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Algebraic tori as Nisnevich sheaves with transfers

Bruno Kahn
(1)

ABSTRACT. — We relate R-equivalence on tori with Voevodsky’s theory of
homotopy invariant Nisnevich sheaves with transfers and effective motivic
complexes.

RÉSUMÉ. — On relie la R-équivalence sur les tores aux faisceaux Nis-
nevich avec transferts invariants par homotopie et aux complexes mo-
tiviques effectifs, étudiés par Voevodsky.
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1. Main results

Let k be a field and let T be a k-torus. The R-equivalence classes on T
have been extensively studied by several authors, notably by Colliot-Thélène
and Sansuc in a series of papers including [4] and [5]: they play a central
rôle in many rationality issues. In this note, we show that Voevodsky’s
triangulated category of motives sheds a new light on this question: see
Corollaries 1.3, 1.7 and 1.8 below.

(1) IMJ-PRG, UMR 7586, Case 247, 4 place Jussieu, 75252 Paris Cedex 05, France
bruno.kahn@imj-prg.fr
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More generally, let G be a semi-abelian variety over k, which is an ex-
tension of an abelian variety A by a torus T . Denote by HI the category
of homotopy invariant Nisnevich sheaves with transfers over k in the sense
of Voevodsky [19]. Then G has a natural structure of an object of HI ([17,
proof of Lemma 3.2], [1, Lemma 1.3.2]). Let L be the group of cocharacters
of T .

Proposition 1.1. — There is a natural isomorphism G−1
∼−→L in HI.

Here −1 is the contraction operation of [18, p. 96], whose definition is
recalled in the proof below.

Proof. — Recall that if F is a presheaf [with transfers] on smooth k-
schemes, the presheaf [with transfers] Fp−1 is defined by

U �→ Coker(F(U ×A1)→ F(U ×Gm)).

If F is homotopy invariant, we may replace U×A1 by U and the rational
point 1 ∈ Gm realises Fp−1(U) as a functorial direct summand of F(U×Gm).

If F is a Nisnevich sheaf [with transfers], F−1 is defined as the sheaf
associated to Fp−1.

Now A(U × A1) ∼−→A(U × Gm) since A is an abelian variety, hence
Ap
−1 = 0. We therefore have an isomorphism of presheaves T p−1

∼−→Gp
−1,

and a fortiori an isomorphism of Nisnevich sheaves T−1
∼−→G−1.

Let p : Gm → Speck be the structural map. One easily checks that the
étale sheaf Coker(T i−→ p∗p

∗T ) is canonically isomorphic to L. Since i is
split, its cokernel is still L if we view it as a morphism of presheaves, hence
of Nisnevich sheaves. �

From now on, we assume k perfect. Let DMeff
− be the triangulated cat-

egory of effective motivic complexes introduced in [19]: it has a t-structure
with heart HI. It also has a tensor structure and a (partially defined) internal
Hom. We then have an isomorphism

L[0] = G−1[0] � HomDMeff
−

(Gm[0], G[0])

[10, Rk. 4.4], hence by adjunction a morphism in DMeff
−

L[0]⊗Gm[0]→ G. (1.1)

Let ν�0G[0] denote the cone of (1.1): by [11, Lemma 6.3] or [8, §2],
ν�0G[0] is the birational motivic complex associated to G. We want to com-
pute its homology sheaves.
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For this, consider a coflasque resolution1

0→ Q→ L0 → L→ 0 (1.2)

of L in the sense of [4, p. 179]. Taking a coflasque resolution of Q and
iterating, we get a resolution of L by invertible lattices:

. . .→ Ln → . . .→ L0 → L→ 0. (1.3)

We set

Qn =
{

Q for n = 1
Ker(Ln−1 → Ln−2) for n > 1.

Theorem 1.2. — a) Let Tn denote the torus with cocharacter group Ln.
Then ν�0G[0] is isomorphic to the complex

. . .→ Tn → . . .→ T0 → G→ 0.

b) Let Sn be the torus with cocharacter group Qn. For any connected smooth
k-scheme X with function field K, we have

Hn(ν�0G[0])(X) =




0 if n < 0
G(K)/R if n = 0
Sn(K)/R if n > 0.

The proof is given in Section 3.

Corollary 1.3. — The assignment Sm(k) 
 X �→
⊕

x∈X(0) G(k(x))/R
provides G/R with the structure of a homotopy invariant Nisnevich sheaf
with transfers. In particular, any morphism ϕ : Y → X of smooth connected
k-schemes induces a morphism ϕ∗ : G(k(X))/R→ G(k(Y ))/R.

This functoriality is essential to formulate Theorem 1.5 below. For ϕ
a closed immersion of codimension 1, it recovers a specialisation map on
R-equivalence classes with respect to a discrete valuation of rank 1 which
was obtained (for tori) by completely different methods, e.g. [5, Th. 3.1 and
Cor. 4.2] or [7]. (I am indebted to Colliot-Thélène for pointing out these
references.)

Corollary 1.4. — a) If k is finitely generated, the n-th homology sheaf
of ν�0G[0] takes values in finitely generated abelian groups, and even in finite
groups if n > 0 or G is a torus.

b) If G is a torus, then ν�0G[0] = 0 if G is split by a Galois exten-
sion E/k whose Galois group has cyclic Sylow subgroups. This condition is
automatic if k is (quasi-)finite.

(1) See Section 2 for this and further terminology.
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The proof is also given in Section 3.

Given two semi-abelian varieties G, G′, we would now like to understand
the maps

Homk(G, G′)→ HomDMeff
−

(ν�0G[0], ν�0G′[0])→ HomHI(G/R, G′/R).

In Section 4, we succeed in elucidating the nature of their composition
to a large extent, at least if G is a torus. Our main result, in the spirit of
Yoneda’s lemma, is

Theorem 1.5. — Let G, G′ be two semi-abelian varieties, with G a torus.
Suppose given, for every function field K/k, a homomorphism fK :
G(K)/R → G′(K)/R such that fK is natural with respect to the functo-
riality of Corollary 1.3. Then

a) There exists an extension G̃ of G by a permutation torus, and a
homomorphism f : G̃→ G′ inducing (fK).

b) fK is surjective for all K if and only if there exist extensions G̃, G̃′ of
G and G′ by permutation tori such that fK is induced by a split surjective
homomorphism G̃→ G̃′.

The proof is given in §4.3. See Proposition 4.7, Corollary 4.9, Remark
4.10 and Proposition 4.11 for complements.

This relates to questions of stable birationality studied by Colliot-Thélène
and Sansuc in [4] and [5], providing alternate proofs and strengthening of
some of their results (at least over a perfect field). More precisely, let us
introduce the following terminology:

Definition 1.6. — a) A torus is quasi-invertible if it is a quotient of a
invertible torus by an permutation torus.

b) An extension 0 → T ′ → T → T ′′ → 0 of tori is Nisnevich-exact if
T (K)→ T ′′(K) is surjective for any function field K/k.

(a) was suggested by Xun Jiang; see also [2]. See §2 for “permutation
torus” and “invertible torus”.)

Thanks to [18, Cor. 4.18], Nisnevich-exact sequences of tori are exact
in the Nisnevich topology and even in the Zariski topology. It is easy to
see that an extension as in b) is Nisnevich-exact if T ′ is invertible, but
not necessarily if T ′ is only quasi-invertible. Using [4, Th. 2], one sees that
quasi-invertible tori are universally R-trivial. Conversely:
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Corollary 1.7. — a) Let G′ be a semi-abelian k-variety such that
G′(K)/R = 0 for any function field K/k. Then G′ is a quasi-invertible
torus.

b) In Theorem 1.5 b), assume that fK is bijective for all K/k. Then there
exists an extension G̃ of G by a permutation torus and a Nisnevich-exact
extension G̃′ of G′ by a quasi-invertible torus such that fK is induced by an
isomorphism G̃

∼−→ G̃′.

Proof. — a) This is the special case G = 0 of Theorem 1.5 b).

b) By Theorem 1.5 b), we may replace G and G′ by extensions by per-
mutation tori such that fK is induced by a split surjection f : G → G′.
Let T = Kerf . Then T/R = 0 universally. By a), T is quasi-invertible.
Replacing G′ by G′ × T , we get the desired statement. �

Corollary 1.7 a) is a version of [5, Prop. 7.4] (taking [4, p. 199, Th. 2] into
account). Theorem 1.5 was inspired by the desire to understand this result
from a different viewpoint. Another characterisation of quasi-invertible tori
in loc. cit. is that they are the retract-rational tori.

Corollary 1.8. — Let f : G −− → G′ be a rational map of semi-
abelian varieties, with G a torus. Then the following conditions are equiva-
lent:

(i) f∗ : ν�0G[0]→ ν�0G′[0] is an isomorphism (see Proposition 4.7).

(ii) f∗ : G(K)/R→ G′(K)/R is bijective for any function field K/k.

(iii) f is an isomorphism, up to Nisnevich-exact extensions of G and G′

by quasi-invertible tori and up to a translation. (See Lemma 4.4.)

Acknowledgements. — Part of Theorem 1.2 was obtained in the course
of discussions with Takao Yamazaki during his stay at the IMJ in October
2010: I would like to thank him for inspiring exchanges. I also thank Daniel
Bertrand for a helpful discussion, Xun Jiang for pointing out some errors
and the referee for suggesting expository improvements. Finally, I wish to
acknowledge inspiration from the work of Colliot-Thélène and Sansuc, which
will be obvious throughout this paper.

2. Review of terminology for tori

We take this terminology from [4] and [5].

Definition 2.1 Let G be a profinite group.

a) A lattice is a G-module which is finitely generated and free over Z.
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b) A lattice L is

• permutation if it affords a G-invariant Z-basis.
• invertible if it is isomorphic to a direct summand of a permutation

lattice.
• coflasque if H1(H, L) = 0 for any open (hence closed) subgroup H ⊆

G.
• flasque if the dual lattice L∗ is coflasque.

c) A coflasque resolution of a lattice L is a short exact sequence of lattices

0→ Q→ P → L→ 0

where P is permutation and Q is coflasque. Dually, we have flasque [co]reso-
lutions

0→ L→ P → F → 0

with P permutation and F flasque.

Proposition 2.2 ([4, p. 181, lemme 3]). — Any lattice has a flasque
and a coflasque resolution.

In [5, Lemma 0.6], the first statement of c) is extended to G-modules
which are finitely generated over Z but not necessatily free.

Let ks be a separable closure of the field k and take G = Gal(ks/k).
Let T be a k-torus: we shall say that it is permutation, invertible, flasque,
coflasque, if its character group is (Colliot-Thélène and Sansuc use quasi-
trivial for “permutation”). Any permutation torus is of the form RE/kGm

(Weil restriction of scalars) for some étale k-algebra E.

3. Proofs of Theorem 1.2 and Corollary 1.4

Lemma 3.1. — The exact sequence

0→ T (k)→ G(k)→ A(k)

induces an exact sequence

0→ T (k)/R
i−→G(k)/R→ A(k).

Proof. — Let f : P1 −−→ G be a k-rational map defined at 0 and 1.
Its composition with the projection G→ A is constant: thus the image of f
lies in a T -coset of G defined by a rational point. This implies the injectivity
of i, and the rest is clear. �
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Let NST denote the category of Nisnevich sheaves with transfers. Recall
that DMeff

− may be viewed as a localisation of D−(NST), and that its tensor
structure is a descent of the tensor structure on the latter category [19, Prop.
3.2.3].

Lemma 3.2. — If G is an invertible torus, there is a canonical isomor-
phism in D−(NST)

L[0]⊗Gm ∼−→G[0].

In particular, ν�0G[0] = 0.

Proof. — We reduce to the case T = RE/kGm, where E is a finite
extension of k. Let us write more precisely NST(k) and NST(E). There is
a pair of adjoint functors

NST(k)
f∗−→NST(E), NST(E)

f∗−→HI(k)

where f : SpecE → Speck is the projection. Clearly,

f∗Z = Ztr(SpecE), f∗Gm = T

where Ztr(SpecE) is the Nisnevich sheaf with transfers represented by SpecE.
Since Ztr(SpecE) = L, this proves the claim. �

Proof of Theorem 1.2. — a) Recall that L0 is an invertible lattice chosen
so that L0(E) → L(E) is surjective for any extension E/k. In particular,
(1.2) and (1.3) are exact as sequences of Nisnevich sheaves; hence L[0] is
isomorphic in D−(NST) to the complex

L· = . . .→ Ln → . . .→ L0 → 0.

(We may view (1.3) as a version of Voevodsky’s “canonical resolutions” as
in [19, §3.2 p. 206].)

By Lemma 3.2, Ln[0]⊗Gm[0] � Tn[0] is homologically concentrated in
degree 0 for all n. It follows that the complex

T· = . . .→ Tn → . . .→ T0 → 0

is isomorphic to L[0]⊗Gm[0] in D−(NST), hence a fortiori in DMeff
− .

b) For any nonempty open subscheme U ⊆ X we have isomorphisms

Hn(ν�0G[0])(X) ∼−→Hn(ν�0G[0])(U) ∼−→Hn(ν�0G[0])(K) (3.1)

(e.g. [8, p. 912]). By a), the right hand term is the n-th homology group of
the complex

. . .→ Tn(K)→ . . .→ T0(K)→ G(K)→ 0
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with G(K) in degree 0. By [4, p. 199, Th. 2], the sequences

0→ S1(K)→ T0(K)→ T (K)→ T (K)/R→ 0
0→ Sn+1(K)→ Tn(K)→ Sn(K)→ Sn(K)/R→ 0

are all exact. Using Lemma 3.1 for H0, the conclusion follows from an easy
diagram chase. �

Remark 3.3. — As a corollary to Theorem 1.2, Sn(K)/R only depends
on G. This can be seen without mentioning DMeff

− : in view of the reasoning
just above, it suffices to construct a homotopy equivalence between two
resolutions of the form (1.3), which easily follows from the definition of
coflasque modules.

Proof of Corollary 1.4. — a) This follows via Theorem 1.2 and Lemma
3.1 from [4, p. 200, Cor. 2] and the Mordell-Weil-Néron theorem. b) We may
choose the Ln, hence the Sn split by E/k. The conclusion now follows from
Theorem 1.2 and [4, p. 200, Cor. 3]. The last claim is clear. �

Remark 3.4. — In characteristic p > 0, all finitely generated perfect
fields are finite. To give some contents to Corollary 1.4 a) in this char-
acteristic, one may pass to the perfect [one should say radicial] closure k of
a finitely generated field k0. If G is a semi-abelian k-variety, it is defined
over some finite extension k1 of k0. If k2/k1 is a finite (purely inseparable)
subextension of k/k1, then the composition

G(k2)
Nk2/k1−→ G(k1)→ G(k2)

equals multiplication by [k2 : k1]. Hence Corollary 1.4 a) remains true at
least after inverting p.

4. Stable birationality

If X is a smooth variety over a field k, we write Alb(X) for its generalised
Albanese variety in the sense of Serre [16]: it is a semi-abelian variety, and
a rational point x0 ∈ X determines a morphism X → Alb(X) which is
universal for morphisms from X to semi-abelian varieties sending x0 to 0.

We also write NS(X) for the group of cycles of codimension 1 on X mod-
ulo algebraic equivalence. This group is finitely generated if k is algebraically
closed [9, Th. 3].
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4.1. Well-known lemmas

I include proofs for lack of reference.

Lemma 4.1. — a) Let G, G′ be two semi-abelian k-varieties. Then any
k-morphism f : G→ G′ can be written uniquely f = f(0) + f ′, where f ′ is
a homomorphism.

b) For any semi-abelian k-variety G, the canonical map G → Alb(G)
sending 0 to 0 is an isomorphism.

Proof. — a) amounts to showing that if f(0) = 0, then f is a homo-
morphism. By an adjunction game, this is equivalent to b). Let us give two
proofs: one of a) and one of b).

Proof of a). — We may assume k to be a universal domain. The state-
ment is classical for abelian varieties [15, p. 41, Cor. 1] and an easy com-
putation for tori. In the general case, let T, T ′ be the toric parts of G and
G′ and A, A′ be their abelian parts. Let g ∈ G(k). As any morphism from
T to A′ is constant, the k-morphism

ϕg : T 
 t �→ f(g + t)− f(g) ∈ G′

(which sends 0 to 0) lands in T ′, hence is a homomorphism. Therefore it
only depends on the image of g in A(k). This defines a morphism ϕ : A→
Hom(T, T ′), which must be constant with value ϕ0 = f . It follows that

(g, h) �→ f(g + h)− f(g)− f(h)

induces a morphism A×A→ T ′. Such a morphism is constant, of value 0.

Proof of b). — This is true if G is abelian, by rigidity and the equivalence
between a) and b). In general, any morphism from G to an abelian variety
is trivial on T . This shows that the abelian part of Alb(G) is A. Let T ′ =
Ker(Alb(G)→ A). We also have the counit morphism Alb(G)→ G, and the
composition G→ Alb(G)→ G is the identity. Thus T is a direct summand
of T ′. It suffices to show that dim T ′ = dim T . Going to the algebraic closure,
we may reduce to T = Gm.

Then consider the line bundle completion Ḡ → A of the Gm-bundle
G→ A. It is sufficient to show that the kernel of

Alb(G)→ Alb(Ḡ) = A

is 1-dimensional. This follows for example from [1, Cor. 10.5.1]. �
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Lemma 4.2. — Suppose k algebraically closed, and let G be a semi-
abelian k-variety. Let A be the abelian quotient of G. Then the map

NS(A)→ NS(G) (4.2)

is an isomorphism.

Proof. — Let T = Ker(G → A) and X(T ) be its character group.
Choosing a basis (ei) of X(T ), we may complete the Gnm-torsor G into a
product of line bundles Ḡ→ A. The surjection

Pic(A) ∼−→Pic(Ḡ)→→ Pic(G)

show the surjectivity of (4.2). Its kernel is generated by the classes of the
irreducible components Di of the divisor with normal crossings Ḡ−G. These
components correspond to the basis elements ei. Since the corresponding
Gm-bundle is a group extension of A by Gm, the class of the 0 section of its
line bundle completion lies in Pic0(A), hence goes to 0 in NS(A). �

Lemma 4.3. — Let X be a smooth k-variety, and let U ⊆ X be a dense
open subset. Then there is an exact sequence of semi-abelian varieties

0→ T → Alb(U)→ Alb(X)→ 0

with T a torus. If NS(U⊗k k̄) = 0 (this happens if U is small enough), there
is an exact sequence of character groups

0→ X(T )→
⊕

x∈X(1)−U(1)

Z→ NS(X̄)→ 0.

Proof. — This follows for example from [1, Cor. 10.5.1]. �

Lemma 4.4. — Let f : G −−→ G′ be a rational map between semi-
abelian k-varieties, with G a torus. Then there exists an extension G̃ of G
by a permutation torus and a homomorphism f̃ : G̃ → G′ which extends
f up to translation in the following sense: there exists a rational section
s : G −−→ G̃ of the projection π : G̃ → G and a rational point g′ ∈ G′(k)
such that f = f̃ s+ g′. If f is defined at 0G and sends it to 0G′ , then g′ = 0.

Proof. — Let U be an open subset of G where f is defined. We define
G̃ = Alb(U). Applying Lemmas 4.3 and 4.1 b) and using NS(G ⊗k k̄) = 0,
we get an extension

0→ P → G̃→ G→ 0

where P is a permutation torus, as well as a morphism f̃ = Alb(f) : G̃→ G′.
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Let us first assume k infinite. Then U(k) 
= ∅ because G is unirational.
A rational point g ∈ U defines an Albanese map s : U → G̃ sending g to
0G̃. Since P is a permutation torus, g ∈ G(k) lifts to g̃ ∈ G̃(k) (Hilbert 90)
and we may replace s by a morphism sending g to g̃. Then s is a rational
section of π. Moreover, f = f̃ s+g′ with g′ = f(g)− f̃(g̃). The last assertion
follows.

If k is finite, then U has at least a zero-cycle g of degree 1, which is
enough to define the Albanese map s. We then proceed as above (lift every
closed point involved in g to a closed point of G̃ with the same residue
field). �

Lemma 4.5. — Let G be a finite group, and let A be a finitely generated
G-module. Then

a) There exists a short exact sequence of G-modules 0 → P → F →
A→ 0, with F torsion-free and flasque, and P permutation.

b) Let B be another finitely generated G-module, and let 0 → P ′ →
E → B → 0 be an exact sequence with P ′ an invertible module. Then any
G-morphism f : A→ B lifts to f̃ : F → E.

Proof. — a) is the contents of [5, Lemma 0.6, (0.6.2)]. b) The obstruction
to lifting f lies in Ext1G(F, P ′) = 0 [4, p. 182, Lemme 9]. �

4.2. Functoriality of ν�0G

We now assume k perfect.

Lemma 4.6. — Let

0→ P → G→ H → 0 (4.3)

be an exact sequence of semi-abelian varieties, with P an invertible torus.
Then ν�0G[0] ∼−→ ν�0H[0].

Proof. — As P is invertible, (4.3) is exact in NST hence defines an exact
triangle

P [0]→ G[0]→ H[0] +1−→
in DMeff

− . The conclusion then follows from Lemma 3.2. �

Proposition 4.7. — Let G, G′ be two semi-abelian k-varieties, with G
a torus. Then a rational map f : G −−→ G′ induces a morphism f∗ :
ν�0G[0] → ν�0G′[0], hence a homomorphism f∗ : G(K)/R → G′(K)/R for
any extension K/k. If K is infinite, f∗ agrees up to translation with the
morphism induced by f via the isomorphism U(K)/R

∼−→G(K)/R from [4,
p. 196 Prop. 11], where U is an open subset of definition of f .
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Proof. — By Lemma 4.4, f induces a homomorphism G̃→ G′ where G̃
is an extension of G by a permutation torus. By Lemma 4.6, the induced
morphism

ν�0G̃[0]→ ν�0G′[0]

factors through a morphism f∗ : ν�0G[0]→ ν�0G′[0].

The claims about R-equivalence classes follow from Theorem 1.2 b) and
Lemma 4.4. �

Remark 4.8. — The proof shows that f ′∗ = f∗ if f ′ differs from f by a
translation by an element of G(k) or G′(k).

Corollary 4.9. — If T and T ′ are birationally equivalent k-tori, then
ν�0T [0] � ν�0T ′[0]. In particular, the groups T (k)/R and T ′(k)/R are iso-
morphic.

Proof. — The proof of Proposition 4.7 shows that f �→ f∗ is functorial
for composable rational maps between tori. Let f : T −−→ T ′ be a birational
isomorphism, and let g : T ′ −−→ T be the inverse birational isomorphism.
Then we have g∗f∗ = 1ν�0T [0] and f∗g∗ = 1ν�0T

′[0]. The last claim follows
from Theorem 1.2. �

Remark 4.10. — It is proven in [4] that a birational isomorphism of tori
f : T −−→ T ′ induces a set-theoretic bijection f∗ : T (k)/R

∼−→T ′(k)/R
(p. 197, Cor. to Prop. 11) and that the group T (k)/R is abstractly a bira-
tional invariant of T (p. 200, Cor. 4). The proof above shows that f∗ is an
isomorphism of groups if f respects the origins of T and T ′. This solves the
question raised in [4, mid. p. 397]. The proofs of Lemma 4.4 and Proposition
4.7 may be seen as dual to the proof of [4, p. 189, Prop. 5], and are directly
inspired from it.

4.3. Faithfulness and fullness

Proposition 4.11. — Let f : G −−→ G′ be a rational map between
semi-abelian varieties, with G a torus. Assume that the map f∗ : G(K)/R→
G′(K)/R from Proposition 4.7 is identically 0 when K runs through the
finitely generated extensions of k. Then there exists a permutation torus P
and a factorisation of f as

G
f̃
−−→P

g−→G′

where f̃ is a rational map and g is a homomorphism. If f is a morphism,
we may choose f̃ to be a homomorphism.
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Conversely, if there is such a factorisation, then f∗ : ν�0G[0]→ ν�0G′[0] is
the 0 morphism.

Proof. — By Lemma 4.4, we may reduce to the case where f is a ho-
momorphism. Let K = k(G). By hypothesis, the image of the generic point
ηG ∈ G(K) is R-equivalent to 0 on G′(K). By a lemma of Gille [6, Lemme
II.1.1 b)], it is directly R-equivalent to 0: in other words, there exists a ra-
tional map h : G×A1 −−→ G′, defined in the neighbourhood of 0 and 1,
such that h|G×{0} = 0 and h|G×{1} = f .

Let U ⊆ G×A1 be an open set of definition of h. The 0 and 1-sections
of G×A1 → G induce sections

s0, s1 : G→ Alb(U)

of the projection π : Alb(U)→ Alb(G×A1) = G such that Alb(h) ◦ s0 = 0
and Alb(h) ◦ s1 = f . If P = Kerπ, then s1 − s0 induces a homomorphism
f̃ : G→ P such that the composition

G
f̃−→P → Alb(U)

Alb(h)−→ G′

equals f . Finally, P is a permutation torus by Lemma 4.3.

The last claim follows from Lemma 3.2. �

Proof of Theorem 1.5. — a) Take K = k(G). The image of the generic
point ηG by fK lifts to a (non unique) rational map f : G −−→ G′. Using
Lemma 4.4, we may extend f to a homomorphism

f̃ : G̃→ G′

where G̃ is an extension of G by a permutation torus P . Since G̃(K)/R
∼−→G(K)/R, we reduce to G̃ = G and f̃ = f .

Let L/k be a fonction field, and let g ∈ G(L). Then g arises from a
morphism g : X → G for a suitable smooth model X of L. By assumption
on K �→ fK , the diagram

G(K)/R −−−→
fK

G′(K)/R

g∗

	 g∗

	
G(L)/R −−−→

fL
G′(L)/R

commutes. Applying this to ηK ∈ G(K), we find that fL([g]) = [g◦f ], which
means that fL is the map induced by f .
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b) The hypothesis implies that G′(E)/R = 0 for any algebraically closed
extension E/k, which in turn implies that G′ is also a torus. Applying a),
we may, and do, convert f into a true homomorphism by replacing G by a
suitable extension by a permutation torus. Applying Lemma 4.5 a) to the
cocharacter group of G, we then get a resolution 0→ P1 → Q→ G→ 0 with
Q coflasque and P1 permutation. Hence we may (and do) further assume G
coflasque.

Let K = k(G′) and choose some g ∈ G(K) mapping modulo R-equivalen-
ce to the generic point of G′. Then g defines a rational map g : G′ −−→ G
such that fg is R-equivalent to 1G′ . It follows that the induced map

1− fg : G′/R→ G′/R (4.4)

is identically 0.

Reapplying Lemma 4.4, we may find an extension G̃′ of G′ by a suitable
permutation torus which converts g into a true homomorphism. Since G is
coflasque, Lemma 4.5 b) shows that f : G → G′ lifts to f̃ : G → G̃′. Then
(4.4) is still identically 0 when replacing (G′, f) by (G̃′, f̃).

Summarising: we have replaced the initial G and G′ by suitable exten-
sions by permutation tori, such that f lifts to these extensions and there is a
homomorphism g : G′ → G such that (4.4) vanishes identically. Hence 1−fg
factors through a permutation torus P thanks to Proposition 4.11. Write
u : G′ → P and v : P → G′ for homomorphisms such that 1− fg = vu. Let
G1 = G× P and consider the maps

f1 = (f, v) : G1 → G′, g1 = ( g ) u : G′ → G1.

Then f1g1 = 1 and G′ is a direct summand of G1 as requested. �

5. Some open questions

Question 5.1. — Are lemma 4.4 and Proposition 4.7 still true when G is
not a torus?

This is far from clear in general, starting with the case where G is an
abelian variety and G′ a torus. Let me give a positive answer in the case of
an elliptic curve.

Proposition 5.2. — The answer to Question 5.1 is yes if the abelian
part A of G is an elliptic curve.
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Proof. — Arguing as in the proof of Proposition 4.7, we get for an open
subset U ⊆ G of definition for f an exact sequence

0→ Gm → P → Alb(U)→ G→ 0

where P is a permutation torus. Here we used that NS(Ḡ) � Z, which
follows from Lemma 4.2.

The character group X(P ) has as a basis the geometric irreducible com-
ponents of codimension 1 of G − U . Up to shrinking U , we may assume
that G − U contains the inverse image D of 0 ∈ A. As the divisor class
of 0 generates NS(Ā), D provides a Galois-equivariant splitting of the map
Gm → P . Thus its cokernel is still a permutation torus, and we conclude as
before. �

Question 5.3. — Can one formulate a version of Theorem 1.5 and Corol-
lary 1.7 providing a description of the groups HomDMeff

−
(ν�0G[0], ν�0G′[0])

and HomHI(G/R, G′/R) (at least when G and G′ are tori)?

The proof of Theorem 1.5 suggests the presence of a closed model struc-
ture on the category of tori (or lattices), which might provide an answer to
this question.

For the last question, let G be a semi-abelian variety. Forgetting its group
structure, it has a motive M(G) ∈ DMeff

− . Recall the canonical morphism

M(G)→ G[0]

induced by the “sum” maps

c(X, G) σ−→G(X) (5.1)

for smooth varieties X ([17, (6), (7)], [1, §1.3]).

The morphism (5.1) has a canonical section

G(X)
γ−→ c(X, G) (5.2)

given by the graph of a morphism: this section is functorial in X but is not
additive.

Consider now a smooth equivariant compactification Ḡ of G. It exists
in all characteristics. For tori, this is written up in [3]. The general case
reduces to this one by the following elegant argument I learned from M.
Brion: if G is an extension of an abelian variety A by a torus T , take a
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smooth projective equivariant compactification Y of T . Then the bundle
G ×T Y associated to the T -torsor G → A also exists: this is the desired
compactification.

Then we have a diagram of birational motives

ν�0M(G) ∼−−−→ ν�0M(Ḡ)

ν�0σ

	
ν�0G[0]. (5.3)

By [11], we have H0(ν�0M(Ḡ))(X) = CH0(Ḡk(X)) for any smooth con-
nected X. Hence the above diagram induces a homomorphism

CH0(Ḡk(X))→ G(k(X))/R (5.4)

which is natural in X for the action of finite correspondences (compare
Corollary 1.3). One can probably check that this is the homomorphism of
[12, (17) p. 78], reformulating [4, Proposition 12 p. 198]. Similarly, the set-
theoretic map

G(k(X))/R→ CH0(Ḡk(X)) (5.5)

of [4, p. 197] can presumably be recovered as a birational version of (5.2),
using perhaps the homotopy category of schemes of Morel and Voevodsky
[14].

In [12], Merkurjev shows that (5.4) is an isomorphism for G a torus of
dimension at most 3. This suggests:

Question 5.4. — Is the map ν�0σ of Diagram (5.3) an isomorphism when
G is a torus of dimension � 3?

In [13], Merkurjev gives examples of tori G for which (5.5) is not a homo-
morphism; hence its (additive) left inverse (5.4) cannot be an isomorphism.
Merkurjev’s examples are of the form G = R1

K/kGm × R1
L/kGm, where K

and L are distinct biquadratic extensions of k. This suggests:

Question 5.5. — Can one study Merkurjev’s examples from the above
viewpoint? More generally, what is the nature of the map ν�0σ of Diagram
(5.3)?

We leave all these questions to the interested reader.
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