A SPECIALISATION THEOREM FOR LANG-NÉRON GROUPS

BRUNO KAHN AND LONG LIU

ABSTRACT. We show that, for a polarised smooth projective variety $B \hookrightarrow \mathbb{P}_k^n$ of dimension ≥ 2 over an infinite field k and an abelian variety A over the function field of B, there exists a dense Zariski open set of smooth geometrically connected hyperplane sections h of B such that A has good reduction at h and the specialisation homomorphism of Lang-Néron groups at h is injective (up to a finite p-group in positive characteristic p). This gives a positive answer to a conjecture of the first author, which is used to deduce a negative definiteness result on his refined height pairing. This also sheds a new light on Néron's specialisation theorem.

CONTENTS

1.	Introduction	1
2.	Auxiliary results	2
3.	Proof of Theorem 1.1	3
Ref	References	

1. INTRODUCTION

Let K/k be a finitely generated regular extension of fields, and let A be an abelian variety over K. Then A has a K/k-trace $T = \text{Tr}_{K/k}A$, and a celebrated theorem of Lang and Néron says that the *Lang-Néron group*

$$LN(K/k, A) = A(K)/T(k)$$

is finitely generated ([LN59], see also [Con06] and [Kah09]).

Let *B* be a smooth model of K/k, and let $h \in B$ be a point of codimension 1 whose residue field *E* is also regular over *k*. If *A* has good reduction at *h*, there is a commutative diagram of specialisation maps [Kah24, § 6B]

where A_h is the special fibre of A.

Date: May 13, 2024.

²⁰²⁰ Mathematics Subject Classification. 11G99, 14K99.

Key words and phrases. Abelian varieties, *K*/*k*-trace, Lang-Néron theorem.

BRUNO KAHN AND LONG LIU

Theorem 1.1. Assume that *B* is smooth projective of dimension $d \ge 2$. For any projective embedding $B \hookrightarrow \mathbb{P}_k^n$, there exists a dense open subset \mathcal{U} of the dual projective space \mathcal{P} of \mathbb{P}_k^n such that if *H* lies in $\mathcal{U}(k)$, then

- (a) the hyperplane section $h := H \cap B$ is smooth geometrically connected of dimension d-1,
- (b) A has good reduction at h,
- (c) the maps φ and ψ of Diagram (1) are injective and have the same cokernel, up to finite *p*-groups in positive characteristic *p*.

(If *k* is infinite, so is $\mathcal{U}(k)$. When *k* is finite, $\mathcal{U}(k)$ may be empty because in general there are no smooth hyperplane sections in *B* defined over *k*; this issue can presumably be solved by composing the given projective embedding with a suitable Veronese embedding (see [Gab01, Corollary 1.6] and [Poo04, Theorem 3.1]).)

Besides Bertini's theorem, our main tool is a form of the weak Lefschetz theorem due to Deligne [Kat93, A.5], which renders the proof almost trivial.

The first application is to a negative definiteness result for the height pairing introduced in [Kah24]. For a smooth projective variety *X* of dimension *d* over *K* and $i \in [0, d]$, the first author defined a subgroup CH^{*i*}(*X*)⁽⁰⁾ of the *i*-th Chow group of *X* and a pairing

$$\operatorname{CH}^{i}(X)^{(0)} \times \operatorname{CH}^{d+1-i}(X)^{(0)} \to \operatorname{CH}^{1}(B) \otimes \mathbb{Q}.$$

For i = 1, this pairing induces a quadratic form on the Lang-Néron group of the Picard variety of *X*. In [Kah24, Theorem 6.6], it is proven that this quadratic form is negative definite if *B* is a curve, and that one can reduce to this case when dim B > 1 if ψ has finite kernel in (1) for a suitable *h* [Kah24, Conjecture 6.3]. Thus Theorem 1.1 proves this conjecture¹ (in a stronger form, and without the hypothesis of semi-stable reduction appearing in loc. cit.).

The second application is to Néron's specialisation theorem: if $B = \mathbb{P}_k^n$ and U is an open subset of B over which A extends to an abelian scheme \mathscr{A} , then the set of rational points $t \in U(k)$ such that the specialisation map $A(K) \to \mathscr{A}_t(k)$ is not injective is thin ([Ser97, 11.1, theorem], see [CT20] for generalisations). The injectivity of φ in Theorem 1.1 gives a version of this specialisation result which does not involve Hilbert's irreducibility theorem, but of course requires dim B > 1; see Remark 3.1 for the case dim B = 1.

2. AUXILIARY RESULTS

We start with the following standard lemmas.

Lemma 2.1. Let *B* be a integral noetherian scheme and let *A* be an abelian variety over the function field *K* of *B*. Then there exist a dense open subset *U* of *B* and an abelian scheme \mathscr{A} over *U* such that $A \simeq \mathscr{A}_K$.

Proof. See [Mil86, Remark 20.9].

The following is a consequence of the valuative criterion of properness and Weil's extension theorem ([Art86, Proposition 1.3] or [BLR90, §4.4, Theorem 1]).

¹At least for k infinite, but this is sufficient for the application: see [Kah24, part (d) of the proof of Theorem 6.6].

Lemma 2.2. Let U be an integral normal noetherian scheme with function field K. Let \mathscr{A} be an abelian scheme over U with generic fibre A. Then the pull-back map

$$\mathscr{A}(U) \to A(K)$$

is an isomorphism.

Lemma 2.3. Let U be a scheme and let \mathscr{A} be an abelian scheme over U. If n is invertible on U, *i.e.*, n is prime to char(k(x)) for all $x \in U$, then we have an injection

$$\mathscr{A}(U)/n \hookrightarrow H^1_{\acute{e}t}(U, {}_n\mathscr{A}),$$

where ${}_{n}\mathscr{A}$ is the kernel of the multiplication by n on \mathscr{A} .

Proof. Use the short exact sequence of étale sheaves

$$0 \to {}_{n}\mathscr{A} \to \mathscr{A} \xrightarrow{n} \mathscr{A} \to 0.$$

By the above lemmas, we can use cohomology to study the specialisation of A(K). We shall rely on the following version of the weak Lefschetz theorem.

Theorem 2.4 (Deligne; see [Kat93, Corollary A.5]). Let k be a separably closed field and let $\ell \neq \operatorname{char}(k)$ be a prime. Let $f: U \to \mathbb{P}_k^n$ be a separated quasi-finite morphism and let \mathscr{F} be a lisse $\overline{\mathbb{Q}_\ell}$ -sheaf. Assume that U is smooth over k and is of pure dimension d. Then there exists a dense open subset \mathcal{U} of the dual projective space \mathcal{P} of \mathbb{P}_k^n such that if H lies in \mathcal{U} , then the restriction map

$$H^{i}(U,\mathscr{F}) \longrightarrow H^{i}(f^{-1}(H),\mathscr{F}|_{f^{-1}(H)})$$

is an isomorphism for i < d - 1 and injective for i = d - 1.

Proof. In fact, in loc. cit., this theorem is proven when k is algebraically closed for general perverse sheaves without assuming that U is smooth and is of pure dimension d. In our case $\mathscr{F}[d]$ is a perverse sheaf, see [KW01, p. 139]. Moreover, the algebraically closed case immediately implies the separably closed case.

Finally, we shall use the following easy result:

Lemma 2.5. Let \overline{A} = Coker($T_K \rightarrow A$) (an abelian variety). Then $\overline{A}(K)$ is finitely generated.

Proof. Let $\overline{T} = \text{Tr}_{K/k} \overline{A}$ and $\pi': T \to \overline{T}$ be the homomorphism induced by $\pi: A \to \overline{A}$. By complete reducibility, there exists $\sigma: \overline{A} \to A$ such that $\pi\sigma$ is multiplication by some integer N > 0; the corresponding homomorphism $\sigma': \overline{T} \to T$ then also verifies $\pi'\sigma' = N1_{\overline{T}}$. Since the composition $T_K \to A \to \overline{A}$ is 0, we get by the universal property of \overline{T} that $\pi' = 0$. It implies that $N\overline{T} = 0$; hence $\overline{T} = 0$ and we conclude by the Lang-Néron theorem.

3. PROOF OF THEOREM 1.1

Choose *U* as in Lemma 2.1. Applying Bertini's theorem [Jou83, Corollary 6.11(2)] to *B* and *U*, we get a dense open subset \mathcal{U}_1 of the dual projective space \mathcal{P} of \mathbb{P}^n_k such that if *H* lies in $\mathcal{U}_1(k)$ then $B \cap H$ (hence $U \cap H$) is smooth and geometrically connected of dimension d - 1, and $U \cap H \neq \emptyset$. In particular , *A* has good reduction at $B \cap H$ if $H \in \mathcal{U}_1(k)$.

BRUNO KAHN AND LONG LIU

Let us insert Diagram (1) in the larger commutative diagram with exact rows:

where T_h is the E/k-trace of A_h . We now proceed in three steps:

3.1. Ker ψ is finite. The immersion $f: U \hookrightarrow \mathbb{P}_k^n$ induced by the projective embedding $B \hookrightarrow \mathbb{P}_k^n$ is separated quasi-finite. Let ℓ be a prime not divisible by the characteristic of k. Then by [BLR90, §7.3, Lemma 2], the kernel $\ell^m \mathscr{A}$ of multiplication by ℓ^m on \mathscr{A} is finite and étale. Thus it represents a locally constant constructible étale sheaf on U. Denote by $T_\ell \mathscr{A}$ the lisse ℓ -adic sheaf ($\ell^m \mathscr{A}$).

Let k_s be a separable closure of k. We denote base change from k to k_s by an index s. By Theorem 2.4, there exists a dense open subset U_2 of the dual projective space \mathcal{P}_s such that if H lies in \mathcal{U}_2 , then the restriction map

$$H^{i}(U_{s}, T_{\ell}\mathscr{A}) \otimes_{\mathbb{Z}_{\ell}} \overline{\mathbb{Q}_{\ell}} \longrightarrow H^{i}(U_{s} \cap H, T_{\ell}\mathscr{A}) \otimes_{\mathbb{Z}_{\ell}} \overline{\mathbb{Q}_{\ell}}$$

is an isomorphism for i < d - 1 and injective for i = d - 1. Therefore the restriction map

$$H^{i}(U_{s}, T_{\ell}\mathscr{A}) \longrightarrow H^{i}(U_{s} \cap H, T_{\ell}\mathscr{A})$$

has finite kernel and cokernel for i < d-1 and finite kernel for i = d-1. (Recall that $H^i_{\text{ét}}(U_s, \ell^m \mathscr{A})$ is finite for all m by [SGA $4\frac{1}{2}$, Th. finitude], hence $H^i(U_s, T_\ell \mathscr{A})$ is a finitely generated \mathbb{Z}_l -module.)

The open subset U_2 is defined over a finite Galois extension of k; taking the intersection of its conjugates, we may assume that it is defined over k. Take $U = U_1 \cap U_2$. For $H \in U(k)$, we write $h = B \cap H$. Since the groups $T(k_s)$ and $T_h(k_s)$ are ℓ -divisible, we have the isomorphisms

$$\mathscr{A}(U_s)/\ell^m \simeq (\mathscr{A}(U_s)/T(k_s)) \otimes_{\mathbb{Z}} \mathbb{Z}/\ell^m \mathbb{Z} \simeq \mathrm{LN}(A, Kk_s/k_s)/\ell^m,$$

where the second one holds by Lemma 2.2. Similarly, we have such isomorphisms for $LN(A_h, Ek_s/k_s)$. Taking the inverse limit of the following commutative diagrams

we get the commutative diagram

where $(-)^{\wedge}$ denotes ℓ -adic completion. Since the left vertical arrow has finite kernel, so do the others. By the Lang-Néron theorem, the abelian group LN(A, K/k) is finitely generated. Thus $sp_h(-)^{\wedge} = sp_h \otimes \mathbb{Z}_{\ell}$, which implies that sp_h has a finite kernel. But LN(A, K/k) injects into $LN(A, Kk_s/k_s)$, so we are done.

(2)

3.2. Ker φ is a finite *p*-group, where *p* is the exponential characteristic of *k*. Since *A*(*K*) injects into *A*(*Kk_s*), we may assume *k* separably closed. First, φ is injective on *n*-torsion in (2) for any *n* invertible in *k*, cf. [Ser97, p. 153]. This implies that φ_0 is also injective on *n*-torsion, hence has finite kernel of *p*-primary order. Now the conclusion follows from the snake lemma and §3.1.

3.3. **End of proof.** The morphism $T_K \to A$ extends uniquely to a morphism of abelian schemes $T \times U \to \mathscr{A}$. For $m \ge 1$, let $\mathscr{B}_m = \operatorname{Coker}(\ell^m T_U \to \ell^m \mathscr{A})$: this is a locally constant constructible sheaf over U, and we have an isomorphism

$$H^0(U_s, \mathscr{B}_m) \xrightarrow{\sim} \ell^m \bar{A}(Kk_s)$$

where \overline{A} is as in Lemma 2.5. This lemma then implies that $H^0(U_s, \mathscr{B}(\ell)) = 0$, where $\mathscr{B}(\ell)$ is the ℓ -adic sheaf $(\mathscr{B}_m)_{m\geq 1}$. For clarity, let $i: U \cap h \hookrightarrow U$ be the closed immersion. Applying Theorem 2.4 again, we get that $H^0((U \cap h)_s, i^*\mathscr{B}(\ell))$ is torsion, hence 0 since it is a priori torsion-free. But $i^*\mathscr{B}(\ell)$ contains the constant subsheaf Coker $(T_\ell(T_h) \to T_\ell(T))$. Therefore this subsheaf is 0, which implies that $T \to T_h$ is an *isogeny* (an isomorphism in characteristic 0). A new diagram chase in (2) concludes the proof.

Remark 3.1. Suppose that *B* is a curve with a rational point *h*, and consider Diagram (2) in this situation. We have E = k and LN(A, E/k) = 0. If $k = k_s$, the argument in §3.2 then gives a short exact sequence, up to a finite *p*-group:

$$0 \rightarrow \text{Ker} \varphi \rightarrow \text{LN}(A, K/k) \rightarrow T(k)$$

where $T = \text{Coker} \varphi_0$ (as an abelian variety). In particular, $\text{Ker} \varphi$ is finitely generated and its rank is uniformly bounded when *h* varies.

It seems possible that this extends to dim B > 1 in the following sense: for $U \subseteq B$ as in the beginning of Section 3, the kernel of $A(K) \rightarrow \mathscr{A}_t(k(t))$ is finitely generated of bounded rank when *t* runs through the closed points of *U* (perhaps after suitably shrinking *U*).

REFERENCES

- [Art86] Michael Artin. Néron models. In Gary Cornell and Joseph H. Silverman, editors, *Arithmetic geometry*, pages 213–230. Springer, New York, 1986.
- [BLR90] Siegfried Bosch, Werner Lütkebohmert, and Michel Raynaud. *Néron models*, volume 21 of *Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge.* Berlin etc.: Springer-Verlag, 1990.
- [Con06] Brian Conrad. Chow's *K*/*k*-image and *K*/*k*-trace, and the Lang-Néron theorem. *Enseign. Math.* (2), 52(1-2):37–108, 2006.
- [CT20] Jean-Louis Colliot-Thélène. Point générique et saut du rang du groupe de Mordell-Weil. *Acta Arithmetica*, 196(1):93–108, 2020.
- [Gab01] Ofer Gabber. On space filling curves and Albanese varieties. *Geometric and Functional Analysis*, 11(6):1192–1200, 2001.
- [Jou83] Jean-Pierre Jouanolou. *Théorèmes de Bertini et applications*, volume 42 of *Progress in Mathematics*. Birkhäuser Boston, Inc., Boston, MA, 1983.
- [Kah09] Bruno Kahn. Démonstration géométrique du théorème de Lang-Néron et formules de Shioda-Tate. In Motives and algebraic cycles. A celebration in honour of Spencer J. Bloch, pages 149–155. Providence, RI: American Mathematical Society (AMS); Toronto: The Fields Institute for Research in Mathematical Sciences, 2009.
- [Kah24] Bruno Kahn. Refined height pairing. (Appendix by Qing Liu). Algebra & Number Theory, 18(6):1039– 1079, 2024.
- [Kat93] Nicholas M. Katz. Affine cohomological transforms, perversity, and monodromy. *Journal of the American Mathematical Society*, 6(1):149–222, 1993.

BRUNO KAHN AND LONG LIU

- [KW01] Reinhardt Kiehl and Rainer Weissauer. *Weil conjectures, perverse sheaves and l-adic Fourier transform,* volume 42 of *Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge.* Springer-Verlag, Berlin, 2001.
- [LN59] Serge Lang and André Néron. Rational points of abelian varieties over function fields. *American Journal of Mathematics*, 81:95–118, 1959.
- [Mil86] James S. Milne. Abelian varieties. In Gary Cornell and Joseph H. Silverman, editors, *Arithmetic geometry*, pages 103–150. Springer, New York, 1986.
- [Poo04] Bjorn Poonen. Bertini theorems over finite fields. *Annals of Mathematics. Second Series*, 160(3):1099–1127, 2004.
- [Ser97] Jean-Pierre Serre. *Lectures on the Mordell-Weil Theorem*. Springer Fachmedien Wiesbaden GmbH, Wiesbaden, third edition, 1997.
- $[SGA 4\frac{1}{2}]$ Pierre Deligne. *Cohomologie étale*, volume 569 of *Lecture Notes in Mathematics*. Springer-Verlag, Berlin, 1977. Séminaire de géométrie algébrique du Bois-Marie SGA4 $\frac{1}{2}$.

SORBONNE UNIVERSITÉ AND UNIVERSITÉ PARIS CITÉ, CNRS, IMJ-PRG, F-75005 PARIS, FRANCE. Email address: bruno.kahn@imj-prg.fr

SORBONNE UNIVERSITÉ AND UNIVERSITÉ PARIS CITXÉ, CNRS, IMJ-PRG, F-75005 PARIS, FRANCE. *Email address*: long.liu@imj-prg.fr