Quantum Kac-Moody algebras and categorifications

David Hernandez

Université Paris Diderot-Paris 7 Institut de Mathématiques de Jussieu - Paris Rive Gauche

May 13, 2013

5900

• $\mathfrak{g} = \operatorname{Lie}(G)$ simple finite-dimensional complex Lie algebra.

5990

∍

- $\mathfrak{g} = \operatorname{Lie}(G)$ simple finite-dimensional complex Lie algebra.
- Example : $\mathfrak{g} = sl_2(\mathbb{C})$.

∍

5990

- $\mathfrak{g} = \operatorname{Lie}(G)$ simple finite-dimensional complex Lie algebra.
- Example : $\mathfrak{g} = sl_2(\mathbb{C})$.
- $\mathcal{L}(\mathfrak{g}) = \mathfrak{g} \otimes \mathbb{C}[t^{\pm 1}]$ loop algebra.

Sac

- $\mathfrak{g} = \operatorname{Lie}(G)$ simple finite-dimensional complex Lie algebra.
- Example : $\mathfrak{g} = sl_2(\mathbb{C})$.
- $\mathcal{L}(\mathfrak{g}) = \mathfrak{g} \otimes \mathbb{C}[t^{\pm 1}]$ loop algebra.
- $\hat{\mathfrak{g}} = \mathcal{L}(\mathfrak{g}) \oplus \mathbb{C}c$ central extension of $\mathcal{L}(\mathfrak{g})$.

AQ (A

- $\mathfrak{g} = \operatorname{Lie}(G)$ simple finite-dimensional complex Lie algebra.
- Example : $\mathfrak{g} = sl_2(\mathbb{C})$.
- $\mathcal{L}(\mathfrak{g}) = \mathfrak{g} \otimes \mathbb{C}[t^{\pm 1}]$ loop algebra.
- $\hat{\mathfrak{g}} = \mathcal{L}(\mathfrak{g}) \oplus \mathbb{C}c$ central extension of $\mathcal{L}(\mathfrak{g})$.
- $\hat{\mathfrak{g}}$: affine Kac-Moody algebra (without derivation).

SQ (A

- $\mathfrak{g} = \operatorname{Lie}(G)$ simple finite-dimensional complex Lie algebra.
- Example : $\mathfrak{g} = sl_2(\mathbb{C})$.
- $\mathcal{L}(\mathfrak{g}) = \mathfrak{g} \otimes \mathbb{C}[t^{\pm 1}]$ loop algebra.
- $\hat{\mathfrak{g}} = \mathcal{L}(\mathfrak{g}) \oplus \mathbb{C}c$ central extension of $\mathcal{L}(\mathfrak{g})$.
- $\hat{\mathfrak{g}}$: affine Kac-Moody algebra (without derivation).
- It is an infinite-dimensional Lie algebra.

SQ (A

 $\hat{\mathfrak{g}}$ has a presentation analog to the Serre presentation of \mathfrak{g} (with the Cartan matrix replaced by an affine Cartan matrix).

Sac

 $\hat{\mathfrak{g}}$ has a presentation analog to the Serre presentation of \mathfrak{g} (with the Cartan matrix replaced by an affine Cartan matrix).

 $\bullet\,$ It implies $\hat{\mathfrak{g}}$ is a natural infinite-dimensional analog of $\mathfrak{g}.$

 $\hat{\mathfrak{g}}$ has a presentation analog to the Serre presentation of \mathfrak{g} (with the Cartan matrix replaced by an affine Cartan matrix).

- It implies $\hat{\mathfrak{g}}$ is a natural infinite-dimensional analog of \mathfrak{g} .
- The structure of
 ŷ is analog to the structure of
 g (weight space decomposition, triangular decomposition...).

 $\hat{\mathfrak{g}}$ has a presentation analog to the Serre presentation of \mathfrak{g} (with the Cartan matrix replaced by an affine Cartan matrix).

- It implies $\hat{\mathfrak{g}}$ is a natural infinite-dimensional analog of \mathfrak{g} .
- The structure of $\hat{\mathfrak{g}}$ is analog to the structure of \mathfrak{g} (weight space decomposition, triangular decomposition...).

• Example
$$\mathfrak{g} = \mathfrak{sl}_2(\mathbb{C})$$
. Cartan matrix (2) of $\mathfrak{sl}_2 \to \operatorname{Affine} \operatorname{Cartan}$
matrix $\begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix}$ of $\hat{\mathfrak{sl}}_2$.

 $\hat{\mathfrak{g}}$ has a presentation analog to the Serre presentation of \mathfrak{g} (with the Cartan matrix replaced by an affine Cartan matrix).

- It implies $\hat{\mathfrak{g}}$ is a natural infinite-dimensional analog of \mathfrak{g} .
- The structure of $\hat{\mathfrak{g}}$ is analog to the structure of \mathfrak{g} (weight space decomposition, triangular decomposition...).
- Example $\mathfrak{g} = \mathfrak{sl}_2(\mathbb{C})$. Cartan matrix (2) of $\mathfrak{sl}_2 \to \operatorname{Affine} \operatorname{Cartan}$ matrix $\begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix}$ of $\hat{\mathfrak{sl}}_2$.
- Numerous applications in mathematics and mathematical physics.

 $\hat{\mathfrak{g}}$ has a presentation analog to the Serre presentation of \mathfrak{g} (with the Cartan matrix replaced by an affine Cartan matrix).

- It implies $\hat{\mathfrak{g}}$ is a natural infinite-dimensional analog of \mathfrak{g} .
- The structure of $\hat{\mathfrak{g}}$ is analog to the structure of \mathfrak{g} (weight space decomposition, triangular decomposition...).
- Example $\mathfrak{g} = \mathfrak{sl}_2(\mathbb{C})$. Cartan matrix (2) of $\mathfrak{sl}_2 \to \operatorname{Affine} \operatorname{Cartan}$ matrix $\begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix}$ of $\hat{\mathfrak{sl}}_2$.
- Numerous applications in mathematics and mathematical physics.
- To name a few : Macdonald identities, Conformal field theory, Exactly solvable models...

< 🗇 > < 🚍 > <

AQ (A

• Kac-Moody algebras have natural deformations : quantum groups. Drinfeld, Jimbo (85).

5900

- Kac-Moody algebras have natural deformations : quantum groups. Drinfeld, Jimbo (85).
- Also called quantum Kac-Moody algebras.

Sac

- Kac-Moody algebras have natural deformations : quantum groups. Drinfeld, Jimbo (85).
- Also called quantum Kac-Moody algebras.
- More precisely : Hopf algebra and deformation U_q(g) of the universal enveloping algebra U(g) of g.

- Kac-Moody algebras have natural deformations : quantum groups. Drinfeld, Jimbo (85).
- Also called quantum Kac-Moody algebras.
- More precisely : Hopf algebra and deformation U_q(g) of the universal enveloping algebra U(g) of g.
- It depends on $q = e^h \in \mathbb{C}^*$: quantization parameter.

- Kac-Moody algebras have natural deformations : quantum groups. Drinfeld, Jimbo (85).
- Also called quantum Kac-Moody algebras.
- More precisely : Hopf algebra and deformation U_q(g) of the universal enveloping algebra U(g) of g.
- It depends on $q = e^h \in \mathbb{C}^*$: quantization parameter.
- Classical situation : h = 0, q = 1, $\mathcal{U}_1(\mathfrak{g}) = \mathcal{U}(\mathfrak{g})$.

- Kac-Moody algebras have natural deformations : quantum groups. Drinfeld, Jimbo (85).
- Also called quantum Kac-Moody algebras.
- More precisely : Hopf algebra and deformation U_q(g) of the universal enveloping algebra U(g) of g.
- It depends on $q = e^h \in \mathbb{C}^*$: quantization parameter.
- Classical situation : h = 0, q = 1, $U_1(\mathfrak{g}) = U(\mathfrak{g})$.
- In this talk : q is not a root of unity.

 Fundamental case : for ĝ affine Kac-Moody algebra, one gets a quantum affine Kac-Moody algebra U_q(ĝ).

Sac

- Fundamental case : for ĝ affine Kac-Moody algebra, one gets a quantum affine Kac-Moody algebra U_q(ĝ).
- Example : $\mathcal{U}_q(\hat{sl}_2)$.

Sac

- Fundamental case : for
 ĝ affine Kac-Moody algebra, one gets
 a quantum affine Kac-Moody algebra U_q(
 ĝ).
- Example : $\mathcal{U}_q(\hat{sl}_2)$.
- Generators of $\mathcal{U}_q(\hat{sl}_2)$: E_0 , E_1 , F_0 , F_1 , $K_0^{\pm 1}$, $K_1^{\pm 1}$.

- Fundamental case : for ĝ affine Kac-Moody algebra, one gets a quantum affine Kac-Moody algebra U_q(ĝ).
- Example : $\mathcal{U}_q(\hat{sl}_2)$.
- Generators of $\mathcal{U}_q(\hat{sl}_2)$: E_0 , E_1 , F_0 , F_1 , $K_0^{\pm 1}$, $K_1^{\pm 1}$.
- Relations : *q*-deformations of Weyl and Serre relations.

- Fundamental case : for ĝ affine Kac-Moody algebra, one gets a quantum affine Kac-Moody algebra U_q(ĝ).
- Example : $\mathcal{U}_q(\hat{sl}_2)$.
- Generators of $\mathcal{U}_q(\hat{sl}_2)$: E_0 , E_1 , F_0 , F_1 , $K_0^{\pm 1}$, $K_1^{\pm 1}$.
- Relations : q-deformations of Weyl and Serre relations.
- Example of quantum Weyl relation in $\mathcal{U}_q(\hat{sl}_2)$:

$$K_1 E_1 = q^2 E_1 K_1$$
 , $K_0 F_0 = q^{-2} F_0 K_0$.

- Fundamental case : for ĝ affine Kac-Moody algebra, one gets a quantum affine Kac-Moody algebra U_q(ĝ).
- Example : $\mathcal{U}_q(\hat{sl}_2)$.
- Generators of $\mathcal{U}_q(\hat{sl}_2)$: E_0 , E_1 , F_0 , F_1 , $K_0^{\pm 1}$, $K_1^{\pm 1}$.
- Relations : q-deformations of Weyl and Serre relations.
- Example of quantum Weyl relation in $U_q(\hat{sl}_2)$:

$$K_1 E_1 = q^2 E_1 K_1$$
 , $K_0 F_0 = q^{-2} F_0 K_0$.

• Example of a quantum Serre relation in $\mathcal{U}_q(\hat{sl}_2)$:

$$0 = E_0 E_1^3 - (q^2 + 1 + q^{-2}) E_1 E_0 E_1^2 + (q^2 + 1 + q^{-2}) E_1^2 E_0 E_1 - E_1^3 E_0.$$

• There is a quantum analog of the Theorem of Kac and Moody :

5990

∍

글 🕨 🔺 글

• There is a quantum analog of the Theorem of Kac and Moody :

Theorem (Drinfeld 88, Beck 94)

The quantum affine Kac-Moody algebra $\mathcal{U}_q(\hat{\mathfrak{g}})$ has two presentations : it can also be defined as a central extension of a quantum loop algebra.

• There is a quantum analog of the Theorem of Kac and Moody :

Theorem (Drinfeld 88, Beck 94)

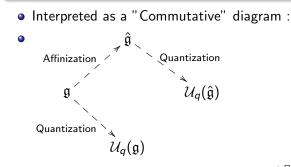
The quantum affine Kac-Moody algebra $\mathcal{U}_q(\hat{\mathfrak{g}})$ has two presentations : it can also be defined as a central extension of a quantum loop algebra.

• Interpreted as a "Commutative" diagram :

• There is a quantum analog of the Theorem of Kac and Moody :

Theorem (Drinfeld 88, Beck 94)

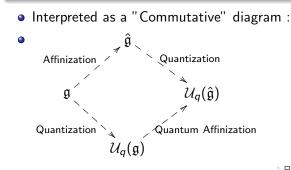
The quantum affine Kac-Moody algebra $\mathcal{U}_q(\hat{\mathfrak{g}})$ has two presentations : it can also be defined as a central extension of a quantum loop algebra.



• There is a quantum analog of the Theorem of Kac and Moody :

Theorem (Drinfeld 88, Beck 94)

The quantum affine Kac-Moody algebra $\mathcal{U}_q(\hat{\mathfrak{g}})$ has two presentations : it can also be defined as a central extension of a quantum loop algebra.



5990

∍

1

• Solutions to the Quantum Yang-Baxter equation :

5990

• Solutions to the Quantum Yang-Baxter equation :

 $\mathcal{R}_{12}(u)\mathcal{R}_{13}(uv)\mathcal{R}_{23}(v) = \mathcal{R}_{23}(v)\mathcal{R}_{13}(uv)\mathcal{R}_{12}(u).$

Example associated to $\mathcal{U}_q(\hat{sl}_2)$:

$$\mathcal{R}(u) = egin{pmatrix} 1 & 0 & 0 & 0 \ 0 & rac{q(u-1)}{u-q^2} & rac{1-q^2}{u-q^2} & 0 \ 0 & rac{u(1-q^2)}{u-q^2} & rac{q(u-1)}{u-q^2} & 0 \ 0 & 0 & 0 & 1 \end{pmatrix}$$

Sac

• Solutions to the Quantum Yang-Baxter equation :

 $\mathcal{R}_{12}(u)\mathcal{R}_{13}(uv)\mathcal{R}_{23}(v) = \mathcal{R}_{23}(v)\mathcal{R}_{13}(uv)\mathcal{R}_{12}(u).$

Example associated to $\mathcal{U}_q(\hat{sl}_2)$:

$$\mathcal{R}(u) = egin{pmatrix} 1 & 0 & 0 & 0 \ 0 & rac{q(u-1)}{u-q^2} & rac{1-q^2}{u-q^2} & 0 \ 0 & rac{u(1-q^2)}{u-q^2} & rac{q(u-1)}{u-q^2} & 0 \ 0 & 0 & 0 & 1 \end{pmatrix}$$

• XXZ-model, six-vertex model, quantum KZ equations.

• Solutions to the Quantum Yang-Baxter equation :

 $\mathcal{R}_{12}(u)\mathcal{R}_{13}(uv)\mathcal{R}_{23}(v) = \mathcal{R}_{23}(v)\mathcal{R}_{13}(uv)\mathcal{R}_{12}(u).$

Example associated to $\mathcal{U}_q(\hat{sl}_2)$:

$$\mathcal{R}(u) = egin{pmatrix} 1 & 0 & 0 & 0 \ 0 & rac{q(u-1)}{u-q^2} & rac{1-q^2}{u-q^2} & 0 \ 0 & rac{u(1-q^2)}{u-q^2} & rac{q(u-1)}{u-q^2} & 0 \ 0 & 0 & 0 & 1 \end{pmatrix}$$

• XXZ-model, six-vertex model, quantum KZ equations.

• Canonical basis, crystal basis.

• Solutions to the Quantum Yang-Baxter equation :

 $\mathcal{R}_{12}(u)\mathcal{R}_{13}(uv)\mathcal{R}_{23}(v) = \mathcal{R}_{23}(v)\mathcal{R}_{13}(uv)\mathcal{R}_{12}(u).$

Example associated to $\mathcal{U}_q(\hat{sl}_2)$:

$$\mathcal{R}(u) = egin{pmatrix} 1 & 0 & 0 & 0 \ 0 & rac{q(u-1)}{u-q^2} & rac{1-q^2}{u-q^2} & 0 \ 0 & rac{u(1-q^2)}{u-q^2} & rac{q(u-1)}{u-q^2} & 0 \ 0 & 0 & 0 & 1 \end{pmatrix}$$

- XXZ-model, six-vertex model, quantum KZ equations.
- Canonical basis, crystal basis.
- Relations to Quiver varieties.

Applications of Quantum affine Kac-Moody algebras

• Solutions to the Quantum Yang-Baxter equation :

 $\mathcal{R}_{12}(u)\mathcal{R}_{13}(uv)\mathcal{R}_{23}(v) = \mathcal{R}_{23}(v)\mathcal{R}_{13}(uv)\mathcal{R}_{12}(u).$

Example associated to $\mathcal{U}_q(\hat{sl}_2)$:

$$\mathcal{R}(u) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \frac{q(u-1)}{u-q^2} & \frac{1-q^2}{u-q^2} & 0 \\ 0 & \frac{u(1-q^2)}{u-q^2} & \frac{q(u-1)}{u-q^2} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

- XXZ-model, six-vertex model, quantum KZ equations.
- Canonical basis, crystal basis.
- Relations to Quiver varieties.
- Discrete dynamical systems/cluster algebras : solutions to *T*-systems

Applications of Quantum affine Kac-Moody algebras

• Solutions to the Quantum Yang-Baxter equation :

 $\mathcal{R}_{12}(u)\mathcal{R}_{13}(uv)\mathcal{R}_{23}(v) = \mathcal{R}_{23}(v)\mathcal{R}_{13}(uv)\mathcal{R}_{12}(u).$

Example associated to $\mathcal{U}_q(\hat{sl}_2)$:

$$\mathcal{R}(u) = egin{pmatrix} 1 & 0 & 0 & 0 \ 0 & rac{q(u-1)}{u-q^2} & rac{1-q^2}{u-q^2} & 0 \ 0 & rac{u(1-q^2)}{u-q^2} & rac{q(u-1)}{u-q^2} & 0 \ 0 & 0 & 0 & 1 \end{pmatrix}$$

- XXZ-model, six-vertex model, quantum KZ equations.
- Canonical basis, crystal basis.
- Relations to Quiver varieties.
- Discrete dynamical systems/cluster algebras : solutions to *T*-systems such as the octahedron relation :

 $T_{a,b}(c)T_{a,b+1}(c) = T_{a+1,b}(c)T_{a-1,b+1}(c) + T_{a,b}(c-1)T_{a,b}(c+1).$

AQ (A

Applications of Quantum affine Kac-Moody algebras

• Solutions to the Quantum Yang-Baxter equation :

 $\mathcal{R}_{12}(u)\mathcal{R}_{13}(uv)\mathcal{R}_{23}(v) = \mathcal{R}_{23}(v)\mathcal{R}_{13}(uv)\mathcal{R}_{12}(u).$

Example associated to $\mathcal{U}_q(\hat{sl}_2)$:

$$\mathcal{R}(u) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \frac{q(u-1)}{u-q^2} & \frac{1-q^2}{u-q^2} & 0 \\ 0 & \frac{u(1-q^2)}{u-q^2} & \frac{q(u-1)}{u-q^2} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

- XXZ-model, six-vertex model, quantum KZ equations.
- Canonical basis, crystal basis.
- Relations to Quiver varieties.
- Discrete dynamical systems/cluster algebras : solutions to *T*-systems such as the octahedron relation :

 $T_{a,b}(c)T_{a,b+1}(c) = T_{a+1,b}(c)T_{a-1,b+1}(c) + T_{a,b}(c-1)T_{a,b}(c+1).$

Finite-dimensional representations of $\mathcal{U}_q(\hat{\mathfrak{g}})$

• The representation theory of $\mathcal{U}_q(\hat{\mathfrak{g}})$ is very rich.

- The representation theory of $\mathcal{U}_q(\hat{\mathfrak{g}})$ is very rich.
- \mathcal{C} : category of finite-dimensional representations of $\mathcal{U}_q(\hat{\mathfrak{g}})$.

- The representation theory of $\mathcal{U}_q(\hat{\mathfrak{g}})$ is very rich.
- \mathcal{C} : category of finite-dimensional representations of $\mathcal{U}_q(\hat{\mathfrak{g}})$.
- The simple objects in C are classified (Drinfeld, Chari-Pressley).

- The representation theory of $\mathcal{U}_q(\hat{\mathfrak{g}})$ is very rich.
- C : category of finite-dimensional representations of $U_q(\hat{\mathfrak{g}})$.
- The simple objects in C are classified (Drinfeld, Chari-Pressley).
- In general the structure of these simple representations is unknown : subject of current intense research.

- The representation theory of $\mathcal{U}_q(\hat{\mathfrak{g}})$ is very rich.
- C : category of finite-dimensional representations of $U_q(\hat{\mathfrak{g}})$.
- The simple objects in C are classified (Drinfeld, Chari-Pressley).
- In general the structure of these simple representations is unknown : subject of current intense research.
- Example : their dimension is unknown in general.

- The representation theory of $\mathcal{U}_q(\hat{\mathfrak{g}})$ is very rich.
- C : category of finite-dimensional representations of $U_q(\hat{\mathfrak{g}})$.
- The simple objects in C are classified (Drinfeld, Chari-Pressley).
- In general the structure of these simple representations is unknown : subject of current intense research.
- Example : their dimension is unknown in general.
- There are more global understanding of the category \mathcal{C} .

æ

€

Э

=

• C is a tensor category as $U_q(\hat{\mathfrak{g}})$ is a Hopf algebra.

5990

€

=

C is a tensor category as U_q(ĝ) is a Hopf algebra. Direct sums V ⊕ V', tensor products V ⊗ V' of objects V, V' in C make sense.

- C is a tensor category as U_q(ĝ) is a Hopf algebra. Direct sums V ⊕ V', tensor products V ⊗ V' of objects V, V' in C make sense.
- $K_0(\mathcal{C})$: Grothendieck ring of \mathcal{C} .

- C is a tensor category as U_q(ĝ) is a Hopf algebra. Direct sums V ⊕ V', tensor products V ⊗ V' of objects V, V' in C make sense.
- $K_0(\mathcal{C})$: Grothendieck ring of \mathcal{C} .
- As a group : free group with basis of isomorphism classes [V] of simples objects in C.

$$\mathcal{K}_0(\mathcal{C}) = igoplus_{V ext{ simple}} \mathbb{Z}[V].$$

- C is a tensor category as U_q(ĝ) is a Hopf algebra. Direct sums V ⊕ V', tensor products V ⊗ V' of objects V, V' in C make sense.
- $K_0(\mathcal{C})$: Grothendieck ring of \mathcal{C} .
- As a group : free group with basis of isomorphism classes [V] of simples objects in C.

$$\mathcal{K}_0(\mathcal{C}) = igoplus_{V ext{ simple}} \mathbb{Z}[V].$$

• Product $[V][V'] = \sum_{W} n_{W}[W]$ where n_{W} : multiplicity of W in $V \otimes V'$.

- C is a tensor category as U_q(ĝ) is a Hopf algebra. Direct sums V ⊕ V', tensor products V ⊗ V' of objects V, V' in C make sense.
- $K_0(\mathcal{C})$: Grothendieck ring of \mathcal{C} .
- As a group : free group with basis of isomorphism classes [V] of simples objects in C.

$$\mathcal{K}_0(\mathcal{C}) = igoplus_{V ext{ simple}} \mathbb{Z}[V].$$

- Product $[V][V'] = \sum_{W} n_{W}[W]$ where n_{W} : multiplicity of W in $V \otimes V'$.
- Jordan-Holder series are used as \mathcal{C} is not semi-simple.

- C is a tensor category as U_q(ĝ) is a Hopf algebra. Direct sums V ⊕ V', tensor products V ⊗ V' of objects V, V' in C make sense.
- $K_0(\mathcal{C})$: Grothendieck ring of \mathcal{C} .
- As a group : free group with basis of isomorphism classes [V] of simples objects in C.

$$\mathcal{K}_0(\mathcal{C}) = igoplus_{V ext{ simple}} \mathbb{Z}[V].$$

- Product $[V][V'] = \sum_{W} n_{W}[W]$ where n_{W} : multiplicity of W in $V \otimes V'$.
- Jordan-Holder series are used as \mathcal{C} is not semi-simple.
- We get a nice ring with a natural basis.

- C is a tensor category as U_q(ĝ) is a Hopf algebra. Direct sums V ⊕ V', tensor products V ⊗ V' of objects V, V' in C make sense.
- $K_0(\mathcal{C})$: Grothendieck ring of \mathcal{C} .
- As a group : free group with basis of isomorphism classes [V] of simples objects in C.

$$\mathcal{K}_0(\mathcal{C}) = igoplus_{V ext{ simple}} \mathbb{Z}[V].$$

- Product $[V][V'] = \sum_{W} n_{W}[W]$ where n_{W} : multiplicity of W in $V \otimes V'$.
- Jordan-Holder series are used as \mathcal{C} is not semi-simple.
- We get a nice ring with a natural basis.

Theorem (Frenkel-Reshetikhin 98)

The Grothendieck ring $K_0(\mathcal{C})$ is commutative.

Dar

• N : maximal unipotent subgroup of G simply-laced.

5990

∍

글 🕨 🖌 글

- N : maximal unipotent subgroup of G simply-laced.
- $\mathbb{C}[N]$: coordinate ring of N.

- N : maximal unipotent subgroup of G simply-laced.
- $\mathbb{C}[N]$: coordinate ring of N.

• Example :
$$G = SL_3(\mathbb{C}) \supset N = \{ \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} | x, y, z \in \mathbb{C} \}.$$

- N : maximal unipotent subgroup of G simply-laced.
- $\mathbb{C}[N]$: coordinate ring of N.

• Example :
$$G = SL_3(\mathbb{C}) \supset N = \{ \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} | x, y, z \in \mathbb{C} \}.$$

•
$$\mathbb{C}[N] = \mathbb{C}[x, y, z].$$

- N : maximal unipotent subgroup of G simply-laced.
- $\mathbb{C}[N]$: coordinate ring of N.

• Example :
$$G = SL_3(\mathbb{C}) \supset N = \{ \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} | x, y, z \in \mathbb{C} \}.$$

•
$$\mathbb{C}[N] = \mathbb{C}[x, y, z].$$

• Lusztig, 90 : definition of a canonical basis \mathcal{B} of $\mathbb{C}[N]$ (by using intersection cohomology of certain quiver representation spaces).

- N : maximal unipotent subgroup of G simply-laced.
- $\mathbb{C}[N]$: coordinate ring of N.

• Example :
$$G = SL_3(\mathbb{C}) \supset N = \{ \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} | x, y, z \in \mathbb{C} \}.$$

•
$$\mathbb{C}[N] = \mathbb{C}[x, y, z].$$

- Lusztig, 90 : definition of a canonical basis \mathcal{B} of $\mathbb{C}[N]$ (by using intersection cohomology of certain quiver representation spaces).
- Example for $N \subset SL_3(\mathbb{C})$: $\mathcal{B} = \{x^a z^b (xy-z)^c | a, b, c \in \mathbb{N}\} \cup \{y^a z^b (xy-z)^c | a, b, c \in \mathbb{N}\}.$

- N : maximal unipotent subgroup of G simply-laced.
- $\mathbb{C}[N]$: coordinate ring of N.

• Example :
$$G = SL_3(\mathbb{C}) \supset N = \{ \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} | x, y, z \in \mathbb{C} \}.$$

•
$$\mathbb{C}[N] = \mathbb{C}[x, y, z].$$

- Lusztig, 90 : definition of a canonical basis \mathcal{B} of $\mathbb{C}[N]$ (by using intersection cohomology of certain quiver representation spaces).
- Example for $N \subset SL_3(\mathbb{C})$: $\mathcal{B} = \{x^a z^b (xy-z)^c | a, b, c \in \mathbb{N}\} \cup \{y^a z^b (xy-z)^c | a, b, c \in \mathbb{N}\}.$
- Important question : properties of the constant structures of (ℂ[N], 𝔅).

 The ring C[N] can be categorified by using the representations of U_q(ĝ) :

500

글 🕨 🖌 글

 The ring C[N] can be categorified by using the representations of U_q(ĝ):

Theorem (H.-Leclerc 2011)

There is a monoidal subcategory \mathcal{C}' of \mathcal{C} which categorifies $(\mathbb{C}[N],\mathcal{B}),$

 The ring C[N] can be categorified by using the representations of U_q(ĝ):

Theorem (H.-Leclerc 2011)

There is a monoidal subcategory \mathcal{C}' of \mathcal{C} which categorifies $(\mathbb{C}[N], \mathcal{B})$, that is there is a ring isomorphism

 $\phi:\mathbb{C}[N]\to K_0(\mathcal{C}')\otimes\mathbb{C}$

such that $\phi(\mathcal{B})$ is the basis of $\mathcal{K}_0(\mathcal{C}')$ of simple objects.

 The ring C[N] can be categorified by using the representations of U_q(ĝ):

Theorem (H.-Leclerc 2011)

There is a monoidal subcategory \mathcal{C}' of \mathcal{C} which categorifies $(\mathbb{C}[N], \mathcal{B})$, that is there is a ring isomorphism

$$\phi:\mathbb{C}[N]\to K_0(\mathcal{C}')\otimes\mathbb{C}$$

such that $\phi(\mathcal{B})$ is the basis of $\mathcal{K}_0(\mathcal{C}')$ of simple objects.

• $\mathcal{K}_0(\mathcal{C}')\otimes\mathbb{C}$ is the complexified Grothendieck ring of \mathcal{C}' .

 The ring C[N] can be categorified by using the representations of U_q(ĝ):

Theorem (H.-Leclerc 2011)

There is a monoidal subcategory \mathcal{C}' of \mathcal{C} which categorifies $(\mathbb{C}[N], \mathcal{B})$, that is there is a ring isomorphism

$$\phi:\mathbb{C}[N]\to K_0(\mathcal{C}')\otimes\mathbb{C}$$

such that $\phi(\mathcal{B})$ is the basis of $\mathcal{K}_0(\mathcal{C}')$ of simple objects.

- $\mathcal{K}_0(\mathcal{C}')\otimes\mathbb{C}$ is the complexified Grothendieck ring of \mathcal{C}' .
- The ring C[N] associated to the *finite-dimensional* Lie group G is related to the *infinite-dimensional* Kac-Moody algebra ĝ.

 The ring C[N] can be categorified by using the representations of U_q(ĝ):

Theorem (H.-Leclerc 2011)

There is a monoidal subcategory \mathcal{C}' of \mathcal{C} which categorifies $(\mathbb{C}[N], \mathcal{B})$, that is there is a ring isomorphism

 $\phi:\mathbb{C}[N]\to K_0(\mathcal{C}')\otimes\mathbb{C}$

such that $\phi(\mathcal{B})$ is the basis of $\mathcal{K}_0(\mathcal{C}')$ of simple objects.

- $\mathcal{K}_0(\mathcal{C}')\otimes\mathbb{C}$ is the complexified Grothendieck ring of \mathcal{C}' .
- The ring C[N] associated to the *finite-dimensional* Lie group G is related to the *infinite-dimensional* Kac-Moody algebra ĝ.
- It is a geometric realization of $\mathcal{K}_0(\mathcal{C}')$ with its natural basis.

 General motivation for categorification : {algebraic/geometric structures} ^{Informations} {category}.

- \bullet We can use general properties of the category ${\cal C}$:

A Q Q

- General motivation for categorification : {algebraic/geometric structures} ^{Informations} {category}.
- \bullet We can use general properties of the category ${\cal C}$:

Theorem (H. 2010)

Let S_1, \dots, S_N simple objects in C. Then $S_1 \otimes S_2 \otimes \dots \otimes S_N$ is simple if and only if $S_i \otimes S_i$ is simple for any i < j.

 General motivation for categorification : {algebraic/geometric structures} ^{Informations} {category}.

 \bullet We can use general properties of the category ${\cal C}$:

Theorem (H. 2010)

Let S_1, \dots, S_N simple objects in C. Then $S_1 \otimes S_2 \otimes \dots \otimes S_N$ is simple if and only if $S_i \otimes S_j$ is simple for any i < j.

Corollary

Let b_1, \dots, b_N in $\mathcal{B} \subset \mathbb{C}[N]$. Then $b_1 b_2 \dots b_N \in \mathcal{B}$ if and only if $b_i b_j \in \mathcal{B}$ for any i < j.

 General motivation for categorification : {algebraic/geometric structures} ^{Informations} {category}.

 \bullet We can use general properties of the category ${\cal C}$:

Theorem (H. 2010)

Let S_1, \dots, S_N simple objects in C. Then $S_1 \otimes S_2 \otimes \dots \otimes S_N$ is simple if and only if $S_i \otimes S_j$ is simple for any i < j.

Corollary

Let b_1, \dots, b_N in $\mathcal{B} \subset \mathbb{C}[N]$. Then $b_1 b_2 \dots b_N \in \mathcal{B}$ if and only if $b_i b_j \in \mathcal{B}$ for any i < j.

 This was conjectured by Berenstein-Zelevinsky (related to cluster algebra theory; web property of the canonical basis).

- General motivation for categorification : {algebraic/geometric structures} ^{Informations} {category}.
- \bullet We can use general properties of the category ${\cal C}$:

Theorem (H. 2010)

Let S_1, \dots, S_N simple objects in C. Then $S_1 \otimes S_2 \otimes \dots \otimes S_N$ is simple if and only if $S_i \otimes S_j$ is simple for any i < j.

Corollary

Let b_1, \dots, b_N in $\mathcal{B} \subset \mathbb{C}[N]$. Then $b_1 b_2 \dots b_N \in \mathcal{B}$ if and only if $b_i b_j \in \mathcal{B}$ for any i < j.

- This was conjectured by Berenstein-Zelevinsky (related to cluster algebra theory; web property of the canonical basis).
- Application of quantum Kac-Moody algebras to a *classical* problem (only finite-dimensional Lie groups appear in the Corollary !).