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Université Paris Diderot-Paris 7
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ĝ = L(g)⊕ Cc central extension of L(g).

David Hernandez Quantum Kac-Moody algebras and categorifications



Affine Kac-Moody algebras

g = Lie(G ) simple finite-dimensional complex Lie algebra.

Example : g = sl2(C).

L(g) = g⊗ C[t±1] loop algebra.
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Affine Kac-Moody algebras

g = Lie(G ) simple finite-dimensional complex Lie algebra.

Example : g = sl2(C).

L(g) = g⊗ C[t±1] loop algebra.

ĝ = L(g)⊕ Cc central extension of L(g).

ĝ : affine Kac-Moody algebra (without derivation).

It is an infinite-dimensional Lie algebra.
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Affine Kac-Moody algebras

Theorem (Kac 68, Moody 69)

ĝ has a presentation analog to the Serre presentation of g (with
the Cartan matrix replaced by an affine Cartan matrix).
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It implies ĝ is a natural infinite-dimensional analog of g.
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Theorem (Kac 68, Moody 69)

ĝ has a presentation analog to the Serre presentation of g (with
the Cartan matrix replaced by an affine Cartan matrix).

It implies ĝ is a natural infinite-dimensional analog of g.
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Theorem (Kac 68, Moody 69)
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Numerous applications in mathematics and mathematical
physics.
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Affine Kac-Moody algebras

Theorem (Kac 68, Moody 69)

ĝ has a presentation analog to the Serre presentation of g (with
the Cartan matrix replaced by an affine Cartan matrix).

It implies ĝ is a natural infinite-dimensional analog of g.

The structure of ĝ is analog to the structure of g (weight
space decomposition, triangular decomposition...).

Example g = sl2(C). Cartan matrix (2) of sl2 → Affine Cartan

matrix

(

2 −2
−2 2

)

of ŝl2.

Numerous applications in mathematics and mathematical
physics.

To name a few : Macdonald identities, Conformal field theory,
Exactly solvable models...
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Quantum Kac-Moody algebras

Kac-Moody algebras have natural deformations : quantum
groups. Drinfeld, Jimbo (85).
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Quantum Kac-Moody algebras

Kac-Moody algebras have natural deformations : quantum
groups. Drinfeld, Jimbo (85).

Also called quantum Kac-Moody algebras.

More precisely : Hopf algebra and deformation Uq(g) of the
universal enveloping algebra U(g) of g.

It depends on q = eh ∈ C
∗ : quantization parameter.

Classical situation : h = 0, q = 1, U1(g) = U(g).

In this talk : q is not a root of unity.
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Quantum affine Kac-Moody algebras

Fundamental case : for ĝ affine Kac-Moody algebra, one gets
a quantum affine Kac-Moody algebra Uq(ĝ).
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Quantum affine Kac-Moody algebras

Fundamental case : for ĝ affine Kac-Moody algebra, one gets
a quantum affine Kac-Moody algebra Uq(ĝ).
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Quantum affine Kac-Moody algebras

Fundamental case : for ĝ affine Kac-Moody algebra, one gets
a quantum affine Kac-Moody algebra Uq(ĝ).

Example : Uq(ŝl2).

Generators of Uq(ŝl2) : E0, E1, F0, F1, K±1
0 , K±1

1 .

Relations : q-deformations of Weyl and Serre relations.

Example of quantum Weyl relation in Uq(ŝl2) :

K1E1 = q2E1K1 , K0F0 = q−2F0K0.
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Quantum affine Kac-Moody algebras

Fundamental case : for ĝ affine Kac-Moody algebra, one gets
a quantum affine Kac-Moody algebra Uq(ĝ).

Example : Uq(ŝl2).

Generators of Uq(ŝl2) : E0, E1, F0, F1, K±1
0 , K±1

1 .

Relations : q-deformations of Weyl and Serre relations.

Example of quantum Weyl relation in Uq(ŝl2) :

K1E1 = q2E1K1 , K0F0 = q−2F0K0.

Example of a quantum Serre relation in Uq(ŝl2) :

0 = E0E
3
1−(q2+1+q−2)E1E0E

2
1 +(q2+1+q−2)E 2

1 E0E1−E 3
1 E0.
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Quantum affine Kac-Moody algebras

There is a quantum analog of the Theorem of Kac and
Moody :
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There is a quantum analog of the Theorem of Kac and
Moody :

Theorem (Drinfeld 88, Beck 94)

The quantum affine Kac-Moody algebra Uq(ĝ) has two
presentations : it can also be defined as a central extension of a
quantum loop algebra.
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Quantum affine Kac-Moody algebras

There is a quantum analog of the Theorem of Kac and
Moody :

Theorem (Drinfeld 88, Beck 94)

The quantum affine Kac-Moody algebra Uq(ĝ) has two
presentations : it can also be defined as a central extension of a
quantum loop algebra.

Interpreted as a ”Commutative” diagram :
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Quantum affine Kac-Moody algebras

There is a quantum analog of the Theorem of Kac and
Moody :

Theorem (Drinfeld 88, Beck 94)

The quantum affine Kac-Moody algebra Uq(ĝ) has two
presentations : it can also be defined as a central extension of a
quantum loop algebra.

Interpreted as a ”Commutative” diagram :

ĝ

Quantization

##H
H

H
H

H

g

Affinization

=={
{

{
{

{

Quantization
!!B

B
B

B
B Uq(ĝ)

Uq(g)

Quantum Affinization

;;w
w

w
w

w
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Applications of Quantum affine Kac-Moody algebras

Solutions to the Quantum Yang-Baxter equation :
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Applications of Quantum affine Kac-Moody algebras

Solutions to the Quantum Yang-Baxter equation :

R12(u)R13(uv)R23(v) = R23(v)R13(uv)R12(u).

Example associated to Uq(ŝl2) :

R(u) =











1 0 0 0

0 q(u−1)
u−q2

1−q2

u−q2 0

0 u(1−q2)
u−q2

q(u−1)
u−q2 0

0 0 0 1











.
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.

XXZ -model, six-vertex model, quantum KZ equations.
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Applications of Quantum affine Kac-Moody algebras

Solutions to the Quantum Yang-Baxter equation :

R12(u)R13(uv)R23(v) = R23(v)R13(uv)R12(u).

Example associated to Uq(ŝl2) :

R(u) =











1 0 0 0

0 q(u−1)
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u−q2 0

0 u(1−q2)
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q(u−1)
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.

XXZ -model, six-vertex model, quantum KZ equations.
Canonical basis, crystal basis.
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XXZ -model, six-vertex model, quantum KZ equations.
Canonical basis, crystal basis.
Relations to Quiver varieties.
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XXZ -model, six-vertex model, quantum KZ equations.
Canonical basis, crystal basis.
Relations to Quiver varieties.
Discrete dynamical systems/cluster algebras : solutions to
T -systems
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Applications of Quantum affine Kac-Moody algebras

Solutions to the Quantum Yang-Baxter equation :

R12(u)R13(uv)R23(v) = R23(v)R13(uv)R12(u).

Example associated to Uq(ŝl2) :

R(u) =











1 0 0 0

0 q(u−1)
u−q2

1−q2

u−q2 0

0 u(1−q2)
u−q2

q(u−1)
u−q2 0

0 0 0 1











.

XXZ -model, six-vertex model, quantum KZ equations.
Canonical basis, crystal basis.
Relations to Quiver varieties.
Discrete dynamical systems/cluster algebras : solutions to
T -systems such as the octahedron relation :

Ta,b(c)Ta,b+1(c) = Ta+1,b(c)Ta−1,b+1(c)+Ta,b(c−1)Ta,b(c+1).

David Hernandez Quantum Kac-Moody algebras and categorifications



Applications of Quantum affine Kac-Moody algebras

Solutions to the Quantum Yang-Baxter equation :

R12(u)R13(uv)R23(v) = R23(v)R13(uv)R12(u).

Example associated to Uq(ŝl2) :

R(u) =











1 0 0 0

0 q(u−1)
u−q2

1−q2

u−q2 0

0 u(1−q2)
u−q2

q(u−1)
u−q2 0

0 0 0 1











.

XXZ -model, six-vertex model, quantum KZ equations.
Canonical basis, crystal basis.
Relations to Quiver varieties.
Discrete dynamical systems/cluster algebras : solutions to
T -systems such as the octahedron relation :

Ta,b(c)Ta,b+1(c) = Ta+1,b(c)Ta−1,b+1(c)+Ta,b(c−1)Ta,b(c+1).

Today : an application via categorification.
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Finite-dimensional representations of Uq(ĝ)

The representation theory of Uq(ĝ) is very rich.
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C : category of finite-dimensional representations of Uq(ĝ).

David Hernandez Quantum Kac-Moody algebras and categorifications



Finite-dimensional representations of Uq(ĝ)
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The simple objects in C are classified (Drinfeld,
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In general the structure of these simple representations is
unknown : subject of current intense research.
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C : category of finite-dimensional representations of Uq(ĝ).

The simple objects in C are classified (Drinfeld,
Chari-Pressley).

In general the structure of these simple representations is
unknown : subject of current intense research.

Example : their dimension is unknown in general.
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Finite-dimensional representations of Uq(ĝ)

The representation theory of Uq(ĝ) is very rich.

C : category of finite-dimensional representations of Uq(ĝ).

The simple objects in C are classified (Drinfeld,
Chari-Pressley).

In general the structure of these simple representations is
unknown : subject of current intense research.

Example : their dimension is unknown in general.

There are more global understanding of the category C.
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Grothendieck ring

C is a tensor category as Uq(ĝ) is a Hopf algebra.

David Hernandez Quantum Kac-Moody algebras and categorifications



Grothendieck ring

C is a tensor category as Uq(ĝ) is a Hopf algebra. Direct
sums V ⊕ V ′, tensor products V ⊗ V ′ of objects V ,V ′ in C
make sense.
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make sense.

K0(C) : Grothendieck ring of C.
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Grothendieck ring

C is a tensor category as Uq(ĝ) is a Hopf algebra. Direct
sums V ⊕ V ′, tensor products V ⊗ V ′ of objects V ,V ′ in C
make sense.

K0(C) : Grothendieck ring of C.

As a group : free group with basis of isomorphism classes [V ]
of simples objects in C.

K0(C) =
⊕

V simple

Z[V ].
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C is a tensor category as Uq(ĝ) is a Hopf algebra. Direct
sums V ⊕ V ′, tensor products V ⊗ V ′ of objects V ,V ′ in C
make sense.

K0(C) : Grothendieck ring of C.

As a group : free group with basis of isomorphism classes [V ]
of simples objects in C.

K0(C) =
⊕

V simple

Z[V ].

Product [V ][V ′] =
∑

W nW [W ] where nW : multiplicity of W

in V ⊗ V ′.
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Grothendieck ring

C is a tensor category as Uq(ĝ) is a Hopf algebra. Direct
sums V ⊕ V ′, tensor products V ⊗ V ′ of objects V ,V ′ in C
make sense.

K0(C) : Grothendieck ring of C.

As a group : free group with basis of isomorphism classes [V ]
of simples objects in C.

K0(C) =
⊕

V simple

Z[V ].

Product [V ][V ′] =
∑

W nW [W ] where nW : multiplicity of W

in V ⊗ V ′.

Jordan-Holder series are used as C is not semi-simple.
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Grothendieck ring

C is a tensor category as Uq(ĝ) is a Hopf algebra. Direct
sums V ⊕ V ′, tensor products V ⊗ V ′ of objects V ,V ′ in C
make sense.

K0(C) : Grothendieck ring of C.

As a group : free group with basis of isomorphism classes [V ]
of simples objects in C.

K0(C) =
⊕

V simple

Z[V ].

Product [V ][V ′] =
∑

W nW [W ] where nW : multiplicity of W

in V ⊗ V ′.

Jordan-Holder series are used as C is not semi-simple.

We get a nice ring with a natural basis.

Theorem (Frenkel-Reshetikhin 98)

The Grothendieck ring K0(C) is commutative.
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C[N] and its canonical basis

N : maximal unipotent subgroup of G simply-laced.
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C[N] and its canonical basis

N : maximal unipotent subgroup of G simply-laced.

C[N] : coordinate ring of N.

Example : G = SL3(C) ⊃ N = {





1 x z

0 1 y

0 0 1



 |x , y , z ∈ C}.

David Hernandez Quantum Kac-Moody algebras and categorifications



C[N] and its canonical basis

N : maximal unipotent subgroup of G simply-laced.

C[N] : coordinate ring of N.

Example : G = SL3(C) ⊃ N = {





1 x z

0 1 y

0 0 1
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C[N] and its canonical basis

N : maximal unipotent subgroup of G simply-laced.

C[N] : coordinate ring of N.

Example : G = SL3(C) ⊃ N = {





1 x z

0 1 y

0 0 1



 |x , y , z ∈ C}.

C[N] = C[x , y , z ].

Lusztig, 90 : definition of a canonical basis B of C[N] (by
using intersection cohomology of certain quiver representation
spaces).
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C[N] and its canonical basis

N : maximal unipotent subgroup of G simply-laced.

C[N] : coordinate ring of N.

Example : G = SL3(C) ⊃ N = {





1 x z

0 1 y

0 0 1



 |x , y , z ∈ C}.

C[N] = C[x , y , z ].

Lusztig, 90 : definition of a canonical basis B of C[N] (by
using intersection cohomology of certain quiver representation
spaces).

Example for N ⊂ SL3(C) :
B = {xazb(xy−z)c |a, b, c ∈ N}∪{yazb(xy−z)c |a, b, c ∈ N}.
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C[N] and its canonical basis

N : maximal unipotent subgroup of G simply-laced.

C[N] : coordinate ring of N.

Example : G = SL3(C) ⊃ N = {





1 x z

0 1 y

0 0 1



 |x , y , z ∈ C}.

C[N] = C[x , y , z ].

Lusztig, 90 : definition of a canonical basis B of C[N] (by
using intersection cohomology of certain quiver representation
spaces).

Example for N ⊂ SL3(C) :
B = {xazb(xy−z)c |a, b, c ∈ N}∪{yazb(xy−z)c |a, b, c ∈ N}.

Important question : properties of the constant structures of
(C[N],B).
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Categorification of C[N] by representations of Uq(ĝ)

The ring C[N] can be categorified by using the representations
of Uq(ĝ) :
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Categorification of C[N] by representations of Uq(ĝ)

The ring C[N] can be categorified by using the representations
of Uq(ĝ) :

Theorem (H.-Leclerc 2011)

There is a monoidal subcategory C′ of C which categorifies
(C[N],B),
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Categorification of C[N] by representations of Uq(ĝ)

The ring C[N] can be categorified by using the representations
of Uq(ĝ) :

Theorem (H.-Leclerc 2011)

There is a monoidal subcategory C′ of C which categorifies
(C[N],B), that is there is a ring isomorphism

φ : C[N]→ K0(C
′)⊗ C

such that φ(B) is the basis of K0(C
′) of simple objects.
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Categorification of C[N] by representations of Uq(ĝ)

The ring C[N] can be categorified by using the representations
of Uq(ĝ) :

Theorem (H.-Leclerc 2011)

There is a monoidal subcategory C′ of C which categorifies
(C[N],B), that is there is a ring isomorphism

φ : C[N]→ K0(C
′)⊗ C

such that φ(B) is the basis of K0(C
′) of simple objects.

K0(C
′)⊗ C is the complexified Grothendieck ring of C′.

David Hernandez Quantum Kac-Moody algebras and categorifications



Categorification of C[N] by representations of Uq(ĝ)
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Categorification of C[N] by representations of Uq(ĝ)

The ring C[N] can be categorified by using the representations
of Uq(ĝ) :

Theorem (H.-Leclerc 2011)

There is a monoidal subcategory C′ of C which categorifies
(C[N],B), that is there is a ring isomorphism

φ : C[N]→ K0(C
′)⊗ C

such that φ(B) is the basis of K0(C
′) of simple objects.

K0(C
′)⊗ C is the complexified Grothendieck ring of C′.

The ring C[N] associated to the finite-dimensional Lie group
G is related to the infinite-dimensional Kac-Moody algebra ĝ.

It is a geometric realization of K0(C
′) with its natural basis.
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Application of the categorification of C[N]

General motivation for categorification :

{algebraic/geometric structures}
Informations
←→ {category}.
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Application of the categorification of C[N]

General motivation for categorification :

{algebraic/geometric structures}
Informations
←→ {category}.

We can use general properties of the category C :

Theorem (H. 2010)

Let S1, · · · ,SN simple objects in C. Then S1 ⊗ S2 ⊗ · · · ⊗ SN is
simple if and only if Si ⊗ Sj is simple for any i < j .

Corollary

Let b1, · · · , bN in B ⊂ C[N]. Then b1b2 · · · bN ∈ B if and only if
bibj ∈ B for any i < j .

This was conjectured by Berenstein-Zelevinsky (related to
cluster algebra theory; web property of the canonical basis).
Application of quantum Kac-Moody algebras to a classical

problem (only finite-dimensional Lie groups appear in the
Corollary !).
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