
SOME REMARKS ON THE SMASH-NILPOTENCE
CONJECTURE

BRUNO KAHN

ABSTRACT. We discuss cases where Voevodsky’s smash nilpotence con-
jecture is known, and give a few new ones. In particular we explain a
theorem of the cube for 1-cycles, which is due to Oussama Ouriachi.

To the memory of Jacob Murre

Introduction. Let X be a smooth projective variety over a field k. An al-
gebraic cycle Z on X is said to be smash-nilpotent if there exists an integer
N > 0 such that ZN is rationally equivalent to 0 over XN . This notion is
due to Voevodsky [29], who proved:

Theorem 1 ([29, Cor. 3.2]). Any cycle on X (with rational coefficients)
which is algebraically equivalent to 0 is smash-nilpotent.

This was also proven independently by Voisin [28, p. 267]. Their (identi-
cal) proof reduces to the case of 0-cycles on a curve, by a classical trick due
to Weil and Bloch.1 For such a curve C, we note that it is very close in spirit
to Kimura’s proof that the Chow motive h1(C) is oddly finite-dimensional
[16, Th. 4.2] (a result originally due to Shermenev and reproven by Kün-
nemann in [17, Th. 3.3.1]). Their argument is more elementary, using only
0-cycles on symmetric powers of C, but actually follows from the finite
dimensionality of h1(C) by [16, Prop. 6.1].

Voevodsky furthermore introduced the

Conjecture 1 ([29, Conj. 4.2]). Any cycle numerically equivalent to 0 is
smash-nilpotent.

This conjecture immediately implies that homological equivalence coin-
cides with numerical equivalence for any Weil cohomology, since a smash-
nilpotent cycle is clearly homologically equivalent to 0. In [29, Prop. 4.6],
Voevodsky shows that it would follow from the existence of an abelian
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1Note that the statement makes sense and is true for any separated k-scheme of finite

type, with the same proof.
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category of mixed motives with suitable properties. On the other hand,
O’Sullivan proved in [23, p. 7] (see also [2, 11.5.3]):

Theorem 2. Conjecture 1 follows from Grothendieck’s standard conjecture
B plus the Bloch-Beilinson–Murre (BBM) conjectures [9].

In turn, the BBM conjectures also follow from the existence of an abelian
category of mixed motives [9, Prop. 4.4 and Th. 5.2].

O’Sullivan’s proof rests on a well-known lemma of Nori [21, Prop. 5.3],
that we state here because we shall use it later:

Lemma 1. If X is a connected smooth projective k-variety of dimension
d ≥ 2n+ 1 embedded in a projective space P, then for any α ∈ CHn(X)Q
there is a smooth linear section i : Y ↪→ X of dimension 2n + 1 and a
β ∈ CHn(Y )Q such that α = i∗β. If α is homologically trivial for a Weil
cohomology verifying the weak Lefschetz theorem, so is β.

When is Conjecture 1 known? As a consequence of Theorem 1, it is true
whenever numerical and algebraic equivalences agree, i.e. for the following
types of cycles:

• cycles of dimension 0;
• cycles of codimension 1 (Matsusaka’s theorem).

The first published example of cycles verifying Conjecture 1 without be-
ing algebraically equivalent to 0 was given in [14, Prop. 1]: it holds for all
“skew cycles” on an abelian variety. The proof relies on [16, Prop. 6.1]
which, as we saw, can be used to prove Theorem 1.2 In particular, Conjec-
ture 1 holds for abelian 3-folds; this had already been shown by O’Sullivan
in [23, bot. p. 7] by observing that the hypotheses of Theorem 2 are verified
in this case. I regret to have noticed it only recently.

Next, Sebastian proved Conjecture 1 in [25] for 1-cycles on products of
curves, hence on abelian varieties, by an elaborate combinatorial argument.
This argument was clarified in 2014 by Oussama Ouriachi (unfortunately
unpublished), who found that it is a consequence of a “theorem of the cube
for 1-cycles” (Corollary 2 below).

The main purpose of this note is to present Ouriachi’s result, that we shall
recover in a stronger form (Theorem 4 and Corollary 1). I take the opportu-
nity to list all “tricks” I know to obtain new cases of Voevodsky’s conjecture
out of old.: the “charm” of working on this conjecture is that it encompasses
a mix of categorical and geometric inputs, with no clear general picture (at

2To explain this in motivic terms: any morphism of Chow motives Li →M , where L is
the Lefschetz motive, which factors through hj(A)⊗ L⊗i for some abelian variety A and
j odd, is smash-nilpotent; for j = 1 this gives back Theorem 1, and for general j it gives
[14, Prop. 1].
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least for me). This is used in Section 9 to recover several examples from
the literature where Voevodsky’s conjecture has been proven. Since this lit-
erature has become quite large, it would be tedious to check whether all of
them can be recovered in this way (using, possibly, some nontrivial geome-
try); I try to formulate this precisely as a question in Section 10.

I would like to dedicate this small text to Jacob Murre, whose own con-
nection with the subject is clear via the BBM conjectures; Murre was also
keenly interested in Theorem 1.

Notation and conventions. For simplicity, we assume the ground field k
algebraically closed: Conjecture 1 readily reduces to this case. We work
with effective motives modulo an adequate equivalence ∼, whose category
will be denoted by M∼. We adopt the covariant convention: the motive
functor h : Smproj → M∼ is covariant, and we write M(n) = M ⊗
L⊗n for M ∈ M∼, where L is the Lefschetz motive. When ∼ is rational
equivalence (Chow motives), we simply writeMrat =M. If X ∈ Smproj,
we write An∼(X) = M∼(h(X),Ln) (resp. A∼n (X) = M∼(Ln, h(X)) for
the Q-vector space of cycles of codimension (resp. dimension) n on X ,
modulo ∼.

André was the first to explicitly observe that smash-nilpotence also de-
fines an adequate equivalence: we shall denote it by ⊗nil.

1. Schur finiteness and finite dimensionality. Before really starting this
article, we mention an easy result.

In [5], del Angel and Kimura extend the notions of finite dimensionality
and Schur finiteness from objects to morphisms. We refer to Deligne [6,
§1] for a review of Schur functors, and recall

Definition 1 ([5, Def. 1.10]). Let C be a Q-linear symmetric monoidal
category. A morphism f : V → W in C is called evenly (resp. oddly) finite
dimensional if Λn(f) = 0 (resp. Sn(f) = 0 for some n ≥ 0; it is called
finite dimensional if it is a sum of an evenly and an oddly finite dimensional
morphism. The morphism f is called Schur finite if Sλ(f) = 0 for some
Young diagram λ.

In view of the isomorphisms

V ⊗n '
⊕
|λ|=n

Sλ(V )

where the sum is over all Young diagrams of length n, a morphism f is
smash-nilpotent if and only if Sλ(f) = 0 for all λ such that |λ| = n. Thus
the following result is considerably weaker than Voeovdsky’s conjecture for
1-cycles.
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Proposition 1. Any 1-cycle (numerically trivial or not) on a smooth projec-
tive variety X is finite dimensional as a morphism inM.

Proof. Since finite dimensionality is stable under linear combinations [5,
Prop. 1.21], it suffices to prove the proposition for integral 1-cycles. Let z
be such a cycle, with support C ⊂ X an irreducible curve. Letting C̃ be its
normalisation, it suffices to show that the induced morphism f : h(C̃) →
h(X) is finite dimensional. But this is obvious, since h(C̃) is itself finite
dimensional [16]. �

2. Effectivity. For a smash-nilpotent cycle α on a smooth projective vari-
ety X , write exp(α) for the smallest integer N such that α⊗(N+1) = 0. An
interesting question is the following: let S ⊆ CH∗(X)Q be a set of smash-
nilpotent algebraic cycles. Is there an integer N > 0 such that exp(α) ≤ N
for all α ∈ S? As observed in [14, Rem. 2], the answer is positive for
skew cycles on an abelian variety, with explicit bounds given by its Betti
numbers; by the same argument, it is also positive for α ∈ Pic0(X)Q with
exp(α) ≤ 2 dim Pic0

X .
The next result is more difficult. For α ∈ CH0(X)0, write h(α) for the

smallest integer n such that α is rationally equivalent to a difference α1−α0,
where α0 and α1 are effective 0-cycles of degree n: this is the height of α.

Proposition 2. For any n > 0, there exists an integer cn such that h(α) ≤ n
⇒ exp(α) ≤ cn.

Proof. Let K = k(X2n); the 2n projections X2n → X provide 2n rational
points of X over K (“independent Weil generic points"). By a variant of
[20, Lemma p. 56], choose an integral curve Cn on XK passing through
these points, and let C̃n be its normalisation. I claim that we can take cn =
2gn, where gn is the arithmetic genus of C̃n. Indeed, Cn is geometrically
irreducible since it has rational points, hence we may spread it to a closed
subvariety Cn of U ×k X such that the projection Cn → U is (proper and)
flat with geometrically integral fibres, where U is a suitable open subset of
X2n (EGA IV3, Th. 12.2.4). If h(α) ≤ n, by Chow’s moving lemma we
may write α as α1 − α0 where α0 and α1 are effective 0-cycles of degree n
with support contained in U . The fibre of Cn at (α0, α1) is an iintegral curve
Cn(α) on X such that α0 and α1 have support on Cn(α).

Write C̃n for the normalisation of Cn, and C̃n(α) for the fibre of C̃n at
(α0, α1). Then C̃n → U is still projective, so we can apply [8, Cor. III.9.13]
and find that the arithmetic genus of C̃n(α) is still gn. Finally, let C be its
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normalisation (which is smooth since k is algebraically closed); its arith-
metic (hence geometric) genus g is ≤ gn

3. Pulling α back through the finite
surjective morphism C → C̃n(α) → Cn(α) yields a 0-cycle α̃ of degree 0
on C which maps to α, and α̃⊗(2g+1) = 0 implies α⊗(2gn+1) = 0. �

Question 1. In Proposition 2, can one find cn independent of n?

3. An abstract framework. The introduction suggests an approach to Vo-
evodsky’s conjecture by induction on the dimension or codimension of the
cycles considered. To make this precise, let ∼≥∼′ be two comparable ade-
quate equivalence relations (the inequality means that A∼(X) →→ A∼′(X)
for all X). For M ∈M∼ and n ≥ 0, consider the conditions:

M∼(Ln,M)
∼−→M∼′(Ln,M)(V (M,n))

M∼(M,Ln)
∼−→M∼′(M,Ln) .(V ∗(M,n))

If M = h(X), we simply write V (X,n) and V ∗(X,n). The following
extends observations from the introduction.

Lemma 2. a) V (M,n) (resp. V ∗(M,n)) holds for M and N if and only if
it holds for M ⊕N .
b) V (M,n) ⇐⇒ V (M(1), n+ 1) and V ∗(M,n) ⇐⇒ V ∗(M(1), n+ 1).
Suppose that ∼= ⊗nil and ∼′= num. Then
c) V (M, 0) is true for any M .
d) V ∗(M, 1) is true for any M .
In particular, Conjecture 1 holds if dimX ≤ 2. �

4. Reduction to small dimension. Take ∼= ⊗nil and ∼′= hom, for a
Weil cohomology satisfying the weak Lefschetz theorem. Ouriachi ob-
served that Lemma 1 reduces V (−, n) to the case of smooth projective va-
rieties of dimension ≤ 2n + 1. This does not apply to Conjecture 1 unless
one knows that homological and numerical equivalences coincide; this is
the case for n = 1 in characteristic 0 by [19, Cor. 1]. Let us give a proof in
any characteristic. First a lemma:

Lemma 3. Let X be smooth projective of dimension ≥ 3 and let i : Y ⊂
X be a smooth hyperplane section. Then the restriction map on divisors
modulo numerical equivalence is injective and its cokernel is killed by a
power of p, where p is the exponential characteristic of k.

Proof. If p = 1, this follows from [4, Cor. 4.9 b) and Rem. 4.10]. Let us
prove it when p > 1 (this issue was raised in [12, Proof of Th. 2]).4 Using

3If f : E → D is a finite surjective morphism of integral curves, then OD → f∗OE

is injective with cokernel supported on a finite closed subset of D, hence H1(D,OD) →
H1(E,OE) is surjective.

4I thank Yves Laszlo for a discussion leading to this argument.



6 B. KAHN

Weak Lefschetz for l-adic cohomology (l 6= p), we get the injectivity. Then,
[4, Cor. 4.9 b)] shows that Pic(X) → Pic(Ym) is bijective for m large
enough, where Ym is a suitable infinitesimal thickening of Y . It remains
to show that Coker(Pic(Ym)

f∗−→ Pic(Y )) is killed by a power of p, where
f : Y ↪→ Ym is the closed immersion,. Let G (resp. G(m)) be the étale
sheaf of units of Y (resp. of Ym). Then f ∗G(m) is an extension of G by
a sheaf of exponent pr for some r ≥ 0, and we conclude with the long
cohomology exact sequence. �

Theorem 3. Take∼= ⊗nil and∼′= num. LetX ∈ Smproj be of dimension
≥ 3, embedded in a projective space P. If V (T, 1) holds for all smooth
threefold sections of X by linear subspaces of P, then V (X, 1) holds. In
particular, V (M, 1) holds for all M ∈ M if and only if it holds for h(T ),
for all 3-dimensional T ∈ Smproj.

(Of course this is optimal, since surfaces have trivial Griffiths groups.)

Proof. Let Z be a 1-cycle on X . By Lemma 1, one may find T ⊆ X as
in the statement such that Z is rationally equivalent to a 1-cycle Z ′ with
support in T ; the point is to show that, if Z is numerically equivalent to
0, we can choose Z ′ numerically equivalent to 0. Let pX (resp. pT ) be a
projector on X (resp. on T ) as in [12, §2]: I claim that we can choose pX
and pT “compatible”. Namely, choose a lift (D1, . . . Dr) in CH1(X) of a
basis of A1

num(X), whence by Lemma 3 a lift (D′1, . . . D
′
r) in CH1(T ) of

the corresponding basis of A1
num(T ), with D′i = i∗Di. If (C ′1, . . . , C

′
r) is a

lift in CH1(T ) of the dual basis of Anum
1 (T ), then (C1, . . . , Cr) is a lift in

CH1(X) of the dual basis of Anum
1 (X), with Ci = i∗C

′
i. Now the projectors

pX =
∑

Di⊗Ci ∈ CHdimX(X×X), pT =
∑

D′i⊗C ′i ∈ CH3(T×T )

verify i∗ ◦ pT = pX ◦ i∗.
If Z is numerically equivalent to 0, then

Z = (1− pX)Z = i∗(1− pT )Z ′

where (1− pT )Z ′ is numerically equivalent to 0, so we are done. �

Remark 1. Suppose that a threefold T has a Chow-Künneth decomposition
verifying the standard conjecture B; this happens in several cases, namely
abelian threefolds, products of a curve and a surface, complete intersections
– see [11, Prop. 7.2]. By loc. cit., Th. 7.7, we have an isomorphism

Griff(T ) = Ker(Aalg
1 (T )→ Anum

1 (T )) =Malg(L, t3(T ))

where Griff(T ) is the (numerical) Griffiths group of T and t3(T ), a direct
summand of h3(T ), is the “transcendental part” of h(T ). Thus Conjecture
1 for T would follow from the finite dimensionality of t3(T ) – which is
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known only when T is of abelian type (see §6). . . In particular, to the best
of my knowledge Conjecture 1 remains open even for the product of a curve
and a general surface or for a general hypersurface (see also the questions
in Section 10).

5. An unconditional version of Ouriachi’s theorem. Let us say that a
motive M ∈ M∼ is reduced ifM∼(1,M) = 0. If M = h(X) for X ∈
Smproj connected, the choice of a rational point yields a splitting h(X) '
1⊕h+(X) where h+(X) is reduced. This extends to anyM ∈M, yielding
functorial split exact sequences

0→M+ →M → a(M)→ 0

where a(M) is an Artin motive, i.e. (since k is algebraically closed) a sum
of copies of 1 (see [11, Prop. 2.2]).

Lemma 4. If ∼≤ alg, one has M∼(1,M+) = 0 for any M ; hence the
decomposition M 'M+ ⊕ a(M) is unique and functorial.

Proof. We reduce to M = h(X) with X connected; this is then equivalent
to the isomorphism Aalg

0 (X) = Q. �

Theorem 4. Let M1,M2,M3, N ∈M. Then

M⊗nil(L, N ⊗M+
1 ⊗M+

2 ⊗M+
3 ) = 0.

Proof. We have a basic isomorphism, obtained by reducing to the caseN =
h(X), M1 = h(Y ):

(1) (N ⊗M1)+ ' N+ ⊕N ⊗M+
1 .

It reduces us to the case N = 1. We further reduce to Mi = h(Xi) for
Xi ∈ Smproj.

Write X = X1 ×X2 ×X3. Any cycle inM⊗nil(L, h+(X1)⊗ h+(X2)⊗
h+(X3) is the image of a cycle inM⊗nil(L, h(X)) = A⊗nil

1 (X) under the
projection h(X) = h(X1)⊗h(X2)⊗h(X3)→ h+(X1)⊗h+(X2)⊗h+(X3).
Thus, it suffices to prove the result for the image of any [C], where C is a
curve traced on X .

Let C̃ be the normalisation of C. The morphism C̃ → C → X factors
through a morphism

C̃
∆−→ C̃3 (πi)−−→ X1 ×X2 ×X3



8 B. KAHN

where ∆ is the diagonal embedding and πi : C̃ → Xi is the composition
C̃ → C → X → Xi. By Lemma 4, the diagram

M⊗nil(L, h(C̃3)) −−−→ M⊗nil(L, h(X))y y
M⊗nil(L, h+(C̃)⊗3) −−−→ M⊗nil(L, h+(X1)⊗ h+(X2)⊗⊗h+(X3))

commutes. Hence it suffices to show that the bottom left group is 0. But
h+(C̃) = h1(C̃)⊕ L, hence

h+(C̃)⊗3 = h1(C̃)⊗3 ⊕M ⊗ L
where M≤0 = 0. Then M⊗nil(L, h1(C̃)⊗3) = 0 by [16, Prop. 6.1] and
M⊗nil(L,M ⊗ L) =M⊗nil(1,M) = 0 by (the proof of) Lemma 4. �

Corollary 1 (theorem of the cube). Let X1, X2, X3 ∈ Smproj. Then the
map

A⊗nil
1 (X1 ×X2 ×X3)→

∏
i<j

A⊗nil
1 (Xi ×Xj)

induced by the three projections is injective.

Proof. We have A∼1 (X) =M∼(L, h+(X)) for any adequate relation∼ and
any X ∈ Smproj, and

h+(X1 ×X2 ×X3) = h+(X1)⊕ h+(X2)⊕ h+(X3)

⊕ h+(X1)⊗ h+(X2)⊕ h+(X1)⊗ h+(X3)⊕ h+(X2)⊗ h+(X3)

⊕ h+(X1)⊗ h+(X2)⊗ h+(X3);

h+(Xi ×Xj) = h+(Xi)⊕ h+(Xj)⊕ h+(Xi)⊗ h+(Xj)

hence the statement follows from Theorem 4. �

Corollary 2 (Ouriachi). LetX1, X2, X3 ∈ Smproj. Then Conjecture 1 holds
for 1-cycles onX1×X2×X3 if and only if it holds for 1-cycles onX1×X2,
X1 ×X3 and X2 ×X3. �

Corollary 3 (Sebastian [25, Th. 9]). V (X, 1) holds for a product of curves
X = C1 × · · · × Cn.

Proof. We argue by induction on n. The case n ≤ 2 follows from Lemma 2.
Suppose n ≥ 3. We apply Corollary 2 toX1 = C1×· · ·×Cn−2,X2 = Cn−1

and X3 = Cn. �

Remarks 1. 1) As Sebastian’s, Ouriachi’s proof relied on the smash-nilpoten-
ce of the Gross-Schoen modified diagonal for the cube of a curve, which
follows from the odd finite dimensionality of the tensor cube of its h1. This
modified diagonal is implicit in the proof of Theorem 4.
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2) Unfortunately, I am not able to prove a “theorem of the square”, i.e.
V (1,M1 ⊗M2) for two reduced motives M1,M2.

6. Clarifying the notion of “abelian type”. By a motivic category we
mean an additive ⊗-category C provided with a ⊗-functor T : M → C.
(So C may beM∼ for some other adequate equivalence ∼, Mo

∼ (see §8),
André’s categoryMA of motivated motives [1], Deligne’s category of mo-
tives for absolute Hodge cycles [7], or even the category of pure polarisable
Hodge structures). For X ∈ Smproj, we write hC(X) for T (h(X)). We
say that an object M ∈ C is of abelian type if M is isomorphic to a direct
summand of nhC(A) for some abelian variety A and some integer n > 0,
where we write nM for an n-fold direct sum M ⊕M ⊕ · · · ⊕M .

Lemma 5. a) The class of objects of abelian type is closed under tensor
products, direct sums and direct summands; it contains the unit object and
(the image of) the Lefschetz motive.
b) An object is of abelian type if and only if it is isomorphic to a direct
summand of a motive of the form nhC(C

m), where C is a curve.

Proof. a) The claim is obvious for tensor products and direct summands; for
direct sums, note that hC(A) ⊕ hC(B) is a direct summand of 2hC(A × B)
for two abelian varieties A,B. Finally, L is a direct summand of h(E) for
any elliptic curve E.

b) It suffices to show that, for any abelian variety A, hC(A) is a direct
summand of hC(Cm) for suitable C and m. This is classical: we choose
for C an ample curve on A and m = 2g, where g = dimA. Then h1

C(A)
is a direct summand of h1

C(C), hence hiC(A) = Si(h1
C(A)) is a direct sum-

mand of h1
C(C)⊗i, which is itself a direct summand of hC(Ci) hence also of

hC(C
2g). �

Let U : C → D be a ⊗-functor. If M ∈ C is of abelian type, so is U(M),
but the converse is not necessarily clear and may be false; for example,
motives of K3 surfaces are of abelian type inMA [1, Th. 7.1], but this is an
open question inMhom. It is obviously false if C = M, D is the category
of Z-graded K-vector spaces and U is given by a Weil cohomology with
coefficients K.

If U is full with locally nilpotent kernel, this converse is true by lifting
idempotents; for example, a motive is of abelian type inM if and only if it
is so inMalg orM⊗nil, but the same question is open forMnum (possibility
of “phantom motives”). A basic example is Bloch’s conjecture for surfaces.

7. The abelian and representable parts of a motive. Let M ∈ M. By
Jannsen’s semi-simplicity theorem, write Mnum as a direct sum of simple
motives: Mnum =

⊕
α Sα. Collect all those Sα which are (numerically) of
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abelian type (resp. of the form h1(Ai)(ni), where Ai is a simple abelian
variety and ni ≥ 0). Call this submotive Mab

num (resp. M rep
num): this is the

abelian (resp. representable) part of Mnum.

Lemma 6. There exists a direct summand Mab (resp. M rep) of M lifting
Mab

num (resp. M rep
num); it is unique up to isomorphism.

Proof. Let S ∈ Mnum be a simple motive of abelian type. Write S =
(hnum(A), p), where A is an abelian variety and p = p2 is an idempotent
correspondence. By [16, ], lift p to an idempotent p̃ ∈ EndM(h(A)); this
lift is unique up to conjugation. The corresponding direct summand S̃ =
(h(A), p̃) is a lift of S to M. If S = (hnum(B), q) for another abelian
variety B, then S is also a direct summand of h(A× B), which shows that
S̃ does not depend on the choice of A, up to isomorphism.

Lift Mab
num to some Mab ∈ M, simple summand by simple summand. It

remains to show that Mab is isomorphic to a direct summand of M . Let
i : Mab

num ↪→ Mnum and π : Mnum →→ Mab
num be the injection and the

projection, so that π◦i = 1Mab
num

. Lifting i to ı̃ and π to π̃, the endomorphism
π̃ ◦ ı̃ − 1M is numerically equivalent to 0, hence nilpotent, thus the claim.
Same reasoning for M rep. �

Example 1. Let X be a smooth complete intersection of dimension n and
multidegree (a1, . . . , ad). Write h(X) =

⊕2n
i=0 hi(X) and hn(X) = Ln/2⊕

p(X) if n is even, if n is odd, put p(X) := hn(X). If char k = 0, then
p(X)num is representable if and only if we are in the situation of [3, 2.9]. In
this case, h(X) = h(X)rep⊕M , where M is a phantom motive; we cannot
exclude a priori that M 6= 0.

8. Birational motives. Recall from [15] the category of pure birational
motivesMo

∼. The following is elementary but powerful:

Theorem 5. Let N1, N2 ∈ M. Suppose that N1 becomes isomorphic to a
direct summand of N2 in Mo. Let n ≥ 0. If V (M,n) is true for any M ,
then V (N2, n+ 1)⇒ V (N1, n+ 1) and V ∗(N2, n+ 1)⇒ V ∗(N1, n+ 1).
In particular, for (∼,∼′) = (⊗nil, num):

• Conjecture 1 is true for N1 if N2 is the motive of a curve or a sur-
face;
• V (N2, 1)⇒ V (N1, 1) and V ∗(N2, 2)⇒ V ∗(N1, 2).

Proof. Let αo : No
1
∼−→ No

2 , βo : No
2
∼−→ No

1 be such that βoαo = 1No
1
.

Lift them to α : N1 → N2 and β : N2 → N1. Then 1N1 − βα factors
through P (1) for some P ∈ M [15, Cor. 2.4.3], i.e. 1N1 − βα = δγ with
γ : N1 → P (1), δ : P (1)→ N1.
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Let x ∈ M(Ln+1, N1) be such that x ∼′ 0, and suppose that α∗x ∼ 0.
Then β∗α∗x ∼ 0, hence

x ∼ (1N1 − βα)∗x = δ∗γ∗x

where γ∗x ∈M(Ln, P ). But γ∗x ∼′ 0, so γ∗x ∼ 0 and finally x ∼ 0. Dual
reasoning for x ∈M(N1,Ln+1). �

9. Examples. Let us say that N1 ∈ M is birationally of dimension ≤
d (resp. birationally of abelian type) if one can choose N2 = h(Y ) in
Theorem 5 with dimY ≤ d (resp. Y an abelian variety). Then

Corollary 4. a) If M is birationally of dimension ≤ 2, then V (M, 1) and
V ∗(M, 2) hold (for (∼,∼′) = (⊗nil, num). In particular

[26, Th. 1]: Conjecture 1 holds for uniruled 3-folds.
[26, Th. 2 (A)]: if the MRCC-quotient of X ∈ Smproj has dimension
≤ 2, then V (X, 1) and V ∗(X, 2) hold.

[15, Prop. 3.5.3]: IfX is a smooth complete intersection in Pr of mul-
tidegree (a1, . . . , ad) with

∑
ai ≤ r, then V (X, 1) holds. (This cov-

ers cubic fourfolds as a very special case, [22, Th. A].)
b) V (X, 1) holds if X is birationally of abelian type. In particular [26, Th.
2 (B)], it holds if its MRCC quotient is of abelian type.

Proof. a) follows from Theorem 5 and Lemma 2. The first consequence is
obvious, and the second follows from the isomorphism of birational motives
ho(X)

∼−→ ho(Q) whereQ is its MRCC quotient [10, Cor. 6.8 b)]. Similarly,
b) follows from Theorem 5 and Corollary 3. �

Remark 2. Unless mistaken, Laterveer’s varieties X in [18, Th. 3.1] are of
abelian type and such that, in a Chow-Künneth decomposition

h(X) '
2 dimX⊕
i=0

hi(X)

the even components h2j(X) are direct summands of motives h(Sj)(j − 1)
for suitable surfaces Sj (a Lefschetz twist seems to be missing in the proof
of Lemma 2.15). Hence Conjecture 1 for X follows from the odd finite
dimensionality of hi(X) for i odd, as in [14], and from Lemma 2 for i even.

In [26, Th. 4], Sebastian proves that if X is a smooth projective complex
variety such that dimQCHi(X)Q < ∞ for 0 ≤ i ≤ l for some l, then
numerical and smash-nilpotence equivalence coincide for cycles of dimen-
sion ≤ l + 1. To recover it in the same spirit as above, we use a lemma.
For M ∈ M and i ≥ 0, say as in [27, Def. 2.1] that CHi(M)alg is repre-
sentable if there exists a smooth projective curve C over Ω (not necessarily
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connected) and a morphism Γ : h1(C)(i)→MΩ such that the induced mor-
phism Γ∗ : CH0(C)alg → CHi(MΩ)alg is surjective, where Ω is a universal
domain over k. By loc. cit., Th. 3.4, CH∗(M)alg is representable if and
only if M is isomorphic to a direct sum of Lefschetz motives and twisted
h1’s of abelian varieties. Vial’s inductive proof actually gives the following
refinement:

Lemma 7. Let M ∈M and n ≥ 0. Then the following are equivalent:
(i) CHi(M)alg is representable for i = 0, . . . , n− 1;

(ii) M is of the form
⊕n−1

i=0 riLi ⊕ h1(Ai)(i) ⊕Mn(n) (with Mn effec-
tive).

Moreover, CHi(MΩ) is finite dimensional for i ≤ n if and only (ii) holds
with all Ai’s trivial. (In particular, (i) also holds.) �

Proposition 3. For M as in Lemma 7, V (M, j) holds for j = 0, . . . , n for
(∼,∼′) = (alg, num) (hence also for (∼,∼′) = (⊗nil, num)).

Proof. Indeed, the statement is true for all summands Li and h1(Ai)(i), and
also for Mn(n) (see Lemma 4 and its proof). �

This gives back [26, Th. 4] as a very special case.

10. A challenge. Let M(V, 1) be the full subcategory of M determined
by those M such that V (M, 1) holds: it is thick (closed under direct sums
and direct summands) by Lemma 2. LetM′ be the smallest thick subcat-
egory of M containing the M(X) for X birationally of dimension ≤ 2
or birationally of abelian type and, for good measure, those of the form
N ⊗M+

1 ⊗M+
2 ⊗M+

3 as in Theorem 4. By this theorem and Corollary 4,
we haveM′ ⊆M(V, 1).

Questions.
1) Can one find an object ofM(V, 1) \M′ in the existing literature?
2) Can one prove thatM(X) ∈M(V, 1) (hence Voevodsky’s conjecture)

for the Dwork projective hypersurface X with equation x5
0 + · · · + x5

4 =
5x0 . . . x4? Cf. [24, Ex. 5.13].

11. A very weak result. We finish with this proposition, which hopefully
could be further upgraded.

Proposition 4. Let X, Y ∈ Smproj be connected, and let α ∈ Corr(X, Y )
be a correspondence. Assume that p∗α = 0, where p : X × Y → X is the
second projection (e.g. that α ∼num 0). Then there exists an integer N > 0
such that the composition

X
δNX−→ XN α⊗N−−→ Y N

is 0, where δNX is the N -fold diagonal.
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Proof. Let d = dimX , d′ = dimY so that α ∈ CHd(X×Y ) = CHd′(X×
Y ). If j : η ↪→ X is the inclusion of the generic point, we have deg j∗α = 0
because deg : CHd′(Yη) = CH0(Yη) → Z is also given by p∗. Hence
j∗α ∼alg 0 and, by Theorem 1, there exists N0 > 0 such that (j∗α)⊗ηN0 =

0. In other words, α1 = α⊗N0 ◦ δN0
X has support in Z × Y N0 , where Z ⊂ X

is a proper closed subset. By [15, Cor. 2.4.3], this means that α1 factors as

h(X)
β−→M(1)

γ−→ h(Y N0)

for some effective motive M . Then, for any n > 0, α⊗n1 factors as

h(Xn)
β⊗n−−→M⊗n(n)

γ⊗n−−→ h(Y nN0).

If M⊗n is a direct summand of h(Z) for some Z ∈ Smproj, then the
groupM(h(X),M⊗n(n)) is a direct summand of

M(h(X), h(Z)(n)) = CHd−n(X × Z)

which is 0 for n > d. Hence the proposition. �
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