of Lemma 1.13.4 is faithful
by using that the duals of Propositions C.2.3 and C.2.4 are true in
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+JMST[1/p] (dual proofs). By additivity, we need to prove that if f :
My — My is mapped to 0, then f = 0. But, by construction, f* sends
the mutiplicative type part of M7 to that of M.

111) Let MO = [LO — Go], M1 = [Ll — Gl] in tMﬁﬂ[l/p], and let
f My — Mg be (for a start) an effective map. We have a diagram

0 > Iy G > Al > 0
fcl
0 » Ty G > A 0

where M = [L, — G}, A} is the dual of the abelian part of M; and I';
is the dual of L;. If fo maps I'1 to I'g, using Lemma 1.13.3 we get an
(effective) map ¢ : My — M such that ¢* = f. In general we reduce
to this case: let pu be the image of fo(I'y) in Ajf: this is a finite group.
Let now A}, = Aj/u, so that we have a commutative diagram

0 > T Gy > Aj 0
Lol
0 s Ty G s Al > 0

where pn = Ker(Aj — A)) = Coker(I'y — I';). By construction, fq
induces maps fr: 'y = 'y and fu : A} — AS.

Consider the object My = [Ly — Go] € 'MST[1/p] obtained from
(Ly, Ty, AY) and the other data by the same procedure as in the proof
of Lemma 1.13.4. We then have a q.i. s : My — M, with kernel [ = p]
and a map ¢ : My — M induced by (fr, fr, fa), and (gs™1)* = f.

If fis a q.i., clearly g is a q.i.; this concludes the proof of fullness.

b) Since ‘M [1/p] is abelian, ;M;[1/p] is abelian by a). Equivalences
of abelian categories are automatically exact.

¢) One checks as for *M;[1/p] that the inclusion of M;[1/p] into
+M1[1/p] induces the exact structure of M;[1/p]. Then, thanks to
b), Cartier duality preserves exact sequences of M;[1/p|, which means
that it is exact on M;[1/p]. O

1.13.6. Remark. Cartier duality does not preserve the strong exact

structure of Remark 1.9.4. For example, let A be an abelian variety,

a € A(k) a point of order m > 1 and B = A/(a). Then the sequence
0[Z—022Z5 A —0— B —o,

with f(1) = a, is exact in the sense of Definition 1.9.2 but not in the

sense of Remark 1.9.4. However, its dual

0—-[0—-B1—=[0—-G—[0—G,]—0
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is exact in the strong sense. Taking the Cartier dual of the latter
sequence, we come back to the former.

Dually to Theorem 1.11.1, we now have:

1.13.7. Theorem. The natural functor My[1/p] — M[1/p] is fully
faithful and induces an equivalence of categories

D" (Mu[1/p]) = D*(:Mu[1/p]).

Moreover, Cartier duality exchanges "My[1/p] and ;M[1/p] inside the
derived category D°(M,[1/p]).

Proof. This follows from Theorem 1.11.1 and Proposition 1.13.5. [

1.13.8. Notation. For C € D"(M[1/p]), we write 'H"(C) (resp.
+H"(C) for its cohomology objects relative to the t-structure with heart
EM1[1/p] (resp. «My[1/p]). We also write ‘H,, for "H™™ and H,, for
JH"

Thus we have two t-structures on D’(M;[1/p]) which are exchanged
by Cartier duality; naturally, these two t-structures coincide after ten-
soring with Q. In Section 3, we shall introduce a third ¢-structure, of
a completely different kind: see Corollary 3.10.2.

We shall come back to Cartier duality in Section 4.

1.14. How not to invert p. This has been done by Alessandra Ber-
tapelle [16]. She defines a larger variant of ‘M; by allowing finite
connected k-group schemes in the component of degree 0. Computing
in the fppf topology, she checks that the arguments provided in Ap-
pendix C carry over in this context and yield in particular an integral
analogue to Theorem C.5.3. Also, the analogue of (1.9.3) is fully faith-
ful integrally, hence an exact structure on My; she also checks that the
analogue of Theorem 1.11.1 holds integrally.

In particular, her work provides an exact structure on M, hence
an integral definition of D?(M;). One could check that this exact
structure can be described a prior: using Proposition 1.9.1 and Lemma
1.9.3, and working with the fppf topology.

It is likely that the duality results of §1.13 also extend to Bertapelle’s
context. See also [93].

2. UNIVERSAL REALISATION

The derived category of 1-motives up to isogeny can be realised in Vo-
evodsky’s triangulated category of motives. With rational coefficients,
this is part of Voevodsky’s Pretheorem 0.0.18 in [105] and claimed in
[109, Sect. 3.4, on page 218|. Details of this fact appear in Orgogozo



38 LUCA BARBIERI-VIALE AND BRUNO KAHN

[85]. In this section we give a Z[1/p|-integral version of this theorem,
where p is the exponential characteristic of k, using the étale version
of Voevodsky’s category.

2.1. Statement of the theorem. By (1.9.2), any l-motive M =
[L — G] yields a complex of objects of HI,. This defines a functor
(2.1.1) My[1/p] — DM,

M — M[1/p].

2.1.1. Definition. We denote by DM;ﬁljét the thick subcategory of

Dl\/[e_ffét generated by the image of DM;ﬁl under the functor

a® : DM — DM,
of Corollary 1.8.5. For n > 0, we write d<, DM . for the thick
subcategory of DMgf;,ét generated by motives of smooth varieties of
dimension < n (cf. [109, §3.4]).

2.1.2. Theorem. Let p be the exponential characteristic of k. The
functor (2.1.1) extends to a fully faithful triangulated functor

T: D"(Mi[1/p]) = DM,

where the left hand side was defined in §1.9. Its essential image is
d<; DMSE We also have

T(D"(Mo[1/p])) = d<o DM;,

gm,ét
with respect to the full embedding D*(My[1/p]) — D°(Mi[1/p]) of
Theorem 1.11.1.

The proof is in several steps.

2.2. Construction of 7. We follow Orgogozo [85]. Clearly, the em-
bedding (1.9.2) extends to a functor
C* (M [1/p]) — CO(HI ).

By Lemma A.2.1, we have a canonical functor C°(HIZ, [0’1}) Iy DP(HIL,).

To get T, we are therefore left to prove

2.2.1. Lemma. The composite functor

Tot

C*(Mu[1/p]) — C*(HIZ V) = D'(HI,)
factors through D°(M,[1/p]).
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Proof. Tt is a general fact that a homotopy in C*(M;[1/p]) is mapped
to a homotopy in C*(HI5 ), and therefore goes to 0 in DP(HIS,), so
that the functor already factors through K°(M;[1/p]). The lemma
now follows from Lemma 1.10.1. U

2.3. Full faithfulness of T'. It is sufficient by Proposition B.2.4 to
show that T'® Q and T}, are fully faithful.

For the first fact, we note that, using Corollary 1.11.2, T'® Q factors
through the functor

Ty : D'(Mu(k) ® Q) — DM, (k; Q)
studied in [85], via the full embedding
DM, (k; Q) — DM (k) ® Q.

—ét
For the reader’s convenience, we sketch the proof given in [85, 3.3.3
ff] that Tg is fully faithful: it first uses the equivalence of categories

DM (k; Q) — DM, (k; Q)
of [109, Prop. 3.3.2]. One then reduces to show that the morphisms
Ext’(M, M’) — Hom(Tot(M), Tot(M")[i])

are isomorphisms for any pure 1-motives M, M’ and any ¢ € Z. This is
done by a case-by-case inspection, using the fact [109, 3.1.9 and 3.1.12]
that in DM (k; Q)

Hom (M (X),C) = H

Zar

(X,0)

for a bounded complex C' of Nisnevich sheaves and a smooth variety
X. The key points are that 1) for such X we have H}, (X,G,,) = 0 for
i > 1 and for an abelian variety A, Hy (X, A) = 0 for i > 0 because
the sheaf A is flasque, and 2) that any abelian variety is up to isogeny
a direct summand of the Jacobian of a curve. This point will also be
used for the essential surjectivity below.

For the second fact, the argument in the proof of [109, Prop. 3.3.3
1] shows that the functor DMeffét — D~ (Shv((Spec k)s)) which takes
a complex of sheaves on Sm(k)e to its restriction to (Speck)s is an
equivalence of categories on the full subcategories of objects of prime-

to-p torsion. The conclusion then follows from Theorem 1.11.1 b).

2.4. Gersten’s principle. We want to formalise here an important
computational method which goes back to Gersten’s conjecture but
was put in a wider perspective and systematic use by Voevodsky. For
the étale topology, it can be used as a substitute to proper base change.
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2.4.1. Proposition. a) Let C' be a complex of presheaves with trans-
fers on Sm(k) with homotopy invariant cohomology presheaves. Sup-
pose that C'(K) := hﬂk(U):K C(U) is acyclic for any function field K /k.
Then the associated complex of Zariski sheaves Cyy, 1s acyclic.

b) Let f : C'— D be a morphism of complex of presheaves with transfers
on Sm(k) with homotopy invariant cohomology presheaves. Suppose
that for any function field K/k, f(K) : C(K) — D(K) is a quasi-
isomorphism. Then fza. : Czar — Dyzar 1S a quasi-isomorphism.

¢) The conclusions of a) and b) hold for if C, D € DM‘iffét and if their
hypotheses are weakened by replacing K by K, a separable closure of
K.

Proof. a) Let F' = H?(C) for some ¢ € Z, and let X be a smooth
k-variety with function field K. By [111, Cor. 4.18], F(Ox ) — F(K)
for any x € X, hence Fz,, = 0. b) follows from a) by considering the
cone of f. ¢) is seen similarly by observing that for any étale sheaf F'
and any function field K /k, the map F(K) — F(K,) is injective. [

2.5. An important computation. Recall that the category DME’Eét
is provided with a partial internal Hom denoted by Hom,, defined on
pairs (M, M") with M € DMgi,éﬁ it is defined analogously to the one

of [109, Prop. 3.2.8| for the Nisnevich topology.® We need:

2.5.1. Definition. Let X € Sch(k). We denote by m(X) the universal
étale k-scheme factorising the structural morphism X — Speck.

(The existence of my(X) is obvious, for example by Galois descent:
see [40, Ch. I, §4, no 6, Prop. 6.5].)

2.5.2. Remark. It follows from Hensel’s lemma that 7(X) — mo(Y)
for any nilimmersion X < Y (a closed immersion defined by a nilpotent

ideal sheaf).

2.5.3. Lemma. Suppose X is integral, with function field K. Then
there is a canonical epimorphism Spec E — mo(X), where E is the
algebraic closure of k in K; if X is normal, this is an isomorphism.

(For a counterexample when X is not normal, consider the k-scheme
AL/ ~ where F is a quadratic extension of k and ~ pinches two con-
jugate E-rational points, e.g. the affine conic 2? 4+ y* = 0 over k = R.)

Proof. Let f : X — my(X) be the canonical morphism. Since X is
connected, f factors through a component y = Spec F' of m(X), hence

8Note that Hom,, (M, M") really belongs to DMef

¢t Dy the same argument as in
part (2) of the proof of Theorem 1.8.4.
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y = mo(X) by universality. The morphism X — y is dominant so we
have an inclusion of fields £ C F' C K, hence F' C E. This provides a
surjective map Spec B — m(X). Conversely, if X is normal, the uni-
versal property of normalisation implies that the structural morphism
X — Speck factors through Spec E. O

Let X be a smooth projective k-variety of dimension d. In [109, Th.
4.3.2|, Voevodsky defines the “class of the diagonal”

Ax € HomDMggﬂ(M(X) ® M(X),Z(d)[2d])

by apparently relying on resolution of singularities. Since we don’t want
to use resolution of singularities at this stage, let us recall that Ax can
be defined elementarily using [109, Prop. 2.1.4], which constructs a
®-functor from the category of effective Chow motives to DM;?H (cf.
(5.5.1) below). We have:

2.5.4. Proposition. The morphism in Dl\/[gﬁ1
M(X) — Hom(M (X), Z(d)[2d))
induced by the class Ax is an isomorphism.

Proof. This is proven in [109, Th. 4.3.2 and Cor. 4.3.6] under resolution
of singularities. In [53, App. B, it is explained how to avoid resolution
of singularities: recall that it uses the rigidity of the category of Chow

motives plus the cancellation theorem, which is now known over any
perfect field by [110]. O

We shall apply this in the next proposition when X is a curve C:
using the functor a® of Corollary 1.8.5, we then get a class

(2.5.1) Ac € Hompyer  (Met(C) ® Mar(C), Zaa(1)[2]):

2.5.5. Proposition. Let f : C — Speck be a smooth projective k-
curve. In DMe_ffét :

a) There is a canonical isomorphism
Homg (M (C), Zai(1)[2]) = Rt f.Gm[1/p][1]
(see Definition 1.8.6 for Mg (C) and Zg(1)).
b) We have
BryoynGm[1/p] - for ¢ =0

R f.Gp[1/p] = Ec/k[l/p] Jorq=1
0 else.
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Here, Ry oy denotes the Weil restriction of scalars from mo(C') to k.
¢) The morphism

M (C) = Homg (Mo (C), Zer(1)[2])
induced by the class Ac from (2.5.1) is an isomorphism.

This is [85, Cor. 3.1.6] with three differences: 1) the fppf topol-
ogy should be replaced by the étale topology; p must be inverted (cf.
Corollary 1.8.5); 3) the truncation is not necessary since C'is a curve.

Proof. a) is the étale analogue of [109, Prop. 3.2.8] since Zg(1) =
Gm[1/p][—1] (see Lemma 1.8.7) and f*(G,, ;) = G, o for the big étale
sites. In b), the isomorphisms for ¢ = 0, 1 are clear; for ¢ > 2, we reduce
by Gersten’s principle (Prop. 2.4.1) to stalks at separably closed fields,
and then the result is classical [SGA4, IX (4.5)].

It remains to prove c¢). By b) and [77, Cor. 4.2], the natural mor-
phism

(2.5.2) a’Homy, (M (C),Z(1)) — Homy, (o* M (C), Zg (1))
is an isomorphism. Hence the result by Proposition 2.5.4. U

2.6. Essential image. We proceed in two steps:

2.6.a. The essential image of T' is contained in T = d<; DMgffmét. It
is sufficient to prove that T'(N) € T for N a 1-motive of type [L — 0],
0 — G] (G a torus) or [0 — A] (A an abelian variety). For the
first type, this follows from Proposition 1.12.1 which even shows that
T([L — 0]) € d<o DMgﬁLét. For the second type, Proposition 1.12.1
applied to the character group of G shows that T'([0 — G]) is contained
in the thick subcategory generated by permutation tori, which is clearly
contained in 7.

It remains to deal with the third type. If A = J(C) for a smooth pro-
jective curve C' having a rational k-point z, then T'([0 — A]) = A[—1]
is the direct summand of M (C)[—1] (determined by x) corresponding
to the Chow motive h'(C), so belongs to 7. If A — A’ is an isogeny,
then Proposition 1.12.1 implies that A[-1] € T <= A'[-1] € T. In
general we may write A as the quotient of a jacobian J(C'), where C
is an ample curve on A passing through the origin if % is infinite (if
not, reduce to this case by the standard argument using transfers). Let
B be the connected part of the kernel: by complete reducibility there
exists a third abelian variety B’ C J(C') such that B+ B’ = J(C') and
BN B is finite. Hence B® B’ € T, B’ € T and finally A € T since it

is isogenous to B'.
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2.6.b. The essential image of T contains T . It suffices to show that
M (X) is in the essential image of T" if X is smooth projective irre-
ducible of dimension 0 or 1. Let E be the field of constants of X. If
X = Spec EJ, M (X) is the image of [Rp/;Z — 0]. If X is a curve,
we apply Proposition 2.5.5: by c¢) it suffices to show that the sheaves
of b) are in the essential image of 7. We have already observed that
Rp/1Gy[1/p] is in the essential image of T'. We then have a short exact
sequence of étale sheaves

0 = Rp/d (X)[1/p] = Picy,[1/p] = RenZ[1/p] — 0.

Both the kernel and the cokernel in this extension belong to the
image of T', and the proof is complete. O

2.7. The universal realisation functor.

2.7.1. Definition. Define the universal realisation functor

Tot : D*(M,[1/p]) — DM<E

gm,ét

to be the composition of the equivalence of categories of Theorem 2.1.2
and the embedding d<; DM;H & = DM

m gm,ét*

2.7.2. Remark. In view of Theorem 1.13.7, the equivalence of Theorem
2.1.2 yields two “motivic" t-structures on d<; DMgfmét: one with heart
tMi[1/p] and the other with heart ;M;[1/p]. In the next section we
shall describe a third one, the homotopy t-structure.

3. 1-MOTIVIC SHEAVES AND THE HOMOTOPY t-STRUCTURE

In this section, we introduce the notion of 1-motivic sheaf: they form
an abelian category Shvy; which turns out to be the heart of a t-structure
on D°(M,[1/p]) induced by the homotopy t-structure of DMiﬂjét via the
embedding of Theorem 2.1.2: see Theorem 3.10.1. The main technical
result, Theorem 3.14.2, is that Shv, is well-behaved under internal Ext,
see also Corollary 3.14.4: we shall make use of this in the next section.

A non-finitely generated version of Shv; is studied in [8] by com-
pletely different methods. In particular, |8, 1.3.4| shows that any sub-
sheaf of a 1-motivic sheaf in this generalised sense is 1-motivic. This
is false for Shvy, as shown by the example G(k) C G for G a nonzero
semi-abelian variety when k is infinite: here G(k) is identified to a
constant subsheaf of G. (We thank the referee for pointing this out.)

Recall that we denote by ES the category of abelian étale sheaves
on Sm(k). From §3.1 to §3.8 we work in ES. The category EST only
appears from §3.9 onwards.
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3.1. Some useful lemmas. This subsection is in the spirit of [96, Ch.
VII|. Let S be a base scheme, G be a commutative S-group scheme,
and let us write G for the associated sheaf of abelian groups for a so far
unspecified Grothendieck topology (c¢f. 1.4.2). Let also F be another
sheaf of abelian groups. We then have:

e Ext!(G, F) (an Ext of sheaves);

e H'(G,F) (cohomology of the scheme G);

° HQ(G, F): this is the homology of the complex

FG) S FGxG) S F(GxGxG)
where the differentials are the usual ones.
3.1.1. Proposition. There is a complex
Ext' (G, F) % HY(G,F) % HY(G x G, F)

and an injection
0 — Kerb % T (G, F).

Proof. Let us first define the maps a, b, c:

e c is given by pj + p5 — p*, where p is the group law of G.

e For b: let £ be an extension of G by F. We have an exact
sequence

E(G) = G(G) — HY G, F).
Then b([€]) is the image of 1¢ by the connecting homomor-
phism. Alternatively, we may think of £ as an F-torsor over G
by forgetting its group structure.

e For a: we have b([€]) = 0 if and only if 15 has an antecedent
s € £(G). By Yoneda, this s determines a section s : G —
& of the projection. The defect of s to be a homomorphism
gives a well-defined element of FZ(G,}" ) by the usual cocycle
computation: this is a([£]).

The map a is clearly injective. We have cob = 0 because pj+p; = p*
as maps Ext(G, F) — Ext(G x G, F) = Ext(G, F) ® Ext(G, F). O

3.1.2. Proposition. a) Suppose that the map
F(G&) e F@) “8 7Gx Q)

is surjective. Then ﬁ2(G,}—) = 0.
b) Suppose that F(S) — F(G") for r = 1,2. Then the condition of
a) is satisfied and the complex of Proposition 3.1.1 is acyclic.
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Proof. a) Let v € F(GXG) be a 2-cocycle. We may write v = pja+p3[.
The cocycle condition implies that o and [ are constant. Hence 7 is
constant, and it is therefore a 2-coboundary (of itself).

b) The first assertion is clear. The second one follows from a direct
computation identical to the one in [96, Ch. VIII, §3, no 15, proof of
Th. 5]. O

3.1.3. Example. F locally constant, G smooth connected, the topology
= the étale topology. Then the conditions of Proposition 3.1.2 are
verified. We thus get an isomorphism

Ext' (G, F) — HL (G, F)mu
with the group of multiplicative classes in Hj (G, F).

3.1.4. Lemma. Let G be smooth connected and L be a locally constant

Z-constructible étale sheaf. Then Hom gs(G, L) = 0 and Homgs(G, L) =
0. If L has torsion-free geometric fibres, then Extpg(G, L) = 0 and

Extrg(G, L) = 0.

Proof. By the local to global Ext spectral sequence, it suffices to show
the statement for Hom and Ext'. This reduces us to the case L = Z
or Z/m. Then the first vanishing is obvious and the second follows
from Example 3.1.3 and the vanishing of H}, (G x U, Z) for any smooth
k-scheme U (see [SGA4, IX 3.6]). O

3.1.5. Lemma. For G over S = Spec(k) let £ € Extig(G,G,,) and
g € G(k). Denote by 7, the left translation by g. Then 7,;b(E) = b(E).
Here b is the map of Proposition 3.1.1.

Proof. By Hilbert’s theorem 90, g lifts to an h € £(k). Then 73, induces
a morphism from the G,,-torsor b(£) to the Gy-torsor 7;b(): this
morphism must be an isomorphism. U

3.2. Breen’s method. For the proof of Theorems 3.4.1 and 3.14.2 be-
low we shall need the following proposition, which unfortunately cannot
be proven with the above elementary methods.

3.2.1. Proposition. Let G be a smooth commutative algebraic k-group.
Let F € ES; assume that F is

(i) discrete or
(ii) represented by a semi-abelian variety.

Then, '
a) the group Extpg(G, F) is torsion for any i > 2,
b) the sheaf Extys(G,F) is p-torsion for any i > 2.
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Proof. This follows from the results and techniques of L. Breen [28]°.
In |28], Breen works with the fppf topology but his methods carry over
here without any change: see remark in loc. cit. top of p. 34. Case
(ii) can be directly read off [28]: we explain this, then treat case (i) in
some detail.

Considering the connected part G° of G, we reduce to the case where
G is connected, hence geometrically connected. In order to prove the
torsion claim of a), we may and do reduce to the case where k is
algebraically closed by a transfer argument; similarly for b), since this
claim is local for the étale topology.

Suppose we are in case (ii). Using Chevalley’s structure theorem for
algebraic groups, we reduce to the cases where G is of the form G,
G,, or an abelian variety and F is represented by G,, or an abelian
variety. If F is represented by G,,, then a) follows from [28, §7] if
G is an abelian variety (resp. from [28, §8] if G = G, or G,,); if F
is represented by an abelian variety, it follows from |28, §9] (even for
i > 1). This proves a) in this case.

For b), we use the fact that a) is true over any regular Noetherian
base S: this is explicitly written in [28], except in the case where F is
represented by an abelian variety (loc. cit. , §9). In this case however,
Breen uses rigidity results for an abelian variety over a field, which can
be extended over such an S by using [82, p. 116, Cor. 6.2] (or obtained
directly, as our S-group schemes come from k-group schemes). This
shows that the sheaf Extig(G, F) is torsion for i > 2. To get the p-
torsion statement, we argue as in [28, §10], using the torsion subsheaves
nG of G for m prime to p. For later use, let us repeat this argument
here: since ,,G is locally constant for the étale topology and F is m-
divisible, we have Ext{4(,,G, F) = 0 for 7 > 0 and the exact sequence

(3.2.1) Ext g (G, F) = Eutiog(G, F) ™ Ext (G, F)

yields the claimed vanishing for ¢ > 2. This proves b) in case (ii).

It remains to treat Case (i). We go back to the method of [28] that
we now summarise: using essentially the Eilenberg-Mac Lane spectrum
associated to G, Breen gets two spectral sequences 'EP? and " EP1
converging to the same abutment, with

o "EP' = Extly (G, F);
e "EY? is torsion for q # 1;

e 'EP%is the p-th cohomology group of a complex involving terms
of the form H{ (G, F).

9We thank L. Illusie for pointing out this reference.
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In case (i), it follows for example from [41, (2.1)] that H (G, F)
is torsion for any ¢ > 0: to see this easily, reduce to the case where
F is constant by a transfer argument involving a finite extension of
k. Hence 'ES? is torsion for ¢ > 0. On the other hand, since G
is geometrically connected, so are its powers G, which implies that
H°(G*,F) = H°(k,F) for any a. Since the complex giving 'Fy” is
just the bar complex, we get that 'ES° = F(k) and 'E?* = 0 for
p > 0. Thus all degree > 0 terms of the abutment are torsion, and
the conclusion follows for a). For b) we argue similarly to Case (ii),
replacing ¢ > 2 by i > 2 in (3.2.1). O

3.2.2. Remarks.

(1) The results of §3.1 could also be deduced from |[28], see its
introduction.

(2) Proposition 3.2.1 b) is false for ¢ = 2, as shown by the example
Extig(G, Z)[1/p] ~ (Q/Z)'(—1). For this computation, note
that Extpg(G,,, Z) = 0 by Lemma 3.1.4, but Extpg (G, Z/m) ~
Z/m(—1) for m prime to p if k is separably closed by Example
3.1.3.

3.3. 1-motivic sheaves.

3.3.1. Definition. 1) An étale sheaf F on Sm(k) is discrete (or 0-
motivic) if it is of the form M, where M € ‘M, is a discrete group
scheme (see Definition 1.1.2). We write Shvy C ES for the full subcat-
egory of discrete sheaves.

2) An étale sheaf F on Sm(k) is 1-motivic if there is a morphism of
sheaves

(3.3.1) GLF

where G is a semi-abelian variety and Ker b, Coker b are discrete. We de-
note by Shvy the full subcategory of ES consisting of 1-motivic sheaves.

Unfortunately, the category Shvy is not abelian if k£ has positive char-
acteristic p: multiplication by p on G,, has trivial kernel and cokernel
in Shv}, but is not an isomorphism. For this reason, we introduce:

3.3.2. Definition. Let p be the exponential characteristic of k. We
write Shvy := Shvj[1/p] and Shv; := Shvi[1/p]. We have a functor

p: Shvy — ES
F = FRZ[1/p|.

We need the following lemma, in which (—){p} denotes p-primary
torsion:
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3.3.3. Lemma. Suppose that chark = p > 0. Let Fy, Fo € Shvi. Then
the groups Homgs (Fy, Fo{p}), Homgs(Fy, Fo®Q,/Z,), Extis(Fi, Fa{p}),
Extrg(F1, Fo ® Q,/Z,) and Extpg(Fi, Fo{p}) are p-primary torsion.

Proof. By dévissage, we reduce to the case where F; is discrete or is
representable by a semi-abelian variety. The discrete case is easy and
left to the reader. Assume JF; = G for some semi-abelian variety Gj.
By dévissage, the sheaf Fo{p} is locally constant so the result follows
from Example 3.1.3. For F,®Q,,/Z,, we reduce using Proposition 3.2.1
to the crucial case F; = (5. By Yoneda’s lemma

HOHIES (Ql,Q2 ® Qp/Zp) C Qz(Gl) ® @P/ZP

hence the first case. For the second case, we use the fact that any
k-morphism from G; to G is the sum of a constant morphism and
a homomorphism (e.g. [62, Lemma 4.1]). It follows that G> ® Q,/Z,
verifies the condition of Proposition 3.1.2 a). Therefore Extrg(G,, G, ®
Q,/Z,) C H(Gy,Gy ® Q,/Z,) and we conclude again. The case of
Extiq(F1, Fo{p}) follows from Proposition 3.2.1 a). O

3.3.4. Proposition. a) In Definition 3.3.1 we may choose b such that
Kerb s torsion-free: we then say that b is normalised. We thus have
an ezact sequence

05 LS5GSFSE -0

with L, E € Shv, and L torsion-free.

b) Given two 1-motivic sheaves Fy, Fa, normalised morphismsb; : G, —
F; and a map ¢ : Fi — Fo, there exists a unique homomorphism of
group schemes o : G1 — Gy such that the diagram

Q1L>]:1

@Gl wl
Qz L Fo
commautes.
c¢) Given a 1-motivic sheaf F, a pair (G, b) with b normalised is uniquely
determined by F.
d) The functor p of Definition 3.5.2 is fully faithful.
e) In view of d), the subcategories Shvg and Shvy of ES are closed

under kernels and cokernels; hence they are abelian subcategories, and
the inclusion functors are exact.

Proof. Recall that G +— G is fully faithful when restricted to smooth
k-group schemes (Lemma 1.4.3).
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a) If Kerbd is not torsion-free, simply divide G by the image of its
torsion.
b) We want to construct a commutative diagram

O \Ll allgl bl/fl 01>E1 >O

(3.3.2) wl wal wl @El

0 y Ly —25 G, —25 F, —25 B, y 0

where L; = Kerb; and E; = Cokerb;. By Lemma 3.1.4, copb; = 0: this
proves the existence of pr. We also get a homomorphism of sheaves
G, — G,/Ly, which lifts to pg : G; — G, by Lemma 3.1.4 again,
hence ;.

From the construction, it is clear that ¢ is uniquely determined by
¢ and that ¢ is uniquely determined by ¢q. It remains to see that
¢ is unique. Let ¢}, be another choice. Then by(pa — @) = 0, hence
(¢ — ¢5)(Gy) C Lo, which implies that ¢ = .

c) Follows from b).

d) The statement is trivial in characteristic 0 (p = 1). If p > 1, we
have to show that the map

Homgs (F1, F2) @ Z[1/p] = Homgs(p(F1), p(F2))

is bijective for any JFj, F» € Shvy. Considering the morphism F;, —
p(F3), we deduce from Lemma 3.3.3 that the map

Homgs (Fi, F2)[1/p] = Homgs(F1, p(F2))[1/p] = Homps(F1, p(F2))

is bijective. Using now the morphism F; — p(Fi), the map

Homgs (p(F1), p(F2)) = Homgs(F1, p(F2))

is clearly bijective. It remains to observe that b = ca, which is left to
the reader.

e) The case of Shvy is obvious. For Shvy, we may reduce to a map ¢
as in b). We want to show that F3 = Ker p(¢) and F; = Coker p(¢) are
in p(Shvy). Let G3 = (Ker pg)? and G, = Coker pg: we get induced
maps b; : G,;[1/p] — F; for i = 3,4. An easy diagram chase shows that
Ker b; and Coker b; are both in p(Shvy). O

Here is an extension of Proposition 3.3.4 which elucidates the struc-
ture of Shv] somewhat:



50 LUCA BARBIERI-VIALE AND BRUNO KAHN

3.3.5. Theorem. a) Let SAb be the category of semi-abelian k-varieties
(cf. Definition 1.1.5). Then the fully faithful functor

SAb — Shv}
G— G
has a faithful right adjoint ~v; the counit of this adjunction is given by
(3.3.1) (with b normalised). The functor «[1/p] : Shvy — SAb[1/p] is
still faithful and right adjoint to the full embedding SAb[1/p] — Shv,;
it is “ezact up to isogenies". For a morphism ¢ of Shvi, v(¢) = ¢ is
an isogeny if and only if Ker ¢ and Coker ¢ € Shvj. In particular, ~
induces an equivalence of categories
ShV1 / ShVO ;> SAb ®@

where SAb ®Q is the category of semi-abelian varieties up to isogenies.

b) The inclusion functor Shvy — Shvy has a left adjoint my; for G LN
F € Shv] as in (3.3.1) the unit of this adjunction is given by F —
Coker b, and mo(F) = Cokerb. The functor mo[1/p] is left adjoint to
the inclusion Shvy < Shvy. The induced right exact functor

(m0)q : Shvy — Shvy ®@Q
has one left derived functor (m)g given by Kerb in (3.3.1).

Proof. For the assertions on —[1/p|, see Lemma B.1.2.

a) The only delicate thing is the exactness of v up to isogenies. This
means that, given a short exact sequence 0 - F' — F — F” — 0 in
Shvy, the sequence

0 = y(F)[1/p] = v(F)[L/p] = A(F")[1/p] = 0
is half exact and the middle homology is finite. We may reduce to the

case where the maps come from Shvy; then this follows from a chase in
the diagram

’ b/ C/

0 L —— G > F £ > 0
0— L —*» ¢ 5 F <25 E » 0
0 N a’ Q” b 2 c” B . 0

of which we summarize the main points: (1) G’ — G is injective because
its kernel is the same as Ker(L' — L). (2) G — G” is surjective because
(i) Hom(G" — Coker(E’ — FE)) = 0 and (ii) if L" — Coker(G — G") is
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onto, then this cokernel is 0. (3) The middle homology is finite because
the image of Ker(G — G") — E’ must be finite.

In b), the existence and characterisation of (m;)g follows from the
exactness of y[1/p] in a). O

3.3.6. Remark. One easily sees that the left derived functor of 7y does
not exist integrally. Rather, it exists as a functor to the category of
pro-objects of Shvy. (Actually to a finer subcategory: compare [98,
§5.3, Def. 1]).

3.4. Extensions of 1-motivic sheaves. By Proposition 3.3.4 d), we
now view Shvy and Shv; as full subcategories of ES via the functor p
of Definition 3.3.2. The aim of this subsection is to prove:

3.4.1. Theorem. The categories Shvy and Shvy are thick in ES.

Proof. By Proposition 3.3.4 e), this amounts to show that Shvy and
Shv; are stable under extensions in ES.

The statement is obvious for Shvy. Let us now show that Shv; is
closed under extensions in ES. Let Fi,F; be as in (3.3.2) (no map
given between them). As the functor p is exact and fully faithful we
have an injection Extg,, (Fo, F1) — Extyg(p(F2), p(F1)). The same
argument as in the proof of Proposition 3.3.4 d) shows that the map
Extyg(F2, F1) ® Z[1/p] — Extyg(p(F2), p(F1)) is bijective (note that
the restriction map Extpg(p(F2), p(F1)) — Extig(Fz, p(F1)) has the
inverse £ — £[1/p]). We are then left to show that the injection

(3.4.1) Extg, (Fa, F1) — Extyg(Fo, F1)[1/p]

is surjective. This is certainly so in the following special cases:

(1) Fy and F; are semi-abelian varieties;
(2) F; is semi-abelian and F; is discrete (see Example 3.1.3).

We proceed from these cases by increasing degree of complexity of
Fi, Fe. For m > 1, consider

F™ = Coker (L (MQ G, @ Ly)
so that we have two exact sequences

(lay,

0
0 > Gy )> Fm o — Li/m — 0
(alro)\

0 L1 > FM— Ql/Ll@Ll/m — 0.




52 LUCA BARBIERI-VIALE AND BRUNO KAHN

Then first one shows that (3.4.1) is surjective for (Fy, F1) = (Gy, F™).
Let us now consider the commutative diagram with exact rows associ-
ated to the second one, for an unspecified m:

(3.4.2)
EXtéhvl(Q% fm)%EXtéhvl (Gy, Gy /L1 & Ll/m>—>EXt§hv1 (Gy, L)

| l l

Exthg(Gy, F™) = Exthg(Gy, Gy /Ly @ Ly/m) - Extlg(Gy, Ly).
Note that the composition
Extpg(Gy, G /L1) = Extig(Gy, Gy /Ly ® Li/m) *= Extig(Gy, L)
coincides with the boundary map ¢ associated to the exact sequence
0—L -G, —G/L —0.

Let e € Extyg(G,,G,/L1). By Proposition 3.2.1 a), f = d(e)
is torsion. Choose now m such that mf = 0. Then there exists
¢’ € Extpg(G,, L1/m) which bounds to f via the Ext exact sequence
associated to the exact sequence of sheaves

0—>L12>L1—>L1/m—>0

Since 0™ (e, —e') = 0, (3.4.2) shows that (e, —¢’) comes from the left,
which shows that (3.4.1) is surjective for (Fy, F1) = (G, G,/ L1).
By Lemma 3.1.4, in the commutative diagram

EXtéhvl(Q%Ql/Ll) BE— EXtéhm(Qza}—l)

| |
Ethlis<Q27Q1/L1> B EXtIlES(Q%fl)

the horizontal maps are isomorphisms. Hence (3.4.1) is surjective for
Fo =G, and any F.

To conclude, let F be an extension of 5, by F; in ES. By the above,
F' =03 F is 1l-motivic as an extension of G, by Fi, and we have an
exact sequence

0= Ly —F —F— Ey,—0.

Let ¥ : G — F' be a normalised map (in the sense of Proposition
3.3.4) from a semi-abelian variety to F' and let b : G — F be its
composite with the above map. It is then an easy exercise to check
that Kerb and Coker b are both discrete. Hence F is 1-motivic. 0

3.4.2. Remark. We may similarly define 1-motivic sheaves for the fppf
topology over Speck; as one easily checks, all the above results hold
equally well in this context. This is also the case for §3.8 below.
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In fact, let ShviP™ be the category of fppf 1-motivic sheaves and
7 2 Sch(k)gppr — Sm(k)e be the projection functor. Then the functors
7* and 7, induce quasi-inverse equivalences of categories between Shv;
and Shvippf. Indeed it suffices to check that 7, 7* is naturally isomorphic
to the identity on Shvy: if F € Shvy; and we consider its normalised
representation, then in the commutative diagram

)— L —— ¢ ——rr F —— EF —0

l l ! l

0 — mo*L — 7o' — T F —— T E —— 0

the first, second and fourth vertical maps are isomorphisms and the
lower sequence is still exact: both facts follow from |78, p. 14, Th.
[11.3.9].

In particular the restriction of m, to ShviP™ is exact. Actually,
(qur*)‘Shvflppf =0 for ¢ > 0 (use same reference).

3.5. A basic example. For 7 : X — k we shall denote 7.G,,, by Gx/
and R'7,.G,, by Picy/x, both considered as sheaves on Sm(k).

3.5.1. Proposition. Let X € Sm(k), with structural morphism .
Then Gy, and Picy, are 1-motivic (i.e. m.G,u[1/p] and R'm,G,p,[1/p]
belong to p(Shvy)).

Proof. We may assume X irreducible. We shall use Theorem 3.4.1
(thickness of Shvy) repeatedly in this proof, a fact that we won’t recall.
Suppose first that X is smooth projective, with field of constants
E = my(X). Then Gy, = Ggj, and Picy,, = RgpPicy/p where
Picy, is an extension of the discrete sheaf NSy p (Néron-Severi) by
the abelian variety Eg(/ i (Picard variety). Both sheaves are clearly
1-motivic over E, and so are their restrictions of scalars to k. (Note
that this restriction of scalars is exact.)
In general, we apply de Jong’s theorem [57, Th. 4.1]: there exists a
diagram
U— X
U— X

where the horizontal maps are open immersions, X is smooth projec-
tive and the vertical map is finite étale. Then we get a corresponding
diagram of units and Pics
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0¢—Pic  «—Pick /«— @ 2+—Gp ) —Gx 0

2exPnz

(3.5.1) ”*T “*T

0<—Pic p¢—Picy ) «— @ 2—Gyp¢—Gx/p+—0
zeXMnz
with exact rows, where Z = X — U and Z = X — U. This already
shows that Gﬁ/k € Shv; and Eﬁ/k € Shv;.

Consider the Cech spectral sequence associated to the étale hyper-
cover U associated to . It yields an injection and an exact sequence

(3.5.2) 0= Gup = G i
(3.5.3) 0 — H'(U,Gopp) — Picy i Picy

where H'(U, G /i) is the cohomology of the complex

G = Gwpim = Cowyiixy/n
The pull-back maps 7* have “almost retractions” m, such that m,7* =

n where n = deg(p). Thus (3.5.2) refines to an injection

Gy — Ker(n — 7*n,)
with cokernel killed by n. Lemma 3.5.2 below then implies that Gy, €
Shvy.  Applying this to U xy U and U xy U xp U, we find that
H'(U,Gy)),) € Shvy. Similar to the above, we have a map

Picy )y, — Ker(n — m*.)
with cokernel killed by n; applying Lemma 3.5.2 again, we get Pic;;,, €
Shv;. Then we are done by considering the lower row of (3.5.1). O

3.5.2. Lemma. Let F € Shvy. Then any quotient of F which is of
finite exponent n > 0 is in Shvy.

Proof. Take ¢ = multiplication by n in (3.3.2) and use that the semi-
abelian part of F is divisible. O

3.6. Application: the Néron-Severi group of a smooth scheme.
The following extends its definition from smooth projective to smooth
varieties:

3.6.1. Definition. Let X € Sm(k).
a) Suppose that k is algebraically closed. Then we write NS(X) for the
group of cycles of codimension 1 on X modulo algebraic equivalence.
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b) In general, we define NSy ;. as the discrete étale sheaf associated to
the Gal(k/k)-module NS(X ®y k).

Note that by the rigidity of cycles modulo algebraic equivalence,
NSx/x(U) = NS(X x; k(U))°

if U € Sm(k) is irreducible, k(U) is a separable closure of k(U) and

G = Gal(k(U)/k(U)).

3.6.2. Proposition. The natural map e : Picy,, — NSxy identifies
NSx/x with mo[1/p](Picx ) (c¢f. Theorem 3.5.5 b)). In particular,
NSx/x € Shvo. (Here we use that Picy/, € Shvy, see Proposition
3.5.1.)

Proof. Proposition 3.7.2 below implies that e induces a map

which is evidently epi. But let @}/k := Kere: by [23, Lemma 7.10],

Pic’(X7) = Pick /k(E) is divisible, which forces € to be an isomorphism
in ShVo. O

3.6.3. Remarks. 1) Proposition 3.6.2 implies in particular that NS(X)[1/p]
is a finitely generated Z[1/p]-module for any X € Sm(k) if k is alge-
braically closed (¢f. [60, Th. 3| for another proof of a stronger result).

2) In [8, Cor. 1.2.5], the functor my is extended to the category EST,
with values in the category of ind-objects of Shvo. When applied to
the étale sheaf C_HTXe/tk associated to the relative r-th Chow presheaf of

X, one gets NST)’;;tk, the étale sheaf associated to the relative presheaf
of cycles of codimension r modulo algebraic equivalence [8, Theorem
3.1.4]. This generalises Proposition 3.6.2.

3.7. Technical results on 1-motivic sheaves.

3.7.1. Proposition. The evaluation functor
ev : Shvy — Mod-Z[1/p]

F o= F(k)[1/p]

to the category Mod-Z[1/p] of Z[1/p]-modules is exact and faithful,
hence (cf. [27, Ch. 1, p. 44, prop. 1]) “faithfully exact”: a sequence €
is exact if and only if ev(E) is exact.

Proof. The exactness of ev is clear. For faithfulness, let ¢ : F; — F5

be such that ev(p) = 0. In ev(3.3.2), we have wa(G,(k)) C Lo(k);

since the former group is divisible and the latter is finitely generated,
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ev(pg) = 0. Hence pg = 0. On the other hand, ev(pg) = 0, hence
wp = 0. This implies that ¢ is of the form ¢, for ¢ : £} — F,. But
ev(1)) = 0, which implies that ¢ = 0. O

The following strengthens Theorem 3.3.5 b):

3.7.2. Proposition. a) Let G be a connected commutative algebraic k-
group and let E be a Gal(k/k)-module, viewed as an étale sheaf over
Sm(k) (E is not supposed to be constructible). Then Hom(G, F) = 0.
b) Let F € Shv] and E as in a). Then any morphism F — E factors
canonically through my(F).

Proof. a) Thanks to Proposition 3.7.1 we may assume k algebraically
closed. By Yoneda, Hom(G, E) is a subgroup of E(G) (it turns out
to be the subgroup of multiplicative sections but we don’t need this).
Since E(k) — E(G), any homomorphism from G to F is constant,
hence 0.

b) follows immediately from a) and Proposition 3.3.4. U

3.7.3. Proposition. The fully faithful functor

© AbS — Shv*
G— G

has a left adjoint Q). (See Definition 1.1.5 for ' AbS.)

Proof. Let F € Shv] with normalised representation

(3.7.1) 0—2L—>GSF—E—=0.

As the set of closed subgroups of H C G is Artinian, there is a
minimal A such that the composition

L—-G—G/H

is trivial. Then F/b(H) is represented by an object Q(F) of * AbS
and it follows from Proposition 3.3.4 b) that the universal property is
satisfied. (In other words, Q(F) is the quotient of F by the Zariski
closure of L in G.) O

3.7.4. Proposition. Let f : F; — F5 be a morphism in Shvi. Assume
that for any n > 1, f is an isomorphism on n-torsion and injective
on n-cotorsion. Then f is injective with lattice cokernel. If f is even
bijective on n-cotorsion, it is an isomorphism.
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Proof. a) We first treat the special case where F; = 0. Consider mul-
tiplication by n on the normalised presentation of F5:

0 > L > G > Fo > B 0
o ol ]
0 > L >y G y Jo >y B > 0.
Since L is torsion-free, ng is injective for all n, hence G = 0 and
Fo = E. If moreover multiplication by n is surjective for any n, we

have F5 = 0 since F is finitely generated.
b) The general case. Split f into two short exact sequences:

O—=-K—=F =10
0—=1—F,—C—N0.

We get torsion/cotorsion exact sequences

0=, K=, Fi—=>d—>K/n—>F/n—>I/n—->0
0—nl =, Fo—,C—I/n— Fy/n—C/n—0.

~

A standard diagram chase successively yields ,K = 0, ,F; —
ol — o Fo, Fi/n — I/n, K/n = 0 and ,C = 0. By a), we find
K =0 and C a lattice, which is what we wanted. O

3.8. Presenting 1-motivic sheaves by group schemes. In this
subsection, we give another description of the category Shvy; it will
be used in the next subsection.

3.8.1. Definition. We denote by S$T the full subcategory of ! AbSI=10
consisting of those complexes F. = [F} — Fj] such that
(i) F; is discrete (i.e. in *My);
(ii) Fp is of the form Lo & G, with Ly € “M, and G € SAb;
(iii) Fy — Fp is a monomorphism;
(iv) Ker(Fy — Lg) is free.
We call ST the category of presentations.

We shall view S¢T as a full subcategory of Shvf[fl’o] via the functor

G — G which sends a group scheme to the associated representable
sheaf. In this light, F may be viewed as a presentation of F := Hy(F).
In the next definition, quasi-isomorphisms are also understood from
this viewpoint.

3.8.2. Definition. We denote by X the collection of quasi-isomorphisms
of S¢f, by giﬂ the homotopy category of S (Hom groups quotiented
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by homotopies) and by S; = Z_lgiﬁ the localisation of giﬁ with respect
to (the image of) X.

The functor F. — Hy(F) induces a functor
(381) ho : ST — ShV’{ .
Let F = (F1, Lo, G) be a presentation of F € Shv]. Let L =

Ker(Fy — Ly) and E = Coker(F; — Lg). Then we clearly have an
exact sequence

(3.8.2) 0-L—-GC—-F—E—QO.

3.8.3. Lemma. Let F. = (Fy, Lo, G) € SST. Then, for any finite Galois
extension EL]{: sucﬁ that Ly is constant over l, there exists a q.i. F. — F,
with F. = [F1 %% Ly ® G] such that Ly is a free Gal({/k)-module.

Proof. Just take for Ly a free module projecting onto Ly and for F —
Ly the pull-back of F| — Lj. O

3.8.4. Lemma. The set ¥ admits a calculus of right fractions within

glﬁ: in the sense of (the dual of) |45, Ch. 1, §2.3].
Proof. The statement is true by Lemma A.2.2 if we replace S§T by

Shv’{[_l’o]; but one easily checks that the constructions in the proof of
Lemma A.2.2 preserve S§T. U

3.8.5. Proposition. The functor hy of (3.8.1) is an equivalence of
categories. In particular, Si[1/p| is abelian.

Proof. Step 1. hg is essentially surjective. Let F € Shv] and let
(3.8.2) be the exact sequence attached to it by Proposition 3.3.4 b).
We shall construct a presentation of F from (3.8.2). Choose elements
fi,--., f» € F(k) whose images generate E(k). Let ¢/k be a finite
Galois extension such that all f; belong to F(¢), and let I' = Gal(¢/k).
Let Lo = Z[I']" and define a morphism of sheaves Lo — F by mapping
the i-th basis element to fi. Then Ker(Ly — E) maps to G/L. Let
My be the kernel of this morphism, and let Ly = Lo /My. Then Lo—»E
factors into a morphism Ly—»F, whose kernel K injects into G/ L.
Pick now elements gy, ..., g, € G(k) whose image in G(k)/L(k) gen-

erate the image of K(k), and gs41,...,9: € G(k) be generators of the
image of L(k). Let ¢'/k be a finite Galois extension such that all the
g belong to G(¢), and let I" = Gal(¢'/k). Let Fy, = Z[I"], and define
a map f : F =G by mapping the i-th basis element to g;. By con-

struction, f~'(L) = Ker(Fy—»K) and f' : f~(L) — L is onto. Let
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M be the kernel of f’ and F; = ﬁl/Mlz then I, — K factors through
Fy and Ker(Fy—K) = Ker(Fy — Lg) — L. In particular, condition
(iii) of Definition 3.8.1 is verified.

Step 2. hg is faithful. Let f : I — F’ be a map in S; such that
ho(f) = 0. By Lemma 3.8.4, we may assume that f is an effective
map (i.e. comes from S¢T). We have f(Lo @ G) C Im(L} — L, & G"),
hence fi¢ = 0 and f(Ly) is contained in Im(L} — Lj & G’). Pick a
finite Galois extension ¢/k such that Ly and L} are constant over ¢. By
Lemma 3.8.3, take a qi.u : [Fy — Lg) — [Fi — Lg] such that Ly is
Gal(¢/k)-free. Then the composition Ly — Ly — Im(L}, — L, & @)
lifts to a map s : EO — L7, which defines a homotopy between 0 and
fu.

Step 3. hg is full. Let F,F' € Sy and let ¢ : F — F', where
F = ho(F) and F' = ho(F"). In particular, we get a map pg: G — G’
and a map ¢ : Ly — Ly & G'/F]. Let £/k be a finite Galois extension
such that F7 is constant over ¢. Picka q.i.u : F — F asin Lemma 3.8.3
such that Ly is Gal({/k)-free. Then tpou lifts to a map v : Ly — LG
The map

f=W,06): LG — Lyad
sends Fy into F| by construction, hence yields a map f : F — F’ such
that ho(fu™!) = ¢. O
3.8.6. Corollary. The obvious functor
Si[1/p] — D°(Shv,)
is fully faithful.

Proof. The composition of this functor with Hj is the equivalence hg of
Proposition 3.8.5. Therefore it suffices to show that the restriction of
Hy to the image of S;[1/p] is faithful. This is obvious, since the objects
of this image are homologically concentrated in degree 0. U

3.9. The transfer structure on 1-motivic sheaves. Recall the cat-
egory HIZ, from Definition 1.7.3; it is a thick Z[1/p]-linear subcategory
of EST. Recall that we also have denoted by p the functor G — G|[1/p]
from G to HIZ,, see (1.9.1).

3.9.1. Proposition. The restriction of (1.9.1) to * AbS eatends to a
full embedding

p : Shvy — HIZ, .

This functor is exact with thick image (i.e. stable under extensions).
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Proof. By Proposition 3.8.5, it suffices to construct a functor p : Si[1/p]
— HIZ,. First define a functor p: S§[1/p] — HIE, by

p([Fy = Fo)) = Coker(p(F1) — p(Fp)),
using (1.9.1). Note that the forgetful functor
f:HLE, — ES

is faithful and exact, hence conservative. This first gives that p factors
into the desired p.

Proposition 3.3.4 d) — e) says that fp is fully faithful and exact.
Since f is faithful, p is fully faithful and exact.

It remains to show that p is thick. By Theorem 3.4.1, Shv; is thick
in ES. Since f is exact, the proof is concluded by the lemma below. [J

3.9.2. Lemma. The functor f : HI;, — ES is fully faithful. In partic-
ular, the transfer structure on a sheaf F € HI, is unique.

Proof. 1t is a variation on the Gersten principle of Proposition 2.4.1.
Let F1,F, € HI;, and let ¢ : fF; — fF2 be a morphism. Thus, for
X,Y € Sm(k), we have a diagram

FX)@cY,X) — F(Y)

90X®1l @Yl

and we want to show that it commutes. We may clearly assume that
Y is irreducible.

If FF = E(Y) is the function field of Y then the map F»(Y) — Fo(F)
is injective by [111, Cor. 4.19] since F> is a homotopy invariant Zariski
sheaf with transfers. Thus we may replace Y by F.

Moreover, since F is an étale sheaf, we have an injection Fo(F') —
Fo(Fy), where Fy is a separable closure of F'. By a transfer argument,
Ker(F,(F,) — F»(F)) is p-primary torsion if F' is an algebraic closure
of F', hence 0 since F; is a sheaf of Z[1/p]-modules. So we we may even
replace F, by F. Thus, we may even replace Y by F.*

Then the group c(Y, X) is replaced by c¢(F,X) = Zy(XF). Since
F is algebraically closed, all closed points of X# are rational, hence
all finite correspondences from Spec F' to X are linear combinations of
morphisms. Therefore the diagram commutes on them. 0

ONote that SpecF is a pro-object of Sm(k): since k is perfect, any regular
k-scheme of finite type is smooth.
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3.10. 1-motivic sheaves and DM. The introduction of Shv; is now
made clear by the following

3.10.1. Theorem. a) The embedding of Proposition 3.9.1 sends Shvy
into d<; DMgE . C DM,

b) Let M € d< DMzﬁljét. Then for all i € Z, H'(M) € Shvy, where
H is computed with respect to the homotopy t-structure (see Definition

1.8.3). In particular, the latter induces a t-structure on d<i DM;?nét,
with heart Shvy.

Proof. a) is proven as in §2.6.a. b) By the thickness of Shvy in HI,
(Proposition 3.9.1), we reduce to the case M = M (C), C' 5 Speck a
smooth projective curve. By Proposition 2.5.5, the cohomology sheaves
of Mg (C) belong to Shvy: for H ™! this is clear and for H° it is a (trivial)
special case of Proposition 3.5.1. U

Note that the functor M;[1/p] — HIZ ™ of (1.9.2) refines to a
functor
M;y[1/p] = Shv, Y.
Hence, using Lemma A.2.1 as in §2.2, we get a composed triangulated
functor

(3.10.1) tot : D°(M4[1/p]) — D(Shv, ) — D*(Shv,)
refining the one from Lemma 2.2.1 (same proof). We then have:
3.10.2. Corollary. The two functors

Db (My[1/p)) —= DP(Shvy) — dey DMET

gm,ét

are equivalences of categories.

Proof. For the composition, this is Theorem 2.1.2. This implies that
the second functor is full and essentially surjective, and to conclude, it
suffices by Lemma A.1.1 to see that it is conservative. But this follows
immediately from Proposition 3.9.1 and Theorem 3.10.1. U

3.10.3. Definition. We call the t-structure defined on D®(M;[1/p]) or
on d<; DM . by Corollary 3.10.2 the homotopy t-structure.

gm,ét
3.10.4. Remark (cf. §1.14). In [16], A. Bertapelle defines a variant
Shv} of the category Shvﬁppf from Remark 3.4.2 allowing non-reduced
finite commutative group schemes and constructs an equivalence of
categories

D"(M;) ~ D°(Shv))

without inverting p (not going via DM). Hence the homotopy ¢-structure
of Definition 3.10.3 exists integrally even over a perfect field of positive
characteristic.
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3.11. Comparing t-structures. In this subsection, we want to com-
pare the homotopy t-structure of Definition 3.10.3 with the motivic
t-structure of Theorem 1.11.1 a).

Let C € D*(M,[1/p]). Recall (from 1.13.8) the notation 'H, (C) €
tM[1/p] for its homology relative to the torsion 1-motivic t-structure
from Theorem 1.11.1. Recall (from 1.8.3) that we also write H"(C)
€ Shv; for its cohomology objects relative to the homotopy ¢-structure.

Consider the functor tot of (3.10.1). Let F be a l-motivic sheaf
and (G,b) its associated normalised pair (see Proposition 3.3.4 a)).
Let L = Kerb and £ = Cokerb. In D°(M,[1/p]), we have an exact

triangle
[L — G][1] = tot 1 (F) = [E —» 0] B

(see Corollary 3.10.2). This shows:
3.11.1. Lemma. We have
"Hy(tot ™ (F)) = [E — 0]
"Hy(tot ' (F)) = [L — G]
"H,(tot ™' (F)) =0 forq#0,1. O
On the other hand, given a 1-motive (with torsion or cotorsion) M =
L EN G], we clearly have
HO(M) = Ker f
(3.11.1) H' (M) = Coker f
HI(M) =0 for ¢ #£0,1.

by considering it as a complex of length 1 of 1-motivic sheaves.

In particular, ‘M;[1/p] N Shv; = Shvy, ‘My[1/p] N Shvy[—1] con-
sists of quotients of semi-abelian varieties by discrete subsheaves and
tEMy[1/p) N Shvy[g] = 0 for ¢ # 0, —1.

Here is a more useful result relating H* with the two motivic t-
structures:

3.11.2. Proposition. Let C € DY(My[1/p]); write [L; =% Gy] for

+H;(C) and [L* L G for tHY(C)". Then we have ezact sequences
m Sth.'

Ug

uz—l

e LT Gi‘1—>7-L"(O)—>L"£>G"—>...

UNote that (L, G;) and (L?, G%) are determined only up to the relevant q.i.’s.
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Proof. For the first one, argue by induction on the length of C' with
respect to the motivic t-structure with heart M;[1/p] (the case of
length 0 is (3.11.1)). For the second one, same argument with the
other motivic ¢-structure. U

Note finally that the homotopy t-structure is far from being invariant
under Cartier duality: this can easily be seen by using Proposition
3.8.5.

3.12. Global Ext’ with transfers. For the sake of notation (see also
§1.6) we write Extg, (Fy, F2) for Extpgr(Fi, F2) and sheaves Fi, Fo €
EST.

3.12.1. Lemma. The group Ext! (Fy,F,) is torsion for any i > 2 and
any F1 € Shvy, Fo € HI, .

Proof. By a transfer argument, we reduce to k algebraically closed.
Given the structure of F;, we reduce by dévissage to three basic cases:
F1 € Shvy, F; a torus and F; an abelian variety. The first case further
reduces to (i) F; = Z, the second one to (ii) F; = G,, and the third
to (iii) F; = J(C) for C' a smooth projective curve. In case (i), we
find Ext (Fy, Fo) = Hi(k,F,) which is 0 for i > 0. In case (ii),
G, is a direct summand of Mg (G,,) in Dl\/Ie_ﬂfét thus Ext! (F, Fa) is
a direct summand of H} (G,,, F2) which is torsion for ¢ > 1. In case
(iil), Ext! (F;,F,) is similarly a direct summand of HY (C,F,) [109,
Th. 3.4.2|, which is again torsion for ¢ > 1. Here we use the fact
that the étale cohomological dimension of a Noetherian scheme X for
sheaves of Q-vector spaces is < dim(X): for this, one may reduce to

the case of fields as in [SGA4, Exp. X, proof of Th. 4.1]. O

3.12.2. Remark. This simple proof was suggested independently by
the referee and Joseph Ayoub, that we wish to thank here. Let us
mention two other proofs, which only work for F, € Shv; (this is the
only case we shall need):
e Adapt Breen’s technique to the framework of étale sheaves with
transfers (this was our original proof).
e Play around with the exact triangles of §3.11, using mainly
Proposition 1.3.1.

Here is a refinement of Lemma 3.12.1:

3.12.3. Lemma. Suppose k = k. Then, we have Ext! (F,F,) = 0 for
Fi € Shvy, Fy € HI, and any i > 2 (remember that we work with p
inverted); moreover, BExt? (Fy, F») is divisible.
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Proof. Note first that Ext! (Fi, ) is a Z[1/p]-module for all i, since
fl, Fy € HIzt'

Assume first that F; € Shvy. A standard dévissage reduces us to the
following basic cases for: (i) F; = Z or (ii) Fy = Z/m. For F, = Z,
we have Ext! (F), Fy) = Hi (k, F) = 0 for i > 0. For F; = Z/m, the
exact sequence

Ext!-Y(Z, Fy) — Bxtl (Z/m, Fy) — Ext! (Z,F) 3 Ext! (Z,F,)

and (i) gives the claimed vanishing in the case (ii) for i > 1.
In general, by considering a normalized morphism b, : G; — F; with
Ly = Ker by free, using (i) and (ii) above we get

Ext! (Fi, Fo) — Ext! (G,/L., F2) — Ext. (G, F2)

for « > 1. The same argument as in the proof of Proposition 3.2.1,
using exact sequences analogous to (3.2.1) then yields, using Lemma
3.12.1, the claimed vanishing for ¢ > 2. The divisibility of this group
for i = 2 is clear since Ext? (,,G,, F») = 0 for any m prime to p. O

3.12.4. Remark. For an example where ExtZ (F;,F,) # 0, we may
take (F1, F2) = (G, Z) (compare Remark 3.2.2 (2)).

3.13. Local Ext’ with transfers. We now get back to the case of
an arbitrary perfect field k. Recall that the category EST has enough
injectives [77, 6.19] so that we can define Ext’ (F,G) € EST as the
derived functors of Hom ,(F,G) (compare §1.6).

Recall that the derived tensor product é) of D=(EST) |77, Prop.
8.8 has a right adjoint RHom(F,G) € DT (EST) defined at least for
F representable, and computable from Hom by injective resolutions
[77, Rk. 8.21|; this immediately extends to any F by using Voevodsky’s
canonical resolutions. In particular,

H'(RHom(F,G)) = Ext ,(F,G)
with Ext! as above.

3.13.1. Lemma. If 7, F, € HI,, we have Ext! (Fi, Fp) € HIE, for all
i>0.

Proof. Indeed, the above RHom restricts to the partial internal Hom
of DM, already considered in §2.5 (compare [77, Rk. 14.12]). O

Let K/k be an algebraically closed extension. In the rest of this sub-
section, we shall work with étale sheaves with transfers over k£ and K,
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so we exceptionally specify this in the notation EST(k) and EST(K).
The “direct image” functor

EST(K) — EST(k)
F = Fi
Fiu(X)=F(Xk) X €Sm(k)
has an exact left adjoint F — F.
3.13.2. Lemma. For F € EST(k) and X € Sm(K), we have an iso-
morphism
(3.13.1) hﬂ F(X) = Fr(X)

X=X
where the colimit is taken over the filtering system of k-morphisms

X — X for X € Sm(k).

Proof. Let X — X be as in the lemma, whence a K-morphism X —
Xg. The unit morphism F — (Fg) yields a map
hence a map (3.13.1) in the limit. To show that it is an isomorphism,

we may reduce to representable sheaves L(Y'), and then it reduces to
the tautological formula

L(Y)x = L(Yk).
0

Ideally we would like a computation of £zt *(F,G)(K) similar to the
classical one for stalks on small étale sites |78, Ch. III, Ex. 1.31 (b)].
We don’t know how to do this, mainly because we don’t know if Zy is
injective when Z is. Instead, we have the following

3.13.3. Proposition. For F,G € HIj (k) with F € DM;ﬁlvét(k‘). Then
there are isomorphisms, natural in F, G, K:

Ext}, (Fr, Gr) ~ Ext | (F,G)(K).
Proof. By the above, we have
(3.13.2) Ext! (F,G) = H'(Homg, (F,G[i])).

Let U € Sm(k) and let ¢ : Spec K — U be a k-morphism. It induces
a morphism in DM, (K)

Px - Mét(Spec K) — Mét(UK) = Mét(U)K.

(Note that F — Fx extends to triangulated functors on the derived
categories.)
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For G € HIZ, (k), we get a composition
Homy, (Ma(U), G)x — Homy, (Ma(U) k., Gr) = G

hence by adjunction
Hom (Mg (U),G) — Rix(Gk)

where Ry, is the total derived functor of F — Fj;'2. Applying Hom(M, —|i])
to this morphism for M € DMe_Ffét(k), we get

Hom(M, Homy (M (U), G)[i]) = Hom(M, R (Gk)[i]).

) === —==ét

The right hand side may be rewritten as
Hom(M, R (Gk)[i]) ~ Hom (M, Gk [i])

while the left hand side may be rewritten as
L
Hom (M, Hom, (M (U), G)[i]) ~ Hom(M ® M (U), Gli])
~ Hom (Mg (U), Homy, (M, G)[i]) ~ HY (U, Hom,, (M, G)).

Here we used the étale analogue of [109, Prop. 3.2.8|, which was
already used in the proof of Proposition 2.5.5: note that there is no
problem of convergence for the hypercohomology spectral sequences,
since RHom(F,G) is bounded below.

Thus we get compatible morphisms

(U, Homy, (M, §)) = Home (M, Gicli])
and, passing to the limit, a morphism
(3.13.3) H:, (K, Homy, (M, G)) — Hom(Mg, Gx[i]).

Here we used the fact (see |78, II1.1.16]) that étale cohomology com-
mutes with filtered limits of schemes (with affine transition morphisms).

In view of (3.13.2), the proposition will follow from the slightly
more general statement that (3.13.3) is an isomorphism for any M €
DMZﬁljét(k). Since this assertion is stable under cones, we reduce to
M = M (X) for some X € Sm(k).

In this case, the right hand side of (3.13.3) is H (Xk, Gk ), while the
left hand side is

ling B, (U, Homg, (Mo (X), G)) = limg Hom (M (U), Homg, (M (X), G)
U
~ %HOm(Mét(U x X),G) ~ li%nHéit(U x X,G) ~ H. (Xk,G)

2Note that in fact R (9x) = (Gk )i since K has cohomological dimension 0,
which implies in particular that R),(Gx) € DM (k).

6t
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and the conclusion follows from Lemma 3.13.2. O

3.13.4. Corollary. For F € Shvy and G € HI*, we have Ext! (F,G) =
0 fori> 2.

Proof. We apply Gersten’s principle (Proposition 2.4.1 ¢)) to & =
Ext! (F,G). This says that £ = 0 if and only if £(K,) = 0 for any
separable closure K of the function field K of a smooth K-variety. We
may even replace K, by its algebraic closure K (see proof of Lemma
3.9.2). Since F € DMgﬁlvét (Theorem 3.10.1 a)), Proposition 3.13.3
yields Ext! (Fg, Gx) ~ Ext! (F,G)(K), and the left hand side is 0 for
1> 2 by Lemma 3.12.3. O

3.14. Ext" with and without transfers. Here we set Ext" = Extpq
and Exti. = Extygqp and keep the notation from the previous §3.13 for
local Ext .

3.14.1. Proposition. Let F;, F; € Shvy. Then the natural map
EXt?r(fl, fg) — Eth<]:1, .FQ)

is bigective for n = 0,1. Here we implicitly used the full embedding
Shv,; — HIZ, — EST from Proposition 3.9.1.

Proof. The case n = 0 follows from Lemma 3.9.2. Let us do n = 1.
Injectivity: let 0 = F» — F — F; — 0 be an extension in EST which
becomes split in ES. Let f : F; — F be a section of the projection in
ES. By the case i = 0, f is a morphism in EST, hence F is split in
EST. Surjectivity: let 0 - F, — F — F; — 0 be an extension in ES.
By Theorem 3.4.1, F € Shv;. O

3.14.2. Theorem. Let F;, F5 € Shvy. Then
a) The natural homomorphism of sheaves

frrwat i (Fr, Fo) — Ext " (F1, Fo)

is an isomorphism for all n > 0, where w : EST — ES is the (exact)
forgetful functor. These sheaves are 0 for n > 2.

b) We have Ext!(Fy, F>) € Shvy forn = 0,1, and Ext 2. (F, F) is a
divisible torsion ind-0-motivic sheaf.

c¢) The natural homomorphism of abelian groups

i Extl (F, Fo) — Ext™(Fp, F)

s an tsomorphism for all n > 0.
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Proof. Since c) follows from a) by the local to global spectral sequences,
we are left to prove a) and b). The assertions are local for the étale
topology, so we reduce by the same dévissage as in the proof of Lemma
3.12.1 to the basic cases F; = Z, G,, or an abelian variety A. By the
same technique as in 2.6.a, we may further reduce to the case where
A is of the form J(C) for C' a smooth projective curve with a rational
point.

If n > 2, the right hand side in a) is 0 by Proposition 3.2.1 b) and
the same dévissage as in the proof of Lemma 3.12.3. The left hand side
is also 0 by Corollary 3.13.4.

Suppose now n < 2. We may argue as for n > 2 whenever we
know that Ext " (Fy, F2) = 0 and Ext ((F1)k, (Fa2)x) = 0 for any alge-
braically closed extension K of k. By Proposition 3.14.1 and Lemma
3.1.4, this is the case except when:

n = 0: Fl = Z, (Fl,FQ) = (Gm,Gm), (fl,FQ) = (A,B), A,B
abelian varieties.

n=1: (F,F) =(A,G,), A an abelian variety.

n=2: (F,F) = (G,,Z)or (A,Z), A an abelian variety (see last
statement of Lemma 3.12.3).

When n = 0 and F; = Z, f" is the identity map Fo — Fo. If
F1 =G, or J(C) and n < 1, we may write both sides in a) as direct
summands of R, F, for m: X — Speck with X = A! — {0} or C,
and the isomorphism is clear. Finally, when n = 2, for G = G,,, or A,
in the commutative diagram

WETtL (nGLZ) — s Eat (G, 7Z)

! !

nwEt2(G,7) s | Ent¥(G,7)

f! is an isomorphism because ,,G is locally constant and the vertical
maps are isomorphisms because w€xrt . (G,Z) = Ext*(G,7Z) = 0 (as
noted for the case n = 1 above), hence f? is an isomorphism. This
completes the proof of a). b) is obvious for n > 2 and is proven for
n = 0,1 by the same dévissage as above; for n = 2 it follows from the
last statement of Lemma 3.12.3. O

3.14.3. Remark. Using the category DA (k) of [6], one can probably

extend Theorem 3.14.2 a) and ¢) to all 7, € HI,, with a more reason-

able proof (compare Lemma 3.12.3). This would extend Proposition
4.4.1 below to all C5 € DMT . but would take us too far here.

gm,ét)
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Now consider Hom,, the partial internal Hom of DM‘iﬁ:ét (following
the notation adopted in §2.5). We obtain:

3.14.4. Corollary. Let Cy,Cy € d<y DML, ®Q. Then Hom,, (C1, Cs)
€ dey DM . 2Q.

gm,é

Proof. This follows from Theorem 3.14.2 by dévissage, using Theorem
3.10.1. (]

3.14.5. Remark. A version of Corollary 3.14.4 remains true integrally:
Hom,, (Cy, Cy) € d<; DM, where d<; DM, is the localising subcat-
egory of Dl\/[e_ffét generated by d<; DMgﬁhét. This follows by dévissage
from Theorem 3.14.2. On the other hand, the example of Hom (Q/Z, Q/Z)
shows that the situation becomes unpleasant if one allows C and C to
run through d<; DM®?, . This has some similarity with Remark 5.2.2

—ét-
3) below.

3.15. t-exactness. Theorem 2.1.2 and Corollary 3.14.4 provide the
category D’(M; ® Q) with an internal Hom that we denote by Hom, .
It is by construction left exact with respect to the homotopy t-structure
of Definition 3.10.3. We now show:

3.15.1. Theorem. The bifunctor Hom, is t-exact with respect to the
canonical t-structure of D*(M; @ Q).

Proof. By dévissage, it suffices to check that Hom, (M, N) is t-concentr-
ated in degrees 0 if M, N are 1-motives of pure weight.

If L is discrete, write L for [L — 0], and if G is semi-abelian, write
G[—1] for [0 — G]. Also write A for an abelian variety and 7' for a
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torus and Hom , £xt the étale sheaves Hom and Ext. Then

*H (Hom, (L, 1)) = {Hom(L , L) fori=0

else.

L,G")[-1] fori=
i (Hom, (L, G'[—1])) = Hom (L,G")[-1] fori=0
0 else.
"H'(Hom, (G[-1], L)) =0
, 7,7 ifi=
*H (Hom, (T—1 _ Hom ( ifi=0
0 else.
! 1 y —
' (Hom, (A[1 _ JEuxt (A, T[-1] ifi=0
0 else.

, :
*H (Hom, (A[-1], A-1])) = {Z;‘m Ay =0
else.

In this display, we use for example that Ext (A, T") has the structure
of an abelian variety when A is an abelian variety and 7" a torus, and
that Hom (A, A’) is a lattice when A, A’ are two abelian varieties. This
completes the proof. O

4. COMPARING TWO DUALITIES

In this section, we show that the classical Cartier duality for 1-
motives is compatible with a “motivic Cartier duality" on triangulated
motives, described in Definition 4.5.2 below.

4.1. Biextensions of 1-motives. This material is presumably well-
known to experts, and the only reason why we write it up is that we
could not find it in the literature. Exceptionally, we put 1-motives in
degrees —1 and 0 in this subsection and in the next one, for compati-
bility with Deligne’s conventions in [35].

Recall (see [35, §10.2]) that for M, = [L; <> G1] and My = [Ly 23 G
two complexes of abelian sheaves over some site S, concentrated in
degrees —1 and 0, a biextension of M; and M, by an abelian sheaf
H is given by a (Grothendieck) biextension P of G; and G5 by H
and a pair of compatible trivializations of the biextensions of L; x Gy
and G x Ly obtained by pullbacks. Let Biext(M;, My; H) denote the
group of isomorphism classes of biextensions. We have the following
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fundamental formula (see [35, §10.2.1]):

L
(4.1.1) Biext(M;, My; H) = Extg(M; @ My, H).

Suppose now that M; and M, are two Deligne 1-motives. Since G
and (G5 are smooth, we may compute biextensions by using the étale
topology. Hence, we shall take here

S - Sm(k)ét

Let M; denote the Cartier dual of M, as constructed by Deligne
(see §1.13, cf. [35, §10.2.11] and [12, §0]) along with the Poincaré
biextension Py, € Biext(Ms, My;G,,). We also have the transpose
Py, = Py € Biext(M;, My; Gyy,). Pulling back *Pyy, yields a map

(412) VM, Mo - Hom(Ml,MQ*) — Biext(Ml,MQ;Gm)
¢ = (o x o) ("Pary)
which is clearly additive and natural in M;.

4.1.1. Proposition. The map vy, m, yields an isomorphism of functors
from 1-motives to abelian groups, i.e. the functor

M — Biext(Ml, MQ, Gm)

on 1-motives is representable by the Cartier dual M3. Moreover, Y, ws,
1s also natural in Ms.

Proof. We start with a few lemmas:

4.1.2. Lemma. For q <0, we have

L
HomE(Ml & MQ, Gm[q]) =0.

Proof. For ¢ < 0 this is trivial and for ¢ = 0 this is [35, Lemma
10.2.2.1]. O

4.1.3. Lemma. Let k be an algebraic closure of k and G = Gal(k/k).
Then

Homy (M, M3) = Homg(M,, M;)©
Biexty, (M, My; G,,,) — Biextz(My, Ma; Gn)C.

Proof. The first isomorphism is obvious. For the second, thanks to
(4.1.1) we may use the spectral sequence

L L
HP(G, HOHlE(Ml ® M27 Gm[Q])) = Homk(Ml ® M2, Gm[p + QD

(This is the only place in the proof of Proposition 4.1.1 where we
shall use (4.1.1).) The assertion then follows from Lemma 4.1.2. [
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Lemma 4.1.3, reduces the proof of Proposition 4.1.1 to the case where
k is algebraically closed, which we now assume. The following is a
special case of this proposition:

4.1.4. Lemma. The map vy, a, S an isomorphism when M, and My
are abelian varieties Ay and As, and is natural in As.

Again this is certainly well-known and explicitly mentioned as such
in [SGA7, VII, p. 176, (2.9.6.2)]. Unfortunately we have not been
able to find a proof in the literature, so we provide one for the reader’s
convenience.

Proof. We shall use the universal property of the Poincaré bundle [81,
Th. p. 125|. Let P € Biext(A;, Ay). Then

(1) Pa, x{oy is trivial;
(2) Plrayxa, € Pic”(Ay) for all a € Ay (k).

Indeed, (1) follows from the multiplicativity of P on the Ay-side. For
(2) we offer two proofs (note that they use multiplicativity on different
sides):

e By multiplicativity on the A;-side, @ — Pis1x4, gives a homo-
morphism A;(k) — Pic(Az). Composing with the projection
to NS(A2) gives a homomorphism from a divisible group to a
finitely generated group, which must be trivial.

e (More direct but more confusing): we have to prove that
Ty Piayxa: = Payxa, for all b € Ay(k). Using simply a to
denote the section Speck — A; defined by a, we have a com-
mutative diagram

a><1A2
A2 — Al X A2

TbJ« JlAl xTy

(1><1A2
AQ — Al X AQ.

Let my : Ay — Speck and m : Ay — Speck be the two
structural maps. Then by multiplicativity on the As-side, an
easy computation gives

(14, x Ty)*P = P® (14, % (12 0b))" P.

Applying (a x 14,)* to this gives the result since (a x 14,)* o
(1a, X (mp0b))" P =m}, Pay is trivial.
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By the universal property of the Poincaré bundle, there exists a
unique morphism® f : A; — A} such that P ~ (f x 14,)*(*Pa,). It
remains to see that f is a homomorphism: for this it suffices to show
that f(0) = 0. But

OAQ = F{oyxA, = (O X 1142)* © (f X 1A2)*(tPA2)
= (£(0) x 14,)"("Pa,) = (Pay)jasx 70y = £(0)

where the first isomorphism holds by multiplicativity of P on the A;-
side.

Finally, the naturality in A, reduces to the fact that, if f: A; —
Ay then (f X 14,)*("Pa,) =~ (14, X f)*(Pa,). This follows from the
description of f’ on k-points as the pull-back by f of line bundles. [

We also have the following easier

4.1.5. Lemma. Let L be a lattice and A an abelian variety. Then the
natural map

Hom(L, A") — Biext(L[0], A[0]; G,,)
fr@x f)("Pa)

15 bjiective.

Proof. Reduce to L = 7Z; then the right hand side can be identified with
Ext(A,G,,) and the claim comes from the Weil-Barsotti formula. [

Let us now come back to our two 1-motives M;, M5. We denote by
L;, T; and A; the discrete, toric and abelian parts of M, for i = 1,2. Let
us further denote by w : L) — A} the map corresponding to G; under
the isomorphism Ext(A;,T;) ~ Hom(L}, A}) where L, = Hom(T;, G,,)
and A} = Pic’(A;).

We shall use the symmetric avatar (L;, A;, L, AL 1;) of M; (see |35,
10.2.12] or [12, p. 17]): recall that 1; denotes a certain section of
the Poincaré biextension P4, € Biext(4;, A};G,,) over L; x L. The
symmetric avatar of the Cartier dual is (L}, A, L;, A;, ¥f). By loc. cit.
a map of l-motives ¢ : M; — M5 is equivalent to a homomorphism
f Ay — Al of abelian varieties and, if f’ is the dual of f, liftings ¢
and ¢’ of fu; and f'us respectively, i.e. to the following commutative

I3For convenience we denote here by A’ the dual of an abelian variety A and by
f' the dual of a homomorphism f of abelian varieties.
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squares
L~ 1, Ly 2 1t
(4.1.3) | [ and | “ |
A Lo Ay LAt

under the condition that

(414) (1L1 X gl)*¢1 = (g X 1L2)*t¢2 on L1 X LQ.

Now let (P,7,0) be a biextension of M; and My by G,,, i.e. a
biextension P € Biext(Gy,Ge;G,,), a section 7 on Ly X G2 and a
section o on (G; X Ly such that

(4.1.5) T Lix02= 0 |LixLs -

We have to show that (P, 7,0) = (¢ x 1)*(*Pa,, 72, 02) for a unique
¢ : My — M3, where 7 and oy are the universal trivializations.

Recall that Biext(Gy, Ga; G,,,) = Biext(Ay, A2; G,,) (¢f. [35,10.2.3.9])
so that, by Lemma 4.1.4, P is the pull-back to G; x G5 of (f x
14,)*(*Py,) for a unique homomorphism f : A; — A). We thus have
obtained the map f and its dual f’ in (4.1.3), and we now want to show
that the extra data (7,0) come from a pair (g, ¢’) in a unique way.

We may view E = (fuy x 14,)*(*Pya,) as an extension of L; ® Ay by
Gyn. Consider the commutative diagram of exact sequences

0 0 0
| | |
0 >0 LTy —— Li®T, —— 0
l l 1L1®i2l
(4.1.6) ¢ Gn —— Q 5 Li®Gy — 0
|| ﬂl 1L1®p2l
0 G y FE  —— LiI®A —— 0
| | |
0 0 0

where iy (resp. p) is the inclusion Tp < Go (resp. the projection
Gy — Aj). The section 7 yields a retraction 7 : ¢ — G, whose
restriction to Ly ® T5 yields a homomorphism

§ZL1®T2—>Gm
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which in turn defines a homomorphism as in (4.1.3). We denote the
negative of this morphism by g.

4.1.6. Lemma. With this choice of g, the left square of (4.1.3) com-
mutes and T = (g X 1g,)* 7.

Proof. To see the first assertion, we may apply Ext*(—, G,,) to (4.1.6)
and then apply |21, Lemma 2.8| to the corresponding diagram. Here is
a concrete description of this argument: via the map of Lemma 4.1.5,
uhg goes to the following pushout

0 —>L1®TQ &} L1®G2 &) L1®A2 — 0

S - |
0 —— Gm Emn— FE —>L1®A2 — 0.

because, due to the relation i7+77’ = 1, the left square in this diagram
commutes.
In particular, we have

Q=1®p)* (fur ® 1) Py, = (fu1 @ pa)*' Pa,
= (uhg @ p2)" Pa, = (g ® 1)"(uhy @ p5)' Pa,.

For the second assertion, since Hom(L; ® Ay, G,,) = 0 it suffices to
check the equality after restricting to Ly ®T5. This is clear because un-
der the isomorphism Hom(L) ® Ty, G,,) = Hom(L}, L)), the canonical
trivialization 1), corresponds to the identity. O

Note that if we further pullback we obtain that

(417> T |L1><L2: w; |L1><L2 :
The same computation with o yields a map
g Ly — L}
and the same argument as in Lemma 4.1.6 shows that with this choice
of ¢’ the right square of (4.1.3) commutes. We now use that P =
(14, x f)*(Pa,), which follows from the naturality statement in Lemma
4.1.4. Asin the proof of Lemma 4.1.6, this implies that its trivialization

o on G X Ly is the pullback of the canonical trivialization ¢; on G x L}
along 1g, X ¢’ : G4 x Ly — G x L). In particular:
(418> g |L1><L2: wl ‘L1><L2 :

Put together, (4.1.5), (4.1.7) and (4.1.8) show that Condition (4.1.4)
is verified: thus we get a morphism ¢ : My — M. Let h : G; — G}, be
its group component. It remains to check that o = (h x 1,)*09. Asin
the proof of Lemma 4.1.6 we only need to check this after restriction
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to T1 ® Ly. But the restriction of h to the toric parts is the Cartier
dual of ¢’, so we conclude by the same argument.

Finally, let us show that vyas, s, is natural in M,. This amounts to
comparing two biextensions. For the bitorsors this follows from Lemma

4.1.4 and for the sections we may argue again as in the proof of Lemma
4.1.6. O

4.2. Biextensions of complexes of 1-motives. Let A be a cate-
gory of abelian sheaves, and consider two bounded complexes C, C5 of
objects of A5, Let H € A. We have a double complex

Biext(Cy, Cy; H)P9:= Biext(CY, C3; H).
4.2.1. Definition. A biextension of C; and Cy by H is an element of
the group of cycles
Biext(Cy, Co; H) := Z°(Tot Biext(Cy, Cy; H)).
Here Tot denotes the total complex associated to a double complex.

Concretely: such a biextension P is given by a collection of biexten-
sions P, € Biext(CY7, Cy”; H) such that, for any p,

(& ®1) Pyt = (1@ dy" )P,

where d; (resp. d,) are the differentials of Cy (resp. of Cy).
Now suppose that A is the category of fppf sheaves, that H = G,
and that all the CY are Deligne 1-motives. By Lemma 4.1.2, we have

Ext'(CY,C4; G,,) = 0 for i < 0.
Therefore, a spectral sequence argument yields an edge homomor-
phism
(4.2.1) Biext(Cy, Cy: Gpa) = Ext'(Cy & Cs, Gn).
Recall that Deligne’s Cartier duality [35] provides an exact functor
M — M* : My[1/p] = M;[1/p]
yielding by Proposition 1.13.5 a triangulated functor
(4.2.2) ()" DY (Mu[L/p]) = D*(Ma[1/p]).
Note that for a complex of 1-motives
C=(-—=M - M ...
we can compute C* by means of the complex
Cr=( - (Mi+1>* _ (Mz)* )

of Cartier duals here placed in degrees ..., —i — 1, —1, etc.
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Let us now take in (4.2.1) Cy = C, Cy = C*. For each p € Z, we have
the Poincaré biextension P, € Biext(C?,(C?)*;G,,). By Proposition
4.1.1, the {P,} define a class in Biext(C, C*; G,).

4.2.2. Definition. This class Pc is the Poincaré biextension of the
complex C'.

Let C1,Cy € C°(M;). As in Subsection 4.1, pulling back Py, =
Pe: € Biext(C1, CF; G,y) yields a map generalising (4.1.2):

(4.2.3) Yey,0, - Hom(Ch, C3) — Biext(Cy, Ca; Gy
Y= (90 X 101)*(tP02)‘

which is clearly additive and natural in C';. We then have the following
trivial extension of the functoriality in Proposition 4.1.1:

4.2.3. Proposition. v¢, ¢, s also natural in Cs. u

4.3. A pairing with finite coefficients. In this section, we assume
that k is algebraically closed.
If C'is a complex of 1-motives and n > 1 is prime to char k, we define

C/n = cone(C' = C)

the mapping cone of multiplication by n. This defines a functor on
C*(M,); we clearly have a natural isomorphism

C*/n = (C/n[-1])" = (C/n)"[1].

This functor and this natural isomorphism are easily seen to pass to
D*(M). Composition of morphisms now yields a pairing (Hom groups
computed in D*(M,)):

Hom(Z, C/n) x Hom(Z, C* /n) = Hom(Z, C'/n) x Hom(Z, (C'/n)*[1])
~ Hom(Z,C/n) x Hom(C'/n,Z*[1]) — Hom(Z, Z*[1]) = k™.

4.3.1. Lemma. For any C € C*(M,), the map C/n = C/n is homo-
topic to 0.

Proof. We may embed 1-motives in a category of complexes of sheaves
of length 1, and then the proof is standard. U

This lemma implies that the above pairing refines into a pairing
(4.3.1) Hom(Z,C/n) x Hom(Z,C*/n) — .

4.3.2. Theorem. This pairing is perfect.
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Proof. Convert (4.3.1) into a morphism
Hom(Z,C/n) — Hom(Hom(Z, C* /n), w,,).

This map is clearly natural in C', hence by dévissage we may check
that it is an isomorphism on “generators" C' = NJi|, i € Z, where N
is a 1-motive. We may further reduce to N = [Z — 0], [0 — G,,] or

[0 — A] where A is an abelian variety.
It is convenient to replace D’(M;) by D°(*M;) (Theorem 1.11.1),
which allows us to represent N/n by

[Z/n — 0][0] if N=[Z — 0]

[n, — 0][0] i N =1[0— G,

A —0][0] i N=][0— A

This implies that Hom(Z, N[i]/n) = 0 if ¢ # 0 (the best way to see
this is to use the functor Tot). Suppose i = 0. In the cases N = [Z —
0] or [0 — G,,], the pairing is easily seen to be the obvious pairing
Z/n X fy, —> iy, OF fin, X Z/1 — py,, which is clearly perfect. In the case
N = [0 — A], so that N* = [0 — A’] is the dual abelian variety, we get
a pairing
WA X A —

which is by construction the Weil pairing (see [81, IV.20] and |79, §16]).
Therefore it is perfect too. O

4.4. Comparing two Ext groups. The aim of this subsection is to
prove:

4.4.1. Proposition. Let Cy,Cy,C3 € d<; DMZﬁlyét.
triangulated functors

Then the forgetful
DM, 5 D™(EST) % D~ (ES)
induce an isomorphism
N L
Hompyper, (C1 @ Ca, Cs[q]) — Homp-(gs)(C1 @ Cy, Cs[q])
for any q € 7Z.

Proof. Let Hom,, denote the internal Hom of DM‘iffét (notation adopted
in §2.5). By adjunction, it is enough to provide isomorphisms

I'IomDMi‘fét (C1,Hom,, (C2, Cs)[q])
— HomD—(ES)<Ch Hom(Cs, C3)[q])
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where the right hand Hom is the (partially defined) internal Hom of
D~ (Shvg (Sm(k)). For this, it suffices to prove that the composite
functor wi of Proposition 4.4.1 carries Homg (Cy, C3) to Hom(Cy, Cs).
We first note that i carries Hom, (Co, C3) to the internal Hom of
D~ (EST) (compare |77, Rk. 9.28]). Since Hom, (iCs,iC3) belongs to
D*(EST), it suffices to show that the natural map in DT (ES)

wHomy, (iCy, iC3) — Hom(wiCy, wiCs)

is an isomorphism. By dévissage, we reduce to the case where C5 and
(U5 are single sheaves of Shv; concentrated in degree 0, and the claim
follows from Theorem 3.14.2 a). O

4.5. Two Cartier dualities. Recall the internal Hom Hom,, from
§2.5. We define

(4.5.1) DS, (M) :=Homy (M, Zi (1))
for any object M € DMggl’ét.

We now want to compare the duality (4.2.2) with the following du-
ality on triangulated 1-motives:

V

4.5.1. Proposition. The functor D%, restricts to a self-duality ( )

(anti-equivalence of categories) on d<y DMgfn,ét.

Proof. Tt suffices to compute on motives of smooth projective curves
M (C). Then it is obvious in view of Proposition 2.5.5 c). O

4.5.2. Definition. For M € d<; DM§§17ét, we say that M is the motivic
Cartier dual of M.

Note that motivic Cartier duality exchanges Artin motives and Tate
motives, e.9. Ze(0)Y = Ze(1). We are going to compare it with the
Cartier duality on D°(M;[1/p]) (see Proposition 1.13.5) via Theorem
2.1.2.

For two complexes of 1-motives C and Cy, by composing (4.2.3) and
(4.2.1) and applying Proposition 4.2.3, we get a bifunctorial morphism

(4.5.2) Hom(Cy, (%) — Biext(Ch, Cy: Gyn) — Hom(Cy & Cs, Gon[—1])

where the right hand side is computed in the derived category of
étale sheaves. This natural transformation trivially factors through
DY (My[1/p).

From Proposition 4.4.1 and Lemma 1.8.7 (¢f. |77, Thm. 4.1]), taking
C3 = Z&(1) = G,[1/p][—1], it follows that the map (4.5.2) may be
reinterpreted as a natural transformation

Home(Ml[l/p])(Cl, C;) — I‘IOHldSl DM (TOt(Cl), TOt(C2)V).
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Now we argue a la Yoneda: taking C; = C' and Cy = C*, the image
of the identity yields a canonical morphism of functors:

ne : Tot(C*) — Tot(C)".

4.5.3. Theorem. The natural transformation n is an isomorphism of
functors.

Proof. Tt suffices to check this on 1-motives, since they are dense in
the triangulated category D®(M;[1/p]). Using Yoneda again and the
previous discussion, it then follows from Theorem 2.1.2 and the iso-
morphisms (4.1.1) and (4.1.2) (the latter being proven in Proposition
4.1.1). The following commutative diagram explains this:

Hom(N, M*) Hom(Tot(N), Tot(M*))

Th. 2.1.2
R

zl(4.1.1)+(4.1.2) n*l

Extlg(N @ M, Gp[1/p]) €241 Hom(Tot(N), Tot(M)).

~
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Part 2. The functors LAIb and RPic
5. DEFINITION OF LAlb AND RPic

The aim of this section is to construct the closest integral approxi-
mation to a left adjoint of the full embedding Tot of Definition 2.7.1.
In order to work it out, we first recollect some ideas from [105].

We shall show in Theorem 6.2.1 that the functor LAlb of Definition
5.2.1 does provide a left adjoint to Tot after we tensor Hom groups
with Q: this will provide a proof of results announced in [105, Preth.
0.0.18] and [106]. See Remark 5.2.2 for an integral caveat.

5.1. Motivic Cartier duality. Recall the functor Dégt1 : DM;ﬂr &

DM‘fét of (4.5.1). On the other hand, by Proposition 1.8.2, we may
consider truncation on Dl\/Iefijét with respect to the homotopy ¢-structure.
We have:

5.1.1. Lemma. Let X be a smooth k-variety. Then the truncated com-
plex ngDgl(Mét(X)) belongs to d<y DM§i7ét.
Proof. Recall that Z (1) = G,,[1/p][—1] so that this is a consequence
of an analogue of Proposition 2.5.5 a) and b) in higher dimension. In
fact, the nonvanishing cohomology sheaves are H™' = Gx/,[1/p] (see
§3.5) and H” = Picy ,[1/p]. Both belong to Shv, by Proposition 3.5.1,

hence the claim follows from Theorem 3.10.1. O

Unfortunately, H¢ (D%, (M (X))) does not belong to d<; DMgffmét for
1 > 2 in general: indeed, it is well-known that this is a torsion sheaf of
cofinite type, with nonzero divisible part in general (for i > 3 and in
characteristic 0, its corank is equal to the i-th Betti number of X).!*
It might be considered as an ind-object of d< DM§$7ét, but this would
take us too far. To get around this problem, we shall restrict to the

standard category of geometric triangulated motives of [109], DMgﬂm.

Let us denote by Dgils the same functor as Dégt1 in the category
DM defined with the Nisnevich topology. Let as before a® : DM —
DMe_ffét denote the “change of topology" functor.

5.1.2. Lemma. a) For any smooth X with motive M(X) € DM;{;, we
have . /

o’ DEPM (X) = 7<2D% 0*M(X).
b) The functor o® DY induces a triangulated functor

a* DY : DMgffn — d<y DME

gm,ét °

140One should compare this situation with that of Lemma 3.12.3 and the remark
following it.
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Proof. a) This is the weight 1 case of the Beilinson-Lichtenbaum con-
jecture (here equivalent to Hilbert’s theorem 90.) b) follows from a)
and Lemma 5.1.1. O

5.1.3. Definition. We denote by d<; : DMgffn — d<1 DM

am ¢t the com-
posite functor D%, o a® o DY,

Thus, for M € DM | we have

(5.1.1) d<1(M) = Hom, (a«"Homy, (M, Z(1)), Ze(1)).

The evaluation map M ® Homy, (M, Z(1)) — Z(1) then yields a
canonical map

(512) apy o’ M — dgl(M>

for any object M € DM;?H. We call ay; the motivic Albanese map
associated to M for reasons that will appear later.

5.1.4. Proposition. The restriction of (5.1.2) to d<; Dl\/[gf][f1 is an iso-
morphism of functors. In particular, we have equalities

o’ DEF (DM ) = a®d<; DMg, = d<; DMy

gm,ét °

Proof. For the first claim, we reduce to the case M = M (C') where C'is
a smooth proper curve. Then it follows from the proof of Proposition
2.5.5 ¢) (see (2.5.2)). The other claim is then clear (the second equality
is true essentially by definition). O

5.2. Motivic Albanese.

5.2.1. Definition. The motivic Albanese functor
LAIb : DMSE — D*(M[1/p])

is the composition of d<; with a quasi-inverse to the equivalence of
categories of Theorem 2.1.2.

5.2.2. Remark. 1) With this definition we get the following form of
(5.1.2)
ay : &’ M — Tot LAIb(M)

where Tot is the functor of Definition 2.7.1; its restriction to d<; DMZ?H
is an isomorphism of functors.

2) By Theorem 2.1.2, we then have the following relationship between
LAlb and Tot: for M € DI\/Ig:fn and N € D°(M,[1/p]), the map ay; of
(5.1.2) induces a map

(5.2.1) Hom(LAlb M, N) — Hom(a’ M, Tot(N)).
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In Section 6, we prove that this map is an isomorphism rationally,
showing that LAlb yields a left adjoint of Tot after Hom groups have
been tensored with Q. By 1), it is an isomorphism integrally if M €
d<; DMgfél. However, it is not so in general:

Take M = Z(2), N = Z/n (n prime to p). Then LAlb M = 0 because
Homy, (Z(2), Z(1)) = 0, but

Hom(a*M, Tot(N)) = Hy(k, Z/n(—2))

which is nonzero e.g. if k = k.

3) The same example shows that Tot does not have a left adjoint.
Indeed, suppose that such a left adjoint exists, and let us denote it by
LAIb®. For simplicity, suppose k algebraically closed. Let n > 2. For
any m > 0, the exact triangle in Dl\/Igl,ét

Z(n) B8 Z(n) — Z/m(n) it
must yield an exact triangle
LAIb* Z(n) 2 LAIb® Z(n) — LAIb® Z/m(n) £

Since Tot is an equivalence on torsion objects, so must be LAIb®.
Since k is algebraically closed, Z/m(n) ~ pu®" is constant, hence we
must have LAIb® Z/m(n) ~ [Z/m — 0]. Hence, multiplication by m
must be bijective on the 1-motives HI(LAIb®(Z(n))) for all ¢ # 0,1,
which forces these 1-motives to vanish. For ¢ = 0, 1 we must have exact
sequences

0 — HY(LAIL®(Z(n))) B H°(LAIL*(Z(n))) — [Z/m — 0]
— HY (LA™ (Z(n))) B HY(LAIL®(Z(n))) — 0
which force either H* = [Z — 0], H' =0 or H* =0, H' = [0 — G,,].
But both cases are impossible as one easily sees by computing
Hom (M (P"), Tot([Z — 0])[2n + 1]) = HZ" (P, Z)[1/p]
~ Hi'(P",(Q/Z)) ~ (Q/Z)

via the trace map, where (Q/Z)" = €B,, Q¢/Z,.

Presumably, LAIb® does exist with values in a suitable pro-category
containing D°(M;[1/p]), and sends Z(n) to the complete Tate module
of Z(n) for n > 2. Note that, by 8.2.c below, LAIb(Z(n)) = 0 for n > 2,
so that the natural transformation LAIb®'(a®* M) — LAIb(M) will not
be an isomorphism of functors in general.
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5.3. Motivic Pic.

5.3.1. Definition. The motivic Picard functor (a contravariant func-
tor) is the functor

RPic : DMSL — D" (M4[1/p))
given by Tot ™" a*D¥¥ (c¢f. Definition 5.2.1).

For M € DM?EE we then have the following tautology

(Tot RPic(M))Y = Tot LAIb(M).
Actually, from Theorem 4.5.3 we deduce:

5.3.2. Corollary. For M € DM;{1 we have
RPic(M)* = LAIb(M). O
Therefore we get ‘H'(RPic(M)) = (;H;(LAIb(M)))*.

5.4. Motivic m. All results of §5.1 hold when replacing D<; by D<y =
Hom(—,7Z(0)), with similar (and easier) proofs. In particular, we get a
triangulated functor

dSO = D?O oa’o ngs : DMZi;fn — dg().l).[\4eff

gm,ét
hence, using the dimension 0 case of Theorem 2.1.2, a triangulated
functor

Lmo : DM — D*(Mo[1/p))
and a natural transformation
a’M — Tot Lmy(M)

for M € DM,

5.4.1. Proposition. If X € Sm(k), the natural morphism X — mo(X)
induces an isomorphism Lmo(M (X)) ~ Z[mo(X)][0].

Proof. This is obvious if dim X = 0; hence it is enough to show that
DE§ converts the morphism M (X) — M (m(X)) into an isomorphism.
This statement means:

Hyso(mo(X) X Y, Z) == H (X x Y,Z) VY € Sm(k),Vi € Z.

For Y = Speck, this is true because the constant Nisnevich sheaf
Z is flasque, X is locally irreducible, and flasque sheaves have trivial
Nisnevich cohomology [91, Lemma 1.40]. The general case reduces to
this one by considering the composition

Hyo(m0(X) x mo(Y), Z) = Hyo(mo(X) x Y, Z) = Hyo(X x Y, Z)
and noting that m(X) x mp(Y) ~ mo(X x Y). O
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5.5. LAlb and Chow motives. Let Chow be the category of Chow
motives over k with integral coefficients and Chow®® the full subcate-
gory of effective Chow motives. We take the covariant convention for
composition of correspondences: the functor

X — h(X)

from smooth projective varieties to Chow®? is covariant. Recall that
Voevodsky [111, 2.1.4] defined a functor

(5.5.1) ® : Chow®" — DM®

such that ®(h(X)) = M(X) for any smooth projective X: this is a full
embedding by the cancellation theorem of [110], see [15, Cor. 6.7.3].
Hence a composition

(1) : dey Chow™ 5 Chow® % DMET A" D (A, [1/p))

where d<; Chow®" is the thick subcategory of Chow® (i.e. full, stable
under direct sumands), generated by motives of curves.

5.5.1. Proposition. The functor ®[1/p] is fully faithful. It yields a
naturally commutative diagram

dey Chow[1/p] 22 po(ad,[1/p))

Ll Totl
Chow*'[1/p] 2% DM,
where all functors except o o ® are full embeddings.
Proof. The diagram is naturally commutative by Remark 5.2.2 1).
Since Tot is fully faithful (see Definition 2.7.1), it then suffices to check
that a®o®oy is fully faithful. If C, C’ are two smooth projective curves,
this functor induces a homomorphism

I’IolfndSl ChOWeH[l/p] (h(c), h(Cl)) — HomDMgifnﬁét (Mé (C), Mét(cl))

The left group is CH*(C x C")[1/p]. The right one can be computed
by Poincaré duality (see [53, App. B|):

HomDMg{hét(Mé (C), Mer(C")) =~ HomDMgﬁhét(Mét(C x "), Ze(1)[2])
= Pic(C x C")[1/p]
and the map is clearly the identity. O

5.5.2. Remark. The functor a® o ® becomes a full embedding after
XQ; d<1 Chow*® KIQ consists of those objects that may be written as
a direct sum of Chow motives of the following type:
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e an Artin motive;

e a motive of the form hy(A) for A an abelian variety;

e a motive of the form M ® IL, where M is an Artin motive and
L is the Lefschetz motive.

This is clear by the Chow-Kiinneth decomposition for motives of
curves and the fact that any abelian variety is a direct summand of the
Jacobian of a curve, up to isogeny.

We could then define @) X Q without reference to DMEE1 or LAlb:
this functor sends

a) An Artin motive M to the l-motive [L — 0], where L is the
permutation Galois-module associated to M.

b) If A is an abelian variety, hi(A) to [0 — A][1].

¢) A Lefschetz motive M ® L to [0 — L ® G,,,][2], where L is as
in a).

It is not quite clear how to define ®(;) integrally without using LAlb.

The birational version of d<; Chow™ was described in [64, Prop.
7.2.4].

6. THE ADJUNCTION LAlb — Tot WITH RATIONAL COEFFICIENTS

Throughout this section, we use the notations ®Q and XQ from
Definition 1.2.4.

6.1. Rational coefficients revisited. Let DM (k; Q) and DMe_ffét(k; Q)
denote the full subcategories of DM (k) and DM";ffét(k:) formed of those

complexes whose cohomology sheaves are uniquely divisible. Recall
that by [109, Prop. 3.3.2|, the change of topology functor
o : DM (k) — DM, (k)
induces an equivalence of categories
afy : DM (k; Q) = DM, (k; Q).
Beware that in loc. cit. | these two categories are respectively de-

noted by DM (k) ® Q and DM, (k) ® Q, while we use this notation

—ét
here according to Definition 1.2.4. With the notation adopted in this
book, we have a commutative diagram

DMeff(k,Q> - DM'iff(]{;) — DMELH(]C)(@Q

(6.1.1) aal asl aS@@J

DM, (k;Q) —— DM, (k) —— DM, (k) ® Q
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whose horizontal compositions are fully faithful but not essentially sur-
jective. The functor o® ® Q is not essentially surjective, nor (a priori)
fully faithful. Nevertheless, these two horizontal compositions have a
left adjoint C'+— C' ® Q, and

6.1.1. Proposition. a) The compositions
DM (k) ® Q — DM (k) © Q 2% DM (k; Q)
(k) ® Q — DM, (k) ©® Q 2% DMT, (k; Q)

—,ét

DMeff

gm,ét
are fully faithful.
b) Via these full embeddings, the functor a® induces equivalences of
categories

DM (k) R Q —» DM, (k) K Q
d<y DM (k) R Q — d<; DMSL 4 (k) K Q.

Here d<; DM;?H(/’{:) is the thick subcategory of DMZ?H(/’{:) generated by
motives of smooth curves.

Proof. a) In the first case, let M, N € DM;?H(/@): we have to prove that
the obvious map

Hom(M, N) ® Q — Hom(M ® Q, N ® Q)

is an isomorphism. We shall actually prove this isomorphism for any
M € DMS (k) and any N € DM*'(k). By adjunction, the right hand
side coincides with Hom(M, N ® Q) computed in DM (k). We may
reduce to M = M(X) for X smooth. By [109, Prop. 3.2.8], we are left
to see that the map

HYo (X, N) © Q = Hi (X, N @ Q)

is an isomorphism for any ¢ € Z. By hypercohomology spectral se-
quences, we reduce to the case where N is a sheaf concentrated in
degree 0; then the assertion follows from the fact that Nisnevich coho-
mology commutes with filtering direct limits of sheaves.

This proof works in the étale topology as long as cd(k) < oco: we
thank the referee for pointing out this issue and suggesting the follow-
ing argument in general (cf. [58, proof of Prop. 2.1 b)]). Using the

exact triangle N - N@Q - N ® Q/Z i1>, we reduce to proving the
isomorphism for N ® Q (in which case it is trivial) and for N ® Q/Z.
Since N € DM . (k), we may reduce to N = M(X) for some smooth
X. By rigidity [103], the cohomology sheaves of N ® Q/Z are locally
constant and 0 outside some finite interval, and the previous argument

goes through.
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b) It is clear that the two compositions commute with a°, which
sends DMgh (k) ® Q into DMS (k) ® Q. By a) and [109, Prop. 3.3.2),

gm,ét

this functor is fully faithful, and the induced functor on the X cate-
gories remains so and is essentially surjective by definition of the two
categories. Similarly for the d<; categories. O

6.1.2. Remarks. 1) In fact, d<; DMgn . (k) ® Q = d<; DML (k) R Q
thanks to Corollary 1.11.2 and Theorem 2.1.2. We don’t know whether
the same is true for the other categories.

2) See 92, A.2.2] for a different, more general approach to Proposition
6.1.1.

6.1.3. Definition. With rational coefficients, we identify DMg?n(k) XQ
with DM . (k) ®Q via o® (using Proposition 6.1.1 b)) and define

gm,ét
D = DY} = D%,
d<y = D%,
LAIb? = Tot ! od;.
6.1.4. Remark. This definition is compatible with the formula d<; =

D%, o o o D% of Definition 5.1.3.

6.2. The functor LAIbY. We now get the announced adjunction by
taking (5.1.1) with rational coefficients, thanks to Corollary 1.11.2 and
Proposition 6.1.1.

6.2.1. Theorem. Let M € DMgfn(k) X Q. Then the map ap from
(5.1.2) induces an isomorphism

Hom(d<; M, M") — Hom(M, M")
for any M' € d<; DMgﬁl(k‘) X Q. FEquivalently, (5.2.1) is an isomor-
phism with rational coefficients.

Proof. By Proposition 4.5.1, M" can be written as NY = D<;(N) for
some N € d< DMggl(k) X Q. We have the following commutative
diagram

Hom(M, D<;(N)) = Hom(M ® N,Z(1)) = Hom(N, D« (M))
a}*wT (aNI®1N)*T Dgl(aM)*T
HOm(dglM, Dgl(N)):HOm(dglM X N, Z(l)):Hom(N, Dgl(dglM)).

But D<i(an)oap_,m = 1p_,m [94, p. 56, (3.2.3.9)]** and ap_,m is
an isomorphism by Proposition 5.1.4, which proves the claim. U

I5Note that this proof carries over in our case.
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6.2.2. Corollary. The functor d<y of (5.1.1) induces a left adjoint to
the embedding d<; DM (k) I Q — DM:h (k) ® Q. The Voevodsky-
Orgogozo full embedding Tot : D*(M; @ Q) — Dl\/[gf1 XQ has a left
adjoint LAIb©. O

7. A TENSOR STRUCTURE ON D’(M; ® Q)

In this section, coefficients are tensored with Q and we use the func-
tor LAIb? of Corollary 6.2.2.

7.1. Tensor structure.

7.1.1. Lemma. Let G,G> be two semi-abelian varieties. Then, we
have in DM XQ:

gm,ét

0 else.

HI(D<(Gy[-1) © Gyl1) = {

Proof. By Gersten’s principle (Proposition 2.4.1), it is enough to show
that the isomorphisms are valid over function fields K of smooth k-
varieties and that H° comes from the small étale site of Spec k. Since
we work up to torsion, we may even replace K by its perfect closure.
Thus, without loss of generality, we may assume K = k and we have
to show the lemma for sections over k.

For ¢ < 0, we use Proposition 4.4.1: for ¢ < 0 this follows from
Lemma 4.1.2, while for ¢ = 0 it follows from the isomorphisms (4.1.1)
and (4.1.2) (see Proposition 4.1.1), which show that Biext(G1, Gg; G,,,)
is rigid.

For ¢ > 0, we use the formula

D<1(G[-1] © G [~1]) = Hom(G, [~ 1], Tot([0 — G2]))

coming from Theorem 4.5.3. Writing [0 — Ga|* = [Ly — As] with Lo
a lattice and Ay an abelian variety, we are left to show that

HOmDMeff &Q(Q17 LQ[q ‘I’ 1]) - O fOF q > O

gm,ét

HomDMzﬁm . m0(G1, As[g]) = 0 for ¢ > 0.

For this, we may reduce to the case where G is either an abelian
variety or G,,,. If Gy = G,,,, G, is a direct summand of M (P')[—1] and
the result follows. If G, is an abelian variety, it is isogenous to a direct
summand of J(C) for C' a smooth projective geometrically irreducible
curve. Then G, is a direct summand of M(C'), and the result follows
again since Ly and A, define locally constant (flasque) sheaves for the
Zariski topology. U
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7.1.2. Proposition. a) The functor LAIb? : DM;{; XQ — D*(M;2Q)
15 a localisation functor; it carries the tensor structure ® of Dl\/[g;fn XQ
to a tensor structure ®, on D°(M; ® Q), which is left adjoint to the

internal Hom Hom, of §3.15.
b) For (M,N) € DML ®Q x D*(M; ® Q), we have
LAIb®(M ® Tot(N)) ~ LAIb%(M) @, N.
c) We have
Z—0l® C=C
for any C € D*(M; ® Q);
N1 ®1 Ny = [L — G]
for two Deligne 1-motives Ny = [L1 — G1], Ny = [Ly — Gs], where
L=1® Ly;
there is an extension

0— Biext(Gl, GQ,Gm)* -G — Ll X G2 @D L2 (%9 Gl — 0.

d) The tensor product ®; is exact with respect to the motivic t-structure
and respects the weight filtration. Moreover, it is right exzact with respect
to the homotopy t-structure.

e) For two 1-motives N1, Ny and a semi-abelian variety G, we have

HOIH(Nl &1 NQ, [0 — G]) ~ Biext(Nl, NQ, G) & Q

Proof. a) The first statement is clear since LAIbY is left adjoint to
the fully faithful functor Tot. For the second, it suffices to see that
if LAIb®(M) = 0 then LAIb®(M ® N) = 0 for any N € DM Q.
We may check this after applying Tot. Note that, by Proposition 4.5.1
and Remark 6.1.4 3), Tot LAIbY(M) = d<;(M) = 0 is equivalent to
D (M) = 0. We have:

D<y(M ® N) = Hom(M © N, Z(1)) = Hom(N, Hom(M, Z(1))) = 0.

The last statement follows by adjunction from the fact that Tot
commutes with internal Homs.

b) Let M’ = fibre(Tot LAIb®(M) — M): then LAIb%(M’) = 0. By
definition of ®; we then have
LAIb%(M) ®; N = LAIb®(Tot LAIb%(M) ® Tot(N))
5 LAILY(M @ Tot(N)).
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c¢) The first formula is obvious. For the second, we have an exact
triangle

G1]—1] ® Gy[—1] = Tot(N7) @ Tot(Ny)

= Tot([L1 ® Ly — L1 ® Gy & Ly ® G1]) 3

hence an exact triangle
HOHl(TOt([Ll X L2 — L1 (024 G2 D L2 X Gl], Z(].))
— Hom(Tot(N;) ® Tot(Ny), Z(1)) — Hom(G1[—1] ® G3[—1], G,,,) aat

By Lemma 7.1.1, the last term is Biext(G1, Go; G,,,), hence the claim.

d) Exactness and compatibility with weights follow from the sec-
ond formula of ¢); right exactness for the homotopy t-structure holds
because it holds on DM @Q.

e) We have:

HOHIM1®Q(N1®1N2, [O — G]) = HomdngM@)Q(TOt(Nl@lNQ), G[—l])
= HOI’IlDM®Q(TOt(N1) X TOt(Ng), G[—]_]) = Biext(Nl, NQ, G) X @
by Proposition 4.4.1 and formula (4.1.1). O

7.1.3. Remarks. 1) By the same argument as in Remark 5.2.2, one
can see that ®; is not defined integrally on (Z(1),Z(1)). Details are
left to the reader.

2) In [19], Cristiana Bertolin and Carlo Mazza generalise Proposition
7.1.2 e) to an isomorphism

HOHIM1®Q(N1 &1 NQ, N) = Biext(Nl, NQ, N) & @

for three 1-motives Ny, Ny, N, where the right hand side is the biex-
tension group introduced by Bertolin [18]. This puts in perspective
her desire to interpret these groups as Hom groups in the (future) tan-
nakian category generated by 1-motives.

More precisely, one expects that DMy, MQ carries a motivic ¢-struct-
ure whose heart MM would be the searched-for abelian category of
mixed motives. Then M;®Q would be a full subcategory of MM and
we might consider the thick tensor subcategory MY C MM generated
by M; ® Q and the Tate motive (inverse to the Lefschetz motive): this
is the putative category Bertolin has in mind.

Since the existence of the abelian category of mixed Tate motives
(to be contained in M?!) depends on the truth of the Beilinson-Soulé
conjecture, this basic obstruction appears here too.

Extrapolating from Corollary 6.2.2 and Proposition 7.1.2, it seems
that the embedding M; ® Q — MM (where MM is to be the
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intersection of MM with DMgfrl XQ) is destined to have a left adjoint

AbY = Hjo LAIb%M e which would carry the tensor product of

MM to ®;. Restricting AIb? to MP N MM would provide the
link between Bertolin’s ideas and Proposition 7.1.2 e).

7.2. A formula for the internal Hom.
7.2.1. Proposition. We have

Hom, (€, C2) = (C1 @1 C3)"
for Cy,Cy € D"(M; ® Q).

Proof. In view of Theorem 4.5.3, we are left to show that Hom(M;, Ms)
~ (M@, My)" for My, M, € d<; DM ®Q. By duality, we may
replace My by My. Then:
Hom(M;, M) = Hom(M;, Hom(M,, Z(1))
~ HOHI(Ml & MQ,Z(l)) >~ HOHI(Ml &1 MQ,Z(l)) = (Ml 1 Mg)v

where the second isomorphism follows from Proposition 7.1.2 b). O

8. THE ALBANESE COMPLEXES AND THEIR BASIC PROPERTIES

We now introduce homological and Borel-Moore Albanese complexes
of an algebraic variety. We also consider a slightly more sophisticated
cohomological Albanese complex LAIb*(X) which is only contravari-
antly functorial for maps between schemes of the same dimension. All
these complexes coincide for smooth proper schemes.

8.1. Motives of singular schemes. Let X be a smooth k-variety.
The assignment X +— M(X) defines a covariant functor from Sm(k)
to DMh . The image of M(X) via the full embedding DM — DM
is given by the Suslin complex C, of the representable Nisnevich sheaf
with transfers L(X) associated to X.

For X € Sch(k), the formula M(X) = C,(L(X)) still defines an
object of DM, Similarly, we have the motive with compact support of
X, denoted by M¢(X) € DM (ibid. ): it is the Suslin complex of the
presheaf with transfers L¢(X) given by quasi-finite correspondences.
Since finite implies quasi-finite we have a canonical map M(X) —
M¢(X) which is an isomorphism if X is proper over k. M is covariant
for any morphism in Sch(k) while M¢ is covariant for proper morphisms
between k-schemes of finite type.

If chark = 0, M(X) enjoys cohomological properties like Mayer-
Vietoris and blow-up exact triangles, while M¢(X) enjoys homological
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properties like localisation exact triangles, by [109, §4.1]. This implies
that M(X), M°(X) € DM for any X € Sch(k).

Voevodsky’s arguments in loc. cit. rely on (the strong form of) Hi-
ronaka’s resolution of singularities. The assignments X — M (X), M¢(X)
can be extended to characteristic p (as functors with values in DMgfn[l /p])
in two fashions:

e Using the 6 operations of Voevodsky-Ayoub [61, §6.7].
e By Kelly’s thesis [66], which extends Voevodsky’s arguments to
characteristic p.

Both approaches rely on Gabber’s refinement of de Jong’s theorem.
Either one is sufficient for the present section. On the other hand, some
of the arguments of Sections 10 and 12, in characteristic 0, use Hiron-
aka’s resolution of singularities. They could probably be extended to
characteristic p by using the de Jong/Gabber alteration theorem, but
modifying the proofs would be tedious and we prefer to leave it to the
interested reader. So we shall deal with singular schemes only in char-
acteristic 0.

Convention. In the rest of this book, “scheme" means separated k-
scheme of finite type if char k = 0 and smooth (separated) k-scheme of
finite type if char k > 0.

8.2. The homological Albanese complex.

8.2.1. Definition. We define the homological Albanese complex of X
b
’ LAIb(X) := LAIb(M(X)).
Define, for i € Z
L;Alb(X) :=H;(LAIb(X))
the 1-motives with cotorsion (see Definition 1.13.1 and Notation 1.13.8)
determined by the homology of the Albanese complex.

8.2.2. Remark. We could have chosen to define the homology with
respect to the dual t-structure, corresponding to 1-motives with tor-
sion according to Theorem 1.13.7. The reason for our choice appears
in Sections 9 — 12, where it works well especially for L; Alb which turns
out to yield a Deligne (i.e. cotorsion-free) 1-motive in all cases con-
sidered. This is not always true with the other t-structure, already for
curves. The interested reader is invited to investigate the finite groups
appearing in ;H;(LAIb(X)) and *H;(LAIb(X)), taking care of both ¢-
structures. Of course there is no difference with rational coefficients,
as these two t-structures coincide after tensoring with Q.
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The functor LAIb has the following properties, easily deduced from
[109, 2.2|:
8.2.a. Homotopy invariance. For any scheme X the map
LAIb(X x A') — LAIb(X)
is an isomorphism, thus
L;Alb(X x A') = L;Alb(X)
for all 7 € Z.

8.2.b. Mayer-Vietoris. For a scheme X and an open covering X =
U UV there is a distinguished triangle

LAIb(U NV) —— LAIb(U) @ LAIb(V)

+1 N0 N
LAIb(X)
and therefore a long exact sequence of 1-motives with cotorsion
= LAADDUNV) = LAIb(U) & L;Alb(V) — L;Alb(X) — - -
8.2.c. Tate twists. If X is a smooth scheme and n > 0, then

0 ifn>1

Tot LAIb(M (X)(n)) = {M(WO(X))(U ifn=1

where my(X) is the scheme of constants of X, see Definition 2.5.1.
Indeed

Tot LAIb(M(X)(n)) = Homy o (Homy, (M (X)(n),Z(1)),Z(1))
= Hom,o® (Homy (M (X)(n — 1), Z), Z(1))
by the cancellation theorem [110]. Now
0 ifn>1
Homy, (M(7o(X)),Z) if n = 1.

The last formula should follow from [59, Lemma 2.1 a)] but the
formulation there is wrong; however, the formula immediately follows
from the argument in the proof of loc. cit. , i.e. considering the Zariski
cohomology of X with coefficients in the flasque sheaf Z.

This gives

Hormyg, (M(X)(n — 1),2) = {

0 = Z[mo(X)] ® G| ifi=0

0 else.

(821)  LiAlb(M(X)(1)) = {

More generally, using the functor Ly of §5.4:
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8.2.3. Proposition. For any M € DMgfn,
(i) There is a natural isomorphism
LAIb(M (1)) ~ Lro(M)(1),
where on the right hand side, C'+— C(1) denotes the functor
D" (Mo[1/p]) — D" (M[1/p])

induced by L — [0 = L ® G,,].
(i) Lmo(M(1)) = 0.
(iii) LAIb(M(n)) =0 forn > 2.

Proof. Let M € DMZﬁl. The cancellation theorem yields an isomor-
phism
D25 (M) — Dy (M(1)).
Let N € DMgil’ét. Tensoring the evaluation map
Hom (N, Z)® N — Z
with Z(1) and using adjunction, we get a morphism
D%y (N)(1) = Homg, (N, Z) ® Z(1) — Hom,, (N, Z(1)) = DZ,(N).

For N € d<g DMgfn’ét, this map is an isomorphism by reduction to

N = M(Spec E) for a finite extension F/k. Applying this to N =
a*DIF(M), we get a composite isomorphism
(d<oM)(1) == D& a"DIg(M) == d<i(M(1))

from which (i) follows.

For (ii), we reduce to M = M(X) for X € Sm(k); then this follows
from Proposition 5.4.1 applied to X and X x P'. Finally, (iii) follows
from (i) and (ii). O

8.2.d. LAIb with supports. Let X € Sm(k), U an open subset of X and
7 = X — U (reduced structure). In DM ' we have the motive with

gm>

supports M#(X) fitting in an exact triangle
MU) = M(X) - M?(x) 8
hence the homological complex with supports
LAIb?(X) := LAIb(M? (X))
fitting in an exact triangle

LAIb(U) — LAIb(X) — LAIb? (X) 53 .
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8.2.e. Gysin. Keep the notation of §8.2.d. When Z is smooth, purely
of codimension ¢, we have the Gysin isomorphism [109, Prop. 3.5.4]

(8.2.2) M?(X) ~ M(Z)(c)[2c]
In general this implies:
8.2.4. Lemma. a) Let ¢ = codimx(Z). Then there is an effective
motive M € Dl\/[zg1 such that M?(X) ~ M(c).
b) For ¢ > 1, we have an isomorphism LAIb(U) — LAIb(X), while
for ¢ =1 we have an exact triangle
LAIb(U) = LAIb(X) — [0 = Z[no(Z — Z')] ® G,u][2] &

where Z' is the union of the singular locus Zgne of Z and its irreducible
components of codimension > 1. Hence a long exact sequence

0 = LoAlb(U) = LeAlb(X) — [0 = Z[mo(Z — Z")] @ Gy
— L1AIb(U) — L1Alb(X) — 0

and an isomorphism LyAlb(U) — LoAlb(X).

Proof. a) If Z is smooth, this follows from (8.2.2). In general, it follows
by Noetherian induction from the exact triangle

(8.2.3) MZ= %8 (X — Zgna) = MZ(X) — M%ms(X) 5

and the cancellation theorem (note that Zg,, # Z because k is perfect).

b) follows from a) and Proposition 8.2.3 (iii) for ¢ > 1. For ¢ = 1,
let us apply LAlb to (8.2.3), where we replace Zg,, by Z’. By a)
and Proposition 8.2.3 (iii), we have LAIb(M? (X)) = 0, hence from
Proposition 8.2.3 (i) and (8.2.2) we get an isomorphism

LroM(Z — Z")(1)[2] = LAIb(MZ(X)).

The conclusion now follows from Proposition 5.4.1. 0

8.2.f. Blow ups. If X is a scheme and Z C X is a closed subscheme,
denote by p : X — X a proper surjective morphism such that p~! (X —
Z) — X — Z is an isomorphism, e.g. the blow up of X at Z. Then
there is a distinguished triangle

LAIb(Z) LAIb(X) @ LAIb(Z)
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with Z = p~1(Z), yielding a long exact sequence
(8.2.4) .-+ — L;AIb(Z) — L;AIb(X) @ L;AIb(Z) — L;Alb(X) — - -

If X and Z are smooth, we get (using [109, Prop. 3.5.3] and the
above)

LAIb(X) = LAIb(X) @ [0 — Z[m(Z)] @ G,,][2]
and corresponding formulas for homology.

8.2.g. Albanese map. If X is a scheme we have the natural map (5.1.2)
in DMgT
(8.2.5) ay : o’ M(X) — Tot LAIb(X)
inducing homomorphisms on étale motivic cohomology
Hom (Mg (X), Z& (1)[j]) = Hom(LAIb(X), [0 = G,,][4])
which are isomorphisms rationally by Theorem 6.2.1.
8.3. The cohomological Picard complex. Dual to 8.2.1 we set:
8.3.1. Definition. Define the cohomological Picard complex of X by
RPic(X) := RPic(M(X)).
Define, for i € Z .
R'Pic(X) := tHZ(RPic(X))
the 1-motives with torsion determined by the cohomology of the Picard
complex (see Notation 1.13.8).

The functor RPic has similar properties to LAlb, deduced by duality.
Homotopy invariance, Mayer-Vietoris, Gysin and the exact triangle for
abstract blow-ups are clear, and moreover we have

0 itn>1
RPic(M (X =
ie(M{X)(n)) {[Z[?TO(X)] 0] ifn=1
We also have that RPic(X) = LAIb(X)Y, hence
R'Pic(X) = LAIb(X)".

It is easy to compute the cohomology sheaves of Tot RPic(X) with
respect to the homotopy t-structure:

8.3.2. Proposition. For X € Sm(k), we have
' Gxpll/pl  ifi=-1
Hi(Tot RPic(X)) = { Picy,[1/p] if i =0
0 otherwise

where these sheaves were introduced in §53.5.
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Proof. We have
Tot RPic(X) = (D%,)’a*DEPM(X) = o*DEF M (X).

Since a® respects the homotopy t-structures of DM®® and Dl\/Ie_ﬂjét
(Corollary 1.8.5), the claim follows from the known Nisnevich coho-
mology of G,, for smooth schemes. O

We shall complete §8.2.¢ by

8.3.a. RPic with supports. With the notation of §8.2.e, we have the
cohomological complex with supports

RPicz(X) := RPic(M?#(X))
fitting in an exact triangle
RPicz(X) — RPic(X) — RPic(U) £ .

We then have the following cohomological version of Lemma 8.2.4,
with a different proof:

8.3.3. Lemma. Ifdim X =d and Z C X s closed of codimension > 1,
then RPicz(X) ~ [CH, (Z) — 0][—2], where CH, ,(Z) is the lattice
corresponding to the Galois module CHy—1(Zy,).

(Note that C'Hy—1(Z%) is the free abelian group with basis the irre-
ducible components of Z; which are of codimension 1 in X3, so that
this computation is dual to that in Lemma 8.2.4.)

Proof. This follows readily from Proposition 8.3.2 and the exact se-
quence

0= Gxx — Gy — CH, 4(Z) — Picy ), — Picy — 0.

O

8.4. Relative LAIb and RPic. For f:Y — X a map of schemes we
let M(X,Y') denote the cone of C.(Y) — C.(X). Note that for a closed
embedding f : Y — X in a proper scheme X, we have an isomorphism
M(X,)Y) — M¢(X -Y).

We denote by LAIb(X,Y’) and RPic(X,Y) the resulting complexes
of 1-motives.
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8.5. The Borel-Moore Albanese complex.

8.5.1. Definition. We define the Borel-Moore Albanese complex of X
by

LAIb®(X) := LAIb(M‘(X)).
Define, for i € Z

L;Alb¢(X) := H;(LAIb(X))

the 1-motivic homology of this complex.

We then have the following properties:

8.5.a. Functoriality. The functor X +— LAIb°(X) is covariant for proper
maps and contravariant with respect to flat morphisms of relative di-
mension zero, for example étale morphisms. We have a canonical, co-
variantly functorial map

LAIb(X) — LAIb®(X)
which is an isomorphism if X is proper.

8.5.b. Localisation triangle. For any closed subscheme Y of a scheme
X we have a triangle

LAY (YY) ——  LAID(X)

+1N v
LA (X —Y)

and therefore a long exact sequence of 1-motives
(8.5.1)
—oo = LAIDDYY) — LAIDY(X) — LAY (X—Y) — L; AIbY(Y) — ...

In particular, let X be a scheme obtained by removing a divisor Y
from a proper scheme X, i.e. X = X —Y. Then

-+ = LiAIb(Y) — LiAlIb(X) — LiAIbY(X) — LoAlb(Y)

— LoAlb(X) — LoAIb*(X) — ...

8.5.c. Albanese map. We have the following natural map (5.1.2)
a% @ M(X) — Tot LAIb*(X)

which is an isomorphism if dim(X) < 1. In general, for any X, a5 in-
duces an isomorphism H?(X,Q(1)) = Hom(LAIb(X),[0 — G,,][j]) ®
Q.
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8.6. Cohomological Albanese complex.

8.6.1. Lemma. Suppose p = 1 (i.e. chark = 0), and let n > 0.
For any X of dimension < n, the motive M(X)*(n)[2n] is effective.
(Here, contrary to the rest of the paper, M(X)* denotes the “usual”
dual Hom (M (X)), Z) in DMgy,.)

Proof. First assume X irreducible. Let X — X be a resolution of
singularities of X. With notation as in §8.2.f, we have an exact triangle
~ ~ +1

M(X)"(n) = M(X)"(n)®M(Z)"(n)®M(Z) (n) = .
Since X is smooth, M(X)*(n) ~ Me(X)[—2n] is effective by [109,

Th. 4.3.2]; by induction on n, so are M(Z)*(n) and M(Z)*(n) and
therefore M(X)*(n) is effective.

In general, let Xy,..., X, be the irreducible components of X. Sup-
pose r > 2 and let Y = Xo U--- U X,.: since (X1,Y) is a cdh cover of

X, we have an exact triangle
M(X)*(n) = M(X1)*(n) @ M(Y)*(n) ® M(X:NY)"(n) 4.
The same argument then shows that M (X)*(n) is effective, by in-

duction on 7. U

We can therefore apply our functor LAlb and obtain another complex
LAIb(M(X)*(n)[2n]) of 1-motives. If X is smooth this is just the Borel-
Moore Albanese.

8.6.2. Definition. We define the cohomological Albanese complex of a
scheme X of dimension n by

LAIb*(X) := LAIb(M (X ™)*(n)[2n)])

where X (™ is the union of the n-dimensional components of X. Define,
forv € Z

L;Alb* (X)) :=H;(LAIb* (X))
the 1-motivic homology of this complex.

8.6.3. Lemma. a) If Zy,...Z, are the irreducible components of di-
mension n of X, then the cone of the natural map

LAIb*(X) — @D LAIb"(Z;)

is a complex of groups of multiplicative type.
b) If X is integral and X is a desingularisation of X, then the cone of
the natural map N

LAIb*(X) — LAIb*(X)

15 a complex of groups of multiplicative type.
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Proof. a) and b) follow from dualising the abstract blow-up exact tri-
angles of [109, 2.2] and applying Proposition 8.2.3. U

8.7. Compactly supported and homological Pic. We now con-
sider the dual complexes of the Borel-Moore and cohomological Al-
banese.

8.7.1. Definition. Define the compactly supported Picard complex of
any scheme X by

RPic’(X) := RPic(M°(X))
and the homological Picard complex of a scheme X of dimension n by
RPic*(X) := RPic(M(X™)*(n)[2n]).
Denote R'Pic’(X):='H*(RPic°(X)) and R'Pic"(X):='H (RPic*(X))
the 1-motives with torsion determined by the homology of these Picard
complexes.

Recall that RPic’(X) = RPic(X) if X is proper and RPic‘(X) =
RPic*(X) if X is smooth and equidimensional.

8.8. Topological invariance. To conclude this section, we note the
following useful

8.8.1. Lemma. Suppose that f :' Y — X is a uniwversal topological
homeomorphism, in the sense that 1y X f : U XY — U x X is a
homeomorphism of topological spaces for any smooth U (in particular
f is proper). Then f induces isomorphisms LAIb(Y) — LAIb(X),
RPic(X) — RPic(Y), LAIb*(Y) — LAIb(X) and RPic*(X) —
RPic(Y). Similarly, LAIb*(X) — LAIb*(Y) and RPic*(Y) —
RPic*(X). This applies in particular to Y = the semi-normalisation
of X.

Proof. Tt suffices to notice that f induces isomorphisms L(Y) — L(X)
and L(Y) — L°(X), since by definition these sheaves only depend on
the underlying topological structures. U

Lemma 8.8.1 implies that in order to compute LAIb(X), etc., we
may always assume X semi-normal if we wish so.
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Part 3. Some computations
9. COMPUTING LAIb(X) AND RPic(X) FOR SMOOTH X

In this section, we fully compute the motives introduced in Section
8 for smooth schemes; in Sections 10 — 12 we provide some interesting
computations and comparisons for singular schemes as well.

9.1. The Albanese scheme. Let X be a reduced k-scheme of finite
type. “Recall" ([89, Sect. 1|, [101]) the Albanese scheme Ay fitting
in the following extension

(9.1.1) 0 — A%, = Axjr = Zlmo(X)] = 0

where Ag(/k, is Serre’s generalised Albanese semi-abelian variety, and

mo(X) is the scheme of constants of X viewed as an étale sheaf on
Sm(k).' In particular,

Ax/i € AbS (see Definition 1.1.5).
There is a canonical morphism
(912) ax X — AX/k

which is universal for morphisms from X to group schemes of the same

type.
For the existence of Ay, the reference [89, Sect. 1] is sufficient if

X is a variety (integral separated k-scheme of finite type), hence if X
is normal (for example smooth): this will be sufficient in this section.
For the general case, see §10.1.

Recall the functor tot of (3.10.1): we shall denote the object

tOt_1<AX/k) € D"(M[1/p))
simply by Ax/;. As seen in Lemma 3.11.1, we have

[Z]mo(X)] — 0] fori=0
"Hi(Axsi) = [0 — A i) fori=1
0 for ¢ # 0, 1.

(Note that *H;(Ax/k) = +Hi(Ax/) here, because the involved 1-
motives are torsion-free.)

1611 the said references, A())(/k is denoted by Albx and Ax/;, is denoted by Albx.
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9.2. The main theorem. Suppose X smooth. Via (1.8.2), (9.1.2)
induces a composite map

(9.2.1) Mét(X) — Mét(AX/k;) — AX/k-
Theorem 4.5.3 gives:

9.2.1. Lemma. We have an exact triangle

Zlmo(X)]*[0] — Homy, (Axsp, Zaa(1)) > (A%, (-2 5 O

By Lemma 9.2.1, the map
Hom, (Ax/, Zei (1)) = Homg, (Mei(X), Zei(1))
deduced from (9.2.1) factors into a map
(9.2.2) Homy (Ax/k; Zer (1)) = T<oHomy (Mg (X), Zet(1)).

Applying Proposition 4.5.1 and Lemma 5.1.2, we therefore get a
canonical map in D?(M;[1/p])

(9.2.3) LAIb(X) — Ax/.

9.2.2. Theorem. Suppose X smooth. Then the map (9.2.3) sits in an
ezxact triangle

[0 — NS ][2] = LAIb(X) — Ax/ 4,

where NS . denotes the group of multiplicative type dual to NSx /i (cf.
Definition 3.6.1 and Proposition 3.6.2).

This theorem says in particular that, on the object LAIb(X), the
motivic t-structure and the homotopy ¢-structure are compatible in a
strong sense.

9.2.3. Corollary. For X smooth over k we have

[Z[mo(X)] = 0] ifi=0

LAb(x) = {07 Al =1
Z [ — NSy i) ifi=2
otherwise.

9.2.4. Corollary. For X smooth, LiAlb(X) is isomorphic to the ho-
mological Albanese 1-motive Alb™ (X)) of [12]. O
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9.3. Reformulation of Theorem 9.2.2. It is sufficient to get an ex-
act triangle after application of D<; o Tot, so that we have to compute
the cone of the morphism (9.2.2) in DM ... We shall use:

gm,ét*
9.3.1. Lemma. For F € HI}, the morphism b of Proposition 3.1.1 is
induced by (1.8.2).

Proof. This is clear by construction, since Hompy,, (M (G), F[1])
H (G, F) [109, Prop. 3.3.1].

O

Taking the cohomology sheaves of (9.2.2), we get morphisms

(9.3.1) Hom (.Ax/k, Gm) — p*Gm,X
(9.3.2) [+ Ext (Axsr, Gr) — Picy i —— Picy,

where in (9.3.2), b corresponds to the map of Proposition 3.1.1 thanks
to Lemma 9.3.1. Thanks to Proposition 3.7.1, Theorem 9.2.2 is then
equivalent to the following

9.3.2. Theorem. Suppose k algebraically closed. Then
a) (9.3.1) yields an isomorphism Hom(Ax i, G,,) — T'(X, G,y,).
b) (9.3.2) defines a short exact sequence

(9.3.3) 0 = Ext(Ay 4, Gm) — Pic(X) —= NS(X) = 0
where e 1s the natural map.

Before proving Theorem 9.3.2, it is convenient to prove Lemma
9.3.3 below. Let Ax/, be the abelian part of quk; then the sheaf

Ext (Ax )y, Gp) is represented by the dual abelian variety A% - Com-
posing with the map f of (9.3.2), we get a map of 1-motivic sheaves

(9.3.4) Ay, — Pleyyy.

9.3.3. Lemma. The map (9.3.4) induces an isogeny in SAb
A}/kﬁ*V(&Xﬂc) = &g(/k

where 7 is the adjoint functor appearing in Theorem 3.3.5 a).

Proof. We proceed in 3 steps:

(1) The lemma is true if X is smooth projective: this follows from
the representability of Pic} and the duality between the Picard
and the Albanese varieties.

(2) Let j : U — X be a dense open immersion: then the lemma
is true for X if and only if it is true for U. This is clear since
Picy, — Picyy, is an epimorphism with discrete kernel.
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(3) Let ¢ : Y — X be finite étale. If the lemma is true for Y,
then it is true for X. This follows from the existence of transfer
maps , : A;,/k — A}/k, Picy ), — Picy, commuting with the
map of the lemma, plus the usual transfer argument. (The first

transfer map may be obtained from the composition A% s
sum

Agd(y)/k — Ag,/k, where d = degp and X — S4(Y) is the
standard “multisection” morphism.)

We conclude by de Jong’s theorem [57, Th. 4.1]. O

9.4. Proof of Theorem 9.3.2. We may obviously suppose that X is
irreducible.

a) is obvious from the universal property of Axy/;. For b) we proceed
in two steps:

(1) Verification of ef = 0.
(2) Proof that the sequence is exact.

(1) As above, let A = A/, be the abelian part of A%W In the
diagram

Ext(A, Gm) — EXt( g{/k? Gm) — EXt(Ax/k, Gm)

the first map is surjective and the second map is an isomorphism, hence
we get a surjective map

v: Ext(A, G,,) = Ext(Ax/k, Gp).
Choose a rational point # € X (k). We have a diagram

EXt(A, Gm) L) EXt(Ax/k, Gm)
| /|
Pic(A) -2  Pic(X)
NS(4) —— NS(X)
in which

i) a is given by [96, p. 170, prop. 5 and 6| (or by Proposition
(i) given by y
3.1.1).
(ii) ca =0 (ibid., p. 184, th. 6).
(i) 2* is induced by the “canonical" map X — A sending z to 0.
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Lemma 3.1.5 applied to G' = A/, implies that the top square com-
mutes (the bottom one trivially commutes too). Moreover, since v is
surjective and ca = 0, we get ef = 0.17

(2) In the sequence (9.3.3), the surjectivity of e is clear. Let us
prove the injectivity of f: suppose that f(€) is trivial. In the pull-back
diagram

G*EL X

E L> -AX/k:
7' has a section o’. Observe that £ is a locally semi-abelian scheme: by
the universal property of Ax/, the morphism @'c’ factors canonically
through @. In other words, there exists o : Ax), — & such that
a@'0’ = oa. Then
noa=rao =an'c’ =a

hence mo = 1 by reapplying the universal property of Ax/,, and &
is trivial. Finally, exactness in the middle follows immediately from
Proposition 3.6.2 and Lemma 9.3.3. U

9.4.1. Corollary. The isogeny of Lemma 9.3.3 is an isomorphism.
Proof. This follows from the injectivity of f in (9.3.3). U

9.5. An application.

9.5.1. Corollary. Let X be a smooth equidimensional k-variety of di-
mension d, U a dense open subset and Z = X — U (reduced structure).
Then the morphism Ay, — Axy is epi; its kernel Txyy, 1s a torus
whose character group fits into a short exact sequence

0= TY /= CH, (Z) = NSz(X)—=0

where CH,_1(Z) is as in Lemma 8.3.3 and NSz(X) = Ker(NS(X) —
NS(U)).

Proof. To see that Ay, — Axy is epi with kernel of multiplica-
tive type, it is sufficient to see that mo(Ay/,) — mo(Ax/x) and that
Ay — Axyi,. The first isomorphism is obvious and the second one

17As suggested by the referee, we can use the functor 7y of Theorem 3.3.5 for an
alternative proof. Indeed, e and f are induced by maps of 1-motivic sheaves (see
Proposition 3.6.2 for e). Since £xt (Ax i, Gy) is a quotient of an abelian variety,
mo(Ext (Ax/k, Gm)) = 0 and on the other hand mo(NSx,r) = NSx/i, hence ef

factors through the zero map mo(ef).
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follows from |79, Th. 3.1]. The characterisation of T’x/y . is then an im-
mediate consequence of Theorem 9.2.2 and Lemma 8.3.3; in particular,
it is a torus. ]

9.6. RPic(X). Recall that for X smooth projective .Ag(/k = Ay is
the classical Albanese abelian variety Alb(X). In the case where X

is obtained by removing a divisor Y from a smooth proper scheme X,
Ag{/k, can be described as follows (cf. [12]). Consider the (cohomo-

logical Picard) 1-motive Pic™(X):= [Div}(X) — Pic’(X)]: its Cartier
dual is A% n which can be represented as a semi-abelian variety

0= Tx/xp = Ak = AIb(X) = 0

where Tz, x , has character group Divy(X) according to Corollary 9.5.1.
From the previous remarks and Corollary 9.2.4, we deduce:

9.6.1. Corollary. If X is smooth, R'Pic(X) is isomorphic to the 1-
motive Pic™ (X) of [12] (the Cartier dual of Alb™(X)). If X is a smooth
compactification of X, then

[0 = Z[mo(X)]"] ifi=0

. ) Divi(X) = Pic’(X)] ifi=1

RPICX) =9 Ns(x) = 0] ifi=2
0 otherwise

where Y = X — X.

10. 1-MOTIVIC HOMOLOGY AND COHOMOLOGY OF SINGULAR
SCHEMES

In this section, we start to compute the motives introduced in Section
8 for singular schemes. Recall the convention made at the end of §8.1.
We also refer to §8.1 for a discussion on how one could extend these
results to any characteristic.

10.1. Axj, for X € Sch(k). In this subsection, we extend the con-
struction of Ax/;, to arbitrary reduced k-schemes of finite type, starting
from the case where X is integral (which is treated in [89, Sect. 1]).
So far, k may be of any characteristic.

To make the definition clear:

10.1.1. Definition. Let X € Sch(k). We say that Ax, exists if the
functor

AbS — Ab
G— G(X)
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is corepresentable.

First note that Ay, does not exist (as a semi-abelian scheme, at
least) if X is not reduced. For example, for X = Spec k[e] with €2 = 0,
we have an exact sequence

0 = Gu(k) = Map,(X,G,,) = G, (k) — 0

which cannot be described by Hom(.A, G,,) for any semi-abelian scheme
A.

On the other hand, M(X) = M(X,q) for any X € Sch(k), where
Xyea 18 the reduced subscheme of X (see proof of Lemma 8.8.1), so we
are naturally led to neglect nonreduced schemes.

10.1.2. Lemma. Let Z € Sch(k), G € AbS and fi, fo : Z = G be two
morphisms which coincide on the underlying topological spaces (thus,
fi = fo if Z is reduced). Then there exists a largest quotient G of G
such that wo(G) — mo(G) and the two compositions

7=G—G
coincide.

Proof. The set S of such quotients G is in one-to-one correspondence
with the set of closed subgroups H° C G°. Clearly mo(G) € S, and
if 61 = G/H? € S, @2 = G/Hg S S, then @3 = G/(H?QHS) e s.
Therefore S has a smallest element, since it is Artinian (compare proof
of Proposition 3.7.3). O

10.1.3. Proposition. Ay exists for any reduced X € Sch(k).

Proof. When X is integral, this is [89, Sect. 1|. Starting from this case,
we argue by induction on dim X. Let Zi,...,Z, be the irreducible
components of X and Z;; = Z; N Z;.

By induction, A;j := Az,,),../x exists for any (i, j). Consider

A = Coker (D Ay — D A)

with A; = Az, k. Let Z = [[Z;; and fi, fo : Z = [[ Z; be the two
inclusions: the compositions fi, fo : Z = A verify the hypothesis of
Lemma 10.1.2. Hence there is a largest quotient A’ of A with my(A) —
mo(A"), equalising f; and f5. Then the composition

glues down to a morphism X — A’. It is clear that A" = Ay since,
for any commutative group scheme G, the sequence

0 — Map,(X,G) — @Mapk(Zi, G) — @Mapk(le, G)
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1s exact. O

Unfortunately this result is only useful to understand L;Alb(X) for
X normal as we shall see below. In general, we shall have to consider
Albanese schemes for the éh topology.

10.2. The éh topology. In this subsection and the next ones, we as-
sume that k is of characteristic 0. Recall that Hls = HIZ, in this case
by Proposition 1.7.5.

The following étale analogue of the cdh topology was first considered
by Thomas Geisser [46, Def. 2.1] (it is the same as [109, Def. 4.1.9],
replacing the Nisnevich topology by the étale topology):

10.2.1. Definition. The éh-topology on Sch(k) is the topology gener-
ated by the étale topology and coverings defined by abstract blow-ups
(as in §8.2.f). We shall denote by EH the category of abelian éh-sheaves.

Let € : Sch(k)an — Sch(k)e be the obvious morphism of sites. If F is
an étale sheaf on Sch(k), we denote by Fg, its éh sheafification (that is,
Fen = €*F). We shall abbreviate H}, (X, Fan) to H (X, F). Similarly,
for C' € D(EST) we denote Cg, the éh sheafification of the complex C'
after forgetting transfers.

As in [77, Prop. 13.27] we have:

10.2.2. Lemma. a) Let F € Hlg and X € Sm(k). Then F(X) =~
Fen(X) and (more generally) HE (X, F) ~ HE (X, F) for all ¢ > 0.

b) The isomorphism of a) remains true when replacing F by any com-
plex C' € D(EST), whose cohomology sheaves are in Hlg.

Proof. a) We adapt the proof in [77, Prop. 13.27| to the éh-topology.
It is not difficult to adapt the facts 13.19-13.24 in [77, §13| once we
have the analogue of 12.28 for the éh-topolgy, i.e. the fact that each
éh-cover of X has a refinement U — X’ — X where U is étale over X’
and X’ is a composition of blow ups along smooth centers. The latter
is proven in [46, Cor.2.6|.

b) We proceed in two steps. If C'is bounded below, this follows from
a) by comparing two (convergent) hypercohomology spectral sequences.
In general, we may consider the good lower truncations of C, and the
isomorphism follows from the bounded below case by comparing two
Milnor exact sequences. O

As in [109, Th. 4.1.10] and [77, Th. 14.20] for the cdh-topology we
get:
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10.2.3. Proposition. Let C € DMeffét. Then, for any X € Sch(k) and
any q € Z we have

HomDMe_ffét(Mét(X), Clq)) — HL(X,O).
In particular, if X is smooth then H{ (X,C) ~ HY (X, C).

(See |46, Th. 4.3| for a different proof of the second statement for
C = Zg(n).)

Proof. We adapt the proof in 77, Th. 14.20] to the éh-topology. Denote
by Z(X) the étale sheaf |associated to] U +— Z[Homgy) (U, X)]. By
considering the exact forgetful functor w : EST — ES as in §3.11,
we see that Z(X) — wL(X) is a subsheaf. In D~ (EST) we have a
canonical map L(X) — M (X):=RCsL(X) (by the adjunction in
Theorem 1.8.4). By forgetting transfers and composing we then get
maps

Hompyger, (Mes(X), Clgl) — Homp - ss)(Z(X),wClq)) = H4(X,C)

whose composition is an isomorphism for X smooth by [77, Ex. 6.25]
(the second map is always an isomorphism, c¢f. [77, Lemma 12.12|). By
éh sheafification we also get maps

Homp-(gg)(Z(X),wCl[q]) 5 Hom p- (1) (Z(X )en, Canlq]) — HE (X, C)

where the second map is clearly an isomorphism (see [46, Lemma 3.1|)
and the first map is an isomorphism for X smooth by Lemma 10.2.2
b).
In general, for any X € Sch(k) the claimed isomorphism follows as
in [46, Prop. 3.1] from blow-up induction (Lemma 10.3.1 below). O

10.3. Blow-up induction. We just used the following lemma:

10.3.1. Lemma. Let A be an abelian category.
a) Let B C A be a thick subcategory and H* : Sch(k)® — AN ¢
functor with the following property:

(1) given an abstract blow-up as in §8.2.f, we have a long
exact sequence

s H(X) = H(X)® H(Z) = H(Z) = HT(X) = . ..
Let n > 0, and assume that H(X) € B fori < n and X € Sm(k).
Then H(X) € B fori <n and all X € Sch(k).
b) Let HY, Hy be two functors as in a) and ¢* : Hf — Hj be a natural
transformation. Let n > 0, and suppose that ©'% is an isomorphism

for all X € Sm(k) and i < n. Then ¢' is an isomorphism for all
X € Sch(k) and i < n.
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We get the same statements as a) and b) by replacing “i < n'" by
“>n+dimX"

Proof. Induction on dim X in two steps: 1) if X is integral, choose a
resolution of singularities X > X; 2) in general, if Z;,..., Z, are the
irreducible components of X, choose X = [[Z; and Z = Uiz Zi N
Z. O
10.3.2. Examples. 1) Thanks to [109, Th. 4.1.10] and Proposition
10.2.3, edh and éh cohomology have the property (1) (here A = abelian
groups). (See also [46, Prop. 3.2].)

2) Etale cohomology with torsion coefficients has the property (1) by
[86, Prop. 2.1] (recall that the proof of loc. cit. relies on the proper
base change theorem).

Here is a variant of Lemma 10.3.1:

10.3.3. Proposition. a) Let X € Sch(k) and X. — X be a hyper-
envelope in the sense of Gillet-Soulé [48, 1.4.1]. Let 7 = cdh or éh.
Then, for any (bounded below) complex of sheaves C' over Sch(X),, the
augmentation map

H(X,C) — HX(X.,C)

s an isomorphism.

b) Suppose that Xy and X, are smooth and F is a homotopy invariant
Nisnevich (if 7 = cdh) or étale (if T = éh) sheaf with transfers. Then
we have

Fr(X) = Ker(F(Xo) — F(X1)).

Proof. a) By |77, Lemma 12.26], X, is a proper 7-hypercovering (cf.
[24, p. 46]). Therefore the proposition follows from the standard theory
of cohomological descent.

b) Let us take C' = F,[0]. By a) we have a descent spectral sequence
which gives a short exact sequence

0 — Fr(X) = Fr(Xo) = Fr(X1)

and the conclusion now follows from 10.2.3. O

10.4. L;Alb(X) for X singular. The following is a general method
for computing the I-motivic homology of LAIb%(X):

10.4.1. Proposition. For X € Sch(k) consider cdh cohomology groups
HY 4, (X, 7 (N))q with coefficients in a 1-motive up to isogeny N where
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7 Sch(k)can — Sch(k)zar is the canonical map from the cdh site to the
big Zariski site. Then we have short exact sequences, for all i € Z

0 — Ext'(L; , AIb%(X), N) — Hi,, (X, 7 (N))g
— Hom(L;AIb%(X), N) = 0
Proof. For any 1-motive N we have a spectral sequence
(10.4.1) EP? = Ext?(L,Alb(X), N) = Ext’"(LAIb(X), N)
yielding the following short exact sequence
0 — BExt'(Li_;AIb%(X), N) — Ext'(LAIb%(X), N) —
Hom(L;AIb%(X), N) — 0
because of Proposition 1.3.1. By adjunction we also obtain
Ext’(LAIb%(X), N) = Hom(LAIb%(X), N[i]) = Hom(M(X), Tot NTi]).
Now from [109, Thm. 3.2.6 and Cor. 3.2.7|, for X smooth we have
Hom(M (X), Tot N[i]) = Hy,,. (X, N)q.

As k is of characteristic 0, for X arbitrary we get the same isomor-
phism with edh hypercohomology by [109, Thm. 4.1.10]. O

The following proposition folllows readily by blow-up induction (Lem-
ma 10.3.1) from Corollary 9.2.3 and the exact sequences (8.2.4):

10.4.2. Proposition. For any X € Sch(k) of dimension d, we have
a) L;AIb(X) =0 ifi < 0.

b) LoAlb(X) = [Z[mo(X)] — 0.

¢) LiAlb(X) = 0 for i > max(2,d + 1).

d) Las1Alb(X) is a group of multiplicative type. O

10.5. The cohomological 1-motives R'Pic(X). If X € Sch(k), we
quote the following variant of Proposition 10.4.1:

10.5.1. Lemma. Let N € M; ® Q and X € Sch(k). We have a short
exact sequence, for all i € Z

0 — Ext(N, R 'Pic(X)) — Hiy, (X, 7 (N"))o
— Hom(N, R'Pic(X)) — 0
here m : Sch(k)ean — Sch(k)zar and N* is the Cartier dual.
Proof. The spectral sequence

EP? = Ext?(N, R?Pic(X)) = ExtP™(N, RPic(X))
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yields the following short exact sequence
0 — Ext(N, R 'Pic(X)) — Ext’(N, RPic(X)) —
Hom(N, R'Pic(X)) — 0

and by Cartier duality, the universal property and [109, Thm. 4.1.10]
we obtain:

Ext’(N, RPic(X)) = Hom(N, RPic(X)[i]) = Hom(LAIb(X), N*[i]) =
Hom(M (X), N*[i]) = Heg, (X, 7 (N"))q.
O
On the other hand, here is a dual to Proposition 10.4.2:

10.5.2. Proposition. For any X € Sch(k) of dimension d, we have
a) R'Pic(X) =0 ifi < 0.

b) ROPic(X) = [0 — Z[mo(X)]*].

¢) R'Pic(X) = 0 for i > max(2,d +1).

d) R¥'Pic(X) is discrete. O

10.6. Borel-Moore variants.

10.6.1. Definition. For X € Sch(k), we denote by 7§(X) the disjoint
union of 7y(Z;) where Z; runs through the proper connected compo-
nents of X: this is the scheme of constants with compact support.

10.6.2. Proposition. Let X & Sch(k) of dimension d. Then:

a) LIAIb*(X) = 0 if i < 0.

b) LoAIb*(X) = [Z[r§(X)] — 0]. In particular, LoAlb°(X) = 0 if no
connected component is proper.

c) L;AIb(X) =0 for i > max(2,d + 1).

d) Ly 1AbS(X) is a group of multiplicative type.

Proof. If X is proper, this is Proposition 10.4.2. In general, we may
choose a compactification X of X; if Z7 = X — X, with dim Z < dim X,
the claim follows inductively by the long exact sequence (8.5.1). U

We leave it to the reader to formulate the dual of this proposition
for RPic’(X).
11. 1-MOTIVIC HOMOLOGY AND COHOMOLOGY OF CURVES

We compute here the motives of Section 8 for curves. Since we are
dealing with curves, the following results hold in arbitrary characteris-
tic.
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11.1. “Chow-Kiinneth" decomposition for a curve. Note that for
any curve C', the map a¢ is an isomorphism by Proposition 5.1.4. More-
over, since the category of 1-motives up to isogeny is of cohomological
dimension 1 (see Prop. 1.3.1), the complex LAIb%(C) can be repre-
sented by a complex with zero differentials. Using Proposition 10.4.2
c), we then have:

11.1.1. Corollary. If C' is a curve then the motive M (C) decomposes
in DMeff ®RQ as

M(C) ~ My(C)® M (C) & My(C)
where M;(C) := Tot L; AIb%(C)[4].

11.2. L;Alb and R'Pic of curves. Here we shall complete the com-
putation of Proposition 10.4.2 in the case of a semi-normal curve C
(compare Lemma 8.8.1).

Let C denote the normalisation of C'. Let C' be a smooth compactifi-
cation of C so that FF = C'— C is a finite set of closed points. Consider
the following cartesian square

where S denotes the singular locus. Let S denote S regarded in C.
11.2.1. Theorem. Let C, 6, C, S, §, S and F be as above. Then

Zlmo(C)] = ) Fim0
U b 0 o
LAlb(C) = [Div S/s(? ) = Pic’(C, F)] fi=1
[O - NSC’/k] ifi=2
otherwise
where: DlVS/s(C7 F) = DlVS/S<O) here is the free group of degree zero

divisors generated by S having trivial push-forward on S and the map u
is the canonical map (cf. |12, Def. 2.2.1]); NSg/k is the sheaf associated

to the free abelian group on the proper irreducible components of C. In
particular, LiAlb(C) = Pic™ (C).

Proof. We use the long exact sequence (8.2.4)
-+ = L;AIb(S) — L;Alb(C)@L;Alb(S) — L;AIb(C) — L;_Alb(S) —
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Since S and S are 0-dimensional we have L;Alb(S) = L;Alb(S) = 0
for ¢ > 0, therefore

L;Alb(C) = L;Alb(C) for i > 2
and by 9.2.3 we get the claimed vanishing and description of Ly Alb(C').
For i = 0 see Corollary 10.4.2. If ¢ = 1 then L;Alb(C') is here repre-
sented as an element of Ext([A — 0], LiAlb(C')) where A := Ker(Z[m(5)]
— ZImo(C)] ® Z[mo(S)]. Recall, see 9.2.3, that L1 Alb(C) = [0 — AL ]

2 Clk
thus Ext(A, L;Alb(C)) = Homk(A,A%/k) and
L;Alb(C) = [A = A% ].

C/k

Now A = Div%/s(a, F), .A%/k = Pic’(C, F) and the map u is induced
by the following canonical map.
Consider g5 : C' — Pic(C, F) where p5(P):=(Og(P),1) yielding

Ag ) = Pic(C, F) and such that

0 — Divl.(C)* — Pic?(C, F) — Pic’(C) — 0.
Thus L;Alb(C) = [0 — Pic®(C, F)]. Note that Z[m(5)] = Divg(C) =
Divg(C, F), the map Z[mo(S)] — Z[m(C)] is the degree map and the
following map Z[mo(S)] — Z[mo(S)] is the proper push-forward of Weil
divisors, .e. A = Div%/s(a, F). The map ¢g then induces the map-
ping u € Homy (A, Pic’(C, F)) which also is the canonical lifting of the

universal map D — Og(D) as the support of D is disjoint from F' (cf.
[12, Lemma 3.1.3]). O

11.2.2. Remark. Note that R'Pic(C') = L; Alb(C)* is Deligne’s motivic
cohomology H} (C')(1) of the singular curve C' by [12, Prop. 3.1.2|. In
fact, Pic™(C)* = AIb*(C) = HL (C)(1) = Pict(C) = Alb~ (O)* for a
curve C. Thus Ly Alb(C) also coincides with the homological Albanese
l-motive Alb™ (C'). The L;Alb(C) also coincide with Lichtenbaum-
Deligne motivic homology h;(C) of the curve C, cf. [71].

11.2.3. Corollary. Let C' be a curve, C' its seminormalisation, C a
compactification of C', and F = C' - . Let further C' denote the
normalisation of C. Then

0= Gu[m(C)]  ifi=0
RiPic(C) = [Divi(C") = Pic(C)] ifi=1

0 otherwise
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where NS(C) = Z[x5(C)] and 75(C) is the scheme of proper constants.
In particular, R'Pic(C) = Pict (C).

11.3. Borel-Moore variants.

11.3.1. Theorem. Let C' be a smooth curve, C a smooth compactifi-
cation of C' and ' = C — C' the finite set of closed points at infinity.
Then

[Z[75(C)] — 0] ifi=0

e/ ) IDIVE(C) — Pic®(C)] ifi=1

L;Alb¢(C) = 0 st/k] Fiz 2
0 otherwise

where NS(C) = Z[mo(C)] and 75(C) is the scheme of proper constants.
Proof. 1t follows from the distinguished triangle
LAIb(F) —— LAIb(O)

+1 N N
LAIL(C)
and Corollary 9.2.3, yielding the claimed description: LoAlb%(C) =
Coker(LoAlb(F) — LoAlb(C)) moreover we have
[Div}.(C) — 0] = Ker(LoAlb(F) — LoAlb(C))
and the following extension
0 — L;Alb(C) — L;Alb°(C) — [Div(C) — 0] — 0.
Finally, L;Alb(C) = L;Alb*(C) for i > 2. O
11.3.2. Corollary. Let C' be a smooth curve, C' a smooth compactifi-
cation of C' and F = C — C the finite set of closed points at infinity.
Then
0= Gulr§(C))] ifi=0
[0 — Pic’(C,F)] ifi=1
[N (C) —0] ifi=2
otherwise
where NS(C) = Z[mo(C)] and wg(C) is the scheme of proper constants.

Here we have that R!Pic’(C') = R!'Pic"(C) is also the Albanese va-
riety of the smooth curve.

Note that L;Alb°(C) (= Pic™(C) = Alb™(C) for curves, see [12])
coincide with Deligne’s motivic H! (C')(1) of the smooth curve C'. This
is due to the Poincaré duality isomorphism M¢(C) = M (C)*(1)[2] (cf.
[53, App. B]).

RiPic’(C) =
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12. COMPARISON WITH Pict, Pic™, Alb™ AND Alb~

In this section, k is of characteristic 0 since we mainly deal with sin-
gular schemes (cf. §8.1). We want to study L;Alb(X) and its variants
in more detail. In particular, we show in Proposition 12.6.3 ¢) that it is
always a Deligne 1-motive, and show in Corollaries 12.7.2 and 12.10.2
that, if X is normal or proper, it is canonically isomorphic to the 1-
motive Alb™(X) of [12]. Precise descriptions of L; Alb(X) are given in
Proposition 12.6.5 and Corollary 12.6.6.

We also describe L Alb’(X) in Proposition 12.11.2; more precisely,
we prove in Theorem 12.11.1 that its dual R'Pic’(X) is canonically
isomorphic to Pic’(X, Z) /U, where X is a compactification of X with
complement Z and U is the unipotent radical of the commutative al-
gebraic group Pic’(X, Z). Finally, we prove in Theorem 12.12.6 that
L; Alb*(X) is abstractly isomorphic to the 1-motive Alb*(X) of [12].

We also provide some comparison results between éh and étale co-
homology for non smooth schemes.

12.1. Torsion sheaves. The first basic result is a variant of [103, Cor.
7.8 and Th. 10.7]: it follows from Proposition 10.2.3 and Example
10.3.2 2) via Lemma 10.3.1 b).

12.1.1. Proposition. Let C be a bounded below complex of torsion
étale sheaves on Sch(k). Then, for any X € Sch and any n € Z,
HQ(X,C’);)HQ}I(X,C). [

(See |46, Th. 3.6] for a different proof.)

12.2. Glueing lemmas. In this subsection, we recall some instances
where a diagram of schemes is cocartesian, with proofs. We start with

12.2.1. Lemma. Let X € Sch(k) be normal connected, p : Xo — X a

proper surjective map such that the restriction of p to a suitable con-
P

nected component X{ of Xy is birational. Let X1:0¢X0 be two mor-

phisms such that ppo = pp1 and that the inducedplmap v X —
Xo xx Xo is proper surjective. Let Y € Sch(k) and let f : Xog — Y be
such that fpy = fp;.

Xq

m| |o

Xo

(AN

X Y
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Then there exists a unique morphism f : X — Y such that f = fp.

Proof. Since V¥ is proper surjective, the hypothesis is true by replacing
X1 by Xg xx Xg, which we shall assume henceforth. Let x € X and
K = k(x). Base-changing by the morphism Spec K — X, we find (by
faithful flatness) that f is constant on p~!(x). Since p is surjective,
this defines f as a set-theoretic map, and this map is continuous for
the Zariski topology because p is also proper.

It remains to show that f is a map of locally ringed spaces. Let
v € X,y=f(z)and 2 € p~'(z) N X{. Then f*(Oy,) C Ox; .. Note
that X and X have the same function field L, and Ox , C (’)X(/)@/ C L.
Now, since X is normal, Ox, is the intersection of the valuation rings
containing it.

Let O be such a valuation ring, so that z is the centre of O on X.
By the valuative criterion of properness, we may find 2/ € p~!(x) N X}
such that (’)X[/)@/ C @. This shows that

OX,:E = m OX(’],CC’
z’'ep~1(z)NX]
and therefore that f*(Oy,) C Ox.,. Moreover, the corresponding map

Tﬁ : Oy,y — Ox, is local since 1t is.
(Alternatively, observe that f and its topological factorisation induce
a map

f*: Oy = [.0x, ~ [.p.Ox, = [,Ox.)

O
12.2.2. Lemma. Let
(12.2.1) p,l pl
7 4 X

be a commutative square in Sch(k), with X integral, p a resolution
of X, Z the largest closed subset where p is not an isomorphism and
Z =p YZ). Then the diagram

mo(Z) — m(X)
g
7T0<Z) % WQ(X)

15 cocartesian in the category of étale k-schemes.
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Note that in this statement, 7o(Z) and m(Z) make sense thanks to
Remark 2.5.2.

Proof. Let p = rq be the Stein factorisation:

T

X 4L x ' x

so that X’ is the normalisation of X. It follows from Lemma 2.5.3 that

7o(X) — mo(X'); on the other hand, if Z/ = r=1(Z), the surjectivity
of Z — 7' implies the surjectivity of mo(Z) — 7(Z'). This reduces us
to the case where X = X' , i.e. where p defines the normalisation of X.

Let X = UUV be an open cover. The universal property of 7y shows
that the square

Wo(UﬂV) — 7T0(U)

l l

7T0(V) —_— 7T0<X)

is cocartesian in the category of étale k-schemes. Since X is separated,
an induction plus an easy 4-dimensional diagram chase reduce us to the
case where X | hence also Z, X and Z, are affine. (Alternately, we could
do the following reasoning sheafwise, with more horrible notation.)

So assume X = Spec A, X = Specg and Z is defined by the con-
ductor ideal I C A (I is the annihilator of A/A). Let mo(X) = Spec F
and mo(X) = Spec F, so that F C A and F C A. If f € F is such that
its image in A/IA comes from A/I, then

f=a+1
withaEAandiEIZCA,SO}VGAH?:F. O

12.2.3. Lemma. Let f : X' — X be a birational morphism, where
X € Sch(k) is normal and connected. Then, for any étale morphism
¢ : U — X withU connected, the base change fy : X[, = Uxx X' = U

is birational and induces an isomorphism mo(X(;) — mo(U).

(This lemma is false if X is not normal, c¢f. [SGAL, Exp. I, §11 a)].)

Proof. Since X is normal, U is normal [SGA1, Exp. I, 9.10], hence irre-
ducible. By loc. cit. , 9.2, X|; is reduced so fy is birational by |[EGAA4,
6.15.4.1]. We are thus reduced to U = X for the second statement,
which follows from Lemma 2.5.3. U
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12.3. Discrete sheaves. Recall that a discrete sheaf is an étale sheaf
associated to a discrete group scheme (see Definition 3.3.1).

12.3.1. Lemma. If F is discrete, then

a) F — Fen. More precisely, for any X € Sch, F(m(X)) —
F(X) — Fen(X).

b) If f Y — X induces an isomorphism on my after any étale base
change, then F\x = f. (Fiy). This applies, for example, to the situa-
tion of Lemma 12.2.3.

Proof. a) Clearly it suffices to prove that F(mo(X)) — Fen(X) for
any X € Sch. We may assume X reduced by Remark 2.5.2. In the
situation of §8.2.f, we have a commutative diagram of exact sequences

0 ——r .Féh(X) —_— .Féh(X) S7) ]:éh(Z) — Féh(Z)

I I I

0 —— F(m(X)) — Flm(X)) ® F(mo(Z)) —— F(mo(Z)):

The lower sequence is exact by Lemma 12.2.2. The proof then goes

exactly as the one of Proposition 12.1.1. b) follows immediately from
a). O

It is well-known that HZ (X, F) = 0 for any normal scheme X € Sch
if F is constant and torsion-free (¢f. [SGA4, IX, Prop. 3.6 (ii)]). The
following lemma shows that this is also true for the éh topology.

12.3.2. Lemma (c¢f. |77, Ex. 12.31 and 12.32|). Let F be a constant
torsion-free sheaf on Sch(k).

a) For any X € Sch, H} (X, F) is torsion-free. It is finitely generated
if Fis a lattice.

b) Let f : X — X be a finite flat morphism. Then HL (X, F) —
HL (X, F) is injective.

c¢) If X is normal, then Hj (X, F) = 0.

Proof. a) The first assertion follows immediately from Lemma 12.3.1
(consider the exact sequence of multiplication by n on F). The second
assertion follows by blow-up induction from the fact that Hj (X, F) =
0 if X is smooth, by Proposition 10.2.3.

b) The Leray spectral sequence yields an injection

(12.3.1) HL (X, f.F) — H: (X, F)

The theory of trace [SGA4, XVII, Th. 6.2.3] provides F, hence Fy,
with a morphism 7'r; : f,F — F whose composition with the natural



ON THE DERIVED CATEGORY OF 1-MOTIVES 121

morphism F — f,F is (on each connected component of X) mul-
tiplication by some nonzero integer. This shows that the kernel of
H (X, F) — HL (X, f.F) is torsion, hence 0 by a). N

c¢) This is true if X is smooth (see proof of a)). In general, if f : X —
X is a desingularisation of X, we have f,F = F by Lemma 12.3.1 b).
Then (12.3.1) becomes an injection HY (X, F) < HA (X, F). O

The following is a version of [114, Lemma 5.6

12.3.3. Lemma. Let f : X — X be a finite morphism. Denote by
i: 7 — X a closed subset and let Z = f~(Z). Assume that f induces

an isomorphism X-7Z5X-2Z Then, for any discrete sheaf F,
we have a long exact sequence:

o= Hy (X, F) = Hy(X, F) @ Hy(Z, F)
— H\(Z,F) = Hif (X, F) — ...

Proof. Let g : 7 — 7 be the induced map. Then f,, i, and g, are exact
for the étale topology. Thus it suffices to show that the sequence of
sheaves
0= F = [ F@i"F = (ig).(ig)"F — 0

is exact. The assertion is local for the étale topology, hence we may
assume that X is strictly local, hence F constant. Then Z is also
strictly local while X and Z are finite disjoint unions of the same
number of strictly local schemes, thus the statement is obvious. 0

We can now prove:

12.3.4. Proposition. For any X € Sch(k) and any discrete sheaf F,
the map HL (X, F) — HL (X, F) is an isomorphism. If X is normal,
HZ(X,F)— HZ(X,F) is injective.

Proof. Consider the exact sequence

0—>.Eors—>‘/t‘—>f/f.tors_>0

where Fiors is the torsion subsheaf of . The 5 lemma, Lemma 12.3.1
a) and Proposition 12.1.1 reduce us to the case where F is torsion-free.
As a discrete étale sheaf over Sch(k), F becomes constant over some
finite Galois extension of k: a Hochschild-Serre argument then reduces
us to the case where F is constant and torsion-free.

Let f : X — X be the normalisation of X, and take for Z the
non-normal locus of X in Lemma 12.3.3. The result now follows from
comparing the exact sequence of this lemma with the one for éh topol-
ogy, and using Lemma 12.3.2 ¢).
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For the injectivity statement on H?, we reduce to F torsion-free
by Proposition 12.1.1 (for n = 2). Then H} (X, F ® Q) = 0 by (a
small generalisation of) [41, 2.1]: compare end of proof of Proposition
3.2.1. Then the conclusion follows from a diagram chase involving
the isomorphisms for H! and the long cohomology exact sequences
associated to 0 = F - FQ - F® Q/Z — 0. O

12.3.5. Corollary. The exact sequence of Lemma 12.3.3 holds up to
1 =1 for a general abstract blow-up. O

12.4. Normal schemes. If G is a commutative k-group scheme, the
associated presheaf GG is an étale sheaf on reduced k-schemes of finite
type. However, G(X) — G, (X) is not an isomorphism in general if
X is not smooth. Nevertheless we have some nice results in Lemma
12.4.1 and Theorem 12.4.4 below.

12.4.1. Lemma. a) If X is reduced, then the map
(12.4.1) G(X) = G (X)

1s injective for any semi-abelian k-scheme G.

b) If X is proper and G is a torus, the maps G(mo(X)) — G(X) —
Gy, (X) are isomorphisms. If moreover X is reduced, (12.4.1) is an
tsomorphism.

Proof. a) Let Z; be the irreducible components of X (with their reduced
structure), and for each i let p; : Z; — Z; be a resolution of singularities.

We have a commutative diagram

Ga(X) — D GCalZ) 25 BCal(Z)

~xé

T T T

G(X) — ®GZ) 2 ®GZ).
The bottom horizontal maps are injective; the right vertical map is
an isomorphism by Proposition 10.2.3. The claim follows.
For b), same proof as for Lemma 12.3.1 a). (The second statement of
b) is true because G(m(X)) — G(X) if X is proper and reduced.) [

As the éh-topology is not subcanonical we need to be careful when
considering a representable presheaf. Denote by ()4, the functor that
takes X € Sch(k) to the representable éh-sheaf X, i.e. the éh-sheaf
associated to the presheaf X (U) = Homge ) (U, X).

We get here an analogue of Voevodsky’s [107, Prop. 3.2.10].

12.4.2. Proposition. Let Sch(k)® be the category of representable éh-
sheaves. There is a functor (e : Sch(k)® — Sch(k) left adjoint to
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( en @ Sch(k) — Sch(k)®® such that (Xen)sa € Sch(k) is the semi-
normalization of X € Sch(k). In particular, for any semi-normal
scheme X and any scheme Y we have

HomSch(k) (X, Y) — HomSch(k)éh (Xéh> Yéh)

Proof. Note that a universal homeomorphism is an éh-covering. There-
fore, adapting the proof of [107, Th. 3.2.9] to the éh-topology we have
that the category Sch(k)® is the localization of Sch(k) at universal
homeomorphisms. (Actually, it is not difficult to see that the ana-
logues of 3.2.7, 3.2.8 and 3.2.5 (3) in [107] hold for the éh-topology.)
As a consequence we see that for any ¢ : Xg, — Y, there is a finite map
f X’ — X which “realises” ¢ (in the sense of Voevodsky [107]) such
that f is a universal homeomorphism factorising the normalization of
X i.e. the seminormalization. U

12.4.3. Lemma. Let G be an affine group scheme and f :Y — X a
proper surjective map with geometrically connected fibres. Then G(X)
— G(Y). Moreover, for X and Y semi-normal we also have Gg, (X)
— Ga(Y).

Proof. Let ¢ : Y — G be a morphism and x a closed point of X. The
restriction of ¢ to f~1(x) has a proper connected image; since G is
affine, this image must be a closed point of GG. Since closed points are
dense in X, this shows that ¢ factors through f. The last claim follows
from the Proposition 12.4.2 since Sch(X)® is the category Sch(k)®h
over Xgj,. ]

The main result of this subsection is:

12.4.4. Theorem. Let X be normal. Then, for any F € Shvy, the map
F(X) = Fa(X) is bijective and the map Hi(X,F) — H (X, F) is

injective (with torsion-free cokernel by Proposition 12.1.1).

Proof. In several steps:

Step 1. The first result implies the second for a given sheaf F: let
e : Sch(k)en — Sch(k)g be the projection morphism. The associated
Leray spectral sequence gives an injection

Hi (X, enFen) — Hi (X, Fen).-

But any scheme étale over X is normal [SGA1, Exp. I, Cor. 9.10],
therefore F — e, F¢, is an isomorphism over the small étale site.

Step 2. Let 0 = F' — F — F” — 0 be a short exact sequence
in Shvy. If the theorem is true for ' and F”, it is true for F. This
follows readily from Step 1 and a diagram chase.
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Step 3. In Step 2, if F' is discrete and the theorem is true for F and
F', then it is true for F”. This follows from a diagram chase involving
the last part of Proposition 12.3.4.

Step 4. Given the structure of 1-motivic sheaves, Step 1 - 2 reduce us
to prove that F(X) — Feu(X) separately when F is discrete, a torus
or an abelian variety. The discrete case follows from Lemma 12.3.1 a).

Step 5. If G is a torus, let 7 : X > Xbea desingularisation of X.
We have a commutative diagram

Gan(X) — Gy (X)

[ [

G(X) — G(X).

Here the right vertical map is an isomorphism because X is smooth
and the bottom/up horizontal maps are also isomorphisms by Lemma
12.4.3 applied to 7 (Zariski’s main theorem). The result follows from
the commutativity of the diagram.

Step 6. Let finally G be an abelian variety. This time, it is not true
in general that G(X) — G(X) for a smooth desingularisation X of
X. However, we get the result from Proposition 10.3.3 b) and Lemma
12.2.1. O

12.5. Some representability results.

12.5.1. Proposition. Let 7% be the structural morphism of X and
(X)) the induced direct image morphism on the éh sites. For any
F € Hlg, let us denote the restriction of RI(mX)MFg, to Sm(k) by
RI7XF (in other words, R1(mX )" Fy, is the sheaf on Sm(k)¢ associated
to the presheaf U — H (X X U, Fayn)): it is an object of Hlg. Then
a) For any lattice L, R'tXL is a ind-discrete sheaf for all ¢ > 0; it is
a lattice for ¢ =0, 1.

b) For any torus T, RitXT is 1-motivic for ¢ =0, 1.

Proof. We apply Lemma 10.3.1 a) in the following situation: A = Hl,
B = Shvy, H(X) = R'7XL in case a), B = Shvy, H(X) = R'7XT in
case b).The smooth case is trivial in a) and the lattice assertions follow
from lemmas 12.3.1 and 12.3.2 a). In b), the smooth case follows from
Proposition 3.5.1. O

12.6. L;Alb(X) and the Albanese schemes. We now compute the
l-motive L;Alb(X) = [L; — G4 in important special cases. This is
done in the following three propositions; in particular, we shall show
that it always “is" a Deligne 1-motive. Note that, by definition of a



ON THE DERIVED CATEGORY OF 1-MOTIVES 125

1-motive with cotorsion, the pair (L, G1) is determined only up to a
q.i.: the last sentence means that we may choose this pair such that
(1 is connected (and then it is uniquely determined).

12.6.1. Proposition. Let X € Sch(k). Then

a) H;(LAIb(X)) =0 for i < 0.

b) Let Fx = Ho(Tot LAIb(X)). Then Fx corepresents the functor
ShV1 — Ab

F = Fan(X) (see Def. 10.2.1)
via the composition
a’M(X) — Tot LAIb(X) — Fx[0].
Moreover, we have an exact sequence, for any representative [Ly —> G
of LiAlb(X) :
(12.6.1) Li 3 Gy — Fx — Zm(X)] — 0.
c) Let A‘i?/k = Q(Fx) (c¢f. Proposition 3.7.3). Then Aé?/k corepresents
the functor
"AbS — Ab
G — Gg(X).
Moreover we have an epimorphism
(12.6.2) AR Ax a1
d) If Xiea is normal, (12.6.2) is an isomorphism.

Proof. a) is proven as in Proposition 10.4.2 by blow-up induction (re-
duction to the smooth case). If F € Shvy, we have

HomDMiﬂCt (OKSM<X), f) - féh(X)

by Propositions 3.9.1 and 10.2.3. The latter group coincides with
Homgyy, (Fx, F) by (5.2.1) and a), hence b); the exact sequence fol-
lows from Proposition 3.11.2. The sheaf A(;?/k clearly corepresents the
said functor; the map then comes from the obvious natural transforma-
tion in G: G(Xyea) — Gen(X) and its surjectivity follows from Lemma
12.4.1 a), hence ¢). d) follows from Theorem 12.4.4 and the universal
property of Ax/y. O

12.6.2. Remark. One could christen Fx and Aé?/k the wuniversal 1-
motivic sheaf and the éh-Albanese scheme of X.
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12.6.3. Proposition. a) The sheaves Fx and Ae;?/k have my equal to
Zmo(X)]; in particular, Aﬁ?/k € AbS.

b) In (12.6.1), the composition L1 % Gy — mo(Gy) is surjective.
¢) One may choose 11 Alb(X) ~ [L1 — G4] with G1 connected (in other
words, Ly Alb(X) is a Deligne 1-motive).

Proof. In a), it suffices to prove the first assertion for Fy: then it
follows from its universal property and Lemma 12.3.1 a). The second
assertion of a) is obvious.

b) Let 0 - L} — G| — Fx — Z[np(X)] — 0 be the normalised
presentation of Fx given by Proposition 3.3.4. We have a commutative
diagram

0 —— L} y Fx —— Zmg(X)] —— 0

| | T [ [

0 —— ul(Ll) LEAN 61 > ./—"X — Z[’ﬂ'o(X)] — 0
| | [ [
Ll b 7 G]_ 7 .FX — Z['/TO(X)] —_— O

with uy (L) = ui(L1)/F and G, = G1/F, where F is the torsion sub-
group of uy(Ly). Indeed, Ext(G7,ui(L1)) = 0 so we get the downwards
vertical maps as in the proof of Proposition 3.3.4. By uniqueness of

the normalised presentation, G| maps onto 62. A diagram chase then
shows that the composition

ul(L1> E 61 — Wo(al)

is onto, and another diagram chase shows the same for u;.
¢) The pull-back diagram

LY —— &Y

Lol

Ly, —— G1
is a quasi-isomorphism in ;MST, thanks to b). O
12.6.4. Lemma. Suppose that k is algebraically closed. Let [Ly 25 G]
be the Deligne 1-motive that lies in the q.i. class of LiAlb(X), thanks

to Proposition 12.6.3 ¢), and let L be a lattice.
a) We have an isomorphism

Hom poaq,) (LAIb(X), L[1]) — Hom(Ly, L).
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b) The map
Hom s () (LAID(X), L[j]) = Hompyen  (Me(X), L[j]) = H (X, L)

induced by ax (8.2.5) is an isomorphism for j = 0,1 (see Prop. 10.2.3
for the last equality).

Proof. a) From the spectral sequence (10.4.1), we get an exact sequence

0 — BExt!(LoATb(X), L) — Homps(r,(LAIb(X), L[1])
— Hom(L;Alb(X), L) — Ext*(LoAlb(X), L).
Since the two Ext are 0, the middle map is an isomorphism. Since
[Ly — G4] is a Deligne 1-motive, Hom(L;Alb(X), L) is isomorphic to
Hom(L, L).
b) By blow-up induction (Lemma 10.3.1) we reduce to X smooth. If

7 =0, the result is trivial; if 7 = 1, it is also trivial because both sides
are 0 (by a) and Corollary 9.2.3 for the left hand side). O

12.6.5. Proposition. Keep the above notation LiAlb(X) = [L; 2 G].
a) We have an isomorphism
Ly ~ Hom (R'7X7Z,7)
(cf. Proposition 12.5.1).
b) We have a canonical isomorphism

G1/(L1)zar — (Ae;?/k)o

where (Ly)zar 15 the Zariski closure of the image of Ly in Gy and Aé?/k
was defined in Proposition 12.6.1 ((.Ai?/k)g corepresents the functor
SAb 3 G — Gen(X)).

Proof. For the computations, we may assume k algebraically closed.
Let L be a lattice. By Lemma 12.6.4, we have an isomorphism

Hj (X, L) ~Hom(Ly, L).
This gives a), since we obviously have Hj} (X, L) = HY (k, R'7XL)

= R'7X7Z ® L by Proposition 12.5.1 a).
b) follows directly from the definition of Aé?/k. O

12.6.6. Corollary. Let LiAlb(X) = [L1 — G4], as a Deligne 1-motive.
a) If X is proper, then Gy is an abelian variety.

b) If X is normal, then LiAlb(X) = [0 — A%, ].

¢) If X is normal and proper then R'Pic(X) = [0 — Picg(/k] is an
abelian variety with dual the Serre Albanese LiAlb(X) = [0 — Ag(/k].
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Proof. a) is seen easily by blow-up induction, by reducing to the smooth
projective case (Corollary 9.2.3). b) follows from Proposition 12.6.5 a),
b), Lemma 12.3.2 ¢) and Proposition 12.6.1 d). ¢) follows immediately
from a) and b). O

12.7. L1Alb(X) and Alb™ (X) for X normal. In 12.7.2, we prove that
these two 1-motives are isomorphic. We begin with a slight improve-
ment of Theorem 12.4.4 in the case of semi-abelian schemes:

12.7.1. Lemma. Let X be normal, and let X, be a smooth hyperenve-
lope (cf. Lemma 12.2.1). Then we have

-AX/k = Coker(.AX1 (po)ﬂm)* -AXO)

and

(Axp)® = Coker(A%, "= 49 ).

Proof. The first isomorphism follows from Lemma 12.2.1 applied with
Y running through torsors under semi-abelian varieties. To deduce the
second isomorphism, consider the short exact sequence of complexes

0— A% s = Ax k= Z[mo(X.)] = 0

and the resulting long exact sequence
(12.7.1)
Hy(Z[mo(X.)]) = Ho(A% 1) = Ho(Ax k) = Ho(Z[mo(X.)]) — 0.

For any i > 0, Z[mo(X;)] is Z-dual to the Galois module E° where
EYY = H(X, %y k,Z) is the Ej-term associated to the simplicial
spectral sequence for X, xj k. Since H (X, Xg k,Z) =0 for all p > 0,
we get

Hi(Z]mo(X.)]) ~ (H. (X, xp k, 7)) for i =0,1.

By Proposition 10.2.3, these étale cohomology groups may be re-

placed by éh cohomology groups. By Proposition 10.3.3, we then have
Hi (X, xp k,Z) ~ Hy (X % k, 7).

Now, by Lemma 12.3.1 a), Hg, (X Xk, Z) is Z-dual to Z[my(X)], and
by Lemma 12.3.2 ¢), H} (X Xy k,Z) = 0 because X is normal. Hence
(12.7.1) yields a short exact sequence

0 — Ho(A%_ /) = Axpe — Zlmo(X)] = 0

which identifies Ho(Ag(./k) with quk. O
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12.7.2. Proposition. If X is normal, R*Pic(X) and L;Alb(X) are iso-
morphic, respectively, to the 1-motives Pict(X) and Alb™(X) defined
in [12, Ch. 4-5].

Proof. Let X be a normal compactification of X; choose a smooth
hyperenvelope X, of X along with X . a smooth compactification with
normal crossing boundary Y. such that X. — X is an hyperenvelope.
Now we have, in the notation of [12, 4.2], a commutative diagram with
exact rows

-0 -0 .0
0 —— PICY/k L PICYO/]C — Plel/k

I T T

0 — Div} (X.) — Div§, (Xo) — Div}, (X))

where Pict(X) = [Divgf. (X.) — Pic%/k] since X is normal. Taking

Cartier duals we get an exact sequence of 1-motives
0= A%, 5] P 0= A%, ] = AlbT(X) 0,

Thus Alb™(X) = [0 — Ag(/k] by Lemma 12.7.1. We conclude by
Corollary 12.6.6 b) since X is normal and L1 Alb(X) = [0 — Ag(/k]. O

12.7.3. Remarks. 1) Note that, while LyAlb(X) and L;Alb(X) are
Deligne 1-motives, the same is not true of LyAlb(X) in general, already
for X smooth projective (see Corollary 9.2.3).

2) One could make use of Proposition 10.4.1 to compute L;Alb(X) for
singular X and ¢ > 1. However, H} (X,G,,)g can be non-zero also
for ¢ > 2, therefore a precise computation for X singular and higher
dimensional appears to be difficult. We did completely the case of
curves in Sect. 11.

12.8. RPic(X) and H}, (X, G,,). By definition of RPic, we have a mor-
phism in DMe_ffét
Tot RPic(X) = a’Homy, (M (X),Z(1))
— Homg, (Mt(X), Zer(1)) = R Gy [—1].
This gives homomorphisms
(12.8.1) H'(Tot RPic(X)) — R™'7XG,,, i>0.
12.8.1. Proposition. Fori <2, (12.8.1) is an isomorphism.

Proof. By blow-up induction, we reduce to the smooth case, where it
follows from Hilbert’s theorem 90. 0
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12.9. H.(X,G,,) and H} (X, G,,). In this subsection, we assume 7% :
X — Speck proper. Recall that, then, the étale sheaf associated to the
presheaf

U — Pic(X x U)

is representable by a k-group scheme Picx/; locally of finite type (Gro-
thendieck-Murre [83]). Its connected component Pic% /i is an extension
of a semi-abelian variety by a unipotent subgroup . By homotopy
invariance of R'7XG,,, we get a map

(12.9.1) Picx/x /U — R'mX Gy,

Recall that the right hand side is a 1-motivic sheaf by Proposition
12.5.1. We have:

12.9.1. Proposition. This map is injective with lattice cokernel.

Proof. Consider multiplication by an integer n > 1 on both sides. Using
the Kummer exact sequence, Proposition 12.1.1 and Lemma 12.4.1 b),
we find that (12.9.1) is an isomorphism on n-torsion and injective on
n-cotorsion. The conclusion then follows from Proposition 3.7.4. U

12.10. R'Pic(X) and Pic*(X) for X proper.
12.10.1. Theorem. For X proper, the composition
Picxy /U — R'm)XG,, — H*(Tot RPic(X))

where the first map is (12.9.1) and the second one is the inverse of the
isomorphism (12.8.1), induces an isomorphism

Pic*(X) — R'Pic(X)
where Pict (X)) is the 1-motive defined in |12, Ch. 4].
Proof. Proposition 3.11.2 yields an exact sequence
L' — G* — H?*(Tot RPic(X)) — L?

where we write R‘Pic(X) = [L* — G']. Propositions 12.8.1 and
12.9.1 then imply that the map of Theorem 12.10.1 induces an iso-
morphism Pic%, /U — G*. The conclusion follows, since on the one
hand Pic*(X) ~ [0 — Pic%, /U] by [12, Lemma 5.1.2 and Remark

5.1.3], and on the other hand the dual of Corollary 12.6.6 a) says that
L'=0. U

12.10.2. Corollary. For X proper there is a canonical isomorphism

LiAIb(X) == Alb~(X). O
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12.11. The Borel-Moore variant. Let X € Sch be provided with
a compactification X and closed complement Z - X. The relative
Picard functor is then representable by a k-group scheme locally of
finite type Picx ,, and we shall informally denote by U/ its unipotent
radical. Similarly to (12.8.1) and (12.9.1), we have two canonical maps

(12.11.1) H?(Tot RPic*(X)) — Picg , - Picx , /U

where Pic%1 , is by definition the 1-motivic sheaf associated to the
presheaf U +— H} (X x U, (G,)5. — i+(Gm)zxw) (compare [12, 2.1]).

Indeed, the latter group is canonically isomorphic to
Hompyer (MY(X x U), Z(1)[2)

via the localisation exact triangle. From Theorem 12.10.1 and Propo-
sition 10.5.2 b), we then deduce:

12.11.1. Theorem. The maps (12.11.1) induce an isomorphism
R'Pic’(X) ~ [0 — Pic’(X, Z2)/U]. O
The following is a sequel of Proposition 10.6.2:

12.11.2. Corollary. Let X € Sch(k) of dimension d. Then:

a) LiAIb(X) = [L1 — Ai|, where Ay is an abelian variety. In partic-
ular, LiAlb(X) is a Deligne 1-motive.

b) If X is normal connected and not proper, let X be a normal com-
pactification of X. Then rank L = #mo(X — X) — 1.

Proof. a) follows immediately from Theorem 12.11.1. For b), consider
the complex of discrete parts associated to the exact sequence (8.5.1):
we get with obvious notation an almost exact sequence

Li(X) = L1(X) = Lo(X — X) = Lo(X) — Lo(X)

where “almost exact" means that its homology is finite. The last group

is 0 and Lo(X) = Z; on the other hand, L;(X) = 0 by Corollary 12.6.6
b). Hence the claim. O

12.11.3. Remarks (on Corollary 12.11.2).

1) In fact, A; = 0 in a) if X is smooth and quasi-affine of dimension
> 1: see Corollary 13.6.2. This contrasts sharply with Theorem 11.2.3
for smooth curves.

2) As a consequence of the statement of b) we see that in b), the number
of connected components of X — X only depends on X. Here is an
elementary proof of this fact: let X' be another normal compactification
and X the closure of X in X x X . Then the two maps X" =X and
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X" — X' have connected fibres by Zariski’s main theorem, thus X — X
and X — X have the same number of connected components as X'-X.
(The second author is indebted to Marc Hindry for a discussion leading
to this proof.)

We shall also need the following computation in the next subsection.

12.11.4. Theorem. Let X be smooth and proper, Z C X a divisor with
normal crossings and X = X — Z. Let Zy,...,Z,. be the irreducible
components of Z and set

X ifp=0
() —
20 = H leﬂﬂZzp if p> 0.

11 < <ip

Let NSP(X) (resp. PiclP(X), Tc(p)(X)) be the cohomology (resp. the
connected component of the cohomology) in degree p of the complex

- = NS(Z?P~V) 5 NS(ZW)) - NS(ZP V) — ..
(resp.
RN PicO(Z(p_l)) N PiCO(Z(p)) N PicO(Z(p“)) O
e —> Rﬂo(z(pfl))/ka — RTI'Q(Z(p))/ka — RT"O Z(p+1) /ka — ... )

Then, for all n > 0, R"Pic®(X) is of the form [NS(” 2(X) “ Gﬁ")},

[

where G is an extension of Pic"Y(X) by T (X

Proof. A standard argument (compare e.g. [43, 3.3]) yields a spectral
sequence of cohomological type in ‘M;:

EP? = RIPic¢(ZP)) = RPHIPic’(X).

By Corollary 9.6.1, we have EY* = [NSP(X) — 0], EY' = [0 —
Pic® (X)) and E2° = [0 — TP (X)]. By Proposition C.8.1 (b) and
(c), all dy differentials are 0, hence the theorem. O

12.11.5. Corollary. With notation as in Theorem 12.11./, the complex
RPic(M<(X)(1)[2]) is q.i. to

— [z 0] =

In particular, R°Pic(M*(X )( )2]) = R'Pic(M¢(X)(1)[2]) = 0 and
R2Pic(M¢(X)(1)[2]) = [Z™X) — 0] (see Definition 10.6.1).
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Proof. This follows from Theorem 12.11.4 via the formula M¢(X x
P = M¢(X) @ M¢(X)(1)[2], noting that X x P! is a smooth com-
pactification of X x P! with X x P! — X x P! a divisor with normal
crossings with components Z; x P!, and

NS(Z® x P') = NS(2W) @ @)

Pic’(Z® x P') = Pic®(ZW)
(2P x PY) = 1o (ZP).
O

12.11.6. Remark. Let X be arbitrary, and filter it by its successive
singular loci, i.e.
X=XO>5xW>5
where X (1) = ng)lg. Then we have a spectral sequence of cohomolog-
ical type in *tM;
E? = RPHIPic (X @ — X (@FD)) = RPHIPicE(X)

in which the FEs-terms involve smooth varieties. This qualitatively re-
duces the computation of R*Pic®(X) to the case of smooth varieties,

but the actual computation may be complicated; we leave this to the
interested reader.

12.12. LAlb* and Alb*.
12.12.1. Lemma. Let n > 0 and Z € Sch of dimension < n; then
RiPic(M(Z)*(n)[2n]) =0 fori <1
R2Pic(M(2)*(n)[2n]) = [276Z" ™) — (]

where Z"=Y is the disjoint union of the irreducible components of Z of
dimension n — 1.

Proof. Let

T —— 7

T — 2 -
be an abstract blow-up square, with Z smooth and dim7,dim7T <
dim Z. By Lemma 8.6.1, M(T")*(n—2)[2n—4] and M (T)*(n—2)[2n—4]

are effective, so by Proposition 8.2.3, the exact triangle

RPic(M(T)*(n)[2n]) — RPic(M(Z)*(n)[2n]) & RPic(M (T)*(n)[2n])
— RPic(M(Z2)*(n)[2n]) 13
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degenerates into an isomorphism

RPic(M(Z)*(n)[2n]) — RPic(M(Z)*(n)[2n]).

The lemma now follows from Corollary 12.11.5 by taking for Z a
desingularisation of Z*~1 and for T' the union of the singular locus
of Z and its irreducible components of dimension < n — 1 (note that

M(Z)*(n)[2n] = M(Z)(1)[2)). 0

12.12.2. Lemma. Let X a proper smooth scheme with a pair Y and
Z of disjoint closed (reduced) subschemes of pure codimension 1 in X.
We then have

R'Pic(X — Z,Y) = Pict(X — Z,Y)
(see [12, 2.2.1| for the definition of relative Pic* ).
Proof. The following exact sequence provides the weight filtration
0 — R'Pic(X,Y) — R'Pic(X — Z,Y) — R?Picz(X,Y)

where R!'Pic(X,Y) = RlPiCC(Y_— Y) 22 [0 — Pic’(X,Y)] by Theo-
rem 12.11.1 (here U = 0 since X is smooth). Also R*Picz(X,Y) =
RQPicZLX) = [Divz(X) — 0] from 8.3.3: thus the discrete part of
R'Pic(X — Z,Y) is given by a subgroup D of Divz(X) = Divg(X,Y).

It remains to identify the map u : D — Pic’(X,Y). Using now the
exact sequence

RPic(Y) — R'Pic(X — Z,Y) — R'Pic(X — Z) — R!'Pic(Y)

where R'Pic(Y) is of weight < 0 for i <1 (10.4.2 and 12.6.6), we get
that u is the canonical lifting of the map of the 1-motive R!'Pic(X — Z)
described in 9.6.1. Thus D = Div%(X,Y) and the claimed isomorphism
is clear. O

This proof also gives:
12.12.3. Corollary. We have
[Div)(X,Y) — 0] = Ker(R?Picz(X,Y) — R?Pic(X,Y)).
We shall need:

12.12.4. Theorem (Pielative duality). Let X, Y and Z be as above and
further assume that X is n-dimensional. Then

M(X - Z,)Y)*(n)2n] = M(X ~Y, 2)
and therefore
RPic*(X — Z,Y) 2 RPic(X — Y, Z)
and dually for LAIb.
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Proof. See [10]. O

12.12.5. Corollary. Let Z be a divisor in X such that ZNY = (.
There exists a “cycle class” map n fitting in the following commutative
diagram

R?Pic(M(Z)*(n)[2n]) —— R?Pic’(X —Y)

Hl IIl
R2Picy(X,Y) —— R?Pic(X,Y)
Writing Z = UZ; as union of its irreducible components we have that

n on Z; is the “fundamental class” of Z; in X modulo algebraic equiv-
alence.

Proof. We have a map M(Z) — M(X —Y), and the vertical isomor-
phisms in the following commutative square

M(X =Y)*(n)[2n] —— M(Z)*(n)[2n]

HT I
M(X,Y) — M?(X,Y)
are given by relative duality. 0
12.12.6. Theorem. For X € Sch we have
R!Pic"(X) = Pic™ (X).

Proof. We are left to consider X € Sch purely of dimension n with the
following associated set of data and conditions.

For the irreducible components X1, ..., X, of X we let X be a desin-
gularisation of [[ X, S := Xging U, 4 S;NS; and S the inverse image
of $'in X. We let X be a smooth proper compactification with normal
crossing divisor Y. Let S denote the Zariski closure of Sin X. Assume
that Y 4 S is a reduced normal crossing divisor in X. Finally denote
by Z the union of all compact components of divisors in S (cf. (12,
2.2]).

We have an exact sequence coming from the abstract blow-up square
associated to the above picture:

.-+ = R'Pic"(X) @ R'Pic(M(S)*(n)[2n]) — R'Pic" (X)
— R2Pic(M(S)*(n)[2n]) — R2Pic"(X) @ R2Pic(M(S)*(n)[2n])
Now:

e the first map is injective (Lemma 12.12.1),
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e R!Pic*(X) = R'Pic’(X) = [0 — Pic’(X,Y)] since X is smooth
(Theorem 12.11.1; note that & = 0 by the smoothness of )?),

e R'Pic(M(S)*(n)[2n]) = 0 (Lemma 12.12.1),

e R2Pic(M(S)*(n)[2n]) = [Z7E") = 0]:=[Divg(X,Y) — 0]
is given by the free abelian group on compact irreducible com-
ponents of S (Lemma 12.12.1),

o R?Pic’(X) = R2Pic‘(X) = R?Pic(X,Y) = [NSO(X) 5 ¢
(Theorem 12.11.4),

e R2Pic(M(S)*(n)[2n]) = [Z7E"™) = 0] = [Divg(X) — 0]
(Lemma 12.12.1).

We may therefore rewrite the above exact sequence as follows:
0 — [0 — Pic’(X,Y)] — R!'Pic"(X) — [Divg(X,Y) — 0]
2 INSO(X) %5 6P @ [Divs(X) — 0],

The map Divg(X,Y) — Divg(X) induced from M(S) — M(S) is
clearly the proper push-forward of Weil divisors. The map

[Divg(X, V) — 0] = [NSO(X) % GO

is the cycle class map described in Corollary 12.12.5. By Corollary
12.12.3 we then get

Kera = [Div9

5/5(X,Y) = 0]

where the lattice Divy /3(77 Y) is from the definition of Pic™ (see [12,
2.2.1]). In other terms, we have

R!'Pic*(X) = [Div

0 §(X.Y) % Picd(X,Y)]

and we are left to check that the mapping u is the one described in
[12]. Just observe that, by Lemma 12.12.1 and Theorem 12.12.4,

R!Pic*(X) — R!Pic’(X, S) = R'Pic*(X, 5) = R'Pic" (X, Z)
= R'Pic" (X — Y, Z) 2 R'Pic(X — Z,Y)

and the latter is isomorphic to Pic*(X — Z,Y) by 12.12.2. Since, by
construction, Pic™ (X) is a sub-1-motive of Pic* (X — Z,Y") the isomor-
phism of 12.12.2 restricts to the claimed one. U
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13. GENERALISATIONS OF ROITMAN’S THEOREM

In this section, we give a unified treatment of Roitman’s theorem on
torsion 0O-cycles on a smooth projective variety and its various general-
isations. We mainly assume k = k. §13.4 deals with smooth schemes,
so is valid in any characteristic, but from §13.5 onwards we assume
char k = 0 for singular schemes (see §8.1).

13.1. Motivic and classical Albanese. Let X € Sch(k); we assume
X smooth if p > 1 and X semi-normal (in particular reduced) if p = 1,
see Lemma 8.8.1. Recall that Suslin’s algebraic singular homology is

H;(X):= Hompyper (Z[j], M (X)) = Hy,(k, C.(X))
for any scheme p : X — k. On the other hand, we may define
HE(X) i= Hompyer, (Z[j], Ma(X)) = Hy (k, a"C.(X)).
We also have versions with coefficients in an abelian group A:
H' (X, A) = Hompyer, (Z[j], Met(X) @ A).

We shall also use the following notation throughout:
13.1.1. Notation. For any M € DMZﬂ: and any abelian group A, we
write H ;1)(M , A) for the abelian group

Hompyer, (Z[j], Tot LAIb(M) @ A) = Hy (k, Tot LAIb(M) & A).

This is Suslin 1-motivic homology of M with coefficients in A. If M =
M(X), we write H;l)(X, A) for HJ(-l)(M, A). We drop A in the case
where A = Z.

We also write H{'(M,A) = Homper, (Z[j], M @ A) and H (M) =
Hft(M, 7).

The motivic Albanese map (5.1.2) then gives maps
(13.1.1) HS (M, A) — H (M, A)
for any abelian group A.

13.1.2. Proposition. If X is a smooth curve (or any curve in charac-
teristic 0), the map (13.1.1) (for M = M(X)) is an isomorphism for
any A, j.

Proof. This follows immediately from Proposition 5.1.4. U
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Note that if X = X — Y is a smooth curve obtained by removing
a finite set of closed points from a projective smooth curve X then
Ax/e = Picxyy ) is the relative Picard scheme (see [12] for its rep-
resentability) and the Albanese map just sends a point P € X to
(Ox(P),1) where 1 is the tautological section, trivialising O« (P) on
Y. We then have the following result (cf. [77, Lect. 7, Th. 7.16]).

13.1.3. Corollary. If X = X —Y is a smooth curve,
HSt(X) — Pic(X,Y)[1/p]
s an isomorphism.

Now let .AX/k be as in Proposition 12.6.1 and Remark 12.6.2. The
map Tot LAIb(X) — AL Xx of loc. cit. induces a homomorphism

(13.1.2) H§V(X) — AL (k) [1/p)

which is not an isomorphism in general (but see Lemma 13.4.2). Com-
posing (13.1.2), (13.1.1) (for A = Z) and the obvious map Hy(X)[1/p] —
HEY(X), we get a map

(13.1.3) Ho(X)[1/p] = AR (F)[1/p).
We may further restrict to parts of degree 0, getting a map

HO(X)O[l/p] (AX/k) (k)[1/p].

Recall that A$ % = Axye if X is normal (Proposition 12.6.1 d)). In
this case, the above maps become

(13.1.4) H"(X) = Ax(R)[1/p),  Ho(X)"[1/p] = (Axsi)°(R)[1/p].

If X is smooth, (13.1.4) is the Z[1/p]-localisation of the generalised
Albanese map of Spie-Szamuely [101, (2)].
Dually to Lemma C.6.2, the functor

Db(Ml[l/pD — DMejfét
C +— Tot(C) ® (Q/Z)
is exact with respect to the ;M t-structure on the left and the homo-

topy t-structure on the right; here, as usual, (Q/Z) := @l# Q¢/Zy. In
other words:

13.1.4. Lemma. For any C € D°(M,[1/p]), there are canonical iso-
morphisms of sheaves

H;(Tot(C) @ (Q/Z)") ~ Tot(;H;(C)) @ (Q/Z)
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(note that the right hand side is a single sheaf!) In particular, for
C = LAIb(M) and k algebraiclly closed:

H;V (M, (Q/Z)') =T (k, Tot(L;Alb(M)) & (Q/Z)).

13.2. A variant of the Suslin-Voevodsky theorem. We now as-
sume that k is algebraically closed until the end of this Section.
Let n be invertible in k. For M € DMT _ we have a pairing

gm,étr
(13.2.1) Hom(Z, M ® Z/n) x Hom(M,Z/n) — Hom(Z,Z/n) = Z/n
constructed as follows: a morphism ¢ : M — Z/n yields a composite

morphism ¢ : M ® Z/n £ Z/n ® Z/n — Z/n, where the second
map is induced by the isomorphism H(Z/n®Z/n) = Z/n in DML 4.
Composing ¢ with a morphism ¢ : Z — M ® Z/n yields the desired
pairing < ¥, p >€ Z/n.

The following theorem is parallel to Theorem 4.3.2:

13.2.1. Theorem. For any M € DM the pairing (13.2.1) is a

gm,ét’

perfect duality of finite Z/n-modules.

Proof. The statement is stable under exact triangles and direct sum-
mands, thus it is enough to check it for M = M (X)[—j], X smooth,
j € Z. Then the statement amounts to the duality between étale (mo-
tivic) cohomology HY,(X,7Z/n) = Hom(Mg(X),Z/n[j]) and algebraic
singular homology HS'(X,Z/n) = Hom(Z[j], Me(X) ® Z/n), which is
the contents of [77, Th. 10.9 & Cor. 10.11]. O

13.3. Change of topology and motivic Albanese map. Recall the
change of topology functor of Definition 2.1.1

o : DMgT, — DMg!

gm,ét *
Recall the functor d<; of (5.1.1) and the motivic Albanese map ay; of
(5.1.2). Note that az/ma) : o®Z/n(1) = d<i;Z/n(1) is an isomorphism
by Proposition 5.1.4. This gives a meaning to:

13.3.1. Proposition. Let M € DMZ§n7ét. Then:
a) The diagram

dey

HomDMggl(M, Z[n(1)) — Hompyer (d<1M, a*Z/n(1))
Hompyer ("M, a"Z/n(1))

commutes.
b) In this diagram, d<y is an isomorphism.
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Proof. Let N € DM¢!

em¢- Dy the naturality of the motivic Albanese
map, the diagram

Homis(M, N)  —2=% Homyg(de M, d<, N)

asl (anr)* l

Homg(a* M, a®*N) M Homg (a® M, d<1 N)
commutes. Taking N =Z/n(1), we get a).

For b), we write d<; as a composition D%, o a® o D¥s. We shall
show that each of these three functors induces an isomorphism on the
corresponding Hom groups.

For DY¥, this is because the composition

DNis

Homyis (M, Z/n(1)) — Hompss(D<1(Z/n(1)), DYS(M))
= Homyis(Z/n[—1], DEF(M)) ~ Homyss (M ® Z/n[—1], Z(1))

(where the last map is the adjunction isomorphism for Homyg,,) coin-
cides with the trivial isomorphism

HomNis(M7 N X Z/”) =~ HOmNis(M, MNiS(Z/n[_l]v N))
~ Homyis(M ® Z/n[—1], N)

(here we take N = Z(1)).
For «f, this is because k is algebraically closed, so that étale co-

homology of Spec k coincides with Nisnevich cohomology. Finally, for

D%, this is because Z/n and o*DYF(M) are in d<; DMgﬁLét (Lemma

5.1.2), and D‘gl restricts to a perfect duality on this subcategory (Prop.
4.5.1). O

13.4. A proof of Roitman’s and Spiefs-Szamuely’s theorems.
In this subsection, we only deal with smooth schemes and the charac-
teristic is arbitrary: we shall show how the results of Section 9 allow
us to recover the classical theorem of Roitman on torsion 0-cycles up
to p-torsion, as well as its generalisation to smooth varieties by Spief-
Szamuely [101]. The reader should compare our argument with theirs
(loc. cit. , §5).
Since k is algebraically closed, Corollary 1.8.5 implies

13.4.1. Lemma. For any j € Z, H"(X) = H;(X)[1/p; simalarly with
finite or divisible coefficients. O

Moreover, it is easy to evaluate H§1)(X) = H;(Tot LAIb(X))(k) out
of Theorem 9.2.2: if L,Alb(X) = [L, — G,], we have a long exact
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sequence coming from Proposition 3.11.2
(13.4.1) L1 (k)[1/p] = Gj41(K)[1/p] — HJ(-l)(X)
— Li(k)[1/p] = G;(k)[1/p] = ...
Thus:

13.4.2. Lemma. For X smooth, the maps (13.1.4) are isomorphisms
and we have

(13.4.2) H{V(X) ~ NSk ;. (k)[1/p]
1) N ifa
H;(X)=0ifj#0,1
Here is now the main lemma:

13.4.3. Lemma. Let M = M(X) with X smooth, and let A = Z/n
with (n,p) = 1. Then the map (13.1.1) is an isomorphism for j = 0,1
and surjective for j = 2.

Proof. By Theorem 13.2.1, the statement is equivalent to the following:
the motivic Albanese map

(ax)* : Homg(d<y M (X), a*Z/n(1)[j]) — Home (a* M (X), oZ/n(1)[5])

induced by (8.2.5) is bijective for j = 0,1 and injective for j = 2. (Here
we also use the fact that a*Z/n(1) = p, and that k is algebraically
closed.)

By Proposition 13.3.1, we may replace the above map by the change
of topology map

a’ Hl{Tis(X’ Z/n(l)) = HomNis(M(X)a Z/n(l)[]])
— Hom(a"M(X),a*Z/n(1)[j]) = Hi,(X, Z/n(1)).

Then the result follows from Hilbert’s theorem 90 (aka Beilinson-
Lichtenbaum in weight 1). O

From this and Lemma 13.1.4 we deduce:
13.4.4. Corollary. The homomorphism (13.1.1)
1
H;(X,(Q/2)) = H}" (X, (Q/Z))
(see Lemma 13.4.1) is bijective for j = 0,1 and surjective for j = 2.

The following theorem extends in particular [101, Th. 1.1] to all
smooth varieties'®.

1810 loc. cit. , X is supposed to admit an open embedding into a smooth
projective variety.
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13.4.5. Theorem. Let X be smooth.

a) The maps (13.1.4) are isomorphisms on torsion.
b) Hy(X) ® (Q/Z) = 0.

¢) The map (13.1.1) for A =7 yields a surjection

Hy(X){p'}—=» NSk (k){p'}
where M{p'} denotes the torsion prime to p in an abelian group M.

Proof. Lemmas 13.4.1 and 13.4.2 reduce us to show that (13.1.1) is
an isomorphism on torsion for A = 7Z, j = 0. We have commutative
diagrams with exact rows:

0 Hy(X) ® (Q/Z) = Hy(X,(Q/Z)') —H;-1(X){p'}—0
(13.4.3) | | |
0—H;" (X) @ (Q/Z) = H}" (X, (Q/Z)) = H}", (X) {p'} 0

For j = 1, the middle vertical map is an isomorphism by Lemma

13.4.3 or Corollary 13.4.4 and H"(X) ® Q/Z = 0 by (13.4.2), which
gives a) and b). For j = 2, the middle map is surjective by the same
lemma and corollary, which gives ¢). The proof is complete. O

13.4.6. Remark. If X is smooth projective of dimension n, H;(X) is
isomorphic to the higher Chow group CH™(X, j). In (13.4.3) for j = 2,
the lower left term is 0 by Lemma 13.4.2. The composite map

Hy(X,(Q/2)) — Hi(X){p'} = H{" (X){p'} = NSk, (k){p'}
is “dual" to the map
NS(X) ® (Q/Z) — HZ(X,Q/Z(1))
whose cokernel is Br(X){p'}. Let
Br(X)? = lim Hom(,Br(X), u,) :

(n,p)=1
a diagram chase in (13.4.3) for j = 2 then yields an exact sequence
0— CH"(X,2)® (Q/Z) — Br(X)”
— CH™(X, 1){p'} = NSk, (k){p'} = 0.

Together with CH™(X,1) ® (Q/Z)" = 0, this should be considered as
a natural complement to Roitman’s theorem.
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13.5. Generalisation to singular schemes. We now assume k = k
and char k = 0 (but see §8.1), and show how the results of Section 10
allow us to extend the results of the previous subsection to singular
schemes. By blow-up induction and the 5 lemma, we get:

13.5.1. Proposition. The isomorphisms and surjection of Lemma
13.4.3 and Corollary 13.4.4 extend to all X € Sch. O

Let L1Alb(X) = [L4 = (G1]. Proposition 13.5.1, the exact sequence
(13.4.1) and the snake chase in the proof of Theorem 13.4.5 give:

13.5.2. Corollary. For X € Sch, we have exact sequences

0— Hi(X)®Q/Z — Ker(uy) @ Q/Z — Hy(X )iors — Coker(ug)ors — 0
0= Hi(X)®Q/Z — HY(X,Q/Z) = Ho(X )iors — 0.

The second exact sequence is more intrinsic than the first, but note
that it does not give information on H,(X) ® Q/Z.

13.5.3. Corollary. If X is normal, H1(X) ® Q/Z = 0 and there is an

1somorphism

HO(X)tors L> AX/k(k)tors~

Proof. This follows from the previous corollary and Corollary 12.6.6
c). O

13.5.4. Remark. Theorem 12.10.1 shows that the second isomorphism
of Proposition 13.5.1 coincides with the one of Geisser in [47, Th. 6.2]
when X is proper. When X is further normal, the isomorphism of
Corollary 13.5.3 also coincides with the one of his Theorem 6.1.

13.5.5. Remarks. Note that the reformulation of “Roitman’s theorem”
involving Ker u; is the best possible!

1) Let X be a proper scheme such that Pic’(X)/U = G7, is a torus
(more likely such that Alb(Xy) = 0 where Xy — X is a resolution,
according with the description in [12, p. 68]). Then R'Pic(X)* =
LiAlb(X) = [Z" — 0] is the character group (c¢f. [12, 5.1.4]). For
example, take a nodal projective curve X with resolution X, = P!. In
this case the map (13.1.1) for A = Z is an isomorphism for all j and
thus Ker(u;) @ Q/Z = Hi(X) ® Q/Z = (Q/Z)".

2) For Borel-Moore and L; Alb°(X) = L Alb*(X) for X smooth open is
Cartier dual of Pic’(X,Y) then (cf. [12, p. 47]) Ker u$ can be non-zero:
take X = P! and Y = a finite number of points.
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13.6. Borel-Moore Roitman. Recall that the Borel-Moore motivic
homology group

H{(X,Z):= Hom(Z[j], M“(X))

is canonically isomorphic to Bloch’s higher Chow group CHy(X, j).
Similarly to the previous sections, we have maps

HY(X,Z) — H"(M(X)) = HIY(X)

J

HY(X,Q/Z) — H"(M(X),Q/Z) =: H{V(X,Q/Z)
and

13.6.1. Proposition. The second map is an isomorphism for j = 0,1
and surjective for j = 2.

Proof. By localisation induction, reduce to X proper and use Proposi-
tion 13.5.1. O

13.6.2. Corollary. For X € Sch, we have exact sequences

0— CHy(X,1)®Q/Z — Ker(u]) ® Q/Z
— C'Hy(X)tors = Coker(u)iors — 0

0 — CHy(X,1) ® Q/Z — H'"(X,Q/Z) — CHy(X )iors — 0

where we write Ly Alb®(X) = [L{ it GS]. In particular, if X is smooth
quasi-affine of dimension > 1, G{ = 0.

Proof. Only the last assertion needs a proof: if X is smooth affine
of dimension > 1 then CHy(X)iors = 0 [32, Th. 4.1 (iii)], hence
Coker(u§)tors = 0; this forces the semi-abelian variety G§ to be 0. We
may then pass from affine to quasi-affine by using the localisation exact
sequence and the description of LyAlb® in Proposition 10.6.2 b). O

13.7. “Cohomological" Roitman.

13.7.1. Lemma. Let 0 < r < n. Then for any Z € Sch of dimension
<n-—rand any i > 2(n — 1), we have H!y (Z,Q/Z(n)) = 0.

Proof. By blow-up induction we reduce to the case where Z is smooth
of pure dimension n — r; then H'y (Z,Q/Z(n)) = Hi(Z,Q/Z(n)).
Since k is algebraically closed, and n > dim Z, HY, (Z,Q/Z(n)) ~
H(Z,Q/Z(n)) by Suslin’s theorem [102] and the vanishing follows
from the known bound for étale cohomological dimension. 0



ON THE DERIVED CATEGORY OF 1-MOTIVES 145

Now consider the 1-motive L; Alb*(X) for X of dimension n. This

time, we have maps
He (X, Z(n) — H;(M(X)"(n)[2n]) = HE)™ (X, Z(n))
(13.7.1)
Hg (X, Q/Z(n) = HY (M(X)*(n)[20], Q/Z) =: HE ™ (X, Q/Z(n)).
13.7.2. Lemma. Let Z € Sch be of dimension < n. Then the map
Heg 2 (Z,Q/Z(n)) — Hy (M(2)"(n)[20), Q/Z)

s an isomorphism.

Proof. For notational simplicity, write H*(Y,n) for Hf, (Y,Q/Z(n))
and Fj(Y) for H\"(M(Y)*(n)[2n],Q/Z)), where Y is a scheme of di-

mension < n. Let Z, T, T be as in the proof of Lemma 12.12.1. Then
Lemma 13.7.1 and proposition 8.2.3 yield a commutative diagram

H™2(Z,n) — H22(Z n)

l l

F(Z) ——  F(Z)
in which both horizontal maps are isomorphisms. Therefore, it suffices
to prove the lemma when Z is smooth quasiprojective of dimension
n—1.
The motive R?Pic(M(Z)*(n)[2n]) ~ R*Pic(M<(Z)(1)[2]) was com-
puted in Corollary 12.11.5: it is [Z™(¥) — 0]. Therefore, we get

F5(Z) ~ Q/Z(1)[m5(2)].-
On the other hand, the trace map defines an isomorphism
H**(Z,n) — Q/Z(1)[m5(2)]

and the issue is to prove that the vertical map in the diagram is this iso-
morphism. For this, we first may reduce to Z projective and connected.
Now we propose the following argument: take a chain of smooth closed
subvarieties Z D Zy D --- D Z,, with Z; of dimension n — i and con-
nected (take multiple hyperplane sections up to Z,_; and then a single
point of Z,, 1 for Z,. The Gysin exact triangles give commutative
diagrams

H2n72i72<ZZ'+1, n— Z) — H2n722’(ZZ‘, n—1i+ 1)

| |

Fg(ZH_l) —_— FQ(ZZ)



146 LUCA BARBIERI-VIALE AND BRUNO KAHN

in which both horizontal maps are isomorphisms: thus we are reduced
to the case dim Z = 0, where it follows from Proposition 13.1.2 applied
to X = P! O

13.7.3. Theorem. The map (13.7.1) is an isomorphism for j =0, 1.

Proof. This is easy and left to the reader for 7 = 0. For j = 1, we argue
as usual by blowup induction. In the situation of 8.2.f, we then have a
commutative diagram of exact sequences

H?>=2(Xn)@H?*"=2(Zn)— H*"~2(Z;n)— H>"~1 (X ,n)—>H?>"~ (X n)®H?>"~(Zn)

l Lo l

Fy(X)@F(2) = RZ) — X — Fi(X)aF(2).

In this diagram, we have F}(Z) = 0 by Lemma 12.12.1 and H*"~'(Z, n)
= 0 by Lemma 13.7.1, and the same lemmas imply that both right-
most horizontal maps are surjective. The rightmost vertical map is
now an isomorphism by Proposition 13.6.1, which also gives the sur-
jectivity of H*""%(X,n) — F5(X). Finally, Lemma 13.7.2 implies that

H*"%(Z,n) — Fy(Z) and H**"*(Z,n) — F»(Z) are isomorphisms,
and the conclusion follows from the 5 lemma. U

13.7.4. Corollary. For X € Sch of dimension n, we have exact se-
quences

0— H2HX,Z(n) @ Q/Z — Ker(u}) ® Q/Z
— ch?h<X7 Z(n))tors — COkeI'(u){)tors — O

0 = 21 (X, Z(n) © Q/Z > HAL(X, Q/2Z(n))
— chgh(Xa Z(n))tors — 0

where u} is the map involved in the 1-motive Ly Alb*(X) (which is iso-
morphic to Alb™(X) by the dual of Theorem 12.12.6).

13.7.5. Corollary. If X is a proper scheme of dimension n we then
get H*"Y(X,Z(n)) @ Q/Z = 0 and an isomorphism

Alb+<X)(k)tors — Hggh(Xa Z(n))torS'

Proof. If X is proper then L;Alb*(X) = Alb*(X) is semi-abelian and
the claim follows from the previous corollary. O

13.7.6. Remark. Marc Levine outlined us how to construct a “cycle
map" ¢/ from CH?Y, (X) to H2 (X, Z(n)), where CHPy, (X) is the
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Levine-Weibel cohomological Chow group of zero cycles (see |68, §6.2]
for the definition). This gives a map

C€th : CHZw(X)tors — Hc%?h(X’ Z(n))tors

tors

which most likely fits in a commutative diagram (for X projective)

cligh n
CHpw (X)tors —== HZ23 (X, Z(n) )tors

C

i | 3
ATF () (R)iors — LaATD (X) (K)o

where: the horizontal bottom isomorphism is that induced by Theorem
12.12.6 and the right vertical one comes from the previous Corollary
13.7.4; the left vertical map is the one induced, on torsion, by the
universal regular homomorphism a™ : CHPy (X )aego — AlbT(X) (k)
constructed in [12, 6.4.1]. This would imply that

cledh is an isomorphism <= af . is an isomorphism.

If X is normal and k = k or for any X projective if k = C then a;; .
is known to be an isomorphism, see [68]. For X projective over any
algebraically closed field, see Mallick [73].

We expect that Levine’s “cycle map" ¢/ is surjective with uniquely

divisible kernel (probably representable by a unipotent group).
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Part 4. Realisations
14. AN AXIOMATIC VERSION OF DELIGNE’S CONJECTURE

Let k£ be a perfect field. As usual we drop the reference to k from
the notation for categories of motives associated to k.

14.1. A review of base change. Suppose given a diagram of cate-
gories and functors

(14.1.1) Ti—=T

where A is left adjoint to T" and B is left adjoint to S, plus a natural
transformation ¢ : RS = T R;. Then we get a natural transformation

’gb AR = R\B
as the adjoint of the composition
R= RSB=TRB

where the first natural transformation is given by the unit Idp = SB
and the second one is induced by .

We are interested in proving that ¢ is an isomorphism of functors
under certain hypotheses. Suppose that all categories and functors are
triangulated: then it suffices to check this on generators of D.

14.2. A weight filtration on M; ® Q. In this subsection, we prove
that the weight filtration on 1-motives defines a weight filtration on
M; ® Q in the sense of Definition D.7.2.

For w € Z, let (M; ® Q)<,, be the full subcategory consisting of 1-
motives of weight < w (§1.3, cf. [35, (10.1.4)]). Thus (M; ® Q)<, =0
for w < =2 and (M; ® Q)< = M; ® Q for w > 0.

14.2.1. Proposition. The inclusion functors
byt (M1 @ Q)< = (M1 @ Q)i
define a weight filtration on M; ® Q.

Proof. By Remark D.7.8, it suffices to check that the weight filtration
on l-motives verifies the conditions in [56, p. 83, Def. 6.3 a)|]. The
only point is its exactness, which is clear. U
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14.3. A left adjoint in the category of realisations. Let K be
a field and 7 be a triangulated K-linear category. We assume given
a t-structure on 7 whose heart B is provided with a weight filtration
B<, in the sense of Definition D.7.2. For convenience, we assume that
BSO = B.

We give ourselves a Serre subcategory By, of B_,; we call the objects
of By, the Lefschetz objects.

14.3.1. Hypothesis. There is a full abelian subcategory B, of B_,
such that
(i) Hom(BL, B",) = Hom(B",, By) = 0.
(ii) Any object of B_o is the direct sum of an object of By, and an
object of B™,.

Note that under this hypothesis, BY, is a Serre subcategory of B_s;
every object H € B_5 has a unique decomposition

(14.3.1) H=H, & H"

with Hy, € Br, and HY" ¢ B‘fZ
Also, if B_, is semi-simple, we have B, = Bi, cf. |2, Lemme 2.1.3].

14.3.2. Definition. An object H € B is of level < 1 if
(i) The weights of H belong to {—2,—1,0};
(ii) H_, is a Lefschetz object.

We write By for the full subcategory of B consisting of objects of level
<1

14.3.3. Proposition.
(1) Bqy is a Serre subcategory of B.
(2) The inclusion functor By < B has an exact left adjoint H —
AP (H).

Proof. (1) Given a short exact sequence in B, its middle term verifies
(i) and (ii) of Definition 14.3.2 if and only if its extreme terms do: this
is clear for (ii) by the thickness (Serreness) of By, and for (i) by the
properties of a weight filtration (see esp. Proposition D.7.4 (2)).
(2) We shall construct Alb® as the composition of two functors:
e The first functor sends an object H to H~ _3.
e Suppose that H<_3 = 0, and consider H_5. Let H_o = (H_2)L®
H"™, be the canonical decomposition (14.3.1), so that

Homp(L, H",) = Homg(H",, L) =0

for any Lefschetz object L. Then the second functor sends H
to H/H™,.
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The fact that this indeed defines an exact left adjoint is readily
checked (use again Proposition D.7.4 (2)). O

14.3.4. Remark. Let
¢ o ={H € By | (H )L =0}

This is a Serre subcategory of B<_5. Then Proposition 14.3.3 and
Proposition D.5.1 (1) (ii) yield a split exact sequence of abelian cate-
gories, in the sense of Definition D.5.2:

i B
(14.3.2) 0—BY , 5B By =0
in which the right adjoint of AIb? is the natural inclusion.

14.3.5. Proposition. Let 71y be the full subcategory of T consisting of
objects T' such that H'(T) € By for alli € Z. Then:

(1) Tqy is a thick subcategory of T, and the t-structure of T induces
a t-structure on T(1).
(2) If the t-structure is bounded, the inclusion functor Tay — T

has a t-exact left adjoint LAIb” .

Proof. For (1), just note that B is thick in B by Proposition 14.3.3 (1)
(¢f. Proposition D.20.1 (1) (2)). For (2), the exact sequence (14.3.2)
of Remark 14.3.4 yields an exact sequence of triangulated categories

0= T8, 5T 5 T/TE, =0

where T2, = {C € T | H*(C) € B%_,}. The claim now follows from
Proposition D.20.1 (3). More precisely, this proposition shows that 7
has a right adjoint j such that j(7/725) = T(1); then 7 gets identified
with the desired functor LAIb7 . O

14.4. Realisation functor. Let K,7,B be as in 14.3. For T' € T,
we denote by H(T) the homology objects of T (with values in B)
with respect to the t-structure of 7. We give ourselves a (covariant)
triangulated functor

R:DMI ®Q — T.
(Note: if R # 0, this implies that K is of characteristic zero.) For
X € Sm(k) and i € Z we write

H(X) := H] (R(M(X))).
We assume:

14.4.1. Hypothesis. If X is smooth projective connected of dimension
d <1, we have

(1) RM(X) € Tl—24,9 (in particular, HF(X) =0 for i ¢ [—2d,0]).
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(2) Ifd = 1 and E is the field of constants of X, the map H'(X) —
H{(Spec E) is an isomorphism.

(3) If d =1, E is the field of constants of X and f : X — PL is a
nonconstant rational function, the map f, : HIY(X) — HE(PL)
18 an isomorphism.

14.4.2. Proposition. Under Hypothesis 14.4.1, the composition

Tot

M, ®Q — D'(M;) @ Q =% DM 0Q & T
has image in the heart B of T. The corresponding functor
Rl : Ml ® Q — B

is exact. If moreover
(W) HE(X) € B_; for alli € N

for X smooth projective with dim X < 1, then Ry respects the splittings
of M1 ® Q and B in the sense of Definition D.9.1 (2).

Proof. By definition of a t-structure, the first assertion will hold pro-
vided R o Tot(N) € B for any 1-motive N of pure weight. We are
then left with lattices ([L — 0]), tori ([0 — 77) and abelian varieties
([0 — A]). Moreover, since we work with rational coefficients, we may
assume that L = Rg/Z and T' = Rg /G, for a finite separable exten-
sion E/k.

We have Tot([L — 0]) = M (Spec E) and Tot([0 — T|) = M (Spec E)(1);
hence RTot([L — 0]) = RM(Spec E) = HE(Spec F)[0] € B by Hy-
pothesis 14.4.1 (1). On the other hand, since the only idempotents
in End(M (PL)) are the Kiinneth idempotents, yielding the decomposi-
tion M (PL) = M(Spec E)® M (Spec E)(1)[2], we get R Tot([0 — T]) =
HE(PL) € B, and also H¥(PL) = 0, by Hypothesis 14.4.1 (2).

For abelian varieties, we may reduce to the case of Jacobians of
curves. Recall Voevodsky’s functor @y obtained by tensoring (5.5.1)
with Q. Let C' be a smooth projective geometrically connected k-
curve: the choice of a closed point ¢ € C determines a Chow-Kiinneth
decomposition. Also, Tot([0 — J(C)]) ~ $g(hi(C))[—1] as a Chow-
Kiinneth direct summand of M (C)[—1] (see 2.6.a dand Remark 5.5.2).
This already shows that RTot([0 — J(C)]) € Tj-11], by Hypothesis
14.4.1 (1).

Choose a nonconstant rational fonction f : C — P!, and let 2 =
f(c) € PL. If #¢ and 7¥ are the corresponding Chow-Kiinneth projec-
tors, we clearly have f,m§ = 7§ f.. Hence the matrix of f, on the decom-
positions h(C) = ho(C) & hi(C) & he(C) and h(P') = ho(P!) & ho(P')
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(1 0 =
*\0 0 1
if we identify ho(C), ho(P') with 1 and he(C), ho(P') with L. (One

can compute that * equals & (f~1(f(c)) — deg f - ¢), as an element of
J(C) (k) ® Q.) Thus we have an exact triangle in DMZEl ®Q:

is of the form

Tot([0 — J(C)][1]) — M(C) L5 Mm(Ph) 3
hence a long exact sequence in B:
.o HE(PY) = HT(RTot([0 — J(CO)])) — HAC) L HE P — ..

Using now the computation of H*(P!) and Hypothesis 14.4.1 (3), we
find:
0 i 41
HEC) i=1.

This shows that RTot([0 — J(C)]) € B, hence the functor R; :
M; ®Q — B. By Lemma D.19.1, the composition

HT (RTot([0 = J(O)][1])) = {

DY(M;) © Q % DM @Q 1 T
is t-exact relatively the canonical t-structure on D*(M;) ® Q (the mo-
tivic one, with heart M; ® Q), and its restriction R; to the hearts is
exact.
If Condition (W) is verified, the proof shows that R; respects the
splittings of M; ® Q and B in the sense of Definition D.9.1 (2). O

14.5. The base change theorem. Let K,B,7,R be as in §14.4.
If X is a smooth projective k-variety, we set as before HF(X) :=
HJ (R(M (X)) where H] denotes the homology functors with values
in B defined by the t-structure on 7.

We have a commutative diagram

X — 7T0<X)
0 —— quk — Axp —— Z[mo(X)] —— 0

where ay is the Albanese map and v is the natural map; hence a refined
map
(14.5.1) ak X = .A} ::AX X Zmo (X)) WO(X)

where AL is an A%-torsor over mo(X). (Note that ak is a mo(X)-
morphism. )
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14.5.1. Hypothesis. We assume Hypothesis 14.4.1, and moreover:

(1) The t-structure on T is bounded.

(2) The restriction of Ry to (M; ® Q)_2 induces a full embedding
(M1 ® K)_o < B, with essential image the full subcategory of
semi-simple objects.

(3) For any X smooth projective:

(i) HE(X):= H(R(M(X))=0 fori<0.
(i) H (X)EB fori > 0.
(i) Hg'(X) — Hg'(mo(X)).
(iv) The map (14.5.1) induces an isomorphism

(ax ).« HY'(X) = Hy'(Ay).

Let Ry := RTot. Using Proposition 14.3.5 and Section 14.1, we get
from this equality a base change morphism

(14.5.2) v: LAIb” R = R, LAIbY.
14.5.2. Lemma. Under 14.5.1, we have a commutative diagram

Hompyer (M (X), Z(1)[2]) —— Homs(R(X), R(Z(1))[2))

| /|
Homp(RiLAIbS(X),A)  —2— Homg(AIb® HE(X), A)
for any smooth projective variety X, where A := Ry ([0 — G,,]).

Proof. Playing with the adjunctions and ¢-structures, we have chains
of maps

(14.5.3)
(DMgE ®Q) (M (X), Z(1)[2]) ~ (D*(M1)@Q)(LAI(X), [0 — G,,][2])
(M © Q)(LeAE(X), [0 — Grl) 25 B(R,LyAI2(X), A)

and
(14.5.4) T(R(X),R(Z(1))[2]) ~ T (R(X),A[2])

2, B(HE(X), A) ~ B(AID® HE(X), A).

This defines respectively a and . By following the various adjunc-
tion isomorphisms, the diagram is commutative as claimed. O

14.5.3. Remark. Note that Hompg(R;LoAIb%(X), A) = NS(X) ® K
by Corollary 10.2.3 and Hypothesis 14.5.1 (2). Also, we have an in-
jection Homg(AIb® HE(X), A) < Homp(HE(X),A) by (the proof of)
Proposition 14.3.5 (2). If B sits in a larger “non-effective" category
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B’ which carries a duality, the latter group may be interpreted as
Homp(Kp, H5(X)(1)), with Kz := Ry(Z). Finally, the composition
BR in the diagram of Lemma 14.5.2, followed by the latter inclusion,
is easily checked to be the cycle class map in the classical cases. So
the bottom row of this diagram contains an abstract argument that
algebraic equivalence is weaker than homological equivalence in codi-
mension 1.

On the other hand, it is known that algebraic and numerical equiv-
alences coincide rationally in codimension 1. Thus, if H? defines an
adequate equivalence relation on algebraic cycles, we automatically get
that v* is injective in the diagram of Lemma 14.5.2. This will be the
case if HF, defines a Weil cohomology theory, which will follow if B and
T can be extended to categories satisfying natural extra axioms (tensor
structure, duality), c¢f. Cisinski-Déglise [29].

14.5.4. Theorem. Under 14.5.1,

(1) The base change morphism v is an isomorphism in weights 0
and —1.

(2) Let (DMZ&)B be the thick triangulated subcategory of DMZ{; XQ
generated by the M(X) where X is a smooth projective variety
such that
(i) HX(X) is a semi-simple object of B_s.

(ii) For any finite extension E/k, the map v* of Lemma 14.5.2
is injective for Xg (see Remark 14.5.3) and the “geometric
cycle class map"”

(14.5.5) Pic(Xp) ® K = Hompyen oo(M(Xg), Z(1)[2]) ® K

2y Homy(R(Xp), R(Z(1))[2]) 22 Homs(HI(Xx), R(Z(1)))

18 surjective.
Then the restriction of v to (DMZ?H)B is an isomorphism.

Proof. (1) By de Jong’s theorem, it suffices to prove the statement for
M = M(X), X smooth projective. Thus we have to prove that, for all
1 € Z, the map

A" HR(X) ~ H] (LAIb” R(X)) — R L;AIbY%(X)

defined by vps(x) is an isomorphism in weights 0 and —1. Here we used
the t-exactness of LAIb” | ¢f. Proposition 14.3.5 (2).

For ¢ < 0 (resp. ¢ > 2), both sides are 0 by Corollary 10.2.3 and
14.5.1 (3) (i) (resp. (ii)). For i = 0,1, (iii) and (iv) imply that the map
is an isomorphism. Finally, 14.5.1 (3) (ii) implies that HZ(X) is pure
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of weight —2 and so is LoAlb%(X), hence the statement is still true in
this case.

(2) It is sufficient to show that, for any smooth projective X verify-
ing the condition of (2), the morphism Alb” HE(X) — R;L,Alb%(X)
is an isomorphism. Note that both sides are semi-simple Lefschetz ob-
jects: semi-simplicity is clear for the right hand side, while for the left
hand side it follows from the assumed semi-simplicity of HJ(X) since
Alb” HE(X) is a direct summand of this object (see proof of Proposi-
tion 14.3.3). Thus, by Yoneda’s lemma, it suffices to show that for any
semi-simple Lefschetz object ©, the map

(14.5.6) Hom(R;L,AIb%(X),0) — Hom(Alb” HE(X), ©)

is an isomorphism.

By Hypothesis 14.5.1 (2), we have © ~ R;([0 — T7) for some torus
T. Without loss of generality, we may assume that T' = Rg,,G,, =
M (Spec F) ® Z(1)[1]. In the commutative diagram of Lemma 14.5.2
for Xg, the composition of § and R is surjective by the surjectivity of
(14.5.5). Therefore (14.5.6) is surjective. By assumption, (14.5.6) is
also injective. This concludes the proof. U

15. THE HODGE REALISATION

Let MHS denote the abelian category of (graded polarizable, Q-
linear) mixed Hodge structures. Recall that, for a mixed Hodge struc-
ture (H, W, F') we have (i, j)-Hodge components H"/ := (g} ; Hc)" of
the associated pure Hodge structure of weight 7 4+ j. We write as usual
h¥ = dim H" for the (i, 7)-th Hodge number. We say that (H, W, F')
is effective if h = 0 unless i < 0 and j < 0.

We take for B the full subcategory MHS®T of MHS given by effective
mixed Hodge structures. For 7 we take D°(B). The weight filtration
provides B with a weight filtration in the sense of Definition D.7.2. We
take for Bp the Hodge structures purely of type (—1,—1). With the
notation of §14.3, By = MHS ) is the full subcategory of MHS®T given
by mixed Hodge structures of type {(0,0), (0, —1),(—1,0), (-1, —1)}.

15.1. LAIb” for mixed Hodge structures. Note that MHS_, is
semi-simple since pure polarizable Hodge structures are. As a special
case of Proposition 14.3.5, we therefore have:

15.1.1. Proposition. The full embeddings « : MHS) — MHS*® and

v D*(MHS (1)) < D*(MHS®™) have left adjoints AIb™'® and LAILM"S,
O
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15.1.2. Notation. For H € MHS™ we shall write H<, for AIb™MS(H).
If h?4 = 0 unless p, ¢ > 0, then the dual HY = Hom(H, Q) € MHS" is
effective and we denote

H=":=Hom(Hom(H,Q)<1,Q(1)).

Denoting by Pic™" the Cartier dual of AIb™M"5 | the latter H=! trans-
lates in Pic™"S(Hom(H, Q)).

15.1.3. Remark. In Deligne’s notation [35, 10.4.1|, for H € MHS we
have:

o II,,(H)g = H(n)<; if H(n) is effective

o [(H)g = H='if HY is effective.
Note that H — H=! is actually right adjoint to the (fulll embedding)
functor H — H(—1) from MHS() to the full subcategory MHSg of
MHS consisting of objects whose dual is effective.

15.2. Huber’s Hodge realisation functor. We have A. Huber’s re-
alisation functor [52] (see also [70] for an integral refinement)

RHodge : DMZ&(C) ® Q — Db(MHSeﬁ).

For X a smooth variety, we have Rpoqge(M (X)) = RI'(X,Q), and
in particular Rpyoqge(M (X))Y is effective. This functor is contravariant.
To get a covariant functor, we compose it with the (exact) duality of
D*(MHS) sending H to Hom(H, Q). Thus we get a functor

Hodge . eff b eff
RYodee : DM (C) @ Q — DY(MHST).

Consider the Voevodsky functor ®g : Chow™ KQ — DMSE KQ of

(5.5.1). Since RuodgePo : Chow*! XQ — DP(MHS,g) is by construction
isomorphic to the functor X — RI'(X, Q), the conditions of Hypothesis
14.4.1 are verified, as well as Condition (W) of Proposition 14.4.2. This
proposition then shows that RH°d° Tot defines an exact functor

R . M;(C) ® Q — MHSy).
Although this is irrelevant for our purpose, it is nice to know:

15.2.1. Theorem (cf. §15.4). The functor RY° is an equivalence of
categories.

Proof. Note that RY°%° respects the splittings of M; @ Q and MHS ),
by Proposition 14.4.2. Therefore we are in a position to apply Theorem
D.14.1.

Let W;M;(C) ® Q and W;(MHS(y)) denote the full subcategories of
objects pure of weight i (i = 0, —1, —2). We first check that R; induces
equivalences of categories W;M;(C) ® Q — W;(MHS). Note that
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these three categories are semi-simple. The cases i = 0 and i = —2
are obvious. For i = —1, it is known (e.g. from Deligne’s equivalence
of categories [35, 10.1.3]) that any H € W_;(MHS()) is a direct sum-
mand of some H;(C): this proves essential surjectivity. For the full
faithfulness, we reduce to proving that, given two connected smooth
projective curves, the map

Hom(J(C), J(C")) — Hom(H,(C), H;(C"))
given by RY°° is the usual action of divisorial correspondences, which
follows from the construction of RHedee,

(Note that these arguments provide natural isomorphisms of the re-
strictions of R}°*° to W;M;(C)®Q with Deligne’s realisation functor.)

We are left to check the conditions of Theorem D.14.1 on isomor-
phisms of Hom and Ext groups. Note that the condition on Hom
groups in (2) is empty because they are identically 0. For the Ext
groups, since Ext}g is identically 0, we reduce by (4) to prove that,
for N,,, N, € M1 ® Q of pure weights m < n, the map

EXt)it, 00 (Nus Nom) = Extyyps (R (V). By (N,n))
is bijective.
Since Tot : D°(M; ® Q) — DM;ﬁ1 XQ is fully faithful, it suffices to
prove that the map

— Hom po(yus) (R7°%° Tot(N,, ), R"°%° Tot(N,,)[1])

is bijective. We distinguish 3 cases:

(i) (m,n) = (—1,0). Without loss of generality, we may assume
Ny =1Z — 0], N_; = [0 — J¢| for a smooth projective curve
C'. Then TOt(N_l) = CI)Q]h(C)[—l], RHodge TOt(N_l) = Hl(C)

and we are looking at the map
Hompyi pg(Z, Pohi(C)) — Hompsus) (Z, H1(C)[1]).
By Poincaré duality, this map is equivalent to the map
Jo(C) ® Q = Hompymg(Poh' (C), Z(1)[2])
— Home(MHS)(Hl(C)v Z(DM) = Ethl\/IHs(Hl(C)a Z(l))

which coincides with the Abel-Jacobi map'?, hence is bijective.

hecause, by construction, the restriction of Huber’s functor to pure motives is
the “usual" Hodge realisation functor.
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(ii)) (m,n) = (—2,—1). Without loss of generality, we may assume
N_5 =0 — Gy,], N-y = [0 — J¢| for a smooth projective curve
C. Then Tot(N_;) = ®gh'(C)[-1], RTot(N_;) = H*(C) and
we are looking at the map

Hompyzo(Poh' (C), Z(1)[2]) = Homps sy (H' (C), Z(1)[1])

which is the Abel-Jacobi map as in (ii).

(iii) (m,n) = (—2,0). Without loss of generality, we may assume
N_y =10 = G,), No = [Z — 0]. We are now looking at the
map

— Home(MHS)(Zv Z(1>[1]) = EXtI{/IHS(Zv Z(l))
which is again the usual isomorphism, by definition of Huber’s

realisation functor.

O

15.3. Deligne’s conjecture. Forany M € DMS;((C)@Q, from (14.5.2)
we get a natural map

(15.3.1) RHodee (A1) — RICIE LAIL(M).
Taking homology of both sides, we get comparison maps
(15.3.2) H;(R1% (M) — RY°™°L;Alb(M)

for all 7 € Z. From Theorem 14.5.4 and the Lefschetz 1-1 theorem, we
now get:

15.3.1. Theorem. The maps (15.3.1) and (15.3.2) are isomorphisms
for all motives M. O

This theorem recovers the results of [11], with rational coefficients.

The isomorphisms (15.3.2) may be applied to geometric motives like
M(X), X any C-scheme of finite type (yielding LAIb(X)), but also
M(X)*(n)[2n] and M¢(X) yielding LAIb*(X) and LAIb(X) respec-
tively. We thus get the following corollary, overlapping Deligne’s con-
jecture (see 15.1.2 and 15.1.3 for the notation):

15.3.2. Corollary. Let X be an n-dimensional complex algebraic vari-
ety. The mized Hodge structures H'(X,Q)sY, H*(X,Q(n))<i and
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H{(X, Q)< induced by the mized Hodge structures on the Betti coho-
mology and the Borel-Moore homology admit a purely algebraic con-
struction provided by the previously explained isomorphisms

RI°%(RiPic(X)) = H'(X,Q)=!
H™ (X, Q(n))<; — R°%®(L;Alb* (X))
HE(X, Q) = RY°%®(L,AIbY(X))
of mized Hodge structures.

15.3.3. Remark. Deligne’s conjecture [35, (10.4.1)] concerns three types
of Hodge structures of level < 1 for X of dimension < N: I[(H"(X,Z)),
I1,(H"(X,Z)) (n < N)and IIN(H"(X,Z)) (n > N). Corollary 15.3.2
covers the first and last (compare Remark 15.1.3), but not the second
in general. The issue for 11, and Iy is that the motive M (X)*(n)[2n]
is effective for n > dim X by Lemma 8.6.1, but not for n < dim X in
general. Indeed, if M (X)*(n)[2n] is effective, then it is isomorphic in
DM*T ©Q to Hom, (M (X), Z(n)[2n]) for formal reasons, and therefore
the latter is a geometric motive. But this is false e.g. for n = 2 and X
a suitable smooth projective 3-fold, see [3].

Suppose that the motivic t-structure exists on DMg1 ®Q. By a re-
cent result of Beilinson [13], this implies Grothendieck’s standard con-
jecture B. For any X, let us then write M;(X) for the i-th t-homology of
M(X). If X is smooth projective, by Poincaré duality and Conjecture
B we find that

Hom (M, (X),Z(n)) ~ M,(X)
is geometric. By blow-up induction, this then implies that the motive
Hom (M, (X),Z(n)) is geometric for any X of finite type, and we
obtain the remaining part of Deligne’s conjecture.

15.4. Deligne’s Hodge realisation functor. In Deligne’s construc-
tion, the integrally defined Hodge realization

THOdge(M) = (TZ(M)> Wi, F*)

of a 1-motive (with torsion) M over k = C (see |11, §1] and [35, 10.1.3])
is obtained as follows. The finitely generated abelian group 7%7(M) is
given by the pull-back of v : L. — G along exp : Lie(G) — G, W, is the
weight filtration
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and F* is defined by F°(Tz(M) ® C):= Ker(T7(M) ® C — Lie(G)).
We have that T (M), W, and F° are independent of the representative
of M. Thus TH°d¢()) is a mixed Z-Hodge structure such that gr!¥
is polarizable. We have gry/ THodee(M) = [ ® Q, gr'V) THedse(M) =
Hy(A, Q) and gr'V, THedse (M) = H, (T, Q) as pure polarizable Q-Hodge
structures.

Let MHS? be the category of mixed Z-Hodge structure of type
{(0,0),(0,—1),(=1,0),(=1,—1)} such that gr!V is polarizable. We
have MHST ® Q = MHSy).

The functor TH°de is the covariant Deligne Hodge realization

THodse AL, (C) = MHS?

which is an equivalence of abelian categories by [11, Prop. 1.5]. It
induces an equivalence

Tgodge : D*(M,(C) ® Q) — D"(MHSy)).

15.4.1. Theorem ([112], [7]). The functor R}°*° of Theorem 15.2.1 is
. . Hodge
isomorphic to T .

Vologodsky [112] gives an explicit construction of this isomorphism.
Actually, such an isomorphism along with its uniqueness is a sim-
ple consequence of the fact that 1-motives with torsion is a universal
abelian category in the sense of Nori for an explicit diagram of curves:
see [7] for details in the more natural and general framework that ap-
plies to mixed realisations.

Note that Theorem 15.4.1 is reproving Theorem 15.2.1 (using [35,
10.1.3]) and yield a naturally commutative diagram

D*(MHS(})) =————= D*(MHS*™)

(=<1
TgodgeT TRHodge
DY(M,(C) ® Q) === DM (C) ® Q.
LAIbQ

16. THE MIXED REALISATION

We consider here the other part of Deligne’s conjecture:
Les morphismes
To(I(H"(X,Z)))