Zeta and L-functions of triangulated motives Bruno Kahn

Workshop Algebraic cycles and L-functions
Regensburg, Feb. 27 - March 2, 2012.

Aim of talk: associate to a Voevodsky motive M over a global field K a Dirichlet series

$$
L^{\text {near }}(M, s)=\prod_{\mathfrak{p} \text { finite }} L_{\mathfrak{p}}^{\text {near }}(M, s)
$$

with

- $L^{\text {near }}(M, s)$ is absolutely convergent for $\Re(s) \gg 0$ (explicit).
- $L_{\mathfrak{p}}^{\text {near }}(M, s) \in \mathbf{Q}\left(N(\mathfrak{p})^{-s}\right)$.
- If $M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow M[1]$ exact triangle in $D M_{\mathrm{gm}}(K, \mathbf{Q})$,

$$
L_{\mathfrak{p}}^{\text {near }}(M, s)=L_{\mathfrak{p}}^{\text {near }}\left(M^{\prime}, s\right) L_{\mathfrak{p}}^{\text {near }}\left(M^{\prime \prime}, s\right) .
$$

- If $M=M(X)^{*}, X$ smooth projective,

$$
L_{\mathfrak{p}}^{\text {near }}(M, s)=\zeta\left(\mathcal{X}_{\mathfrak{p}}, s\right) \text { if } X \text { has good reduction at } \mathfrak{p}
$$

$\left(\mathcal{X}_{\mathfrak{p}}\right.$ special fibre of a good model of X at $\left.\mathfrak{p}\right)$.

- If $K=\mathbf{F}_{q}(C): L(M, s) \in \mathbf{Q}\left(q^{-s}\right)$; functional equation.

Remark 0.1. X / K smooth projective, $i \geq 0$: Serre's L-function

$$
\begin{gathered}
\left.L^{\text {Serre }}\left(H^{i}(X), s\right)\right)=\prod_{\mathfrak{p}} L_{\mathfrak{p}}^{\text {Serre }}\left(H^{i}(X), s\right), \\
L_{\mathfrak{p}}^{\text {Serre }}\left(H^{i}(X), s\right)=\operatorname{det}\left(1-\varphi_{\mathfrak{p}} N(\mathfrak{p})^{-s} \mid H^{i}\left(\bar{X}, \mathbf{Q}_{l}\right)^{I_{\mathfrak{p}}}\right)^{-1}
\end{gathered}
$$

$I_{\mathfrak{p}}$ inertia at \mathfrak{p} (well-defined modulo weight-monodromy conjecture). So

$$
L_{\mathfrak{p}}^{\text {near }}\left(M(X)^{*}, s\right)=\prod_{i=0}^{2 d} L_{\mathfrak{p}}^{\text {Serre }}\left(H^{i}(X), s\right)^{(-1)^{i}}
$$

if X has good reduction at \mathfrak{p}.
But cannot expect Serre's L-function extends to Euler-Poincaré characteristic on $D M_{\mathrm{gm}}(K)$, because of the invariants under inertia. So, $L^{\text {near }}=$ "best triangulated approximation" of Serre's L-function.

Since $L^{\text {near }}$ differs from $L^{\text {Serre }}$ only at finitely many Euler factors, maybe one can use it to study the Beilinson conjectures.

1. Crash-Review of Voevodsky's motives

1.1. Grothendieck's pure motives.
\sim adequate equivalence relation on algebraic cycles

$$
\operatorname{Sm}^{\operatorname{proj}}(K) \rightarrow \operatorname{Cor} \sim(K, \mathbf{Q}) \xrightarrow{\natural} \mathcal{M}_{\sim}^{\mathrm{eff}}(K, \mathbf{Q}) \xrightarrow{\mathbb{L}^{-1}} \mathcal{M}_{\sim}(K, \mathbf{Q})
$$

(দ pseudo-abelian completion, \mathbb{L}^{-1} : inverting the Lefschetz motive). $\mathcal{M}_{\sim}(K, \mathbf{Q})$ rigid \mathbf{Q}-linear \otimes-category.
1.2. Voevodsky's triangulated motives over a field.

$$
\begin{aligned}
& \operatorname{Sm}(K) \rightarrow \operatorname{SmCor}(K) \rightarrow K^{b}(\operatorname{SmCor}(K), \mathbf{Q}) \\
& \rightarrow K^{b}(\operatorname{SmCor}(K), \mathbf{Q}) /\langle H I+M V\rangle \\
& \xrightarrow{\natural} D M_{\mathrm{gm}}^{\mathrm{eff}}(K, \mathbf{Q}) \xrightarrow{\mathbf{Z}(-1)} D M_{\mathrm{gm}}(K, \mathbf{Q}) .
\end{aligned}
$$

$D M_{\mathrm{gm}}(K, \mathbf{Q})$ rigid \mathbf{Q}-linear \otimes-triangulated category.

1.3. Relationship.

$$
\mathcal{M}_{\mathrm{rat}}(K, \mathbf{Q}) \rightarrow D M_{\mathrm{gm}}(K, \mathbf{Q})
$$

fully faithful \otimes-functor.
Voevodsky's construction extends over a base.
1.4. 6 operations. Need a 2 -functor
$\mathbb{D}:\{\mathbf{Z}-\text { schemes ess. of finite type }\}^{o p} \rightarrow\{$ triangulated categories $\}$
with
(i) S regular: $\mathbb{D}(S)=D M_{\mathrm{gm}}(S, \mathbf{Q})$.
(ii) A theory of six operations $f^{*}, f_{*}, f^{!}, f_{!}, \otimes$, Hom.
(iii) l-adic realisations: l prime invertible on $S, D_{c}^{b}\left(S, \mathbf{Q}_{l}\right)$ Ekedahl's triangulated category of l-adic sheaves: covariant functor

$$
R^{l}: \mathbb{D}(S) \rightarrow D_{c}^{b}\left(S, \mathbf{Q}_{l}\right)
$$

commuting with the 6 operations.

By Voevodsky and Ayoub, given a 2 -functor \mathbb{D}, to have 6 operations one only needs a few of them plus certain axioms, esp. glueing complementary closed/open subsets.
Ayoub proves that $\mathbb{D}(S)=D A_{c}^{\text {ét }}(S, \mathbf{Q})$ (defined using étale sheaves without transfers) verifies (ii), resp. (iii). Same as Cisinski-Déglise's Beilinson motives.
For $S \mapsto D M_{\mathrm{gm}}(S, \mathbf{Q})$, axioms are not easy. Done by Cisinski-Déglise for S normal, but not in general. They also prove that $\mathbb{D}=D A_{c}^{\text {ét }}$ verifies (i), even for normal schemes. (More direct variant of this proof by Ayoub.)
In sequel I take $\mathbb{D}(S)=D A_{c}^{\text {ét }}(S, \mathbf{Q})$, so have (i), (ii) and (iii).

2. Zeta functions

2.1. Traces in rigid categories. \mathcal{M} rigid F-linear \otimes-category (char $F=0$). We assume End $\mathcal{M}_{\mathcal{M}}(\mathbf{1})=F$.
$M \in \mathcal{M}, f \in \operatorname{End}(M)$: recall the trace of f :

$$
\mathbf{1} \xrightarrow{\eta} M^{*} \otimes M \xrightarrow{1 \otimes f} M^{*} \otimes M \xrightarrow{\sigma} M \otimes M^{*} \xrightarrow{\epsilon} \mathbf{1}
$$

$\operatorname{tr}(f) \in \operatorname{End}_{\mathcal{M}}(\mathbf{1})=F$.
Lemma 2.1 (The trace formula). \mathcal{N} rigid E-linear \otimes-category $(~ E \supseteq F)$, $R: \mathcal{M} \rightarrow \mathcal{N} K$-linear \otimes-functor. Then $\forall M \in \mathcal{M}, \forall f \in \operatorname{End}(M):$

$$
\operatorname{tr}(R(f))=R(\operatorname{tr}(f)) \quad(=\operatorname{tr}(f), \text { computed in } E) .
$$

Proof. Trivial.
2.2. The zeta function. $M \in \mathcal{M}, f \in \operatorname{End}(M)$.

Definition 2.2.

$$
Z(M, f, t)=\exp \left(\sum_{n \geq 1} \operatorname{tr}\left(f^{n}\right) \frac{t^{n}}{n}\right) \in F[[t]] .
$$

Theorem 2.3 (K.). \mathcal{M} abelian semi-simple "of homological origin":
(i) $Z(M, f, t) \in F(t) ; \operatorname{deg}\left(Z(M, f, t)=\chi(M):=\operatorname{tr}\left(1_{M}\right)\right.$.
(ii) If f invertible, functional equation

$$
Z\left(M^{*},{ }^{t} f^{-1}, t^{-1}\right)=(-t)^{\chi(M)} \operatorname{det}(f) Z(M, f, t)
$$

where $\operatorname{det}(f)=$ value at $t=\infty$ of $(-t)^{\chi(M)} Z(M, f, t)^{-1}$.
(Other formula for $\operatorname{det}: \operatorname{det}(1-f t)=Z(M, f, t)^{-1} \in F(t)$.)
2.3. Example: numerical motives. Here $F=\mathbf{Q}, \mathcal{M}=$ $\mathcal{M}_{\text {num }}(k, \mathbf{Q}), k$ a field.
Theorem 2.4 (Jannsen). \mathcal{M} is abelian semi-simple.
Moreover \mathcal{M} is of "homological origin" thanks to homological equivalence, so Theorem 2.3 applies.

Example 2.5. $k=\mathbf{F}_{q}$: every $M \in \mathcal{M}$ has its Frobenius endomorphism F_{M} and

$$
Z\left(h(X), F_{h(X)}, t\right)=Z(X, t)
$$

if X smooth projective.
2.4. Voevodsky's motives over a finite field. k field: the triangulated \otimes-category $\mathbb{D}(k)=D M_{\mathrm{gm}}(k, \mathbf{Q})$ is rigid by de Jong's theorem $(\Leftarrow$ it is generated by the $M(X), X$ smooth projective). So $Z(M, f, t)$ makes sense here.

If $k=\mathbf{F}_{q}$, every $M \in \mathbb{D}(k)$ has its Frobenius endomorphism F_{M}.

Lemma 2.6. E / k finite extension of degree $n, f: \operatorname{Spec} E \rightarrow \operatorname{Spec} k$. a) For $M \in \mathbb{D}(k), F_{f^{*} M}=f^{*} F_{M}^{n}$.
b) For $M \in \mathbb{D}(E), F_{f_{*} M}=f_{*} F_{M}$.
c) For $M \in \mathbb{D}(E)$:

$$
\operatorname{tr}\left(f_{*} F_{M}^{m}\right)= \begin{cases}0 & \text { if } n \nmid m \\ \operatorname{tr}\left(F_{M}^{m / n}\right) & \text { if } n \mid m\end{cases}
$$

For c), idea to avoid l-adic realisation (Ayoub). Do as for induced representations: $\operatorname{tr}\left(f_{*} F_{M}^{m}\right)=\operatorname{tr}\left(f^{*} f_{*} F_{M}^{m}\right)$ because f^{*} monoidal. Write $f^{*} f_{*} M=\bigoplus_{\sigma \in G} \sigma^{*} M, G=\operatorname{Gal}(E / k)$. Then $f^{*} f_{*} F_{M}$ permutes the $\sigma^{*} M$ in the obvious way.

Awkward problem: would like to define

$$
Z(M, t)=Z\left(M, F_{M}, t\right)
$$

but this causes compatibility problems with l-adic realisation (philosophy: $S \mapsto D M_{\mathrm{gm}}(S, \mathbf{Q})$ is a "homology theory" but to compute L-functions you use cohomology with compact supports). Solution: slightly artificial definition of zeta function.

Definition 2.7. For $M \in D M_{\mathrm{gm}}\left(\mathbf{F}_{q}, \mathbf{Q}\right)$:

$$
\begin{aligned}
Z(M, t) & =Z\left(M^{*}, F_{M^{*}}, t\right)=Z\left(M, F_{M}^{-1}, t\right) \\
\zeta(M, s) & =Z\left(M, q^{-s}\right)
\end{aligned}
$$

Theorem 2.8. a) $M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow M^{\prime}[1]$ exact triangle:

$$
\zeta(M, s)=\zeta\left(M^{\prime}, s\right) \zeta\left(M^{\prime \prime}, s\right) .
$$

b) $\zeta(M, s) \in \mathbf{Q}\left(q^{-s}\right)$, degree $\chi(M)$.
c) Functional equation

$$
\zeta\left(M^{*},-s\right)=\left(-q^{-s}\right)^{\chi(M)} \operatorname{det}\left(F_{M}\right)^{-1} \zeta(M, s) .
$$

d) Identities

$$
\zeta(M[1], s)=\zeta(M, s)^{-1}, \quad \zeta(M(1), s)=\zeta(M, s-1) .
$$

e) $f: X \rightarrow \mathbf{F}_{q}$ scheme of finite type:

$$
\zeta(f!\mathbf{Z}, s)=\zeta(X, s)
$$

(In e), $f_{!}: \mathbb{D}(X) \rightarrow \mathbb{D}\left(\mathbf{F}_{q}\right)=D M_{\mathrm{gm}}\left(\mathbf{F}_{q}, \mathbf{Q}\right)$. It is for this formula that I take the weird definition of $\zeta(M, s)$.)

Sketch of proofs. a) uses theorem of J. Peter May on additivity of traces: \mathcal{T} rigid \otimes-triangulated category [coming from a model structure], $M^{\prime} \rightarrow$ $M \rightarrow M^{\prime \prime} \xrightarrow{+1}$ exact triangle in \mathcal{T}. Any commutative diagram

$$
\begin{array}{cc}
M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow M^{\prime}[1] \\
f^{\prime} \downarrow & f \downarrow \\
M^{\prime} \rightarrow M & f^{\prime}[1] \downarrow \\
\hline
\end{array}
$$

may be completed into

$$
\begin{aligned}
& M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow M^{\prime}[1] \\
& f^{\prime} \downarrow \quad f \downarrow \quad f^{\prime \prime} \downarrow \quad f^{\prime}[1] \downarrow \\
& M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow M^{\prime}[1]
\end{aligned}
$$

so that

$$
\operatorname{tr}(f)=\operatorname{tr}\left(f^{\prime}\right)+\operatorname{tr}\left(f^{\prime \prime}\right)
$$

Want to apply this with $\mathcal{T}=D M_{\mathrm{gm}}\left(\mathbf{F}_{q}, \mathbf{Q}\right), f^{\prime}=F_{M^{\prime}}^{-1}, f=F_{M}^{-1}$. Would like $f^{\prime \prime}=F_{M^{\prime \prime}}^{-1}$. Given May's $f^{\prime \prime}$,

$$
\left(f^{\prime \prime}-F_{M^{\prime \prime}}^{-1}\right)^{2}=0
$$

Is the trace of nilpotent endomorphisms 0 ? Yes, thanks to the l-adic realisation.
b) (rationality) and c) (functional equation): commutative diagram

Φ bijective by Bondarko (relying on de Jong), so reduce to pure numerical motives.
d) (shift and twist): trivial.
e) (classical zeta function): $f: X \rightarrow \operatorname{Spec} \mathbf{F}_{q}, g: Z \rightarrow \operatorname{Spec} \mathbf{F}_{q}$ closed subscheme, $h: U \rightarrow \operatorname{Spec} \mathbf{F}_{q}$ open complement; exact triangle

$$
h_{!} \mathbf{Z} \rightarrow f_{!} \mathbf{Z} \rightarrow g_{!} \mathbf{Z} \xrightarrow{+1}
$$

If we had resolution of singularities, we could reduce to X smooth projective and then use $\mathcal{M}_{\mathrm{rat}}\left(\mathbf{F}_{q}, \mathbf{Q}\right)$. (This works if $\operatorname{dim} X \leq 2$). de Jong's theorem not quite sufficient (see next slide). So, need to use the l-adic realisation and the Grothendieck-Verdier trace formula.

To avoid l-adic realisation, can almost use twisting lemma (learned from A. Pacheco): if $\pi: U \rightarrow V$ Galois étale covering of degree $m, G=\operatorname{Gal}(\pi)$

$$
\begin{aligned}
\frac{1}{m} \sum_{\sigma \in G}\left|U^{(\sigma)}\left(\mathbf{F}_{q}\right)\right| & =\left|V\left(\mathbf{F}_{q}\right)\right| \\
\frac{1}{m} \sum_{\sigma \in G} \sharp\left(M^{c}\left(U^{(\sigma)}\right)\right) & =\sharp\left(M^{c}(V)\right)
\end{aligned}
$$

$U^{(\sigma)}$ twist of U (viewed as G-torsor over U by 1-cocycle of $Z^{1}\left(\mathbf{F}_{q}, G\right)$ sending φ to σ).
de Jong's equivariant alteration theorem not quite sufficient to conclude.
2.5. Zeta functions of motives over a base. $S=$ Z-scheme of finite type.
Definition 2.9. $M \in \mathbb{D}(S)$:

$$
\zeta(M, s)=\prod_{x \in S_{(0)}} \zeta\left(i_{x}^{*} M, s\right)
$$

$S_{(0)}=$ set of closed points of S.
Theorem 2.10. a) This defines a Dirichlet series, absolutely convergent for $\Re(s) \gg 0$.
b) If $f: S \rightarrow T$ is a morphism,

$$
\zeta(M, s)=\zeta\left(f_{!} M, s\right) .
$$

c) If $T=\operatorname{Spec} \mathbf{F}_{q}$ in b), $\zeta(M, s) \in \mathbf{Q}\left(q^{-s}\right)$.
d) If S smooth projective of dimension d in c), functional equation

$$
\zeta\left(M^{*}, d-s\right)=\left(-q^{-s}\right)^{\chi\left(f_{!} M\right)} \operatorname{det}\left(F_{f_{!} M}\right)^{-1} \zeta(M, s)
$$

with $M^{*}:=\underline{\operatorname{Hom}}(M, \mathbf{Z})$.

Sketch of proof. 2 steps:

1) Prove b) via the l-adic realisation (but almost have a proof purely using \mathbb{D}). c) and d) follow from Theorem 2.8 c) and the 6 functors formalism.
2) If $S \rightarrow \operatorname{Spec} \mathbf{Z}$ is not dominant, done. If dominant, 1) reduces us to $S=\operatorname{Spec} \mathbf{Z}$, crucial case.
$f: X \rightarrow \operatorname{Spec} \mathbf{Z}$ smooth scheme of finite type: $\zeta\left(f_{!} \mathbf{Z}, s\right)=\zeta(X, s)$ and Serre proved (elementarily) absolute convergence for $\Re(s)>\operatorname{dim} X$. Since the $f_{!} \mathbf{Z}$ "generate" $\mathbb{D}(\mathbf{Z})$, should suffice. But they generate only up to idempotents (the devil is in the idempotents).
Thus need a more sophisticated and expensive argument: uses l-adic realisation, Bondarko's isomorphism, Weil conjecture (Riemann hypothesis) + Deligne's generic constructibility theorem (SGA $41 / 2$, th. finitude). $\quad \square$
2.6. A theorem of Serre. (Lectures on $N_{X}(p)$). K number field: for $M \in \mathbb{D}\left(O_{K}\right)$ and $\mathfrak{p} \subset O_{K}$, define

$$
N_{M}(\mathfrak{p})=\operatorname{tr}\left(F_{M_{\mathfrak{p}}^{*}}\right)
$$

the number of points of M modulo \mathfrak{p}.
Theorem 2.11. Let $M \in \mathbb{D}\left(O_{K}\right)$. Suppose that $\zeta(M, s)$ is not a finite product of Euler factors. Then the set

$$
\left\{\mathfrak{p} \mid N_{M}(\mathfrak{p})=0\right\}
$$

has a density ϵ, with

$$
\epsilon \leq 1-\frac{1}{b_{\infty}(M)^{2}}
$$

where $b_{\infty}(M)=\sum_{i} \operatorname{dim} H_{l}^{i}\left(M_{K}\right)$.

Proof Same as Serre's. $H_{l}(M) \in D_{c}^{b}\left(O_{K}[1 / l], \mathbf{Q}_{l}\right) l$-adic realisation of M. By Deligne's generic base change theorem, \exists open subset $U \subseteq \operatorname{Spec} O_{K}[1 / l]$ such that $H_{l}(M)_{\mid U}$ commutes with any base change. In particular, may compute

$$
\operatorname{tr}\left(F_{M_{\mathfrak{p}}^{*}} \mid H_{l}^{*}\left(M_{\mathfrak{p}}\right)\right), \mathfrak{p} \in U
$$

as traces of [conjugacy class of] arithmetic Frobenius $\varphi_{\mathfrak{p}} \in \operatorname{Gal}(\bar{K} / K)$ acting on $H_{l}^{*}\left(M_{K}\right)$. Statement then reduces to

Theorem 2.12 (Serre). G compact group, K locally compact field of characteristic $0, \rho: G \rightarrow G L_{n}(K), \rho^{\prime}: G \rightarrow G L_{n^{\prime}}(K)$ two continous K-linear representations of G. Then
(i) either $\operatorname{tr}_{\rho}=\operatorname{tr}_{\rho^{\prime}}$;
(ii) or the set $\left\{g \in G \mid \operatorname{tr}_{\rho}(g) \neq \operatorname{tr}_{\rho^{\prime}}(g)\right\}$ has a Haar density $\geq \frac{1}{\left(n+n^{\prime}\right)^{2}}$.

3. L-FUnCTIONS OVER GLOBAL FIELDS

3.1. Motives with good reduction.

Definition 3.1. S / \mathbf{Z} essentially of finite type:

$$
\left.\mathbb{D}^{\text {proj }}(S)=\left\langle f_{!} \mathbf{Z}\right| f: X \rightarrow S \text { smooth projective }\right\rangle
$$

Example 3.2. $S=\operatorname{Spec} k$: $\mathbb{D}^{\operatorname{proj}}(k)=\mathbb{D}(k)$ (by de Jong).
Definition 3.3. S a trait (spectrum of a dvr), $j: \eta \hookrightarrow S$ generic point:
$M \in \mathbb{D}(\eta)$ has good reduction if $M \in \operatorname{ess-im}\left(\mathbb{D}^{\operatorname{proj}}(S) \xrightarrow{j^{*}} \mathbb{D}(\eta)\right)$.

Lemma 3.4. $i: x \rightarrow S$ immersion of the closed point, $M \in \mathbb{D}(S)$. a) \exists natural transformation

$$
u_{M}: i^{*} M(-1)[-2] \rightarrow i^{!} M
$$

b) If $M \in \mathbb{D}^{\operatorname{proj}}(S), u_{M}$ isomorphism.
(Proof of a) uses 6 operations. Proof of b) uses "absolute purity" theorem of Cisinski-Déglise, relying on Quillen's localisation theorem for algebraic K-theory.)
3.2. The total L-function. K global field, $C_{K}=\operatorname{Spec} O_{K}, O_{K}$ ring of integers (in char. 0), or smooth projective model (in char. p), $j:$ Spec $K \rightarrow C_{K}$ inclusion of the generic point.
$M \in \mathbb{D}(K)$: would like to define an L-function of M as the zeta function of $j_{*} M$.
This object exists but in the "large" category $D A^{\text {et }}\left(C_{K}, \mathbf{Q}\right)$ (it is not constructible). However,

$$
2-\lim _{U \subseteq C_{K}} \mathbb{D}(U) \xrightarrow{\sim} \mathbb{D}(K)
$$

which leads to:

Definition 3.5. x closed point of $C_{K}, S_{x}=\operatorname{Spec} \mathcal{O}_{C_{K}, x}, i_{x}: x \rightarrow S_{x}$, $j_{x}:$ Spec $K \rightarrow S_{x}$. For $M \in \mathbb{D}(K)$,

$$
\begin{aligned}
L_{x}^{\mathrm{tot}}(M, s) & =\zeta\left(i_{x}^{*}\left(j_{x}\right)_{*} M, s\right) \\
L^{\mathrm{tot}}(M, s) & =\prod_{x \in C_{K}} L_{x}^{\mathrm{tot}}(M, s)
\end{aligned}
$$

Theorem 3.6. $L^{\mathrm{tot}}(M, s)$ is an absolutely convergent Dirichlet series, for $\Re(s) \gg 0$.

Proof: M has good reduction at x for almost all $x \in C_{K}$. More precisely, $\exists U \subseteq C_{K}$ and $\mathcal{M} \in \mathbb{D}^{\operatorname{proj}}(U)$ such that $j_{U}^{*} \mathcal{M}=M$ for $j_{U}: \operatorname{Spec} K \rightarrow U$. For $x \in U$, let $j_{U, x}: S_{x} \rightarrow U$ and $\mathcal{M}_{x}=j_{U, x}^{*} \mathcal{M}$. Localisation exact triangle

$$
\left(i_{x}\right)_{*}!_{x}^{!} \mathcal{M}_{x} \rightarrow \mathcal{M}_{x} \rightarrow\left(j_{x}\right)_{*} j_{x}^{*} \mathcal{M}_{x} \xrightarrow{+1}
$$

apply i_{x}^{*} :

$$
i_{x}^{!} \mathcal{M}_{x} \rightarrow i_{x}^{*} \mathcal{M}_{x} \rightarrow i_{x}^{*}\left(j_{x}\right)_{*} M \xrightarrow{+1}
$$

Thus

$$
L_{x}^{\mathrm{tot}}(M, s)=\frac{\zeta\left(i_{x}^{*} \mathcal{M}_{x}, s\right)}{\zeta\left(i_{x}^{!} \mathcal{M}_{x}, s\right)}=\frac{\zeta\left(i_{x}^{*} \mathcal{M}_{x}, s\right)}{\zeta\left(i_{x}^{*} \mathcal{M}_{x}, s+1\right)}
$$

by Lemma 3.4.
But $\prod_{x \in U} \zeta\left(i_{x}^{*} \mathcal{M}_{x}, s\right)=\zeta(\mathcal{M}, s)$ convergent by Theorem 2.10, so we win.

3.3. The nearby L-function.

Lemma 3.7. $f=\sum_{n=1}^{\infty} a_{n} n^{-s}$ convergent Dirichlet series with complex coefficients, with $a_{1}=1$. Then the equation

$$
f(s)=g(s) / g(s+1)
$$

has a unique solution as a convergent Dirichlet series (with first coefficient 1), namely

$$
g(s)=\prod_{m=0}^{\infty} f(s+m)
$$

Moreover, g has the same absolute convergence abscissa as f. If the coefficients of f belong to $F \subseteq \mathbf{C}$, so do those of g.

Definition 3.8. $M \in \mathbb{D}(K)$:

$$
L^{\mathrm{near}}(M, s)=\prod_{x \in C_{K}} L_{x}^{\mathrm{near}}(M, s)
$$

given by the rule

$$
L_{x}^{\mathrm{tot}}(M, s)=\frac{L_{x}^{\text {near }}(M, s)}{L_{x}^{\text {near }}(M, s+1)}
$$

cf. Lemma 3.7.

Theorem 3.9. a) $\forall x \in C_{K}, L_{x}^{\text {near }}(M, s) \in \mathbf{Q}\left(N(x)^{-s}\right)$.
b) $L^{\text {near }}(M, s)$ convergent Dirichlet series.
c) If M has good reduction at x and \mathcal{M}_{x} is a good model at x, then

$$
L_{x}^{\mathrm{near}}(M, s)=\zeta\left(i_{x}^{*} \mathcal{M}_{x}, s\right)
$$

d) If K function field over \mathbf{F}_{q}, $L^{\text {near }}(M, s) \in \mathbf{Q}\left(q^{-s}\right)$, and functional equation between $L^{\text {near }}(M, s)$ and $L^{\text {near }}\left(M^{*}, 1-s\right)$.

For a), two proofs:
(i) Pass to l-adic realisation:

$$
L_{x}^{\mathrm{tot}}(M, s)=L\left(i_{x}^{*} R\left(j_{x}\right)_{*} R^{l}(M), s\right)
$$

If $V l$-adic representation of G_{K}, need to show that

$$
L\left(i_{x}^{*} R\left(j_{x}\right)_{*} V, s\right)=f\left(N(x)^{-s}\right) / f\left(N(x)^{-s-1}\right)
$$

for some $f \in \mathbf{Q}(t)$.
We have

$$
L\left(i_{x}^{*} R\left(j_{x}\right)_{*} V, s\right)=\frac{\operatorname{det}\left(1-\varphi_{x} N(x)^{-s} \mid H^{1}\left(I_{x}, V\right)\right)}{\operatorname{det}\left(1-\varphi_{x} N(x)^{-s} \mid H^{0}\left(I_{x}, V\right)\right)}
$$

This is an Euler-Poincaré characteristic, so may assume V semi-simple. Then I_{x} acts by a finite quotient by the l-adic monodromy theorem, thus

$$
H^{1}\left(I_{x}, V\right)=V_{I_{x}}(-1) \simeq V^{I_{x}}(-1)
$$

and

$$
L\left(i_{x}^{*} R\left(j_{x}\right)_{*} V, s\right)=\frac{L^{\text {Serre }}(V, s)}{L^{\text {Serre }}(V, s+1)} \text { (in the semi-simple case) }
$$

(ii) $\Upsilon_{x}: \mathbb{D}(K) \rightarrow \mathbb{D}(\kappa(x))$ Ayoub's "unipotent" specialisation system: exact triangle

$$
i_{x}^{*}\left(j_{x}\right)_{*} M \rightarrow \Upsilon_{x}(M) \rightarrow \Upsilon_{x}(M)(-1) \xrightarrow{+1}
$$

hence $L_{x}^{\text {near }}(M, s)=\zeta\left(\Upsilon_{x}(M), s\right)$.
Remark 3.10. First proof gives other explicit formula for $L_{x}^{\text {near }}(M, s)$:

$$
L_{x}^{\mathrm{near}}(M, s)=L_{x}^{\mathrm{Serre}}\left(R^{l}(M)^{s s}, s\right)
$$

$R^{l}(M)^{s s}$ semi-simplification of $R^{l}(M)$. (Since action of inertia factors through finite quotient, "Serre L-function" could be replaced by "Artin L-function".)

Example. E elliptic curve $/ K$ with multiplicative reduction at $x, V=$ $H^{1}\left(\bar{E}, \mathbf{Q}_{l}\right)$:

$$
\begin{aligned}
L_{x}^{\text {Serre }}\left(H^{1}(E), s\right) & =\operatorname{det}\left(1-N(x)^{-s} \varphi_{x} \mid V^{I_{x}}\right)^{-1} \\
L_{x}^{\text {near }}\left(H^{1}(E), s\right) & =L_{x}^{\text {Serre }}\left(H^{1}(E), s\right) \times \operatorname{det}\left(1-N(x)^{-s} \varphi_{x} \mid V / V^{I_{x}}\right)^{-1}
\end{aligned}
$$

Extra poles are explicitly computable...

Discussions with J. Ayoub: $K=\mathbf{F}_{q}(C)$, explicit functional equation for $L^{\text {near }}(M, s)$ with exponential term of the form $A(M)^{s}$,

$$
\begin{aligned}
A(M) & =q^{\chi(M)(2 g-2)+\operatorname{deg} \mathfrak{f}(M)} \\
g & =\text { genus of } C \\
\chi(M) & =\operatorname{tr}\left(1_{M}\right) \\
\mathfrak{f}(M) & =\sum_{x \in C} a_{x}(M) x \\
a_{x}(M) & =\text { Artin conductor of } M \text { at } x
\end{aligned}
$$

To define $a_{x}(M)$ without l-adic realisation, use Ayoub's "full" specialisation system $\Psi_{x}: \mathbb{D}(K) \rightarrow \mathbb{D}(\kappa(x)): \Psi_{x}(M)$ carries action of wild inertia P_{x}, define $s w_{x}(M)$ from character

$$
P_{x} \ni g \mapsto \operatorname{tr}\left(g \mid \Psi_{x}(M)\right) .
$$

(To be continued...)

