
SIMPLE TENSOR PRODUCTS

DAVID HERNANDEZ1

Abstract. Let F be the category of finite-dimensional representations of an arbi-
trary quantum affine algebra. We prove that a tensor product S1⊗· · ·⊗SN of simple
objects of F is simple if and only Si ⊗ Sj is simple for any i < j.
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1. Introduction

Let q ∈ C∗ which is not a root of unity and let Uq(g) be a quantum affine algebra
(not necessarily simply-laced or untwisted). Let F be the tensor category of finite-
dimensional representations of Uq(g). We prove the following result, expected in various
papers of the vast literature about F .

Theorem 1.1. Let S1, · · · , SN be simple objects of F . The tensor product S1⊗· · ·⊗SN

is simple if and only if Si ⊗ Sj is simple for any i < j.

The ”only if” part of the statement is known : it is an immediate consequence of the
commutativity of the Grothendieck ring Rep(Uq(g)) of F proved in [FR2] (see [H3] for
the twisted types). This will be explained in more details in Section 6. Note that the
condition i < j can be replaced by i 6= j. Indeed, although in general the two modules
Si ⊗ Sj and Sj ⊗ Si are not isomorphic, they are isomorphic if one of them is simple.
The ”if” part of the statement is the main result of this paper.

If the reader is not familiar with the representation theory of quantum affine algebras,
he may wonder why such a result is non trivial. Indeed, in tensor categories associated
to ”classical” representation theory, there are ”few” non trivial tensor products of
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representations which are simple. For instance, let V, V ′ be non-zero simple finite-
dimensional modules of a simple algebraic group in characteristic 0. Then, it is well-
known that V ⊗ V ′ is simple if and only if V or V ′ is of dimension 1. But in positive
characteristic there are examples of non trivial simple tensor products given by the
Steinberg theorem [S]. And in F there are ”many” simple tensor products of non

trivial simple representations. For instance, it is proved in [CP1] that for g = ŝl2 an
arbitrary simple object V of F is real, i.e. V ⊗ V is simple. Although it is known [L]
that there are non real simple objects in F when g is arbitrary, many other examples
of non trivial simple tensor products can be found in [HL].

The statement of Theorem 1.1 has been conjectured and proved by several authors
in various special cases.

• The result is proved for g = ŝl2 in [CP1, CP2].
• A similar result is proved for a special class of modules of the Yangian of gln

attached to skew Young diagrams in [NT].
• The result is proved for tensor products of fundamental representations in [AK,

FM].
• The result is proved for a special class of tensor products satisfying an irre-

ducibility criterion in [C] for the untwisted types.
• The result is proved for a “small” subtensor category of F when g is simply-

laced in [HL].

So, even in the case g = ŝl3, the result had not been established. Our complete proof
is valid for arbitrary simple objects of F and for arbitrary g.
Note that the statement of Theorem 1.1 allows to produce simple tensor products V ⊗V ′

where V = S1⊗· · ·⊗Sk and V ′ = Sk+1⊗· · ·⊗SN . Besides it implies that S1⊗· · ·⊗SN

is real if we assume that the Si are real in addition to the assumptions of Theorem 1.1.
Our result is stated in terms of the tensor structure of F . Thus, it is purely repre-

sentation theoretical. But we have three additional motivations, related respectively to
physics, topology, combinatorics, and also to other structures of F .

First, although the category F is not braided (in general V ⊗ V ′ is not isomorphic
to V ′ ⊗ V ), Uq(g) has a universal R-matrix in a completion of the tensor product
Uq(g) ⊗ Uq(g). In general the universal R-matrix can not be specialized to finite-
dimensional representations, but it gives rise to intertwining operators V (z) ⊗ V ′ →
V ′⊗V (z) which depend meromorphically on a formal parameter z (see [FR1, KS]; here
the representation V (z) is obtained by homothety of spectral parameter). From the
physical point of view, it is an important question to localize the zeros and poles of
these operators. The reducibility of tensor products of objects in F is known to have
strong relations with this question. This is the first motivation to study irreducibility
of tensor products in terms of irreducibility of tensor products of pairs of constituents
(see [AK] for instance).

Secondly, if V ⊗ V ′ is simple the universal R-matrix can be specialized and we get
a well-defined intertwining operator V ⊗ V ′ → V ′ ⊗ V . In general the action of the
R-matrix is not trivial (see examples in [JM2]). As the R-matrix satisfies the Yang-
Baxter equation, when V is real we can define an action of the braid group BN on V ⊗N
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(as for representations of quantum groups of finite type). It is known [RT] that such
situations are important to construct topological invariants.

Finally, in a tensor category, there are natural important questions such as the
parametrization of simple objects or the decomposition of tensor products of simple ob-
jects in the Grothendieck ring. But another problem of the same importance is the fac-
torization of simple objects V in prime objects, i.e. the decomposition V = V1⊗· · ·⊗VN

where the Vi can not be written as a tensor product of non trivial simple objects. This
problem for F is one of the main motivation in [HL]. When we have established that the
tensor products of some pairs of prime representations are simple, Theorem 1.1 gives the
factorization of arbitrary tensor products of these representations. This factorization
problem is related to the program of realization of cluster algebras in Rep(Uq(g)) initi-
ated in [HL] when g is simply-laced (see more results in this direction in [N3]). Cluster
algebras have a distinguished set of generators called cluster variables, and (in finite
cluster type) a distinguished linear basis of certain products of cluster variables called
cluster monomials. In the general framework of monoidal categorification of cluster
algebras [HL], the cluster monomials should correspond to simple modules. Theorem
1.1 reduces the proof of the irreducibility of tensor products of representations corre-
sponding to cluster variables to the proof of the irreducibility of the tensor products
of pairs of simple representations corresponding to cluster variables. To conclude with
the motivations, Theorem 1.1 will be used in the future to establish monoidal categori-
fications associated to non necessarily simply-laced quantum affine algebras, involving
categories different than the small subcategories considered in [HL, N3].

The paper is organized as follows. In Section 2 we give reminders on the category
F , in particular on q-characters (which will be one of the main tools for the proof).
In Section 3 we prove a general result about tensor products of l-weight vectors. In
Section 4 we reduce the problem. In Section 5 we introduce upper, lower q-characters
and we prove several formulae for them. In Section 6 we end the proof of the main
Theorem 1.1. In Section 7 we give some final comments.

Acknowledgments : The author is very grateful to Bernard Leclerc for having
encouraged him to prove this conjecture. He would like to thank Michio Jimbo and
Jean-Pierre Serre for their comments and the Newton Institute in Cambridge where
this work was finalized.

2. Finite-dimensional representations of quantum affine algebras

We recall the main definitions and the main properties of the finite-dimensional
representations of quantum affine algebras. For more details, we refer to [CP2, CH]
(untwisted types) and to [CP4, H3] (twisted types).

2.1. In this subsection we shall give all definitions which are sufficient to state Theorem
1.1. All vector spaces, algebras and tensor products are defined over C.

Fix h ∈ C satisfying q = eh. Then qr = ehr is well-defined for any r ∈ Q.
Let C = (Ci,j)0≤i,j≤n be a generalized Cartan matrix [Kac], i.e. for 0 ≤ i, j ≤ n we

have Ci,j ∈ Z, Ci,i = 2, and for 0 ≤ i 6= j ≤ n we have Ci,j ≤ 0, (Ci,j = 0 ⇔ Cj,i = 0).
We suppose that C is indecomposable, i.e. there is no proper J ⊂ {0, · · · , n} such that
Ci,j = 0 for any (i, j) ∈ J × ({0, · · · , n} \ J). Moreover we suppose that C is of affine
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type, i.e. all proper principal minors of C are strictly positive and det(C) = 0. By
the general theory in [Kac], C is symmetrizable, that is there is a diagonal matrix with
rational coefficients D = diag(r0, · · · , rn) such that DC is symmetric. The quantum
affine algebra Uq(g) is defined by generators k±1

i , x±i (0 ≤ i ≤ n) and relations

kikj = kjki , kix
±
j = q(±riCi,j)x±j ki , [x+

i , x
−
j ] = δi,j

ki − k−1
i

qri − q−ri
,

∑

r=0···1−Ci,j

(−1)r(x±i )(1−Ci,j−r)x±j (x±i )(r) = 0 (for i 6= j),

where we denote
(

x±i
)(r)

=
(

x±i
)r
/[r]qri ! for r ≥ 0. We use the standard q-factorial

notation [r]q! = [r]q[r − 1]q · · · [1]q = (qr − q−r)(qr−1 − q1−r) · · · (q − q−1)(q − q−1)−r.

The x±i , k±1
i are called Chevalley generators.

We use the coproduct ∆ : Uq(g) → Uq(g) ⊗ Uq(g) defined for 0 ≤ i ≤ n by

∆(ki) = ki ⊗ ki , ∆(x+
i ) = x+

i ⊗ 1 + ki ⊗ x+
i , ∆(x−i ) = x−i ⊗ k−1

i + 1 ⊗ x−i .

This is the same choice as in [D1, C, FM]1.

2.2. The indecomposable affine Cartan matrices are classified [Kac] into two main
classes, twisted types and untwisted types. The latest includes simply-laced types and
untwisted non simply-laced types. The type of C is denoted by X. We use the number-

ing of nodes as in [Kac] if X 6= A
(2)
2n , and we use the reversed numbering if X = A

(2)
2n .

We set µi = 1 for 0 ≤ i ≤ n, except when (X, i) = (A
(2)
2n , n) where we set µn = 2.

Without loss of generality, we can choose the ri so that µiri ∈ N∗ for any i and
(µ0r0 ∧ · · · ∧ µnrn) = 1 (there is a unique such choice).

Let I = {1, · · · , n} and let g be the finite-dimensional simple Lie algebra of Cartan
matrix (Ci,j)i,j∈I . We denote respectively by ωi, αi, α

∨
i (i ∈ I) the fundamental weights,

the simple roots and the simple coroots of g. We use the standard partial ordering ≤
on the weight lattice P of g. The subalgebra of Uq(g) generated by the x±i , k

±1
i (i ∈ I)

is isomorphic to the quantum group of finite type Uq (g) if X 6= A
(2)
2n , and to U

q
1
2

(g) if

X = A
(2)
2n . By abuse of notation this algebra will be denoted by Uq (g).

Uq(g) has another set of generators, called Drinfeld generators, denoted by

x±i,m , k±1
i , hi,r , c±1/2 for i ∈ I, m ∈ Z, r ∈ Z \ {0},

and defined from the Chevalley generators by using the action of Lusztig automorphisms
of Uq(g) (in [B] for the untwisted types and in [D1] for the twisted types). We have
x±i = x±i,0 for i ∈ I. For the untwisted types, a complete set of relations have been

proved for the Drinfeld generators [B, BCP]. For the twisted types, only a partial set of
relations have been established (at the time this paper is written), but they are sufficient
to study finite-dimensional representations (see the discussion and references in [H3]).
In particular for all types the multiplication defines a surjective linear morphism

(1) U−
q (g) ⊗ Uq(h) ⊗ U+

q (g) → Uq(g)

1In [Kas] another coproduct is used. We recover the coproduct used in the present paper by taking
the opposite coproduct and changing q to q−1.
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where U±
q (g) is the subalgebra generated by the x±i,m (i ∈ I, m ∈ Z) and Uq(h) is the

subalgebra generated by the k±1
i , the hi,r and c±1/2 (i ∈ I, r ∈ Z \ {0}).

For i ∈ I, the action of ki on any object of F is diagonalizable with eigenvalues
in ±qriZ. Without loss of generality, we can assume that F is the category of type 1
finite-dimensional representations (see [CP2]), i.e. we assume that for any object of F ,
the eigenvalues of ki are in qriZ for i ∈ I.

For the untwisted types, the simple objects of F have been classified by Chari-
Pressley [CP1, CP2] by using the Drinfeld generators. For the twisted types, the proof
is given in [CP4, H3]. In both cases the simple objects are parameterized by n-tuples
of polynomials (Pi(u))i∈I satisfying Pi(0) = 1 (they are called Drinfeld polynomials).

The action of c±1/2 on any object V of F is the identity, and so the action of the hi,r

commute. Since they also commute with the ki, V can be decomposed into generalized
eigenspaces Vm for the action of all the hi,r and all the ki :

V =
⊕

m∈M

Vm.

The Vm are called l-weight spaces. By the Frenkel-Reshetikhin q-character theory
[FR2], the eigenvalues can be encoded by monomials m in formal variables Y ±1

i,a (i ∈

I, a ∈ C∗). The construction is extended to twisted types in [H3]. M is the set of
such monomials (also called l-weights). The q-character morphism is an injective ring
morphism

χq : Rep(Uq(g)) → Y = Z

[

Y ±1
i,a

]

i∈I,a∈C∗
,

χq(V ) =
∑

m∈M

dim(Vm)m.

For the twisted types there is a modification of the theory and we consider two kinds
of variables in [H3]. For homogeneity of notations, the Yi,a in the present paper are the
Zi,a of [H3] (we do not use in this paper the variables denoted by Yi,a in [H3], so there
is no possible confusion).

Remark 2.1. For any i ∈ I, r ∈ Z\{0}, m,m′ ∈ M, the eigenvalue of hi,r associated to
mm′ is the sum of the eigenvalues of hi,r associated respectively to m and m′ [FR2, H3].

If Vm 6= {0} we say that m is an l-weight of V . A vector v belonging to an l-weight
space Vm is called an l-weight vector. We denote M(v) = m the l-weight of v. A highest
l-weight vector is an l-weight vector v satisfying x+

i,pv = 0 for any i ∈ I, p ∈ Z.

For ω ∈ P , the weight space Vω is the set of weight vectors of weight ω for Uq(g), i.e.

of vectors v ∈ V satisfying kiv = q(riω(α∨
i ))v for any i ∈ I. We have a decomposition

V =
⊕

ω∈P Vω. The decomposition in l-weight spaces is finer than the decomposition
in weight spaces. Indeed, if v ∈ Vm, then v is a weight vector of weight

ω(m) =
∑

i∈I,a∈C∗

ui,a(m)µiωi ∈ P,

where we denote m =
∏

i∈I,a∈C∗ Y
ui,a(m)
i,a . For v ∈ Vm, we set ω(v) = ω(m).
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A monomial m ∈ M is said to be dominant if ui,a(m) ≥ 0 for any i ∈ I, a ∈ C∗.
For V a simple object in F , let M(V ) be the highest weight monomial of χq(V ) (that
is ω(M(V )) is maximal). M(V ) is dominant and characterizes the isomorphism class
of V (it is equivalent to the data of the Drinfeld polynomials). Hence to a dominant
monomial M is associated a simple representation L(M).

Example 2.2. Let us recall the following standard example [J, CP1] which we shall use
in the following. Let a ∈ C∗ and let La = Cv+

a ⊕Cv−a be the fundamental representation

of Uq(ŝl2) with the action of the Chevalley generators recalled in the following table.

x+
1 x−1 x+

0 x−0 k1 k0

v+
a 0 v−a av−a 0 qv+

a q−1v+
a

v−a v+
a 0 0 a−1v+

a q−1v−a qv−a

We have h1,1 = q−2x+
1 x

+
0 − x+

0 x
+
1 [B]. The eigenvalue of h1,1 corresponding to m ∈ M

is
∑

a∈C∗ u1,a(m)a [FR2]. We get h1,1.v
+
a = aq−2v+

a , k1.v
+
a = qv+

a , so M(v+
a ) = Y1,aq−2 .

In the same way M(v−a ) = Y −1
1,a . Hence χq(La) = Y1,aq−2 + Y −1

1,a and La = L
(

Y1,aq−2

)

.

Let i ∈ I, a ∈ C∗ and let us define the monomial Ai,a analog of a simple root. For
the untwisted cases, we set [FR2]

Ai,a = Yi,aq−riYi,aqri ×





∏

{j∈I|Ci,j=−1}

Yj,a





−1

×





∏

{j∈I|Ci,j=−2}

Yj,aq−1Yj,aq





−1

×





∏

{j∈I|Ci,j=−3}

Yj,aq−2Yj,aYj,aq2





−1

.

For the twisted cases, let r be the twisting order of g, that is r = 2 if X 6= D
(3)
4 and

r = 3 if X = D
(3)
4 . Let ǫ be a primitive rth root of 1 (for the untwisted cases we set by

convention r = 1 and ǫ = 1). We now define Ai,a as in [H3].

If (X, i) 6= (A
(2)
2n , n) and ri = 1, we set

Ai,a = Yi,aq−1Yi,aq ×





∏

{j∈I|Ci,j<0}

Y
j,a(rjCj,i)





−1

.

If (X, i) 6= (A
(2)
2n , n) and ri > 1, we set

Ai,a = Yi,aq−riYi,aqri×





∏

{j∈I|Ci,j<0,rj=r}

Yj,a





−1

×





∏

{j∈I|Ci,j<0,rj=1}





∏

{b∈C∗|(b)r=a}

Yj,b









−1

.

If (X, i) = (A
(2)
2n , n), we set An,a =

{

Yn,aq−1Yn,aqY
−1
n,−aY

−1
n−1,a if n > 1,

Y1,aq−1Y1,aqY
−1
1,−a if n = 1.

As mentioned in the introduction, the statement of Theorem 1.1 is proved when
g = ŝl2 by Chari-Pressley. Let us explain the proof in this case. For k ≥ 1, a ∈ C∗,
let Wk,a = L(Y1,aY1,aq2 · · ·Y1,aq2(k−1)) (this is called a Kirillov-Reshetikhin module). A
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q-segment is a subset of C∗ of the form
{

z, zq2, · · · , zq2K
}

=
[

z, zq2K
]

where z ∈ C∗

and K ∈ N. We use the notation with N containing 0. We say that Wk,a and Wl,b are

in special position if
[

a, aq2(k−1)
]

∪
[

b, bq2(l−1)
]

is a q-segment which contains properly
[

a, aq2(k−1)
]

and
[

b, bq2(l−1)
]

. Otherwise they are said to be in general position.

Theorem 2.3. [CP1, CP2] The tensor product Wk1,a1 ⊗ · · · ⊗WkL,aL
is simple if and

only if Wki,ai
and Wkj ,aj

are in general position for any 1 ≤ i < j ≤ L. Any simple
object of F can be factorized in this form.

This is an explicit factorization in prime representations. Now the statement of
Theorem 1.1 for g = ŝl2 follows immediately. Notice that Theorem 2.3 also implies
that for g = ŝl2, any simple object of F is real, as mentioned in the introduction.

For g 6= ŝl2, such a nice description of the factorization is not known. That is why
the proof in the present paper does not involve such kind of factorizations.

3. Tensor products of l-weight vectors

In this section we prove a general result for tensor products of l-weight vectors
(Proposition 3.2).

Uq(g) has a natural grading by the root lattice Q =
∑

i∈I Zαi of g defined by

deg
(

x±i,m

)

= ±αi , deg (hi,r) = deg
(

k±i
)

= deg
(

c±1/2
)

= 0.

Let Ũ+
q (g) (resp. Ũ−

q (g)) be the subalgebra of Uq(g) consisting of elements of pos-
itive (resp. negative) Q-degree. These subalgebras should not be confused with the
subalgebras U±

q (g) previously defined in terms of Drinfeld generators. Let

X+ =
∑

j∈I,m∈Z

Cx+
j,m ⊂ Ũ+

q (g).

Theorem 3.1. Let i ∈ I, r > 0, m ∈ Z. We have

(2) ∆ (hi,r) ∈ hi,r ⊗ 1 + 1 ⊗ hi,r + Ũ−
q (g) ⊗ Ũ+

q (g),

(3) ∆
(

x+
i,m

)

∈ x+
i,m ⊗ 1 + Uq(g) ⊗

(

Uq(g)X+
)

.

For the untwisted types the proof can be found in [D1, Proposition 7.1]. ForX = A
(2)
2

see [CP4] and for the general twisted types see [D2, Proposition 7.1.2], [D2, Proposition
7.1.5], [JM1, Theorem 2.2].

Let Uq(h)+ be the subalgebra of Uq(h) generated by the k±1
i and the hi,r (i ∈ I, r > 0).

The q-character and the decomposition in l-weight spaces of a representation in F is
completely determined by the action of Uq(h)+ [FR2, H3]. Therefore one can define
the q-character χq(W ) of a Uq(h)+-submodule W of an object in F .

Proposition 3.2. Let V1, V2 in F and consider an l-weight vector

w =

(

∑

α

wα ⊗ vα

)

+





∑

β

w′
β ⊗ v′β



 ∈ V1 ⊗ V2
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satisfying the following conditions.
(i) The vα are l-weight vectors and the v′β are weight vectors.

(ii) For any β, there is an α satisfying ω(v′β) > ω(vα).

(iii) For ω ∈ {ω(vα)}α, we have
∑

{α|ω(vα)=ω} wα ⊗ vα 6= 0.

Then M(w) is the product of one M(vα) by an l-weight of V1.

Proof: Consider

V = V1 ⊗





⊕

{ω∈P |∃α,ω(vα)≤ω}

(V2)ω



 ⊃ Ṽ = V1 ⊗





⊕

{ω∈P |∃α,ω(vα)<ω}

(V2)ω



 .

By Formula (2), V and Ṽ are sub Uq(h)+-module of V1 ⊗ V2. By condition (ii), w ∈ V

and the image of w in V/Ṽ is equal to the image u of
∑

α wα⊗vα in V/Ṽ . By considering

α0 such that ω(vα0) is minimal, it follows from condition (iii) that
∑

αwα ⊗ vα /∈ Ṽ .

Hence u 6= 0 and M(w) = M(u). Again by Formula (2), the action of hi,r on V/Ṽ is
the action of hi,r ⊗ 1 + 1⊗ hi,r for any i ∈ I, r > 0. These operators commute with all
the operators hi,r ⊗ 1, 1 ⊗ hi,r (i ∈ I, r > 0), which also commute all together.

Consider W = Uq(h)+.u ⊂ (V/Ṽ )ω(u). As W is finite-dimensional, there is u′ in
W which is a common eigenvector for the three families (hi,r ⊗ 1 + 1 ⊗ hi,r)i∈I,r>0,

(hi,r ⊗ 1)i∈I,r>0, (1 ⊗ hi,r)i∈I,r>0. We get immediately that the eigenvalues of u′ for

the first two families are encoded respectively by M(u) and by an l-weight m of V1. By
condition (i), each wα ⊗ vα is a common generalized eigenvector for (1 ⊗ hi,r)i∈I,r>0.

Hence W =
∑

αWα where Wα is the space of common generalized eigenvectors for
(1 ⊗ hi,r)i∈I,r>0 in W with eigenvalues encoded by M(vα). So there is an α such that

u′ ∈Wα. By Remark 2.1, we get M(vα)m = M(u) and so M(vα)m = M(v). �

Example 3.3. We use notations and computations as in Example 2.2. Let a 6= b ∈ C∗

and consider La ⊗Lb (this is a generalization of [HL, Example 8.4]). We set w±
a = v±a .

We have

χq(La ⊗ Lb) = Y1,aq−2Y1,bq−2 + Y1,aq−2Y −1
1,b + Y −1

1,a Y1,bq−2 + Y −1
1,a Y

−1
1,b .

We shall find an l-weight vector w in La⊗Lb of l-weight Y1,aq−1Y −1
1,b illustrating Propo-

sition 3.2. First let us give a generator of each l-weight space (they are of dimension 1
as a 6= b). w+

a ⊗v+
b (resp. w−

a ⊗v−b ) is of l-weight Y1,aq−2Y1,bq−2 (resp. Y −1
1,a Y

−1
1,b ). Let us

look at the weight space of weight 0. The matrix of h1,1 on the basis (w−
a ⊗v+

b , w
+
a ⊗v−b )

is

(

q−2b− a a(−q + q−3)
0 (q−2a− b)

)

. Thus, w−
a ⊗ v+

b has l-weight Y1,bq−2Y −1
1,a and

w = (b− a)(w+
a ⊗ v−b ) + a(q − q−1)(w−

a ⊗ v+
b )

has l-weight Y1,aq−2Y −1
1,b . Then w satisfies the conditions of Proposition 3.2 with a

unique α, a unique β, wα = (b − a)w+
a , vα = v−b , w′

β = a(q − q−1)w−
a and v′β = v+

b .

The l-weight of w is equal to the product M(w) = Y1,aq−2Y −1
1,b of M(vα) = Y −1

1,b and of

M(wα) = Y1,aq−2 which is an l-weight of La.
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Remark 3.4. If we replace vα, v′β , V1 respectively by wα, w′
β, V2 in conditions (i), (ii)

and in the conclusion, the result does not hold. For instance w in Example 3.3 would
satisfy these hypothesis with wα = a(q − q−1)w−

a , vα = v+
b , w′

β = (b − a)w+
a , v′β = v−b .

But M(w) is not the product of M(wα) = Y −1
1,a by an l-weight of Lb. The reason is

that Formula (2) also holds for r < 0 in the same form, with a remaining term in

Ũ−
q (g) ⊗ Ũ+

q (g) and not in Ũ+
q (g) ⊗ Ũ−

q (g) (this is clear from the relation between the
involution Ω and the coproduct in [D1, Remark 6,(5)]).

4. Reduction and involution

In this section we reduce the proof of Theorem 1.1.

4.1. In this subsection we shall review general results which are already known for the
untwisted types. For completeness we also give the proofs for the twisted types.

Let i ∈ I. If r = ri > 1 we set di = ri. We set di = 1 otherwise. So for the twisted
types we have di = µiri, and for the untwisted types we have di = 1. We define the

fundamental representation Vi(a) = L
(

Yi,adi

)

for i ∈ I, a ∈ C∗.

If g is twisted, let g̃ be the simply-laced affine Lie algebra associated to g [Kac]. Let

Ĩ be the set of nodes of the Dynkin diagram of the underlying finite-dimensional Lie
algebra, with its twisting σ : Ĩ → Ĩ and the projection Ĩ → I. We choose a connected
set of representatives so that we get I ⊂ Ĩ by identification. To avoid confusion, the
fundamental representations of Uq(g̃) are denoted by Ṽi(a), the q-character morphism

of Uq(g̃) by χ̃q, and the corresponding variables by Ỹ ±1
i,a . Consider the ring morphism

π : Z

[

Ỹ ±1
i,a

]

i∈Ĩ ,a∈C∗
→ Z

[

Y ±1
i,a

]

i∈I,a∈C∗
,

π
(

Ỹσp(i),a

)

= Yi,(ǫpa)di for i ∈ I, a ∈ C∗, p ∈ Z.

Proposition 4.1. [H3, Theorem 4.15] Let i ∈ I, a ∈ C∗. We have

χq (Vi(a)) = π
(

χ̃q

(

Ṽi(a)
))

.

Lemma 4.2. Let i ∈ I, a ∈ C∗. We have

χq(Vi(a)) ∈ Yi,adi + Yi,adiA
−1

i,(adiqµiri)
Z

[

A−1

j,(aǫkqr)
dj

]

j∈I,k∈Z,r>0

.

Proof: For the untwisted types the proof can be found in the proof of [FM, Lemma
6.5]. For the twisted types, the result follows from Proposition 4.1. �

For m,m′ ∈ M, we set m ≤ m′ if m ∈ m′Z
[

A−1
i,a

]

i∈I,a∈C∗
. This defines a partial

ordering on M as the A−1
i,a are algebraically independent [FR2].

Proposition 4.3. Let m ∈ M dominant. We have

χq(L(m)) ∈ m+
∑

m′<m

Zm′.
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Proof: For the untwisted types the result is proved in [FM, Theorem 4.1]. In general
it is a direct consequence of Lemma 4.2 since a simple module is a subquotient of a
tensor product of fundamental representations [CP2, CP4]. �

For a ∈ C∗, consider the ring (which depends only on the class of a in C∗/
(

qZǫZ
)

)

Ya = Z

[

Y ±1

i,(aqlǫk)
di

]

i∈I,l,k∈Z

.

Remark 4.4. For instance, we have A
i,(aqlǫk)

di ∈ Ya for any i ∈ I, l, k ∈ Z. Conse-

quently, χq(Vi(a)) ∈ Ya for any i ∈ I, since µiri ∈ diZ.

Definition 4.5. C is the full subcategory of objects in F whose Jordan-Hölder compo-
sition series involve simple representations V satisfying M(V ) ∈ Y1.

For instance, the representation Vi

(

qlǫk
)

is an object of C for any i ∈ I, l, k ∈ Z.

Theorem 4.6. Let m ∈ M dominant. Then there is a unique factorization

L(m) ∼=
⊗

a∈(C∗/(qZǫZ))

L(ma) where χq(L(ma)) ∈ Ya.

This is a well-known result. The irreducibility of the tensor product follows for
example from the criterion in [C] (in other words, it can be proved as in Corollary 5.5
below that the tensor product and its dual are cyclic). Note that ma ∈ Ya implies
χq(L(ma)) ∈ Ya since this holds for fundamental representations by Remark 4.4.

As a consequence, we can assume in the proof of Theorem 1.1 that S1, · · · , SN are
objects of C. Hence, in the rest of this paper we work in the category C.

Given a ∈ C∗, there exists a unique algebra automorphism τa : Uq(g) → Uq(g) which
is defined [CP1] on the Drinfeld generators by

τa

(

x±i,m

)

= a±mx±i,m, τa (hi,r) = arhi,r, τa
(

k±1
i

)

= k±1
i , τa

(

c±
1
2

)

= c±
1
2 .

The definition in [CP1] is given for the untwisted types, but it holds for the twisted
types as well. For V in F , let τ∗a (V ) be the object in F obtained by pulling back V
via the automorphism τa. The following is proved in [FM] for the untwisted types (the
highest weight term is computed in [C]). The proof is the same for the twisted types.

Proposition 4.7. χq(τ
∗
a (V )) is obtained from χq(V ) by changing each Y ±1

i,b to Y ±1

i,(adib)
.

Let σ be the involution of the algebra Y defined by Y ±1
i,a 7→ Y ∓1

i,a−1 .

If g is untwisted, let w0 be the longest element in the Weyl group of g and i 7→ i the
unique bijection of I satisfying w0(αi) = −αi. Let h∨ be the dual Coxeter number of
g and r∨ the maximal number of edges connecting two vertices of its Dynkin diagram.
If g is twisted, we use the same definition of r∨, h∨, but for (g̃). We set i = i.

Let i ∈ I, a ∈ C∗. We set
◦
Y i,a = Yi,−a if X = A

(2)
n and ri ≤ 1. We set

◦
Y i,a = Yi,a

otherwise.
The proof of the following duality result can be found in [H2] for the untwisted types

(the highest weight term is computed in [CP3]).
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Proposition 4.8. For m ∈ Y1 a dominant monomial, we have

σ (χq(L(m))) = χq (L (M)) where M =
∏

i∈I,a∈(ǫZqZ)di

(

◦
Y

i,
“

a−1q−(dir∨h∨)
”

)ui,a(m)

.

Proof: It suffices to prove the statement for the twisted types. By using the arguments
of [H2, Section 4.2], it suffices to compute the lowest weight monomial of χq(L(m)). By
using the same argument as in [FM, Corollary 6.9], it suffices to do it for fundamental
representations. Hence the result follows from Proposition 4.1. �

4.2. We define a sequence of subcategories of C in the spirit of the categories in [HL]
(but the subcategories that we consider here are different from the categories in [HL]).

Definition 4.9. Let ℓ ≥ 0. Cℓ is the full subcategory of C whose Jordan-Hölder com-
position series involves simple representations V satisfying

M(V ) ∈ Z

[

Y
i,(qlǫk)

di

]

i∈I,0≤l≤ℓ,k∈Z

.

For instance the representation Vi(q
lǫk) is an object of C for i ∈ I, k ∈ Z, 0 ≤ l ≤ ℓ.

A monomial m 6= 1 in Y1 is said to be right-negative (resp. left-negative) [FM] if
the factors Y

i,(qrǫk)
di appearing in m, for which r is maximal (resp. minimal), have

negative powers. The A−1
i,a are right-negative and a product of right-negative monomials

is right-negative. A right-negative monomial is not dominant [FM].
An analog of the following result was proved in [HL] for simply-laced types.

Lemma 4.10. Cℓ is stable under tensor product and Cℓ inherits a structure of a tensor
category.

Proof: Let L(m), L(m′) be simple objects of Cℓ and L(m′′) be a simple constituent of
L(m) ⊗ L(m′). Then from Lemma 4.2, m′′ is of the form mm′A where A is a product
of A−1

i,(ǫkqr)
di

with i ∈ I, k ∈ Z, r > 0. Suppose that one factor A−1
i,(ǫkdiqR)

occurs in A

with R > diℓ− µiri. Then mm′A−1

i,(ǫkdiqR)
is right-negative, so mm′A is right-negative

as a product of right-negative monomials. Contradiction as m′′ is dominant. Hence the

A−1
i,(ǫdikqr)

occurring in A satisfy 0 < r ≤ diℓ− µiri. So m′′ ∈ Z

[

Y
i,(ǫkql)

di

]

i∈I,0≤l≤ℓ,k∈Z

and L(m′′) is an object of Cℓ. Hence L(m) ⊗ L(m′) is an object of Cℓ. �

The statement of Theorem 1.1 is clear for C0 from the following.

Lemma 4.11. All simple objects of C0 are tensor products of fundamental representa-
tions in C0. An arbitrary tensor product of simple objects in C0 is simple.

Proof: From Lemma 4.2, for any k ∈ Z, i ∈ I, we have

(4) χq

(

Vi(ǫ
k)
)

∈ Yi,ǫkdi + Yi,ǫkdiA
−1
i,(ǫkdiqµiri)

Z

[

A−1

j,(ǫmqr)dj

]

j∈I,m∈Z,r>0
.

Let V be a tensor product of such fundamental representations in C0. By Formula (4), a
monomial occurring in χq(V ) not of highest weight is a product of one Yi,ǫkdiA

−1

i,(ǫkdiqµiri)
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by some Y
j,ǫmdj , A

−1

j,(ǫmqr)dj
. So it is right-negative and not dominant. Hence V is simple

and the first statement is proved. Let L(m) be a simple object in C0. Then m is a
product of some Yi,ǫkdi (i ∈ I, k ∈ Z). The second statement follows immediately. �

Remark 4.12. The category C0 is not semi-simple. For instance, for g = ŝl2, L(Y1,1)
has a non-split self-extension, which can be constructed by a direct computation.

As a consequence of Proposition 4.7, for any simple object V in C, there is a ∈ qZǫZ

and ℓ ≥ 0 such that τ∗a (V ) is an object in Cℓ. Hence it suffices to prove the statement
of Theorem 1.1 for the categories Cℓ.

Let ℓ ≥ 0. Consider the bar involution defined on Z

[

Y ±1

i,(ǫkql)
di

]

i∈I,k∈Z,0≤l≤ℓ

by

Y
i,(ǫkql)

di = Y
i,(ǫ−kqℓ−l)

di for i ∈ I, k ∈ Z, 0 ≤ l ≤ ℓ.

For a simple V = L(m) we set V = L(m). This defines a bar involution of the

Grothendieck ring of Cℓ. For example, Vi(ǫkql) = Vi(ǫ
−kqℓ−l) for i ∈ I, k ∈ Z, 0 ≤ l ≤ ℓ.

Proposition 4.13. For V a simple object in Cℓ we have χq(V ) = χq(V ). In particular
the bar involution is a ring automorphism of the Grothendieck ring of Cℓ.

Proof: First by using Proposition 4.8 and Proposition 4.7, we get

φ(χq(L(m))) = χq(L(φ(m)))

where φ is the ring isomorphism of Y defined by φ(Yi,a) =
◦
Y i,qℓdia−1 . Then consider

the ring automorphism ψ of Y defined by Yi,a 7→
◦
Y i,a. We get immediately

(ψ ◦ φ) (χq(L(m))) = χq (L ((ψ ◦ φ) (m))) .

This is exactly the relation χq(L(m)) = χq(L(m)). �

5. Upper and lower q-characters

In this section we introduce the notions of lower and upper q-characters that we shall
use in the following. We prove several results and formulae about them. Fix L ∈ Z.

5.1. For a monomial m ∈ Y1, we denote by m=L (resp. m≤L, m≥L) the product with
multiplicities of the factors Y ±1

i,(ǫkql)
di

occurring in m with l = L (resp. l ≤ L, l ≥ L),

i ∈ I, k ∈ Z.
Consider a dominant monomial M ∈ Y1 and let V = L(M).

Definition 5.1. The lower (resp. upper) q-character χq,≤L(V ) (resp. χq,≥L(V )) is the
sum with multiplicities of the monomials m occurring in χq(V ) satisfying

m≥(L+1) = M≥(L+1)
(

resp. m≤(L−1) = M≤(L−1)
)

.

We define V≤L, V≥L ⊂ V as the corresponding respective sums of l-weight spaces.

Let A≤L (resp. A≥L) be the subring of Y generated by the A−1
i,a with i ∈ I and

a ∈ ǫdiZq(di(L−N)−µiri)
(

resp. a ∈ ǫdiZq(di(L+N)+µiri)
)

.
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Lemma 5.2. χq,≤L(V ) (resp. χq,≥L(V )) is equal to the sum with multiplicities of the
monomials m occurring in χq(V ) satisfying mM−1 ∈ A≤L (resp. mM−1 ∈ A≥L).

Proof: Let us prove the statement for χq,≥L(V ) (the other proof is analog). By Propo-

sition 4.3, we can assume m ≤ M . First mM−1 ∈ A≥L implies m≤(L−1) = M≤(L−1),

since for any i ∈ I, l ≥ L, k ∈ Z, the monomial A−1

i,
“

(ǫkql)
diqµiri

” does not contain

any Y ±1

j,(ǫkqr)
dj

with r < L. To prove the converse, suppose that some A−1

i,(ǫkql)
di

with l < diL + µiri and k ∈ Z occurs in mM−1. Then mM−1 is left-negative
and there are j ∈ I, M < L, K ∈ Z satisfying u

j,(qM ǫK)dj (mM
−1) < 0. Hence

m≤(L−1) 6= M≤(L−1). �

Remark 5.3. As a consequence, for V, V ′ in F such that V ⊗ V ′ is simple, we have
χq,≥L(V ⊗ V ′) = χq,≥L(V )χq,≥L(V ′) and χq,≤L(V ⊗ V ′) = χq,≤L(V )χq,≤L(V ′).

An an illustration, by Lemma 4.2 and Lemma 5.2, for i ∈ I, k, l ∈ Z we get

χq,≤l

(

Vi

(

ǫkql
))

= Y
i,(ǫkql)

di and χq,≥l

(

Vi

(

ǫkql
))

= χq

(

Vi

(

ǫkql
))

− Y
i,(ǫkql)

di .

5.2. A module in F is said to be cyclic if it is generated by a highest l-weight vector.
We have the following cyclicity result [C, Kas, VV].

Theorem 5.4. Consider a1, · · · , aR ∈ ǫZqZ and i1, · · · , iR ∈ I such that for r < p, we
have apa

−1
r ∈ ǫZqN. Then the tensor product

ViR(aR) ⊗ · · · ⊗ Vi1(a1)

is cyclic. Moreover there is a unique morphism up to a constant multiple

ViR(aR) ⊗ · · · ⊗ Vi1(a1) → Vi1(a1) ⊗ · · · ⊗ ViR(aR),

and its image is simple isomorphic to L
(

Y
i1,(a1)

di1
· · ·Y

iR,(aR)
diR

)

.

Note that the condition in [Kas] is that apa
−1
r has no pole at q = 0 when q is an

indeterminate. That is why in our context the condition is translated as apa
−1
r ∈

ǫZqN. The statement in [Kas] involves representations W (ωi) ∼= Vi(a) for some a ∈ C∗

computed in [BN, Lemma 4.6] and [N2, Remark 3.3] (a does not depend on i but only
on the choice of the isomorphism between Chevalley and Drinfeld realizations).

As a direct consequence of Theorem 5.4, we get the following.

Corollary 5.5. Let m,m′ ∈ Y1 dominant monomials. Assume that ui,a(m) 6= 0 implies

uj,(a(qrǫk)di)(m
′) = 0 for any i, j ∈ I, r > 0, k ∈ Z, a ∈

(

ǫZqZ
)di . Let W = L(m) and

W ′ = L(m′). Then W ⊗W ′ is cyclic and there exists a morphism of Uq(g)-modules

IW,W ′ : W ⊗W ′ →W ′ ⊗W

whose image is simple isomorphic to L(mm′).

This is a well-known result (see for instance [FR1, KS]). We write the proof for
completeness of the paper. The morphism is unique up to a constant multiple. If in
addition W ⊗W ′ is simple, then W ′⊗W is simple as well and IW,W ′ is an isomorphism.
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Proof: From Theorem 5.4, W (resp. W ′) is the submodule of a tensor product of
fundamental representations V1⊗· · ·⊗VR (resp. VR+1⊗· · ·⊗VP ) generated by the tensor
product of highest l-weight vectors. Consider elements ir ∈ I, ar ∈ ǫZqZ satisfying
Vr = Vir(ar). Then by our assumptions, for 1 ≤ p < r ≤ R or R + 1 ≤ p < r ≤ P ,
we have ar(ap)

−1 ∈ ǫZqN. Moreover, for 1 ≤ r ≤ R < p ≤ P , we have ar(ap)
−1 ∈

ǫZqN. Hence, by Theorem 5.4, we have surjective morphisms (VR ⊗ · · · ⊗ V1) ։ W ,
(VP ⊗ · · · ⊗ VR+1) ։ W ′ and so a surjective morphism

(VR ⊗ · · · ⊗ V1) ⊗ (VP ⊗ · · · ⊗ VR+1) ։ W ⊗W ′,

where the left-hand module is cyclic. Hence W⊗W ′ is cyclic. Now, by Theorem 5.4, for
every 1 ≤ i ≤ R < j ≤ P , we have a well-defined morphism IVi,Vj

: Vi ⊗ Vj → Vj ⊗ Vi.
So we can consider

I = (IV1,VP
◦ · · · ◦ IVR,VP

) ◦ · · · ◦
(

IV1,VR+1
◦ · · · ◦ IVR,VR+1

)

:

(V1 ⊗ · · · ⊗ VR) ⊗ (VR+1 ⊗ · · · ⊗ VP ) → (VR+1 ⊗ · · · ⊗ VP ) ⊗ (V1 ⊗ · · · ⊗ VR) .

We use an abuse of notation, as we should have written Id ⊗ IV1,VP
⊗ Id. In the

following we shall use an analog convention without further comment. The image of
the restriction IW,W ′ of I to W ⊗W ′ is generated by the tensor product of the highest
l-weight vectors. Hence it is included in W ′ ⊗W . By Theorem 5.4 the submodule of
VR+1 ⊗· · ·⊗VP ⊗V1 ⊗· · ·⊗VR generated by the tensor product of the highest l-weight
vectors is simple. Hence the image of IW,W ′ is simple. �

5.3. We go back to M ∈ Y1 dominant and we turn to studying the surjective morphism

φ = IL(M≥L),L(M≤(L−1)) : L
(

M≥L
)

⊗ L
(

M≤(L−1)
)

։ V = L(M).

Let v be a highest l-weight vector of L
(

M≤(L−1)
)

.

Proposition 5.6. The morphism φ restricts to a bijection

φ : L
(

M≥L
)

⊗ v → (V )≥L.

This result generalizes [HL, Lemma 8.5]. The proof is different because in the general
case, the representation L

(

(M)≥L
)

is not necessarily minuscule (in the sense of [CH]).

Proof: First by Formula (2), for i ∈ I, r > 0 and w ∈ L
(

M≥L
)

, we have

(5) hi,r(w ⊗ v) = (hi,rw) ⊗ v + w ⊗ (hi,rv) ∈
(

L
(

M≥L
)

⊗ v
)

.

Hence L(M≥L) ⊗ v is a Uq(h)+-module and by Remark 2.1, we get

(6) χq

(

L
(

M≥L
)

⊗ v
)

= χq

(

L
(

M≥L
))

M≤(L−1).

Let us establish
φ−1 (V≥L) = L

(

M≥L
)

⊗ v + Ker(φ).

Clearly φ−1 (V≥L) ⊃ Ker(φ). By Formula (6), we get φ−1 (V≥L) ⊃ L
(

M≥L
)

⊗v. So the

inclusion ⊃ is established. Let us prove the other inclusion. φ−1 (V≥L) is a Uq(h)-module
and so it can be decomposed into l-weight spaces

φ−1 (V≥L) =
⊕

m∈M

(

φ−1 (V≥L)
)

m
.
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If m ∈ M is not an l-weight of V≥L, then
(

φ−1 (V≥L)
)

m
⊂ Ker(φ). Otherwise, let

w ∈
(

φ−1 (V≥L)
)

m
. If w /∈ L

(

(M)≥L
)

⊗ v, we can write a decomposition

w =
∑

α

wα ⊗ vα + w′
β ⊗ v

as in Proposition 3.2 with all vα satisfying ω(vα) < ω(v) and only one v′β = v. Thus,

one of the M(vα) is a factor of m, and so m is not an l-weight of V≥L. Contradiction.
Hence

(

φ−1 (V≥L)
)

m
⊂ L

(

M≥L
)

⊗ v. This concludes the proof of the equality.

Now by Formula (3), L
(

(M)≥L
)

⊗ v is stable for the action of the x+
i,p, and for

w ∈ L
(

(M)≥L
)

, we have

(7) x+
i,p(w ⊗ v) =

(

x+
i,pw

)

⊗ v for any i ∈ I, p ∈ Z.

Suppose that there exists a non-zero weight vector w ⊗ v ∈ Ker(φ) ∩
(

L
(

M≥L
)

⊗ v
)

.

w ⊗ v generates a proper submodule of the cyclic module L(M≥L) ⊗ L
(

M≤(L−1)
)

since φ(Uq(g)(w ⊗ v)) = 0. Let v′ be a highest l-weight vector of L(M≥L). Since
ω(w ⊗ v) < ω(v′ ⊗ v), there exists N ≥ 1 such that there is a decomposition

ω(w ⊗ v) − ω(v′ ⊗ v) = −αj1 − · · · − αjN
for some j1, · · · , jN ∈ I.

Since L
(

M≥L
)

⊗L
(

M≤(L−1)
)

is cyclic, v′⊗v /∈ Uq(g)(w⊗v). Hence for any i1, · · · , iN ∈
I, p1, · · · , pN ∈ Z, we get

(8)
(

x+
i1,p1

x+
i2,p2

· · · x+
iN ,pN

)

(w ⊗ v) = 0 and
(

x+
i1,p1

x+
i2,p2

· · · x+
iN ,pN

)

w = 0.

But L
(

(M)≥L
)

is simple, so there is g ∈ Uq(g) satisfying gw = v′. By using the surjec-
tive map (1), g can be decomposed as a sum of monomials in the Drinfeld generators
g−hg+ where g± ∈ U±

q (g) and h ∈ Uq(h). Each term (g−hg+)w is a weight vector
and so we can assume that each term satisfies ω(g−hg+w) = ω(v′). Then each g+w
is a weight vector satisfying ω(g+w) ≥ ω(g−hg+w) = ω(v′). So each g+ is a product
x+

i1,p1
x+

i2,p2
· · · x+

iN′ ,pN′
where N ′ ≥ N . So g+w = 0 by Formulae (8). Thus, we have

gw = 0. Contradiction. Hence we are done since we have established

Ker(φ) ∩
(

L
(

M≥L
)

⊗ v
)

= {0}.

�

Remark 5.7. By Formulae (5), (7), the action of the x+
i,p, hi,r on V≥L can be recovered

from their action on L
(

M≥L
)

. This will find other applications in another paper.

Corollary 5.8. Let M ∈ Y1 be a dominant monomial and L ∈ Z. We have

χq,≥L(L(M)) = M≤(L−1)χq

(

L
(

M≥L
))

.

Proof: In Proposition 5.6, φ is an isomorphism of Uq(h)+-modules, and so

χq,≥L(L(M)) = χq

(

L
(

M≥L
)

⊗ v
)

.

We are done by Formula (6). �
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6. End of the proof of the main theorem

First let us mention the proof of the ”only if” part of Theorem 1.1 (which is trivial).
As proved in [FR2], the injectivity of the q-character morphism implies that Rep(Uq(g))
is commutative (see [H3] for the twisted types). So the irreducibility of S1 ⊗ · · · ⊗ SN

is equivalent to the irreducibility of Sσ = Sσ(1) ⊗ · · · ⊗ Sσ(N) for any permutation σ of
[1, N ]. Let i < j and σ satisfying σ(i) = 1 and σ(j) = 2. If Si⊗Sj is not simple, we have
a proper submodule V ⊂ Si⊗Sj and so a proper submodule V ⊗Sσ(3)⊗· · ·⊗Sσ(N) ⊂ Sσ.
Hence S1 ⊗ · · · ⊗ SN is not simple.

Now we turn to the ”if” part. We have seen in Section 4 that it suffices to prove
the statement of Theorem 1.1 for the categories Cℓ. We shall proceed by induction on
ℓ ≥ 0. For ℓ = 0 the result has been discussed in Section 4.2.

Let S be a simple module in Cℓ of highest weight monomial M . Let M− = M≤(ℓ−1)

and M+ = M=ℓ. Set S± = L(M±). Consider a highest l-weight vector v± of S±. Recall
the surjective morphism of Corollary 5.5.

IS+,S−
: S+ ⊗ S− ։ S ⊂ S− ⊗ S+.

Proposition 6.1. Let S, S′ simple objects in Cℓ such that the tensor product S ⊗ S′ is
simple. Then the tensor product S− ⊗ S′

− is simple.

Proof: Let M = M(S) and M ′ = M(S′). As above, we define

M− = M≤(ℓ−1) , M+ = M=ℓ , (M ′)− = (M ′)≤(ℓ−1) , (M ′)+ = (M ′)=ℓ.

The duality of Proposition 4.13 allows to reformulate the problem. Indeed the hypoth-
esis implies that S ⊗ S′ is simple, and it suffices to prove that S− ⊗ S′

− is simple.
From Corollary 5.8 with L = 1, we get

χq,≥1

(

L
(

M+M ′
+M−M ′

−

))

= M+M ′
+χq

(

L
(

M−M ′
−

))

.

Since S ⊗ S′ is simple, this is equivalent to

χq,≥1

(

S ⊗ S′
)

= M+M ′
+χq

(

L
(

M−M ′
−

))

.

But by Remark 5.3 the left term is equal to χq,≥1

(

S
)

χq,≥1

(

S′
)

which, again by Corol-

lary 5.8, is equal to M+M ′
+χq

(

S−
)

χq

(

S′
−

)

= M+M ′
+χq

(

S− ⊗ S′
−

)

. This implies

χq

(

S− ⊗ S′
−

)

= χq

(

L
(

M−M
′
−

))

.

Hence S− ⊗ S′
− is simple. �

Now we conclude2 the proof of Theorem 1.1. In addition to the induction on ℓ, we
start a new induction on N ≥ 2. For N = 2 there is nothing to prove.

For i = 1, · · · , N , we define Mi, (Mi)±, (Si)±, (ui)± as above. Consider a pair
(i, j) of integers satisfying 1 ≤ i < j ≤ N . By our assumptions, Si ⊗ Sj is simple.
Hence (Si)− ⊗ (Sj)− is simple by Proposition 6.1. Besides (Sj)+ ⊗ (Si)+ is a tensor

2Parts of the final arguments of the present paper were used in the proof of [HL, Theorem 8.1] for
the simply-laced types. But in the context of [HL] the proof is drastically simplified since the (Si)−
belong to a category equivalent to C0 and are minuscule.
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product of fundamental representations belonging to a category equivalent to C0 by
Proposition 4.7. Hence (Sj)+ ⊗ (Si)+ is simple. Now by Corollary 5.5, the module
(Sj)+ ⊗ (Si)+ ⊗ (Si)− ⊗ (Sj)− is cyclic. By Corollary 5.5, there exists a surjective
morphism

Ψ = I(Sj)+,(Sj)−I(Sj)+,(Si)+I(Sj)+,(Si)−I(Si)+,(Si)−

Ψ : (Sj)+ ⊗ (Si)+ ⊗ (Si)− ⊗ (Sj)− ։ L(MiMj) ∼= Si ⊗ Sj .

The map I(Sj)+,(Si)+I(Sj)+,(Si)− can be rewritten as α⊗ id(Sj)− , where

α : (Sj)+ ⊗ (Si)− ⊗ (Si)+ → (Si)− ⊗ (Si)+ ⊗ (Sj)+

restricts to a morphism ᾱ : (Sj)+ ⊗ Si → Si ⊗ (Sj)+. Now we have

(

I(Sj)+,(Sj)−

)−1
((Sj)≥ℓ) = (Sj)+ ⊗ (uj)−

and I(Sj)+,(Sj)− restricts to a bijection from (Sj)+⊗ (uj)− to (Sj)≥ℓ by Proposition 5.6.
Since Ψ is surjective, we get

Im(ᾱ) ⊗ (uj)− ⊃ Si ⊗ (Sj)+ ⊗ (uj)−.

Hence ᾱ is surjective.
By the induction hypothesis on N , the module S1 ⊗ · · · ⊗ SN−1 is simple.
Let us prove that (SL)− ⊗ · · · ⊗ (SL′)− is simple for any 1 ≤ L ≤ L′ ≤ N . From

Proposition 6.1, the tensor product (Si)−⊗(Sj)− is simple for any i 6= j. Then all (Si)−
belong to a category equivalent to Cℓ−1 by Proposition 4.7. Hence the irreducibility of
(SL)− ⊗ · · · ⊗ (SL′)− follows from the induction hypothesis on ℓ.

By Corollary 5.5 we obtain a surjective morphism

W ։ (SN )+ ⊗ (S1 ⊗ · · · ⊗ SN−1) ⊗ (SN )−

where W = (SN )+ ⊗
(

(S1)+ ⊗ · · · ⊗ (SN−1)+
)

⊗
(

(S1)− ⊗ · · · ⊗ (SN−1)−
)

⊗ (SN )−.
We have established above that for every 1 ≤ i < N , we have a surjective morphism

(SN )+ ⊗ Si ։ Si ⊗ (SN )+. Hence we get a sequence of surjective morphisms

(SN )+⊗(S1 ⊗ · · · ⊗ SN−1) ։ S1⊗(SN )+⊗S2⊗· · ·⊗SN−1 ։ · · · ։ (S1 ⊗ · · · ⊗ SN−1)⊗(SN )+.

Consequently we get surjective morphisms

(SN )+ ⊗
(

(S1)+ ⊗ · · · ⊗ (SN−1)+
)

⊗
(

(S1)− ⊗ · · · ⊗ (SN−1)−
)

⊗ (SN )−

։ (S1 ⊗ · · · ⊗ SN−1) ⊗ (SN )+ ⊗ (SN )− ։ V := S1 ⊗ · · · ⊗ SN .

So V is cyclic since W is cyclic.
Consider the dual module V ∗ ∼= (S∗

N ⊗ · · · ⊗ S∗
1). By our assumptions, S∗

j ⊗ S∗
i
∼=

(Si ⊗ Sj)
∗ is simple for every 1 ≤ i < j ≤ N . Moreover the modules S∗

i belong to a
category equivalent to Cℓ by Proposition 4.7. So V ∗ is cyclic. We can now conclude as
in [CP1, Section 4.10], because a cyclic module whose dual is cyclic is simple. �
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7. Discussions

Let us conclude with some comments which are not used in the proof of the main
result of the present paper.

For simply-laced types, the intermediate Corollary 5.8 can also be proved by using
Nakajima’s q, t-characters [N1]. Let us explain this proof since it is related to a nice
symmetry property of the corresponding Kazhdan-Lusztig polynomials (a priori, this
method can not be extended to the general case since quiver varieties used in [N1] are
not known to exist for the non simply-laced cases).

To start with, let us give some reminders on Nakajima’s q, t-characters which are
certain t-deformations of q-characters.

Let Ŷt = Y[Yi,a, Vi,a, t
±1]i∈I,a∈C∗ which is a t-deformation of Y. The Vi,a are new

variables playing the role of the A−1
i,a (the Yi,a are denoted by Wi,a in [N1]).

A t-deformed product ∗ and a bar involution are defined on Ŷt in [N1]. The bar

involution satisfies a ∗ b = b ∗ a for a, b ∈ Ŷt and t = t−1. There is a ring morphism
π : Ŷt → Y satisfying π(Yi,a) = Yi,a, π(Vi,a) = A−1

i,a , π(t) = 1 for any i ∈ I, a ∈ C∗.

A monomial m in Ŷt is a product of Yi,a, Vi,a, t
±1 satisfying m = m. Let Mt be the set

of these monomials and B ⊂ Mt be the set of dominant monomials, that is of m ∈ Mt

such that π(m) is a dominant monomial in Y. A dominant monomial m of Y is seen
as an element of B by the natural identification.
For M1, M2 ∈ Mt, we write M1 ≤M2 if M1 ∈M2Z[Vi,a, t

±1]i∈I,a∈C∗ .

A certain subring K̂t of (Ŷt, ∗t) is introduced in [N1] (it plays a role analog to Im(χq) ⊂
Y). For i ∈ I, a ∈ C∗, there is a unique

Li,a ∈ K̂t ∩



Yi,a



1 + Vi,aq +
∑

V <Vi,aq

Z[t±1]V







 .

Li,a is a t-analog of χq(L(Yi,a)). The existence of Li,a is non trivial and is proved in [N1]
(it can also be proved purely algebraically [H1]). We define t-analogs of q-characters
of tensor products of fundamental representations (or Weyl modules) [N1]. Let m ∈ B

and set ui,a = ui,a(π(m)) for i ∈ I, a ∈ C∗. Let Et(m) ∈ Ŷt equal to

(9) M ∗
∏

a∈(C∗/qZ)

(

· · · ∗

(

∏

i∈I

(

Li,aq−1

)(∗ui,aq−1)
)

∗

(

∏

i∈I

(

Li,aq0

)(∗ui,aq0)
)

∗ · · ·

)

,

where M = trm
∏

i∈I,a∈C∗

Y
−ui,a

i,a ,

the
∏

denote products for ∗ and r ∈ Z is set so that Et(m) ∈ m+
∑

m′<m Z[t±1]m′.
For m ∈ B, there exists [N1] a unique Lt(m) ∈ Kt satisfying

Lt(m) = Lt(m) , Lt(m) ∈ m+
∑

m′<m

Z[t±1]m′,

(10) Et(m) =
∑

{m′∈B|m′≤m}

Pm′,m(t)Lt(m
′) with Pm′,m(t) ∈ t−1Z[t−1] , Pm,m(t) = 1.
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The Lt(m) are t-analogs of q-characters of simple modules and the Pm′,m(t) are analogs
of Kazhdan-Lusztig polynomials. The following is an important consequence of the
theory of Nakajima’s quiver varieties which is proved in [N1]. We have

π (Lt(m)) = χq (L (π(m))) for m ∈ B.

In particular, Pm′,m(1) is the multiplicity of L(π(m′)) in the tensor product of funda-
mental representations of highest weight monomial π(m).

The Lt(m) can be computed from (10) and from the Et(m) with an algorithm of
Kazhdan-Lusztig type. The Li,a, and so the Et(m), can be computed independently.
Hence the χq(L(m)) can be computed in principle. In practice, as explained in the
introduction of [N1], it is difficult to obtain informations on q-characters from this
complicated algorithm. But theoretical informations can be obtained from it, such as
the alternative proof of Corollary 5.8 for simply-laced types that we sketch now.

We use the notations of Corollary 5.8. Let M ′ = (M)≤(L−1) and M ′′ = (M)≥L.
By the defining Formula (9), we get Et(M) = Et(M

′) ∗ Et(M
′′). By the defining

formula of ∗ in [N1] and Formula (9), for m a monomial occurring in Et(M
′′), we get

M ′ ∗m = m ∗M ′ = M ′m ∈ Mt. Hence

(11) Et(M) = M ′Et

(

M ′′
)

+
(

Et

(

M ′
)

−M ′
)

∗Et

(

M ′′
)

.

For a monomial m of the form m = M ′′trVi1,qr1 · · ·ViN(m),q
rN(m) , we prove by induction

on N(m) ≥ 0 the following symmetry property :

(12) [Lt(M)]M ′m = [Lt(M
′′)]m and PM ′m,M (t) = Pm,M ′′(t),

where [χ]p ∈ Z[t±1] is the multiplicity of a monomial p in χ ∈ Ŷt. The property is clear
for N(m) = 0 since PM,M (t) = PM ′′,M ′′(t) = 1 and [Lt(M)]M = [Lt(M

′′)]M ′′ = 1. The

inductive step follows from direct computations in the ring Ŷt by using (10) and (11).
The statement of Corollary 5.8 is now obtained immediately by applying π to (12).

Remark 7.1. In the same way we get the following (not used in this paper)

χq,≤L(V ) = (M)≥(L+1)χq,≤L

(

L
(

(M)≤L
))

.

Indeed let M ′ = (M)≤L,M ′′ = (M)≥(L+1). As above Et(M) = Et(M
′) ∗Et(M

′′) and

Et(M) ∈ Et

(

M ′
)

M ′′ +M
∑

i∈I,r≥L

(

Vi,qrZ
[

t±1, Vj,a

]

j∈I,a∈C∗

)

.

Then, we prove by induction as above and by direct computation that for a monomial
m in M ′Z

[

t±1, Vi,qr

]

i∈I,r<L
, we have [Lt(M)]M ′′m = [Lt(M

′)]m. This means

Lt(M) ∈M ′′Lt(M
′) +M

∑

i∈I,r≥L

(

Vi,qrZ
[

t±1, Vj,a

]

j∈I,a∈C∗

)

.

We are done by applying π.
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