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Aim of talk: associate to a Voevodsky motive M over a global field K a
Dirichlet series

LDG&T(M S H Lnear M S>
p finite
with
o ["( M, s) is absolutely convergent for $(s) > 0 (explicit).
o Ly* (M, s) € Q(N(p)~).
oIf M' - M — M" — M][1] exact triangle in DMy (K, Q),
LEG&Y(Mj S) — LEG&I’(MC S)LE@&Y(M//’ 8)
o [f M = M(X)*, X smooth projective,
Ly (M, s) = ((Xp, s) if X has good reduction at p

(Xp special fibre of a good model of X at p).
oIt K =F,(C): L(M,s)e Qg ?); functional equation.



X /K smooth projective, ¢ > 0: Serre’s L-function

LSeI‘l”e(]_[i(X')7 S)) _ HLgerre<Hi(X>7 S),
p
Ly (H'(X), 5) = det(1 — opN(p) ™" | H'(X,Q)"%) ™

Iy, inertia at p (well-defined modulo weight-monodromy conjecture). So

2d .
Lgear<M<X)*, S) _ H [jgel“lre([_[’L(A)(v)7 S)(—1)Z
1=0

if X has good reduction at p.

But cannot expect Serre’s L-function extends to Euler-Poincaré character-
istic on D Mg (K), because of the invariants under inertia. So, L"*%
“best triangulated approximation” of Serre’s L-function.



Since L™ differs from L’ only at finitely many Euler factors, maybe
one can use it to study the Beilinson conjectures.



1. CRASH-REVIEW OF VOEVODSKY’S MOTIVES

1.1. Grothendieck’s pure motives.
~ adequate equivalence relation on algebraic cycles

SmP™(K) — Cor (K, Q) — MGH(K Q) H M (K, Q)

(b pseudo-abelian completion, L.~—!: inverting the Lefschetz motive).
M (K, Q) rigid Q-linear ®-category.

1.2. Voevodsky’s triangulated motives over a field.
Sm(K) — SmCor(K) = K°(SmCor(K), Q)

— K°(SmCor(K),Q)/(HI + MV)

g c ( 1)
LN DMgffl(K Q) —

D Mg (K, Q) rigid Q-linear ®-triangulated category.

D Mg (K, Q).



1.3. Relationship.
Mrat<K7 Q) — DMgm(K> Q)

fully faithful ®-tfunctor.
Voevodsky’s construction extends over a base.
1.4. 6 operations. Need a 2-functor

D : {Z — schemes ess. of finite type}? — {triangulated categories}
with
(i) S regular: D(S) = DMy (S, Q).
(ii) A theory of six operations f*, fx, 2 fi, ®, Hom.
(iii) {-adic realisations: ! prime invertible on S, D2(S, Q;) Ekedahl’s trian-
gulated category of [-adic sheaves: covariant functor

R':D(S) — DY(S, Q)

commuting with the 6 operations.



By Voevodsky and Ayoub, given a 2-functor ID, to have 6 operations one
only needs a few of them plus certain axioms, esp. glueing complementary
closed /open subsets.

Ayoub proves that D(S) = DAS(S, Q) (defined using étale sheaves with-
out transfers) verifies (ii), resp. (iii). Same as Cisinski-Déglise’s Beilinson
motives.

For S — DMyn (S, Q), axioms are not easy. Done by Cisinski-Déglise for
S normal, but not in general. They also prove that D = DA(ét verifies (i),
even for normal schemes. (More direct variant of this proof by Ayoub.)

In sequel I take D(S) = DAS(S, Q), so have (i), (i) and (iii).



2. ZETA FUNCTIONS

2.1. Traces in rigid categories. M rigid F'-linear ®-category
(char F' = 0). We assume End (1) = F.

M e M, f € End(M): recall the trace of f:
1 LM B oM S Mo M -5 1
tr(f) € End (1) = F.

Lemma 2.1 (The trace formula). N rigid E-linear ®-category (E 2O F),
R: M — N K-linear ®-functor. Then VM € M, Vf € End(M):

tr(R(f)) = R(tr(f)) (=tr(f), computed in F).
Proof. Trivial. []



2.2. The zeta function. M € M, f € End(M).
Definition 2.2.

Z(M. £.0) = oo (%) € Fli]
n>1

J

Theorem 2.3 (K.). M abelian semi-simple “of homological origin”:
() Z(M, f,1) € F(t); deg(Z(M, f,) = x(M) i= tr(137).
(ii) If f invertible, functional equation

2 L = ()XW det(£)Z(M, £ 1)
where det(f) = value at t = 0o of (—t)XM)Z(M, f,¢)~L.
(Other formula for det: det(1 — ft) = Z(M, f,t)~' € F(t).)



2.3. Example: numerical motives. Here ' = Q, M =

Mupum(k, Q), k a field.

Theorem 2.4 (Jannsen). M s abelian semi-simple.

Moreover M is of “homological origin” thanks to homological equivalence,
so Theorem 2.3 applies.

k=Fq every M € M has its Frobenius endomorphism
FM and
Z(h(X),Fh(X>,t) = Z(X,1)

if X smooth projective.



2.4. Voevodsky’s motives over a finite field. k field: the trian-
gulated ®-category D(k) = DMgm(k, Q) is rigid by de Jong’s theorem (<«
it is generated by the M (X), X smooth projective). So Z(M, f,t) makes
sense here.

If k =F,, every M € (k) has its Frobenius endomorphism Fy;.



Lemma 2.6. E/k finite extension of degree n, f : Spec E — Speck.
a) For M € D(k), Frepp = fRFY).

b) For M € ID)(E), Ff*M = fs .

c) For M € D(F):

(T — 0 if n4m
M tr(FJ\TZ/n) if n | m.

For ¢), idea to avoid l-adic realisation (Ayoub). Do as for induced rep-

resentations: tr(f«Fyy) = tr(f*f«l;) because f* monoidal.  Write

[ HM = @B cqo™™M, G = Gal(E/k). Then f*fsFys permutes the
oM in the obvious way:. []



Awkward problem: would like to define

but this causes compatibility problems with [-adic realisation (philosophy:
S = DMy (S, Q) is a “homology theory” but to compute L-functions you
use cohomology with compact supports).

Solution: slightly artificial definition of zeta function.

Definition 2.7. For M € DMy (Fy, Q):

Z(M,t) = Z(M*, Fyps,t) = Z(M, Fy ' 1)
C(M,s)=2(M,q7°).



Theorem 2.8.a) M' — M — M" — M'[1] exact triangle:
(M, 5) = M, s)C(M", 5)
b) C(M,s) € Qlqg™?), degree x(M).

¢) Functional equation
C(M*, —s) = (=g~ det(Fpp) "¢ (M, 5).
d) Identities
C(M1],8)=¢(M,s)7Y, (ML), 8) =C(M,s—1).
e) f: X — Fy scheme of finite type:
C(HZ,s) = ((X,5).

(Ine), i : D(X) = D(Fy) = DMyn(Fy, Q). It is for this formula that I
take the weird definition of (M, s).)



Sketch of proofs. a) uses theorem of J. Peter May on additivity of traces:
T rigid ®-triangulated category [coming from a model structure], M’ —

M — M" 2 exact triangle in 7. Any commutative diagram
M — M — M" — M']
A |
M — M — M" — M']1]

may be completed into
M — M — M" — M']
A I ]
M — M — M'" — M']

so that
tr(f) = te(f') + te(f").



Want to apply this with 7 = DMen(Fy, Q), f/ =
like f" = F]\_ﬁ’ Given May’s f”,
(f" = Fyp)* =0,

Is the trace of nilpotent endomorphisms 07 Yes, thanks to the [-adic reali-
sation.

M”f F_ Would



b) (rationality) and ¢) (functional equation): commutative diagram

KO(Mrat<FCJ7 Q)) _(D>KO<DM§;H1(FQ7 Q>>

| T
Ko(Mpum(Fg, Q)) —{zeta functions}

$ bijective by Bondarko (relying on de Jong), so reduce to pure numerical
motives.

d) (shift and twist): trivial.



e) (classical zeta function): f : X — SpecFy, g : Z — SpecF; closed
subscheme, h : U — Spec Fy open complement; exact triangle

h!Z — f!Z — g!Z Ll

If we had resolution of singularities, we could reduce to X smooth projective
and then use Myat(Fy, Q). (This works if dim X < 2). de Jong’s theorem
not quite sufficient (see next slide). So, need to use the [-adic realisation
and the Grothendieck-Verdier trace formula.



To avoid [-adic realisation, can almost use twisting lemma (learned from A.
Pacheco): if m : U — V Galois étale covering of degree m, G = Gal()

— 3 U F) = [V(Fy)
oceGG
= S HMEU ) = 11V )
oeG

U9) twist of U (viewed as G-torsor over U by 1-cocycle of Z 1(Fq, G) send-
ing o to o).

de Jong’s equivariant alteration theorem not quite sufficient to conclude.



2.5. Zeta functions of motives over a base. S = Z-scheme of
finite type.

Definition 2.9. M € D(5):

S(O) — set of closed points of S.

Theorem 2.10. a) This defines a Dirichlet series, absolutely conver-
gent for R(s) > 0.
b) If f: S — T is a morphism,

C(M, s) = C(fiM, s).
¢) If T = SpecF, in b), ((M,s) € Qg 7).

d) If S smooth projective of dimension d in c), functional equation
(M d = s) = (=g M det(Fpp) ¢ (M, 5)
with M* = Hom(M, Z).




Sketch of proof. 2 steps:

1) Prove b) via the l-adic realisation (but almost have a proof purely using
D). ¢) and d) follow from Theorem 2.8 ¢) and the 6 functors formalism.

2) If S — SpecZ is not dominant, done. If dominant, 1) reduces us to
S = SpecZ, crucial case.

f X — SpecZ smooth scheme of finite type: ((fiZ,s) = ((X,s) and
Serre proved (elementarily) absolute convergence for J(s) > dim X. Since
the fiZ “generate” ID(Z), should suffice. But they generate only up to
idempotents (the devil is in the idempotents).

Thus need a more sophisticated and expensive argument: uses [-adic real-
isation, Bondarko’s isomorphism, Weil conjecture (Riemann hypothesis) +
Deligne’s generic constructibility theorem (SGA 4 1/2, th. finitude). []



2.6. A theorem of Serre. (Lectures on Nx(p)).
K number field: for M € D(O) and p C O, define

Nas(p) = tr(Fag)

the number of points of M modulo p.

Theorem 2.11. Let M € D(Og). Suppose that ((M, s) is not a finite
product of Fuler factors. Then the set

{p | Npy(p) =0}

has a density €, with

where boo(M) = >, dim H;(MK)



Proof Same as Serre’s. Hj(M) € D2(Ox[1/1], Q;) l-adic realisation of M.
By Deligne’s generic base change theorem, 3 open subset U C Spec O |1/1]
such that H;(M )‘ y commutes with any base change. In particular, may
compute

tw(Fyy | Hy (My)).p € U

as traces of [conjugacy class of] arithmetic Frobenius ¢y € Gal(K/K)
acting on H; (Mf). Statement then reduces to



Theorem 2.12 (Serre). G compact group, K locally compact field of
characteristic 0, p : G — GLy(K), p' : G = GL,/(K) two continous
K -linear representations of G. Then

(1) either trp = try;

(i) or the set {g € G | trp(g) # try(9)} has a Haar density > m



3. L-FUNCTIONS OVER GLOBAL FIELDS
3.1. Motives with good reduction.

Definition 3.1. S/Z essentially of finite type:
DPO(S) = (AZ | f: X — S smooth projective).
S = Spec k: DPI(k) = D(k) (by de Jong).
Definition 3.3. .S a trait (spectrum of a dvr), 5 : n — S generic point:

*

M € D(n) has good reduction if M € ess-im(IDP™J(S) AN D(n)).



Lemma 3.4.7:x — S immersion of the closed point, M € ID(S).
a) 3 natural transformation

upg M (=1)[=2] = i M.
b) If M € DPI(S), uys isomorphism.

(Proof of a) uses 6 operations. Proof of b) uses “absolute purity” theorem
of Cisinski-Déglise, relying on Quillen’s localisation theorem for algebraic

K-theory.)



3.2. The total L-function. K global field, Cxr = SpecOp, O
ring of integers (in char. 0), or smooth projective model (in char. p),
7 1 Spec K — (' inclusion of the generic point.

M € D(K): would like to define an L-function of M as the zeta function of
JxM.

This object exists but in the “large” category DAét(C i, Q) (it is not con-
structible). However,

2— lim D(U) — D(K)
UCC
which leads to:



Definition 3.5. z closed point of Cg, Sy = SpecO¢y, 4, iz : T — Sg,
9z - Spec K — Sy.
For M € D(K),

LY (M, ) = ((i3(jx)xM, 5)
LM, s)= ] L¥Y'(M,s).
reC

Theorem 3.6. LtOt(M ,S) is an absolutely convergent Dirichlet series,
for R(s) > 0.



Proof: M has good reduction at x for almost all x € C'yr. More precisely,
3U C Ck and M € DP)(U) such that jj;M = M for jir : Spec K — U.
For z € U, let jy, @ Sy — U and My = j(*],JUM' Localisation exact
triangle

(ix)*i!g;/\/l:c — My — (Jo)xjaMy Ll

apply i
LMy — My — ()M
Thus . .
Ltot(M S) _ C(Zl"/\/lx7 S) _ C(ZajMﬂ?v S)
xT ) N T
((izMyz,s)  C(iEMg,s+1)
by Lemma 3.4.

But [[ e C(i3 My, s) = (M, s) convergent by Theorem 2.10, so we win.



3.3. The nearby L-function.
Lemma 3.7. f =Y °° ; ayn™* convergent Dirichlet series with complex
coefficients, with ay = 1. Then the equation

f(s)=g(s)/g(s +1)

has a unique solution as a convergent Dirichlet series (with first coeffi-
cient 1), namely

g(s) = ][ f(s+m).
m=0

Moreover, g has the same absolute convergence abscissa as f.
If the coefficients of f belong to F' C C, so do those of g.



Definition 3.8. M € D(K):

L]near(jw7 S) _ H Lgear<M’ S)
reCy

oiven by the rule

LH@&T(M S)
LtOt M — T )
X ( 78) Lgear’(M’ S _|_ 1)

cf. Lemma 3.7.



Theorem 3.9. a) Vo € Cy, LY (M,s) € Q(N(x)™?).
b) L' (M, s) convergent Dirichlet series.
c) If M has good reduction at x and Mgy is a good model at x, then

Ly™(M, s) = ((izMag, 5).

d) If K function field over Fy, L™ (M,s) € Q(q™?), and functional
equation between L™ (M, s) and L (M™*,1 —s).



For a), two proofs:
(i) Pass to l-adic realisation:

LM, s) = L5 R(jz)«R' (M), ).
If V' l-adic representation of Gy, need to show that

L(izR(ja)«V, 5) = f(N(2) ™)/ f(N(z) =)
for some f € Q(t).

We have

det(1 — @ N(z)~% | HY(I,V))
det(l — SOxN(CU>_8 ‘ HO<IZU7 V))

This is an Euler-Poincaré characteristic, so may assume V' semi-simple.
Then I, acts by a finite quotient by the [-adic monodromy theorem, thus

HY (I, V) =V (—1) = Vie(—1)

L<i§R<jx)*Va s) =

and
LSerre(V S)

in the semi-simple case).
LSerre(v’S 4+ 1) < p >




(i) Tz : D(K) — D(k(x)) Ayoub’s “unipotent” specialisation system:
exact triangle

5 ()M — Top(M) = Ty(M)(~1) 5

hence LY (M, s) = ((T4(M),s).
First proof gives other explicit formula for LX* (M, s):
Lgea%M’ S) _ Lierre(Rl(M)SS, S)

RY(M)*3 semi-simplification of R'(M).
(Since action of inertia factors through finite quotient, “Serre L-function”
could be replaced by “Artin L-function”.)



Example. F elliptic curve /K with multiplicative reduction at z, V' =
HY(E, Q)

L>Xe(HY(E), s) = det(1 — N(z) gy | Vi)~

Lr(HYE), s) = LY (HY(E), s) x det(1 — N(z) %¢, | V/VI)~L

Extra poles are explicitly computable. . .



Discussions with J. Ayoub: K = F,(C), explicit functional equation
for L"** (M, s) with exponential term of the form A(M)?,

A(M) = gXM)(29—2)+deg f(M)
g = genus of C
X(M) = tr(1py)
(M) = ax(M)z

reC
az(M) = Artin conductor of M at x

To define a, (M) without l-adic realisation, use Ayoub’s “full” specialisation
system W, : D(K) — D(k(z)): V(M) carries action of wild inertia P,
define sw,(M) from character

Py 3 g tr(g | Va(M)).
(To be continued...)
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