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Introduction 4.1

Warning: This chapter is full of conjectures. If you are allergic to them it may be
harmful to your health. Parts of them are proven, though.

In algebraic geometry, one encounters two important kinds of objects: vector
bundles and algebraic cycles. The first lead to algebraic K-theory while the second
lead to motivic cohomology. They are related via the Chern character and Atiyah–
Hirzebruch-like spectral sequences.

Vector bundles and algebraic cycles offer very different features. On the one
hand, it is often more powerful and easier to work with vector bundles: for example
Quillen’s localisation theorem in algebraic K-theory is considerably easier to prove
than the corresponding localisation theorem of Bloch for higher Chow groups. In
short, no moving lemmas are needed to handle vector bundles. In appropriate cases
they can be classified by moduli spaces, which underlies the proof of finiteness
theorems like Tate’s theorem [190] and Faltings’ proof of the Mordell conjecture, or
Quillen’s finite generation theorem for K-groups of curves over a finite field [66].
They also have a better functoriality than algebraic cycles, and this has been used
for example by Takeshi Saito in [164, Proof of Lemma 2.4.2] to establish functoriality
properties of the weight spectral sequences for smooth projective varieties over Qp.

On the other hand, it is fundamental to work with motivic cohomology: as E2-
terms of a spectral sequence converging to K-theory, the groups involved contain
finer torsion information than algebraic K-groups (see Remark 3), they appear
naturally as Hom groups in triangulated categories of motives and they appear
naturally, rather than K-groups, in the arithmetic conjectures of Lichtenbaum on
special values of zeta functions.

In this survey we shall try and clarify for the reader the interaction between
these two mathematical objects and give a state of the art of the (many) conjectures
involving them, and especially the various implications between these conjectures.
We shall also explain some unconditional results.

Sections 4.2 to 4.5 are included for the reader’s convenience and are much more
developed in other chapters of this Handbook: the reader is invited to refer to
those for more details. These sections are also used for reference purposes. The
heart of the chapter is in Sects. 4.7 and 4.8: in the first we try and explain in much
detail the conjectures of Soulé and Lichtenbaum on the order of zeroes and special
values of zeta functions of schemes of finite type over Spec Z, and an approach to
prove them, in characteristic p (we don’t touch the much more delicate Beilinson
conjectures on special values of L-functions of Q-varieties and their refinements
by Bloch–Kato and Fontaine–Perrin-Riou; these have been excellently exposed in
many places of the literature anyway). In the second, we indicate some cases where
they can be proven, following [95].

There are two sources for the formulation of (ii) in Theorem 54. One is Soulé’s ar-
ticle [176] and the article of Geisser building on it [56], which led to the equivalence
of (ii) with (i). The other source is the formulation of the Beilinson–Lichtenbaum
conjecture and its treatment by Suslin–Voevodsky in (the first version of) [187],
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which led to the equivalence of (ii) with (iii). As the Bloch–Kato conjecture and
the Beilinson–Lichtenbaum conjecture both take their roots in number theory
and arithmetic geometry, it is a bit of a paradox that they seem irrelevant to
the conjectures on special values of zeta functions after all: see the discussion in
Sect. 4.9.1.

I have tried to keep the exposition as light as possible without sacrificing rigour.
This means that many proofs are omitted and replaced by references to the liter-
ature. Many others are just sketches, although hopefully these should be enough
for the interested reader to reconstitute them. Some proofs are complete, though.
I hope this will not create any frustration or confusion.

I wish to thank Yves André, Antoine Chambert-Loir, Pierre Colmez, Thomas
Geisser, Dan Grayson, Manfred Kolster, Max Karoubi, Fabien Morel, Thong Nguyen
Quang Do, Joël Riou, Jean-Pierre Serre, V. Srinivas, Chuck Weibel and the referee
for helpful comments on the first versions of this text. This work was partly revised
during a stay at TIFR, Mumbai, under CEFIPRA Project 2501-1 Algebraic groups
in arithmetic and geometry, and I gratefully acknowledge its support.

The Picture in Algebraic Topology4.2

(For complements on this section, see Geisser’s chapter, §4, Karoubi’s chapter in
this Handbook and also [99, ch. V].)

The picture in algebraic topology is quite simple: singular cohomology and
complex K-theory are related both via the Atiyah–Hirzebruch spectral sequence and
via the Chern character. The latter lets the Atiyah–Hirzebruch spectral sequence
degenerate rationally, something the Adams operations also perform.

More precisely, let X be a reasonable topological space: say, X has the homotopy
type of a CW-complex. The singular cohomology of X, H∗(X, Z), is the cohomology
of the cochain complex Hom(C∗(X), Z), where

Ci(X) = Z
[
C0(∆i, X)

]
,

where C0 denotes continuous functions and ∆i is the standard i-simplex. The
differential Ci(X) → Ci−1(X) is defined as the alternating sum of the restrictions
of a given map to (i−1)-dimensional faces. The functors Hi(−, Z) are representable
in the sense that

Hi(X, Z) = [X, K(Z, i)]

where K(Z, i) is the i-th Eilenberg–Mac Lane space of Z.
On the other hand, complex K-theory of X may be defined as

Ki(X) =

⎧
⎨

⎩
[X, Z × BU] if i is even

[X, U] if i is odd ,
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where U is the infinite unitary group. Bott periodicity gives canonical isomor-
phisms Ki(X) � Ki+2(X). If X is compact, K0(X) (stably) classifies complex vector
bundles over X.

The Atiyah–Hirzebruch spectral sequence has the following form:

E
p,q
2 =

⎧
⎨

⎩
Hp(X, Z) if q is even

0 if q is odd
⇒ Kp+q(X) (4.1)

while the Chern character has the form

ch : K0(X) ⊗ Q →
∏

i≥0

H2i(X, Q)

ch : K1(X) ⊗ Q →
∏

i≥0

H2i+1(X, Q) .

These are isomorphisms for X finite dimensional, and they can be used to prove
that (4.1) ⊗ Q degenerates in this case. An alternate proof is to use the Adams
operations

Ψk : Ki(X) → Ki(X) .

One shows that Ψk acts on (4.1) and induces multiplication by qk on E
p,2q
2 .

Hence all differentials in (4.1) are torsion, with explicit upper bounds; this yields
in particular the formula:

Ki(X)(j) � H2j+i(X, Z) up to groups of finite exponent (4.2)

where Ki(X)(j) stands for the common eigenspace of weight j on Ki(X) for all Adams
operations.

If X is a finite CW-complex, its singular cohomology H∗(X, Z) is finitely gen-
erated. This can be proven easily by induction on the number of cells, using the
well-known cohomology of spheres:

Hi(Sn, Z) =

⎧
⎨

⎩
Z if i = 0, n (except i = n = 0!)

0 otherwise .

By (4.1), this implies that the groups Ki(X) are also finitely generated in this
case. Conversely, suppose that for a given space X we know that the Ki(X) are
finitely generated. Then using the partial degeneration of (4.1), we can deduce
that H∗(X, Z) is finitely generated up to some small torsion. This approach will
fail if we want to get finite generation of H∗(X, Z) on the nose, unless X has small
cohomological dimension.
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The Picture in Algebraic Geometry4.3

In algebraic geometry, the picture is a bit more complicated.

Algebraic K-Theory4.3.1

Historically, the theory that was defined first was algebraic K-theory, denoted with
lower indices. The definition of K0(X) (X a scheme) goes back to Grothendieck
(late fifties) and actually predates topological K-theory: K0(X) classifies algebraic
vector bundles over X, the relations being given by short exact sequences. Among
the many proposed definitions for the higher K-groups, the one that was the most
useful was that of Quillen around 1971/72 [154]: to any noetherian scheme he
associates the category M(X) of coherent sheaves on X and the full subcategory
P (X) of locally free sheaves: M(X) is abelian and P (X) is an exact subcategory.
Then

Ki(X) = πi(ΩBQP (X))

K ′
i (X) = πi(ΩBQM(X))

where QE is Quillen’s Q-construction on an exact category E and B denotes the
classifying space (or nerve) construction. For i = 0, K ′

0(X) classifies coherent
sheaves on X with respect to short exact sequences, a definition which also goes
back to Grothendieck. There is always a map

K∗(X) → K ′
∗(X) ,

which is an isomorphism when X is regular (“Poincaré duality”).
Two fundamental additions to the foundations of algebraic K-theory were the

works of Waldhausen in the early eighties [208] and Thomason–Trobaugh in
the late eighties [196]. In particular, Thomason–Trobaugh slightly modifies the
definition of Quillen’s algebraic K-theory so as to obtain functoriality missing in
Quillen’s definition. His K-groups will be denoted here by KTT to distinguish them
from those of Quillen: there is always a map

K∗(X) → KTT
∗ (X)

and this map is an isomorphism as soon as X has an ample family of vector bundles,
for example if X is quasi-projective over an affine base, or is regular.

On the other hand, motivated by Matsumoto’s theorem giving a presentation of
K2 of a field k [130], Milnor introduced in [141] a graded commutative ring

KM
∗ (k) = T(k∗)|I ,

where T(k∗) is the tensor algebra of the multiplicative group of k and I is the
two-sided ideal generated by the x ⊗ (1 − x) for x ≠ 0, 1; its graded pieces are called
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the Milnor K-groups of k. Since algebraic K-theory has a product structure, there
are natural homomorphisms

KM
i (k) → Ki(k) ,

which are isomorphisms for i ≤ 2 (the case i = 2 being Matsumoto’s theorem)
but not for i ≥ 3. While Milnor stresses that his definition is purely ad hoc, it
came as a surprise to many mathematicians that Milnor’s K-groups are in fact not
ad hoc at all and are fundamental objects in our story. See Theorem 2 below as
a sample.

We might say that algebraic K-theory is an algebro-geometric analogue of
complex K-theory. It took about 10 more years to get a correct definition of the
corresponding analogue of singular cohomology for smooth schemes over a field,
and a further 6 or 7 years for arbitrary schemes over a field of characteristic 0. See
the beautiful introduction of [14].

However, early on, Quillen already looked for a strengthening of this analogue
and conjectured the following version of an Atiyah–Hirzebruch spectral sequence:

1Conjecture 1: (Quillen Conjecture [156]) Let A be a finitely generated regular
Z-algebra of Krull dimension d and l a prime number. Then there exists a spectral
sequence with E2-terms

E
p,q
2 =

⎧
⎨

⎩
0 if q is odd

H
p
ét(A[l−1], Zl(i)) if q = −2i

and whose abutment is isomorphic to K−p−q(A) ⊗ Zl at least for −p − q ≥ 1 + d.

In this conjecture, the étale cohomology groups may be defined as inverse limits of
étale cohomology groups with finite coefficients; they coincide with the continuous
étale cohomology groups of Dwyer–Friedlander [44] and Jannsen [76] by Deligne’s
finiteness theorems [SGA 4 1/2, Th. finitude]. Note that if A is a ring of integers of
a number field, then such a spectral sequence must degenerate for cohomological
dimension reasons when l is odd or A is totally imaginary, as pointed out by
Quillen.

The Quillen conjecture and a complementary conjecture of Lichtenbaum re-
lating algebraic K-theory and the Dedekind zeta function when A is the ring of
integers of a number field (see Conjecture 46 below) have inspired much of the
development of the arithmetico-geometric side of algebraic K-theory ever since.
For the benefit of the reader, let us shortly describe the progress towards this still
unproven conjecture:
1. In [155] and [66], Quillen proved that the K-groups of rings of algebraic

integers or of smooth curves over a finite field are finitely generated.
2. In [173], following a suggestion of Quillen, Soulé constructed higher Chern

classes from algebraic K-theory with finite coefficients to étale cohomology.
He proved that the corresponding l-adic homomorphisms are surjective up
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to finite torsion in the case of rings of integers in a global field. This gave the
first application of algebraic K-theory to an algebraic problem outside the field
(finiteness of certain l-adic cohomology groups).

3. In [48] and [49], Friedlander introduced étale K-theory in the geometric case,
inspired by ideas from Artin–Mazur’s étale homotopy (compare [8, p. 0.5]).
He formulated a conjecture in [49] for complex varieties, related to Quillen’s
Conjecture 1 and that he christened the Quillen–Lichtenbaum conjecture.

4. In [44], Dwyer and Friedlander defined continuous étale cohomology and
[continuous] étale K-theory in full generality. They then did two quite different
things:
a) They constructed a spectral sequence with E2-terms the former, con-

verging to the latter, for any Z[l−1]-scheme of finite étale cohomological
l-dimension.

b) They defined a natural transformation

Ki(X) ⊗ Zl → Két
i (X)̂ (4.3)

(where the right hand side is l-adic étale K-theory) and proved that this
map is surjective when X is the spectrum of a ring of integers of a global
field.

This last result refined the result of Soulé, because in this case the spectral
sequence of a) degenerates for dimension reasons. They reinterpreted Quillen’s
conjecture by conjecturing that the version of (4.3) with finite coefficients is
an isomorphism for i large enough, and christened this the “Lichtenbaum–
Quillen conjecture”.

5. In [43], Dwyer, Friedlander, Snaith and Thomason introduced algebraic K-
theory with the Bott element inverted, proved that it maps to a version of étale
K-theory and that, under some technical assumptions, this map is surjective.
So “algebraic K-theory eventually surjects onto étale K-theory”. (To the best
of my knowledge, one can trace back the idea of using roots of unity to define
an algebraic version of the Bott element, and to invert it, to Snaith [172].)

6. In [193], Thomason went a step further by showing that, at least for nice enough
schemes, étale K-theory is obtained from algebraic K-theory by “inverting the
Bott element”. Hence, in this case, the spectral sequence of 4 a) converges to
something close to algebraic K-theory. This refined the Dwyer–Friedlander
result a). (Actually, Thomason constructs a priori a spectral sequence like that
one converging to K-theory with the Bott element inverted, and uses it to show
that this coincides with Dwyer–Friedlander’s étale K-theory.)

7. Meanwhile, the Milnor conjecture and the more general Bloch–Kato conjecture
(see Conjecture 16 below) showed up. The latter was proven in degree 2 by
Merkurjev–Suslin [132]: this was the second application of algebraic K-theory
to an algebraic problem outside algebraic K-theory (structure of central simple
algebras). Then it was proven in degree 3 for l = 2 by Merkurjev–Suslin [134]
and independently Rost [161].
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8. At the same time, Merkurjev–Suslin [133] and Levine [113] independently
studied the indecomposable part of K3 of a field F (i.e. K3(F)|KM

3 (F)). This was
the first instance of work in the direction “the Bloch–Kato conjecture implies
the Beilinson–Lichtenbaum conjecture”.

9. In [114], Levine went a step further and proved that a form of the Bloch–
Kato conjecture for (possibly singular) semi-local rings implies a form of the
Quillen–Lichtenbaum conjecture, expressed in terms of Soulé’s higher Chern
classes.

10. In [83] and [85], Kahn introduced anti-Chern classes going from étale coho-
mology to algebraic K-theory and étale K-theory, defined when the Bloch–Kato
conjecture is true; he recovered the results of Dwyer–Friedlander in this way.

11. In [74] (unfortunately unpublished), Hoobler proved that the Bloch–Kato
conjecture for regular semi-local rings implies the same conjecture for arbi-
trary semi-local rings. A previous argument of Lichtenbaum [125], relying
on Gersten’s conjecture, showed that the Bloch–Kato conjecture for regular
semi-local rings of geometric origin follows from the Bloch–Kato conjecture
for fields.

12. Meanwhile, motivic cohomology started being introduced, first by Bloch and
then by Friedlander, Suslin and Voevodsky. Spectral sequences from mo-
tivic cohomology to algebraic K-theory were constructed by Bloch–Lichten-
baum [22], Friedlander-Suslin [51] and Levine [119], and with different ideas
by Grayson [67] and Hopkins–Morel [75].

13. In [187], Suslin and Voevodsky formulated a Beilinson–Lichtenbaum con-
jecture for motivic cohomology (see Conjecture 17 below) and proved that,
under resolution of singularities, it follows from the Bloch–Kato conjecture.
In [61] and [62], Geisser and Levine removed the resolution of singularities
assumption and also covered the case where the coefficients are a power of the
characteristic.

14. Voevodsky proved the Bloch–Kato conjecture at the prime 2 [204] and condi-
tionally at any prime [206].

15. Following this, the Quillen–Lichtenbaum conjecture at the prime 2 was proven
by various authors [88, 91, 121, 152, 160]. Conditionally, the same proofs work
at an odd prime (and are in fact simpler). If one had finite generation results
for motivic cohomology, Conjecture 1 would follow from all this work.

Ironically, Thomason strongly disbelieved the Bloch–Kato Conjecture [195, p. 409],
while it was the key result that led to proofs of the Quillen–Lichtenbaum conjecture!

This concludes our short and necessarily incomplete survey. More details on
parts of it will be found in the next sections.

Bloch’s Cycle Complexes 4.3.2

See §2 and Appendix in Geisser’s chapter, §§7, 8 in Grayson’s chapter and §2.3 in
Levine’s chapter for more details in this subsection.
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For X a quasi-projective scheme over a field k, Bloch introduced the cycle
complexes in 1984 [20]. Denote by ∆• the standard cosimplicial scheme over k with

∆p = Spec k[t0, … , tp]|
(∑

ti − 1
)

.

We define the homological cycle complex of dimension n of X as the chain
complex zn(X, ∗) associated to the simplicial abelian group zn(X, •), where, for all
p, zn(X, p) is the group of cycles of dimension n + p on X × ∆p meeting all faces
properly; the faces and degeneracies are induced by those of ∆•. The homology
groups of zn(X, ∗) are called the higher Chow groups of X:

CHn(X, p) = Hp

(
zn(X, ∗)

)
.

These groups are 0 for p < 0 or n + p < 0 by dimension reasons. Beyond
these trivial examples, let us give two other characteristic ones. First, for p = 0,
one recovers the classical Chow group CHn(X), as is easily seen: this justifies the
terminology. Less easy is the following theorem, due independently to Nesterenko–
Suslin and Totaro, when X = Spec k for k a field.

2 Theorem 2: ([149, 197]) CH−n(k, n) � KM
n (k).

Higher Chow groups form, not a cohomology theory, but a Borel–Moore homology
theory on k-schemes of finite type. For example, if Z is a closed subset of X with
open complement U , then one has a long localisation exact sequence [20, 21]

… → CHn(Z, p) → CHn(X, p) → CHn(U, p) → CHn(Z, p − 1) → … (4.4)

This is a hard theorem. Using it, one derives Mayer–Vietoris long exact sequences
for open covers, which allows one to extend the definition of higher Chow groups
to arbitrary k-schemes X essentially of finite type by the formula

CHn(X, p) = H−p
Zar

(
X, zn(−, ∗)

)
,

where zn(−, ∗) is the sheaf of complexes associated to the presheaf U 	→ zn(U, ∗).
Even harder is the “Atiyah–Hirzebruch” spectral sequence (Bloch–Lichten-

baum [22], Friedlander–Suslin [51], Levine [119, 122])

E2
p,q = HBM

p (X, Z(−q|2)) ⇒ K ′
p+q(X) , (4.5)

where we have renumbered the higher Chow groups by the rule

HBM
p (X, Z(n)) := CHn(X, p − 2n)

and HBM
p (X, Z(−q|2)) is defined to be 0 if q is odd.
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If X is smooth of pure dimension d, we again change the notation by setting

CHn(X, p) := CHd−n(X, p)

Hp(X, Z(n)) := CHn(X, 2n − p) = HBM
2d−p

(
X, Z(d − n)

)
.

We then extend this definition by additivity to the case where X is not equidi-
mensional. Given the isomorphism K∗(X)

∼→ K ′∗(X), the spectral sequence (4.5)
may now be rewritten

E
p,q
2 = Hp

(
X, Z(−q|2)

) ⇒ K−p−q(X) (4.6)

resembling (4.1) closely. For future reference, let us record the mod n version of
this spectral sequence:

E
p,q
2 = Hp

(
X, Z|n(−q|2)

) ⇒ K−p−q(X, Z|n) . (4.7)

Rather easier to prove are the Chern character isomorphisms (Bloch [20],
Levine [116, 117])

K ′
i (X) ⊗ Q

∼→
⊕

n∈Z

HBM
2n−i(X, Q(n)) (4.8)

Ki(X) ⊗ Q
∼→

⊕

n∈Z

H2n−i(X, Q(n)) (X smooth) . (4.9)

They might be used to prove the degeneration of (4.5) and (4.6) up to small
torsion, although I don’t think this has been done yet. However, one may use Adams
operations for this, just as in topology (Soulé [178], Gillet–Soulé [65, §7]), which
yields the formula analogous to (4.2):

Ki(X)(j) � H2j−i(X, Z(i)) (X smooth) (4.10)

K ′
i (X)(j) � HBM

2j+i(X, Z(i)) (4.11)

up to groups of finite exponent, where K ′
i (X)(j) are the eigenspaces of the homo-

logical Adams operations [177, Th. 7 p. 533].
The above picture may be extended to schemes of finite type (resp. regular of

finite type) over a Dedekind scheme (Levine [119, 121], see also Geisser [59] and
§3.3 of Geisser’s chapter in this Handbook).

3Remark 3 Let f : X → Y be a morphism of schemes, taken smooth over a field to
fix ideas. Suppose that f induces an isomorphism on motivic cohomology groups.
Then the spectral sequence (4.6) shows that f also induces an isomorphism on
K-groups. By (4.10), the converse is true up to small torsion, but I doubt that
it is true on the nose, except in small-dimensional cases. The situation is quite
similar to that one in Thomason’s proof of absolute cohomological purity for étale
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cohomology with torsion coefficients [194]: Thomason’s proof gave the result only
up to small torsion, and it required delicate further work by Gabber to get the
theorem in its full precision (see Fujiwara’s exposition of Gabber’s proof in [53]).

Suslin–Voevodsky’s Motivic Cohomology4.3.3

See §2.4 in Levine’s chapter and also Friedlander’s Bourbaki talk [50] for more
details on this subsection.

Of course, defining a cohomology theory on smooth schemes as a renumbering
of a Borel–Moore homology theory is a kind of a cheat, and it does not define
motivic cohomology for non-smooth varieties. Friedlander, Suslin and Voevodsky
(1987–1997, [52,186,187,199]) have associated to any scheme of finite type X over
a field k a motivic complex of sheaves C∗(X) = C∗(L(X)) on the category Sm|k of
smooth k-varieties provided with the Nisnevich topology, where, for U ∈ Sm|k,
L(X)(U) is the free abelian group with basis the closed integral subschemes of
X × U which are finite and surjective over a component of U , and for a presheaf
F , C∗(F ) is the complex of presheaves with Cn(F ) defined by

Cn(F )(U) = F (U × ∆n) .

Then they define for each n a sheaf L(G∧n
m ) as the cokernel of the map

n−1⊕

i=1

L(Gn−1
m ) → L(Gn

m)

induced by the embeddings of the form

(x1, … , xn−1) 	→ (x1, … , 1, … , xn−1)

(it is in fact a direct summand). Finally, they set ZSV (n) := C∗(L(G∧n
m ))[−n] (the

index SV is ours, in order to avoid notational confusion).
If X is smooth, then there are canonical isomorphisms [201]

Hi(X, Z(n)) � Hi
Nis(X, ZSV (n)) .

However, in general one does not expect the right-hand-side group to have good
functorial properties. For this, one has to replace the Nisnevich topology by the
stronger cdh topology. If char k = 0, resolution of singularities implies that, for X
smooth, the natural maps

Hi
Nis(X, ZSV (n)) → H

i
cdh(X, ZSV (n)) (4.12)

are isomorphisms [199]. However this is not known in characteristic p. One may
therefore say that the Suslin–Voevodsky approach yields the “correct” motivic
cohomology for all schemes in characteristic 0, but does so only conjecturally
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in characteristic p, because (unlike Bloch’s approach) it relies fundamentally on
resolution of singularities. For this reason and others, we shall mainly work with
Bloch’s cycle complexes in the sequel.

Using these ideas, Suslin has recently proven that a spectral sequence con-
structed by Grayson [67] based on ideas of Goodwillie and Lichtenbaum and
converging to algebraic K-theory for X smooth semi-local essentially of finite type
over a field has its E2-terms isomorphic to motivic cohomology [185]. Thus we get
a spectral sequence like (4.6), independent of the Bloch–Lichtenbaum construc-
tion. It is not clear, however, that the two spectral sequences coincide.

One cannot expect a spectral sequence like (4.6) for arbitrary schemes of finite
type, even over a field of characteristic 0, nor Chern character isomorphisms as
(4.9). Indeed, motivic cohomology is homotopy invariant while algebraic K-theory
is not. One can however expect that (4.6) and (4.9) generalise to arbitrary schemes
of finite type X by replacing algebraic K-theory by Weibel’s homotopy invariant
algebraic K-theory KH(X) [210]. This has been done recently in characteristic 0
by Christian Haesemeyer, who produced a spectral sequence (reproduced here up
to the indexing)

Hp(X, Z(−q|2)) ⇒ KH−p−q(X) (4.13)

for X of finite type over a field of characteristic 0 [70, Th. 7.11]. This goes some
way towards the following general conjecture:

4Conjecture 4: (cf. Beilinson [12, 5.10 B and C (vi)]) Let m ≥ 1 and let X be
a Noetherian separated Z[1|m]-scheme of finite Krull dimension. Then there is
a spectral sequence

E
p,q
2 = H

p
Zar

(
X, B|m(−q|2)

) ⇒ KTT
−p−q(X, Z|m)

degenerating up to small torsion.

Here B|m(n) = τ≤nRα∗µ⊗n
m where α is the projection of the big étale site of

Spec Z[1|m] onto its big Zariski site, and KTT is Thomason–Trobaugh K-theory,
cf. 4.3.1. (Note that KTT∗ (X, Z|m) is homotopy invariant: Weibel [209, Cons. 1.1],
Thomason [196, Th. 9.5 a)].) See Corollary 22 below for an explanation of this
conjecture, and Theorem 32 for evidence to it.

The Beilinson–Soulé Conjecture 4.3.4

As a basic difference between algebraic topology and algebraic geometry, the
analogue of the following conjecture is trivially true for singular cohomology:

5Conjecture 5: (Beilinson–Soulé Conjecture [10], [177, Conj. p. 501]) For X regu-
lar, Hi(X, Z(n)) = 0 for n ≥ 0 and i < 0 (even for i = 0 when n > 0).
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This conjecture is central in the developments of the theory of motives, and we
shall come back to it in this survey every now and then.

Let us toy with the Beilinson–Soulé conjecture a little. Let Z be a regular closed
subset of X of codimension c and U be the open complement. The Gysin exact
sequence for motivic cohomology (an equivalent form of (4.4)) reads

· · · → Hi−2c
(
Z, Z(n − c)

) → Hi(X, Z(n)) → Hi(U, Z(n))

→ Hi−2c+1
(
Z, Z(n − c)

) → · · · (4.14)

Suppose we have found an inductive proof of the conjecture: induction could
be either on n or on dim X, or on both. In each case we find inductively that the
map Hi(X, Z(n)) → Hi(U, Z(n)) is an isomorphism. On the other hand, motivic
cohomology transforms filtering inverse limits of regular schemes with affine
transition morphisms into direct limits. From this, one deduces easily:

6 Lemma 6 The following conditions are equivalent:
(i) The Beilinson–Soulé conjecture is true.
(ii) The Beilinson–Soulé conjecture is true for all fields.
(iii) The Beilinson–Soulé conjecture is true for all finitely generated fields.
(iv) The Beilinson–Soulé conjecture is true for all regular schemes of finite type

over Spec Z. �

If one inputs Hironaka’s resolution of singularities or de Jong’s alteration theo-
rems [82, Th. 4.1 and 8.2], one gets stronger results:

7 Lemma 7 a) If we restrict to regular schemes over Q, the following condition is
equivalent to those of the previous lemma:
(v) The Beilinson–Soulé conjecture is true for all smooth projective varieties over

Spec Q.
b) If we restrict to regular schemes over Fp and tensor groups with Q, the following
condition is equivalent to those of the previous lemma:
(vi) The Beilinson–Soulé conjecture is true for all smooth projective varieties over

Spec Fp.
c) If we tensor groups with Q, the following condition is equivalent to those of the
previous lemma:
(vii) The Beilinson–Soulé conjecture is true for all regular projective schemes over

Spec Z, generically smooth over a suitable ring of integers of a number field
and with strict semi-stable reduction outside the smooth locus.

The dévissage arguments for this are standard and I shall only recall them sketchily:
for more details see Geisser’s survey article on applications of de Jong’s theo-
rem [57], or also [94]. There are two main steps:



Algebraic K-Theory, Algebraic Cycles and Arithmetic Geometry 365

1. Given X regular and Z ⊂ X closed regular with open complement U , the exact
sequence (4.14) shows inductively that the conjecture is true for X if and only
if it is true for U . If U is now any open subset of X, a suitable stratification of
X − U reduces us to the first case, in characteristic p because finite fields are
perfect and over Z by [EGA IV, cor. 6.12.6].

2. By Hironaka in characteristic 0, any smooth variety X contains an open subset
U which is an open subset of a smooth projective variety. By de Jong in
characteristic p (resp. over Z), any regular X contains an U such that there
exists a finite étale map f : Ũ → U such that Ũ is contained in a smooth
projective variety (resp. in a scheme as in (vii). A transfer argument finishes
the proof (and uses coefficients Q). �

We shall see in Sect. 4.5.3 that tensoring groups with Q is not a very serious
restriction by now.

The Beilinson–Soulé conjecture is true for n = 0 because Z(0) = Z and for n = 1
because Z(1) � Gm[−1]. It is also true for X finitely generated over Z of Krull
dimension ≤ 1 (see Lemma 41), and for some smooth projective varieties over Fp

(see Sect. 4.8). Although some mathematicians have doubted its validity in recent
years, it is my belief that it is true in general and will be proven by arithmetic
means, analytic means or a combination of both. Evidence for this will appear in
Sects. 4.7 and 4.8.

Finally, there is a companion conjecture to the Beilinson–Soulé conjecture. For
fields, it was formulated in weight 2 by Merkurjev and Suslin [134, Conj. 11.7], and
we take the liberty to attribute it to them in general.1

8Conjecture 8: (Merkurjev–Suslin Conjecture) For any regular scheme X, let X0

be the “scheme of constants” of X, that is, the normalisation of Spec Z into X (for
example if X = Spec F with F a field, then X0 = Spec F0 where F0 is the algebraic
closure in F of its prime subfield). Then for all n ≥ 2, the map H1(X0, Z(n)) →
H1(X, Z(n)) is an isomorphism.

The same reductions as for the Beilinson–Soulé conjecture apply to this conjecture.

1 In this we follow a well-established tradition in algebraic K-theory which consists in
attributing conjectures to people who did not really formulate them in those terms. For
example, Beilinson and Soulé did not actually formulate Conjecture 5 as it stands, because
at the time motivic cohomology had not been defined. However they formulated it in
terms of the gamma filtration on algebraic K-theory and Beilinson envisioned a motivic
cohomology which would explain this conjecture. Similarly, the Beilinson–Lichtenbaum
conjecture 17 was formulated by Beilinson and Lichtenbaum as a conjecture about a yet
conjectural motivic cohomology. One last example is the name “Quillen–Lichtenbaum”
given to the conjecture asserting that algebraic and étale K-theories with finite coefficients
should agree in large enough degrees, while étale K-theory had been neither invented at the
time when they made the corresponding conjectures relating algebraic K-theory and étale
cohomology, nor even envisioned by them!
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Review of Motives4.4

The aim of this section is to present a state-of-the-art description of the current
understanding of the “theory of motives”, whose idea is fully due to Grothendieck
in the mid sixties (see [69]). This description will be very sketchy: a thorough one
would go far beyond the scope of this survey.

For an overlapping but different and much more detailed survey, we invite the
reader to consult Marc Levine’s chapter in this Handbook.

We work over a base field k. We won’t enter the description of categories of
motives over other bases.

Pure Motives4.4.1

For more background on this subsection, we refer the reader to [129], [163, Ch. VI
§4], [41], [108], [167] and [3].

To define a category of pure motives, one needs
1. a commutative ring A of coefficients;
2. an “adequate” equivalence relation∼on algebraic cycles (on smooth projective

varieties) with coefficients in A: roughly, modulo ∼, direct and inverse images
and intersection products can be defined.

We shall refer to a pair (A, ∼) as above as to an adequate pair. For X smooth
projective, the groups of cycles on X modulo ∼ will be denoted by Z∗∼(X, A).

The finest adequate equivalence relation is rational (= linear) equivalence rat,
and when A contains Q, the coarsest one is numerical equivalence num. Between
the two, one finds other interesting adequate equivalence relations (in increasing
order of coarseness):

algebraic equivalence;
Voevodsky’s smash-nilpotence equivalence [198] (the observation that it de-
fines an adequate equivalence relation is due to Y. André);
homological equivalence relative to a given Weil cohomology theory.

By definition, one has Z∗
rat(X, Z) = CH∗(X).

Now, given an adequate pair (A, ∼), one first constructs the category of (A, ∼)-
correspondences Cor∼(k, A). Objects are smooth projective k-varieties; for X
smooth projective we denote by [X] its image in Cor∼(k, A). For X, Y two smooth
projective varieties one defines

Hom([X], [Y]) = Zdim Y
∼ (X × Y , A) .

Composition of correspondences α : X → Y and β : Y → Z is given by the
sempiternal formula

β ◦ α = (pXZ)∗(p∗
XY α · p∗

YZβ) .
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For a morphism f : X → Y , denote by Γf its graph, viewed as an algebraic cycle
on X × Y . Then f 	→ [Γf ] defines a functor SmProj(k) → Cor∼(k, A). One should
be careful that this functor is covariant here, which is the convention in Fulton [54]
and Voevodsky [199] but is opposite to that of Grothendieck.

We may put on Cor∼(k, A) a symmetric monoidal structure by the rule [X] ⊗
[Y] = [X×Y], the tensor product of correspondences being given by their external
product. Then 1 = h(Spec k) is the unit object of this structure.

Once the category of correspondences is defined, we get to the category of pure
motives by two formal categorical operations:

Effective pure motives: take the pseudo-abelian (karoubian) envelope of
Cor∼(k, A). This amounts to formally adjoin kernels to idempotent endomor-
phisms. The resulting category Moteff∼ (k, A) is still monoidal symmetric. We
write h(X) for the image of [X] in Moteff∼ (k, A).
Pure motives: in Moteff∼ (k, A), we have a decomposition h(P1) = 1 ⊕ L given by
the choice of any rational point: L is called the Lefschetz motive. Tensor product
by L is fully faithful. We may then formally invert L for the monoidal structure:
the resulting category Mot∼(k, A) inherits a symmetric monoidal structure
because the permutation (123) acts on L⊗3 by the identity (this necessary and
sufficient condition which does not appear for instance in Saavedra [163] was
first noticed by Voevodsky)2. Here too we shall depart from a more traditional
notation by writing M(n) for M ⊗ L⊗n: this object is usually written M(−n) in
the Grothendieck tradition.

The category Mot∼(k, A) is rigid: any object M has a dual M∨ and any object
is canonically isomorphic to its double dual. If X has pure dimension d, then
h(X)∨ = h(X)(−d) and the unit and counit of the duality are both given by the class
of the diagonal in Hom(1, h(X)⊗h(X)∨) � Hom(h(X)∨⊗h(X), 1) = Zd∼(X×X, A).
All this theory is purely formal beyond the projective line formula:

Zn
∼(X × P1, A) = Zn

∼(X, A) ⊕ Zn−1
∼ (X, A) .

Then one is interested in finer properties of Mot∼(k, A). The most important
result is Jannsen’s theorem, which was for a long time a standard conjecture:

9Theorem 9: (Jannsen [79]) The category Mot∼(k, Q) is semi-simple if and only
if ∼= num.

What we don’t Know about Pure Motives
What is missing from a rigid tensor category to be tannakian (hence to be clas-
sified by a gerbe) is a fibre functor (detailing these notions would go beyond
the scope of this survey and we can only refer the reader to the excellent refer-

2 In fact we even have that the permutation (12) acts on L⊗2 by the identity.
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ences [163], [39], [28]). Morally, such a fibre functor on Motnum(k, Q) should be
given by any Weil cohomology theory H. However there are two unsolved problems
here:

We don’t know whether homological equivalence (relative to H) equals numer-
ical equivalence.
Even so, there is a more subtle problem that the category of pure motives as
defined above is “false”: it cannot be tannakian! Namely, let dim M be the
“rigid dimension” of an object M, defined as the trace of 1M . In any tannakian
category, the dimension is a nonnegative integer because it can be computed as
the dimension of a vector space via a fibre functor. Now if M = h(X), computing
dim X via H gives dim X = χ(X), the Euler–Poincaré characteristic of X, which
can be any kind of integer (it is 2 − 2g if X is a curve of genus g).

The second problem is a matter of the commutativity constraint in MotH(k, Q). To
solve it, one looks at the Künneth projectors, i.e. the projectors πi from H∗(X) onto
its direct summands Hi(X). In case the πi are given by algebraic correspondences,
one can use them to modify the commutativity constraint (by changing signs)
and tranform the Euler–Poincaré characteristic into the sum of dimensions of the
Hi(X), which is certainly a nonnegative integer. To do this, it suffices that the sum
of the π2i be algebraic.

The two conjectures:

(HN) Homological and numerical equivalences coincide
(C) For any X and H, the Künneth projectors are algebraic

are part of Grothendieck’s standard conjectures3 [68]. This is not the place to
elaborate on them: see also [107], [109], [163, p. 380] and [2, §1 and Appendix] for
more details. Let us just mention that there is another conjecture B (the “Lefschetz-
type conjecture”) and that

Conjecture HN ⇒ Conjecture B ⇒ Conjecture C ,

where the first implication is an equivalence in characteristic 0.
Under these conjectures, one can modify Motnum(k, Q) and make it a tannakian

category, semi-simple by Theorem 9. To the fibre functor H will then correspond
its “motivic Galois group” (ibid.), a proreductive group defined over the field of
coefficients of H, that one can then use to do “motivic Galois theory”. Moreover
the Künneth components yield a weight grading on Motnum(k, Q).

Lieberman [128] proved Conjecture B for abelian varieties (over C; see Klei-
man [107] for a write-up over an arbitrary field), and Katz–Messing [104] proved
Conjecture C when k is finite for l-adic and crystalline cohomology, as a con-
sequence of Deligne’s proof of the Weil conjecture (Riemann hypothesis) [34].
Besides these special cases and a few more easy cases, these conjectures are still
open now.

3 The terminology “standard conjectures” is not limited to Grothendieck: Serre used it
in [170] with a quite different, although closely related, meaning.
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Suppose that k is finite, and take H = Hl, l-adic cohomology (where l is a prime
number different from char k). Still by Katz–Messing, for any X the ideal

Ker
(
EndMotH (h(X)) → EndMotnum (h(X))

)

is nilpotent: this implies that the functor MotH(k, Q) → Motnum(k, Q) is essentially
surjective. It follows that one can “push down” from MotH(k, Q) to Motnum(k, Q)
the change of commutativity constraint. Then the new ⊗-category M̃otnum(k, Q)
is semi-simple rigid and any object has a nonnegative dimension: a theorem of
Deligne [SGA 4 1/2] then implies that it is (abstractly) tannakian. For details, see
Jannsen [79].

Finally we should mention Voevodsky’s conjecture:

10Conjecture 10: ([198]) Smash-nilpotence and numerical equivalence coincide.

It is stronger than the first standard conjecture above, and has the advantage not
to single out any Weil cohomology.

Getting around the Standard Conjectures
There are two ways to make the approach above both more unconditional and
more explicit. The first one was initiated by Deligne in [35] using (in characteristic
0) the notion of an absolute Hodge cycle on a smooth projective variety X, which is
a system of cohomology classes in all “classical” cohomology theories applied to
X, corresponding to each other via the comparison isomorphisms: the classes of
a given algebraic cycle define an absolute Hodge cycle and the Hodge conjecture
asserts that there are no others. This approach was refined and made almost
algebraic by Yves André in [2]. Like Deligne, André’s idea is to adjoin cycles
that one hopes eventually to be algebraic: but he just takes the inverses of the
Lefschetz operators in the graded cohomology ring H∗(X) (for some classical Weil
cohomology H) and shows that, if char k = 0, he gets a semi-simple tannakian
category (with fibre functor given by H), a priori with larger Hom groups than
MotH(k, Q).

The second and rather opposite approach, due to André and the author [5],
consists of restricting a priori to the full ⊗-subcategory Mot+

H(k, Q) formed of
those homological motives whose even Künneth projectors are algebraic. After
showing that its image Mot+

num(k, Q) in Motnum(k, Q) does not depend on the
choice of a “classical” Weil cohomology H,4 we show that the projection functor
Mot+

H(k, Q) → Mot+
num(k, Q) has monoidal sections, unique up to monoidal con-

jugation: this depends on the results of [6]. Then H defines an essentially unique
fibre functor on Mot+

num(k, Q) after the suitable modification of the commutativity
constraints.

4 If char k = 0 this is obvious via the comparison theorems; in positive characteristic it
depends on the Weil conjectures (Riemann hypothesis).
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The Conjectural Abelian Category of Mixed Motives4.4.2

See §3 in Levine’s chapter for more details on this subsection.
What about varieties X that are not smooth projective? Elementary cases show

that their cohomology, viewed in enriched categories, is not in general semi-
simple. For example, the l-adic cohomology of X is not in general semi-simple
as a Gk representation. Or, if k = C, the Betti cohomology of X is not in general
a semi-simple mixed Hodge structure.

Therefore one cannot expect that general varieties are classified by a semi-simple
tannakian category. One still hopes, however, that they are classified by a (not semi-
simple) tannakian category MMot(k, Q): see especially [12, 5.10]. Here are some
conjectural properties of this conjectural category (the list is not exhaustive of
course):

MMot(k, Q) is tannakian and every object has finite length.
The socle of MMot(k, Q) (i.e. the full subcategory of semisimple objects) is
Motnum(k, Q).
There is a weight filtration on MMot(k, Q) which extends the weight grad-
ing of Motnum(k, Q); its associated graded (for any object) belongs to
Motnum(k, Q).
Any variety X has cohomology objects and cohomology objects with com-
pact supports hi(X), hi

c(X) ∈ MMot(k, Q), with Künneth formulas; h∗ is con-
travariant for all morphisms while h∗

c is contravariant for proper morphisms.
There are canonical morphisms hi

c(X) → hi(X) which are isomorphisms for X
proper.
There are blow-up exact sequences for h∗, localisation exact sequences for h∗

c
and Mayer–Vietoris exact sequences for both.
For any X, the natural maps h∗(X) → h∗(X × A1) are isomorphisms.
If X is smooth of pure dimension d, one has canonical isomorphisms hi

c(X)∨ �
h2d−i(X)(−d).
For all X, n with X smooth there is a spectral sequence Ext

p
MMot(1, hq(X)(n)) ⇒

Hp+q(X, Q(n)); if X is smooth projective, it degenerates up to torsion and yields,
for p + q = 2n, the famous Bloch–Beilinson–Murre filtration on Chow groups,
cf. [12, 5.10 C]. (For more details on this filtration, see Jannsen [81]).

Note that the last property contains the Beilinson–Soulé Conjecture 5, since
Extp = 0 for p < 0. See Levine’s chapter, Conjecture 3.4, for a slightly different
set of properties.

The Nonconjectural Triangulated Categories
of Mixed Motives4.4.3

One expects that MMot(k, Q) will arise as the heart of a t-structure on a tensor
triangulated category. There are currently 3 constructions of such a category:
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Hanamura’s construction [71], [72];
Levine’s construction [118];
Voevodsky’s construction [199].

For a discussion of the constructions of these categories and their comparisons,
we refer the reader to §4 in Marc Levine’s chapter. Here are briefly some of their
common features (for simplicity, let us write D(k) for any of these categories):
1. D(k) is a Z-linear tensor triangulated category; it is rigid if char k = 0, or

after tensoring with Q in characteristic p (Hanamura’s category has rational
coefficients anyway).

2. There is a canonical fully faithful tensor functor

δ : Motrat(k, Z) → D(k) (4.15)

(for Hanamura, tensor with Q). The image of L under this functor is denoted
by Z(1)[2] by Voevodsky. (Note that Voevodsky calls Z(1) the “Tate object”, so
that δ sends the Lefschetz motive to a shift of the Tate object!)

3. Any smooth variety X (smooth projective for Hanamura) has a “motive”
M(X) ∈ D(k), which is contravariant in X in Levine and Hanamura, covariant
in Voevodsky; there are Mayer–Vietoris exact triangles (for open covers) and
M(X) is homotopy invariant. If char k = 0, any variety has a motive M(X) and
a Borel–Moore motive Mc(X); on top of the above properties, there are blow-
up and localisation exact triangles. There is a canonical morphism M(X) →
Mc(X) which is an isomorphism when X is proper.

4. If X is smooth of pure dimension d, there is a “Poincaré duality” isomorphism
Mc(X) � M(X)∨(d)[2d].

5. For any X (smooth in characteristic p) one has canonical isomorphisms
Hom(Z(p)[q], Mc(X)) = HBM

q (X, Z(p)). For X smooth, one has canonical iso-
morphisms Hom(M(X), Z(p)[q]) = Hq(X, Z(p)) (here we take the variance of
Voevodsky).

As pointed out at the end of the last subsection, the existence of a “motivic”
t-structure on D(k) ⊗ Q depends at least on the Beilinson–Soulé Conjecture 5.
In [71, Part III], Hanamura gives a very nice proof of the existence of this t-structure
for his category, assuming an extension of this conjecture plus Grothendieck’s
standard conjectures and the Bloch–Beilinson–Murre filtration.

Naturally, in the notation of the previous subsection, one should have hi(X) =
Hi(M(X)∨) and hi

c(X) = Hi(Mc(X)∨) for the motivic t-structure. The spectral
sequence mentioned would just be the corresponding hypercohomology spec-
tral sequence, and its degeneracy for smooth projective X would follow from
Grothendieck’s standard conjecture B (“Lefschetz type”, see [109]) and Deligne’s
degeneracy criterion [38].

What about a motivic t-structure on D(k) itself? In [199, Prop. 4.3.8], Voevodsky
shows that there is an obstruction for his category as soon as cd2(k) > 1. On
the other hand, he has an étale version DMgm,ét(k) of D(k) [199, §3.3]. I expect
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that this category does have an integrally defined motivic t-structure: see the next
paragraph on Nori’s category for more details. Note that the two categories coincide
after tensoring morphisms by Q by [199, Th. 3.3.2].5

Besides the triangulated approach, there have been attempts to construct di-
rectly something like MMot(k, Q). The first idea was to use absolute Hodge cycles
à la Deligne (Deligne [36, §1], Jannsen [78, Part I]). This is using cohomology
classes rather than algebraic cycles. Another one is to try and construct at least
a simpler subcategory of MMot(k, Q), like the full abelian subcategory generated
by Tate motives, using algebraic cycles. This was performed by Bloch–Kriz [23].
On the other hand, Levine proved [115] that Conjecture 5 (for the motivic coho-
mology of k!) is sufficient to provide a motivic t-structure on the thick triangulated
category of D(k) ⊗ Q generated by the Q(n) (this works for any version of D(k),
or more generally for any tensor triangulated category satisfying suitable axioms).
Quite different is Nori’s approach, which is described in the next section.

Nori’s Category4.4.4

For considerably more details on this subsection, see §3.3 in Levine’s chapter.
Using Betti cohomology, Madhav Nori constructs for any subfield k of C an

abelian, Z-linear category of mixed motives. This exposition is based on notes
from a series of lectures he gave in Bombay in 2000: any misunderstanding is of
course my own responsibility.

The two fundamental building blocks of Nori’s construction are:

11 Theorem 11: (Basic lemma) Let X be an affine k-variety of dimension d, and let Z
be a closed subset of X of dimension < d. Then there exists a closed subset Z′ ⊇ Z
of dimension < d such that the relative cohomology groups Hi(X, Z′, Z) are 0 for
i ≠ d.

This theorem is stated and proven in [150], but Nori points out that it also follows
from earlier work of Beilinson [13, Lemma 3.3], whose proof also works in positive
characteristic.

For the next theorem we need the notion of a diagram, also called pre-category or
quiver: this is the same as a category, except that composition of morphisms is not
defined. Any category defines a diagram by forgetting composition, and any functor
defines a morphism of diagrams. Let R be a commutative ring, D be a diagram and
T : D → R–Mod a representation of D, that is, a morphism from D to the diagram
underlying R–Mod. Following Nori, one enriches T as follows: if D is finite, T
obviously lifts to a representation T̃ : D → EndR(T)–Mod, where EndR(T) is the

5 Actually, in loc. cit. a category DMeff
−,ét(k) analogous to DMeff

− (k) is defined: this is a “big”
category. One should probably define DMgm,ét(k) as follows: take the full subcategory of
DMeff

− (k) generated by the image of DMeff
gm(k), invert Z(1) and finally take the pseudo-

abelian hull.
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ring of R-linear natural transformations from T to itself. In general one may write
D as a union of its finite subdiagrams D′, and define C(T) = lim→ D′ EndR(T|D′)–Mod.

Then there is an obvious forgetful functor ω : C(T) → R–Mod and T lifts through
ω to

T̃ : D → C(T) . (4.16)

The following is a universal property of (4.16):

12Theorem 12: (Nori’s tannakian lemma) Suppose R Noetherian. Let A be an R-
linear abelian category, � : A → R–Mod an R-linear additive faithful exact functor
and S : D → A a representation such that T = �S. Then there exists an R-linear
exact functor S′ : C(T) → A, unique up to unique isomorphism, making the
following diagram commutative up to natural isomorphism:

C(T)

��
S′

��

ω

��
��

��
��

��
��

��
��

��

A

��H
HH

HH
HH

HH
H

D

�����������

FF

T̃

�����������������

�� R–Mod
T

S �

Note that S′ is automatically faithful since ω is.
For a proof of this theorem, see Bruguières [29].
(As Srinivas pointed out, the uniqueness statement is not completely correct.

For it to be one needs at least � to be “totally faithful”, a notion introduced by
Nori: if an arrow goes to an identity arrow then it is already an identity arrow. This
condition is basically sufficient.)

Nori then takes for D the diagram whose objects are triples (X, Y , i) where X is
affine of finite type over k, Y is a closed subset and i ≥ 0, and morphisms are (I)
morphisms of triples (same i) and (II) to any chain Z ⊂ Y ⊂ X and integer i > 0
corresponds a morphism (X, Y , i) → (Y , Z, i−1). He takes T(X, Y , i) = Hi(X, Y , Z),
and also T∗(X, Y , i) = Hi(X, Y , Z) on the dual diagram D∗. The corresponding
categories C(T) and C(T∗) are respectively called EHM(k) (effective homological
motives) and ECM(k) (effective cohomological motives).

These categories are independent from the embedding of k into C; EHM(k) is
a tensor category and enjoys exact faithful tensor functors to Galois representa-
tions, mixed Hodge structures and a category of “periods” (a period is a triple
(M, W , φ) where M is a Z-module, W a k-vector space and φ an isomorphism
C ⊗Z M → C ⊗k W). There is a tensor triangulated functor

DMeff
gm(k) → Db(EHM(k)) .
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One may then define the category M(k) of motives by inverting Z(1) := H1(Gm),
exactly as for pure motives. Starting from ECM(k) and H1(Gm) yields the same
result. This category is “neutral tannakian” in the sense that it is equivalent to the
category of comodules of finite type over a certain pro-Hopf algebra… There is
also a weight filtration, all this being integrally defined!

I expect M(k) to be eventually equivalent to the heart of a motivic t-structure
on DMgm,ét(k), compare the end of Sect. 4.4.3. This is evidenced by the fact that
Betti cohomology compares nicely with étale cohomology with finite coefficients.
Of course this issue is closely related to the Hodge conjecture.

AAA1-Homotopy and Stable Homotopy Categories4.4.5

Before Fabien Morel and Vladimir Voevodsky started constructing it in the early
nineties, first independently and then together, nobody had thought of develop-
ing a “homotopy theory of schemes” just as one develops a homotopy theory of
(simplicial) sets. In this subsection we shall give a brief outline of this theory and
its stable counterpart, referring the reader to [144], [147] and [202] for details; see
also the few words in [89, §§5 to 7], [200], the exposition of Joël Riou [159], [145]
and the programmatic [146].

Homotopy of Schemes
There are two constructions of the A1-homotopy category of k-schemes H(k),
which can be considered as an algebro-geometric generalisation of the classical
homotopy category H : [144] and [147]. It can be shown that they are equivalent.
We shall describe the second with its features, as it is the best-known anyway.

We start with the category (Sm|k)Nis of smooth k-schemes of finite type endowed
with the Nisnevich topology. We first introduce the category Hs(k). A map f :
F → G of Nisnevich sheaves of simplicial sets on (Sm|k)Nis is a simplicial weak
equivalence if fx : Fx → Gx is a weak equivalence of simplicial sets for any point x
of the site; Hs(k) is the localisation of ∆opShv((Sm|k)Nis) with respect to simplicial
weak equivalences. Next, a simplicial sheaf F is A1-local if for any other simplicial
sheaf G, the map

HomHs(k)(G, F ) → HomHs(k)(G × A1, F )

induced by the projection A1 → Spec k is a bijection, and a morphism f : G → H
is an A1-weak equivalence if for any A1-local F the corresponding map

f ∗ : HomHs(k)(H , F ) → HomHs(k)(G, F )

is a bijection. Then H(k, A1) = H(k) is the localisation of ∆opShv((Sm|k)Nis) with
respect to A1-weak equivalences.

Morel and Voevodsky provide ∆opShv((Sm|k)Nis) with a closed model structure
of which H(k) is the homotopy category. By construction, any k-scheme of finite
type can be viewed in H(k). For smooth schemes, this transforms elementary Nis-
nevich covers (for example open covers by two Zariski open sets) into cocartesian
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squares, the affine line is contractible, one has a homotopy cocartesian blow-up
square (up to a suspension) and a homotopy purity theorem for a smooth pair,
expressible in terms of the Thom space of the normal bundle.

Moreover, most of the important cohomology theories are representable in
H(k): this is the case in particular for algebraic K-theory and for motivic coho-
mology.

When k ⊆ C, there is a realisation functor H(k) → H ; when k ⊆ R there is
another one, quite different from the first.

In contrast to the classical case of H , there are two circles in H(k): the simplicial
circle S1

s and the A1-circle S1
t . They account for the fact that motivic cohomology

is a bigraded theory; the fact that algebraic K-theory is single-indexed can be
interpreted as an algebraic analogue to Bott periodicity.

Stable Homotopy of Schemes
The construction of this category is outlined in [202]; see also [89, 5.4 ff], [145], [146]
and [159]. Briefly, one considers T-spectra, where T = S1

s ∧ S1
t and one constructs

SH(k) “as in topology”, except that “as in” hides not inconsiderable technical diffi-
culties. This is a tensor triangulated category, just as the classical stable homotopy
category SH . There exists an infinite version of DMgm(k), denoted by DM(k) (
[180], [211], [146, §5.2]), to which SH(k) bears the same relationship as SH bears
to the derived category of abelian groups: there is a “motive” functor

M : SH(k) → DM(k) ,

which extends the functor M : Sm|k → DMeff
gm(k) (an analogue to the “chain

complex” functor in topology), and which has as a right adjoint an “Eilenberg–
MacLane” functor

H : DM(k) → SH(k) .

Moreover, if one tensors morphisms by Q, then H is a right inverse to M; if −1
is a sum of squares in k, H is even an inverse to M.

An important theorem is that motivic cohomology is representable by a ΩT-
spectrum [202, Th. 6.2]: this rests on Voevodsky’s cancellation theorem [203].
Similarly, K-theory is representable by a ΩT-spectrum KGL. This has allowed
Hopkins and Morel to construct an Atiyah–Hirzebruch spectral sequence having
the same form as (4.6), by using a tower on KGL rather than the “skeleta” approach
leading to (4.6) [75]. Unlike the topological case, it is not clear that the two spectral
sequences coincide6.

6 In the topological case, one can easily prove that the two ways to produce the Atiyah–
Hirzebruch spectral sequence for a generalised cohomology theory (cell filtration on the
space or Postnikov tower on the spectrum) yield the same spectral sequence by reducing
to the case where the space is a sphere and where the spectrum is an Eilenberg–Mac Lane
spectrum, because the cohomology of spheres is so basic. In the scheme-homotopy theoretic
case, even if one had the suitable generality of construction of the two spectral sequences,
one would have to find the right analogues: for example, motivic cohomology of fields is
quite complicated.
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To prove Theorem 21 below, Voevodsky makes an essential use of the categories
H(k) and SH(k), and in particular of motivic Steenrod operations.

Comparisons4.5

Étale topology4.5.1

Instead of computing higher Chow groups for the Zariski topology, we may use
étale topology. For X smooth and n ≥ 0, we thus get groups

Hi
ét(X, Z(n)) := Hi−2n

ét

(
X, α∗zn(X, ∗)

)

where α is the projection (Sm|k)ét → (Sm|k)Zar. There are canonical maps
Hi(X, Z(n)) → Hi

ét(X, Z(n)). Similarly, replacing the complexes zn(X, ∗) by
zn(X, ∗) ⊗ Z|m, we may define motivic cohomology with finite coefficients, both
in the Zariski and the étale topology:

Hi(X, Z|m(n)) → Hi
ét(X, Z|m(n)) .

13 Theorem 13: (Geisser–Levine) Let X be smooth over k.
a) [62, Th. 1.5] If m is invertible in k, there is a quasi-isomorphism zn(−, ∗)ét ⊗

Z|m � µ⊗n
m .

b) [61] If m is a power of p = char k > 0, say m = ps, there is a quasi-isomorphism
zn(−, ∗)ét ⊗ Z|m � νs(n)[−n], where νs(n) is the n-th logarithmic Hodge–Witt
sheaf of level s. 7

Zariski Topology4.5.2

Keep the above notation. We first have an easy comparison with rational coefficients
(e.g. [93, Prop. 1.18]):

14 Theorem 14 For X smooth over k, Hi(X, Q(n))
∼→ Hi

ét(X, Q(n)) for all i, n.

15 Theorem 15: (Geisser–Levine [61, Th. 8.4]) Let X be smooth over k.
If m = ps, p = char k > 0, Hi

Zar(X, Z|m(n)) � Hi−n
Zar (X, α∗νs(n)).

See §3.2 in Geisser’s chapter for more details on this theorem.
For m invertible in k, the situation is more conjectural. Let l be prime and

invertible in k. Recall

7 This statement does not appear explicitly in [61]; however it can be deduced from Theo-
rem 15 by étale localisation!
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16Conjecture 16: (Bloch–Kato Conjecture) For any finitely generated extension K|k
and any n ≥ 0, the norm residue homomorphism

KM
n (K)|l → Hn

ét(K, µ⊗n
l )

is bijective.

The references for this conjecture are [100, Conj. 1] and [19, Intr. and Lect. 5]. For
l = 2, it is due to Milnor [141, p. 540].

17Conjecture 17: (Beilinson–Lichtenbaum Conjecture) For any smooth X over k,
the quasi-isomorphism of Theorem 13 a) induces a quasi-isomorphism zn(−, ∗) ⊗
Z|m � τ≤nRα∗µ⊗n

m .

The references for this conjecture are [12, 5.10 D (vi)] and [124, §5]. In view of
Theorems 14 and 15, it may be reformulated as follows:

18Lemma 18 Conjecture 17 is equivalent to the following statement: for any smooth
k-variety X, the natural morphism

Z(X, n) → τ≤n+1Rα∗α∗Z(X, n)

is an isomorphism in D−(XZar), where Z(X, n) is the class of the Zariski sheafifica-
tion of the shifted Bloch cycle complex z∗(X, n)[−2n] and where α is the projection
of the small étale site of X onto its small Zariski site. �

(The vanishing of Rn+1α∗α∗Z(X, n) is called Hilbert 90 in weight n.)
The following theorem is due to Suslin–Voevodsky [187] in characteristic 0 and

to Geisser–Levine [62] in general.

19Theorem 19 Conjectures 16 and 17 are equivalent.

The arguments of [61] for the proof of Theorem 15 and of [187] and [62] for
the proof of Theorem 19 can be abstracted [93] and give a uniqueness theorem for
motivic cohomology. Let us explain this theorem. Define (in this explanation) a co-
homology theory as a sequence of complexes of sheaves (B(n))n∈Z over the category
of smooth k-schemes endowed with the Zariski topology, enjoying two natural
properties: homotopy invariance and Gysin exact sequences (purity). There is an
obvious notion of morphisms of cohomology theories. For example, (Z(n))n∈Z de-
fines a cohomology theory as soon as we modify Bloch’s cycle complexes suitably
so as to make them strictly contravariant for morphisms between smooth vari-
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eties [93, Th. 1.17]8. Suppose now that C is a bounded above complex of abelian
groups (in applications to Theorems 15 and 19, C would be Z|m for some m) and
that we are given a morphism of cohomology theories

Z(n)
L⊗ C → B(n) . (4.17)

Under what conditions is (4.17) an isomorphism? Two obvious necessary con-
ditions are the following:
1. B(n) is bounded above for all n.
2. (4.17) is a quasi-isomorphism for n ≤ 0; in particular, B(n) = 0 for n < 0.
The third condition is very technical to state: it is called malleability and is en-
joyed by Z(n) for n > 0 by a nontrivial theorem of Geisser and Levine ([61,
Cor. 4.4], [93, Th. 2.28]). For n = 1 it is closely related to the fact that, if A is
a semi-local ring, then for any ideal I in A the homomorphism A∗ → (A|I)∗
is surjective. It is stable under tensoring with C, so if (4.17) is an isomorphism
then
3. B(n) is malleable for all n > 0.

Conversely:

20 Theorem 20: ([93, Prop. 2.30]) If Conditions 1, 2 and 3 are satisfied, then (4.17)
is an isomorphism of cohomology theories.

Finally, we have the celebrated theorem of Voevodsky:

21 Theorem 21: (Voevodsky [204]) Conjecture 16 is true for l = 2.

The reader can have a look at [50], [89], [143] and [184] for some insights in the
proof.

For an odd prime l, Conjecture 16 is “proven” in the following sense: 1) A preprint
of Voevodsky [206] gives a proof modulo two lemmas on mod l Steenrod opera-
tions (see loc. cit. , Lemmas 2.2 and 2.3) and two results of Rost (see loc. cit. , Th.
6.3). 2) Voevodsky plans to write up a proof of the Steenrod operation lemmas,
but no such proof is available at the moment. 3) The two results of Rost have
been announced by him in his address to the Beijing International Congress of
Mathematicians in 2002 with proofs of special cases [162], but no complete proof
is available at the moment.

8 One should be careful that the construction given in [93] is incomplete. The problem is
that the claimed equality in loc. cit., (1.4) is only an inclusion in general. As a consequence,
the object defined in the proof of Theorem 1.17 is not a functor, but only a lax functor. This
lax functor can be rectified e.g. by the methods of [122] (see also Vogt [207]). I am grateful
to Marc Levine for pointing out this gap, and the way to fill it.
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22Corollary 22 For n a power of 2 (or more generally for all n with the caveat just
above), the E2-terms of the spectral sequence (4.7) have the form

E
p,q
2 = H

p
Zar(X, τ≤−q|2Rα∗µ⊗(−q|2)

n ) .

In particular, if X is semi-local, then

E
p,q
2 =

⎧
⎨

⎩
H

p
ét(X, µ⊗(−q|2)

n ) if p ≤ −q|2

0 if p > −q|2 .

23Corollary 23: (Compare [120, proof of Cor 13.3]) Let X be a connected regular
scheme essentially of finite type over a field or a Dedekind scheme S Let δ be the
étale cohomological 2-dimension of the function field of X and d = dim X. Then,
for any n ≥ 0, Hi(X, Z|2s(n)) = 0 for i > δ + d.

Proof We may assume δ < ∞. Consider the hypercohomology spectral sequence

E
p,q
2 = H

p
Zar

(
X, Hq(Z|2s(n))

) ⇒ Hp+q(X, Z|2s(n)) .

It is sufficient to show that E
p,q
2 = 0 for p + q > δ + d. We distinguish two cases:

q > n. Then it follows from the definition of Bloch’s higher Chow groups plus
Gersten’s Conjecture [32], which implies that the stalks of the sheaf Hq(Z|2s(n))
inject into its stalk at the generic point.
q ≤ n. By Theorems 19 and 21, Hq(Z|2s(n))

∼→ H
q
ét(Z|2s(n)). But the right

sheaf is 0 for q > δ by the argument in [91, Proof of Cor. 4.2].

Back to the Beilinson–Soulé Conjecture 4.5.3

24Lemma 24 Under Conjecture 17, Conjecture 5 is equivalent to Conjecture 5 ten-
sored by Q.

Indeed, Conjecture 17 implies that Hi(X, Z|m(n)) = Hi
ét(X, µ⊗n

m ) = 0 for i < 0 and
any m > 0. This in turn implies that Hi(X, Z(n)) → Hi(X, Q(n)) is an isomorphism
for any i < 0 and is injective for i = 0. �

Borel–Moore Étale Motivic Homology 4.5.4

For the sequel we shall need a Borel–Moore homology theory that has the same
relationship to étale motivic cohomology as ordinary Borel–Moore motivic ho-
mology has to ordinary motivic cohomology. Ideally, we would like to associate
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to any k-scheme of finite type X a collection of abelian groups HBM,ét
i (X, Z(n))

enjoying the following two properties:
1. Poincaré duality: if X is a closed subscheme of a smooth k-scheme M of

dimension d, we have isomorphisms

HBM,ét
i (X, Z(n)) � H2d−i

X,ét (M, Z(d − n)) (4.18)

where the right hand side is étale hypercohomology of M with supports in X.
2. Localisation: if Z is a closed subset of X and U = X − Z, we have long exact

sequences

· · · → HBM,ét
i (Z, Z(n)) → HBM,ét

i (X, Z(n))

→ HBM,ét
i (U, Z(n)) → HBM,ét

i−1 (Z, Z(n)) → · · ·

The problem is that 1) does not make sense a priori because if q < 0 and M is
smooth the groups H

j
ét(M, Z(q)) have not been defined. For n ∈ Z, let

(Q|Z)′(n) := lim→
(m,char k)=1

µ⊗n
m

Qp|Zp(n) :=

⎧
⎨

⎩
lim→ νs(n)[−n] for n ≥ 0

0 for n < 0
if char k = p > 0

Q|Z(n) := (Q|Z)′(n) ⊕ Qp|Zp(n) .

Theorems 13 and 14 imply that for X smooth and n ≥ 0 we have long exact
sequences

· · · → Hi−1
ét (X, Q|Z(n)) → Hi

ét(X, Z(n))

→ Hi(X, Q(n)) → Hi
ét(X, Q|Z(n)) → · · · (4.19)

where so that we might try and define

Hi
ét(X, Z(n)) := Hi−1

ét (X, Q|Z(n)) for X smooth and n < 0 . (4.20)

This is vindicated by the projective bundle formula

Hi
ét(Pn

X , Z(q)) �
n⊕

j=0

H
i−2j
ét (X, Z(q − j))

which may be proven as [86, Th. 5.1].
Suppose that in 1) X is smooth of dimension d. Then we may take M = X and

we get isomorphisms HBM,ét
i (X, Z(n)) � H2d−i

ét (X, Z(d − n)). Suppose now that in 2)
Z is also smooth, of codimension c. Then, after reindexing, the localisation exact
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sequences translate into long exact “Gysin” sequences

· · · → H
j−2c
ét (Z, Z(m − c)) → H

j
ét(X, Z(m))

→ H
j
ét(U, Z(m)) → H

j−2c+1
ét (Z, Z(m − c)) → · · · (4.21)

However, with Definition (4.20) the exact sequences (4.21) are wrong in char-
acteristic p > 0: take for example k algebraically closed, X = P1, U = A1,
m = 0 and j = 2. The exactness of (4.21) would imply that the homomorphism
H1

ét(P1, Q|Z) → H1
ét(A1, Q|Z) is surjective, which is false because H1

ét(P1, Qp|Zp) = 0
while H1

ét(A1, Qp|Zp) is huge. Therefore the most we can hope for is to have exact
sequences (4.21) after inverting the exponential characteristic p.

This turns out to be true: (4.21) ⊗ Z[1|p] are obtained by gluing together the
purity theorem for motivic cohomology (4.14) and the purity theorem for étale
cohomology with finite coefficients, as in [86, Th. 4.2].

It also turns out that a Borel–Moore homology theory

X 	→ (
HBM,ét

i (X, Z[1|p](n))
)

(i,n)∈Z×Z (4.22)

having properties 1) and 2) after inverting p does exist. These groups sit in long
exact sequences analogous to (4.19)

· · · → HBM,ét
i+1

(
X, (Q|Z)′(n)

) → HBM,ét
i

(
X, Z[1|p](n)

)

→ HBM
i (X, Q(n)) → HBM,ét

i

(
X, (Q|Z)′(n)

) → … (4.23)

where HBM,ét
i+1 (X, (Q|Z)′(n)) = H−i−1(X, f !

X(Q|Z)′(−n)) is étale Borel–Moore homol-
ogy, with f !

X the extraordinary inverse image of [SGA 4, Exposé XVIII] associated
to fX : X → Spec k. Supposing that they are constructed, they are characterised
either by (4.18) (with p inverted) or by (4.23).

I know two techniques to construct the theory (4.22). The first is to proceed
“naïvely” as in [62] and construct a homotopy version of the homological cycle
class map of [SGA 4 1/2, Cycle, §2.3]: this had been done in [92, §1.3]. This yields
functorial zig-zags of morphisms

α∗zn(X, ∗)
∼←→ f !

XZ|m(−n)[−2n]

for (m, char k) = 1, which are compatible when m varies; in the limit one gets
zig-zags

α∗zn(X, ∗) ⊗ Q
∼←→ f !

X(Q|Z)′(−n)[−2n]

and one defines (4.22) as the homology groups of the homotopy fibre. The other
method is much more expensive but also more enlightening. First, one proves that
the cohomology theory on smooth schemes

X 	→ (
Hi

ét(X, Z[1|p](n))
)

(i,n)∈Z×Z
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is representable by a T-spectrum Hét
Z[1|p] in SH(k): for this one may glue the T-

spectrum HQ with the T-spectrum Hét
(Q|Z)′ representing étale cohomology with

(Q|Z)′ coefficients (cf. [159, Cor. 8.53]) in the spirit above, except that it is much
easier here. (As Joël Riou pointed out, it is even easier to apply the Dold–Kan con-
struction to truncations of Godement resolutions representing Rα∗α∗Z[1|p](n):
the projective bundle formula and homotopy invariance imply that they yield an
ΩT-spectrum.) Then, according to Voevodsky’s formalism of cross functors (cf.
[9, 205]), given a k-scheme of finite type X with structural morphism f : X →
Spec k, we have an “extraordinary direct image” functor

f! : SH(X) → SH(k) .

We set BM(X) = f!S0: this is the Borel–Moore object associated to X. For any
T-spectrum E ∈ SH(k), we may then define

EBM
p,q (X) := [Σ−p,−qBM(X), E]

(I am indebted to Riou for discussions about this.) Applying this to E = Hét
Z[1|p], we

get the desired theory.
Note that, for a singular scheme X, one may also consider the groups

H2n−i
ét

(
X, α∗zn(X, ∗)[1|p]

)

obtained by sheafifying the Bloch cycle complexes for the étale topology. These
groups map to HBM,ét

i (X, Z[1|p](n)), but these maps are not isomorphisms in
general as one can see easily because of (4.18). So the isomorphism of [92, (1.6)]
is wrong. (I am indebted to Geisser for pointing out this issue.) However they
become isomorphisms after tensoring with Q, and these groups then reduce to
Bloch’s higher Chow groups tensored with Q.

Finally, one can repeat the story above after tensoring the étalified Bloch cycle
complexes (for smooth schemes) by a fixed complex of étale sheaves C on the small
étale site of Spec k: this will be used in the sequel.

Applications: Local Structure of Algebraic
K-Groups and Finiteness Theorems4.6

25 Definition 25 Let X be a Spec Z[1|2]-scheme: it is non-exceptional if for any con-
nected component Xα, the image of the cyclotomic character κ2 : π1(Xα) → Z∗

2
does not contain −1.

The first result says that, locally for the Zariski topology, algebraic K-theory with
Z|2ν coefficients is canonically a direct sum of étale cohomology groups, at least
in the nonexceptional case:
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26Theorem 26: ([91, Th. 1]) Let A be a semi-local non-exceptional Z[1|2]-algebra.
a) There are canonical isomorphisms (n ≥ 0, ν ≥ 2)

∐

0≤i≤n

H2i−n
ét (A, µ⊗i

2ν )
∼→ Kn(A, Z|2ν) .

b) If A is essentially smooth over field or a discrete valuation ring, the spectral
sequence (4.5) with Z|2ν coefficients canonically degenerates.

c) If A is a field and µ2ν ⊂ A, the natural map

KM
∗ (A) ⊗ Z|2ν[t] → K∗(A, Z|2ν)

given by mapping t to a “Bott element” is an isomorphism.

Note that the reason why Thomason disbelieved the Bloch–Kato conjecture was
precisely that it would imply the vanishing of all differentials in the Atiyah–
Hirzebruch spectral sequence for étale K-theory [195, p. 409]: similar results had
been observed by Dwyer–Friedlander [45]. See §3 in Weibel’s chapter for details
on the construction of the isomorphism a) in some special cases.

For X a scheme, define d2(X) := sup{cd2(η)}, where η runs through the generic
points of X.

27Theorem 27: (ibid., Th. 2) Let X be a finite-dimensional Noetherian non-
exceptional Z[1|2]-scheme.
a) The natural map

KTT
n (X, Z|2ν) → KTT

n (X, Z|2ν)[β−1]

is injective for n ≥ sup(d2(X) − 2, 1) and bijective for n ≥ sup(d2(X) − 1, 1).
The 1 in the sup is not necessary if X is regular. (Recall that KTT denotes
Thomason–Trobaugh K-theory.)

b) The natural map

K ′
n(X, Z|2ν) → K ′

n(X, Z|2ν)[β−1]

is injective for n ≥ d2(X) − 2 and bijective for n ≥ d2(X) − 1.
c) If cd2(X) < +∞, there are isomorphisms

KTT
n (X, Z|2ν)[β−1]

∼→ Két
n (X, Z|2ν)

for all n ∈ Z.

28Remark 28 For X regular over a field or a discrete valuation ring, one can directly
use the spectral sequences (4.5) and (4.6) with finite coefficients, cf. Levine [120];
but this approach does not work for singular X and KTT .
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29 Corollary 29: (ibid., Cor. 1) Let S be Z[1|2]-scheme and X a non-exceptional
separated S-scheme of finite type. Assume that S is
(i) Spec R[1|2], where R the ring of integers of a non-exceptional number field, or
(ii) Spec Fp, p > 2, or
(iii) Spec k, k separably closed field of characteristic ≠ 2, or
(vi) Spec k, k a higher local field in the sense of Kato.
Then KTT

n (X, Z|2ν) and K ′
n(X, Z|2ν) are finite for n ≥ dim(X|S) + d2(S) − 2.

30 Remark 30 For X regular, the map Hi(X, Z|2ν(n)) → Hi
ét(X, µ⊗n

2ν ) is injective for
i ≤ n+1 (even an isomorphism for i ≤ n) by Conjecture 17 and Theorem 21, hence
Hi(X, Z|2ν(n)) is finite by Deligne’s finiteness theorem for étale cohomology [SGA
4 1/2, th. finitude] plus arithmetic finiteness theorems. This remark yields Corol-
lary 29 by applying Corollaries 22 and 23. The general case needs the methods
of [91].

31 Corollary 31: (ibid., Cor. 2) Let X be a variety of dimension d over k = Fp (resp.

Qp), p > 2. Then KTT
n (X){2} is finite and

KTT
n+1(X)

KTT
n+1(X){2} is uniquely 2-divisible for n ≥ d

(resp. d + 1). The same statements hold with K ′∗(X).

32 Theorem 32: (ibid., Th. 3) Let d ≥ 0 and n ≥ 3. There exists an effectively
computable integer N = N(d, n) > 0 such that, for any Noetherian Z[1|2]-scheme
X separated of Krull dimension ≤ d and all ν ≥ 2, the kernel and cokernel of the
map

KTT
n (X, Z|2ν)

(ici,2i−n)→
∏

i≥1

H2i−n
Zar (X, B|2ν(i))

(given by Chern classes) are killed by N. If X is smooth over a field or a discrete
valuation ring, this holds also for n = 2.

Let us come back to Conjecture 4 in the light of this theorem. If X is of fi-
nite type over a field k of characteristic 0, the construction of the Haesemeyer
spectral sequence (4.13) yields a version with coefficients Z|2ν. The abutment is
KTT∗ (X, Z|2ν) by homotopy invariance of the latter theory. The E2-terms are of the
form H

p
cdh(X, θ∗B|2ν(−q|2)), where θ is the projection of the cdh site of k onto its big

Zariski site. This looks closely like the spectral sequence in Conjecture 4. Is there
any reason why the maps H

p
Zar(X, B|2ν(−q|2)) → H

p
cdh(X, θ∗B|2ν(−q|2)) should

be isomorphisms? A moment of reflection suggests that there might be a base
change theorem between étale and cdh topology (involving Geisser’s éh topol-
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ogy [60]) which should be closely related to Gabber’s affine analogue of proper
base change [55].

If X = Spec OS where OS is a localised ring of integers in a global field (with
1|2 ∈ OS) and OS is not formally real, then cd2(OS) = 2 and the spectral sequence
(4.7) degenerates for dimension reasons. Hence Corollary 22 directly yields iso-
morphisms

K2i−1(OS, Z|2ν) � H1
ét(OS, µ⊗i

2ν )

K2i−2(OS, Z|2ν) � H2
ét(OS, µ⊗i

2ν ) (i ≥ 2) .

This is a finite coefficients version of the original Quillen conjecture (cf. Con-
jecture 1)

K2i−1(OS) ⊗ Zl � H1
ét(OS, Zl(i)) (4.24)

K2i−2(OS) ⊗ Zl � H2
ét(OS, Zl(i)) (i ≥ 2) . (4.25)

The latter readily follows from the finite version by passing to the inverse
limit, because of the finiteness of the étale cohomology groups and Quillen’s finite
generation theorem (see below).

When OS is formally real, we have cd2(OS) = +∞ and the above does not apply.
In fact, the spectral sequence (4.7) does not degenerate at E2 in this case, neither
for OS nor for its quotient field F. It can be shown however that it degenerates at
E4 as well as (4.6), see [88, Lemma 4.3] for the latter. (For coefficients Z|2s with
s ≥ 2, see [83, Appendix]: this argument is detailed in Sect. 7 of Weibel’s chapter
for the real numbers. For coefficients Z|2, see [152]. In [160] Rognes and Weibel
avoid the use of a product structure by a clever reciprocity argument.) This yields
the following version of Quillen’s conjecture:

33Theorem 33: ([88, Th. 1]) Let r1 be the number of real places of F. Then there
exist homomorphisms

K2i−j(OS) ⊗ Z2

chi,j→ H
j
ét(OS, Z2(i)) (j = 1, 2, i ≥ j) ,

which are
(i) bijective for 2i − j ≡ 0, 1, 2, 7 (mod 8)
(ii) surjective with kernel isomorphic to (Z|2)r1 for 2i − j ≡ 3 (mod 8)
(iii) injective with cokernel isomorphic to (Z|2)r1 for 2i − j ≡ 6 (mod 8).
Moreover, for i ≡ 3 (mod 4) there is an exact sequence

0 → K2i−1(OS) ⊗ Z2 → H1
ét(OS, Z2(i)) → (Z|2)r1

→ K2i−2(OS) ⊗ Z2 → H2
ét(OS, Z2(i)) → 0

in which Im(H1
ét(OS, Z2(i)) → (Z|2)r1 ) has 2-rank ρi ≥ 1 if r1 ≥ 1.

The homomorphisms chi,j are natural in OS.
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34 Remark 34 The above results hold modulo powers of an odd prime l (without the
non-exceptional complications) as soon as the Bloch–Kato conjecture is proven
mod l. See §6 in Weibel’s chapter.

For X regular, Theorem 27 has been generalised by P. A. Østvær and A. Rosen-
schon by removing the nonexceptional hypotheses [152]: they get essentially the
same statements by replacing the étale cohomological 2-dimension by the vir-
tual étale cohomological 2-dimension. However they do not deal with singular
schemes.

J. Rognes and C. Weibel [160] used Theorem 21 and the version with divisible
coefficients of the spectral sequence (4.7) to compute much of the 2-torsion in
K∗(OF) where OF is the ring of integers of a number field (see also [88, Cor. 3]): see
Weibel’s chapter in this Handbook.

35 Question 35: Open Question Let be X regular of finite type over Spec Z[1|m]. Is
Hi(X, Z|m(n)) finite for all i?

This is false over Spec Q: by Schoen [166], there exists an elliptic curve E and
a prime l with CH2(E3)|l = H4(E3, Z|l(2)) infinite. I now tend to doubt whether
this is true even over Z: see the discussion in Sect. 4.9.1.

The Picture in Arithmetic Geometry4.7

Finite Generation Theorems4.7.1

A basic conjecture underlying all further conjectures is

36 Conjecture 36: (Bass Conjecture)
a) For any scheme X of finite type over Spec Z, the groups K ′

i (X) are finitely
generated.

b) For any regular scheme X of finite type over Spec Z, the groups Ki(X) are finitely
generated.

By Poincaré duality for K ′ and K-theory, a) evidently implies b). But conversely,
b) implies a) by the localisation exact sequence (if X is of finite type over Spec Z, its
regular points form a dense open subset so we may argue by Noetherian induction).

In view of the spectral sequences (4.5) and (4.6), it is tempting to approach this
conjecture via the stronger
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37Conjecture 37: (Motivic Bass Conjecture)
a) For any scheme X of finite type over Spec Z, the groups HBM

i (X, Z(n)) are finitely
generated.

b) For any regular scheme X of finite type over Spec Z, the groups Hi(X, Z(n)) are
finitely generated.

Just as before, a) ⇐⇒ b).
I will explain in Sect. 4.9.1 why I now doubt that these versions of the Bass

conjecture are true, and also why it does not matter too much. Nevertheless let us
start with positive results:

38Proposition 38
a) Conjecture 37 is true for n ≤ 1.
b) (Quillen) Conjecture 36 is true for dim X ≤ 1.

Sketch of proofs
We may reduce to X regular and connected. First, a) may be deduced from

a combination of
Dirichlet’s unit theorem: finite generation of units in the ring of integers of
a number field, and the finiteness of the class group of such a ring.
The Mordell–Weil theorem: for any abelian variety A over a number field K,
the group A(K) is finitely generated.
The Néron-Severi theorem: for any smooth projective variety X over an alge-
braically closed field, the Néron-Severi group NS(X) is finitely generated.

De Jong’s alteration theorem also enters the proof: we skip details (see [97], and
also [95, Lemma 4.1] for characteristic p).
b) Here Quillen’s proofs go through a completely different path ([66, 153, 155]):
homology of the general linear group. For any ring R, one has

Ki(R) = πi(K0(R) × BGL(R)+) .

Since BGL(R)+ is an H-space, by Hurewicz’s theorem all Ki are finitely generated
if and only if K0(R) is finitely generated and all Hi(BGL(R)+, Z) = Hi(GL(R), Z) are
finitely generated. At the time when Quillen proved the theorems, he needed to go
through delicate arguments involving (in the dimension 1 case) homology of the
Steinberg module. However, later stability theorems may be used to simplify the
argument, except in the function field case: by van der Kallen and Maazen [98],
Hi(GL(R), Z) = Hi(GLN(R), Z) for N large (depending on i). If R is finite, this
finishes the proof. If R is a localised number ring, finite generation depends on
a theorem of Raghunathan [157] which ultimately uses the action of SLN(R) on
certain symmetric spaces, hence Riemannian geometry… There is a similarity
with Dirichlet’s proof of his unit theorem (N = 1).
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For curves over a finite field, Quillen’s proof, passing through Steinberg modules,
is mainly related to the fact that semi-stable vector bundles over a curve admit
moduli. It would be useful to combine this idea with the van der Kallen–Maazen
stability theorem in order to simplify the proof. We shall give a completely different
proof in Remark 71 3).

The Beilinson–Soulé Conjecture Again
The following result was prefigured in [84]:

39 Theorem 39: ([87]) Conjecture 36 ⇒ Conjecture 5.

Sketch
We shall actually sketch a proof of the slightly weaker result that Conjecture 37

⇒ Conjecture 5 for X regular of finite type over Z[1|2]. There are long exact
sequences

· · · → Hi(X, Z(2)(n))
2→ Hi(X, Z(2)(n)) → Hi(X, Z|2(n)) → · · ·

For i < 0, Theorem 21 + Theorem 19⇒Hi(X, Z|2(n)) = 0. Since the Hj(X, Z(2)(n))
are finitely generated over Z(2), this does the proof for i < 0. For i = 0, we need
a little more: after reducing to a finitely generated field K, a dyadic argument using
that K contains only finitely many roots of unity. With even more effort one can
catch the Merkurjev–Suslin Conjecture 8.

To get the actual statement of the theorem, one has to check that in the spectral
sequence (4.6), the appropriate E∞ terms are uniquely 2-divisible as subquotients
of motivic cohomology groups, and that then the corresponding K-groups are
also almost uniquely divisible, hence vanish up to a group of finite exponent, and
therefore the motivic groups too. This back and forth uses the degeneration of
(4.6) up to small torsion and is a bit messy; the arguments in [84] give a good
idea of it. (Note that the quasi-degeneration of the spectral sequence implies that
a given E∞-term is equal to the corresponding E2-term up to groups of finite
exponent.) It may not be extremely interesting to make this proof completely
explicit.

Motivic Cohomology of Finite and Global Fields
In this subsection we want to indicate a proof of

40 Theorem 40 Conjecture 37 holds for dim X ≤ 1.
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Sketch
As in the proof of Proposition 38 we may restrict to X regular connected. In view

of Proposition 38, we may try and deduce it from Conjecture 36 via the spectral
sequence (4.6).

If one tries the crude approach via Adams operations, one runs into the problem
indicated at the end of Sect. 4.2: we only get that the groups Hi(X, Z(n)) are finitely
generated up to some group of finite exponent (bounded in terms of i and n). We
are going to get by by granting the Beilinson–Lichtenbaum Conjecture 17. The
main point is:

41Lemma 41 The Beilinson–Soulé Conjecture 5 is true for dim X ≤ 1; moreover
Hi(X, Z(n)) = 0 for i ≥ dim X + 2 (up to a finite 2-group if the function field of X
is formally real).

There are three very different proofs of this lemma. The first combines the rank
computations of Borel [24] with the results of Soulé [173,174], cf. [77, p. 327, Ex. 3].
The second uses the proof of the rank conjecture for number fields (the rank
filtration is opposite to the gamma filtration) by Borel and Yang [27]. The third is
to apply Theorem 39 in this special case: see [88, proof of Th. 4.1].

Given Lemma 41, (4.6) degenerates at E2 for dimension reasons, except in the
formally real case. When it degenerates at E2 the finite generation conclusion is
immediate; in the formally real case one gets relationships between K-theory and
motivic cohomology similar to those of Theorem 33 and the conclusion follows
again.

To get this finite generation result for motivic cohomology, we have used a very
circuitous and quite mathematically expensive route: Quillen’s finite generation
theorems for K-theory (involving the homology of GLn and Riemannian geome-
try), the Bloch–Lichtenbaum spectral sequence and finally the Bloch–Kato conjec-
ture! In characteristic 0 this seems to be the only available route at the moment.
In characteristic p, however, we shall see in Remark 71 3) that Frobenius provides
a shortcut allowing us to avoid the passage through K-theory.

Ranks, Torsion and Zeta Functions 4.7.2

The primeval formula in this subject is certainly Dedekind’s analytic class number
formula: let K be a number field, ζK its Dedekind zeta function, (r1, r2) its signature,
h its class number, w the number of its roots of unity and R its regulator. Then

lim
s→0

s−r1−r2+1ζK (s) = −
hR

w
. (4.26)

So we recover analytically the rank r1 + r2 − 1 of the units O∗
K as well as a number

involving h, R and w. Up to the rational number h|w, the special value of ζK (s) at
s = 0 is the regulator. Deligne, Lichtenbaum, Soulé and Beilinson have formulated
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conjectures generalising this formula. These conjectures really are for two very
different types of zeta or L-functions:

The zeta function of an arithmetic scheme (Lichtenbaum, Soulé).
The “Hasse–Weil” L-functions associated to Hi of a smooth projective variety
over a number field K, or more generally to a K-motive for absolute Hodge
cycles (Deligne, Beilinson, Bloch–Kato…)

They have shaped the development of algebraic K-theory and later motivic coho-
mology and the theory of motives ever since they were formulated. Here I am only
going to discuss the first case: the second one is much harder to even state and
completely beyond the scope of these notes.

Soulé’s Conjecture4.7.3

Lichtenbaum formulated very precise conjectures, at least in special cases, while
Soulé formulated a general conjecture but only for orders of poles. Let me start
with this one. Recall that an arithmetic scheme is a scheme of finite type over Z. If
X is an arithmetic scheme, its zeta function9 is

ζ(X, s) =
∏

x∈X(0)

(1 − N(x)−s)−1 ,

where X(0) is the set of closed points of X and, for x ∈ X(0), N(x) = |κ(x)|, the
cardinality of the residue field at x. This formal expression has some obvious
properties:
1. ζ(X, s) only depends on the reduced structure of X.
2. If Z is closed in X with open complement U , then

ζ(X, s) = ζ(U, s)ζ(Z, s) . (4.27)

3. ζ(X × A1, s) = ζ(X, s − 1) . (4.28)

4. If f : X → Y is a morphism, then

ζ(X, s) =
∏

y∈Y0)

ζ(Xy, s) , (4.29)

where Xy is the fibre of f at y.

Using this, one easily proves that ζ(X, s) converges absolutely for Re(s) > dim X by
reducing to Riemann’s zeta function (see [169, Proof of Theorem 1] for details),
hence is analytic in this domain as a Dirichlet series. It is conjectured to have
a meromorphic continuation to the whole complex plane: this is known at least in
the half-plane Re(s) > dim X − 1|2 [169, Th. 2].

9 This notion goes back to Artin, Hasse and Weil. To the best of my knowledge, the place
where it is first defined in this generality is Serre [168].
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Finally, if X is defined over a finite field k with q elements, then one has the
famous formula (Grothendieck–Artin-Verdier):

ζ(X, s) =
2d∏

i=0

det
(
1 − FXq−s | Hi

c(X, Ql)
)(−1)i+1

, (4.30)

where H∗
c (X, Ql) is the Ql-adic cohomology with compact supports of the geo-

metric fibre X [SGA 5, Exp. XV]. In particular ζ(X, s) is a rational function in q−s

(a result originally proven by Dwork [42]) and the meromorphic continuation is
obvious.

If X = Spec OK for a number field K, we recover the Dedekind zeta function
of K.

42Conjecture 42: (Soulé Conjecture [175, Conj.2.2]) For any n ∈ Z, we have

ords=n ζ(X, s) =
∑

i∈Z

(−1)i+1 dimQ K ′
i (X)(n) ,

where K ′
i (X)(n) is the part of weight n of K ′

i (X) under the homological Adams
operations.

43Remark 43
1) This is a conjecture built over conjectures! First, it presupposes the meromor-

phic continuation of ζ(X, s). Then, implicitely, the dimensions involved in this
formula are finite and almost all 0: this would be a consequence of Conjec-
ture 36, via Theorem 39.

2) Using (4.11), we may now rewrite the right hand side as
∑

i∈Z

(−1)i+1 dimQ HBM
2n−i(X, Q(n)) =

∑

j∈Z

(−1)j+1 dimQ HBM
j (X, Q(n)) ,

which looks much more like an Euler–Poincaré characteristic.

For a conjecture on the special values of this zeta function, see Theorem 72.

Example 44. Let X = Spec OK , where K is a number field. It is known that
Ki(X)(n) = Ki(X)(1−n) = 0 for i ≠ 2(1 − n) − 1 = 1 − 2n, except

that Ki(X)(0) = 0 for i ≠ 0; moreover K0(X)(0) = K0(X) ⊗ Q and K1−2n(X)(1−n) =
K1−2n(X) ⊗ Q. Hence the conjecture reads, replacing n by 1 − n:

ords=1−n ζ(X, s) =

⎧
⎨

⎩
− dimQ K0(X) ⊗ Q for n = 0

dimQ K2n−1(X) ⊗ Q for n > 0 .
(4.31)
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For n = 0, this says that ζ(X, s) has a pole of order 1 at s = 1, which is classical.
For n = 1, it follows from (4.26). For n > 1, it is easy to compute the left hand side
via the functional equation: one finds

gn := ords=1−n ζ(X, s) =

⎧
⎨

⎩
r1 + r2 if n is odd

r2 if n is even .

It is a theorem of Borel [24] that the right hand side has the same value, so
that (4.31) is true (of course, Soulé’s conjecture was only formulated much later);
this prompted Lichtenbaum’s conjecture (or question) 46 below, which in turn
prompted further work of Borel in this direction [25], see Theorem 47.

Let us toy with the Soulé conjecture as we toyed with the Beilinson–Soulé con-
jecture. From (4.27) and (4.4) (or the easier localisation theorem of Quillen for
K ′-theory), one deduces that if X = U ∪Z and the conjecture is true for two among
X, U, Z, then it is true for the third. From this follows easily:

45 Lemma 45 The following conditions are equivalent:
(i) Conjecture 42 is true for all X.
(ii) Conjecture 42 is true for all X affine and regular.
(iii) Conjecture 42 is true for all X projective over Z.

One would like to refine this lemma further, reducing to X as in Lemma 7 c) (or
d) if we restrict to Xs of positive characteristic). Unfortunately I don’t see how
to do this: unlike an abelian group, a number does not have direct summands!
This reduction will work however if we know some strong form of resolution of
singularities (e.g. for dim X ≤ 2, by Abyankhar). This approach is probably too
crude, see Theorem 58.

Soulé’s conjecture is true for n > d = dim X because both sides of the equality
are then 0. For n = d it is true by [169, Th. 6]. For n = d − 1 and X regular and
irreducible, it was formulated by Tate in [189] and implies the Birch–Swinnerton–
Dyer conjecture (in fact, is equivalent to it under some strong enough form of
resolution of singularities, see above); more generally, it is compatible with the
Beilinson conjectures in a suitable sense. For details on all this, see Soulé [175, 2.3
and 4.1]. Finally, it is equivalent to a part of Lichtenbaum’s second conjecture if X
is smooth projective over a finite field, see Sect. 4.7.6.

We shall now state the two conjectures of Lichtenbaum on special values of
zeta functions: the first concerns Dedekind zeta functions and the second those of
smooth projective varieties over a finite field.
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Lichtenbaum’s First Conjecture:
Rings of Algebraic Integers 4.7.4

(See Goncharov’s chapter for many more details on this subsection, including the
relationship with polylogarithms.)

To state this conjecture, recall that K2n(OK) is finite because it is finitely generated
(Proposition 38) and has rank 0 (Borel [24]). Next, Borel defined a regulator

ρn : K2n−1(OK) ⊗ R → Rgn

which is an isomorphism by [24]. Let Rn(K) be the absolute value of the determinant
of ρn with respect of a basis of K2n−1(OK)|tors and the canonical basis of Rgn .
Lichtenbaum asks prudently:

46Conjecture 46: (Lichtenbaum [123, Question 4.2]) When is it true that

lim
s→1−n

(s + n − 1)−gn ζK (s) = ± |K2n−2(OK )|
|K2n−1(OK)tors|Rn(K) ? (4.32)

Note that the sign is not mysterious at all: it is easy to get as follows. If we restrict
ζK(s) to s real, it takes real values. For s > 0 it is positive. Since it has a single pole
at s = 1, it is negative for s < 1 in the neighbourhood of s = 1. Between s = 0 and
s = 1, its only possible zero is for s = 1|2. But the functional equation shows that
this possible zero has even order (I am indebted to Pierre Colmez for this trick).
Therefore its value for s > 0 near 0 is still negative and the sign at s = 0 is −1. Then
it in known that the only zeroes or poles are at negative integers, and the above
reasoning gives the sign in (4.32) immediately. One finds

(−1)gn−1+gn−2+…+g1+1 =

⎧
⎨

⎩
(−1)

n
2 r1+r2 if n is even

(−1)
n−1

2 r1 if n is odd > 1 .
(4.33)

This computation also appears in Kolster [111] (using the functional equation).
In [25], Borel gave the following partial answer:

47Theorem 47
lim

s→1−n
(s + n − 1)−gn ζK (s) = Rn(K)

up to a nonzero rational number.

Here are some comments on Conjecture 46. Besides (4.26) and Borel’s computation
of the ranks of K-groups in [24], it was inspired by an earlier conjecture of Birch
and Tate (the case n = 2) when K is totally real [17], [191] and by a conjecture of
Serre [171, p. 164] that, still for K totally real and n even, ζK(1 − n)|H0(K, Q|Z(n))|
should be an integer; this conjecture was proven later by Deligne–Ribet [40]. This
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case is much simpler because then gn = 0 and it had been proven long ago by
Siegel that the left hand side of (4.32) was a rational number. In this special case,
Lichtenbaum initially conjectured the following equality:

ζK (1 − n) = ±
∏

l prime

∣∣H1(OK[1|l], Ql|Zl(n))
∣∣

∣∣H0(OK[1|l], Ql|Zl(n))
∣∣ .

Under this form, the conjecture was proven by Mazur–Wiles for K abelian
over Q [131], and then by Wiles in general, except perhaps for l = 2 [212], as
a consequence of their proofs of Iwasawa’s Main Conjecture. Still in this special
case, Quillen’s conjectures (4.24) and (4.25) prompted the K-theoretic formulation
(4.32), up to a power of 2 since (4.24) and (4.25) were formulated only for l odd
and computations showed that the 2-primary part of the formula was false. This is
now explained, for example, by Theorem 33: the correct formula, still in the case
where K is totally real and n is even, is (cf. [88, Cor. 1], [160])

ζK(1 − n) = ±2r1
|K2n−2(OK)|
|K2n−1(OK)| = ±|H2(OK , Z(n))|

|H1(OK , Z(n))| .

We could say that this conjecture is essentially proven now if one believes that
the proof of the Bloch–Kato conjecture (for Milnor’s K-theory) is complete.

How about the general conjecture? First there was an issue on the correct
normalisation of the Borel regulator, as Borel’s original definition does not give
Theorem 47, but the same formula with the right hand side multiplied by πgn . The
normalisation issue is basically accounted for by the difference between the Hodge
structures Z and Z(1) = 2πiZ: we refer to [30, Ch. 9] for a very clear discussion
(see also [26]). Then Beilinson formulated his general conjectures which should
have Borel’s theorem as a special case: there was therefore the issue of comparing
the Borel and the Beilinson regulators.10 This was done by Beilinson himself up
to a nonzero rational number (see [158]), and finally Burgos [30] showed that the
Beilinson and Borel regulator maps differ by a factor 2, hence the corresponding
determinants differ by 2gn .

Let me give what I believe is the correct formulation in terms of motivic co-
homology and a version of Beilinson’s regulator (see also for example [110, 111]).
This will be the only allusion to Beilinson’s point of view in this survey. We define
Hi(OK , Z(n)) as Levine does in [119] and [121], using a suitable version of Bloch’s
cycle complexes for schemes over Z. Then the construction of a motivic cycle class
map yields “regulator” maps to Deligne’s cohomology (see §6.1 in Levine’s chapter;
note that H1(OK , Q(n))

∼→ H1(K, Q(n)) for n ≥ 2 and that the regulator is just
Dirichlet’s regulator for n = 1)

ρ′
n : H1(OK , Z(n)) ⊗ R → H1

D(OK ⊗Z R, R(n)) ,

10 The great superiorities of the Beilinson regulator over the Borel regulator are its conceptual
definition, its functoriality and its computability in certain cases. On the other hand, no
proof of Theorem 47 directly in terms of the Beilinson regulator is known at present.
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which can be compared to Beilinson’s regulator, the latter being essentially a Chern
character. The Lichtenbaum conjecture should then read

lim
s→1−n

(s + n)−gn ζK (s) = εn
|H2(OK , Z(n))|

|H1(OK , Z(n))tors|R′
n(K) , (4.34)

where R′
n(K) is the absolute value of the determinant of ρ′

n with respect to integral
bases and εn is as in (4.33).

The best formulation would be in terms of étale motivic cohomology with
compact supports à la Kato–Milne [137, p. 203], but this would lead us too far.
(Lichtenbaum is currently working on a conjectural formula involving cohomology
groups defined by means of the Weil groups, in the spirit of his Weil-étale topology
in characteristic p which we shall explain in Sect. 4.7.8 [127].)

As for the general case of the Lichtenbaum conjecture, it is now proven with
the same caveat (Bloch–Kato conjecture) for K abelian over Q, by the work of
Fleckinger–Kolster–Nguyen Quang Do [47] (see also [15] and [16, appendix]). For
nonabelian K we are still far from a proof.

Note that, if one is only interested in totally real K and even n, one may re-
formulate Conjecture 46 purely in terms of étale cohomology, and if one is only
interested in Theorem 47 one may reformulate things in terms of the homology
of GLn(OK). In both cases one can get rid of algebraic K-theory and motivic co-
homology. However, if one wants the general case, there is no way to avoid them.
This encapsulates the beauty and the depth of this conjecture!

48Remark 48 In the sequel we shall amply discuss varieties over finite fields. Let us
make here a few comments on the 1-dimensional case. Let X be a smooth projective
curve over Fp. By the already mentioned theorem of Quillen [66], the groups Ki(X)
are finitely generated. On the other hand, their rank was computed by the work of
Harder [73]: for i > 0 it is 0, hence Ki(X) is finite. Harder computes the rank of the
homology of SLn(A), where A is the coordinate ring of an affine open subset of X,
very much in the style of Borel [24], hence using Riemannian geometry.

There are two completely different proofs of this rank computation. The first
one is due to Soulé [176, 2.3.4] and uses motivic methods: see Sect. 4.8.2 below. The
second one uses the Milnor conjecture (Theorem 21): by the spectral sequence (4.6)
(or the isomorphism (4.9)) it is enough to show that Hi(X, Q(n)) = 0 for i ≠ 2n.
This can be done as for the proof of Theorem 39. This argument relies on knowing
the finite generation of the Ki(X) while Harder’s and Soulé’s proofs do not. On the
other hand, we shall get the finite generation of Hi(X, Z(n)) directly in Sect. 4.8,
without appealing to Quillen’s theorem but using the Bloch–Kato conjecture.

The Tate, Beilinson and Parshin Conjectures 4.7.5

For the rest of this section, k is a finite field and X is a smooth projective k-
variety. We also give ourselves a nonnegative integer n. Before introducing the
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second conjecture of Lichtenbaum, it is appropriate to recall two closely-related
conjectures. The first one is the famous Tate conjecture:

49 Conjecture 49: (Tate Conjecture) ords=n ζ(X, s) = − dimQ An
num(X, Q).

The second one, due to Beilinson, is a special case of his conjectures on filtrations
on Chow groups [81].

50 Conjecture 50: (Beilinson Conjecture) An
rat(X, Q) = An

num(X, Q).

There is a third related conjecture, due to Beilinson and Parshin:

51 Conjecture 51: (Beilinson–Parshin Conjecture) Ki(X) is torsion for i > 0.

In view of (4.10), the Beilinson–Parshin conjecture may be reformulated in terms
of motivic cohomology as follows: Hi(X, Q(n)) = 0 for i ≠ 2n. In particular, this
conjecture is a strong reinforcement of the Beilinson–Soulé conjecture for schemes
of characteristic p (compare Lemma 7).

Geisser has proven:

52 Theorem 52: ([56, Th. 3.3]) Conjecture 49 + Conjecture 50 ⇒ Conjecture 51.

Similarly, the Bass Conjecture 36 implies Conjecture 51, just as it implies Conjec-
ture 5 [87].

Let us compare these conjectures with Soulé’s Conjecture 42 restricted to smooth
projective varieties over Fp. Using the functional equation, Conjecture 49 may be
reformulated as follows: ords=n ζ(X, s) = − dimQ Anum

n (X, Q). On the other hand,
Conjecture 42 predicts that the value of the left hand side should be

∑
i∈Z(−1)i+1

dimQ HBM
i (X, Q(n)) (see Remark 43 2)). Under Conjecture 51, this reduces to

− dimQ HBM
2n (X, Q(n)) = − dimQ CHn(X) ⊗ Q. Hence, assuming the Parshin con-

jecture, among the Soulé, the Tate and the Beilinson conjecture, any two imply
the third. In particular, the Tate conjecture plus the Beilinson conjecture imply the
Soulé conjecture for smooth projective varieties – but see in fact Theorem 58 below.
Alternatively, we may replace the use of the functional equation by the observation
that dimQ An

num(X, Q) = dimQ Ad−n
num(X, Q), where d = dim X.

The Tate conjecture is known in codimension 1 for abelian varieties, by Tate’s
theorem [190]; it is trivial in dimension 0. Besides this it is known in many
scattered cases, all being either abelian varieties or varieties “of abelian type”, see
examples 75 below. In particular, Soulé deduced it from [190] for products of 3
curves by a very simple motivic argument, and then for all varieties of abelian type
of dimension ≤ 3 (in a slightly restricted sense compared to the one of [95], see
Example 75 1)) by a dévissage argument from the former case [176, Th. 4 (i)].
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The Beilinson conjecture is trivial in codimension 1; in dimension 0 it is true
for any variety by a theorem of Kato and Saito [102]. Soulé proved it in the same
cases as the Tate conjecture (loc. cit. ), and in particular his Conjecture 42 is true
for this type of varieties. Besides this, it was unknown except for trivial cases like
projective homogeneous varieties until Theorem 76 below, which proves new cases
of it.

Finally, let us give a consequence of Conjecture 51 for fields, using de Jong’s
alteration theorem (cf. [56, Th. 3.4]):

53Lemma 53 If Conjecture 51 holds for all smooth projective varieties over Fp, then
for any field K of characteristic p and any n ≥ 0,
(i) Hi(K, Q(n)) = 0 for i ≠ n.
(ii) KM

n (K) is torsion as soon as n > trdeg(K|Fp) (Bass–Tate conjecture).

The proof goes exactly as in that of Lemma 7 (recall that Hi(K, Z(n)) = 0 for i > n
anyway). As for the consequence on Milnor’s K-theory, one uses Theorem 2 and
the fact that H2n(X, Z(n)) = CHn(X) = 0 for n > dim X.

Lichtenbaum’s Second Conjecture:
Varieties over Finite Fields 4.7.6

This conjecture, which appears in [124], was formulated in two steps, in terms of
a not yet constructed “arithmetic cohomology theory”, later rechristened “motivic
cohomology”. It is important to notice that Lichtenbaum formulated it for the étale
hypercohomology of certain complexes. Here it is:
1. Hi

ét(X, Z(n)) = 0 for i large.
2. H2n

ét (X, Z(n)) is a finitely generated abelian group.
3. Hi

ét(X, Z(n)) is finite for i ≠ 2n, 2n + 2, 0 for i ≤ 0 when n > 0.
4. H2d+2

ét (X, Z(d)) is canonically isomorphic to Q|Z, where d = dim X.
5. The pairing

Hi
ét(X, Z(n)) × H2d+2−i

ét (X, Z(d − n)) → H2d+2
ét (X, Z(d))

∼→ Q|Z

is “perfect” in the sense that it defines a perfect duality of finite groups for
i ≠ 2n and a perfect duality between a finitely generated group and a group of
finite cotype pour i = 2n. In particular, rg H2d

ét (X, Z(d)) = 1.
6. The groups H2n

ét (X, Z(n)) and H2d−2n
ét (X, Z(d − n)) have the same rank m(n).

7. m(n) is the order of the pole of ζ(X, s) at s = n.
8. lim

s→n
(1 − qn−s)m(n)ζ(X, s) = ±qχ(X,OX ,n)χ(X, Z(n)), with

χ(X, Z(n)) =

∏

i≠2n,2n+2

∣∣Hi
ét(X, Z(n))

∣∣(−1)i ·
∣∣H2n

ét (X, Z(n))tors

∣∣ ∣∣H2n+2
ét (X, Z(n))cotors

∣∣

Rn(X)
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where Rn(X) is the absolute value of the determinant of the pairing

H2n
ét (X, Z(n))|tors × H2d−2n

ét (X, Z(d − n))|tors → H2d
ét (X, Z(d))|tors

∼→ Z

relatively to arbitrary bases of
H2n

ét (X,Z(n))

tors and
H2d−2n

ét (X,Z(d−n))

tors , and

χ(X, OX , n) =
∑

0≤i≤n
0≤j≤d

(−1)i+j(n − i)hij, hij = dim Hj(X, Ωi) .

Let us examine these predictions in terms of the present state of knowledge.
Statement 1 is known: for i > 2n+1, Hi−1

ét (X, Q|Z(n))
∼→ Hi

ét(X, Z(n)) by Theorem 14
and the discussion before Theorem 2; but cd(X) = 2d + 1 since a finite field has
étale cohomological dimension 1. So we may take i > 2d + 2. Similarly, Statement 4
is known, as well as the fact that rkH2d

ét (X, Z(d)) = 1.
For the other statements, the following remarks are in order. Statement 6 is

a formal consequence of the part of 5 which predicts a nondegenerate pairing
between the two groups. In view of Theorem 14 and the fact that H2n(X, Z(n)) =
CHn(X), Statement 7 follows from the conjunction of Conjectures 49 and 50;
given 3 and 5 it is equivalent to Soulé’s conjecture 42. Finally, statements 2, 3
and 5 are striking in that they predict finite generation properties of étale motivic
cohomology, but in a rather scattered way. This will be corrected (by an idea of
Lichtenbaum!) in Sect. 4.7.8.

Motivic Reformulation
of the Tate and Beilinson Conjectures4.7.7

One major point of this whole story is that Conjectures 49 and 50 really have to
be considered together. Then they have a very nice and very powerful reformula-
tion: this was the subject of [90]. I wrote it using Voevodsky’s version of motivic
cohomology, which made a rather simple construction but necessitated some un-
desirable assumptions on resolution of singularities in characteristic p. The version
with Bloch’s higher Chow groups, developed in [93], involves more technicality but
is free of resolution of singularities assumptions. Let me explain it now.

For l ≠ p, define

Zl(n)c = R lim← µ⊗n
ls .

This is an object of D+((Sm|Fp)ét), whose hypercohomology computes Jannsen’s
continuous étale cohomology H∗

cont(X, Zl(n)) [76] for smooth varieties X over Fp.
Naturally, by Deligne’s finiteness theorem for étale cohomology [SGA 4 1/2, Th.
Finitude], we have

Hi
cont(X, Zl(n)) = lim← Hi

ét(X, µ⊗n
ls )
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but this is a theorem rather than a definition. In any case, the quasi-isomorphisms
of Theorem 13 a) can now be assembled into a morphism in D((Sm|Fp)ét) [93,
§1.4]:

α∗Z(n) ⊗ Zl → Zl(n)c .

If one is looking for a quasi-isomorphism then this morphism is not yet quite
right: for example, for n = 0 the left hand side is Zl while the isomorphisms
H1

cont(Fq, Zl)
∼→ Zl for all q yield H1(Zl(0)c)

∼→ Ql [90, §4 and Th. 6.3]. Using
cup-product, let us perform the minimal modification correcting this: we get
a morphism

α∗Z(n)
L⊗ Zl(0)c → Zl(n)c . (4.35)

54Theorem 54: ([93, Th. 3.4]) The following statements are equivalent:
(i) Conjectures 49 and 50 are true for all X, n.
(ii) (4.35) is an isomorphism for any n.
(iii) Zl(n)c is malleable for any n > 0 (see p. 378).

For l = p one can define a morphism analogous to (4.35), using instead of Zl(n)c

the object

Zp(n)c := R lim← νs(n)[−n] ,

where νs(n) is the sheaf of logarithmic de Rham–Witt differential forms:

α∗Z(n)
L⊗ Zp(0)c → Zp(n)c . (4.36)

see [95, §3.5]. Then an equivalent condition to the above is (cf. [95, §3.6], [58]):

(ii) bis (4.36) yields an isomorphism on the hypercohomology of any smooth
projective X.

Note that (i) involves only algebraic cycles, (iii) involves only cohomology and
(ii) is a comparison between them. Also, (i) does not involve l, hence (ii) and (iii)
are independent of l.

In fact, in [90, §4] we construct a complex of length 1 of GFp -modules Zc such
that for all l (including l = p) there is a canonical isomorphism

Zl(0)c � π∗Zc ⊗ Zl , (4.37)

where π is the projection of the big étale site of Spec Fp onto its small étale site
(ibid., Th. 4.6 b) and 6.3). So, strikingly, (ii) predicts the existence of a canonical
integral structure on arithmetic l-adic cohomology, independent of l. (One should
not confuse this prediction with the “independence of l” conjectures for geometric
l-adic cohomology.)
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Sketch
The equivalence between (ii) and (iii) follows from Theorem 20: the fact that

Condition 2 in it is satisfied follows from the results of [94]. The proof of the
equivalence between (i) and (ii) is not really difficult: first, by Theorem 13 a),
(ii) ⊗L Z|lν is true, so (ii) and (ii) ⊗ Q are equivalent. Using de Jong, we get as in
Lemma 7 that (ii) ⊗ Q holds if and only if it holds for every smooth projective
variety X. Then one examines the two sides of the maps

Hi
ét(X, Q(n) ⊗ Ql(0)c) → Hi

cont(X, Ql(n))

and one deduces via the “Riemann hypothesis” (Weil conjecture) and some of
the folklore in [192] that isomorphism for all i and n is equivalent to the con-
junction of conjectures 49, 50 and 51. One concludes by Theorem 52. See [93] for
details.

55 Definition 55: (Tate–Beilinson Conjecture) For simplicity, we call the equivalent
conjectures of Theorem 54 the Tate–Beilinson conjecture.

Some Consequences
Besides being clearly of a motivic nature, the main point of the Tate–Beilinson
conjecture under the form (ii) in Theorem 54 is that it allows one to pass easily
from smooth projective varieties to general smooth varieties, or even to arbitrary
schemes of finite type over Fp. It has remarkable consequences: one could say that
it implies almost everything that one expects for varieties over finite fields. We
have already seen that it implies the Beilinson–Parshin conjecture (via Geisser’s
Theorem 52), hence the Beilinson–Soulé conjecture in characteristic p. But there
is much more. Let us first give some motivic consequences.

By [139, Remark 2.7 and Theorem 2.49], Conjecture 49 implies:
For any finite field k, Motnum(k, Q) is generated by motives of abelian varieties
and Artin motives.
Every mixed motive over a finite field is a direct sum of pure motives.

The last statement is a bit vague as long as one does not have a precise definition of
a mixed motive, as was the case when Milne wrote his article. Since now we have
at least triangulated categories of motives at our disposal, let me give a precise
theorem.

56 Theorem 56 Suppose that the Tate–Beilinson Conjecture 55 holds. Then, for any
finite field k:
(i) Voevodsky’s triangulated category DMgm(k, Q) is semi-simple in the sense

that any exact triangle is a direct sum of split exact triangles.
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(ii) The functor δ of (4.15) induces an equivalence of categories

∆ : Motnum(k, Q)(Z) ∼→ DMgm(k, Q)

(Mi) 	→
⊕

i∈Z

δ(Mi)[i] .

(iii) Equivalently, (4.15) induces an equivalence of categories

∆ : Db(Motnum(k, Q))
∼→ DMgm(k, Q) .

Proof First we check that, for M, N ∈ Motrat(k, Q) = Motnum(k, Q)

HomDM(δ(M), δ(N)[i]) =

⎧
⎨

⎩
0 for i ≠ 0

HomMot(M, N) for i = 0 .

For this, we reduce by duality to the case where M = 1, and then to the case
where N is of the form h(X)(n) for X smooth projective. Then the left hand side is
Hi+2n(X, Q(n)) by [199, Cor. 3.2.7] and the cancellation theorem of Voevodsky [203],
and the conclusion follows from Theorem 52.

This implies that ∆ is fully faithful. To see that it is essentially surjective, using
de Jong it now suffices to show that its essential image is thick, i.e. stable under
exact triangles and direct summands. This follows from the following trivial but
very useful lemma (cf. [6, Lemma A.2.13]): in a semi-simple abelian category, any
morphism is the direct sum of an isomorphism and a 0 morphism. The same
lemma implies that DMgm(k, Q) is semi-simple. Finally, (iii) is equivalent to (ii)
because Motnum(k, Q) is semi-simple.

57Remark 57
1) This implies trivially a number of conjectures: the existence of a motivic t-

structure on DMgm(k, Q), the semi-simplicity of Galois action, independence
of l …

2) Theorem 56 (i) extends to DM(k, Q), hence to SH(k, Q) (see 4.4.5).

Next, the Tate–Beilinson conjecture implies the Lichtenbaum conjecture of the
previous section. This was proven in [90] after localising at l and under resolution
of singularities, but using the higher Chow groups version of Z(n) we can get rid
of the last assumption. Localising at l can also be got rid of. In fact one can get
a version of the Lichtenbaum conjecture for arbitrary, not just smooth projective,
schemes of finite type over Fp: (ii) is especially well-adapted to this. We shall give
details on this in Theorem 72. For the moment, let us sketch a proof of:
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58 Theorem 58 The Tate–Beilinson Conjecture 55 implies the Soulé Conjecture 42.

Sketch
We shall derive the form of Remark 43 2). In view of (4.30), it is sufficient to

prove the stronger equality

ords=n det
(
1 − FXq−s | Hi

c(X, Ql)
)

= dimQ HBM
i (X, Q(n))

for all X, i, n. Now the morphism (4.35) has a homological version

HBM,ét
i (X, Z(n) ⊗ Zl(0)c) → Hc,cont

i (X, Zl(n)) , (4.38)

where the left hand side is Borel–Moore étale motivic homology as explained in
Sect. 4.5.4 (see the end for the coefficients Zl(0)c) and the right hand side is the
continuous version of Borel–Moore étale homology (relative to Fp).

59 Lemma 59 Under the Tate–Beilinson Conjecture 55, (4.38) is an isomorphism for
any X, i, n.

This is easily proven by a dévissage using the localisation exact sequence plus
Poincaré duality for both sides. �

From this one deduces isomorphisms

HBM
i (X, Q(n)) ⊗ Ql

∼→ Hc,cont
i (X, Ql(n))G

with G = GFp , and moreover that G acts semi-simply on Hi
c,cont(X, Ql(n)) at the

eigenvalue 1 (this means that the characteristic subspace corresponding to the
eigenvalue 1 is semi-simple). Since Hi

c,cont(X, Ql(n)) is dual to Hc,cont
i (X, Ql(−n)),

the result follows.

The first instance I know of this dévissage argument is [78, Th. 12.7]. Jannsen
assumed resolution of singularities there but this is now unnecessary thanks to de
Jong’s theorem.

Since any finitely generated field K over Fp is a filtering direct limit of finitely
generated smooth Fp-algebras and any smooth variety over K is a filtering inverse
limit of smooth varieties over Fp, one also gets consequences of the Tate–Beilinson
conjecture for such varieties. Typically:

60 Theorem 60: ([90, Th. 8.32]) The Tate–Beilinson Conjecture 55 implies the fol-
lowing for any finitely generated field K|Fp and any smooth projective variety
X|K:
(i) (Tate conjecture) The map CHn(X) ⊗ Ql → H2n

cont(X, Ql(n))GK is surjective,
where GK = Gal(K|K).
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(ii) The action of GK on H∗
cont(X, Ql) is semi-simple.

(iii) The cycle map CHi(X) ⊗ Ql → H̃2i
cont(X|Fp, Ql(i)) is injective for all i.

In (iii), the group H̃2i
cont(X|Fp, Ql(i)) is by definition the direct limit of the

H2i
cont(X, Ql(i)), where X runs through the smooth models of X of finite type

over Fp.

Sketch
Extend X to a smooth, projective morphism f : X → U over a suitable smooth

model U of K. By Hard Lefschetz and Deligne’s degeneration criterion [38], the
Leray spectral sequence

E
pq
2 = H

p
cont(U, Rqf l−adic

∗ Ql(n)) ⇒ H
p+q
cont(X, Ql(n))

degenerates. (i) follows rather easily from this and the conjecture. The semi-
simplicity statement (ii) is only proven in [90] at the eigenvalue 1: the proof consists
roughly of “hooking” the geometric semi-simplicity theorem of Deligne [34, Cor.
3.4.13] on the arithmetic semi-simplicity (special case K = k). One can however
prove it in general by using some folklore ([80, 105] and the argument in [46, pp.
212–213]11), cf. [96]. The proof of (iii) is a simple direct limit argument.

Here are two other nice consequences (the proofs are the same as for [95, Cor. 2.6
and Th. 4.6], using Theorem 26 a)):

61Theorem 61 Assume the Tate–Beilinson and the Bloch–Kato conjectures 55 and 16.
Then
a) Gersten’s conjecture for algebraic K-theory holds for any discrete valuation

ring (hence for any local ring of a scheme smooth over a discrete valuation ring
by Gillet–Levine [64]).

b) For any field K of characteristic p one has canonical isomorphisms

KM
n (K) ⊕

⊕

0≤i≤n−1

H2i−n−1
(
K, (Q|Z)′(i)

) ∼→ Kn(K) ,

where (Q|Z)′(i) = lim→ (m,char k)=1
µ⊗i

m . The spectral sequence (4.6) canonically

degenerates.

By [192, Prop. 2.6 and Th. 3.1]), Theorem 60 (i) and (ii) imply the standard
conjecture HN on page 368 (hence the other ones: B and C). On the other hand,
by an argument similar to that in [81, Lemma 2.7], (iii) implies the filtration
conjecture of Bloch–Beilinson–Murre. As was proved by Peter O’Sullivan, the latter

11 Which I am grateful to Yves André for explaining me.
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implies Voevodsky’s conjecture 10 (see [3, Th. 11.5.3.1]). Also, under the Bloch–
Beilinson–Murre conjecture, Hanamura’s vanishing conjecture (Van) in [71, III]
may be reformulated as follows: for any smooth projective X|K, one has

Hq(h≥iX, Q(n)) = 0 for

⎧
⎨

⎩
q ≤ i if q ≠ 2n

q < i if q = 2n ,

where h≥i(X) denotes the part of weight ≥ i of h(X) ∈ Motrat(K, Q) under the
Bloch–Beilinson–Murre filtration. It would be sufficient to have this vanishing in
order to get a motivic t-structure on his category, but I have not derived it from the
Tate–Beilinson conjecture. Presumably one should first prove a version of (Van)
relative to a smooth model of K and then pass to the limit as we did for the
Beilinson–Soulé conjecture: this looks feasible but fairly technical.

Another conjecture I don’t know how to derive from the Tate–Beilinson conjec-
ture is the Hodge index standard conjecture, see [109, §5].

Lichtenbaum’s Weil-étale Topology;
Reformulation of his Second Conjecture4.7.8

In [126], Lichtenbaum introduced a new Grothendieck topology on schemes of
characteristic p: he christened it Weil-étale topology. This leads to a fundamental
clarification of the formulation of his previous conjectures, and of what should be
true or not in terms of finite generation conjectures.

Roughly, Lichtenbaum replaces the Galois group Gal(Fq|Fq) � Ẑ by its dense
subgroup generated by Frobenius (� Z) and extends this idea (which of course
goes back to Weil) to schemes of higher dimension. The corresponding coho-
mology theory should be called Weil-étale cohomology. I find this terminology
awkward because it can create confusion with a “Weil cohomology”, especially as
most known Weil cohomology theories in characteristic p are based on étale coho-
mology! For this reason, and also as a tribute to Lichtenbaum’s paternity, I prefer
to rechristen it Lichtenbaum cohomology, while keeping his notation H∗

W (X, F )
which recalls Weil’s contribution.

We may take the hypercohomology of Bloch’s cycle complexes (or the Suslin–
Voevodsky complexes) in the Weil-étale topology and get Lichtenbaum motivic
cohomology12 Hi

W (X, Z(n)). The various motivic cohomology groups map to each
other as follows:

Hi(X, Z(n)) → Hi
ét(X, Z(n)) → Hi

W (X, Z(n)) .

Lichtenbaum’s cohomology has been developed by Geisser in [58]. His main
results are the following:

12 Thereby conflicting with a terminology briefly introduced by Voevodsky for étale motivic
cohomology…
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62Theorem 62: (Geisser) Let ε be the projection of the Weil-étale site onto the
(usual) étale site. Then for any complex of étale sheaves C,
(i) There is a quasi-isomorphism

Rε∗ε∗C � C
L⊗ Rε∗ε∗Z .

(ii) There are long exact sequences

· · · → Hi
ét(X, C) → Hi

W (X, ε∗C)

→ Hi−1
ét (X, C) ⊗ Q

∂→ Hi+1
ét (X, C) → · · · (4.39)

Moreover Rε∗ε∗Z � Zc, where Zc is the complex alluded to in (4.37).

As important special cases, which give a feel of Lichtenbaum cohomology, we get:

63Corollary 63

(i) Hi
ét(X, C)

∼→ Hi
W (X, ε∗C) if the cohomology sheaves of C are torsion.

(ii) Hi
W (X, ε∗C) � Hi

ét(X, C) ⊕ Hi−1
ét (X, C) if the cohomology sheaves of C are

Q-vector spaces.

In the isomorphism of (ii), a very important element shows up: the generator e of
H1

W (Fp, Z) � Z (normalised, say, by sending the geometric Frobenius to 1).
The sequence (4.39) is completely similar to one derived from the Tate–Beilinson

conjecture in [90, Prop. 9.12] – except that it is not conjectural. With this and the
last result of Theorem 62, everything falls into place and we are able to give a much
more understandable reformulation of Conjecture (ii) in Theorem 54:

64Theorem 64 The Tate–Beilinson conjecture is also equivalent to the following one:
the map

(εα)∗Z(n) ⊗ Zl → ε∗Zl(n)c

induces isomorphisms on Weil-étale cohomology groups

H∗
W (X, Z(n)) ⊗ Zl

∼→ H∗
cont(X, Zl(n)) (4.40)

for all smooth X if l ≠ p (resp. for all smooth projective X if l = p).

Geisser’s theorem also allows us to reformulate Lichtenbaum’s conjectures in terms
of Lichtenbaum motivic cohomology (cf. [95, Cor. 3.8]):



406 Bruno Kahn

65 Conjecture 65 Let X be a smooth projective variety over Fp, and d = dim X.
a) The pairing

H2n
W (X, Z(n)) × H2d−2n

W (X, Z(d − n)) → H2d
W (X, Z(d)) → Z (4.41)

is nondegenerate modulo torsion for all n.
b) For any (i, n), the pairing

Hi
W (X, Z(n))tors × H2d+1−i

W

(
X, Q|Z(d − n)

) → H2d+1
W (X, Q|Z(d))

∼→ Q|Z

induces a perfect pairing of finite groups

Hi
W (X, Z(n))tors × H2d+2−i

W (X, Z(d − n))tors → Q|Z .

c) Hi
W (X, Z(n)) is finitely generated, finite for i |∈ {2n, 2n + 1} and 0 for i ≤ 0 (if

n > 0).
d) The kernel and cokernel of cup-product by e (generator of H1

W (Fp, Z))

H2n
W (X, Z(n)) → H2n+1

W (X, Z(n))

are finite.
e) The canonical homomorphism

Hi
ét(X, Z(n)) → Hi

W (X, Z(n))

is an isomorphism for i ≤ 2n.

Concerning the zeta function ζ(X, s), the following much nicer reformulation is
due to Geisser (op. cit.):

66 Conjecture 66
1. ords=nζ(X, s) = −rk CHn(X) := −m(n).
2. lim

s→n
(1 − qn−s)m(n)ζ(X, s) = ±qχ(X,OX ,n)χ(X, Z(n)), where

χ(X, Z(n)) =
∏

i

∣∣Hi
W (X, Z(n))tors

∣∣(−1)i · Rn(X)−1 ,

χ(X, OX , n) =
∑

0≤i≤n
0≤j≤d

(−1)i+j(n − i)hij, hij = dim Hj(X, Ωi)

and Rn(X) is the absolute value of the determinant of the pairing (4.41)
(modulo torsion) with respect to arbitrary bases of H2n

W (X, Z(n))|tors and
H2d−2n

W (X, Z(d − n))|tors.

Here I would like to correct a mistake in [95, Remark 3.11] about the sign. It is stated
there that this sign is (−1)

∑
a>n m(a). However, the Weil conjecture only says that
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the real zeroes of ζ(X, s) are half integers, so the correct formula is (−1)
∑

a|2>n m(a|2),
where a is an integer. By semi-simplicity, the value of m(a|2) is the multiplicity of
the eigenvalue qa|2 (positive square root) for the action of Frobenius on Ha(X, Ql).
This multiplicity may well be nonzero, for example if X is a supersingular elliptic
curve: I am grateful to A. Chambert-Loir for raising this issue. I have no idea
how to relate m(a|2) to cycle-theoretic invariants: there are no half Tate twists or
half-dimensional Chow groups…

67Theorem 67 The Tate–Beilinson Conjecture 55 implies Conjectures 65 and 66
(hence Lichtenbaum’s conjectures in Sect. 4.7.6).

Sketch
(For details, see [95].) By the finiteness results on étale cohomology, the right

hand side, hence the left hand side of (4.40) is a finitely generated Zl-module.
Hence, by faithful flatness, H∗

W (X, Z(n)) ⊗ Z(l) is a finitely generated Z(l)-module.
From there it is tempting to descend directly to Z, but this is wrong as Lichtenbaum
pointed out several years ago: for example, the Z-module M =

⊕
Z|l is such that

M ⊗Z Z(l) is finitely generated over Z(l) for all l, while it is certainly not finitely
generated. For a torsion-free example, take the subgroup of Q formed of all fractions
with square-free denominator.13 A correct proof uses a duality argument, which
is encapsulated in Lemma 68 below. (Arithmetic) Poincaré duality for continuous
étale cohomology allows us to apply this duality argument. This basically explains
the proof of a), b), c) and d); as for e), it follows from (4.39) and the Beilinson–
Parshin Conjecture 51. Finally, the deduction of Conjecture 66 is not especially
new and goes back to Milne [138, Th. 4.3 and Cor. 5.5] (see also [90, Cor. 7.10 and
Th. 9.20] and [58, Proof of Th. 8.1]).

68Lemma 68: [95, Lemma 3.9] Let R be a commutative ring and A × B → R
a pairing of two flat R-modules A, B.
a) Suppose that this pairing becomes non-degenerate after tensoring by Rl for

some prime ideal l of R, where Rl denotes the completion of R at l. Then it is
non-degenerate.

b) Suppose that R is a noetherian domain and let K be its field of fractions. If,
moreover, dimK A ⊗ K < ∞ or dimK B ⊗ K < ∞, then A and B are finitely
generated. �

13 One should be careful that this mistake can be found in the literature, e.g. see in [136,
Proof of Th. 12.5] the proof that the group of morphisms between two abelian varieties is
finitely generated; the corresponding proof in [148, p. 177] is completely correct. Lemma 68
will also justify the proof of [135, Ch. VI, Th. 11.7].
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69 Corollary 69 Under the Tate–Beilinson Conjecture 55:
a) dimQ Hi(X, Q(n)) < ∞ for all i, n.
b) Assuming further the Beilinson–Lichtenbaum Conjecture 17, Hi(X, Z(n)) is

finitely generated for any i ≤ n + 2.

70 Corollary 70 Under the Tate–Beilinson conjecture 55 and the Bloch–Kato Conjec-
ture 16, the Bass and motivic Bass conjectures 36 and 37 are true in the following
cases for smooth projective varieties X over Fp:
(i) d = dim X ≤ 3.
(ii) (for Conjecture 37 b):) n ≤ 2.

Proof
(i) It suffices to prove Conjecture 37 (for Conjecture 36, use the spectral sequence

(4.6)). Independently of any conjecture one has Hi(X, Z(n)) = 0 for i > n + d.
For i = n + d, by the coniveau spectral sequence for motivic cohomology, this
a group is a quotient of

⊕

x∈X(0)

Hn−d
(
k(x), Z(n − d)

)
.

The latter group is 0 for n < d and also for n ≥ d + 2 by Theorem 2,
since Milnor’s K-groups of finite fields vanish in degree ≥ 2. So far we have
only used that X is smooth. Suppose now X smooth projective: for n = d,
Hn+d(X, Z(n)) = CH0(X) is finitely generated by Bloch [18] (see also Kato–
Saito [102]), and for n = d + 1 it is isomorphic to k∗ by Akhtar [7]. If d ≤ 3,
this plus Corollary 69 b) covers all motivic cohomology.

(ii) Same argument, noting that for n ≤ 2 Corollary 69 b) again covers all the
motivic cohomology of X.

71 Remark 71
1) Trying to extend Corollary 70 to open varieties via de Jong’s theorem is a little

delicate: we can apply part 2 of the argument in the proof of Lemma 7 provided
we have an a priori control of the torsion of the motivic cohomology groups
involved. By the Beilinson–Lichtenbaum conjecture, the group Hi(X, Z|m(n)) is
finite for any smooth variety X as long as i ≤ n+1. This implies that mHi(X, Z(n))
is finite as long as i ≤ n + 2, so that Corollary 70 goes through for arbitrary
smooth varieties as long as d ≤ 2 or n ≤ 2, because then this finiteness
covers all motivic cohomology groups. For d = 3 we have a problem with
H6(X, Z(3)) and H7(X, Z(4)), however. Unfortunately, Abyankhar’s resolution
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of singularities for 3-folds in characteristic > 5 [1, Th. (13.1)] only works over
an algebraically closed field.

2) For singular schemes X, we may introduce Lichtenbaum Borel–Moore motivic
homology groups as in Sect. 4.5.4, using the Lichtenbaum topology rather than
the étale topology, or define them as

HBM,W
i

(
X, Z[1|p](n)

)
= HBM,ét

i

(
X, Z[1|p](n)

L⊗ Zc
)

cf. (4.37) and (4.38). Then, under the Tate–Beilinson conjecture, the groups
HW ,BM

i (X, Z[1|p](n)) are all finitely generated Z[1|p]-modules. This follows by
dévissage from the smooth projective case.

3) Corollary 70 applies trivially when X is a curve. Hence we get (under the Bloch–
Kato conjecture) that all the motivic cohomology of X is finitely generated, by
a method totally different from that in the proof of Theorem 40! Using the
spectral sequence (4.6) we can then recover Quillen’s finite generation theorem
for algebraic K-theory…

Finally, let us give a version of Conjecture 66 for an arbitrary Fp-scheme of finite
type, and explain that it follows from the Tate–Beilinson conjecture. It rests on
Remark 71 2).

72Theorem 72 Let X be a scheme of finite type over Fp. If the Tate–Beilinson
Conjecture 55 holds, then, for any n ∈ Z:
(i) ords=n ζ(X, s) =

∑
i∈Z(−1)ii rkHW ,BM

i (X, Z[1|p](n)) := −m(n).
(ii) The cohomology groups of the complex

… → HW ,BM
i (X, Z[1|p](n))

·e→ HW ,BM
i−1 (X, Z[1|p](n)) → …

are finite, where e is the canonical generator of H1
W (Fp, Z) � Z.

(iii) Up to ± a power of p, one has

lim
s→n

(1 − qn−s)m(n)ζ(X, s) = χ
(
HW ,BM

∗ (X, Z[1|p](n)), ·e) .

Sketch
A version of this for l-adic cohomology with compact supports was proven in [90,

Th. 7.8] under the assumption that Galois acts semi-simply at the eigenvalue 1 (cf.
Remark 57 1). One passes from there to Borel–Moore l-adic homology by arithmetic
duality (cf. loc. cit., Th. 3.17). It is actually simpler to redo the proof of [90, Th.
7.8] with Borel–Moore l-adic homology by using a description of ζ(X, s) in these
terms, which only involves duality for the geometric groups with Ql coefficients.
One then concludes thanks to Lemma 59.
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73 Remark 73
1) This approach does not handle the missing power of p. This has recently

been achieved by Geisser [60]: his point of view is to define a compactly sup-
ported version of Lichtenbaum’s cohomology. To get the right groups he refines
Lichtenbaum’s topology by adding cdh coverings to it, which unfortunately
forces him to assume resolution of singularities. Presumably, the correspond-
ing non-compactly supported cohomology (for smooth schemes) involves the
logarithmic part of Mokrane’s de Rham–Witt cohomology with logarithmic
poles at infinity [142] (whose definition unfortunately also assumes resolution
of singularities), glued to motivic cohomology in a similar way as (4.19). Can
one give a direct definition of this motivic cohomology?

2) In characteristic 0, Lichtenbaum has an exactly parallel formulation of an
integral conjecture for the special values of the zeta function, in terms of his
cohomology still under development [127].

Unconditional Results: Varieties
of Abelian Type over Finite Fields4.8

Main Result4.8.1

We shall give cases in which we can prove the Tate–Beilinson Conjecture 55. Namely,
let A = Motrat(k, Q).

74 Definition 74
a) Let Aab be the thick rigid subcategory of A generated by Artin motives and

motives of abelian varieties.
b) B(k) = {X | h(X) ∈ Aab}.
c) Btate(k) = {X ∈ B(k) | the Tate conjecture holds for the l-adic cohomology of X

for some l ≠ char k}.

(In c), this does not depend on l because Frobenius acts semi-simply on H∗(X, Ql).)

Example 75 .
1) X ∈ B(k) and dim X ≤ 3 ⇒ X ∈ Btate(k). This is a slight strengthening of

Soulé [176, Th. 4 i)]: the problem is that Soulé works with a collection A(k) of
varieties such that, clearly, A(k) ⊆ B(k), but I don’t know if equality holds, so
that this claim unfortunately does not follow from [176], contrary to what was
indicated in [95, Example 1 b)]. For this reason I shall justify it in Sect. 4.8.5.

2) Products of elliptic curves are in Btate(k) (Spieß [179]).
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3) There are many examples of abelian varieties in Btate(k) (Zarhin, Lenstra,
Milne): powers of simple abelian varieties “of K3 type” or “of ordinary type”,
etc. [112, 140, 213].

4) Certain Fermat hypersurfaces (Tate, Katsura–Shioda [103, 189]).

The main result of [95] is:

76Theorem 76 Conjectures 49 and 50 are true for X ∈ Btate(k).

Of course, it is not difficult to get Conjecture 49: indeed, Galois action on the l-adic
cohomology of X is semi-simple (reduce to an abelian variety A and use the fact that
the arithmetic Frobenius is the inverse of the geometric Frobenius, which is central
in the semi-simple algebra End(A) ⊗ Q). By [192], this plus the cohomological Tate
conjecture imply Conjecture 49. What is new is to obtain Conjecture 50. We shall
explain in the sequel of this section how this follows from the Kimura–O’Sullivan
theory of “finite dimensional” Chow motives.

In the previous sections, we referred to [95] for proofs or details of proofs
on some consequences of the Tate–Beilinson conjecture. In loc. cit. , the cor-
responding proofs are given for varieties in Btate(k), and yield unconditional
theorems.

The Soulé–Geisser Argument 4.8.2

This argument is first found in Soulé’s paper [176] and was amplified by Geisser
in [56]14. It is really a weight argument and is very simple to explain: suppose that
Frobenius acts on some group H and that

For one reason we know that it acts by multiplication by some power of p,
say pn.
For another reason we know that it is killed by some polynomial P with integral
coefficients.

If we can prove that P(pn) ≠ 0, then we get that H ⊗ Q = 0 (more precisely, that H
is torsion of exponent dividing P(pn)).

Typically, H will be a Hom group between a certain motive M and a Tate motive
(M might also be a shift of a pure motive in DMgm(k)). The issue is then to show
that the characteristic polynomial of the Frobenius endomorphism of M, assuming
that this polynomial exists, is not divisible by T − pn. A nilpotence theorem will
allow us to prove this below.

14 The reader should also look at Coombes’ paper [33] where the author uses Soulé’s work to
get a K-cohomological variant of Lichtenbaum’s conjecture for the zeta function of a rational
surface over a finite field: I am grateful to the referee for pointing out this paper.
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The Kimura–O’Sullivan Theory4.8.3

This theory was developed independently by S. I. Kimura [106] and P. O’Sulli-
van [151]. An abstract version (which is also most of O’Sullivan’s point of view) is
developed in [6, §9]. See also André’s recent Bourbaki talk [4].

77 Definition 77 Let A be a Q-linear tensor category. An object M ∈ A is even if some
exterior power of M vanishes, odd if some symmetric power of M vanishes, finite
dimensional if it is a direct sum of a even and an odd object.

(Kimura says evenly and oddly finite dimensional; O’Sullivan says positive and
negative, and semi-positive instead of finite-dimensional.)

There are two reasons why finite dimensionality is an important notion: first its
remarkable stability properties, and second Kimura’s nilpotence theorem.

78 Theorem 78: (Kimura [106, Cor. 5.11, Prop. 6.9], O’Sullivan) Suppose A rigid.
Then the full subcategory Akim of A formed of finite dimensional objects is thick
and rigid, i.e. stable under direct sums, direct summands, tensor products and
duals.

Kimura developed his theory for A = Motrat(K, Q) (K a field) and proved a nilpo-
tence theorem for correspondences on a finite dimensional motive which are
homologically equivalent to 0. This theorem was slightly strengthened in [6], re-
placing homological by numerical equivalence (and nil by nilpotent). See [6, Prop.
9.1.14] for an abstract statement. In the case of Chow motives, this gives:

79 Theorem 79 Let M ∈ A = Motrat(K, Q) and M its image in A = Motnum(k, Q).
Then the kernel of A(M, M) → A(M, M) is a nilpotent ideal.

All this theory would be nice but rather formal if one had no examples of finite
dimensional motives. Fortunately, there are quite a few:

80 Theorem 80: (Kimura [106, Th. 4.2], O’Sullivan) For A=Motrat(K, Q), Akim⊃Aab.

The proof is essentially a reformulation of Šermenev’s proof of the Künneth de-
composition of the Chow motive of an abelian variety [181].

81 Conjecture 81: (Kimura–O’Sullivan Conjecture) Let K be a field and A =
Motrat(K, Q). Then A = Akim.

By [6, Ex. 9.2.4], this conjecture follows from the standard conjecture on Künneth
projectors and the existence of the Bloch–Beilinson–Murre filtration.
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The Proof 4.8.4

The proof of Conjecture 50 in Theorem 76 is fairly simple: the nilpotence theorem 79
is used three times. First, decompose the numerical motive h(X) into a direct sum
of simple motives by Jannsen’s Theorem 9. By nilpotence, this decomposition lifts
to Chow motives, hence we may replace h(X) by a Chow motive S whose numerical
image S is simple. We need to show that

A(S, Ln)
∼→ A(S, L

n
) (4.42)

for any n, where L is the Lefschetz motive. Then we have the usual dichotomy:
a) S � L

n
. Then, by nilpotence, S � Ln and this is obvious.

b) S �� L
n
. Then the right hand side of (4.42) is 0 and we have to show that the left

hand side is also 0. By [139, Prop. 2.6], the characteristic polynomial P of the
Frobenius endomorphism FS of S is not T − qn. But, by nilpotence, there is an
N > 0 such that P(FS)N = 0. The conclusion now follows by the Soulé–Geisser
argument. �

Justification of Example 75 1) 4.8.5

We shall actually prove directly:

82Theorem 82 If X ∈ B(k) and d = dim X ≤ 3, then the Tate–Beilinson conjecture
holds for X.

Proof In general, let M ∈ Akim and M be its image in A. By Theorem 79, the weight

grading M =
⊕

M
(i)

(cf. p. 368) lifts to a grading M =
⊕

M(i).15 For simplicity,
we shall say that an object M ∈ A is of weight i if M is of weight i, so that M(i) is
of weight i. Also, if X is smooth projective and h(X) ∈ Akim, we simply write hi(X)
for h(X)(i).

Let M be of weight 2n; consider the following property:

(*) The natural homomorphism

A(M, L2n) ⊗ Ql → (
Hl(M)(n)

)G

is an isomorphism.

15 This grading is not necessarily unique, but the idempotents defining it are unique up to
conjugation, hence the M(i) are unique up to isomorphism.
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We need a lemma:

83 Lemma 83 Let A(2)
ab be the full subcategory of Aab formed of motives of weight 2.

Then
a) Property (*) holds for all objects of A(2)

ab .
b) If M ∈ A(2)

ab , then M∨(1) ∈ A(2)
ab .

Proof
a) We immediately reduce to the case where M is of the form h2(A ⊗k L) for

A an abelian variety and L a finite extension of k; then it follows from Tate’s
theorem [190] and the finiteness of Pic0(A) = A∨(k).

b) We reduce to the same case as in a). Thanks to Lieberman [128], any polarisation
of A induces via Poincaré duality an isomorphism h

2
(A⊗kL)∨ � h

2
(A⊗kL)(−1);

by Theorem 79 this lifts to an isomorphism h2(A ⊗k L)∨ � h2(A ⊗k L)(−1). �

Let now X be as in Theorem 82. We must prove that, for all n, h2n(X) verifies (*).
For n = 0 it is trivial. For n = 1, it follows from Lemma 83 a). For n = d − 1, it
follows from Poincaré duality (lifted to A by Theorem 79) and Lemma 83 b). For
n = d, it also follows by Poincaré duality from the case d = 0 by the same argument
as in the proof of Lemma 83 b). If d ≤ 3, this covers all values of n.

84 Corollary 84 If X ∈ B(k) and dim X ≤ 3, under the Bloch–Kato Conjecture 16 all
motivic cohomology groups of X are finitely generated.

This follows from Theorem 82 and Corollary 70 (i). �

85 Definition 85 A finitely generated field K|Fp is of abelian type if it is the function
field of a smooth projective variety of abelian type.

86 Corollary 86 Let X be an Fp-scheme of finite type. Assume that dim X ≤ 2 and that
the function fields of all its irreducible components of dimension 2 are of abelian
type. Then the conclusions of Theorem 72 hold for X.

Proof This is just an effective case of Theorem 72. The point is that in the dévissage,
the closed subvarieties one encounters are all of dimension ≤ 1 and all smooth
projective curves are of abelian type.
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Questions and Speculations 4.9

The Finite Generation Issue 4.9.1

Recall that, by Theorem 67, the Tate–Beilinson conjecture implies the finite gen-
eration of the Lichtenbaum cohomology groups Hi

W (X, Z(n)) for any smooth pro-
jective variety X|Fp and any i, n, and that by Remark 71 2) this in turn implies the
finite generation of HW ,BM

i (X, Z(n)) ⊗ Z[1|p] over Z[1|p] for any scheme X of finite
type over Fp. In particular, HW ,BM∗ (X, Q(n)) is a finite-dimensional Q-vector space
which implies by an analogue of Corollary 63 (ii) (or by dévissage from the smooth
case) the same result for usual Borel–Moore motivic homology HBM∗ (X, Q(n)).

On the other hand, Corollary 70 and Remark 71 1) show that under the
Beilinson–Lichtenbaum and the Tate–Beilinson conjecture, Hi(X, Z(n)) is finitely
generated for X smooth in a certain range. The first case not reached is CH3(X)
for X a smooth projective 4-fold. It is explained in [95, Remark 4.10] that, under
the two conjectures, the following conditions are equivalent:
1. CH3(X) is finitely generated.
2. CH3(X)tors is finite.
3. H0

Zar(X, H4
ét((Q|Z)′(3)) is finite (it is a priori of finite exponent).

I don’t see any argument allowing one to deduce finite generation in this case from
known conjectures. The only one I can think of is Kato’s conjecture:

87Conjecture 87: (Kato Conjecture [101, Conj. (0.3)]) For any smooth projective
variety X of dimension d over Fp and any m ≥ 1, the homology in degree i of the
Gersten complex

0 →
⊕

x∈X(d)

Hd+1
ét (k(x), Z|m(d)) → … →

⊕

x∈X(0)

H1
ét(k(x), Z|m) → 0

is

⎧
⎨

⎩
0 if i > 0

Z|m if i = 0
, the last isomorphism being induced by the trace map.

This conjecture is class field theory for d = 1; it has been proven by Kato for
d = 2 [101], by Colliot-Thélène for general d and i ≥ d − 3 if m is prime to p [31]
and by Suwa under the same condition if m is a power of p [188].

However it does not seem to bear on the issue, except in limit cases (see below).
I am therefore tempted to think that there is a counterexample to Conjecture 37. It
might involve infinite 2-torsion; however if it involves infinite l-torsion for some odd
prime l, it will yield an example where K0(X) is not finitely generated, disproving
the original Bass conjecture (since the natural map CH3(X) → gr3 K0(X) has
kernel killed by (3 − 1)! = 2).
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This also sheds some doubt in my mind on [146, Conj. 1.1.4] (a homotopy-
theoretic Bass conjecture), which should however be correct if one replaces the
Nisnevich topology by Lichtenbaum’s topology.

What about this? As far as one is concerned by application to number-theoretic
conjectures like the Soulé conjecture or the Lichtenbaum conjectures, this is not
very serious: concerning the orders of zeroes, the ranks will still be finite and almost
always 0, and the groups involved in special values are Lichtenbaum cohomology
groups anyway. If one wants to get back a version of the Bass conjecture for algebraic
K-theory, all one has to do is to define a “Lichtenbaum K-theory” similar to étale
K-theory:

KW (X) := H·
W (X, K)

where the notation means hypercohomology à la Thomason ([193]; see §5 in
Geisser’s chapter) for the Weil-étale topology.

On the other hand, it is quite amusing to remark that the étale topology, not
the Zariski topology, shows up in the Lichtenbaum conjectures 4.7.6. In fact the
Bloch–Kato or Beilinson–Lichtenbaum conjectures do not seem to play any rôle
either in their formulation or in their (partial) proofs. (Even if we gave several
examples where the Milnor conjecture gives vanishing or finiteness results, it was
not used in the proofs of [95].) This also means that, in characteristic 0, the correct
formulation (for, say, the zeta function) most certainly involves an étale-related
version of motivic cohomology. In small Krull dimension it may be replaced by
plain motivic cohomology but this will not work from dimension 3 onwards,
as one already sees in characteristic p. For rings of integers of number fields,
the original Lichtenbaum formulation 46 led to the Quillen–Lichtenbaum and the
Beilinson–Lichtenbaum conjectures and a huge development of algebraic K-theory
and motivic cohomology. The Bloch–Kato conjecture is needed to prove it (in the
cases one can) under this form. If it is indeed étale motivic cohomology rather
than ordinary motivic cohomology that is relevant, all this work will have been the
result of a big misunderstanding!

Let me give one nice consequence of Kato’s Conjecture 87, or rather of its partial
proof by Colliot-Thélène–Suwa:

88 Theorem 88 Let X be smooth projective of dimension d over Fp. Then the map

CHd(X) → H2d
ét (X, Z(d))

is bijective.

Proof For d = 2, this follows from the short exact sequence [86]

0 → CH2(X) → H4
ét(X, Z(2)) → H0(X, H3(Q|Z(2))) → 0
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and Kato’s theorem. In general, consider the coniveau spectral sequence for étale
motivic cohomology

E
p,q
1 =

⊕

x∈X(p)

H
q−p
ét (k(x), Z(d − p)) ⇒ H

p+q
ét (X, Z(d)) .

We have E
p,q
1 = 0 for p > d for dimension reasons. For q > d there are exact

sequences

H
q−p−1
ét

(
k(x), Q|Z(d − p)

) → H
q−p
ét

(
k(x), Z(d − p)

) → H
q−p
ét

(
k(x), Q(d − p)

)
.

By Theorem 14, the last group is 0. The first is 0 pour q − 1 > d + 1 for
cohomological dimension reasons. Hence E

p,q
1 = 0 for q ≥ d + 3. Moreover,

Ed−1,d+1
1 = Ed−2,d+1

1 = 0 by Hilbert 90 and Hilbert 90 in weight 2 (Merkurjev–
Suslin theorem). Finally, Ed−2,d+2

2 = 0 by the Colliot-Thélène–Suwa theorem. Hence
E

p,2d−p
2 = 0 except for p = d and there are no differentials arriving to Ed,d

2 = CHd(X).
The proof is complete.

Characteristic 0 4.9.2

In characteristic 0, things are considerably more complicated. If we start with the
Beilinson Conjecture 50, its analogue for smooth projective Q-varieties predicts
a two-layer filtration on their Chow groups; cycles homologically (i.e. , conjec-
turally, numerically) equivalent to 0 should be detected by an Abel–Jacobi map to
Deligne–Beilinson cohomology.

Concerning the Tate–Beilinson Conjecture 55, the only thing I can do is to
conjecture that there is a conjecture.

89Conjecture 89 There is a conjecture in the form of that in Theorem 64 in character-
istic 0, where the left hand side is a form of motivic cohomology and the right hand
side is a form of an absolute cohomology theory in the sense of Beilinson [11].

Presumably the left hand side would be motivic hypercohomology with respect
to the “Weil topology in characteristic 0” that Lichtenbaum is currently develop-
ing [127]. As for the right hand side, I feel that it should probably be a mixture of
the various (absolute counterparts of the) classical cohomology theories: l-adic,
Betti, de Rham, p-adic, so as to involve the comparison isomorphisms. This for-
mulation should be as powerful as in characteristic p and account for most motivic
conjectures in characteristic 0.

This being said, there is a basic problem to start the construction: if we take the
l-adic cohomology of a ring of integers OS (in which l is invertible), it is nonzero
even for negative Tate twists: by Tate and Schneider [165] we have

2∑

i=0

(−1)i+1 dimQl Hi(OS, Ql(n)) =

⎧
⎨

⎩
r2 if n is even

r1 + r2 if n is odd
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hence there is no chance to compare it in the style of Theorem 20 with motivic
cohomology, which vanishes in negative weights. The first thing to do would be to
modify l-adic cohomology in order to correct this phenomenon: although this is
clearly related to real and complex places, I have no idea how to do this. Note that
Lichtenbaum’s theory will be for Arakelov varieties.

One definitely needs new insights in order to follow this line of investigation!
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