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Abstract

In this paper, we first generalize to any hyper-Kähler manifold X with b3(X) 6= 0
results proved by O’Grady for hyper-Kähler manifolds of generalized Kummer type. In
the second part, we restrict to hyper-Kähler manifolds of generalized Kummer type and
prove, using results of Markman, that their Kuga-Satake correspondence is algebraic.

0 Introduction

This paper provides complements to the recent papers [15] by O’Grady and [12] by Markman.
Hyper-Kähler manifolds X of generalized Kummer type are obtained by deforming the
generalized Kummer varieties Kn(A) constructed by Beauville [1] starting from an abelian
surface A. The manifold Kn(A) is defined as the subset of the punctual Hilbert scheme
A[n+1] consisting of 0-dimensional subschemes with trivial Albanese class. For n ≥ 2, one
has b2(X) = 7, b3(X) = 8. Both papers are concerned with the intermediate Jacobians
J3(X) for X as above. Recall that J3(X) is the complex torus built from the Hodge
structure on H3(X,Z), which in this case is of level 1 since H3,0(X) = 0, and is thus an
abelian variety when X is projective. As b3(X) = 8, J3(X) is an abelian fourfold. O’Grady
proves the following results.

Theorem 0.1. (O’Grady [15]) (1) J3(X) is a Weil abelian fourfold.
(2) For a very general projective deformation of X, the Kuga-Satake abelian variety

KS(X) of (H2(X,Q)tr, ( , )) is isogenous to a power of J3(X).

Let us explain both statements. A Weil abelian fourfold is an abelian fourfold that
admits an endomorphism φ : A→ A satisfying a quadratic equation φ2 = −dId, with d > 0,
with the following extra condition: consider the action φC of φ on H1(X,C) by pullback.
Then φC preserves H1,0(A) and H0,1(A) since it is a morphism of Hodge structures and thus
it has eigenvalues either i

√
d or −i

√
d on these 4-dimensional spaces. The Weil condition is

that φC has both eigenvalues i
√
d and −i

√
d with multiplicity 2 on H1,0(A) (hence also on

H0,1(A)). It guarantees that A has a 2-dimensional space of Weil Hodge classes of degree 4.
More precisely, denoting K the number field Q[

√
−d], H1(A,Q) is a 4-dimensional K-vector

space and the condition above guarantees that the 2-dimensional subspace

4∧
K

H1(A,Q) ⊂
4∧
H1(A,Q)

consists of classes of Hodge type (2, 2), hence of Hodge classes.
Concerning the point (2), let us define a Hodge structure of hyper-Kähler type as the

data of a weight 2 (effective, rational or integral) Hodge structure (H2, F iH2
C) with h2,0 = 1,

equipped with a nondegenerate quadratic form satisfying the first Hodge-Riemann relations,
namely

(H2,0, F 1H2
C) = 0

∗The author is supported by the ERC Synergy Grant HyperK (Grant agreement No. 854361).
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and the condition that the restriction of ( , ) to the real 2-plane (H2,0 ⊕ H0,2) ∩ H2
R is

positive definite. This is the structure one gets on the degree 2 cohomology of a hyper-Kähler
manifold, the intersection pairing being given by the Beauville-Bogomolov quadratic form.
We will say that we have a polarized Hodge structure of hyper-Kähler type if furthermore
( , ) is negative definite on the space H1,1

R := H1,1 ∩ H2
R. We get such a structure by

considering the transcendental degree 2 cohomology of a projective hyper-Kähler manifold.
The Kuga-Satake variety KS(H2, ( , )) associated to a Hodge structure (H2, ( , )) of hyper-
Kähler type is a complex torus, or weight 1 Hodge structure (which is defined up to isogeny
if we work with rational Hodge structures) built by a formal process (see [10], [5] and Section
2). If the considered Hodge structure is a polarized Hodge structure of hyper-Kähler type,
KS(H2, ( , )) is an abelian variety. In the case of a very general polarized weight 2 Hodge
structure of generalized Kummer type, we have b2,tr = 6 and the corresponding Kuga-Satake
variety is isogenous to a power of a Weil abelian fourfold. The point (1) thus follows from
(2) and (2) itself is a consequence of a certain universality property of the Kuga-Satake
construction proved in [3], (and [7] in a slightly different setting, see Section 2), and of the
following result.

Theorem 0.2. (O’Grady [15]) Let X be a hyper-Kähler 2n-fold of generalized Kummer
deformation type with n ≥ 2. Then the composite map map

2∧
H3(X,Q)→ H6(X,Q)

Qn−2
X→ H4n−2(X,Q)

is surjective.

Here QX ∈ H4(X,Q) is a cohomology class which is constructed using the Beauville-
Bogomolov form (see Section 1.1). Our first result is the following generalization of Theorem
0.2.

Theorem 0.3. Let X be a hyper-Kähler 2n-fold such that b3(X) 6= 0. Then
(1) The composite map

2∧
H3(X,Q)→ H6(X,Q)

Qn−2
X→ H4n−2(X,Q)

is surjective.
(2) Assuming X is projective, the intermediate Jacobian J3(X) contains a simple com-

ponent of the Kuga-Satake abelian variety of H2(X,Q)tr.

(3) One has b3(X) ≥ 2k, where k = b2(X)−2
2 if b2(X) is even, k = b2(X)−1

2 if b2(X) is
odd.

We will also prove similar results, and in particular the bound

b2n−1(X) ≥ 2k, if H2n−1(X,Q) 6= 0, H2n−3(X,Q) = 0. (1)

where k is as in (3). In particular, we get the following corollary in dimension 6.

Corollary 0.4. Let X be a hyper-Kähler 6-fold such that bodd(X) 6= 0. Then bodd(X) ≥ 2k,

where k = b2(X)−2
2 if b2(X) is even, k = b2(X)−1

2 if b2(X) is odd.

The Betti numbers of hyper-Kähler manifolds have been studied in [17], [8] which es-
tablishes very precise bounds in dimension 4 and in [18] which claims similar bounds in
dimension 6 (but the proof seems to be incomplete). The paper [9] gives very precise con-
jectural bounds (for example bounds on b2 depending only on the dimension), depending on
a conjecture on the Looijenga-Lunts representation [11], [19]. The subject remains however
wide open.

A key point in both cases is the fact that the weight 3 or weight 2n− 1 Hodge structure
one considers is of Hodge level 1, that is, they satisfy the property hp,q = 0 for |p− q| > 1.
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As we already mentioned, the points (2) and (3) follow, using this observation, from the
point (1), and from a universality property for the Kuga-Satake weight 1 Hodge structure,
proved by Charles in [3], even in the unpolarized case.

The second part of this paper provides a complement to Markman’s paper [12]. In this
paper, Markman proves the Hodge conjecture for the Weil Hodge classes on the Weil abelian
fourfolds appearing in Theorem 2.2. He also proves that the Abel-Jacobi map

ΦX : CH2(X)alg → J3(X),

defined on the group of codipmension 2 cycles on X algebraically equivalent to 0, is sur-
jective for a projective hyper-Kähler manifold X of generalized Kummer deformation type.
This statement was expected as a consequence of the generalized Hodge conjecture because
H3,0(X) = 0 (see [22]).

Our second result is the following

Theorem 0.5. For X a projective hyper-Kähler manifold of generalized Kummer defor-
mation type with n ≥ 2, the Kuga-Satake correspondence between X and its Kuga-Satake
variety KS(X) is algebraic.

To explain this statement, the Kuga-Satake construction in the polarized case produces
an abelian variety KS(X) associated to the polarized Hodge structure (H2(X,Q)tr, ( , ))
which has the property that H2(X,Q)tr is a Hodge substructure of H2(KS(X),Q). The
Hodge conjecture predicts the existence of a correspondence between X and KS(X), that is
an algebraic cycle Γ of codimension 2n with Q-coefficients inX×KS(X), such that Γ∗ induces
the given embedding H2(X,Q)tr ↪→ H2(KS(X),Q). The meaning of the “algebraicity of
the Kuga-Satake correspondence” is the existence of such cycle Γ (see [6] for a general
discussion).

The algebraicity of the Kuga-Satake correspondence is known for projective K3 surfaces
with Picard number at least 17 [14]. It is also known by work of Paranjape [16] for K3
surfaces with Picard number 16 obtained as desingularizations of double covers of P2 ramified
along 6 lines. Some hyper-Kähler examples involving cubic fourfolds have been exhibited in
[21].

1 Applications of the hard Lefschetz theorem

1.1 Degree 3 cohomology: complement to a paper of O’Grady

Let X be a hyper-Kähler manifold of dimension 2n with n ≥ 2. The Beauville-Bogomolov
quadratic form qX is a nondegenerate quadratic form on H2(X,Q), whose inverse gives
an element of Sym2H2(X,Q). By Verbitsky [2], the later space imbeds by cup-product in
H4(X,Q), hence we get a class

QX ∈ H4(X,Q). (2)

The O’Grady map φ :
∧2

H3(X,Q)→ H4n−2(X,Q) is defined by

φ(α ∧ β) = Qn−2
X ∪ α ∪ β. (3)

The following result was first proved by O’Grady [15] in the case of a hyper-Kähler
manifold of generalized Kummer deformation type.

Theorem 1.1. Let X be a hyper-Kähler manifold of dimension 2n. Assume H3(X,Q) 6= 0.

Then the O’Grady map map φ :
∧2

H3(X,Q)→ H4n−2(X,Q) is surjective.

Proof. We can choose the complex structure on X to be general, so that ρ(X) = 0, and
this implies that the Hodge structure on H2(X,Q) (or equivalently H4n−2(X,Q) as they
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are isomorphic by combining Poincaré duality and the self-duality given by the Beauville-
Bogomolov form) is simple. As the morphism φ is a morphism of Hodge structures, its image
is a Hodge substructure of H4n−2(X,Q), hence either φ is surjective, or it is 0. Theorem
1.1 thus follows fropm the next proposition.

Proposition 1.2. The map φ is not identically 0.

Proof. Let ω ∈ H2(X,R) be a Kähler class. Then we know that the ω-Lefschetz intersection
pairing 〈 , 〉ω on H3(X,R), defined by

〈α, β〉ω :=

∫
X

ω2n−3 ∪ α ∪ β

is nondegenerate. This implies that the cup-product map

ψ :

2∧
H3(X,Q)→ H6(X,Q)

has the property that Imψ pairs nontrivially with the image of the map

Sym2n−3H2(X,Q)→ H4n−6(X,Q)

given by cup-product. Note that the Hodge structure on H3(X,Q) has Hodge level 1, so
that the Hodge structure on the image of Imψ in Sym2n−3H2(X,Q)∗ is a Hodge structure
of level at most 2. We now argue as in [20]. We choose X very general so that the Mumford-
Tate group of the Hodge structure on H2(X,Q) is the orthogonal group O(qX). Any Hodge
substructure of Sym2n−3H2(X,Q)∗ ∼= Sym2n−3H2(X,Q) is thus a direct sum of O(qX)-
subrepresentations of Sym2n−3H2(X,Q). Elementary representation theory of O(qX) then
shows that the irreducible O(qX)-subrepresentations of Sym2n−3H2(X,Q) are the subspaces

Ql
XSym2n−3−2lH2(X,Q)0,

where we see here QX as an element of Sym2H2(X,Q), and

SymkH2(X,Q)0 ⊂ SymkH2(X,Q)

can be defined after passing to C-coefficients as the subspace generated by αk with qX(α) = 0
(this definition is correct with Q-coefficients only if the quadratic form qX has a zero).

The irreducible Hodge structure on Ql
XSym2n−3−2lH2(X,Q)0 has Hodge level > 2 when

2n−3−2l > 1 since it contains the class Ql
Xσ

2n−3−2l
X which is of type (4n−6−4l, 2l), where

σX generates H2,0(X). It follows that Imψ can pair nontrivially only with Qn−2
X H2(X,Q),

hence the map Qn−2
X ψ, which is the O’Grady map, is nonzero, which concludes the proof.

1.2 Cohomology of degree 2n− 1

For other odd degree 2k − 1 ≤ 2n − 1, one may wonder what the hard Lefschetz theorem
gives. The proof of Proposition 1.2 will give as well:

Proposition 1.3. The composition

ψ′ :

2∧
H2k−1(X,Q)→ H4k−2(X,Q)→ Sym2n−2k+1H2(X,Q)∗,

where the first map is the cup-product and the second one is Poincaré dual to the cup-product
map Sym2n−2k+1H2(X,Q)→ H4n−4k+2(X,Q), is nontrivial (and even, nondegenerate).

However, we do not know a priori the Hodge level of H2k−1(X,Q) so we do not know to
which irreducible component of the O(q)-representation of Sym2n−2k+1H2(X,Q)∗ the image
Imψ′ can map nontrivially. In the case of degree 2k − 1 = 2n− 1, we have only one piece,
namely H2(X,Q)∗, hence we get:
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Corollary 1.4. If X is a hyper-Kähler manifold of dimension 2n with H2n−1(X,Q) 6= 0,
the cup-product map

2∧
H2n−1(X,Q)→ H2(X,Q)∗.

is surjective.

Proof. Indeed, the map ψ is nonzero and a morphism of Hodge structures, the right hand
side being a simple Hodge structure for a very general complex structure on X.

We will also use in next section the following observation.

Lemma 1.5. Let X be a hyper-Kähler 2n-fold. Then the Hodge structure on the quotient

H2n−1(X,Q)0 := H2n−1(X,Q)/H2 ∪H2n−3(X,Q) (4)

has Hodge level 1. In particular, if H2n−3(X,Q) = 0, the Hodge structure on H2n−1(X,Q)
has Hodge level 1.

Proof. The statement is that the (p, q)-components of H2n−1(X,C)0 vanish unless (p, q) =
(n, n − 1) or (p, q) = (n − 1, n). We thus have to show that any class in Hp,q(X) with
p > n or q > n belongs to H2(X,C) ∪ H2n−3(X,C). This follows from the fact that, as
σX is a symplectic holomorphic form, the cup-product map by σl

X induces a vector bundle
isomorphism

σl
X∧ : Ωn−l

X → Ωn+l
X ,

hence an isomorphism σl
X∪ : Hn−l,q(X) ∼= Hn+l,q(X). This proves the statement for p > n

and the other statement follows by Hodge symmetry.

2 Universality of the Kuga-Satake correspondence and
applications

We start with an effective rational Hodge structure (H2, F iH2
C) of weight 2 with h2,0 = 1

equipped with a symmetric nondegenerate intersection pairing ( , ) satisfying the conditions

(σ, F 1H2) = 0, (σ, σ) > 0,

where σ generates H2,0. Note that ( , ) satisfies only part of the Hodge-Riemann relations
so that the Hodge structure is not in general polarized. We will call such data a Hodge
structure of hyper-Kähler type (although it also encodes the quadratic form) because this is
the structure that we have on the degree 2 cohomology H2(X,Q) of a hyper-Kähler manifold
equipped with the Beauville-Bogomolov form qX . The Kuga-Satake correspondence first
constructed in [10] associates to a Hodge structure H2 of hyper-Kähler type a weight 1
Hodge structure H1

KS, which has the property that there is an injective morphism of Hodge
structures

H2 → EndH1
KS,

of bidegree (−1,−1). Note that the Hodge structure on both sides has Hodge level 2. When
the Hodge structure of hyper-Kähler type on H2 is polarized by ( , ), which means that our
data have the extra property that the pairing ( , ) restricted to H1,1

R is negative definite, the
Hodge structure on H1

KS is polarized, hence is the Hodge structure on the H1 of an abelian
variety.

The construction of H1
KS can be summarized as follows: The Q-vector space H1

KS is
defined as Cliff (H2, ( , )), that is, it is the quotient of the tensor algebra ⊗H2 by the ideal
generated by the relations x2 = (x, x)1, x ∈ H2. The weight 1 Hodge structure on H1

KS is
given by a complex structure on the real vector space H1

KS,R. It is constructed as follows.
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Consider the subspace (H2,0 ⊕H0,2)R ⊂ H2
R. It is of dimension 2, naturally oriented, and

the restriction of the form ( , ) to this real plane is positive definite. Choose a positively
oriented orthonormal basis (e1, e2) of (H2,0⊕H0,2)R. Then e := e1e2 ∈ Cliff (H2

R, ( , )) does
not depend on the choice of basis and satisfies e2 = −1. Left Clifford multiplication by e
thus defines the desired complex structure on Cliff (H2

R, ( , )) = H1
KS,R.

Clifford multiplication on the left induces a morphism

H2 → EndH1
KS

which is a morphism of Hodge structures of bidegree (−1,−1). This is equivalent to say-
ing that Clifford multiplication on the left by H1,1 preserves the Hodge decomposition of
H1

KS,C and that Clifford multiplication on the left by H2,0 shifts the Hodge decomposition

of H1
KS,C by (−1,−1). The first fact follows because H1,1 is orthogonal to H2,0 for ( , ), so

multiplication by elements of H1,1 anticommutes with Clifford multiplication by elements
of H2,0 or H0,2, hence commutes with Clifford multiplication by e1e2. The second fact is
an easy computation.

The weight 1 Hodge structure H1
KS is not simple. In fact it has a big algebra of endomor-

phisms given by right Clifford multiplication on the Clifford algebra. These endomorphisms
obviously commute with left Clifford multiplication by e, hence provide automorphisms of
Hodge structure of H1

KS. To start with, we can restrict the construction to the even Clifford
algebra C+(H2, ( , )) generated by the tensor products v1 ⊗ . . .⊗ vk, vi ∈ H2, with k even,
which clearly provides a Hodge substructure of H1

KS,Q since multiplication on the left by e

preserves C+(H2
R, ( , )). We can do similarly with the odd part C−(H2, ( , )) of the Clifford

algebra, which provides another Hodge substructure. Multiplication on the right by a given
element v0 ∈ H2 with (v, v) 6= 0 provides an isomorphism

C+(H2, ( , )) ∼= C−(H2, ( , )),

so that, denoting H1
KS+, H1

KS− the weight 1 Hodge structures so obtained, we have an
isomorphism

H1
KS+ → H1

KS−

given by right Clifford multiplication by v0, and we get an injective (but not canonical)
morphism of Hodge structures

H2 → EndH1
KS+

given by
v 7→ (α 7→ vαv0).

When the Mumford-Tate group of the Hodge structure on H2 is the orthogonal group
O(( , )), using representation theory of the orthogonal group, one can describe up to isogeny
the complex tori appearing as subquotient of the Kuga-Satake complex torus (see [3], [6]).
Note that in the geometric case, it follows from the local surjectivity of the period map
that the Mumford-Tate group is the orthogonal group O(( , )). When the dimension h of

H2 is odd, the Kuga-Satake complex torus is a power of a simple torus of dimension 2
h−3
2

or 2
h−1
2 . When h is even, the situation is much more delicate, as the classification of the

subquotients depends on the discriminant of the quadratic form ( , ). In this case, the Kuga-
Satake complex torus is a sum of powers of one or two simple complex tori which can be of
dimension 2h/2, 2h/2−1 or 2h/2−2 (see [3]). The numbers above are obtained starting from
the fact that the even Clifford algebra C+(H2) has dimension 2h−1 and that the action on
it by right multiplication by elements of C+(H2) (which are morphisms of Hodge structures
since they commute with the left multiplication by e) splits it as a direct sum of weight 1
Hodge structures. We now consider the polarized case. The Kuga-Satake Hodge structure
H1

KS+ is then polarized and thus is the weight 1 Hodge structure on the degree 1 rational
cohomology of an abelian variety, that we will denote KS(H2, ( , )), and is defined up to
isogeny. The two dual complex tori appearing above are then isomorphic. In the case where
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h is even, the simple abelian variety one gets has a quadratic endomorphism which makes it
a Weil abelian variety. In the geometric case, where we start from the degree 2 cohomology
of a hyper-Kähler manifold X, equipped with the Beauville-Bogomolov form qX , we assume
X is polarized by an ample class l ∈ NS(X) and put

(H2, ( , )) = (H2(X,Q)⊥qX
l, qX)

KS(X) = KS(H2, ( , )).

In fact, we can also define (H2(X,Q)⊥qX
l, qX) without using the Beauville-Bogomolov form,

since H2(X,Q)⊥qX
l is the group of l-primitive classes, and, up to a rational coefficient, the

restricted form qX is proportional to the Lefschetz intersection pairing defined by l.
The following universality property is proved in [3] (see also [7] for a slightly different

statement, proved only in the polarized case).

Theorem 2.1. Let (H2, ( , )) be a Hodge structure of hyper-Kähler type. Assume the
Mumford-Tate group of H2 is SO(H2, ( , )). Let H be a simple effective weight 1 Hodge
structure, such that for nonnegative integers a, b of the same parity, there exists an injective
morphism of Hodge structures of bidegree (a−b

2 − 1, a−b2 − 1)

H2 ↪→ H⊗a ⊗ (H∨)⊗b.

Then H is a subquotient of the Kuga-Satake Hodge structure H1
KS+. In particular

dimH ≥ 2k, where k =
h− 1

2
if h is odd, k =

h− 2

2
if h is even.

If h is divisible by 4 and the signature of ( , ) is (3, h − 3), the last inequality can be

improved to dimH ≥ 2
h
2 .

A first application of this universality property (or rather a variant of it) was given in
[7] where we proved the Matsushita conjecture on the moduli map for Lagrangian fibration
of projective hyper-Kähler manifolds, at least in the case where b2(X) ≥ 5, assuming the
Mumford-Tate group is maximal. A second application (also in the projective case, with
a = b = 1) was given by O’Grady in [15]. Let X be a projective hyper-Kähler manifold
of generalized Kummer deformation type and dimension ≥ 4. One has b2(X) = 7, hence
for a very general projective such hyper-Kähler manifold, b2(X)tr = 6, so that KS(X) is
isogenous to a sum of copies of a simple abelian fourfold of Weil type. Using Theorem 1.1
(that he had proved by an explicit computation in that case), the fact that b3(X) = 8, and
the universality property of Theorem 2.1, O’Grady proved the following result.

Theorem 2.2. The intermediate Jacobian J3(X) of a projective hyper-Kähler manifold
of generalized Kummer deformation type with ρ(X) = 1 is a Weil abelian fourfold. The
Kuga-Satake variety of (H2(X,Q)tr, qX) is isogenous to a sum of two copies of J3(X).

2.1 Applications to Betti numbers

In this section, we are going to apply the previous results to get inequalities involving the
Betti numbers of hyper-Kähler manifolds.

Theorem 2.3. Let X be a hyper-Kähler manifold. Assume that b3(X) 6= 0. Then

b3(X) ≥ 2k, (5)

where k = b2(X)−1
2 if b2(X) is odd, k = b2(X)−2

2 if b2(X) is even.

If b2(X) is divisible by 4, the last inequality can be improved to b3(X) ≥ 2b2(X)/2.
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Proof. By Theorem 1.1, we have a surjective morphism of Hodge structures

2∧
H3(X,Q)→ H4n−2(X,Q) ∼= H2(X,Q)∗,

which gives as well an injective morphism of Hodge structures

H2(X,Q) ↪→
2∧
H3(X,Q)∗ ↪→ H3(X,Q)∗ ⊗H3(X,Q)∗.

Choosing the complex structure on X very general so that the Mumford-Tate group of
the Hodge structure on H2(X,Q) is the orthogonal group of ( , ), we can thus apply Theorem
2.1, which gives (5).

We now turn to the Betti number b2n−1. We prove the following

Theorem 2.4. Let X be a hyper-Kähler manifold such that H2n−3(X) = 0 and H2n−1(X) 6=
0. Then

b2n−1(X) ≥ 2k, (6)

where k = b2(X)−1
2 if b2(X) is odd, k = b2(X)−2

2 if b2(X) is even.

If b2(X) is divisible by 4, the last inequality can be improved to b2n−1(X) ≥ 2b2(X)/2.

Proof. By Corollary 1.4, the cup-product map

2∧
H2n−1(X,Q)→ H4n−2(X,Q)

is surjective. As we assumed H2n−3(X,Q) = 0, the Hodge structure on H2n−1(X,Q) has
Hodge level 1 by Lemma 1.5. We are thus exactly as in the situation of Theorem 2.3 and
the same arguments give inequality (6).

In the case of a hyper-Kähler manifold X of dimension 2n = 6, we get

Corollary 2.5. Let X be a hyper-Kähler 6-fold such that Hodd(X) 6= 0. Then

bodd(X) ≥ 2k, (7)

where k = b2−2
2 if b2 is even, k = b2−1

2 if b2 is odd.

Proof. We observe that, in dimension 6, if Hodd(X) 6= 0, then either H3(X,Q) 6= 0 or,
H3(X,Q) = 0 and H5(X,Q) 6= 0. In the first case we apply Theorem 2.3 and in the second
case we apply Theorem 2.4.

3 Algebraicity of the Kuga-Satake correspondence

Let X be a projective complex manifold. Assume that h2,0(X) = 1, so that the Hodge
structure on H2(X,Q) is of hyper-Kähler type (choosing a polarization l on X, the Lefschetz
intersection pairing ( , )lef defined by

(α, β)lef =

∫
X

ln−2α ∪ β

gives the desired intersection form). In the case of a hyper-Kähler manifold of dimension
2n, the Beauville-Bogomolov intersection pairing on H2(X,Q) is independent of the choice
of a polarization, but when we restrict it to the l-primitive cohomology H2(X,Q)prim =

H2(X,Q)⊥l
2n−1

, the two pairings coincide up to a scalar coefficient. Let KS(X) be the Kuga-
Satake abelian variety (defined up to isogeny) associated to the polarized Hodge structure
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(H2(X,Q)prim, ( , )lef). Using an adequate polarization on KS(X), the injective morphism
of Hodge structures

H2(X,Q)prim ↪→ End (H1
KS+(H2(X,Q)prim, ( , ))) = EndH1(KS(X),Q)

gives an injective morphism of Hodge structures

H2(X,Q)prim ↪→ H1(KS(X),Q)⊗2. (8)

whose image is contained in
∧2

H1(KS(X),Q) = H2(KS(X),Q).
A morphism of Hodge structures β : H2(X,Q)prim → H2(KS(X),Q) as in (8) provides

a Hodge class (see [22])

α ∈ H4n−2(X,Q)⊗H2(KS(X),Q) ⊂ H4n(X ×KS(X),Q). (9)

The Hodge conjecture thus predicts that there is a cycle Γ ∈ CH2n(X × KS(X))Q such
that [Γ] = α, hence in particular

[Γ]∗ = β : H2(X,Q)prim → H2(KS(X),Q).

When this holds, we will say that the Kuga-Satake correspondence is algebraic.
In the case whereX is an abelian surface, so b2(X)tr ≤ 5, or more generally any projective

K3 surface with ρ ≥ 17, the algebraicity of the class α above is proved by Morrison [14].
In that case, the Kuga-Satake variety is isogenous to a sum of copies of the abelian surface
itself.

In the next case, where b2,tr = 6, we already mentioned that the Kuga-Satake variety
is isogenous to a sum of copies of a 4-dimensional abelian variety which is of Weil type
(assuming the maximality of the Mumford-Tate group). This case appears geometrically
with K3 surfaces with Picard number 16 and the first family of such K3 surfaces for which
the Kuga-Satake correspondence was known to be algebraic was found by Paranjape [16].
The Paranjape K3 surfaces are obtained by desingularizing double covers of P2 ramified
along the union of six lines.

The geometric situation we consider is the same as in [15], [12]. X is a projective hyper-
Kähler manifold of generalized Kummer type. In particular, we know by O’Grady theorem
(Theorem 2.2) that J3(X) is isogenous to a component of the Kuga-Satake variety KS(X).
We prove now the following result.

Theorem 3.1. Let X be a projective hyper-Kähler manifold of generalized Kummer type.
Then the Kuga-Satake correspondence of X is algebraic.

This theorem should be actually considered as an addendum to Markman’s paper [12].
The result will indeed follow from the following result (Theorem 3.2) of Markman. As we
already mentioned, for X as above, the Hodge structure on H3(X,Q) is of Hodge level 1,
that is, of type (2, 1)+(1, 2). The generalized Hodge conjecture thus predicts that the degree
3 cohomology of X is supported on a (singular) divisor of X, and this is equivalent to the
fact that the Griffiths Abel-Jacobi map

ΦX : CH2(X)alg → J3(X) (10)

is surjective (see [22]).

Theorem 3.2. (Markman [12]) For a projective hyper-Kähler manifold of Kummer defor-
mation type, the Abel-Jacobi map (10) is surjective.

Proof of Theorem 3.1. An equivalent version of Theorem 3.2 says that there exists a codi-
mension 2 cycle Z ∈ CH2(J3(X)×X)Q such that the map [Z]∗ : H1(J3(X),Q)→ H3(X,Q)
is the natural identification H1(J3(X),Q) ∼= H3(X,Q). We recall here that J3(X) is
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the complex torus H3(X,C)/(F 2H3(X,C) ⊕ H3(X,Z)) built from the Hodge structure
on H3(X,Z) so that H1(J3(X),Z) = H3(X,Z) canonically. Note that we can assume
that the cohomology class [Z] ∈ H4(J3(X) × X,Q) belongs to the Künneth component
H1(J3(X),Q) ⊗H3(X,Q). Indeed, using the action of the maps of multiplication by k on
J3(X), the Künneth components of [Z] are all algebraic, and the Künneth components not
in H1(J3(X),Q)⊗H3(X,Q) induce the zero map H1(J3(X),Q)→ H3(X,Q).

Next, by another result of Markman [13], the class QX ∈ H4(X,Q) introduced in (2) is
algebraic on hyper-Kähler manifolds of generalized Kummer type. It is thus the class of a
cycle QX ∈ CH2(X)Q. On J3(X)×X, we consider the following cycle

Γ := Z2 · pr∗XQ2n−2
X , (11)

where prX : J3(X)×X → X denotes the second projection. We prove the following

Claim 3.3. The map [Γ]∗ : H2(J3(X),Q)→ H4n−2(X,Q) identifies with the O’Grady map

φ :
∧2

H3(X,Q)→ H6(X,Q)
QX→ H4n−2(X,Q) of (3).

Proof. Recall that we assumed that [Z] ∈ H1(J3(X),Q) ⊗H3(X,Q). Taking a basis ei of
H3(X,Q), which provides a basis fi of H1(J3(X),Q) and the dual basis f∗i of H1(J3(X),Q),
we can thus write

[Z] =
∑
i

pr∗J3(X)f
∗
i ∪ pr∗Xei, (12)

since [Z]∗(fi) = ei. We now deduce from (12)

[Γ] = −
∑
i,j

pr∗J3(X)(f
∗
i ∪ f∗j ) ∪ pr∗Xei ∪ pr∗Xej ∪ pr∗XQX ,

which immediately implies the claim.

The claim implies the theorem since we already identified the intermediate Jacobian
with a component of the Kuga-Satake variety, in such a way that the transpose of the map
(8) is the O’Grady map. Thus the map (8) and its transpose are induced by an algebraic
cycle.
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CNRS, Institut de Mathématiques de Jussieu-Paris rive gauche
claire.voisin@imj-prg.fr

11


