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Abstract. Let A be a commutative semi-local ring containing
1/2. We construct natural isomorphisms∐

0≤i≤n

H2i−n
ét (A,µ⊗i2ν ) ∼−−→ Kn(A,Z/2ν) (ν ≥ 2)

if A is “non-exceptional”. We deduce that, for a non-exceptional
scheme X quasiprojective or regular over Z[1/2], the groups
Kn(X,Z/2ν) and K ′n(X,Z/2ν) are finite for n ≥ dim(X) − 1.
When X is a variety over Fp or Qp with p odd, we also obtain
finiteness results for K∗(X) and K ′∗(X). Finally, using higher
Chern classes with values in truncated étale cohomology, we show
that, for X over Z[1/2], of Krull dimension d, quasiprojective over
an affine base (resp. smooth over a field or a discrete valuation
ring), Kn(X,Z/2ν) is isomorphic for n ≥ 3 (resp. for n ≥ 2)
to
∐
i≥1H

2i−n
Zar (X, τ≤iRα∗µ⊗i2ν ), up to controlled torsion depending

only on n and d (not on ν). Here α is the projection from the étale
site of X to its Zariski site and τ denotes truncation in the derived
category.
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1. Statement of results

Let X be a Z[1/2]-scheme. We say that X is non-exceptional if,
for any connected component Y of X, the image of the cyclotomic
character

κ2 : π1(Y )ab → Z∗2
does not contain −1 (cf. [34], for example). If X = SpecA for a ring
A, we simply say that A is non-exceptional. This notion goes back to
the article of Harris and Segal [28].

In this article, we draw consequences from Voevodsky’s affirmation
of the Milnor conjecture [63]. We also use the spectral sequence con-
structed by Bloch and Lichtenbaum [6] and developed by Friedlander-
Suslin and Levine [17, 41, 43]. We prove the following theorems and
corollaries:

Theorem 1. Let A be a commutative semi-local ring such that 2 is
invertible in A. Suppose that A is non-exceptional. Let ν ≥ 2. Then,
a) For all n ≥ 0, there exists an isomorphism

(1.1)
∐

0≤i≤n

H2i−n
ét (A, µ⊗i2ν )

BnA−−→
∼

Kn(A,Z/2ν)

which is natural in A. These isomorphisms are compatible with change
of coefficients, products and transfer (for finite morphisms).
b) The ring K∗(A,Z/2

ν) is multiplicatively generated by units and the
Bott element, up to transfer.
c) If A is a field F , then for all n, the natural map KM

n (F )/2ν →
Kn(F )/2ν is split injective.
d) If A is a field F and µ2ν ⊂ F , then the natural ring homomorphism

KM
∗ (F )/2ν [t] −−→ K∗(F,Z/2

ν)

mapping t to a Bott element in K2(F,Z/2ν) is an isomorphism.

1.1. Remarks. a) Here as everywhere else in this paper, K-theory
with finite coefficients is defined as homotopy with finite coefficients
of the corresponding K-theory spectrum, cf. A.3. In particular,
K0(A,Z/2ν) = K0(A)/2ν .
b) The assumptions on A imply that the product on K∗(A,Z/2

ν) is
defined, associative and commutative for all ν ≥ 2, cf. [34, B.7] and
Lemma B.3. The case ν = 1 is trickier and will be discussed in another
paper [36].

Part a) of Theorem 1 is a confirmation of the main conjecture in [31]
for l = 2 and the case given. It even removes the regularity assumption
of loc. cit. It was earlier obtained in [33, th. 4.1] for A a higher local
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field in the sense of Kato (and 2ν replaced by lν , l any prime number
different from the “essential” residue characteristic of A). Part b) is
a variant of a conjecture of Suslin [55, conj. 4.1], and part c) extends
[31, th. 3] to all values of n.

The next theorem settles the Dwyer-Friedlander-Snaith-Thomason
version of the Quillen-Lichtenbaum conjecture [12, top p. 482] in
the positive for 2-primary coefficients, improving on earlier results of
Thomason ([60]; see [47, §6] for the original formulation of this conjec-
ture). For any scheme X, define

d2(X) = sup{cd2(η)}

where η runs through the generic points of X and cd2 denotes the étale
2-cohomological dimension.

Theorem 2. Let X be a finite-dimensional Noetherian non-exceptional
Z[1/2]-scheme. Then
a) The natural map

KTT
n (X,Z/2ν)→ KTT

n (X,Z/2ν)[β−1]

is injective for n ≥ sup(d2(X)−2, 1) and bijective for n ≥ sup(d2(X)−
1, 1). The 1 in the sup is not necessary if X is regular.
b) The natural map

K ′n(X,Z/2ν)→ K ′n(X,Z/2ν)[β−1]

is injective for n ≥ d2(X)− 2 and bijective for n ≥ d2(X)− 1.
c) If cd2(X) < +∞, there are isomorphisms

KTT
n (X,Z/2ν)[β−1]

∼−−→ K ét
n (X,Z/2ν)

for all n ∈ Z.
Here KTT

n (X,Z/2ν) denotes the Thomason-Trobaugh algebraic K-
theory of perfect complexes on X with finite coefficients [62, §6],
KTT
∗ (X,Z/2ν)[β−1] denotes the corresponding K-theory with the Bott

element inverted (ibid., 11.4), K ′n(X,Z/2ν) denotes Quillen’s K ′-theory
of coherent sheaves and K ét

n (X,Z/2ν) denotes the non-connective ver-
sion of the étale K-theory of Dwyer-Friedlander [11].

Recall that Thomason-Trobaugh’s K-theory coincides with Quillen’s
algebraic K-theory when X has an ample family of line bundles (e.g.
X quasi-projective over an affine base or regular) by [62, th. 7.6]. c)
generalises a theorem of Thomason [59, th. 4.11] which holds under
much more restrictive hypotheses (in particular, that X is regular and
that its residue fields have a “Tate-Tsen filtration”).
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In [10], Colliot-Thélène, Sansuc and Soulé deduced finiteness results
for torsion in the second Chow group from the Merkurjev-Suslin the-
orem, developing an earlier idea of Bloch. The two corollaries which
follow are pendants to this work when “inputting” the Milnor conjec-
ture rather than the Merkurjev-Suslin theorem.

Corollary 1. Let S be a Z[1/2] scheme and X a non-exceptional sepa-
rated S-scheme of finite type. Assume that S is of one of the following
types:

(i) SpecR[1/2], where R is the ring of integers of a non-exceptional
number field.

(ii) Spec Fp, p > 2.
(iii) Spec k, k a separably closed field of characteristic 6= 2.
(iv) Spec k, k a higher local field in the sense of Kato.

Then KTT
n (X,Z/2ν) is finite for n ≥ dim(X/S) + d2(S) − 2, except

perhaps in the case (iii), n = 0 and X a singular surface. The group
K ′n(X,Z/2ν) is finite for n ≥ dim(X/S) + d2(S)− 2.

1.2. Remarks. a) Actually, KTT
0 (X,Z/2ν) is also finite in the remain-

ing case, i.e. X a singular surface over a separably closed field [67].
b) Note that in cases (i), (ii) and (iii), S itself is non-exceptional, so any
S-scheme is automatically non-exceptional. In case (iv), S is certainly
non-exceptional if its “essential” residue characteristic is 6= 2. On the
other hand, a local field like Q2 is exceptional so one needs some care
in the statement. (I am indebted to the referee for pointing out this
issue.)

Corollary 2. Let X be a variety of dimension d over a field k. Then,
a) If k = Fp (p > 2), then the 2-primary torsion group KTT

n (X){2} is

finite and
KTT
n+1(X)

KTT
n+1(X){2}

is (uniquely) 2-divisible for n ≥ d. The same

holds when replacing KTT (X) by K ′(X).
b) If k = Qp (p > 2), the conclusion of a) holds for n ≥ d+ 1.

In the last result, we consider higher Chern classes ci,j with values
in truncated étale cohomology (compare [4, 5.10 D (vi)]); these Chern
classes are constructed in Section 5.

Theorem 3. Let d ≥ 0 and n ≥ 3. Then there exists an effectively
computable integer N = N(d, n) > 0 such that, for any Noetherian
Z[1/2]-scheme X separated of Krull dimension ≤ d and for all ν ≥ 2,
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the kernel and cokernel of the map

(1.2) KTT
n (X,Z/2ν)

(ici,2i−n)−−−−−→
∏
i≥1

H2i−n
Zar (X,B/2ν(i))

are killed by N . If X is smooth over a field or a discrete valuation ring,
this holds also for n = 2.

Here B/2ν(i) = τ≤iRα∗µ
⊗i
2ν , where α is the projection of the big étale

site of Spec Z[1/2] onto its big Zariski site, as in [57]. Using Newton
polynomials in the Chern classes, one can expect to extend this result
to n = 0, although we haven’t done it; we don’t know what happens
for n = 1.

Theorem 3 is related to a conjecture of Beilinson [4, 5.10 B and C
(vi)], asserting that there should exist a spectral sequence of cohomo-
logical type, at least for regular X

(1.3) Ep,q
2 = Hp−q

Zar (X,B/2ν(−q))⇒ K−p−q(X,Z/2
ν)

which would be split, up to small torsion (another variant of the Quillen-
Lichtenbaum conjecture). This spectral sequence is now constructed
at least for X regular essentially of finite type over a regular base of
dimension ≤ 1 [40] (see section 3 for more details), and one can expect
that the Chern classes of Theorem 3 actually split it with the usual
small factorials.

To prove Theorems 1, 2 and 3, we use (1.3) only for fields. As a
by-product, we get that (1.3) degenerates completely and canonically
for non-exceptional fields (see Theorem 3.1 for a slightly more general
statement).

What we need as a crucial tool is the existence of a product structure
on this spectral sequence. A construction of this product structure was
finally performed by Marc Levine [41] and also by Friedlander-Suslin
[17], thanks to the latter’s reinterpretation of the Bloch-Lichtenbaum
spectral sequence. To the best of our efforts, we haven’t been able to
find an argument avoiding it.

On the other hand, in the first version of this paper, the results
were obtained under more restrictive hypotheses than now: rings and
schemes had either to be of nonzero characteristic or to “contain” a
square root of −1. Now, the assumption “non-exceptional” is suffi-
cient. This improvement is made possible by a recent result of Hinda
Hamraoui [27].

All this explains the long delay between the first version of this paper
and the current revision.

Some further comments are appropriate:
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(1) The condition A non-exceptional in Theorem 1 cannot be re-
moved, as the example A = R shows [54].

(2) It is not clear how to extend Theorem 1 a) to Bass’ negative
K-groups with 2-primary coefficients. As stated, the result is
certainly wrong for n < 0 as the left hand side is 0 and there
are examples where the right hand side is not [65, ex. 8.5]1.

(3) One could näıvely hope that the isomorphisms (1.1) globalize
into similar isomorphisms involving truncated étale cohomol-
ogy groups, letting (1.3) degenerate on the nose, as in the proof
of Theorem 1 a) for fields. However this is unreasonable. A
special case of such isomorphisms would be a canonical decom-
position K0(X)/2ν '

∐
i≥0CH

i(X)/2ν for any smooth variety
X over a field, a fact for which counterexamples exist. Over C,
comparison with the Atiyah-Hirzebruch spectral sequence for
topological K-theory also yields examples where the Thomason
descent spectral sequence of [59] does not degenerate, which
strongly suggests that (1.3) should not degenerate in general
(compare [61, §8]). Theorem 1 a) does contain nontrivial infor-
mation on (1.3), but exactly what information is not clear at
this stage.

(4) The reason why we can avoid Thomason’s restrictive hypotheses
in Theorem 2 c) is partly that, unlike him, we use the Milnor
conjecture. (I am indebted to Marc Levine for a discussion
which clarified this point.)

(5) It may seem singular that our results hold even for non-smooth
schemes. This is thanks to both Hoobler’s Henselian pair trick
[29] and the Thomason-Trobaugh descent theorem for the Bass
extension of algebraic K-theory [62]. Theorem 3 suggests that
a form of (1.3) exists even for singular schemes (I write a form
because of negative K-groups, which remain mysterious at this
stage), and also that Voevodsky’s cdh cohomology (e.g. [57])
will not be necessary in the end.

(6) The Bass conjecture implies the finiteness of Kn(X,Z/2ν) for all
n when X is regular of finite type over Z; Corollary 1 suggests
this should hold more generally without a regularity assump-
tion, provided X is over Z[1/2]. For X regular, this would

1More precisely, for all d ≥ 1 L. Reid gives in [48] an example of a d-dimensional
affine normal scheme X with exactly one singular point P , such that K−d(X)
admits a nontrivial homomorphism to Z. For d > 1, C. Weibel proves in [64, 1.6]
that K−d(X) ∼−−→ K−d(Xh), where Xh is the Henselisation of X at P . Therefore
K−d(Xh) admits a nontrivial homomorphism to Z, hence K−d(Xh)/2ν 6= 0 and
K−d(Xh,Z/2ν) 6= 0.
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be a consequence of (1.3) plus the finiteness of the groups
Hp−q

Zar (X,B/2ν(−q)), which at this point is known only for p ≤ 1
by reduction to étale cohomology. The latter finiteness for all p,
in turn, is essentially equivalent to the finiteness of the groups
Hp

Zar(X,R
qα∗µ

⊗i
2ν ). It is probably wrong for X of finite type

over an algebraically closed field in general: C. Schoen has pro-
duced an example of a 3-dimensional variety X over Q such
that CH2(X)/l is infinite for a suitable prime l.

(7) The reader should beware that most of the above is wrong if we
work with integral algebraic K-theory:
• Theorem 3 implies that the Beilinson-Soulé vanishing con-

jecture holds for the K-theory of singular schemes with
2-primary coefficients, in a sense that could be made more
precise using Adams operations. However, Feigin-Tsygan
[16] and independently Geller-Weibel [21] have produced
examples of singular varieties whose integral K-theory fails
to verify the Beilinson-Soulé conjecture.
• The integral analogue of Corollary 1 is expected to hold for

regular schemes of finite type over Z (the Bass conjecture)
but is known to be false for singular ones, as the famous
example Z[T, U ]/U2 shows for K1.
• As shown by Rob de Jeu [30], the integral analogue of The-

orem 1 b) is false for fields of characteristic 0 in general,
already for K4. (However we shall show in [37] that, for
fields of characteristic > 0, it follows from the Bass conjec-
ture.)

(8) Needless to say, the arguments in this paper will apply by re-
placing 2 by an odd prime l once the Bloch-Kato conjecture
is proven for l, yielding the same results (without the non-
exceptionality restriction).

This paper is organised as follows. In Section 2 we start the proof of
Theorem 1 by constructing the maps Bn

A which appear in its statement;
this proof is completed in Section 3. In Section 4, we deduce Theorem
2 from Theorem 1 and Corollaries 1 and 2 from Theorem 2. In Section
5, we define the higher Chern classes appearing in the statement of
Theorem 3. In Section 6, we prove Theorem 3.

There are 3 appendices. In Appendix A, we discuss S-duality for
Moore spectra a little more precisely than what is found in the litera-
ture: this is used in Subsection 5.1.2. In Appendix B, we recall a few
things on Bott elements. In Appendix C, we extend the constructions
of [34] to the non-exceptional case.
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2. Construction of Bn
A

2.1. Proposition. Let ν ≥ 2. For any commutative Z[1/2]-algebra A,
let

Hn(A) =
∐

0≤i≤n

H2i−n
ét (SpecA, µ⊗i2ν ).

Then there exists a unique collection of natural transformations

Bn
A : Hn(A)→ Kn(A,Z/2ν)

defined on the category of non-exceptional commutative semi-local Z[1/2]-
algebras and having the following properties:

(i) They are compatible when ν varies.
(ii) They are multiplicative.

(iii) They commute with transfer.
(iv) If A is a discrete valuation ring with quotient field E and residue

field F , then the diagram

Hn(E)
∂−−−→ Hn−1(F )

BnE

y Bn−1
F

y
Kn(E,Z/2ν)

∂−−−→ Kn−1(F,Z/2ν)

commutes, where the horizontal maps are residue homomor-
phisms in étale cohomology and algebraic K-theory.

(v) (Normalization) If A is a field F , then B0
F is the map 1 7→ [F ],

B1
F is induced by the inclusion GL1(F ) ↪→ GL(F ) via Kum-

mer theory and B2
F restricted to H0(F, µ2ν ) is given by the Bott

element construction (see appendix B).

There is a similar collection of natural transformations

Bn,ét
A : H ′n(A)→ Kn(A,Z/2ν)[β−1]

where H ′n(A) =
∐

0≤iH
2i−n
ét (SpecA, µ⊗i2ν ), enjoying the same properties;

the diagrams

Hn(A)
BnA−−−→ Kn(A,Z/2ν)y y

H ′n(A)
Bn,ét
A−−−→ Kn(A,Z/2ν)[β−1]

commute.

Proof. We proceed in four steps:

I) A is a (non-exceptional) field F ;
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II) A is a (semi-)localisation of a smooth R-scheme of finite type,
where R is a field or a discrete valuation ring;

III) A is a (semi-)localisation of a not necessarily smooth R-scheme
of finite type, where R is as in II);

IV) the general case.

I) Fields. We first recall from [31] and [33] the construction of “anti-
Chern classes”

Hj
ét(F, µ

⊗i
2ν )

βi,jF−−−→ K2i−j(F,Z/2
ν) (i ≥ j)

Hj
ét(F, µ

⊗i
2ν )

β̃i,jF−−−→ K2i−j(F,Z/2
ν)[β−1](i ∈ Z)

from étale cohomology to algebraic K-theory and Bott-localised alge-
braic K-theory; this construction uses the Milnor conjecture, the main
results of [32] and [34] and was already given in [31] and [33] (in the
former, assuming [32] and [34]), to which we refer for more details. Let

F (µ⊗i2ν )

be the smallest algebraic extension E of F such that the Galois module
µ⊗i2ν becomes trivial over E: this is a finite, abelian extension of F .
Recall the twisted Milnor K-groups of [33, §1]

KM
j (i)(F,Z/2ν) = (KM

j (F (µ⊗i2ν ))⊗ µ⊗i2ν )Gi (j ≥ 0, i ∈ Z)

where Gi = Gal(F (µ⊗i2ν )/F ). In particular, KM
j (0)(F,Z/2ν) =

KM
j (F )/2ν . Set E = F (µ⊗i−j2ν ) and G = Gi−j. We define compos-

ite homomorphisms

(2.1) ui−j,jF : KM
j (i− j)(F,Z/2ν)

u0,j
E ⊗1
−−−−→ (Hj

ét(E, µ
⊗j
2ν )⊗ µ⊗(i−j)

2ν )G

= Hj
ét(E, µ

⊗i
2ν )G

Cor−−→ Hj
ét(F, µ

⊗i
2ν )

where u0,j
E is the Galois symbol of degree j. (Note that the restriction

i ≥ 2j from [33, (2.2)] is irrelevant.) We have the following proposition,
which follows from the Milnor conjecture in degree j and the main
result of [32]:

2.2. Proposition (cf. [32, th. 1(2)]). If F is non-exceptional, the last
map in (2.1) is an isomorphism.

This proposition (together with the Milnor conjecture) implies:

2.3. Corollary. The map ui−j,jF of (2.1) is an isomorphism for all in-
tegers i.
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Next, we have homomorphisms

(2.2)
KM
j (i− j)(F,Z/2ν)

ηi,2i−jF−−−−→ K2i−j(F,Z/2
ν)

KM
j (i− j)(F,Z/2ν)

η̃i,2i−jF−−−−→ K2i−j(F,Z/2
ν)[β−1]

where ηi,2i−jF is defined for i ≥ j, while η̃i,2i−jF is defined for all i ∈ Z.
They are constructed as compositions

(2.3)

KM
j (i− j)(F,Z/2ν)

ηj,jE ⊗η
i−j,2(i−j)
E−−−−−−−−−→ (Kj(E,Z/2

ν)⊗K2(i−j)(E,Z/2
ν))G

µ−−→ K2i−j(E,Z/2
ν)G

N−−→ K2i−j(F,Z/2
ν)

and similarly for étale K-theory. Here ηj,jE is the natural mapping of

Milnor’s K-theory to Quillen’s K-theory, η
i−j,2(i−j)
E is the canonical

Bott element mapping of [34], µ is product and N is the norm map

(compare [33, prop. 1.2 and its proof]). In [34], η
i−j,2(i−j)
E is only defined

when
√
−1 ∈ F or when F is of positive characteristic: see Appendix

C for the general case.
For i ≥ j, ηi,2i−jF and η̃i,2i−jF commute with the canonical map

K2i−j(F,Z/2
ν)→ K2i−j(F,Z/2

ν)[β−1].

The anti-Chern classes βi,jF and β̃i,jF are then defined as ηi,2i−jF ◦
(ui−j,jF )−1 and η̃i,2i−jF ◦ (ui−j,jF )−1. The maps Bn

F and Bn,ét
F described

in Proposition 2.1 are defined from the βi,jF and β̃i,jF componentwise.

They are natural in F , since the βi,jF and β̃i,jF are.
For the next step, we need:

2.4. Lemma. The diagram of Proposition 2.1 (iv) commutes for A, E,
F as in loc. cit.

Proof. Let us first define residue maps

(2.4) KM
j (i)(E,Z/2ν)

∂−−→ KM
j−1(i)(F,Z/2ν).

The extension E(µ⊗i2ν )/E is unramified, with Galois group (say) Gi.
LetB be the integral closure of A in E(µ⊗i2ν ) and F ′ = B⊗AF : then F ′ is
of the form

∏
g F (µ⊗i2ν ) for some integer g. The group Gi permutes these

g copies transitively (via its action on B), and the isotropy subgroup
of a given copy is Gal(F (µ⊗i2ν )/F ). In [3, p. 370]), a residue map

KM
j (E(µ⊗i2ν ))

∂v−→ KM
j−1(F (µ⊗i2ν ))

is defined for every discrete valuation v of B above the discrete valu-
ation of A. Instead of ∂v, however, we shall use ∂′v = (−1)j−1∂v. This
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map is characterised by the identity:

∂′v({y, x1, . . . , xj−1) = v(y){x̄1, . . . , x̄j−1}
for y ∈ E(µ⊗i2ν )∗, x1, . . . , xj−1 ∈ B∗ and x̄1, . . . , x̄j−1 the residue images
at v in F (µ⊗i2ν )∗.

This yields a Gi-equivariant map

KM
j (E(µ⊗i2ν ))⊗ µ⊗i2ν →

∏
g

KM
j−1(F (µ⊗i2ν ))⊗ µ⊗i2ν

and we get (2.4) by taking its coinvariants.
This being done, it suffices by Corollary 2.3 to check that the two

diagrams

KM
j (i− j)(E,Z/2ν) ∂−−−→ KM

j−1(i− j)(F,Z/2ν)

ui−j,jE

y ui−j,j−1
E

y
Hj

ét(E, µ
⊗i
2ν )

∂−−−→ Hj−1
ét (F, µ

⊗(i−1)
2ν )

KM
j (i− j)(E,Z/2ν) ∂−−−→ KM

j−1(i− j)(F,Z/2ν)

ηi,2i−jE

y ηi,2i−j−1
F

y
K2i−j(E,Z/2

ν)
∂−−−→ K2i−j−1(F,Z/2ν)

commute.
1) For the first one, we reduce to the case where the Galois module

µ
⊗(i−j)
2ν is trivial over E, and then to i = j. Commutativity is then

classical [38, Lemma 1].
(Note that there is a sign in the diagram of loc. cit.; however, our sign

modification of the Bass-Tate residue homomorphism corrects this sign.
We are forced to do this: otherwise, the various signs corresponding to
the summands of the maps Bn

E and Bn−1
F would not be compatible and

we would get an awkward statement.)
2) For the second one, we first reduce again to the case where the

Galois module µ
⊗(i−j)
2ν is trivial over E. Then the vertical maps can be

decomposed as follows:

KM
j (E)/2ν ⊗H0(E, µ

⊗(i−j)
2ν )

∂⊗λ−−−→ KM
j−1(F )/2ν ⊗H0(F, µ

⊗(i−j)
2ν )

ηj,jE ⊗η
i−j,2(i−j)
E

y ηj−1,j−1
F ⊗ηi−j,2(i−j)

F

y
Kj(E,Z/2

ν)⊗K2(i−j)(E,Z/2
ν) Kj−1(F,Z/2ν)⊗K2(i−j)(F,Z/2

ν)

µ

y µ

y
K2i−j(E,Z/2

ν)
∂−−−→ K2i−j−1(F,Z/2ν)
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where µ is the product in K-theory with coefficients Z/2ν and λ :

H0(E, µ
⊗(i−j)
2ν )→ H0(F, µ

⊗(i−j)
2ν ) is the obvious isomorphism.

Note that η
i−j,2(i−j)
E factors through K2(i−j)(A,Z/2

ν), since

H0(A, µ
⊗(i−j)
2ν )→ H0(E, µ

⊗(i−j)
2ν ) is an isomorphism.

Let ι : A→ E and π : A→ F be respectively the inclusion and the
projection. Recall the formula2

(2.5) ∂(e · ι∗a) = ∂(e) · π∗a
for (x, y) ∈ K∗(E,Z/2ν)×K∗(A,Z/2ν).

Applying it with e = ηj,jE (x) and a = η
i−j,2(i−j)
A (y) for (x, y) ∈

KM
j (E)/2ν × H0(A, µ

⊗(i−j)
2ν ), using the compatibility of the residues

for Milnor and Quillen’s K-theory (which actually follows from (2.5)),
and remarking that λ = π∗ ◦ (ι∗)

−1, we get the desired commutativity
thanks to the naturality of ηi−j,2(i−j). (Here we have used the fact that

η
i−j,2(i−j)
X is already defined generally for non-exceptional schemes X,

in particular for X = SpecA, in [34] and Appendix C.)
The proof of commutativity for the Bn,ét is exactly the same. 2

In the sequel, we only construct the maps Bn
A: the case of Bn,ét

A is
completely similar.

II) Smooth (semi-)local rings. Let E be the field of fractions of A.
There is a commutative diagram of exact sequences:

0→ Hn(A) −−−→ Hn(E) −−−→
∐

x∈X(1)

Hn−1(κ(x))

BnE

y (Bn−1
κ(x)

)

y
0→Kn(A,Z/2ν) −−−→ Kn(E,Z/2ν) −−−→

∐
x∈X(1)

Kn−1(κ(x),Z/2ν)

where X = SpecA, κ(x) is the residue field at x ∈ X and and X(1)

denotes the set of points of codimension 1. Recall that, by assumption,
A is essentially smooth over a ring R which is either a field or a discrete
valuation ring.

In case R is a field, the bottom exact sequence follows from [46,
th. 7.5.11] and the top one from [7]. In case R is a discrete valuation
ring, the bottom exact sequence is Gersten’s conjecture for K-theory
with finite coefficients for essentially smooth local rings over a discrete

2Apply for example [26, Th. 2.5] with F1 = F = Ω∞(K ′(F )∧M(2ν)), E1 = E =
Ω∞(K ′(A) ∧M(2ν)), B1 = B = Ω∞(K ′(E) ∧M(2ν)) with E1 → B1 and E → B
given by ι∗, and F2 = ∗, E2 = B2 = Ω∞(K(A) ∧M(2ν)) with E2 → B2 given by
the identity map, and notice that the product F ∧X → F factors through F ∧ F .
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valuation ring, due to Gillet and Levine [25]; the top exact sequence is
due to Gillet [24]. The diagram commutes by Lemma 2.4. Note that,
since A is non-exceptional, all its residue fields are non-exceptional.
The diagram defines in a unique way a homomorphism Bn

A : Hn(A)→
Kn(A,Z/2ν). We also note that, by construction, Bn

A is natural in A
when A varies in the category of essentially smooth (semi-)local R-
algebras.

III) (Semi-)local rings of “geometric” origin. We use a method of
Hoobler [29]: there exists a henselian pair (B, I) such that

• B/I = A;
• B is a union of (semi-)localisations of smooth R-schemes.

(To see this, write A as the (semi-)localisation of some finitely gen-
erated R-algebra A0 at a prime ideal p (resp. at a finite set of prime
ideals S), and write A0 as a quotient of B0 = R[T1, . . . , Tn] for n large
enough. Then A is a quotient of the local ring B1 := (B0)p∩B0 (resp.
B1 := (B0)S∩B0). We take for (B, I) the henselization of the pair
(B1,Ker(B1 → A)).)

Since both algebraic K-theory and étale cohomology commute with
filtering inverse limits of schemes with affine transition morphisms, and
since the homomorphism Bn constructed in II) is natural, we deduce
from II) a homomorphism Bn

B : Hn(B) → Kn(B,Z/2ν). There is a
diagram

Hn(B)
∼−−−→ Hn(A)

BnB

y
Kn(B,Z/2ν)

∼−−−→ Kn(A,Z/2ν).

The top horizontal map is an isomorphism by a theorem of Gab-
ber [18] and independently Strano [53]. The bottom one is also an
isomorphism, by another theorem of Gabber [19]. Note that B is non-
exceptional, since A is non-exceptional and (B, I) is a henselian pair.
Hence the diagram again defines a homomorphism Bn

A : Hn(A) →
Kn(A,Z/2ν).

Let us show that Bn
A does not depend on the choice of (B, I). Let

(B′, I ′) be another Henselian pair as above. Consider the diagonal
embedding

SpecA→ SpecB ×R SpecB′ = Spec(B ⊗R B′).

This is a closed embedding, with corresponding ideal I ′′0 . The pair
(B⊗RB′, I ′′0 ) may not be henselian, but we can henselise it into (R′′, I ′′):
this henselian pair is still of the same type as above, with residue ring
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A. We then get a diagram of Henselian pairs

(B, I)

↘

(B′′, I ′′)

↗

(B′, I ′)

which reduces us to the case where B ⊂ B′. Then Bn
A (defined out of

Bn
B) equals Bn

A (defined out of Bn
B′) thanks to the naturality of Bn for

essentially smooth semi-local non-exceptional R-algebras.
If f : A → A′ is a homomorphism of non-exceptional semi-local R-

algebras essentially of finite type, we can cover it by a homomorphism of
henselian pairs with residue rings A,A′. This, and the well-definedness
of Bn, provides it with the structure of a natural transformation on the
category of local R-algebras essentially of finite type.

IV) The general case. Write A as a direct limit of its finitely gener-
ated subalgebras. After localising the latter, we write A as a direct limit
lim−→Ai, where the Ai are as in III), with R a suitable (semi-)localisation
of Z[1/2]. Note that, since A is non-exceptional, then Ai is non-
exceptional for i large enough (by a compactness argument). By nat-
urality, we then get the desired homomorphism Bn

A as the direct limit
of the Bn

Ai
s. And Bn

A is clearly natural in A.

Property (iv) of Proposition 2.1 has already been proven in Lemma
2.4. The other properties follow similarly from the definition of the
anti-Chern classes and [34, cor. 9.5]. As for uniqueness, the method
of construction shows that Bn is determined by its value on fields. By
the Milnor conjecture and [32, th. 1(2)], the bigraded ring H∗(F, µ⊗∗2ν )
is generated by H0(F, µ2ν ) and H1(F, µ2ν ) modulo transfer. Hence Bn

is determined by the value of B0, B1 and B2 on fields.
The commutation of the diagrams at the end of Proposition 2.1 is

clear for fields by construction; the general case is obtained by going
through II), III) and IV) as before. 2

Protoglobalization. We have the following variant of Proposition
2.1:

2.5. Proposition. Let Hj
ét(µ

⊗i
2ν ) (resp. Kn(Z/2ν)) be the sheaf associ-

ated to the presheaf U 7→ Hj
ét(U, µ

⊗i
2ν ) (resp. U 7→ Kn(U,Z/2ν)) over

the big Zariski site of Spec Z[1/2] restricted to non-exceptional schemes.
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Then, for all n, ν ≥ 0, there is a unique commutative diagram of ho-
momorphism of sheaves:∐

0≤i≤n

H2i−n
ét (µ⊗i2ν )

Bn−−−→ Kn(Z/2ν)y y∐
0≤i

H2i−n
ét (µ⊗i2ν )

Bn,ét

−−−→ Kn(Z/2ν)[β−1]

which coincides with Bn and Bn,ét at the stalks. The homomorphisms of
sheaves Bn and Bn,ét have properties similar to those of Proposition 2.1.
The same holds when replacing the Zariski topology by the Nisnevich
topology of [45].

Proof. It is enough to construct Bn over any non-exceptional affine
scheme, hence over any non-exceptional affine scheme X of finite type
over Spec Z[1/2]. We proceed exactly as above. If X is smooth over
Spec Z[1/2], the argument in step II) constructs Bn over X and shows
that it is contravariant in X. In general, we write X as a closed sub-
scheme of AN

Z[1/2] for N large, henselize the latter along X and mimic

the argument in step III). 2

3. Proof of Theorem 1

Proof of Theorem 1 a). The construction of section 2 reduces us to
the case of a field. We shall use a spectral sequence

(3.1) Ep,q
2 ⇒ K−p−q(F,Z/2

ν)

where

Ep,q
2 =

{
Hp−q(F, µ

⊗(−q)
2ν ) if p, q ≤ 0

0 otherwise.

Let us recall some facts on this spectral sequence. In [6], Bloch and
Lichtenbaum construct a spectral sequence

Ep,q
2 = Hp−q(F,Z(−q))⇒ K−p−q(F )

where the E2-terms are motivic cohomology of F , defined as Bloch’s
higher Chow groups [5] renumbered (see also [43]). In [49], Rognes and
Weibel construct a variant:

Ep,q
2 = Hp−q(F,Z/m(−q))⇒ K−p−q(F,Z/m)
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where the E2-terms are now motivic cohomology with finite coefficients.
Now, for m = 2ν , there are isomorphisms

Hp−q(F,Z/2ν(−q)) =

{
Hp−q(F, µ

⊗(−q)
2ν ) if p, q ≤ 0

0 otherwise.

Indeed, this follows from Voevodsky’s proof of the Milnor conjec-
ture [63] and the main result of Geisser-Levine [22]. Before [22], this
isomorphism was proven in characteristic 0 by Suslin-Voevodsky [57],
modulo the identification of Bloch’s motivic cohomology with Voevod-
sky’s motivic cohomology [56].

Then Friedlander and Suslin found a fundamental reinterpretation
of the construction in [6], allowing them and Levine to globalise the
Bloch-Lichtenbaum spectral sequence to smooth schemes over a field
(Friedlander-Suslin [17]) and even regular schemes of finite type over a
regular base of dimension ≤ 1 (Levine [40]). This also gave another, di-
rect, construction of the Rognes-Weibel variant with finite coefficients.
Finally, it allowed Friedlander-Suslin [17] and Levine [41] to provide
these spectral sequences with a product structure. (For the product
structure with finite coefficients, see [17, Th. 15.1].)

The product structure on (3.1) and the easier existence of transfers3

allow us to play the same game as in [31] and [33], using the anti-Chern
classes to kill all differentials of the spectral sequence and show that
the E∞ filtration on the abutment is split by them (see [33, proof of
th. 3.1]). Let us give some details of this “game”:

1) Consider the composition

H0(F, µ⊗i2ν )
βi,0−−→ K2i(F,Z/2

ν)
e−−→ H0(F, µ⊗i2ν )

where the second map is the edge homomorphism from the spectral
sequence. We claim that this composition is an odd multiple of the
identity. To see this, we immediately reduce to the case where F is
separably closed; then βi,0 and e are both isomorphisms (the second
one because the spectral sequence collapses and the first one by [34,
cor. 9.5 (v)] and [54, Cor. 3.13]).4

2) Consider the composition

H1(F, µ⊗i2ν )
βi,1−−→ K2i−1(F,Z/2ν)

e′−−→ H1(F, µ⊗i2ν )

3Such transfers are constructed in [41, §4] in a much more general situation.
However, in the case of fields it is sufficient to notice that the construction of the
Bloch-Lichtenbaum exact couple in [6] is compatible with transfers at every step.

4With a little more effort, one could probably prove that the composition is
actually the identity. The issue is to show it for F separably closed and i = 1.
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where e′ is also an edge homomorphism from the spectral sequence. We
claim that this composition is again an odd multiple of the identity.
Using 1), the multiplicativity of the spectral sequence, its compatibility
with transfers and Proposition 2.2, we reduce to i = 1. Then we have
a commutative diagram

H1(F, µ2ν ) −−−→ K1(F )/2ν
ẽ′−−−→ H1(F,Z(1))/2ν

||
y y

H1(F, µ2ν )
β1,1

−−−→ K1(F,Z/2ν)
e′−−−→ H1(F, µ2ν )

where ẽ′ stems from an edge homomorphism of the integral spectral
sequence and the vertical maps are induced by the “change of coeffi-
cients” morphism from the integral motivic spectral sequence to the
same with Z/2ν coefficients. The top left horizontal map is the inverse
of the Kummer theory isomorphism and ẽ′ is also an isomorphism by
the integral motivic spectral sequence. Since the right vertical map
coincides with the Kummer theory isomorphism, the claim is proven.

We have split off one summand from the K-groups and also from
(3.1). We can then go on, using the next anti-Chern classes, and split
off higher and higher chunks from both K∗(F,Z/2

ν) and the spectral
sequence. More precisely, one shows inductively on j that

• all differentials leaving Ep,q
r are 0 for p− q < j;

• Im βi,jF ⊆ F j−iK2i−j(F,Z/2
ν), where F ∗K2i−j(F,Z/2

ν) is the
filtration induced by the spectral sequence (3.1);
• The composition

Hj(F, µ⊗i2ν )
βi,jF−−→ F j−iK2i−j(F,Z/2

ν)→ Ej−i,−i
∞ ↪→ Ej−i,−i

2 = Hj(F, µ⊗i2ν )

is an odd multiple of the identity (a fact which reduces to 0)
and 1) by the Milnor conjecture and Proposition 2.2, since all
maps commute with products and transfers).

Since (3.1) is convergent, we find in the end that it canonically de-
generates and that Bn

F is bijective.

Proof of Theorem 1 b). For A a semi-local ring, we define the
Milnor K-groups KM

∗ (A) exactly as for a field, using the Steinberg
presentation. If A is a non-exceptional Z[1/2]-algebra, the groups
KM
j (i)(A,Z/2ν) are then defined in the same way as for a field. Note

that the maps in (2.1) and (2.2) exist for any such A (see [33, §§1 and
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2]). By a), they can now be completed into commutative triangles

(3.2)

Hn(A)

unA ↗∐
i≤n

KM
2i−n(n− i)(A,Z/2ν) BnA

yo
ηnA ↘

Kn(A,Z/2ν)

where unA and ηnA are sums of the ui,jA and the ηi,jA . Theorem 1 b)
claims that ηnA is surjective; to see this, it is enough to show that unA is
surjective.

We first show that the Galois symbol KM
j (A)/2ν

u0,j
A−−→ Hj

ét(A, µ
⊗j
2ν ) is

surjective (cf. [29]). To do this, we proceed as for a) along steps I) – IV)
of the proof of Proposition 2.1. If A is a field, this is part of Voevodsky’s
theorem. Suppose A is as in step II). We have a commutative diagram
of complexes

0 −−−→ KM
j (A)/2ν −−−→ KM

j (E)/2ν −−−→
∐

x∈X(1)

KM
j−1(κ(x))/2ν

u0,j
A

y u0,j
E

yo (u0,j−1
κ(x)

)

yo
0 −−−→ Hj

ét(A, µ
⊗j
2ν ) −−−→ Hj

ét(E, µ
⊗j
2ν ) −−−→

∐
x∈X(1)

Hj−1
ét (κ(x), µ

⊗(j−1)
2ν ).

The bottom row is exact by the Bloch-Ogus-Gillet theorem, and the
top row is exact at KM

j (E)/2ν by an unpublished theorem of Gabber

[20] (see also [14]). Therefore u0,j
A is surjective.

Suppose A is as in step III). Using the same construction as in the
proof of a), we get a commutative diagram

KM
j (B)/2ν −−−→ KM

j (A)/2ν

u0,j
B

y u0,j
A

y
Hj

ét(B, µ
⊗j
2ν )

∼−−−→ Hj
ét(A, µ

⊗j
2ν )

in which u0,j
B is surjective by step II). Since KM

j (A) and KM
j (B) are

generated by units and B is semi-local, the top horizontal map is sur-
jective and so is u0,j

A . Finally, step IV) follows from step III) by a
passage to the limit, just as in the proof of a).

We now deal with the general case and prove that

KM
j (i− j)(A,Z/2ν)

ui−j,jA−−−→ Hj
ét(A, µ

⊗i
2ν )
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is surjective for all A, i, j with i ≥ j. Let A′ be the smallest finite

étale extension of A such that the étale sheaf µ
⊗(i−j)
2ν is constant over

SpecA′, and let G = Gal(A′/A). Consider the commutative diagram

KM
j (i−j)(A′,Z/2ν):=KM

j (A′)⊗µ⊗(i−j)
2ν

ui−j,j
A′−−−→ Hj

ét(A
′,µ⊗j2ν )⊗µ⊗(i−j)

2ν =Hj
ét(A

′,µ⊗i2ν )y f∗

y
KM
j (i−j)(A,Z/2ν)

ui−j,jA−−−→ Hj
ét(A,µ

⊗i
2ν ).

Here the left vertical map is given by the definition of KM
j (i −

j)(A,Z/2ν) = KM
j (i − j)(A′,Z/2ν)G, and the right vertical map is

the direct image map associated to the finite morphism f : SpecA′ →
SpecA. By the first part of the proof, ui−j,jA′ is surjective. By [32, th.
1], the right vertical map in the diagram is surjective, and therefore so
is ui−j,jA .

We observe that the above allows the proof of degeneration of (3.1)
to carry over mutatis mutandis for Levine’s spectral sequence (1.3) in
the case of more general semi-local rings, thanks to the existence of
transfers on this spectral sequence for finite morphisms [41, §4]. We
record this in the following theorem.

3.1. Theorem. Let A be a semi-local regular Z[1/2]-algebra, essentially
of finite type over a field or a Dedekind domain. Suppose that A is non-
exceptional. Then the spectral sequence (1.3) canonically degenerates
for X = SpecA. 2

Proof of Theorem 1 c) and d). These are special cases of a), in
view of the construction of Bn

F . 2

3.2. Corollary. Let A be a semi-local non-exceptional Z[1/2]-algebra.
Then the natural map

Kn(A,Z/2ν)→ Kn(A,Z/2ν)[β−1]

is a split injection for all n ≥ 0 and an isomorphism for n ≥ cd2(A)−1.

Proof. Arguing as in the proof of Theorem 1 a), we prove that the

homomorphisms Bn,ét
A of Proposition 2.1 are isomorphisms. Here we

reduce to the case where A is a field and use a localisation of the
Bloch-Lichtenbaum spectral sequence by inverting the Bott element
[17, 42]. It remains to observe that, in the diagram of Proposition 2.1,
the left vertical map is a split injection in general and an isomorphism
for n ≥ cd2(A)−1. (For the nervous reader, if cd2(A) = 0 and n = −1,
the map is indeed an isomorphism as both sides are 0). 2
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3.3. Remark. This provides a negative answer to Problem 5, p. 540
in [68] (which was actually formulated for odd primes!).

3.4. Corollary. If cd2(A) < +∞, the natural map

Kn(A,Z/2ν)[β−1]→ K ét
n (A,Z/2ν)

is an isomorphism for all n ∈ Z.

Proof. Use the Dwyer-Friedlander spectral sequence of [11, prop. 5.2]
(or rather its non-connective analogue) and split it with the help of the

Bn,ét
A just as in the proof of Theorem 1 a). 2

3.5. Corollary. For all n, ν ≥ 0, the homomorphisms of sheaves Bn
and Bn,ét of Proposition 2.5 are isomorphisms (for the Zariski or the
Nisnevich topology). 2

3.6. Corollary. a) For any non-exceptional Z[1/2]-scheme X and any
r, s ≥ 0, there is a natural isomorphism of abelian groups:∐

i≤s

Hr
Zar(X,H2i−s

ét (µ⊗i2ν ))
∼−−→ Hr

Zar(X,Ks(Z/2ν)).

b) Suppose X is smooth over a field or a Dedekind domain. Then the
above isomorphism refines to∐

r+s≤2i≤2s

Hr
Zar(X,H2i−s

ét (µ⊗i2ν ))
∼−−→ Hr

Zar(X,Ks(Z/2ν)).

a) and b) hold when replacing K∗(Z/2ν) by K∗(Z/2ν)[β−1], and sum-
ming over all i in a) and r + s ≤ 2i in b). Finally, the same holds
when replacing Zariski cohomology by Nisnevich cohomology.

Proof. This is simply evaluating Corollary 3.5 at X. b) follows from
the fact that Hr

Zar(X,H2i−s
ét (µ⊗i2ν )) = 0 for r > 2i− s (Gersten’s conjec-

ture). 2

4. Proofs of Theorem 2, Corollary 1 and Corollary 2

4.1. Proposition. Let X be a Noetherian Z[1/2]-scheme of finite Krull
dimension. Assume that no residue field of X is formally real.
a) If x ∈ X is a point of codimension p, then cd2(x) ≤ d2(X)− p.
b) If X → S is a dominant morphism essentially of finite type, with
d2(S) <∞, then d2(X) = d2(S) + dim(X/S).

Proof. a) follows from [SGA4, exposé X, cor. 2.4]. For b), we reduce
to the case where X → S is a field extension; then the result follows
from [51, p. II-13, prop. 11]. 2
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4.2. Corollary. For any finite-dimensional Noetherian non-exceptional
Z[1/2]-scheme X and any ν ≥ 1, the natural map

Hr
Nis(X,Ks(Z/2ν))→ Hr

Nis(X,Ks(Z/2ν)[β−1])

is split injective for all r, s and bijective for all r and s ≥ d2(X)− 1.

Proof. Using Corollary 3.6, it is enough to check that the Nisnevich
sheaf Hq

ét(µ
⊗i
2ν ) is 0 for q > d2(X). Its stalk at a point x ∈ X is

Hq
ét(OhX,x, µ

⊗i
2ν ), where OhX,x is the henselisation of OX,x. By [SGA4,

exposé XII, cor. 5.5], this group coincides with Hq
ét(κ(x), µ⊗i2ν ), which is

0 by Proposition 4.1 a) (note that X satisfies the assumptions of this
proposition). 2

4.3. Proposition. Let X be an excellent Noetherian scheme of dimen-
sion ≤ 1. Let KB(X) be Thomason’s Bass extension of the K-theory
spectrum of X [62, def. 6.4]. Then there is a canonical isomorphism
KB
−1(X) ' H1

ét(X,Z).

Proof. 5 By [62, th. 10.3], for any quasi-compact, quasi-separated X,
the natural map of spectra

(4.1) KB(X)→ H·Nis(X,KB)

is a homotopy equivalence. Here, H·Nis(X,KB) is as in [59, def. 1.33].
Hence a spectral sequence

Ep,q
2 = Hp

Nis(X,K
B
−q)⇒ KB

−p−q(X)

where KB−q is the Nisnevich sheaf associated to the presheaf U 7→
KB
−q(U). Since dimX ≤ 1, this spectral sequence yields a short ex-

act sequence

0→ H1
Nis(X,KB0 )→ KB

−1(X)→ H0
Nis(X,KB−1)→ 0.

The rank canonically identifies KB0 to the constant sheaf Z, and the
natural map H1

Nis(X,Z)→ H1
ét(X,Z) is an isomorphism. It remains to

see that H0
Nis(X,KB−1) = 0, i.e. that KB

−1(X) = 0 for X = SpecA with
A local Henselian of dimension ≤ 1.

By [65, (1.7.1)], there is an exact sequence

0→ LSK0(X)→ KB
−1(X)→ LPic(X)→ 0

and by loc. cit., th. 5.5, LPic(X) ' H1
ét(X,Z) = 0. Therefore it suf-

fices to show that LSK0(X) = 0. By [2, th. 7.8], for any 1-dimensional
Noetherian ring A whose integral closure is finite over A, the deter-

minant map K̃0(A[t, t−1])
det−−→ PicA[t, t−1] is an isomorphism, where

5I thank Chuck Weibel for his help in this proof.



22 BRUNO KAHN

K̃0(A[t, t−1]) = Ker(K0(A[t, t−1])
rk−−→ H0(A[t, t−1],Z). In particular,

LSK0(A) := Coker det = 0. This applies to A = Γ(X,OX). 2

4.4. Corollary. For X as in Proposition 4.3, the map K0(X,Z/n) →
KB

0 (X,Z/n) is an isomorphism for any n > 0.

Proof. By Proposition 4.3, KB
−1(X) is n-torsion-free, as follows from

the obvious surjectivity of H0
ét(X,Z) → H0

ét(X,Z/n). Therefore, the
map

K0(X)/n = KB
0 (X)/n→ KB

0 (X,Z/n)

is bijective. 2

Proof of Theorem 2. The assumption implies that all Hensel local
rings of X satisfy the assumptions of Theorem 1.

Smashing the equivalence (4.1) with the Moore spectrum M(Z/2ν)
yields another homotopy equivalence

KB(X,Z/2ν)
≈−−→ H·Nis(X,KB(Z/2ν))

which in turn yields a strongly convergent spectral sequence

(4.2) Ep,q
2 = Hp

Nis(X,K
B
−q(Z/2

ν))⇒ KB
−p−q(X,Z/2

ν).

This spectral sequence maps to the analogous spectral sequence for
Bott-localised KB-theory

Hp
Nis(X,K

B
−q(Z/2

ν)[β−1])⇒ KB
−p−q(X,Z/2

ν)[β−1]

(compare [62, (11.8.1)]). There are natural transformations

(4.3) K → KTT → KB.

For any quasi-compact quasi-separated X, the map KTT
n (X) →

KB
n (X) is an isomorphism for n ≥ 0 [62, th. 7.5 a)], hence the map

KTT
n (X,Z/2ν) → KB

n (X,Z/2ν) is an isomorphism for n ≥ 1, and also
for n = 0 if K−1(X) is torsion-free, e.g. if X is regular or as in Propo-
sition 4.3. The map KTT

n (X,Z/2ν)[β−1] → KB
n (X,Z/2ν)[β−1] is an

isomorphism for all n [62, (11.4.2)]. Also, since X is locally quasi-
projective for the Zariski topology, the map of Zariski sheavesKn(Z/2ν)
→ KTTn (Z/2ν) is an isomorphism for all n [62, prop. 3.10], and the same
holds with the Bott element inverted.

In particular, the group Hp
Nis(X,KB−q(Z/2ν)) coincides with

Hp
Nis(X,K−q(Z/2ν)) provided −q ≥ 1 (and also for q = 0, pro-

vided the sheaf K−1 is torsion-free). Hence, by Corollary 4.2, the
map of spectral sequences is an isomorphism on the Ep,q

2 terms for
−q ≥ max(d2(X) − 1, 1) and is split injective for all q ≤ −1. The
conclusion follows for Thomason-Trobaugh K-theory.
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For K ′-theory, we use the Quillen spectral sequence

Ep,q
1 =

∐
x∈X(p)

K−p−q(κ(x),Z/2ν)⇒ K ′−p−q(X,Z/2
ν)

and its analogue for K ′-theory with the Bott element inverted (com-
pare [46, th. 5.5.4]). Here X(p) denotes the set of points of X of
codimension p. By Corollary 3.2, the natural map between the two
spectral sequences is split injective on the E1-terms, and bijective on
the Ep,q

1 -terms provided −p− q ≥ supx∈X(p)cd2(x)− 1. By Proposition
4.1 a), the right hand side is ≤ d2(X)− p− 1. Hence the natural map
induces a bijection on Ep,q

1 as soon as −q ≥ d2(X)− 1, and the result
follows.

Finally, let us prove c). By the non-connective analogue of [11, prop.
5.2], the natural map

K ét(X,Z/2ν)→ H·ét(X,Két(Z/2ν)ét)

is a weak equivalence. It follows by a simple argument (using the
weak equivalence H·ét(X,Fét) ' H·Nis(X,H·ét(−, Fét)Nis) for a presheaf
of fibrant spectra F ) that the natural map

K ét(X,Z/2ν)→ H·Nis(X,Két(Z/2ν)Nis)

is a weak equivalence as well. We then have a commutative diagram

KTT (X,Z/2ν)[β−1]
≈−−−→ H·Nis(X,K(Z/2ν)Nis[β

−1])y ≈
y

K ét(X,Z/2ν)
≈−−−→ H·Nis(X,Két(Z/2ν)Nis)

where the top row is a weak equivalence by the considerations at the
beginning of the proof (compare [62, (11.8.1)]), and the right column
is a weak equivalence by Corollary 3.4. 2

Proof of Corollary 1. By Proposition 4.1 b), we have

d2(X) = dim(X/S) + d2(S)

and moreover

d2(S) =


2 in case (i)

1 in case (ii)

0 in case (iii)

d+ 1 in case (iv)

where, in case (iv), d is the (Kato) dimension of k.
With the exception dim(X/S) + d2(S) ≤ 2, the case of KTT -theory

follows from Theorem 2 and the fact that Kn(X,Z/2ν)[β−1] is finite for
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all n, as the abutment of a spectral sequence with E2-terms étale coho-
mology groups [62, th. 11.5] which are finite by the classical finiteness
theorems for étale cohomology ([SGA4 1/2, Th. finitude] plus class
field theory). In the remaining case, we are

(1) either in case (i), with dim(X/S) ≤ 0;
(2) either in case (ii), with dim(X/S) ≤ 1;
(3) either in case (iii), with dim(X/S) ≤ 2;
(4) or in case (iv), with dimX ≤ 1 (note that cd2(k) ≥ 1).

If dimX ≤ 1, by Corollary 4.4, the map of Brown-Gersten-Nisnevich
spectral sequences in the proof of Theorem 2 is an isomorphism even
for q = 0. The assertion then follows as above. The only case where
dimX can equal 2 is case (iii). If X is regular, then KB

i (X) = 0 for
i < 0; this completes the proof of Corollary 1 for KTT -theory.

For K ′-theory, it is enough in view of Theorem 2 to show that
K ′n(X,Z/2ν)[β−1] is finite for all n ∈ Z. This is true for X regu-
lar, by reduction to K-theory. In general, we can apply [EGA4, cor.
6.12.6] in each case of the corollary to find in X a regular dense open
subset U . Using the localisation exact sequence for X,U and X \ U ,
we get the result by Noetherian induction. 2

Proof of Corollary 2. We reduce the case of K ′-theory to the case
of Thomason-Trobaugh’s K-theory just as in the proof of Corollary 1.
Taking a direct limit of homotopy exact sequences for finite coefficients,
it is then enough to prove that KTT

n+1(X,Q2/Z2) is finite or, by Theorem
2 a), that the isomorphic group KTT

n+1(X,Q2/Z2)[β−1] is finite. The
E2-terms in the corresponding limit of Thomason-Trobaugh spectral
sequences [62, (11.5.3)] are

H2m−n−1
ét (X,Q2/Z2(m)) (m ∈ Z).

Suppose first that k = Fp. By [35, Th. 2], the group above is finite
for m > d or for 2m − n − 1 < m. Since by assumption n ≥ d, this
covers all values of m. If k = Qp, [35, Th. 5] shows that the group
above is finite for m > d+ 1 or for 2m−n− 1 < m, which again covers
all values of m since this time we assume n ≥ d+ 1. 2

5. Higher Chern classes with values in truncated étale
cohomology

In this section, we give a construction of higher Chern classes as
indicated by Beilinson in [4, 5.10 D (vi)], and relate them to Soulé’s
étale Chern classes [52].
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5.1. Construction. Let S = SpecR, where R is a field or a Dedekind
domain. Suppose 2 is invertible on S. Using Gillet’s method [23], we
construct higher Chern classes

(5.1) ci,j : K2i−j(X,Z/2
ν) −−→ Hj

Zar(X,B/2
ν(i))

for any S-scheme X and 2i− j ≥ 2. Here B/2ν(i) = τ≤iRα∗µ
⊗i
2ν , where

α is the projection of the big étale site of S onto its big Zariski site, as
in [57].

5.1.1. Equivariant Chern classes. Looking at the arguments in [23, §2],
one sees that to get Chern classes

(5.2) Ci ∈ H2i
Zar(X,GL(OX), B/2ν(i))

[23, p. 225] for any S-scheme X, it is enough to prove a projective bun-
dle theorem for vector bundles over X, where X is (essentially) smooth
over S. (The other axioms of [23, def. 1.1 and 1.2], and in particular
the existence of a Borel-Moore homology theory, are not needed.) For
such a vector bundle E of rank r, with associated projective bundle
P(E)

π−−→ X, the projective bundle formula will take the form

(5.3)
r∐
i=0

B/2ν(n− i)X [−2i]
∼−−→ Rπ∗B/2

ν(n)P(E)

for all n ≥ 0, in the derived category of Zariski sheaves over X, where
the i-th component of the isomorphism is given by pull-back under
π followed by cup-product by the i-th power of a certain class ξ ∈
H2(P(E), B/2ν(1)).

We first construct the class ξ. The Kummer exact sequence in the
étale topology

1→ µ2ν → Gm
2ν−−→ Gm → 1

yields, by higher direct image and truncation, a morphism in the de-
rived category

τ≤1Rα∗Gm → B/2ν(1)[1]

hence a map in cohomology

(5.4) H1
Zar(P(E), τ≤1Rα∗Gm)→ H2

Zar(P(E), B/2ν(1)).

ButH1
Zar(P(E), τ≤1Rα∗Gm) = H1

Zar(P(E), Rα∗Gm) = H1
ét(P(E),Gm) =

Pic P(E). The class ξ is the image under (5.4) of the class of the tau-
tological bundle O(1) in Pic P(E).



26 BRUNO KAHN

We note that the morphism (5.3) induces, for all q ∈ [0, n], a mor-
phism of truncated complexes (use the formula τ≤n(A[i]) = (τ≤n+iA)[i])

(5.5)
r∐
i=0

(τ≤q−iB/2
ν(n− i)X)[−2i]→ Rπ∗τ≤qB/2

ν(n)P(E).

Since the corresponding filtration by successive truncations on the
left hand side of (5.3) is exhaustive, in order to prove that (5.3) is an
isomorphism it suffices to prove that it induces an isomorphism on the
successive cones of (5.5), that is, on

r∐
i=0

Rq−iα∗µ
⊗(n−i)
2ν [−q − i]→ Rπ∗R

qα∗µ
⊗n
2ν [−q]

or on

(5.6)
r∐
i=0

Rq−iα∗µ
⊗(n−i)
2ν [−i]→ Rπ∗R

qα∗µ
⊗n
2ν .

Note that the morphism in (5.6) is induced by the powers of the
image of ξ in H1

Zar(P(E), R1α∗µ2ν ).
We now want to mimick the proof of [23, Lemma 8.11]. For this, it is

convenient to introduce cycle homology groups as in [50]. Recall that,
for any i ∈ Z, the functor on fields

k 7→ (Hq(k, µ
⊗(q+i)
2ν ))q≥0

is a cycle module over fields of characteristic 6= 2 in the sense of Rost
(loc. cit., Remark 2.5). For any Z[1/2]-scheme X, we define

Ap(X,H
q(µ⊗n2ν ))

as the p-th homology group of the complex

· · · →
∐

x∈X(p)

Hp+q(k(x), µ
⊗(p+n)
2ν )→ · · · →

∐
x∈X(0)

Hq(k(x), µ⊗n2ν )→ 0

defined by Kato [39]. Here X(p) denotes the set of points of dimension
p in X. (If q < 0, the terms of this complex are of course 0 as soon as
p+ q < 0.) If X is equidimensional of dimension d, we set

Ap(X,Hq(µ⊗n2ν )) = Ad−p(X,H
d+q(µ⊗d+n

2ν ))

and extend this definition by additivity if X is a disjoint union of
equidimensional schemes.

IfX is smooth over a field (resp. a discrete valuation ring), the Bloch-
Ogus theorem (resp. the Bloch-Ogus-Gillet theorem of [24]) gives an
isomorphism

(5.7) Ap(X,Hq(µ⊗n2ν )) ' Hp
Zar(X,R

qα∗µ
⊗n
2ν ).
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The interest of the cycle homology groups is that they tautologi-
cally satisfy a localisation theorem: if Z is a closed subset of X, with
complementary open set U , there are long exact sequences [50, p. 356]

· · · → Ap(Z,H
q(µ⊗n2ν ))→ Ap(X,H

q(µ⊗n2ν ))→ Ap(U,H
q(µ⊗n2ν ))

→ Ap−1(Z,Hq(µ⊗n2ν ))→ . . .

In particular, if X and Z are regular and Z is purely of codimension
c in X, we get Gysin exact sequences

(5.8)

· · · → Ap−c(Z,Hq−c(µ
⊗(n−c)
2ν ))→ Ap(X,Hq(µ⊗n2ν ))→ Ap(U,Hq(µ⊗n2ν ))

→ Ap−c+1(Z,Hq−c(µ
⊗(n−c)
2ν ))→ . . .

This allows us to use Noetherian induction. For example

5.1. Lemma. For any Noetherian scheme X of finite Krull dimension
and any r ≥ 0, the map [O, f, r] of [50, 3.5.3]:

Ap(X,H
q(µ⊗n2ν ))→ Ap+r(Ar

X , H
q+r(µ

⊗(n+r)
2ν ))

is an isomorphism, where O = OArX and f is the projection Ar
X → X.

Proof. We do as in [23, proof of th. 8.3], with a slight simplification.
By [50, prop. 4.1 (2)], we first reduce to r = 1. As in [23], we then
reduce by Noetherian induction to the case where X is the spectrum
of a field F . We now have a commutative diagram

0→ A1(A1
F , H

q−1(µ⊗n2ν ))→Hq
ét(A1

F , µ
⊗n
2ν )→A0(A1

F , H
q(µ⊗n2ν ))→ 0

o
x ↗

Hq
ét(F, µ

⊗n
2ν ).

Here the top row is exact by the coniveau spectral sequence (which
is also used below), while the vertical map is an isomorphism by homo-
topy invariance. On the other hand, the diagonal map is split injective,
by (5.7) and the choice of a rational point of A1

F . It follows that it is
bijective and that A1(A1

F , H
q−1(µ⊗n2ν )) = 0. 2

To proceed, we need products

Ap(Y,Hq(µ⊗n2ν ))⊗Hp′

Zar(Y,R
q′α∗µ

⊗n′
2ν )→ Ap+p

′
(Y,Hq+q′(µ

⊗(n+n′)
2ν ))

for Y regular over R. Such products are constructed in [50, §14] when
R is a field, in view of Gersten’s conjecture. When R is a discrete
valuation ring, the only way I found to construct them is to mimick
the arguments of [23, p. 281] and use Gabber’s (unpublished) absolute
cohomological purity theorem. More precisely, for any equidimensional
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Noetherian scheme Y of finite Krull dimension, we have a coniveau
spectral sequence [9, §1]

Ep,q
1 (n) =

∐
x∈Y (p)

Hp+q
x (Y, µ⊗n2ν )⇒ Hp+q

ét (Y, µ⊗n2ν ).

The construction of this spectral sequence shows that there are prod-
ucts

Ep,q
r (n)⊗Hs

ét(Y, µ
⊗t
2ν )→ Ep,q+s

r (n+ t)

cf. [23, p. 276]. Sheafifying these pairings for r = 1 yields pairings of
sheaves, hence on hypercohomology:

Ep,q
2 (n)⊗Hp′

Zar(Y,R
q′α∗µ

⊗n′
2ν )→ Ep+p′,q+q′

2 (n+ n′).

Now, using Gabber’s theorem

Hp
Z(X,µ⊗in ) ' Hp−2c(Z, µ⊗(i−c)

n )

for a regular pair (X,Z) of codimension c, we can identify Ep,q
2 (n) with

Ap(Y,Hq(µ⊗n2ν )) when Y is regular (use [EGA4, cor. 6.12.6] again to
note that any closed integral subscheme of Y has a dense open regular
subset). This gives the desired products.

For any regular scheme Y , we have the Leray spectral sequence

Ep,q
2 = Hp

Zar(Y,R
qα∗µ2ν )⇒ Hp+q

ét (Y, µ2ν ).

In this spectral sequence, E2,0
2 = H2

Zar(Y, µ2ν ) = 0, hence there is a
canonical morphism

H2
ét(Y, µ2ν )→ H1

Zar(Y,H1
ét(µ2ν ))

hence any line bundle on Y has a class in the left hand side. For X
regular and E a vector bundle of rank r, we define homomorphisms

(5.9)
r∐
i=0

Ap−i(X,Hq−i(µ
⊗(n−i)
2ν ))→ Ap(P(E), Hq(µ⊗n2ν ))

by cupping with the powers of the class ξ ∈ H1
Zar(P(E),H1

ét(µ2ν )) of
O(1). When X is smooth over a field or a discrete valuation ring, these
homomorphisms are compatible with those of (5.6) via (5.7). The fact
that (5.6) is an isomorphism will therefore follow from

5.2. Proposition. For any regular X of finite Krull dimension and
any (p, q, n, ν), (5.9) is an isomorphism.

Proof. This is a variant of the proof of [23, Lemma 8.11]. Using
Noetherian induction (this time with the help of (5.8)), we again reduce
to the case where X is the spectrum of a field F . Then the vector
bundle E is trivial. We can now finish as in loc. cit., using Lemma 5.1
to argue by induction on r (see also [15, prop. 3.7]). 2
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5.1.2. Higher Chern classes. To define the ci,j, we could proceed di-
rectly along the lines of [23], using the Hurewicz homomorphism with
finite coefficients as in [52]; however, for our purposes, we are forced to
do something slightly more complicated.

As in [23, p. 225], we can interpret (5.2) as a map of simplicial
sheaves over XZar

Ci : BGL(OX)→ K(B/2ν(i), 2i)

where the right hand side is a sheaf of generalised Eilenberg-Mac Lane
spaces (the Dold-Kan construction). Applying the functor Z∞ of Bousfield-
Kan, noting that up to homotopy this transforms the left hand side
into ΩBQP(OX) (the sheaf associated to Quillen’s Q-construction)
and does not change the right hand side, we get, up to zig-zags of weak
equivalences, a new map of simplicial sheaves, that we still denote by
Ci:

(5.10) Ci : ΩBQP(OX)→ K(B/2ν(i), 2i).

For any k ≥ 2, let P k(2ν) be a Moore space of level k (denoted by
Y k in [52, p. 259]), and let M(2ν) be the Moore spectrum for Z/2ν : we
have ΣP k(2ν) = P k+1(2ν) and M(2ν) = Σ∞−k+1P k(2ν) for any k ≥ 2,
see A.4.

We shall show that (5.10) refines into a collection of maps, for 2 ≤
k ≤ 2i:

(5.11) C
(k)
i : Hom(P k(2ν),ΩBQP(OX))→ K(B/2ν(i), 2i− k).

For this, let H(C) denote the Eilenberg-Mac Lane spectrum associ-
ated to a complex of abelian groups C; for C = Z/m[0], let us abbre-
viate this by H(m). If C is a complex of sheaves of abelian groups over
XZar, we denote by H(C) the corresponding sheaf of Eilenberg-Mac
Lane spectra. We note that there is a canonical weak equivalence

H(Z) ∧M(2ν) ' H(2ν).

From the unit morphism Σ∞ → H(Z) and this equivalence, we there-
fore deduce a morphism (mod 2ν Hurewicz morphism):

M(2ν)
hu−−→ H(2ν).

Let I be an injective Z/2ν-resolution of B/2ν(i). Denote by X the
simplicial sheaf ΩBQP(OX). By adjunction in the Dold-Kan equiva-
lence of categories (e.g. [59, 5.32]), we can interpret Ci as a homotopy
class of maps

Ci : C∗(X )⊗ Z/2ν → I[2i]
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where C∗ denotes the standard chain complex. We have a formal ad-
junction computation, where H (resp. SH) denotes the homotopy cat-
egory (resp. the stable homotopy category) and the Homs are internal
Homs:

ΣHomSH(M(2ν),Σ∞X ) = ΣHomSH(Σ∞−k+1P k(2ν),Σ∞X )

' ΣHomSH(Σ∞P k(2ν),Σ∞+k−1X ) ' ΣkHomSH(Σ∞P k(2ν),Σ∞X )

' Σ∞+kHomH(P k(2ν),Ω∞Σ∞X )

from which we deduce a chain of maps, for any k ∈ [2, 2i]:

[C∗(X )⊗ Z/2ν , I[2i]] ' [X ∧H(2ν),H(I[2i])]

hu∗−−→ [X ∧M(2ν),H(I[2i])]
δ−−→ [ΣHomSH(M(2ν),Σ∞X ),H(I[2i])]

' [Σ∞+kHomH(P k(2ν),Ω∞Σ∞X ),H(I[2i])]

' [HomH(P k(2ν),Ω∞Σ∞X ),K(B/2ν(i), 2i− k)]

θ−−→ [HomH(P k(2ν),X ),K(B/2ν(i), 2i− k)].

Here hu∗ is induced by the mod 2ν Hurewicz homomorphism defined
above, δ (an isomorphism) comes from one of the (fixed) two “good”
S-duality isomorphisms M(2ν)∨ ' Σ−1M(2ν) of A.2 and θ is induced

by the stabilisation map X → Ω∞Σ∞X . The map C
(k)
i is the image of

Ci under this chain.
For 2 < k ≤ 2i, there are tautological weak equivalences

Hom(P k(2ν),X )
∼−→ ΩHom(P k−1(2ν),X )

K(B/2ν(i), 2i− k)
∼−→ ΩK(B/2ν(i), 2i− k + 1)

and it is clear, by construction, that the diagram

(5.12)

Hom(P k(2ν),X )
∼−−−→ ΩHom(P k−1(2ν),X )

C
(k)
i

y ΩC
(k−1)
i

y
K(B/2ν(i), 2i− k)

∼−−−→ ΩK(B/2ν(i), 2i− k + 1)

commutes.
Taking homotopy groups of global sections, we get composite maps

c
(k)
i,j : πj(Hom(P k(2ν),ΩBQP(X)))

→ πj(H·Zar(X,Hom(P k(2ν),ΩBQP(OX)))

→ πj(H·Zar(X,K(B/2ν(i), 2i− k)))

or
c

(k)
i,j : Kj+k(X,Z/2

ν)→ H2i−j−k
Zar (X,B/2ν(i))
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for k ≥ 2 and j + k ≤ 2i. Here we denote by H·Zar(X,Y) the global
sections of a functorial simplicial cofibrant or flasque resolution of a
simplicial sheaf Y , lifting the functor RΓ(X,Y) of [8]. The most con-
venient is to use the Godement resolution of Y , as in [59, def. 1.33],
where this is done for a (pre)sheaf of fibrant spectra. Diagram (5.12)
shows that

c
(k)
i,j = c

(k−1)
i,j+1 for j + k ≤ 2i and 2 < k ≤ 2i.

5.3. Definition. We denote by ci,j : K2i−j(X,Z/2
ν) →

Hj
Zar(X,B/2

ν(i)) the homomorphism c
(k)
i,l for any pair (l, k) such that

l + k = 2i− j and 2 ≤ k ≤ 2i.

This homomorphism is therefore defined only for 2i − j ≥ 2. For
2i− j = 1, Gillet’s Chern classes from integral K-theory exist and are
group homomorphisms; they therefore induce homomorphisms

(5.13) ci,2i−1 : K1(X)/2ν → H2i−1
Zar (X,B/2ν(i)).

Finally, for 2i − j = 0, the Chern classes defined in A) induce non-
additive maps

ci : K0(X)→ H2i
Zar(X,B/2

ν(i)).

It is not true in general that the ci factor through K0(X)/2ν (com-
pare [52, II.2.3]). For example, if k is a field, X = Pnk and x = [O(1)] ∈
K0(X), then c2ν (2

νx) = c1(x)2ν , which is nonzero for n > 2ν . Using
Newton polynomials in the ci rather than the ci themselves, we get how-
ever homomorphisms si : K0(X)/2ν → H2i

Zar(X,B/2
ν(i)). Note that, if

X is smooth over a field, the latter group coincides with CH i(X)/2ν

by the Bloch-Ogus theorem.

5.2. Relationship with Soulé’s étale Chern classes. Pushing trun-
cated étale cohomology to étale cohomology, we get composite classes

cét
i,j : K2i−j(X,Z/2

ν)→ Hj
Zar(X,B/2

ν(i))→ Hj
ét(X,µ

⊗i
2ν ).

5.4. Lemma. If X is affine, cét
i,j coincide with Soulé’s étale Chern class

c̄i,j [52, II.2.3].

Proof. Soulé’s Chern classes are defined via the mod 2ν Hurewicz
homomorphisms

Ki(A,Z/2
ν)→ Hi(GL(A),Z/2ν)

which are themselves defined by means of the canonical generators of
Hi−1(P i(2ν),Z/2ν). Our version of the mod 2ν Hurewicz homomor-
phisms rather uses the canonical generators of H i−1(P i(2ν),Z/2ν) and
S-duality. It is easy to check that these two definitions are compatible.
2
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If X = SpecA for A a local ring, the group H i(XZar, B/2
ν(n)) re-

duces to

• H i
ét(X,µ

⊗n
2ν ) for i ≤ n

• 0 for i > n.

5.5. Lemma. Let A be a local algebra over Z[1/2], and B/A a finite
étale extension. Then, for all i, j,

ici,j ◦ f∗ = if∗ ◦ ci,j
where f is the morphism SpecB → SpecA.

Proof. We proceed in 4 steps, as usual:
I) A is a field. We may assume B is a field as well. The claim follows

from Lemma 5.4 and [52, proof of th. 2 ii)].
II) A is a local ring of a scheme smooth over a Dedekind domain.

We reduce to I) by Gillet’s Bloch-Ogus theorem, which implies that
the étale cohomology of A injects into that of its field of fractions.

III) A is a local ring of a scheme of finite type over a Dedekind
domain. We use Hoobler’s henselian couple trick [29], noting that étale
coverings of SpecA lift, plus Gabber’s rigidity result [18].

IV) The general case. Passage to the limit. 2

6. Proof of Theorem 3

6.1. Effect of the Chern classes on hypercohomology. We now
examine the effect of applying total global sections to (5.11) in more
detail. For any sheaf Y of simplicial sets on X, there is by [8, Th. 3
and Remark p. 285] a “fringed” spectral sequence

Ep,q
2 = Hp

Zar(X, π−q(Y))⇒ π−p−q(H·Zar(X,Y))

with fringe effect concentrated on the line p+ q = 0.
By functoriality of H·, any morphism of simplicial sheaves induces a

corresponding morphism of spectral sequences. Applying this to C
(k)
i ,

we get a morphism from the spectral sequence

(6.1) Ap,q2 = Hp
Zar(X,Kk−q(Z/2

ν))⇒ π−p−q(H·Zar(X,ΩBQP(OX)))

to the spectral sequence

(6.2) Bp,q
2 (i) = Hp

Zar(X,H
2i+q−k(B/2ν(i)))⇒ H2i+p+q−k

Zar (X,B/2ν(i)).

The corresponding morphism Ap,q2 → Bp,q
2 is Hp

Zar(X, c
(k)
i,−q) =

Hp
Zar(X, ci,2i+q−k) (Definition 5.3).
For both spectral sequences, the simplicial sheaf in question is an

infinite loop space. One could therefore use the technique of [8, §3,
Remark 1] to deloop them and get rid of the fringe effect. However,
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C
(k)
i is not an infinite loop map, hence does not yield a morphism of the

corresponding delooped spectral sequences. In other words, we cannot

get rid of the fringe effects as long as we work with the C
(k)
i .

6.1. Lemma. Assume X quasi-compact and quasi-separated. Then
a) The Chern classes of Definition 5.3 extend to Chern classes from
Thomason-Trobaugh K-theory

ci,j : KTT
2i−j(X,Z/2

ν)→ Hj
Zar(X,B/2

ν(i)).

b) The spectral sequence (6.1) “abuts” to KTT
k−p−q(X,Z/2

ν) (with fringe
effect, of course).

Proof. Consider the morphism of simplicial sheaves

ΩBGQ(OX)→ Ω∞KTT (OX)
≈−−→ Ω∞KB(OX)

stemming from (4.3). Note that the right map is a weak equivalence
by [62, th. 7.5 a)]. Taking total global sections, we get a commutative
diagram of simplicial sets

ΩBGQ(X) −−−→ Ω∞KTT (X)
≈−−−→ Ω∞KB(X)y y ≈

y
H·Zar(X,ΩBGQ(OX))

≈−−−→ H·Zar(X,Ω
∞KTT (OX))

≈−−−→ H·Zar(X,Ω
∞KB(OX))

where the right vertical map is a weak equivalence by the Thomason-
Trobaugh descent theorem [62, th. 10.3] (or rather its analogue for
the Zariski topology) and the fact that homotopy limits commute with
desuspension (compare [59, (5.3)]), the top and bottom right horizontal
maps are weak equivalences again by [62, th. 7.5 a)] and the bottom
left horizontal map is a weak equivalence as well by [62, prop. 3.10].
Hence there is a weak equivalence

Ω∞KTT (X) ≈ H·Zar(X,ΩBGQ(OX))

and a weak equivalence

Hom(P k(2ν),Ω∞KTT (X)) ≈ H·Zar(X,Hom(P k(2ν),ΩBGQ(OX)))

for k ≥ 2. 2

6.2. Proof of Theorem 3.

6.2. Proposition. Let A be a non-exceptional local Z[1/2]-algebra. Let
(i, j), (i′, j′) be such that j ≤ i, j′ ≤ i′ and 2i−j = 2i′−j′ ≥ 2. Suppose
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ν ≥ 2. Then the composite

Hj
Zar(A,B/2

ν(i)) = Hj
ét(A, µ

⊗i
2ν )

βi,j−−→ K2i−j(A,Z/2
ν)

i′ci′,j′−−−→ Hj′

Zar(A,B/2
ν(i′))

is 0 if (i′, j′) 6= (i, j) and is multiplication by (−1)i−1i! if (i, j) = (i′, j′).
Here βi,j is the (i, j)-th component of the isomorphism B2i−j

A of Theo-
rem 1.

Proof. By the proof of Theorem 1 b), the map u2i−j
A of diagram (3.2)

is surjective; hence the étale cohomology ring H∗ét(A, µ
⊗∗
2ν ) is generated

by H0
ét(A, µ2ν ) and H1

ét(A, µ2ν ) up to transfer. By construction, the βi,j

commute with product and transfer. By Lemma 5.5, i′ci′,j′ commutes
with transfer and, by [66, th. 3.2 (iv)], Soulé’s product formula [52, th.
1]

ci′,j′(x · y) =
∑

i1+i2=i′

i1≥m/2,i2≥n/2

− (i′ − 1)!

(i1 − 1)!(i2 − 1)!
ci1,j1(x) · ci2,j2(y)

holds for any (x, y) ∈ Km(A,Z/2ν)×Kn(A,Z/2ν) with m+n = 2i− j
since A is local (in the formula, j1 = 2i1−m, j2 = 2i2−n). Here, if m

or n is 1, we use the Chern class of (5.13), noting that K1(A)/2ν
∼−−→

K1(A,Z/2ν). Thus we are reduced to the cases (i, j) = (1, 0) and
(i, j) = (1, 1), which are trivial. 2

6.3. Corollary. Let A, ν be as in Proposition 6.2. Then, for all n ≥ 2,
the kernel and cokernel of the map

Kn(A,Z/2ν)
(ici,2i−n)−−−−−→

∏
i≥1

H2i−n
Zar (A,B/2ν(i))

are killed by n!.

Proof. This follows from Theorem 1 a) and Proposition 6.2. 2

6.4. Corollary. For any X and any p ≥ 0, n ≥ 2, the map

Hp
Zar(X,

∏
i≥1

ici,2i−n)

has kernel and cokernel killed by n!. 2

Proof of Theorem 3. We may assume that −1 is a square on X; the
general case follows from this one by a transfer argument. Consider
the morphism of spectral sequences from (6.1) to the direct product
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of all (6.2) (k = 2, i ≥ 1) induced by all iC
(2)
i , i ≥ 16. Note that,

in this direct product, each Ep,q
r -term actually contains only a finite

number of nonzero factors, and the same is true for the “abutment”.
Therefore, this direct product operation does not make convergence
problems worse. By Corollary 6.4, the induced map

Ap,q2 →
∏
i≥1

Bp,q
2 (i)

has kernel and cokernel killed by (2 − q)!. The conclusion for
KTT
n (X,Z/2ν), n ≥ 3 now follows from the following lemma, which

is an easy consequence of computing two hypercohomology spectral
sequences:

6.5. Lemma. Let C · → D· be a morphism of complexes. Assume that,
for some q, the map Ci → Di has kernel killed by mi and cokernel
killed by ni for i ∈ {q − 1, q, q + 1}, where mi, ni are nonzero integers,
except that nq+1 is possibly 0. Then the map Hq(C ·) → Hq(D·) has
kernel killed by mqnq−1 and cokernel killed by mq+1nq. 2

Note that this lemma takes care of the fringe effect as, by definition,
Ap,−pr+1 is a subgroup of Hp,−p(Ar), and similarly for the Br(n).

If X is smooth over a field or a discrete valuation ring, then
Hp

Zar(X,Hq(B/2ν(n))) = 0 for p > q by Gersten’s conjecture, hence
the fringe effect disappears (compare [8, Th. 3 and Remark 1 p. 290])
and we can extend the conclusion to n = 2. 2

Appendix A. Moore spectra and S-duality

A.1. Let S denote the sphere spectrum. Let M(n) be the mod n Moore
spectrum, defined as the homotopy cofibre of multiplication by n on
S, so that we have a homotopy fibre sequence (in the stable homotopy
category)

S ρn−−→M(n)
δn−−→ ΣS n−−→ ΣS.

Here we take up the same notation as in [34, Appendix B].

A.2. S-duality. Taking the S-dual of this sequence, we get a (non-
canonical) isomorphism in the stable homotopy category:

ϕ : M(n)∨ ' Σ−1M(n)

6As all simplicial sheaves are sheaves of H-spaces, it makes sense to multiply
C

(2)
i by an integer.
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such that the following diagram of exact triangles commutes:

Σ−1S δ∨n−−−→ M(n)∨
ρ∨n−−−→ S n−−−→ S

||
y ϕ

y −1

y ||
y

Σ−1S −Σ−1ρn−−−−−→ Σ−1M(n)
−Σ−1δn−−−−→ S −n−−−→ S

(recall that shifting exact triangles in an triangulated category changes
signs; on the other hand, the sign in the S-duality is +).

An easy double dual computation shows that, if ϕ is such an isomor-
phism, then −Σ−1ϕ∨ is another one.

Two choices of ϕ differ by an element of the form ρ∨n ◦ λ for λ ∈
[S,Σ−1M(n)] = π1(S,Z/n). This group is 0 for n odd: in this case,
ϕ is unique and ϕ = −Σ−1ϕ∨. If n = 2r with r ≥ 2, then ϕ +
Σ−1ϕ∨ = ρ∨n ◦ ξ for ξ ∈ π1(S,Z/n) ' Z/2. If ϕ1 = ϕ + ρ∨n ◦ λ for λ
as above, then ρ∨n ◦ λ and Σ−1λ∨ ◦ ρn define two elements of order ≤ 2
in [M(n)∨,Σ−1M(n)] ' End(M(n)) ' Z/n. Since they are obviously
zero or nonzero together, their sum is always zero, which shows that
we also have ϕ1 + Σ−1ϕ∨1 = ρ∨n ◦ ξ. So ρ∨n ◦ ξ, and hence ξ, does not
depend on the choice of ϕ.

For r = 1, the same argument works since End(M(2)) ' Z/4 is still
cyclic. So ξ is still well-defined in this case. I don’t know whether this
element is 0 or not.

A.3. For E a spectrum, we write πi(E,Z/n) := πi(E ∧M(n)): this is
the homotopy of E with coefficients Z/n. By S-duality (see A.2), this
is also [Σi−1M(n), E]. If n is odd, there is exactly one choice for this
identification to be compatible with ρn and δn in a suitable sense; if n
is even there are two such choices.

A.4. To define homotopy of a space with coefficients Z/n, we need an
unstable version of M(n). For i ≥ 2, let P i(n) denote a Moore space of

level i, so that there is a homotopy cofibre sequence Si−1 n−−→ Si−1 −−→
P i(n): we have ΣP i(n) ' P i+1(n) and M(n) ' Σ∞−i+1P i(n) for any
i ≥ 2. For a pointed space X, we then define πi(X,Z/n) as [P i(n), X]
for i ≥ 2 (we won’t need to discuss a definition for i = 0, 1 here). If
X = Ω∞E for some spectrum E, then πi(X,Z/n) = πi(E,Z/n) by
A.3.

Appendix B. The Bott element construction

B.1. We shall need the following assumption on a unital ring spectrum
E:
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B.2. Assumption. (ρE)∗η
2 = 0 in π2(E)/2, where η ∈ πS1 is the Hopf

map and ρE : S→ E is the unit map of E.

If E = KX for a scheme X, the assumption is that {−1,−1} is
divisible by 2 in K2(X).

B.3. Lemma. a) Assumption B.2 is satisfied when E is of the form
j(2,∆), where ∆ is a closed, torsion-free subgroup of Z∗2 and j(2,∆) is
the unital ring spectrum defined in [34, def. 4.9 and C.3].
b) Assumption B.2 is satisfied for E = KX where X is a non-exceptional
scheme.

Proof. In fact, we even have ρ∗η
2 = 0 in π2(E) in cases a) and b):

a) The group π2(j(2,∆)) is 0 since, if ∆ is torsion-free, j(2,∆) is
the Bousfield-Kan localisation at 2 of the spectrum of the algebraic
K-theory of a suitable finite field, or of the algebraic closure of a finite
field if ∆ = {1} [34, prop. C.13].

b) We may first assume X connected, and then X = SpecR, where
R is a suitable (ind-)ring of algebraic integers localised away from 2
(Let ∆X ⊂ Z∗2 be the image of the dyadic cyclotomic character of
X: consider the largest R such that the map X → Spec Z[1/2] factors
through SpecR, so that ∆X = ∆SpecR). The following proof was kindly
communicated by the referee: let S = R[t]/(t2 + 1). Since R is not
exceptional, µ2∞(S) is finite, say of order 2n with n ≥ 2, and the norm
of a primitive root ζ is −1. Then

{−1,−1} = {N(ζ),−1} = N({ζ,−1}) = 2n−1N({ζ, ζ})
= 2n−1N({−1, ζ}) = 0 ∈ K2(R)

hence {−1,−1} = 0 in K2(X).
Another proof is to use a) and the results of Appendix C. 2

B.4. Remark. Assumption B.2 is verified for KX for more schemes X
than indicated in Lemma B.3. Namely, if X = SpecR where R = OS

is a ring of S-integers of a number field F such that the class group of
R has odd order, then the map

K2(R)/2
hv−−→

∐
v∈S

v not complex

µ2

is injective, where hv is the collection of 2-power norm residue symbols
[58, th. 6.2]. Then {−1,−1} is 0 in K2(R)/2 if and only if (−1,−1)v =
0 for any dyadic or real place v of F . This happens if and only if F is
totally imaginary and, for any dyadic v, the local degree [Fv : Q2] is
even.
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Therefore, assumption B.2 is verified for any R-scheme X, for R as
above.

B.5. The Bott element construction is described inter alia in [59, A.7],
[44, p. 827] and [34, prop. 6.3]. We recall a version of this construction:

Let n > 1 and X be a scheme on which n is invertible. We denote
by µn(X) the group of n-th roots of unity in R = Γ(X,OX). The Bott
element construction

β : µn(X)→ K2(X,Z/n)

is given by the following sequence of maps:

µn(X)= nπ1(BR∗)

o
x

π2(BR∗,Z/n) π2(BGL1(R),Z/n)

α

y
π2(BGL(R)+,Z/n) K2(R,Z/n)y

K2(X,Z/n).

B.6. The spaces BR∗ and BGL(R)+ are both commutative H-groups,
hence π2(BR∗,Z/n) and K2(R,Z/n) are both abelian groups. More-
over, the Bockstein maps

π2(BR∗,Z/n)→ nπ1(BR∗)

K2(R,Z/n)→ nK1(R)

are group homomorphisms (the first one is the isomorphism used to
define the Bott element map). However, the map α is induced by the
inclusion BGL1(R) → BGL(R)+, which is a map between H-spaces
but not an H-space map; therefore, it is not clear when α is a group
homomorphism. This issue is tackled in none of the above references.

In fact, let ζ1, ζ2 ∈ µn(R), Then, by the above remarks, the element

ϕ(ζ1, ζ2) = α(ζ1) + α(ζ2)− α(ζ1ζ2)

lies in K2(R)/n.

B.7. Proposition. ϕ(ζ1, ζ2) =
(
n
2

)
{ζ1, ζ2}.

Proof. By [66, p. 254, formula before Lemma 1.4.1], the expression
ϕ(ζ1, ζ2) −

(
n
2

)
{ζ1, ζ2} lies in the kernel of the mod n Hurewicz homo-

morphism hn. (Actually, the said formula is stated there only for n
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even, but one sees that it also holds for n odd by reading the two pre-
vious pages.) On the other hand, h2 is split injective by [1, cor. 3.4
(a)]. 2

B.8. Corollary. a) If n 6≡ 2 (mod 4), β is a group homomorphism.
b) If n = 2, β is quadratic; it is a group homomorphism if and only if
KR verifies assumption B.2.

Proof. If n is odd, then
(
n
2

)
≡ 0 (mod n). If n is even, then 2{ζ1, ζ2} =

0 for any ζ1, ζ2 ∈ µn(R) (compare [66, Lemma 1.4.1]). This takes care
of a). In case b), we reduce to the case R connected and then to n = 2
by using a); then the result is clear since µ2(R) = {±1}. 2

Appendix C. Bott elements for arbitrary non
exceptional schemes

The aim of [33] was to construct a theory of Bott elements on the
homotopy level for the algebraic K-theory of non-exceptional schemes.
This was achieved in two special cases: for Z[1/2, i]-schemes and for
schemes over Fp (p odd). Using a recent result of Hinda Hamraoui [27],
we shall extend the construction to arbitrary non-exceptional schemes
(over Z[1/2]).

Recall that, to any closed subgroup ∆ ⊆ Z∗2, we associated in [34,
§§3, 4 and Appendix C] two 2-local spectra and a map between them:

Σ(2,∆)
`∆−−→ j(2,∆).

In case ∆ = 1 + 2nZ2, Σ(2,∆) is just the localisation at 2 of the
suspension spectrum Σ∞(B(Z/2n)+), cf. [34, Remark 3.5 (1)]7, and
the spectrum j(2,∆) is obtained from Σ(2,∆) by inverting the Bott
element and then truncating above 0, cf. [34, Def. 4.9]. In general, see
[34, Appendix C].

Here we shall only be concerned by the case where ∆ is torsion-free.
In this case, let R∆ be the (ind-)ring of integers of the 2-cyclotomic
extension of Q which corresponds to ∆. Pick a residue field E of
R∆ of odd characteristic such that the image of the dyadic cyclotomic
character of E in Z∗2 is ∆ (there are infinitely many of them by the
Dirichlet’s theorem on the arithmetic progression). Then there is a

7There is an obvious misprint in this remark: the + should be in index as an
added disjoint base point, not in exponent as a plus construction.
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homotopy commutative diagram

Σ(2,∆)
Φ∆

−−−→ LKR∆

`∆

y Z
ZZ~

ΦE

y
j(2,∆)

βE−−−→
∼

LKE

where L denotes localisation at 2 and βE is a weak equivalence [34,
(C2) p. 1002].

The main theorem of Harris-Segal [28] is equivalent to the fact that
Ω∞ΦE has homotopy sections, at least on the level of connected com-
ponents of 0 8. Hence the same holds for the map Ω∞`∆.

Let s be a homotopy section of Ω∞ΦE, on the level of connected
components of 0. Assume that ∆ ⊆ 1 + 4Z2. By the main result of
Dwyer-Friedlander-Mitchell [13], the maps Ω∞Φ∆ and Ω∞Φ∆◦s◦Ω∞ΦE

are homotopic. By the main result of Hamraoui [27], this extends to
the case where ∆ is not contained in 1 + 4Z2. Therefore, the same
holds for a section of Ω∞0 `

∆, the restriction of Ω∞`∆ to the connected
components of 0.

As in [34, def. 5.4], we may now define a map

β̄∆ : Ω∞j(2,∆)→ Ω∞LKR∆

also in the case where ∆ 6⊆ 1 + 4Z2. Because of the problem on π0, we
define this map separately on the connected components of 0 and on π0.
Picking a section s of Ω∞0 `

∆, we check as in [34, th. 5.3] that the map
Ω∞0 Φ∆ ◦ s does not depend on the choice of s: this is the restriction of
β̄∆ to the connected components of 0. We then map π0(j(2,∆)) = Z(2)

(cf. [34, Prop. C.13 (a)]) to π0(LKR∆) = K0(R∆)⊗Z(2) by sending 1
to 1. The map β̄∆ is now defined as the product of these two maps.

To any non-exceptional scheme X, we now associate a spectrum
j2(X) as the wedge of the j(2,∆i) where the Xi are the connected
components of X and ∆i is the image of π1(Xi) in Z∗2 by the cyclotomic
character. as in [34, §9], we define a map

β̄X : Ω∞j2(X)→ Ω∞LKX

by simply pulling back the previous maps via the canonical projections
Xi → Spec(R∆i). As in [34, th. 9.3], one proves that β̄X commutes
with base change, transfers in the semi-local case, and products when
X is essentially of finite type over Z.

8In case ∆ ⊆ 1+4Z2, this restriction is unnecessary. However, in the other case,
Imπ0(ΦE) = 2K0(E)⊗ Z(2), so the correct statement needs a little care.
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[SGA4 1/2] P. Deligne, Séminaire de Géométrie algébrique du Bois-Marie (SGA 4
1/2), Lect. Notes in Math. 569, Springer Verlag, 1977.



44 BRUNO KAHN

[68] The Lake Louise problem session, in Algebraic K-theory: connections with
geometry and topology (J.F. Jardine and V.P. Snaith, ed.), NATO ASI Series,
Ser. C. 279, 517–550, Kluwer, 1989.
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