ALGEBRAIC APPROACH TO q,t--CHARACTERS

DAVID HERNANDEZ

ABSTRACT. Frenkel and Reshetikhin [5] introduced g-characters to study finite dimensional representa-
tions of the quantum affine algebra Uy (g). In the simply laced case Nakajima [11][12] defined deforma-
tions of g-characters called g,t-characters. The definition is combinatorial but the proof of the existence
uses the geometric theory of quiver varieties which holds only in the simply laced case. In this article we
propose an algebraic general (non necessarily simply laced) new approach to g,t-characters motivated
by the deformed screening operators [8]. The t-deformations are naturally deduced from the structure
of Uy(g): the parameter ¢ is analog to the central charge ¢ € Uy(§). The g,t-characters lead to the
construction of a quantization of the Grothendieck ring and to general analogues of Kazhdan-Lusztig
polynomials in the same spirit as Nakajima did for the simply laced case.
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1. INTRODUCTION

We suppose ¢ € C* is not a root of unity. In the case of a semi-simple Lie algebra g, the structure of
the Grothendieck ring Rep(l4,(g)) of finite dimensional representations of the quantum algebra U,(g) is
well understood. It is analogous to the classical case ¢ = 1. In particular we have ring isomorphisms:

Rep(U,(g)) ~ Rep(g) ~ Z[A)Y ~ Z[Ty, ..., T,]
deduced from the injective homomorphism of characters x:
x(V) =) dim(V3)A
AEA

where V) are weight spaces of a representation V and A is the weight lattice.
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For the general case of Kac-Moody algebras the picture is less clear. In the affine case U, (§), Frenkel and
Reshetikhin [5] introduced an injective ring homomorphism of g-characters:

Xq : Rep(Uy (8)) = Z[Vi5 hi<icnaccr =Y

The homomorphism x, allows to describe the ring Rep(U;(§)) ~ Z[Xidlicr,aecs, where the X; , are
fundamental representations. It particular Rep(i,(g)) is commutative.

The morphism of g-characters has a symmetry property analogous to the classical action of the Weyl group

Im(x) = Z[A]": Frenkel and Reshetikhin defined n screening operators S; such that Im(x,) = [ Ker(S;)
iel
(the result was proved by Frenkel and Mukhin for the general case in [6]).

In the simply laced case Nakajima introduced t-analogues of g-characters ([11], [12]): it is a Z[t*]-linear
map

Xa.t : Rep(Uy (8)) ®z Z[tF] = Vi = LY, t*lier,accr

which is a deformation of y, and multiplicative in a certain sense. A combinatorial axiomatic definition
of g,t-characters is given. But the existence is non-trivial and is proved with the geometric theory of
quiver varieties which holds only in the simply laced case.

In [8] we introduced t-analogues of screening operators S; ; such that in the simply laced case:

mKer(Si,t) = Im(xq,t)

iel
It is a first step in the algebraic approach to g, t-characters proposed in this article: we define and construct
g, t-characters in the general (non necessarily simply laced) case. The motivation of the construction

appears in the non-commutative structure of the Cartan subalgebra U, () C U,(§), the study of screening
currents and of deformed screening operators.

As an application we construct a deformed algebra structure and an involution of the Grothendieck ring,
and analogues of Kazhdan-Lusztig polynomials in the general case in the same spirit as Nakajima did
for the simply laced case. In particular this article proves a conjecture that Nakajima made for the
simply laced case (remark 3.10 in [12]): there exists a purely combinatorial proof of the existence of
q,t-characters.

This article is organized as follows: after some backgrounds in section 2, we define a deformed non-
commutative algebra structure on ); = Z[Yi, e I,ecc+ (section 3): it is naturally deduced from

~

the relations of Uy (h) C Uy(§) (theorem 3.11) by using the quantization in the direction of the central
element c¢. In particular in the simply laced case it can be used to construct the deformed multiplication
of Nakajima [12] (proposition 3.18) and of Varagnolo-Vasserot [15] (section 3.5.4).

This picture allows us to introduce the deformed screening operators of [8] as commutators of Frenkel-
Reshetikhin’s screening currents of [4] (section 4). In [8] we gave explicitly the kernel of each deformed
screening operator (theorem 4.10).

In analogy to the classic case where Im(x,) = () Ker(S;), we have to describe the intersection of the
iel
kernels of deformed screening operators. We introduce a completion of this intersection (section 5.2) and

give its structure in proposition 5.19. It is easy to see that it is not too big (lemma 5.7); but the point
is to prove that it contains enough elements: it is the main result of our construction in theorem 5.13
which is crucial for us. It is proved by induction on the rank n of g.

We define a t-deformed algorithm (section 5.7.2) analog to the Frenkel-Mukhin’s algorithm [6] to construct
g,t-characters in the completion of };. An algorithm was also used by Nakajima in the simply laced
case in order to compute the g, t-characters for some examples ([11]) assuming they exist (which was
geometrically proved). Our aim is different : we do not know a priori the existence in the general case.
That is why we have to show the algorithm is well defined, never fails (lemma 5.24) and gives a convenient
element (lemma 5.25).
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This construction gives g, t-characters for fundamental representations; we deduce from them the injective
morphism of ¢, t-characters x4, (definition 6.1). We study the properties of x, (theorem 6.2). Some of
them are generalization of the axioms that Nakajima defined in the simply laced case ([12]); in particular
we have constructed the morphism of [12].

We have some applications: the morphism gives a deformation of the Grothendieck ring because the
image of x,: is a subalgebra for the deformed multiplication (section 6.2). Moreover we define an
antimultiplicative involution of the deformed Grothendieck ring (section 6.3); the construction of this
involution is motivated by the new point view adopted in this paper : it is just replacing ¢ by —c in
Uy(g). In particular we define constructively analogues of Kazhdan-Lusztig polynomials and a canonical
basis (theorem 6.13) motivated by the introduction of [12]. We compute explicitly the polynomials for
some examples.

In section 7 we raise some questions : we conjecture that the coefficients of g, -characters are in N[t*] C
Z[t*]. In the ADE-case it a result of Nakajima; we give an alternative elementary proof for the A-cases
in section 7.1. The cases G2, B2, C> are also checked in section 8. The cases Fy, B,,C, (n < 10) have
been checked on a computer.

We also conjecture that the generalized analogues to Kazhdan-Lusztig polynomials give at ¢ = 1 the multi-
plicity of simple modules in standard modules. We propose some generalizations and further applications
which will be studied elsewhere.

In the appendix (section 8) we give explicit computations of g,t-characters for semi-simple Lie algebras
of rank 2. They are used in the proof of theorem 5.13.

For convenience of the reader we give at the end of this article an index of notations defined in the main
body of the text.

Acknowledgments. The author would like to thank M. Rosso for encouragements and precious com-
ments on a previous version of this paper, I. B. Frenkel for having encouraged him in this direction, E.
Frenkel for encouragements, useful discussions and references, E. Vasserot for very interesting explana-
tions about [15], O. Schiffmann for valuable comments and his kind hospitality in Yale university, and T.
Schedler for help on programming.

2. BACKGROUND

2.1. Cartan matrix. A generalized Cartan matrix of rank n is a matrix C' = (C} ;)1<s,j<n such that
Ci,j € Z and:
Cii =2
) 75 ] = Cz"j <0
Ci,j =0¢& Cj,z' =0
Let I ={1,...,n}.
We say that C is symmetrizable if there is a matrix D = diag(rq,...,7,) (r; € N*) such that B = DC is

symmetric.

Let ¢ € C* be the parameter of quantization. In the following we suppose it is not a root of unity. z is
an indeterminate.

If C is symmetrizable, let ¢; = ¢", z; = 2™ and C(z) = (C(2)i,j)1<i,j<n the matrix with coefficients in
Z[z%*] such that:
Cl(2)ij =[Cijl- i i #j
C(Z)l‘,i = [Cm']zi =z; + Zi_l
where for [ € Z we use the notation:
1 1

(- = % (=27 273 42 for 1> 1)
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In particular, the coefficients of C'(z) are symmetric Laurent polynomials (invariant under z ~ z=1). We
define the diagonal matrix D; ;(z) = d; j[r;]. and the matrix B(z) = D(2)C(z).

In the following we suppose that C is of finite type, in particular det(C) # 0. In this case C is sym-
metrizable; if C' is indecomposable there is a unique choice of r; € N* such that r; A... Ar, = 1. We have
B; j(z) = [B;;]. and B(z) is symmetric. See [1] or [9] for a classification of those finite Cartan matrices.

We say that C'is simply-laced if 1y = ... = r,, = 1. In this case C is symmetric, C(z) = B(z) is symmetric.
In the classification those matrices are of type ADE.

Denote by 4 C Q(z) the subgroup Z-linearly spanned by the I(D(Z)) such that P(2) € Z[2%], Q(z) € Z[2],
the zeros of Q(z) are roots of unity and Q(0) = 1. It is a subring of Q(z), and for R(z) € U,m € Z we
have R(¢™) € Y and R(¢™) € C makes sense.

It follows from lemma 1.1 of [6] that C(z) has inverse C(z) with coefficients of the form R(z) € L.

2.2. Finite quantum algebras. We refer to [14] for the definition of the finite quantum algebra U, (g)
associated to a finite Cartan matrix, the definition and properties of the type 1-representations of U/, (g),
the Grothendieck ring Rep(U,(g)) and the injective ring morphism of characters x : Rep(U,(g)) — Z[y=

2.3. Quantum affine algebras. The quantum affine algebra associated to a finite Cartan matrix C is
the C-algebra U,(g) defined (Drinfeld new realization) by generators x - (ieI,men),kf(iel),

him (i € I, m € Z*), central elements c* 3, and relations:

kik; = kjk;

kihjm = hjmk;

+ - :I:B1 +
k ] mkz ! I] m
gt T+
[hi,m?xj,m’] = _[mBm] L5 m+m
+ + +B;; .t + _ *B;;..t =% .- = +
Ii,m—i—lmj,m’ —-q ]xj,m’xi,m—i-l =4q in,mzj,m’+1 mj,m’—}-lzi,m
1 ¢t —c™
(i, g ] = Om,—mr — [ Bijlg—— e
m + m—m' _
For Tt = e Pimtm ~ € i,m+m’
i,m? ]m’ Y -1
qi — g;
_1\k|S + + + o+ + _
Z Z (=1) [k] Timacy Timaugey Tim Timaopny = Tisma ) = 0
TEXk=0..s i

where the last relation holds for all ¢ # j, s = 1 — C};, all sequences of integers my,...,m,. X, is the
symmetric group on s letters. For i € I and m € Z, gbfm € U,(9) is determined by the formal power
series in Uy (@)][u]] (resp. in Uq(ﬁ)[[lflll):

Z Fitm Fexp(£(g—q7") Z hi e u ™™
m=0..c0 m'=1..00
and¢;fm:Oform<O, $7m = 0 for m > 0.
One has an embedding U,(g) C U,(g) and a Hopf algebra structure on U, (g) (see [5] for example).

The Cartan algebra U, (h) C U,(§) is the C-subalgebra of U, (§) generated by the h;m,c= (i € I,m €
z —{0}).
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2.4. Finite dimensional representations of /,(§). A finite dimensional representation V' of U,(g) is
called of type 1 if ¢ acts as Id and V is of type 1 as a representation of U, (g). Denote by Rep(U,(§)) the
Grothendieck ring of finite dimensional representations of type 1.

+

i,2m>

The operators {¢ i € I,m € Z} commute on V. So we have a pseudo-weight space decomposition:

v= @ W
A ECTXZ X CI XL
where for v = (y*,v7), V, is a simultaneous generalized eigenspace:
V, ={z € V/Ipe NVi € {1,..,n},YVm € Z,(¢7,, — 7i'n)? -z = 0}
The ﬁtm are called pseudo-eigen values of V.

Theorem 2.1. (Chari, Pressley [2],[3]) Every simple representation V € Rep(U,(§)) is a highest weight
representation V , that is to say there is vo € V (highest weight vector) me € C (highest weight) such
that:
V= uq(ﬁ).’l)o B C%.’Uo = Vo
VielI,me Z,m{m.vo =0, , qﬁfm.vo = fyi:mvo

Moreover we have an I-uplet (P;(u))icr of (Drinfeld-)polynomials such that P;(0) = 1 and:
—1
() — 4+ deg(P) Pilug; ) +
0 = ot = L € ]
and (P;)ier parameterizes simple modules in Rep(Uy(g)).

Theorem 2.2. (Frenkel, Reshetikhin [5]) The eigenvalues vi(u)* € Cl[u]] of a representation V €
Rep(Uy(8)) have the form:

e9(Qi)—deg(R) Qi(ug; ) Ry (ug;
7 (u) = gles(@)=d o(r:) Qiug; ) (—q1)
Qi(ugqi) Ri(ug; ")

where Q;(u), R;(u) € Clu] and Q;(0) = R;(0) = 1.

Note that the polynomials @;, R; are uniquely defined by 7. Denote by @, R,; the polynomials
associated to 7.

2.5. g-characters. Let ) be the commutative ring Y = Z[Yi]iel,ae@f .

Definition 2.3. For V € Rep(U,(g)) a representation, the q-character x4(V) of V is:
. Ay,i,a =My, ia
Xa(V) =D dim(V,) [ vzt ey
Y i€l,aeC*
where for v € CIX2 x CI*Z i € I, a € C* the \yia;fly,ia € Z are defined by:
Qri(2) = [[ @ —za)*rie Ry i(2) = [T (1 - za)trie
aeC* aecC
Theorem 2.4. (Frenkel, Reshetikhin [5]) The map
Xq : Rep(Uy(8)) = Y
is an injective ring homomorphism and the following diagram is commutative:
Rep(Uy(®) > Z[Yiilier aec
J res
Rep(Uy(9)) = Zlyicr
where (3 is the ring homomorphism such that 8(Yi.) =y; (i € I,a € C*).



6 DAVID HERNANDEZ

For m € Y of the foorm m =[] Y;Z’“(m) (uiq(m) > 0), denote V,,, € Rep(U,(§)) the simple module
i€l,aeC*

with Drinfeld polynomials P;(u) = [] (1 —wua)*(™. In particular for i € I,a € C* denote V; , = Vy, ,
aeCr
and X; o = Xq(Vi,o). The simple modules V; , are called fundamental representations.

Denote by My, € Rep(U;(§)) the module M, = & Vﬁu"’“(m). It is called a standard module and
i€l,aeC

v (m) i€l,a

i,a

his g-character is  []
iel,aeCr

Corollary 2.5. (Frenkel, Reshetikhin [5]) The ring Rep(Uy(8)) is commutative and isomorphic to
Z[Xi,a]iEI,ae(C* -
Proposition 2.6. (Frenkel, Mukhin [6]) Fori € I,a € C*, we have X;, € Z[Y:

J,aql]jeI,lzo-
In particular for a € C* we have an injective ring homomorphism:
Xg : Repa = Z[X; agilicriez — Vo = Z[Yiiqz]iel,lel
For a,b € C* denote oy 4 : Rep, = Repy and By : Vo — Vb the canonical ring homomorphism.
Lemma 2.7. We have a commutative diagram:
Rep, X, Yo

Qp,a ~l/ ~L ﬂb,a

Xb
Repy — W

This result is a consequence of theorem 4.2 (or see [5], [6]). In particular it suffices to study x}. In the
following denote Rep = Rep1, X;; = X; 1, YV = V1 and x, = Xé :Rep — ).

3. TWISTED POLYNOMIAL ALGEBRAS RELATED TO QUANTUM AFFINE ALGEBRAS

The aim of this section is to define the ¢t-deformed algebra ); and to describe its structure (theorem
3.11). We define the Heisenberg algebra #, the subalgebra Y, C H][[h]] and eventually }; as a quotient
of YV,,.

3.1. Heisenberg algebras related to quantum affine algebras.

3.1.1. The Heisenberg algebra H.

Definition 3.1. H is the C-algebra defined by generators a;lm] (i € I,m € Z — {0}), central elements
¢r (r > 0) and relations (i,j € I,m,r € Z — {0}):

[ai[m], a;[r]] = Om,—r(¢™ — ¢~ ™) Bi,j(¢™)Cim|

This definition is motivated by the structure of U,(§): in H the ¢, are algebraically independent, but we

have a surjective homomorphism from H to U, (h) such that a;[m] = (¢ — ¢~*)him and ¢, >

c"—c
T

3.1.2. Properties of H. For j € I, m € Z we set:
yilm] = Ci;j(q™)ailm] € H
iel
Lemma 3.2. We have the Lie brackets in H (i,j € I,m,r € Z):

mr; —rim

[ai[m], yj[T]] =(q —q )Jm,—r5i,jc\m|

[yilm], y;[r]] = 6m,—rC;i(a™) (@™ — ¢ ™" )C|m
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Proof: 'We compute in H:

[ailm], y;[r]] = [ailm], Y Cr,5(a")axlr]] = m,—rCimY_Crj(@™™)rilem Cie (¢™) (@™ —a™™)
kel kel

= 8;,j0m,—r(@™" — ¢ " )| m

[yz[m Yj [T] ch i ak[m Y; [T]] = 6m,—rCJ z(qm)(qmrj - q—mrj )C\m|

Let 74+ and 7_ be the C-algebra endomorphisms of # such that (i € I, m > 0, r < 0):
m(@m)) = aifm] , w4 (@fr]) = 0, 74 (em) = 0
m—(a;[m]) =0, n_(a;[r]) = ai[r] , 7—(cm) =0

They are well-defined because the relations are preserved. We set Ht = Im(r4) C Hand H~ = Im(n_) C
H.

Note that HT (resp. H™) is the subalgebra of H generated by the a;[m], i € I,m > 0 (resp. m < 0). So
H+ and H~ are commutative algebras, and:

'H+ ~H ~ C[ai [m]]ieI,m>0
We say that m € H is a H-monomial if it is a product of the generators a;[m], ¢,..

Lemma 3.3. There is a unique C-linear endomorphism :: of H such that for all H-monomials m we
have:

:m = 7wy (m)m_(m)
In particular there is a vector space triangular decomposition H ~ Ht ® Cle,]rs0 @ H™.

Proof: The H-monomials span the C-vector space #H, so the map is unique. But there are non trivial
linear combinations between them because of the relations of H: it suffices to show that for mi, mo
‘H-monomials the definition of :: is compatible with the relations (i,j € I, I,k € Z — {0}):

mya;[k)aj[lima — mya;[lla;[klma = &, _1(¢* — ¢7%) By ;(¢*)macipymo
As HT and H~ are commutative, we have:
w4 (maa;lklag[llmo)m— (miai[kla;[llme) = 74 (maa;[l]ai[k]lme)m— (m1a;[l]a;[k]mo)

and we can conclude because m (micjymsa) = T_(maicjpmz) = 0. O
3.2. The deformed algebra },,.

3.2.1. Construction of ). Consider the C-algebra #Hy = H][[h]]. The application exp is well-defined on
the subalgebra hH:
exp: hHp — Hp

Forl € Z, i € I, introduce /L,l,f’i,l € Hp, such that:
A; g = exp( Z h™a;[m)q'™)exp( Z h™a;[—m]g™"™)

m>0 m>0
Y1 = exp th q'™)exp thyl m]g~'™)
m>0 m>0
Note that Ai,l and f’i,l are invertible in #H} and that:
Ai_’ll = exp(— thaz[ ™exp(— th i[m]g'™)
m>0 m>0

}7;.,_11 =exp(—2hmy,~[—m]q Imyexp(— th [m]g'™)

m>0 m>0
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Recall the definition 4 C Q(z) of section 2.1. For R € i, introduce tg € Hp:
tr = exp( Z R*™R(¢™)cm)
m>0

Definition 3.4. Y, is the Z-subalgebra of Hy, generated by the Y4 Azil,tR (iel,leZ,Rel).

1,0

In this section we give properties of ), and subalgebras of },, which will be useful in section 3.3.

3.2.2. Relations in Y,,.
Lemma 3.5. We have the following relations in Y, (i,j €I 1,k € Z):

(1) Ai,lY-,kAZIIYkaI = tai’j(z—ri_Zri)(_z(l—k)_i_z(k—l))
- Lo

(2) YiaVin¥i 'Yk = te, oy (omi —omri) (== 42 0-0)

(3) Ai,l;lj,kz‘i llfl]i tBi’j(z)(zfl_z)(_z(l—k)_;'_z(k—l))

Proof: For A, B € hH, such that [A, B] € hClc,]r>0, we have:
exp(A)exp(B) = exp(B)exp(A)exp([4, B])
So we can compute (see lemma 3.2):
A Ay
= exp( X hra ilmlg'™)(exp( 3> h™ai[—m]g~"™)exp( 3° h™a;[m]g"™))exp( 3 h™a;[-m]g~*™)

m>0 m>0 m>0
= exp( E hszl,]( ™) (@™ —q™)q m k= l)cm)

eXp(mgohm ai[m]q'"™)exp( Z h™a;[m)q*™ )exp( Z h™a;[—m]q~ )exp(mgohmaj[—m]q_km)
=exp( Y. h*™B; (g )(q""—q’")( m(i= ’“)+qm(’“ D)em)Ajrdig
m>0
AyYik

= exp( gghmai[m]qlm)(exp( gohmai[—m]q_’m)exp( E;Ohmyj[m]qkm))exp( > hmy;[—m]g=*m)

m>0
— exp( E h2m(5i,j(q_mn _ qmri)qm(k—l)cm)exp( Z hmai[m]qml)

e X Wy fmla™ e 5 Wmaif-mlgexp( 3 7 -mla )
= exp(mgohszsi,j (g™ — i) (—gm R 4 gDy )Y R Ay
ViiVik
= exp(mgohmyi [m]qm’)(exp(mgohmyi[—m]q‘m’)eXp(mgohmyj [m]qm’“))eXp(m%)Ohmyj[—m]q‘m’“)
= eXp(mZ;0h2mqm(’“")C‘- (g™ (g™ — q‘m”)cm)exp(mgohmyi[m]qml)
exp(mZ;Ohmyj[ ]qm’“)exp(mgohmaz[ m]g~"")exp( Z h™y;[—mlg=™*)
=exp(m2>0h2m01,z( ™) (g™ — g~ ) (—g™(- ’“)Jrq’"(’c D)em)YikYiu

O

3.2.3. Commutative subalgebras of Hp,. The C-algebra endomorphisms 7, 7_ of H are naturally extended
to C-algebra endomorphisms of Hy. As ), C Hp, we have by restriction the Z-algebra morphisms

T+ :yu —)Hh.

Introduce Y = w4 (V) C HT[[A]]. In this section 3.2.3 we study Y. In particular we will see in proposition

3.8 that the notation ) is consistent with the notation of section 2.5.
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For i € I,l € 7Z, denote:

Y =mp (V) = exp(+ ) h™yifmlg"™)
m>0

Aii,l =7y (Alil) = exp(+ Z h™a;[m]q'™)
m>0
Lemma 3.6. Fori € I,l € Z, we have:
Aig =Yig—r,Yiggr( H Y]_ll)( H YJ_z+1YJ_ll ( H Y] l+2Y 'Y, Y- L)
j/Cj,i:—l j/cj,i:_ j/C.’I i=

In particular Y is generated by the Yﬁ (ielleZ).

Proof:

We have a;[m] = 3 C;i(¢™)y;[m], and:

jeI
7y (Aig) = exp( Z h™a;[m] Hexp Z h™C;.i(g™)y,[m]g"™)
m>0 jer m>0

As C;i(q) = q" + g~ ", we have:

exp( D h™Cii(g™)yilmlg™) = exp( D> h™yi[mlg "™ )exp( Y B yi[m]gTI™) = Vi Yigg,

m>0 m>0 m>0

If Cj; <0, we have C;;(q) = — > q"* and:

k:CJ' i+1 CJ' i+3...—C]')1'—1
exp(— Y _ h™Cji(q™)y;[mlg'™) = 11 exp(— Y _ h™y;[m]q ™)
m>0 k=C; :i+1,C; i+3...—Cj ;-1 m>0

As Y, is generated by the V&, AX

4,07 “7,00

tr we get the last point. O
Note that the formula of lemma 3.6 already appeared in [5].
We need a general technical lemma to describe ):
Lemma 3.7. Let J = {1,...,r} and let A be the polynomial commutative algebra
A =C\jmljesm>0. For R=(Ry,...,R;) € U7, consider:
Ar=eap( Y h™R;(@™)Ajm) € A[[H]
jeIm>0

Then the (Ar)resr are C-linearly independent. In particular the Aj; = N . 010,00 (1 €J, 1 EZL)
are C-algebraically independent.

Proof: Suppose we have a linear combination (ug € C, only a finite number of ug # 0):
Z prAR =0
Reslr
The coefficients of A% in Ag are of the form Rj, (¢")%* R, (¢'2)22...Rjy (¢! )EN A, AL2 AN, where

J1,l1 J2 la"" NN

LWli+..+IlyLy=L.Sofor N>0,j1,...i8 € J,l1,...,Iy >0, Ly, ..., Ly > 0 we have:
> urRi (") Ry (¢2) "Ry (¢)" = 0

Rer
If we fix Lo, ..., Ly, we have for all Ly =1 > 0:

Yo Y rRa(@) Ry (@) =0
a1€C  Reu”/R; (¢'1)=a1
We get a Van der Monde system which is invertible, so for all oy € C:
YRR Ry (@) =0

Reid"/R;, (¢1)=0n
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By induction we get for v/ < N and all ay,...,a € C:

> prR;, (g ) Ry (¢) Y =0
ReY™ /R, (¢1)=01,....,R; , (¢'7' )=

And so for ' = N:

Z pr =0

Rei" /R, (¢"1)=0n,...,Rj (¢'N)=an

Let be S > 0 such that for all pgr,pr # 0, j € J we have R; — R, = 0 or R; — R} has at most S — 1
roots. We set N = Sr and ((j1,l),---, (4s,ls)) = ((1,1),(1,2),...,(1,5),(2,1),...,(2,5),(3,1), ..., (1,.5))-
We get for all ;; € C (j € J,1 <1< S):

Z pr =0

Redr /VjeJ1<I<S,R;(gh)=a;,1
It suffices to show that there is at most one term is this sum. But consider P, € il such that for all
1<1< 8, P(¢") = P'(¢"). As q is not a root of unity the ¢! are different and P — P’ has S roots, so is 0.

. . . u; . .
For the last assertion, we can write a monomial ] Aj 7' =As 20, S,z In particular there is

jegiez lez lez
no trivial linear combination between those monomials. O

It follows from lemma 3.6 and lemma 3.7:

Proposition 3.8. TheY;; € YV are Z-algebraically independent and generate the Z-algebra Y. In partic-
ular, ) is the commutative polynomial algebra Z[)/;:S]iej’lez.

The Ai_,l1 € Y are Z-algebraically independent. In particular the subalgebra of Y generated by the Azll 18
the commutative polynomial algebra Z[A; Nicr ez

3.2.4. Generators of V,,. The C-linear endomorphism :: of 7 is naturally extended to a C-linear endo-
morphism of Hy. As YV, C Hp, we have by restriction a Z-linear morphism :: from ), to Hp.

We say that m € ), is a Y, -monomial if it is a product of generators /Ifl, Yﬁ,tlg.

N
In the following, for a product of non commuting terms, denote [[ U, = UyUs...Us.
s=1..S

Lemma 3.9. The algebra ), is generated by the f’ﬁ,tR (tel,leZ,Re ).

Proof: Let be i € I, 1 € Z. It follows from proposition 3.8 that 7y (A;;) is of the form 7y (4;;) =

11 Yﬁl and that : m :=: [] Hquzl :. So it suffices to show that for m a ),-monomial, there is a

)

i€l lez leZiel
— o~
unique R,, € i such that m =tg_, : m:. Let us write m =tg [] Us where U; € {A?’:l,yzll:}ieI,leZ are

s=1..5
generators. Then:

im o= ( H 7+ (Us))( H 7 (Us))

s=1..8 s=1..5

And we can conclude because it follows from the proof of lemma 3.5 that for 1 < s,s’ < S, there is
Rs,s € Y such that 7y (Us)m—(Uy) =tg, , 71— (Us )74 (Us)- O

In particular it follows from this proof that : Y, :C V.

3.3. The deformed algebra ).
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3.3.1. Construction of J;. Denote by Z((2~1)) the ring of series of the form P = Y P,z" where Rp € Z
r<Rp

and the coefficients P, € Z. Recall the definition i of section 2.1. We have an embedding 4 C Z((271))
by expanding ﬁ in Z[[271]] for Q(2) € Z[z] such that Q(0) = 1. So we can introduce maps:

il Z,P= Y Po PR
k<Rp
Note that we could have consider the expansion in Z((z)) and that the maps 7, are not independent of
our choice.

Definition 3.10. We define YV; (resp. Hi) as the algebra quotient of Y, (resp. Hp) by relations:
tr =tg zf7r0(R) = 7T0(RI)

We keep the notations f’ﬁ, flfl for their image in );. Denote by t the image of t; = exp( > h®™cy,) in
s s m>0

YVi. As mg is additive, the image of tg in ), is t™ (F). In particular Y is generated by the Yﬁ, A?:l, t£.

As the defining relations of H; involve only the ¢; and 74 (¢;) = 77— (¢;) = 0, the algebra endomorphisms

7y, m_ of Hy are well-defined. So we can define H;",H; ,V;F,); in the same way as in section 3.2.3 and

:: a Clinear endomorphism of H; as in section 3.2.4. The Z[t*]-subalgebra J; C H; verifies : ); :C ),

(proof of lemma 3.9). We have ;" ~ ).

We say that m € ); (resp. m € ) is a )Y;-monomial (resp. a Y-monomial) if it is a product of the
generators Y5, t+ (resp. YiT,).

i,m?

3.3.2. Structure of V;. The following theorem gives the structure of };:
Theorem 3.11. The algebra Y, is defined by generators f’ﬁ (i € I,l € 7), central elements t* and
relations (i,j € I, k,l € Z):
Vi Y = t7BLIRY Y
where 7y : (I X Z)? — Z is given by (recall the maps 7, of section 3.3.1):

'7(70 laj; k) = Z”rr(éj,i(z))(_él—k,—rj—r - 5l—k,r—7-j + 5l—k,rj—r + 5l—k,rj+r)
reZ

Proof: As the image of tg in ) is t™(®) we can deduce the relations from lemma 3.5. For example
formula 2 (p. 8) gives:

Yi lffj k?._ll}”,—j—kl — two((é’j,,—(z)(zrj N GOSN
where:
Wo(Cj’i(z)(sz - Z_Tj)(—z(l_k) + Z(k_l)))

= Zﬂr(éj,i(z))(derrrJrk—l,o + 0 rjri—k,0 = Orj4ri—k,0 — O—r;4rik—1,0) = Y(i,1,5, k)
It follows from lemma 3.6 that ); is generated by the ﬁil, tE.
It follows from lemma 3.7 that the tg € YV, (R € i) are Z-linearly independent. So the Z-algebra

Z[trrey is defined by generators (tgr)rey and relations tgy g = tgrtr for R, R' € I. In particular the
image of Z[tg]rey in Yy is Z[ti].

Let A be the classes of V;-monomials modulo t%. So we have:
> ZtHm =Y,
meEA

We prove the sum is direct: suppose we have a linear combination Y A, (t)m = 0 where \,,(t) € Z[tT].
meA

We saw in proposition 3.8 that Y ~ Z[Yi]iel,leZ- So A (1) = 0 and Ay, (t) = (¢ — l)A%)(t) where
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AD(8) € Z[tE]. Tn particular 3> A (£)®) (£)m = 0 and we get by induction A, () € (t — 1)TZ[tE] for all
meA

r > 0. This is possible if and only if all A, () = 0. O

In the same way using the last assertion of proposition 3.8, we have:

Proposition 3.12. The sub Z[t*]-algebra of V; generated by the fii_,ll is defined by generators fi;ll,ti
(t € I,l € Z) and relations:
Az‘_,ll AJ—,; — to‘(z’l’J’k)Aj_’; Ai_,ll
where o : (I X 7)?> — 7. is given by:
a(i,l,i, k) = 2(—=81—k,2r; + O1—k,~2r;)
a(i,l,j, k) =2 Z (_6l—k,—"‘i+’f’ + 5l—kﬂ‘i+7') (ifi#3j)
r:C,-,]-+1,Ci,j+3,...,—C,-,j—1
Moreover we have the following relations in Y;:
Ai,l};},k — tﬂ(l’l,]’k)?],kfiz’l
where 3 : (I x Z)? — 7Z is given by:
B(i,1, 5, k) = 204, 5(=61—k,r; + 01—k, —r;)

3.4. Notations and properties related to monomials. In this section we study some technical
properties of the Y-monomials and the );-monomials which will be used in the following.

3.4.1. Basis. Denote by A the set of Y-monomials. It is a Z-basis of )V (proposition 3.8). Let us define
an analog Z[t:':]—basis of V;: denote A’ the set of );-monomials of the form m =: m :. It follows from

theorem 3.11 that:
Ve = @ Z[tE)m

meA'
The map 7 : A" — A defined by w(m) = 74 (m) is a bijection. In the following we identify A and A’. In
particular we have an embedding ) C ); and an isomorphism of Z[t*]-modules Y ®z Z[t*] ~ );. Note
that it depends on the choice of the Z[t*]-basis of V;.

We say that x1 € ); has the same monomials as x2 € Y if in the decompositions x1 = Y. An(t)m,

meA
X2 = Y pmm we have Ap,(t) =0 py = 0.
meA
3.4.2. The notation u;;. For m a Y-monomial we set u;;(m) € Z such that m = T[] l.zfl"”(m) and
iellez
u;(m) = > u;;(m). For m a Y;-monomial, we set u;;(m) = u;;(74(m)) and u;(m) = u;(74(m)). Note
leZ

that u;; is invariant by multiplication by ¢ and compatible with the identification of A and A'.

Note that section 3.3.2 implies that for i € I,1 € Z and m a );-monomial we have:

Az’,lm — t_2ui,l—ri (m)+2u;i 140, (m)mfzii,l

Denote by B; C A the set of i-dominant Y-monomials, that is to say m € B; if VI € Z, u;;(m) > 0.
For J C I denote By = () B; the set of J-dominant }-monomials. In particular, B = By is the set of
ieJd

dominant )Y-monomials.

We recall we can define a partial ordering on A by putting m < m' if there is a Y-monomial M which
is a product of Aii,l (1 € 1,1 € Z) such that m = Mm' (see for example [8]). A maximal (resp. lowest,
higher...) weight Y-monomial is a maximal (resp. minimal, higher...) element of A for this ordering. We
deduce from 7 a partial ordering on the };-monomials.

Following [6], a J-monomial m is said to be right negative if the factors Yj; appearing in m, for which [
is maximal, have negative powers. A product of right negative Y-monomials is right negative. It follows
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from lemma 3.6 that the Ai—,l1 are right negative. A );-monomial is said to be right negative if 7 (m) is
right negative.

3.4.3. Some technical properties.

Lemma 3.13. Let (i1,11),..., (ix,lx) be in (I x Z)K. For U > 0, the set of the m = [] A;:;”:’l’“(m)
k=1...K

(i, 1, (m) > 0) such that min wu; ,(m) > =U is finite.
i€l kEZ

Proof: Suppose it is not the case: let be (mp),>0 such that I}l}cl’l JUisk (mp) > —=U but
= i€l ke
> i, (my) —  +o0. So there is at least one k such that v;, i, (mp) — +00. Denote by R the set
k=1..K p—roo p—roo
of such k. Among those k € R, such that [}, is maximal suppose that r;, is maximal (recall the definition

of r; in section 2.1). In particular, we have u;, i, +r, (Mp) = —viy 1,,(my) + f(p) where f(p) depends only
of the v;,, 1, (myp), k' ¢ R. In particular, f(p) is bounded and wi, 1, +r;, (Mp) — —00. O
p— 0o

Lemma 3.14. For M € B, K > 0 the set of Y-monomials {MA;*, ..A7" /R>0,l1,..,lg > K}NB

i1,01° ir,lR

is finite.

Proof: Let us write M =Y}, 1,...Yi, 1, such that l; = n}ianT, lr = mlaleT and consider m in the set. It

r=1... r=1...
is of the form m = MM’ where M' = T[] A;"" (viy >0). Let L = max{l € Z/3i € I,u;;(M') < 0}.
i€l i>K
M’ is right negative so for all i € I, I > L = v;; = 0. But m is dominant, so L < lg. In particular
M' = [T A4, It suffices to prove that the v;;(m,) are bounded under the condition m dominant.
i€l K<I<lp
This follows from lemma 3.13. O

3.5. Presentations of deformed algebras. Our construction of ); using #Hj (section 3.3) is a “con-
crete’ presentation of the deformed structure. Let us look at another approach: in this section we define
two bicharacters A/, NV; related to basis of );. All the information of the multiplication of ) is contained
is those bicharacters because we can construct a deformed * multiplication on the “abstract” Z[t*]-module
Y ®z Z[t*] by putting for m;, ms € A Y-monomials:

— tN(ml,mg)—N(mg,ml)

mi * Mo mo *x M1

or
my *ms = tNt(mlym2)—Nt(m2aml)m2 *my

Those presentations appeared earlier in the literature [12], [15] for the simply laced case. In particular
this section identifies our approach with those articles and gives an algebraic motivation of the deformed
structures of [12], [15] related to the structure of U, (g).

3.5.1. The bicharacter N. It follows from the proof of lemma 3.9 that for m a );-monomial, there is
N(m) € Z such that m = tV(m) .y .. For my, ms Vi-monomials we define N(mi,ms) = N(mimsz) —
N(my) — N(mz). We have N(Y;,;) = N(A;;) = 0. Note that for a, § € Z we have:

N(t%m) = a+ N(m) , N(tmy, t°my) = N(mq, ms)

In particular the map N : A x A — Z is well-defined and independent of the choice of a representant in
-1
i (A).

Lemma 3.15. For my,my YVi-monomials, we have in Hy:

m_(ma)my (ma) = tVmm) e (my)m_ (my)
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Proof: We have:
my =tV (my)m_(my) , my = VD1 (mo)m_ (my)

and so:
mymy = tN M) (my)rg (me)m- (ma) - (my) = NN (g e (ma) g (ma) - (mo)
O
Lemma 3.16. The map N : A x A — 7Z is a bicharacter, that is to say for my,ma,ms € A, we have:
N(mima,m3) = N(mq1,m3) + N(mz2,m3) and N(m1,mam3) = N (m1,ms) + N (m1,m3)
Moreover for myq, ...,my Yi-monomials, we have:
N(mimsy..mg) = N(mq) + N(m2) + ... + N(my) + Z N(mi,m;)
1<i<j<k
Proof: For the first point it follows from lemma 3.15:
T_(mams)my(mg) = tNmm2me) o mar_ (mymy) = N2 1 (my)) 7y (ms)m— (ma)
= ¢Nmima)FN(mama) (g )r_ (myms)
For the second point we have first:
N(mims) = N(m1) + N(mz) + N (m1,ms)
and by induction:
N(mima..my) = N(m1) + N(ma..my) + N (m1, ma...my)
= N(m1) + N(ma) + .. + N(mg) + > N(mi,m;) + N(my,m) + ... + N (mq,my)
1<i<j<k
O

3.5.2. The bicharacter Ny. For m a );-monomial and [ € Z, denote m;(m) = Hf}uf’l(m). It is well
jer 7
defined because for i,j € I and I € Z we have f’i,l?j,l = 17]-,1}7},1 (theorem 3.11). Moreover for mq, msy

Y;-monomials we have m;(myms) = m(my)m(ms) = H)j;ul"”(ml)-‘_u"’l(m”.
ielr

N
For m a Y;-monomial denote 7 = [] m;(m), and A; the set of Yi-monomials of the form . From theorem
IEZ.

3.11 there is a unique N;¢(m) € Z such that m = V(™) and:

Vi = @ z[tm

meA;

For my,my Y-monomials we define N;(mi,ma) = Ney(mima) — Ny(mq) — Ny(ma). We have N (Y;;) = 0.
Note that for a, 3 € Z we have:

Ne(t*m) = o+ Ny(m) , Ny(t*my, t7ms) = Ny(my,mo)
In particular the map N; : A x A — Z is well-defined and independent of the choice of A.

Lemma 3.17. For my,my V;-monomials, we have:
Ni(mi,ma) =Y (N (m(m1), mr (ms)) — N (s (ms), m(ma)))
>
In particular, Ny is a bicharacter and for mq,...,my YVi-monomials, we have:

Ny(mima..mg) = Ny(ma) + Ny(ma) + ..+ Ne(mg) + Y Ny(mi,m;)
1<i<j<k
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Proof: For the first point, it follows from the definition that (mfmg) = tNe(mima)yy 30 But:

-
(m1m2) = Hﬂl(m1)ﬂ'l(m2 MMy = Hﬂ'l m1 Hﬂ'l mz
leZ I€Z A

So we have to commute 7;(m1) and 7 (mg) for I > I'. The last assertion is proved as in lemma 3.16. O

3.5.3. Presentation related to the basis Ay and identification with [12]. We suppose we are in the ADE-
case.

’ !
_. Yi,l —011 . . Vi A7V, y o_. VYl
Let be my =[] Yll A; nmy o= [ YA € Vo Weset mi = [ Y7 : and
icllez iellez icl ez
r
Y _. y Vil .
my =: Yoo
iellez

Proposition 3.18. We have N;(mi,m2) = Ni(m¥,m%) + 2d(m1, ms), where:

d(my,mp) = E Vi1 g + Yi 41V = E Wi 4105+ Vigr1Yig
i€l lEZ i€l lEZ

— 0y — Ay, . . a0 ! P !/
where wi) =Yig —vig—1 — Vg1 + Y v endu; =y — v g — v+ Y vy
3/Ci==1 3/Cii=-1

Proof:
First notice that we have (i € I,l € Z):
Ni(Yig, Ay P)=2 aM(Ai_ll—}—l’m,l) =2, Ni(A zl+17Az_l 1) =2
Ni( zl+17Yzz D=2, Ny(A ”+1,Yé,z)=2
For example N (Y; l,Az_l 1) =N( i,laAi_,l—1) —N(Ai_’l_l,Yi,l) = 2 because ﬁ,lfii_’ll_l = tzfii_’ll_lffi,l.
We have N;(mi,ms) = A+ B + C + D where:
A = Ny(m{,mj)

1
B= Y oy MY, A7) = %y oMY AL ) =2 %yl
ijellLkeZ ieliez ieTiez
c= > Ui,ly},k/\/'t(A,l,Y k)= > vigpypNi(4 ”+17Y 1)=2 ) vy,
el keZ iellez iellez
D= 3 v NAT, AT
ijellkeZ
1 -1 -1
= X Ui,l+1”§,l—1-/v‘t( zl+17Azl 1)+Ull”zl-/vt( zl+17Yi,l—1)+ > ”i,l+1U;,lM(Ai,l+17Yiyl)
ieTlez Cj.i=—1,€Z
=-2 > (Wigpvi_g togvie) +2 0 3 vy,
iel,lez Cji=—1,l€Z

In particular, we have:

! ! ! ! !
B+C+D=2 E (Yi,avi 11 + Vig+1Yig — Vil+1Vig_q — ViaViy) + 2 E Vil 415
i€l lEZ C’j,i:—l,leZ
O

The bicharacter d was introduced for the ADE-case by Nakajima in [12] motivated by geometry. It
particular this proposition 3.18 gives a new motivation for this deformed structure.

3.5.4. Presentation related to the basis A and identification with [15].

Lemma 3.19. For m;,ms € A, we have:

Nmi,mo) = Y wia(ma)ujr(ms)((Chi(2)rsi—i — (Cji(2)) —ry i)

i,j€I,l,kEZ
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Proof: First we can compute in ),:

Yfi,l?',k =eXp(Zh2m[yi[—m]ayj[ lla mk= l)) : zlek —tc (2)zk=l(z7Ti =) ¢ Yi,lY',k

m>0
and as N(Y;;) = N(Yj ) = 0 we have N'(Y;1,Yjk) = (Cj.i(2))r, 41— — (C,i(2)) =r,+1—k- O
In sly-case we have C(z) = z+ 2z~ and C(2) = -5 = Y (—1)"2~*"~%. So:

r>0

where:
s=0ifl—k=1+2r,re?
s=0ifl—k=2r,r>0
s=2(-1)tifl—k=2r,r<0
s=-1ifl=k

It is analogous to the multiplication introduced for the ADE-case by Varagnolo-Vasserot in [15]: we

suppose we are in the ADE-case, denote P = @PZw; (resp. Q = Za;) the weight-lattice (resp.
iel il
root-lattice) and:

“: P® Z[z%] — P ® Z[z%] is defined by A® P(z) = A® P(z71).
G):QRZ((z7Y)) x PRZ((z7Y) — Z((271)) is the Z((z7!))-bilinear form defined by (a;,w;) = &;;.
Q' PRZ[Y = Q®Z((271)) is defined by Q7 (w;) = ZCz k(2)ak

The map € : P ® Z[z*] x P ® Z[z*] — Z is defined by:
exu=m((z7127H(N)|w)
The multiplication of [15] is defined by:
YiiYjm = 25ty 2ema ey,
So we can compute:

Eaturzmuy = To((271 Q71 (2 wi)[2™w;)) = 1o (Y (71! Cie (=) ak[2"wy))

kel

=mo (2™ 7171 Ci,5(2)) = (Ci(2))it1-m
= (éi,j(z))l—l—m and:

! j— . .
Clwi,zmw; Ezlw,-,zmwj - N(Y;’l, Yhm)

If we set €} , = mo((227"(A)|p)) then we have €/

ztw; AT

4. DEFORMED SCREENING OPERATORS
Motivated by the screening currents of [4] we give in this section a “concrete” approach to deformations

of screening operators. In particular the t-analogues of screening operators defined in [8] will appear as
commutators in . Let us begin with some background about classic screening operators.

4.1. Reminder: classic screening operators ([5],[6]).
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4.1.1. Classic screening operators and symmetry property of g-characters. Recall the definition of
7r+(Afl) = Afl € Y and of u;; : A — Z in section 3.

Definition 4.1. The i*"-screening operator is the Z-linear map defined by:

DYV.Si
Si: Y=YV = ez
PV (Sigror; — Aipgr; -Siyt)
ez
Vm € A, Si(m) = ui(m)
ez

Note that the i*!-screening operator can also be defined as the derivation such that:
S( )—0 Viel,leZ, S( Jl)_é,JY”S”
Theorem 4.2. (Frenkel, Reshetikhin, Mukhin [5],[6]) The image of xq : Z[X;licricz — Y is:

Im(x,) ﬂKer
i€l

It is analogous to the classical symmetry property of x: Im(x) = Z[yf]%,.

4.1.2. Structure of the kernel of S;. Let &; = Ker(S;). It is a Z-subalgebra of ).

Theorem 4.3. (Frenkel Reshetikhin, Mukhin [5],[6]) The Z-subalgebra K; of Y is generated by the
zl(1+Azl+r )a Jl (.7 767’ le Z)

For m € B;, we denote:

Ey(m) = m[[(1+ Aipir, ™)™ € &
I€Z
In particular:

Corollary 4.4. The Z-module &; is freely generated by the E;(m) (m € B;):
Ri = P ZEi(m) ~ 7.5

meB;

4.1.3. Ezamples in the slo-case. We suppose in this section that we are in the sls-case. For m € B,
let L(m) = x4(Vin) be the g-character of the U, (sly)-irreducible representation of highest weight m. In
particular L(m) € R and R = @ ZL(m).
meB

In [5] an explicit formula for L(m) is given: a ¢ C Z is called a 2-segment if ¢ is of the form o =
{l,l +2,...,1 + 2k}. Two 2-segment are said to be in special position if their union is a 2-segment that
properly contains each of them. All finite subset of Z with multiplicity (I,u;)icz (w; > 0) can be broken
in a unique way into a union of 2-segments which are not in pairwise special position.

For m € B we decompose m = [] [] ¥; € B where the (0;); is the decomposition of the (I, u;(m));ez.

Jjleo;
=T1=(I1

i lEO'J'
So it suffices to give the formula for a 2-segments:

L(YYi2Yipa--Yigor) = ViVigoVigs . Yigor + ViVigo . Yipo—1)Y) ,+2(k+1)

We have:

— 1xr— —
+Y1Yi42.. Yiro-2) Y] l+2k l+2(k+1) t . +Y2+2Y;+2 Yl+2(k+1)
We say that m is irregular if there are j; # ja such that

0j, Coj, and 0j, +2 C 0y,
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Lemma 4.5. (Frenkel, Reshetikhin [5]) There is a dominant }-monomial other than m in L(m) if
and only if m is irreqular.

4.1.4. Complements: another basis of K;. Let us go back to the general case. Let Vg, = Z[Yli]lez the
ring Y for the sls-case. Let i be in I and for 0 < k <r; — 1, let wg : A — Vg, be the map defined by:

i »; (M)
= T
lez
and v : Z[(Yi-1Yi41) 'liez — V be the ring homomorphism such that vy ((Yi—1Yi41)™') = A ¢,

For m € B;, wr(m) is dominant in ), and so we can define L(wg(m)) (see section 4.1.3). We have
L(wg(m))wk(m)™t € Z[(Yi—1Yi41)  ]iez. We introduce:

m)=m [[ w(Lwrm))or(m)™) € &

0<k<r;—1

In analogy with the corollary 4.4 the Z-module &; is freely generated by the L;(m) (m € B;):
fi= P ZLi(m) ~ 25

meEB;

4.2. Screening currents. Following [4], for i € I,1 € Z, introduce S;; € 'Hh'

a;[m a
S” = exp th l[ ¢'™)exp th il=m q_lm)
m>0 qi m>0 q; - z
Lemma 4.6. We have the following relations in Hp:
Ai,lgi,l—n- = t_z—2m_1§i,l+r,-
gz',lfij,k = tCi,J.(z)(z(k—l)_'_z(l—k))fij’kgi,l
SiaYjk = ts, ;(200=0420-10) Y}k Sig
Proof:
As for lemma 3.5 we compute in Hp:
/L',ls'z',l—n
= exp( 32 hmailmlg™)(exp( 32 h™ail—mlg~™)exp( T W™ gt g )
m>0

m>0
- D)

mri _q™m7Ti

m>0
= exp( Y WAL i exp( Y h™a[mlgh™ + bt g
m>0 e o q
exp( 35 ™ G e ¢ 4 ATy mlg ™)
m>0
=t_.-2n_gexp( X hMai[m](1+ = )d ™ exp( X hmaim)(1 + =k )™
B m>0 m>0
= t—z—Z’“i—l‘S’i,l-H“i
S’z lfI] k
= exp( X b2 gim) (exp( 3 b =M g™ )exp( 3 h™ay[m]gh™))
m>0 m>0 m>0

exp( 2, h™ay il=mlg™*™)

— eXp( E h2m (gT™"i—g™"i)Ci (g™ ) (k—l)c )exp( Z pm a;[m] lm)

P g d

m>0 m>0

exp( ¥ hma;[mlgF™)exp( X hm ST g=tmyexp( 3 hmag[~mlg—tm)
m>0 m>0 m>0

— exp( Z thCi,j(qm)( m(k—1) —l—q(l_k)m)cm) j,kgz',l

m>0
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Finally:
gi,l?j,k
= exp( 3 h™ il gim) (exp( 3 A= g~ exp( ¥ Ay [mlgtm))
m>0 m>0 m>0

eXp(mX;Ohmyj [-m]g~*™)

—mr; _qmri)

= exp( ¥ B2 U= gk e Yexp( 30 b o gim)

m>0 m>0
exp( 3 h™y;[m]g™)exp( 3 h™ =g~ exp( 3 h™y;[—mlg~F™)
m>0 m>0 B B m>0
=exp( Y 8;,;h*™(q™*=V + gU=RIm)e, )Y S5 O
m>0

4.3. Deformed bimodules. In this section we define and study a t-analogue J; ; of the module ).

For i € I, let Y; ,, be the ), sub left-module of H; generated by the 5},1 (1 € Z). Tt follows from lemma,
4.6 that (S’i,l)_”gqi generate Y; ,, and that it is also a subbimodule of H;. Denote by Si,l € H; the
image of S;; € Hp in Hs.

Definition 4.7. Y is the sub left-module of H; generated by the S'M (lez)

In particular it is to say the image of ), in H;. It follows from lemma 4.6 that for [ € Z, we have in
Vi o }
AiSig—ri =t Sigars
It particular );; is generated by the (S’i,l)_ngkn.
It follows from lemma 4.6 that for | € Z, we have:
SiuTin = 90T, S ) St = .50
In particular ); ; a subbimodule of H;. Moreover:
S’i,l-Ai,k = ¢ 20—k 201k Ai,k-gi,l

5 5 -2 > O1—te,r _ _

S dju =t oo e T A 8 (i i )
Proposition 4.8. The V; left module V; ; is freely generated by (S’i,l)—mﬁl<n‘:

_ on,
Vit = @ VeSig = Vi"

—r; <I<r;

Proof: We saw that (gi’l)_risl<7-i generate ); . We prove they are );-linearly independent:
for (Ry, ..., Ry) € U™, introduce:

Yry,...r =exp( Y h"y;[mR;(q™)) € HY
m>0,j€l

It follows from lemma 3.7 that the (Yr)geyr are Z-linearly independent. Note that we have 74 (V;+) C
@D ZYrand that Y= @ ZYgr. Suppose we have a linear combination (A, € J;):

ReuUn ReZ[z%]
A—’I‘,' ~i,—7‘i + b + )\Ti—lgi,Ti—l = 0
Introduce pg,r € Z such that:
(M) = D mkrYR
ReZ[z%]n
and R;y = (R}, (2), ..., R} (2)) € U" such that 7y (Sig) = YR, ,- If we apply 7 to the linear combina-
tion, we get:

E bk, RYRYR,, =0
ReZ[zE]n,—r;i<k<ri—1
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and we have for all R' € :
Z KUk,R' —R; , = 0
—r;<k<r;—1/R'—R; j €Z[zE]|"
Suppose we have —r; < ky # ko < r;—1such that R'—R; x,, R'—Rix, € Z[2%]". So Ri, —Ri, € Z[zH]™.
But a;[m] = Y Cj,:(¢™)y;[m], so for j € I
jel

2k Zk2

Cii(z) ——— = (Rg,kl (2) - Rg,kQ (2)) € Z[z¥]

2l — z7T

In particular for j = i we have C; ;(2) ;ril__zz_kf (& z+zz‘:1 )Z(zk: =) ¢ Z[2%]. This is impossible because
|k1 — k2| < 2r;. So we have only one term in the sum and all g, = 0. So m(Ax) =0, and Ay € (t—1)%.

We have by induction for all m > 0, A € (t — 1)™);. It is possible if and only if Ay = 0. O

Denote by Y; the Y-bimodule 7y (Y ). It is consistent with the notations of section 4.1.
4.4. t-analogues of screening operators. We introduced t-analogues of screening operators in [8].
The picture of the last section enables us to define them from a new point of view.
For m a );-monomial, we have:
[Si,l; m] = S~'¢,lm — mgi,l = (t2u“(m) - 1)m5’,~,l = ui(m) (t - t_l)[ui,l(m)]tmgi,l

So for A € V; we have [S'i,l, Al € (2 — 1)V, and [S'i,l, A] # 0 only for a finite number of I € Z. So we can
define:

Definition 4.9. The it* t-screening operator is the map Sit : Ve — Vi such that (A € Y;):

1
Sit(A) = HZ[ il N € Vi

IEZ

In particular, S;; is Z[t*]-linear and a derivation. It is our map of [8].

For m a Y;-monomial, we have my (S;¢(m)) = 7y (t“iv’(m)_l[ui,l(m)]t)ﬂ_,_ (m.5~',-,l) = u; (m)my (mgi,l) and
the following commutative diagram:

N S Vit
T VN
y 2y,

4.5. Kernel of deformed screening operators.

4.5.1. Structure of the kernel. We proved in [8] a t-analogue of theorem 4.3:

Theorem 4.10. ([8]) The kernel of the it" t-screening operator S; ; is the Z[t*]-subalgebra of V; generated
by the Yzl(1+tA”+T ), Y Jl (G#i,l€L).

Proof: For the first inclusion we compute:
Sz (Y; l(]- + tA, Jd4r; )) = Iy, lSzl + t}/z lAl 47 ( t_2)5’i,l+2ri = ~i,l(gi,l - t_IAle_H-i S’i,l+2ri) =0
For the other inclusion we refer to [§]. O

Let &;; = Ker(S;;). It is a Z[t*]-subalgebra of );. In particular we have 7, (&;;) = &; (consequence of
theorem 4.3 and 4.10).

N
For m € B; introduce: (recall that [[U; means ..U_1UgUUs...):
I€Z
N
Eiy(m) = H((Yz (L4 tATL ) ,(m)Hyu] a(m)y
leZ J#i
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It is well defined because it follows from theorem 3.11 that for j # i,1 € Z, (Vi (1 + tAz I4r,)) and Yia
commute. For m € B;, the formula shows that the );-monomials of E;;(m) are the }Y-monomials of
E;(m) (with identification by 7). Such elements were used in [12] for the ADE case.

The theorem 4.10 allows us to describe £&;+:
Corollary 4.11. For all m € B;, we have E; t(m) € Rit. Moreover:

ﬁ’tt — @ Z Z[tzl:](Bz

meB;

Proof: First E;;(m) € R, as product of elements of & ;. We show easily that the E;;(m) are Z[t*]-
linearly independent by looking at a maximal };-monomial in a linear combination.

Let us prove that the E;;(m) are Z[t*]-generators of & ,: for a product x of the algebra-generators of
theorem 4.10, let us look at the highest weight J;-monomial m. Then F; ;(m) is this product up to the
order in the multiplication. But for p =1 or p > 3, Y;Y; s4pr; is the unique dominant V-monomial of
Ei(Yi1)Ei(Yii4pr; ), SO

Yi l(l + tAz J4r; ) 3,l+pr; (1 + tAz J4pritr; ) € t” Yi Jtpr (1 + tAz J4pritr; )Yz l(l + tAz J+r; )
And for p = 2:
Viu(U+ AN Wigar (0247 5, ) = Viggor, (1 2AD Y 0 ) Yan (14 A7) )

€ Z[tH] + t"Y;, (1 + tA7} It )Wiigor, (1+ tA7} Ltars)

4.5.2. Elements of R;+ with a unique i-dominant V;-monomial.

Proposition 4.12. For m € B;, there is a unique F;(m) € R;; such that m is the unique i-dominant
Yi-monomial of F;(m). Moreover :
Rit = @ Fit(m)

meB;

Proof: It follows from corollary 4.11 that an element of £;; has at least one i-dominant );-monomial.
In particular we have the uniqueness of F;(m).

For the existence, let us look at the sls-case. Let m be in B. It follows from the lemma 3.14 that
(MAY A7, JR > 0,0, ...lg > I(M)} N B is finite (where [((M) = min{l € Z/3i € I,us (M) # 0}).
We define on this set a total ordering compatible with the partial ordering: mp =m >mgr_1 > ... > my.
Let us prove by induction on [ the existence of F;(m;). The unique dominant )Y;-monomial of E;(mq)
is my so Fy(m;) = Ey(my). In general let A;(t),..., \i—1(t) € Z[t*] be the coefficient of the dominant
Yi-monomials my, ...,m;_1 in E¢(m;). We put:

Ft(ml) Et ml Z )\ Ft mr)

r=1...I—-1
Notice that this construction gives Fy(m) € mZ[A !, #*]cz.

For the general case, let ¢ be in I and m be in B;. Consider wg(m) as in section 4.1.4. The study
of the slp-case allows us to set Xe = wr(m )_1Ft(wk( )) € Z[A;Y,#*];. And using the Z[t*]-algebra
homomorphism vy : Z[A; Y, t*liez — Z[A;},t*ic1 ez defined by vy (47) = A;le , we set (the
terms of the product commute)

1,0

Fium)=m [ veelxn) € Rin
0<k<r;—1

For the last assertion, we have E; (m) = E /\l( )F;.+(my) where my,...,my, are the i-dominant Y-
I=

monomials of E; ;(m) with coefficients A; (t), ..., Az () € Z[t%]. O
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In the same way there is a unique Fj(m) € K; such that m is the unique i-dominant )-monomial of
F;(m). Moreover F;(m) = mi(F;(m)).

4.5.3. Ezamples in the sly-case. In this section we suppose that g = sl and we compute Fi(m) = F ;(m)
in some examples with the help of section 4.1.3.

Lemma 4.13. Let 0 = {l,1 + 2,...,1 + 2k} be a 2-segment and m, = ﬁﬁﬂ...}}l”k € B. Then we have
the formula:

Fi(mg) =mq(1+ tAl_-|-12k+1 + tzAl_-i-l(2k+1)Al_-i-l(2k—1)

If 01,09 are 2-segments not in special position, we have:

F (mal )Ft (mth) = tN(mvl o) ~N(mog ’mol)Ft (mffz )Ft (m01 )

k i— ~_ 1 —
+.tt Al+1(2k+1)Al+1(2k—1)"'AH'll)

If 1, ...,0r are 2-segments such that mg,...m,_ is reqular, we have:

Fiy(mgy-Mgr) = Fi(mg,)...Fe(mgy)

In particular if m € B verifies VI € Z,w(m) < 1 then it is of the form m = m,,...my, where the
o, are 2-segments such that max(c,) + 2 < min(o,+1). So the lemma 4.13 gives an explicit formula
Ft(m) = Ft(mdl)...Ft(m,,R).
Proof: First we need some relations in Y;; : we know that for [ € Z we have tS’l_l = fll_IS'H_l =
t25’l+1fil_1, sot718_; = §l+1f1l_1. So we get by induction that for r» > 0:

7" Sip1—2r = S ATV AT, AT,

As Ui,l+1(fil_lfil__lz---fil__lg(r_l)) = w41 (A]1) = —1, we get:

t_TS'H_l_QT = t_zz‘il_lx‘il__lz...fil__g(?ﬂ_l) gl+1

For ' > 0, by multiplying on the left by /iljrl%, A;:Q(T,_l)...ﬁl:_lw we get:
—r -1 j-1 i—1 & _—2i-1 F-1 -1 &
t TAl+2r’Al+2(r’—1)“‘Al-i-ZSH‘l—z" =t Al+2r’Al+2(r’—1)“‘Al—2(r—1)Sl+1

Ifweputr' =1+ R,r=R-R',l=L—1—-2R', weget for 0 < R' <R:
tRI142-14-1141;;---“12-11-1—2}2'51—21% = tR_ZAZ-lHAle---AZi1—2R§L—2R’
Now let be m = YpYs...V; and X € V; given by the formula in the lemma. Let us compute .S~'t(x):
Si(x) =m(So + S + ... + 1)
+tmAZ (So + S2 + ...+ Si_2 — t725)42)
+?mA AT (So + S+ oo+ S — 1728 — t725,4)
+...
+t'm AL A AT (28 + L — 728 — 72 8)4)
=m(So + S5+ ... + S)
+tm A7l (So + Sz + ... + Si—2) — mS,
+PmAL A (So + 8o + o+ Sis) — tmALL Si_y — mS)
+...
AL AT — 725 - mS,
=0

So x € K. But we see on the formula that m is the unique dominant monomial of x. So x = Fi(m).

-1 j—1
—-mtT AL

For the second point, we have two cases:
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if m,, m,, is regular, it follows from lemma 4.5 that L(m,,)L(m,,) = L(my,)L(m,,) has no dominant
monomial other than m,, my,. But our formula shows that F;(m,,) (resp. F;(m,,)) has the same
monomials than L(m,,) (resp. L(m,,)). So

Ft(mdl)Ft (mtfz) - tN(mol ’mUZ)_N(mQ,mUl)Ft (mﬂz)Ft (mdl)
has no dominant };-monomial because m,, m,, — t"v(m"l””"2)_"\[("“’2’m"l)mnmcr1 =0.

if my,my, is irregular, we have for example o;, C 0y, and oj, + 2 C 0j,. Let us write 0;, =
{li,li +2,...,,p1} and o9 = {l2,l2 + 2, ...,,p2}. So we have l> < I; and p; < ps — 2. Let m = myms be a
dominant Y-monomial of L(m,, m,,) = L(m,,)L(m,,) where m; (resp. ms) is a Y-monomial of L(m,,)
(resp. L(my,,)). If my is not m,,, we have Y, in my which can not be canceled by m;y. So m = mym,,.
Let us write m; = m(,lA;1Jr1 A;1+1 or- S0 We just have to prove:

A A pme, = me, AL AT
This follows from (I € Z):
Al_lyl—lyi—i-l = Y2—1Yl+1Al_1

For the last assertion it suffices to show that F;(m,,)...F;(my,) has no other dominant );-monomial than
Mgy ...Moy. But Fr(mg,)...Fi(msy) has the same monomials than L(mg,)...L(me,) = L(mg,..msp). As
Mg, -..Mep 18 regular we get the result. O

4.5.4. Technical complements. Let us go back to the general case. We give some technical results which
will be used in the following to compute F; ;(m) in some cases (see proposition 5.17 and section 8).

Lemma 4.14. Let i be in I, 1 € Z, M € A such that u,l(M) = 1 and u;i+2r, = 0. Then we have

N (M, A;H_T ) = —1. In particular = (MA;H_T )= tMAz ll_'_h

Proof: We can suppose M =: M : and we compute in Y,,:

M‘Zli_,ll—i-r,- = 74 (m)exp( Z ujr(M)R™ g™y [—m])
m>0,reZ,jel

exp( Y — hmg~HrIma[—m))exp( Y — A" FI™a;m])

m>0 m>0
MAz ll—i-r exp( Z hzm([ai[ a‘l [m Zul T [yl ] i[m]]q(l-i-h‘—T)mcm) =tr:Y; lAz A+ :
m>0 TEZL
where:
R(Z) — _( 2r; _ —2r, + Zu1 , Z(l+r,—r)( _ Z—r,—)
rEZ
So:

N, MAZY ) = i o (M2 — 277 = —ui ) (M) + wigqar, (M) = —1
re’Z

Lemma 4.15. Let m be in B; such that VI € Z,u;;(m) <1 and for 1 <r < 2r; the set
{l € Z/wirq21r,(m) = 1} is a 1-segment. Then we have F; (m) = =1 (F;(m ))

Proof: Let us look at the sly-case : m = mima = m,, m,, where 01,09 are 2-segment. So the lemma
4.13 gives an explicit formula for F;(m) and it follows from lemma 4.14 that F;(m) = 7=1(F(m)).

We go back to the general case : let us write m = m'mj..ma,, where m' = ]] Yjulj’l(m) and
Jilez
Us, 7 r; (TN
m, = HY%,T;;T',,’( ). We have m, of the form m, = Y;;, Yii +or;--Yii+on;r- We have F;4(m) =
I€Z

t=N'myma) i B (my ). Fy ¢ (may; ). The study of the slo-case gives F; ;(m,) = 7~ 1(F;(m,)). It follows
from lemma 4.14 that:

N mme) =By ).~ Y (Fy(my)) = 7 Y (m! Fy(my)...Fi(my)) = 771 (Fi(m))
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5. INTERSECTION OF KERNELS OF DEFORMED SCREENING OPERATORS

Motivated by theorem 4.2 we study the structure of a completion of & = (] Ker(S;;) in order to
iel
construct X, in section 6. Note that in the slo-case we have R; = Ker(S; ) that was studied in section
4.

5.1. Reminder: classic case ([5], [6])-

5.1.1. The elements E(m) and q-characters. For J C I, denote the Z-subalgebra 87 = [ K; C Y and
i€J
R= ﬁ].

Lemma 5.1. ([5], [6]) A non zero element of R, has at least one J-dominant Y-monomial.

Proof: It suffices to look at a maximal weight }-monomial m of x € K;: for i« € J we have m € B;
because x € ;. O

Theorem 5.2. ([5], [6]) For i € I there is a unique E(Y; o) € 8 such that Y;¢ is the unique dominant
Y-monomial in E(Y; ).

The uniqueness follows from lemma 5.1. For the existence we have E(Y; ) = x4(V.; (1)) (theorem 4.2).

Note that the existence of E(Y; ) € £ suffices to characterize x, : Rep — &. It is the ring homomorphism
such that x4(X;,;) = si(E(Yi0)) where s;: Y — Y is given by s;(Yj k) = Yj k-
For m € B, we defined the standard module M,, in section 2. We set:
E(m) = [] su(B(Yi0))"™ = xq(Mn) € &

meB

We defined the simple module V, in section 2. We set L(m) = x4(Vin) € K. We have:
f= PzEm)= PrL(m)~72P
meB meB

For m € B, we can also define a unique F(m) € K such that m is the unique dominant }Y-monomial
which appears in F(m) (see for example the proof of proposition 4.12).

5.1.2. Technical complements. For J C I, let gy be the semi-simple Lie algebra of Cartan Matrix
(Cij)ijes and Uy(g)s the associated quantum affine algebra with coefficient (r;);es. In analogy with
the definition of E;(m), L;(m) using the sls-case (section 4.1.4), we define for m € By: Ej(m), Lj(m),
Fj(m) € R; using U,(g)s. We have:

Rr= P ZE;m)= @ ZLs(m) = P ZF;(m) ~ 75"

meBy meBy meBy
As a direct consequence of proposition 2.6 we have :

Lemma 5.3. Form € B, we have E(m) € Z[Y; licr,i>i(m) wherel(m) = min{l € Z/3i € I,u;;(m) # 0}.

5.2. Completion of the deformed algebras. In this section we introduce completions of }; and of

K1t = N Rt C Ve (J C I). We have the following motivation: we have seen 71 (Rs:) C Ry (section
icJ

4). In order to prove an analogue of the other inclusion (theorem 5.13) we have to introduce completions

where infinite sums are allowed.
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5.2.1. The completion Y° of Y,. Let oﬁt be the Z[t*]-module oﬁt = [I Z[t*].m ~ Z[t*]*. An element
meA

oo o0
Am(t)m)mea € A, is noted EA)\m (t)ym. We have @AZ [t¥].m = )} C A;. The algebra structure of )
me me

[ee) oo oo o o
gives a Z[t*]-bilinear morphisms ); ® A; — A; and A; ® J; — A, such that A; is a };-bimodule. But
o
the Z[t*]-algebra structure of J; can not be naturally extended to A;. We define a Z[t*]-submodule Y®
with Yy C V° C it, for which it is the case:

Let YA be the Z[t*]-subalgebra of J; generated by the (Ai_,ll)z'e 1,iez- We gave in proposition 3.12 the
structure of Y. In particular we have V! = @ )itA K where for K > 0:

K>0
YAK = ) ZItH).m c YA
m::A.';ll ...A;ll :
1:°1 K''K

Note that for K1, K> > 0, y;“ ’Kly;“ =N y;“ HatKe 01 the multiplication of );. So yg“ is a graded
algebra if we set deg(z) = K for x € yg“ K Denote by y;4 ' the completion of y{“ for this gradation. It

is a sub-Z[t*]-module of A,

Definition 5.4. We define V° as the sub Vi-leftmodule of jt generated by y,;“’°°.

oo
In particular, we have: Y® = 3 M.V C A,.
MeA

Lemma 5.5. There is a unique algebra structure on Y° compatible with the structure of Yy C V7°.

Proof: The structure is unique because the elements of V;° are infinite sums of elements of };. For

M € A, we have y;“’°°.M C M.y;“"”, so Y¢© is a sub Y;-bimodule of Ofit. For M € A and )\ € y;“’°°
denote AM € Y/ such that \.M = M.A\M. We define the Z[t*]-algebra structure on Y° by (M, M’ €
A NN € Y

(MX)(M' XY = MM'.(AM )
It is well defined because for My, My, M € A,X\, X € y;‘ we have M1\ = Myl = MlM)\{"I =
MoyMAM. O

5.2.2. The completion K75 of K. We define a completion of &;: analog to the completed algebra Jp°.

For M € A, we define a Z[t*]-linear endomorphism EM : MY o MY such that (m YA-
monomial):
EM(Mm) =0if : Mm :¢ B;
E%(Mm) = E;+(Mm) if : Mm :€ B;

It is well-defined because if m € yg“’K and : Mm :€ B; we have E; ;(Mm) e M YAK'
K'>K

Definition 5.6. We define &7 = > Im(E%) C Ve
MecA

For J C I, we set 83, = [ 875 and &° = &y,
icJ

Lemma 5.7. A non zero element of R, has at least one J-dominant V;-monomial.

Proof:  Analog to the proof of lemma 5.1.
Lemma 5.8. For J C I, we have 8, N Y, = Ry. Moreover &Y, is a Z[t*]-subalgebra of V5°.
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Proof: 1t suffices to prove the results for J = {i}. First for m € B; we have E;;(m) = E[j(m) €

£7% and so Ry = ) Z[ti]Ei,t(m) C RS N Vi Now let x be in RS such that x has only a finite
meB;
number of );-monomials. In particular it has only a finite number of i-dominant );-monomials m, ..., m,

with coefficients A; (%), ..., A+(t). In particular it follows from lemma 5.7 that x = A (¢)Fj¢(mq) + ... +
Ar(t)F; ¢ (my) € Rt (see proposition 4.12 for the definition of F; ;(m)).

For the last assertion, consider M7, My € A and mq, mo yg“—monomials such that : Mymy :,: Mamgy :€ B;.
Then E; (Mimi)Ei(Mams) is in the the sub-algebra &, C Yy and in Im(E;';**?). O

In the same way for ¢ = 1 we define the Z-algebra Y*° and the Z-subalgebras K C Y.

The surjective map 7 : Vy — Y is naturally extended to a surjective map 7 : Yi° — Y*°. For i € I, we
have 74 (855) = &° and for J C I, 71 (RF,) C 8. The other inclusion is equivalent to theorem 5.13.

5.2.3. Special submodules of Y§°. For m € A, K > 0 we construct a subset Dy, x C m{A7} ..A7" }

11,017 ikl
stable by the maps EJ} such that |J D i is countable: we say that m' € Dy, x if and only if there
K>0
is a finite sequence (mg = m,my,...,mg = m') of length R < K, such that for all 1 < r < R, there
is " < r, J C I such that m,» € By and for ' < r" < r, m,» is a Y-monomial of E;(m, ) and

memyt_ € {AS} /€T, i€ J}.
The definition means that “there is chain of monomials of some E;(m'") from m to m".

Lemma 5.9. The set Dy, i is finite. In particular, the set Dy, is countable.

Proof: Let us prove by induction on K > 0 that Dy,  is finite: we have D,, o = {m} and:
Dy k41 C U {Y-monomials of E;(m')}
JCI,m’EDm,KﬂBJ
O

Lemma 5.10. For m,m' € A such that m' € D,, we have D,y C D,,,. For M € A, the set BN Dy is
finite.

Proof: Consider (mg = m,my,...,mr = m') a sequence adapted to the definition of D,,. Let m"
be in D, and (mr = m',mpgy1,...,mrp = m'") a sequence adapted to the definition of D,,. So
(mo,m1,...,mp) is adapted to the definition of D,,, and m" € D,,.

Let us look at m € B[ Dps: we can see by induction on the length of a sequence (mg = M, mq, ...,mg

m) adapted to the definition of Dy that m is of the form m = M M' where M' = ] AZIU“ (viy > 0).
iELi>n

Dv

So the last assertion follows from lemma 3.14.
Definition 5.11. D,, is the Z[t¥]-submodule of Y° whose elements are of the form (Am(t)m)mep., .

For m € A introduce mg = m > m; > my > ... the countable set D,, with a total ordering compatible
with the partial ordering. For k > 0 consider an element Fj, € D,y,, .

Note that some infinite sums make sense in D,,: for k¥ > 0, we have D,,, C {mg,mpy1,...}. So my

appears only in the Fyr with k' < k and the infinite sum ) F}, makes sense in D,,.
£>0

5.3. Crucial result for our construction. Our construction of g,¢-characters is based on theorem
5.13 proved in this section.

5.3.1. Statement.

Definition 5.12. Forn > 1 denote P(n) the property “for all semi-simple Lie-algebras g of rank rk(g) =

n, for all m € B there is a unique Fy(m) € £° N D, such that m is the unique dominant Y;-monomial
of Fy(m).”.
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Theorem 5.13. For all n > 1, the property P(n) is true.

Note that for n = 1, that is to say g = sla, the result follows from section 4.

The uniqueness follows from lemma 5.7 : if x1,x2 € K° are solutions, then y; — x2 has no dominant
Yi-monomial, so x1 = X2-
Remark: in the simply-laced case the existence is a consequence of the geometric theory of quivers [11],

[12], and in A, D,-cases of algebraic explicit constructions [13]. In the rest of this section 5 we give an
algebraic proof of this theorem in the general case.

5.3.2. Outline of the proof. First we give some preliminary technical results (section 5.4) in which we
construct t-analogues of the E(m). Next we prove P(n) by induction on n. Our proof has 3 steps:

Step 1 (section 5.5): we prove P(1) and P(2) using a more precise property Q(n) such that Q(n) = P(n).
The property Q(n) has the following advantage: it can be verified by computation in elementary cases
n=1,2

Step 2 (section 5.6): we give some consequences of P(n) which will be used in the proof of P(r) (r > n):
we give the structure of &§° (proposition 5.19) for rk(g) = n and the structure of &5, where J C I,
|J| =n and |I| > n (corollary 5.20).

Step 3 (section 5.7): we prove P(n) (n > 3) assuming P(r), r < n are true. We give an algorithm
(section 5.7.2) to construct explicitly Fi(m). It is called t¢-algorithm and is a t-analogue of Frenkel-
Mukhin algorithm [6] (a deformed algorithm was also used by Nakajima in the ADFE-case [11]). As we
do not know a priori the algorithm is well defined the general case, we have to show that it never fails
(lemma 5.24) and gives a convenient element (lemma 5.25).

5.4. Preliminary: Construction of the E;(m).

Lemma 5.14. We suppose that for i € I, there is Ft(f’i,o) € R° N Dﬁ_ , such that 17},0 is the unique

dominant YVi-monomial of Fy(Y; o). Then:
i) All Yi-monomials of Fy(Y; ), except the highest weight Y;-monomial, are right negative.
i) All Yy-monomials of Ft(f/;,g) are products of Yﬁ with 1 > 0.

i) The only Yi-monomial of Fy(Y;o) which contains a f’ﬁ) (7 € I) is the highest weight monomial
Yio-

s

w) The Fy(Yio) (i € I) commute.

Note that (i),(ii) and (iii) appeared in [6].
Proof:

i) It suffices to prove that all Y;-monomials mg = ¥; 9, m1, ... of Dy, , except Y; o are right negative.
But m; is the monomial Yi,oA; 11 of E;(Y;,0) and it is right negative. We can now prove the statement by
induction: suppose that m, is a monomial of Ej(m, ), where m, is right negative. So m,. is a product
of m,» by some A;l1 (I € Z).Those monomials are right negative because a product of right negative
monomial is right negative.

ii) Suppose that m € A is product of ijj with [ > 0. It follows from lemma 5.3 that all monomials of
D,, are product of kal with [ > 0.

iii) All Y-monomials of Dy, , except f’i,o are in Dy WA= - But (YzoA;}l) > 1 and we can conclude
with the help of lemma 5.3. -

iv) Let ¢ # j be in I and look at Fi(Y;0)F;(Yj0). Suppose we have a dominant );-monomial mg =
mims in Fy (E,O)Ft (17},0) different from the highest weight );-monomial )7;,017},0. We have for example
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my # )7},0, so my is right negative. Let [; be the maximal [/ such that a ?k’l appears in m;. We have
ug(mi) < 0andl > 0. As ug(mo) > 0 we have uy;(m2) > 0 and my # Yj 9. So my is right negative and
there is k" € I and I' > I such that up y(ms2) < 0. So up p(m1) > 0, contradiction. So the highest weight
Y;-monomial of Ft( ' O)Ft(YJ o) is the unique dominant Y;-monomial. In the same way the hlghest welght
Ys-monomial of F; (Y, O)Ft (Yz 0) is the unique dominant );-monomial. But we have Y; OYJ 0= YJ oY 0, SO
Fy(Yi0)F;(Yj0) — Fi(Yj0)F:(Yip) € £° has no dominant J;-monomial, so is equal to 0. O

Denote, for I € Z, by s; : Y7° — V¢° the endomorphism of Z[t*]-algebra such that s;(Yj ) = Yj s (it
is well-defined because the defining relations of ), are invariant for k — k + [). If the hypothesis of the
lemma 5.14 are verified, we can define for m € t“B :

(LTI ) T o) € 5

leziel leziel
because for I € Z the product [] s;(F;(Y;0))%(™ is commutative (lemma 5.14).
iel
5.5. Step 1: Proof of P(1) and P(2). The aim of this section is to prove P(1) and P(2). First we
define a more precise property Q(n) such that Q(n) = P(n).

5.5.1. The property Q(n).

Definition 5.15. Forn > 1 denote Q(n) the property “for all semi-simple Lie-algebras g of rank rk(g) =
n, for all i € I there is a unique F,g(YZ 0) € RN D— o such that Y, o s the unique dominant Yi-monomial

of Ft(f/i’o). Moreover Ft(f’i,g) has the same monomials as E(Y;)”.

The property Q(n) is more precise than P(n) because it asks that F;(Y;o) has only a finite number of
monomials.

Lemma 5.16. For n > 1, the property Q(n) implies the property P(n).

Proof: 'We suppose @(n) is true. In particular the section 5.4 enables us to construct E;(m) € &° for
m € B. The defining formula of F;(m) shows that it has the same monomials as E(m). So Ey(m) € D,,
and Ei(m) € £4.

Let us prove P(n): let m be in B. The uniqueness of Fy(m) follows from lemma 5.7. Let mp =
m > mp_y1 > ... > my be the dominant monomials of D,, with a total ordering compatible with the
partial ordering (it follows from lemma 3.14 that D,, N B is finite). Let us prove by induction on [ the
existence of Fy(m;). The unique dominant of D,,, is m; so Fy(my) = Ey(my) € D,,,. In general let
A1(t), ., M—1(t) € Z[t*] be the coefficient of the dominant );-monomials my,...,m;_1 in Fi(m;). We
put:

Fy(my) = Eq(m) — Y Ae(t)Fe(m,)
r=1...[-1

We see in the construction that F;(m) € D,, because for m' € D,, we have Ey(m') € D,y C D,, (lemma
5.10). O

5.5.2. Cases n =1,n = 2. We need the following general technical result:

Proposition 5.17. Let m be in B such that all monomial m' of F'(m) verifies : Vi € I,m' € B; implies
VI € Z,uiy(m') <1 and for 1 < r < 2r; the set {l € Z/u; pyour,(m') = 1} is a 1-segment. Then
7Y (F(m)) € Y is in R and has a unique dominant monomial m.

Proof: Let us write F(m) = > p(m')m' (u(m') € Z). Let i be in I and consider the decomposition of
m'eA
F(m) in R;:
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But pu(m') # 0 implies the hypothesis of lemma 4.15 is verified for m' € B;. So #=!(F;(m')) = F; ;(m/).
And:

P Fm) = Y plm')Fi(m') € Sed
m'EB;
O

For n = 1 (section 4.5), n = 2 (section 8), we can give explicit formula for the E(Y;o) = F(Y;o). In
particular we see that the hypothesis of proposition 5.17 are verified, so:

Corollary 5.18. The properties Q(1), Q(2) and so P(1), P(2) are true.

This allow us to start our induction in the proof of theorem 5.13.

In section 7.1 we will see other applications of proposition 5.17.

Note that the hypothesis of proposition 5.17 are not verified for fundamental monomials m = Y in
general: for example for the Dj-case we have in F(Y3) the monomial Y, Y5, 'Y, 411{1 -

5.6. Step 2: consequences of the property P(n). Let be n > 1. We suppose in this section that
P(n) is proved. We give some consequences of P(n) which will be used in the proof of P(r) (r > n).

Let &>/ be the Z[t¥]-submodule of 8° generated by elements with a finite number of dominant V-
monomials.

Proposition 5.19. We suppose rk(g) =n. We have:

= Pzt F(m) ~ Z[tHP
meB
Moreover for M € A, we have:
f°NDy= P zZ*F(m) = [t*)P" ™
meBNDys

Proof: Let x be in &>/ and my, ...,m, € B the dominant Y;-monomials of x and Ay (£), ..., Az (t) € Z[t%]
their coefficients. It follows from lemma 5.7 that x = Y X (¢) Fr(my).
[=1...L

Let us look at the second point: lemma 5.10 shows that m € BN Dy = Fi(m) € Dy. In particu-
lar the inclusion D is clear. For the other inclusion we prove as in the first point that K° N Dy =

3. Z[t*]F;(m). We can conclude because it follows from lemma 3.14 that D; N B is finite. O
meEBNDyy

We recall that have seen in section 5.2.3 that some infinite sum make sense in D .

Corollary 5.20. We suppose rk(g) > n and let J be a subset of I such that |J| =n. For m € By, there
is a unique Fyi(m) € ﬁft such that m is the unique J-dominant Y;-monomial of Fj.(m). Moreover

FJt(m) € Dm
For M € A, the elements of 85, N Dy are infinite sums > An(@®)F5i(m). In particular:
meEByNDas

RF, N Dy ~ Z[tF]PI"Pm

Proof: The uniqueness of F;;(m) follows from lemma 5.7. Let us write m = m m' where
my= ][I Yiul"”(m). So my is a dominant );-monomial of Z[Yl.il],-e Jiez- In particular the proposition

ieJiez
a(8)s,—1 ,t%)icsiez (where for i €
1,l € Z, Au a(@)rd = Br,7(A; ) where 8r,(Y; ) = 516JYH). So we can put F;(m) = mvy(x) where

Vig: Z[Agl(g)”_l,ti]ze”ez — ) is the ring homomorphlsm such that VJt(Au a(8)s,— ) fii_,ll.

5.19 with the algebra U, (g )J of rank n glves myx where x € Z[A

The last assertion is proved as in proposition 5.19. O
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5.7. Step 3: t-algorithm and end of the proof of theorem 5.13. In this section we explain why
the P(r) (r < n) imply P(n). In particular we define the t-algorithm which constructs explicitly the
Ft (m)

5.7.1. The induction. We prove the property P(n) by induction on n > 1. It follows from section 5.5
that P(1) and P(2) are true. Let be n > 3 and suppose that P(r) is proved for r < n.

Let 4 be in B and mo = m4 > my > ma > ... the countable set D,,, with a total ordering compatible
with the partial ordering.
For J ¢ I and m € By, it follows from P(r) and corollary 5.20 that there is a unique Fjy¢(m) € D,, NRF,

such that m is the unique J-dominant monomial of F;;(m) and that the elements of D,, + NRT; are the

infinite sums of Y/*: o Am(t)Fyi(m) where A\, (t) € Z[t%].
meDy,  NB;

If m € A — By, denote Fj.(m) = 0.

5.7.2. Definition of the t-algorithm. For r,r' > 0 and J C I denote [Ey;(m, )], € Z[tF] the coefficient
of m, in Fj(m).

Definition 5.21. We call t-algorithm the following inductive definition of the sequences (s(my)(t))r>0 €
LI, (s5(me)(8)rz0 € ZIEFTY (T G 1)

s(mo)(t) =1, sy(mo)(t) =0
and forr>1,J C I:

sa(me)(t) = Y (s(mp)(t) — 85 (me) () [Fre (me)m,
r'<r
if my ¢ By, s(my)(t) = s5(m.)(?)
if m, € B,s(m,)(t) =0

We have to prove that the ¢-algorithm defines the sequences in a unique way. We see that if s(m..), s;(m,)
are defined for r < R so are sj(mpg41) for J C I. The s;(mpg) impose the value of s(mg41) and by

induction the uniqueness is clear. We say that the t-algorithm is well defined to step R if there exist
s(my), s7(m,) such that the formulas of the t-algorithm are verified for r < R.

Lemma 5.22. The t-algorithm is well defined to step r if and only if:
VJi, Jo G IV <r,m. ¢ By, and m, ¢ By, = s5,(m)(t) = s5,(mp)(t)

Proof: If for r' < r the s(m)(t), s5(m..)(t) are well defined, so is sj(m,)(t). If m, € B, s(m,)(t) =0 is
well defined. If m,. ¢ B, it is well defined if and only if {s;(m,)(t)/m, ¢ B} has one unique element. [

5.7.3. The t-algorithm never fails. If the t-algorithm is well defined to all steps, we say that the ¢-
algorithm never fails. In this section we show that the t-algorithm never fails.

If the t-algorithm is well defined to step r, for J & I we set:

py(me)(t) = s(me)(t) — s7(mr)(t)

X5 =Y wa(me () Fre(my) € &Y,

r'<r
Lemma 5.23. If the t-algorithm is well defined to step r, for J C I we have:
X7 € (Zs(mw)(t)mw) + sy (mptr)(H)megr + Z Z[ti]mr’
r'<r r'>r4+1
For J, C J» C I, we have:
X5, = X, + Y Aw (O)Fr 1(my)

r'>r

where A\ (t) € Z[tE]. In particular, if myy1 ¢ By,, we have sz, 1(myy1) = 87, ¢(Mpi1).
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Proof: For r' < r let us compute the coefficient (x)m,, € Z[t] of my in x7:

XD = Y (s(men)(®) = 85(mp) () [Fre(mer)]om,,

! <r!

= (s(me)(t) = s5(mp ) @) [Fae(me)lm,, + D (s(mpn) () = 8.5 (mpen) (0) [Fae (mrn i,

= (s(my)(t) — s7(mp)(2)) + s5(mp)(t) = s(me)(E)
Let us compute the coefficient (X7)m,.,, € Z[t*] of m,41 in x7}:
N mess = D, (s(mpn)(#) = s (mpn )(O)[Fr(m0)lm, 1 = 85 (mrg)
" <r

For the second point let J; C Jo ¢ I. We have x5, € &, N Dy and it follows from P(|.J;|) and
corollary 5.20 (or section 5.5.2 if |J;| < 2) that we can introduce A, , (t) € Z[t*] such that :

X5 = Y Am,, (O Fy, 1(my)
r'>0

We show by induction on ¢’ that for ' < r, m, € Bj, = Apm,,(t) = ps(m,)(t). First we have
Amo (1) = (X7, )mo = s(mo)(t) =1 = /LJl( 0). Forr’ <
m,. (t)

$m)®) = Ay )+ 3 A (OF s i,
<
A,y (8) = 8(me)(8) = Dy (o) @) F g, 6(mp)lm,, = 8(mn) () = 8.5, (mr) () = pr, (mor)(2)
For the last assertion if mr_:1<¢r By, , the coefficient of m,41 in Y Z[tE]Fy, 1(m,) is 0, and (X7, )m,y, =
(X7, )mry1- It follows from the first point that s, ¢(my41) = sJZI;(:nT_H). O

Lemma 5.24. The t-algorithm never fails.

Proof: Suppose the sequence is well defined until the step r — 1 and let J;, JJo & I such that m, ¢ By,
and m, ¢ Bj,. Let ¢ be in Ji, j in Jy such that m, ¢ B; and m, ¢ B;. Consider J = {4,j} & I. The
X Xg_l € V; have the same coefficient s(m,)(t) on m,. for ' <r — 1. Moreover:

r—1

si(me)(t) = (X{ " Dm, > $i(me) () = G D, > 85(Me) (@) = (X5 m,
But m, ¢ By, so:

Xt = D0 mlme) () Fse(me) + 37 Ay, (6)Fs(me)

r'<r—1 r/>r41
So (X7 m. = (Xi ™" )m, and we have s;(m,)(t) = ( #)(t). In the same way we have s;(m,.)(t) =
sg (my)(t), sj(m,)(t) = sj(m,)(t) and s;(m,)(t) = sj,(m,)(t). So we can conclude sj, (m,)(t) =
8.3, (mr) (t). O
5.7.4. Proof of P(n). It follows from lemma 5.24 that x = 3 s(m,)(t)m, € V;° is well defined.

r>0

Lemma 5.25. We have x € £5° ) Dm+. Moreover the only dominant YVi,-monomial in x is mg = my.

Proof: The defining formula of x gives x € D, +- Let ¢ be in I and:
Z:u'z mr z t mr) €
r>0
Let us compute for r > 0 the coefficient of m, in x — x;:
(X Xl)mr =S mv‘ Zﬂz mr zt(mr )]m

r'<r

= s(my)(t) = si(my)(t) — pi(me) @) [Fie(mr)]m, = (s(mr)(t) — 5i(mr) (1)) (1 = [Fip(me)]m,)
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We have two cases:
if m, € B;, we have 1 — [F} (m;)]m, = 0.
if m, ¢ B;, we have s(m,.)(t) — s;(m,)(t) =
So x = xi € 87, and x € K°.
The last assertion follows from the definition of the algorithm: for r > 0, m, € B = s(m,)(t) =0. O
This lemma implies:

Corollary 5.26. For n > 3, if the P(r) (r < n) are true, then P(n) is true.

In particular the theorem 5.13 is proved by induction on 7.

6. MORPHISM OF q,t-CHARACTERS AND APPLICATIONS
6.1. Morphism of ¢, t-characters.

6.1.1. Definition of the morphism. We set Rep; = Rep ®z Z[t*] = Z[Xi,l,ti]ie”ez. We say that M €

Rep; is a Repi-monomial if it is of the form M = ] le " (ziy > 0). In this case denote z; | (M) = ;.
i€l lEZ
Recall the definition of the E;(m) (section 5.4).

Definition 6.1. The morphism of q,t-characters is the Z[t*]-linear map X4+ : Repr — Y such that

(’U,,',IZO):
Xa.t( H X = Ey( H Y

iel,leZ i€l leZ

6.1.2. Properties of Xq.t-
Theorem 6.2. We have 74 (Im(xq,.t)) C Y and the following diagram is commutative:

Rep X% Im(x,.)

id ] \ Ty

Rep Xa, Yy
In particular the map X, is injective. The Z[t*]-linear map x4 : Repy — V§° is characterized by the
three following properties:

1) For a Repi-monomial M define m = n=1( [] Y-xl"’l(M)) € A and m € A; as in section 3.5.2.

i
1€llEZ

Xgt(M) =m + Z am (tYm' (where am (t) € Z[tT])

m'<m

Then we have :

2) The image of Im(x4,) is contained in R°.

3) Let My, My be Repi-monomials such that maz{l/> z; (M) > 0} < mzn{l/Zx,l(Mz) > 0}. We
iel

Xa,t (M1 Ma) = xq,t(M1)xq,:(M2)

have :

Note that the properties 1,2, 3 are generalizations of the defining axioms introduced by Nakajima in [12]
for the ADE-case; in particular in the ADE-case xg, is the morphism of g, t-characters constructed in
[12].

Proof: w4 (Im(xg,:)) C ) means that only a finite number of Y;-monomials of E;(m) have coefficient
A(t) ¢ (t—1)Z[t%]. As Fi(Y;,) has no dominant J;-monomial other than Y 9, we have the same property
for 74 (Fy(Yi0)) € 8 and 74 (F;(Yi0)) = E(Yi0) € Y. As Y is a subalgebra of Y we get 74 (Ei(m)) € Y
with the help of the defining formula.
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The diagram is commutative because 71 0s; = s;omy and 71 (F;(Yi0)) = E(Yio)- It is proved by Frenkel,
Reshetikhin in [5] that x, is injective, so x4, is injective.

Let us show that x,,; verifies the three properties:

1) By definition we have x,:(M) = E;(m). But s;(F;(Yio)) = Fi(Yiy) € D(Yy;). In particular

s1(Fy(Yip)) is of the form Y;; + 30 A (t)m’ and we get the property for F;(m) by multiplication.
m'<Yi.

2) We have s;(F;(Yio)) = E;(Yiy) € £° and £° is a subalgebra of Y5°, so Im(x,,;) C £5°.
3) If we set L = max{l/> z;;(M1) >0}, mi = ] Y.ml"’l(Ml), ma =[] Y.ml"’l(MZ), we have:

i i,

iel iellez iel,lez
—
_ ¥ i1 (M1) L M.
1) = HHSI(Ft(Yi,O)) M) By (m) HHSI (Fu(Y; 1 (M2)
I<Liel I>Liel

and in particular:
E; (ml mz) = E; (ml)Et (mz)

Finally let f : Rep; — YV be a Z[t*]-linear homomorphism~which veriﬁNes properties 1,2,3. We saw
that the only element of R° with highest weight monomial Y;; is s;(F:(Yi0)). In particular we have
f(Xi1) = Ey(Yi,). Using property 3, we get for M € Rep; a monomial :

= [IIIr e = T Ts(F(¥i0)) "4 ™ = X, (M)

leZiel leZiel

O

6.2. Quantization of the Grothendieck Ring. In this section we see that x,: allows us to define
a deformed algebra structure on Rep; generalizing the quantization of [12]. The point is to show that
Im(x,,¢) is a subalgebra of &°.

6.2.1. Generators of ﬁtoo’f. Recall the definition of ﬁtco’f in section 5.6. For m € B, all monomials of
Ey(m) are in {mA;" ...A;', [k > 0,1, > L} where L = min{l € Z,3i € I,u;;(m) > 0}. So it follows
from lemma 3.14 that E;(m) € K2° has only a finite number of dominant };-monomials, that is to say

Ey(m) € 877
Proposition 6.3. The Z[t*]-module Rtoo’f is freely generated by the E;(m):

2l = @zt E (m) ~ 2P
meB

Proof: The E;(m) are Z[t*]-linearly independent and we saw E;(m) € &/, It suffices to prove that the
E;(m) generate the F;(m): let us look at mg € B and consider L = min{l € Z,3i € I,u;;(mo) > 0}. In

the proof of lemma 3.14 we saw there is only a finite dominant monomials in {moA“v;f MARR R >
0,i, € I,l, > L}. Let mg > m; > ... > mp € B be those monomials with a total ordering compatible
with the partial ordering. In particular, for 0 < d < D the dominant monomials of E;(mg4) are in

{ma,May1,...,mp}. So there are elements (Ag,q (t))o<a,ar<p of Z[ti] such that:

Ei(mg) = Ag,ar (t)Fr(mar)
d<d'<D

We have Aq 4 (t) = 0if d' < d and Ag 4(t) = 1. We have a triangular system with 1 on the diagonal, so it
is invertible in Z[t*]. O
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6.2.2. Construction of the quantization.

Lemma 6.4. ﬁtoo’f is a subalgebra of R7°.
Proof: It suffices to prove that for mi,ma € B, E;(m1)Ei(m2) has only a finite number of dominant
Ys-monomials. But E;(m;)FE;(ms) has the same monomials as E;(myms). O

It follows from proposition 6.3 that X, is a Z[t*]-linear isomorphism between Rep; and ﬁtoo’f . So we
can define:

Definition 6.5. The associative deformed Z[t*]-algebra structure on Rep; is defined by:

VA1, A2 € Repy, A x A = X1 (Xt (A1) Xg,t(A2))

6.2.3. Ezamples: sly-case. We make explicit computation of the deformed multiplication in the sls-case:
Proposition 6.6. In the sls-case, the deformed algebra structure on Rep; = Z[X;, tT]icz is given by:

Xl1 >l<)(l2 * ... *le = Xllez---le ’Lfll S l2 S S lm
X« Xp =X Xy =" Xy x Xy if 1 > U andl # '+2

Xi*Xp 0 =t2X; X o +t7(1 —t72) =t72X; 9% X; + (1 —t7?)
where v € Z is defined by VY, =Y, Y.

Proof: For | € Z we have the ¢, t-character of the fundamental representation Xj:

Xat(X1) = Vi + Y75 = V(L + A7)

The first point of the proposition follows immediately from the definition of x, ;. For example, for [,!' € Z
we have:

Xt (X1 X)) = Xq,t Xmin,0)) Xt (Xmax(,17))

In particular if [ < I', we have X; x X;» = X; Xy . Suppose now that [ > I’ and introduce v € Z such that
Y)Y =¢7Y;Y;. We have:

Xt (X)Xt (X]) = Vi(L+tAZ ) Yo (L+ A7)

= OV Y+ PV VAT, + 0T e Y AL Y+ 0T AL VAT,

— t’YXq,t(Xl’Xl) + t’Y+l(t26z,zl+2 _ 1)}72,14;_}_1)7;
If i ;é I'+2 we get X; « Xp =7 Xp x X, Ifl=10+ 2, we have:
5}21 Al_’ilﬁl"rz = t_lf};l__"}zﬁl_’_z = t—l
But 2Y;Y;_o =Y oY}, 50 Xy % Xj_o = t72X; o % X; +t72(t2 — 1). O
Note that v were computed in section 3.5.4.

We see that the new Z[t*]-algebra structure is not commutative and not even twisted polynomial.

6.3. An involution of the Grothendieck ring. In this section we construct an antimultiplicative
involution of the Grothendieck ring Rep;. The construction is motivated by the point view adopted
in this article : it is just replacing c;;| by —c;. In the ADE-case such an involution were introduced
Nakajima [12] with different motivations.
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6.3.1. An antihomomorphism of H.
Lemma 6.7. There is a unique C-linear isomorphism of H which is antimultiplicative and such that:
Cm = —Cm , ai[r] =a;[r] (m>0,ie€l,reZ—{0})

Moreover it is an involution.

Proof: It suffices to show it is compatible with the defining relations of H (¢,j € I,m,r € Z — {0}):

lai[m], a;[r]] = a;[m]a;[r] — a;[rla;[m] = —[a;[m], a;[r]]
Om,—r(@™ — ¢7™)Bi ;(q™)C/m| = —Om,—r(@™ — ¢ ™) Bi ;(q™)C m|

For the last assertion, we have €,, = c¢n, and a;[r] = a;[r], and an algebra morphism which fixes the
generators is the identity. O

It can be naturally extended to an antimultiplicative C-isomorphism of Hp,.

Lemma 6.8. The Z-subalgebra Y, C Hy verifies Yy C Vy.

Proof: It suffices to check on the generators of V,, (R € Wi € I,l € Z):
th=exp(Y»_h*™R(¢™)(—cm)) = t_g

m>0

Yig = exp( Y h™y[~mlg~™)exp( > h™yifmlg"™)

m>0 m>0

= exp( Y _ B yil—ml, yilm])Yis = t_¢, ,(g)(g—gt) Yit € Vu
m>0
~__1 — ~
Yo =)™ =to, g Yor € Ve
O

6.3.2. Involution of V;. As for R, R' € 4, we have 7o(R) = mo(R') & mo(—R) = mo(—R'), the involution
of V. (resp. of H},) is compatible with the defining relations of J; (resp. H:). We get a Z-linear involution
of V; (resp. of Hy). For A\, X € Vi, a € Z, we have:

AN =M, tod =%\
Note that in Y, for i € 1,1l € Z:
E = exp( Z h™a;[—m]q~"™)exp( Z h™a;[m]q'™)

m>0 m>0
- B2 ai[—m], admlen) Ass = i
= exp( D P*™ai[-m], ai[mllem) Ais = t_ g2y, Ai
m>0
So in Y; we have /L-,l = Azl and Azl = Ai_’ll.

6.3.3. The involution of deformed bimodules.
Lemma 6.9. Fori € I, the V;, C Hy verifies Wu CViu-

Proof: First we compute for i € I,l € Z:

zl —EXp th al[_ m —lm exp th l[m m)

m>0 i 9 m>0 1 i

a;[—m], a;[m 5
= eXp(Zth%cm)Si,l toitar? Sit € Vi
m>0 —(g; " —q") Pa——"

% —9;
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Now for A € ), we have /\.S'i,l =t NMX. But it is in ), because A € Y, (lemma 6.8) and Y ,, is

.,qi—l
a Y,-subbimodule of H;, (lemma, 4.6). O
gita; "

',1) = 1. As said before we get a Z-linear involution of Y; ¢

In #H; we have S;; = tS;; because 7r0(q'_q

such that:

/\gz',l = tS‘,-,lX

We introduced such an involution in [8]. With this new point of view, the compatibility with the relation
Aig—r;Sig = t71S; 14r, is a direct consequence of lemma 4.6 and needs no computation; for example:

Aig—r;Sig = tSi1Ai1—r; = t°As 17, Sig =S5 14

t_lgi,l-i-?"i = tgi,l-‘rT‘i = tzgi,l-i-n
6.3.4. The induced involution of Rep;.

Lemma 6.10. Fori € I, the subalgebra R;; C Vi verifies R;1 C Ris.

Proof: Suppose X\ € &4, that is to say S;+(A) = 0. So (2 — 1)S; +(A) = 0 and:

Z(Si’l)\ — )\Si,l) =0= tZ(XSi,l — S'UX) =0

ez l€Z.

So t(1 —2)S;+(A) =0 and X € & ;. O

Note that x € )} has the same monomials as , that is to say if x = Y, A(f)m and x = ). p(t)m, we
meA meA

have A(t) # 0 & u(t) # 0. In particular we can naturally extend our involution to an antimultiplicative

involution on Y. Moreover we have 82 C £° and 82/ = Im(x,,) C Im(x,.). So we can define:

Definition 6.11. The Z-linear involution of Rep; is defined by:

VA€ Repr , X = xgi (Xat (M)
6.4. Analogues of Kazhdan-Lusztig polynomials. In this section we define analogues of Kazhdan-
Lusztig polynomials (see [10]) with the help of the antimultiplicative involution of section 6.3 in the same

spirit Nakajima did for the ADE-case [12]. Let us begin we some technical properties of the action of
the involution on monomials.

6.4.1. Invariance of monomials. We recall that the J/A-monomials are products of the flz._ll (iel,leZ).

Lemma 6.12. For M a YVi;-monomial and m a ytA—monomial there is a unique a(M,m) € Z such that
ta(M,m) Moy, = 2 (Mm) A fy,

Proof: Let B € Z such that m = t"m. We have Mm = mM = t°t"Mm where v € 27 (section 3.4.2).
So it suffices to prove that 8 € 27Z.

Let us compute 8. Let 74 (m) = Iq Zz‘li_,lv“. In Y, we have 7, (m)7_(m) = tgm_(m)n;(m) where
il le
mo(R) = (3 and:
i [aill], a5 1]
Rig)= Y, wiumy ¢t
ijel,rr ez 1>0 G

where for I > 0 we set W = B;,;(¢")(¢' — q¢7!) € Z[g*] which is antisymmetric. For i = j, we have

the term: sl as[1]
Vi Vit -t [Gilt], Gil 7]
5 i Lo 1

C
rr’' €Z >0
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ST e mue )@ + 0D 1 S g () 2 il

C,
>0 {r,r'}CZ,r#r' TEZL L

It is antisymmetric, so it has no term in ¢°. So mo(R) = mo(R') where R’ is the sum of the contributions
for i # j:

3 vy o 3t (2l el

Ci
r,r! €Z >0

23" v mop 3 g [l

r,r' €Z >0 G
In particular mo(R') € 2Z. O

For M a Y;-monomial denote ALY = {t*(™M) Mm /m YA-monomial}. In particular for m' € ALY we
have m/m/~" = MM,
6.4.2. The polynomials. For M a Y;-monomial, denote B = tZB N Alny.
Theorem 6.13. For m € t“B there is a unique Li(m) € £° such that:
Ly(m) = (mm~")Ly(m)
Eym) =Li(m)+ Y. Pwm(t)L(m')

m! <m,m'€Bimv

where Ppy m(t) € t71Z[t7Y.

Those polynomials Py, ., (t) are called analogues to Kazhdan-Lusztig polynomials and the L (m) (m € B)
for a canonical basis of R{ "*°. Such polynomials were introduced by Nakajima [12] for the ADE-case.

Proof: First consider Fi(m): it is in K$° and has only one dominant );-monomial m, so Fy(m) =
mm~L1E,(m).

Let be m = my > mp_; > ... > myg the finite set t2D(m) N BZY (see lemma 5.10) with a total ordering
compatible with the partial ordering. Note that it follows from section 6.4.1 that for L > [ > 0, we have
mim; ' =mm~.

We have Ei(mg) = F;(mo) and so E¢(mg) = m_omglEt(mg). As Bm’ = {mo}, we have L;(mo) = E¢(my).
We suppose by induction that the Li(m;) (L —1 > 1 > 0) are uniquely and well defined. In particular
my is of highest weight in L;(my), Li(my;) = Wlml_lLt(ml) =mm~'Li(m;), and we can write:

Dy(my) N &° = LIt*F,(my)© @  Z[t*]Li(m)
0<I<L-1

In particular consider oy 1 (t) € Z[t*] such that:

E( ) Ft —l—ZOqL Lt(ml)

We want L;(m) of the form :
Ly(m) = Fy(m) + Y1, (t)Le(m)
I<L

The condition L;(m) = mm~1mL;(m) means that the 3, 1(t) are symmetric. The condition Py, () €
t~'Z[t'] means ay,1(t) — Bi,1.(t) € t7'Z[t™']. So it suffices to prove that those two conditions uniquely
define the ;1 (t): let us write oy, (t) = o (8)+ o | (t)+ay  (t) (vesp. Bir(t) = B (8)+60 L (1) +5, (1))
where al:',:L(t) € t*Z[t*] and af ;(t) € Z (resp. for §). The condition ayr(t) — B,L(t) € t Z[t™"]
means (7, (t) = of () and G, (t) = oy, (t). The symmetry of §,r(t) means 8, (t) = f;,(t7") =
o, (7). O
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6.4.3. Ezamples for g = sly. In this section we suppose that g = sls.
Proposition 6.14. Let m € t“B such that VI € Z,u(m) < 1. Then Ly(m) = Fy(m). Moreover:

Et(m) = Lt(m) + Z t_R(ml)Lt (m')

m' <m/m'EBi

where R(m') > 1 is given by my (m'm=1) = A=Y, . A' . In particular for m' € BI™ such that m' <m

1,01 iR,lR "
we have Py (t) = 7).

Proof: Note that a dominant monomial m’ < m verifies VI € Z,u;(m') < 1 and appears in E;(m). We

know that D,, N & = &b Z[ti]Ft (m'). We can introduce Py, m(t) € Z[ti] such that:
m! €t7 D, NBinv
E,(m) = Fy(m) + > P (8 Fy(m")

m' 2Dy NBinY —{m}
So by induction it suffices to show that Py m(t) € t71Z[t71.

Py m(t) is the coefficient of m' in Ey(m). A dominant Y;-monomial M which appears in E;(m) is of the
form:

M = m(my..mpi1)” ' mitA ' mat A ms. A I mp g
where l; < ... < lg € Zverify {l, +2,1,—2}0{l1, ..., lr—1,lpy1, .-, Ig} is empty, u;,.—1(m) = u;,+1(m) =1
—

and we have set m, = [| ¥“™. Such a monomial appears one time in E;(m). In particular
L1 <I<I,

P m(t) = t* where a € Z is given by M = t*m/ that is to say MM ~! = t=22m'~

So we compute:

1 _ _
m! = t~2%m~1m,

A7Aar—1 — 3—2R+——A—1o— A—-1—u——-1 ——1 \— —1 j -1 A -1 -1
MM~ =t=*"mgr1A;, MR- A my (] W )My Alymy . Aymy (my..mpy1)m

=t 2RAR A AT mA . Ay m T
=2RA AT A, LA mm T = 2Rmm O
Let us look at another example m = 1702172. We have:
Ey(m) = Ly(m) +t~>Ly(m")
where m' = tY2Y> A" € BI"Y and:
Li(m) = F(Yo)F;(YoYa) = Yo(1 + tATH) Yo Yo (1 + A (1 + tATY))
Li(m') = Fy(m!) = tYg Y, A7 (1 + tAT)
Indeed the dominant monomials appearing in Ey(m) are m and Yot AT'YoYs + YZtAT'Ys = (1 +t72)m'.
In particular: Py, m(t) = t72.

2

6.4.4. Ezample in non-simply laced case. We suppose that C' = (_1

_22> and m = 172,0}71,5. The
formulas for Et(fé,g) and Et(}~’1,5) are given is section 8. We have:
Ei(m) = Ly(m) +t~"Ly(m)
where m/ = tY50Y1 5 A3} AT} € BN and:
Li(m/) = Fy(m') = tY20V1,s A5 3 AT S (1 + tAT3 (1 + t A5 5(1 + tALR)))
Indeed the dominant monomials appearing in E;(m) are m = 172,0171,5 and }72,0151412_, %tfll_, }1171,5 =t"lm'.

In particular Py () = t71.
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7. QUESTIONS AND CONJECTURES

7.1. Positivity of coefficients.

Proposition 7.1. If g is of type An, (n > 1), the coefficients of x4.:(Yio) are in Nt*].

Proof: 'We show that for all 4 € I the hypothesis of proposition 5.17 for m = Y; o are verified; in particular

the property @ of section 5.5.1 will be verified.

Let i be in I. For j € I, let us write E(Y;0) = Y. Xj(m)E;(m) € K; where Aj(m) € Z. Let D be
mEBJ-

the set D = {monomials of E;(m) /j € I,m € Bj,\;j(m) # 0}. It suffices to prove that for j € I,

m € B;j N D = u;(m) <1 (because proposition 5.17 implies that for all i € I, F;(Y;0) = 77 (E(Yi,0))).

As E(Y;0) = F(Yiyo), Yi is the unique dominant Y-monomial in E(Y; ). So for a monomial m € D there
is a finite sequence {mo = Y; 0, m1,...,mg = m} such that for all 1 <r < R, thereisr' <rand j € I
such that m,» € B; and for 7' < r" < r, m,» is a monomial of E;(m,) and m,»m,.} | € {AJ_ll/l € Z}.
Such a sequence is said to be adapted to m. Suppose there is j € I and m € B;ND such that u;(m) > 2.
So there is m' <'m in DN B; such that u;(m) = 2. So we can consider my € D such that there is jo € I,
mg € Bjg, uj,(m) > 2 and for all m’' < mg in D we have Vj € I,m' € B; = u;(m’) < 1. Let us write:

mo = Yy gt Yjg,qm H m(()J)
J#jo
() _

where for j # jo, mg HY.ul"’l(mO). In a finite sequence adapted to mg, a term Y;
lez.

Go.at OF Yjo,qm

must come from a Ej;41(my) or a Ej,—1(m1). So for example we have m; < mg in D of the form
my = Yo qmYjop1,¢-1 |1 mgj). In all cases we get a monomial m; < mg in D of the form:
J#Jo,jo+1
-V ) (4)
my = Yj,qm1 L 41,91 my
J#J.a+1

But the term Y}, 44 4-1 can not come from a Ej, (m2) because we would have u;, (m2) > 2. So we have
mo < mq in D of the form:

- ()

M2 = Yjy,gm2 Y, 49 gio I m

J#j2,d2+1,52+2

This term must come from a Ej,_1, Ej,+3. By induction, we get my < mo in D of the form :

— (7 _
my = Y1 gmn Y, gin H my’ =Y gm-nY, i
J#1l,..n

It is a dominant monomial of D C Dy, , which is not Y o. It is impossible (proof of lemma 5.14). O

An analog result is also geometrically proved by Nakajima for the AD E-case in [12] (it is also algebraically
for AD-cases proved in [13]). Those results and the explicit formulas in n = 1,2-cases (see section 8)
suggest:

Conjecture 7.2. The coefficients of Ft(f’i,o) = xq.t(Yio) are in N[t*].

In particular for m € B, the coefficients of E;(m) would be in N[t*]; moreover x,:(Yio0) and x4(Yio0)
would have the same monomials, the t-algorithm would stop and Im(x,,+) C V.

At the time he wrote this paper the author does not know a general proof of the conjecture. However
a case by case investigation seems possible: the cases G2, By, Cy are checked in section 8 and the cases
Fy, B, C, (n < 10) have been checked on a computer. So a combinatorial proof for series B, Cy, (n > 2)
analog to the proof of proposition 7.1 would complete the picture.
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7.2. Decomposition in irreducible modules. The proposition 6.14 suggests:

Conjecture 7.3. For m € B we have w4 (Li(m)) = L(m).

In the AD E-case the conjecture 7.3 is proved by Nakajima with the help of geometry ([12]). In particular
this conjecture implies that the coefficients of 7y (L;(m)) are non negative. It gives a way to compute
explicitly the decomposition of a standard module in irreducible modules, because the conjecture 7.3
implies:

E(m)=L(m)+ Y P m(1)L(m)

m’'<m

In particular we would have P ., (1) > 0.
In section 6.4.3 we have studied some examples:

-In proposition 6.14 for g = slo and m € B such that VI € Z,ui(m) < 1: we have 74 (L¢(m)) = F(m) =
L(m) and:

Em)= Y,  Lm)

m'€B/m'<m
-For g = sly and m = Y@Ys: we have 7, (Li(m)) = F(Yy)F(YY2) = L(m) and:
BY2Ys) = L(Y2Ys) + L(Y)
Note that L(Y#Y>) has two dominant monomials Y22 and Yy because YZY5 is irregular (lemma 4.5).
-For C = By and m = )72,0171’5. The 7y (L; (172’0}71,5)) has non negative coefficients and the conjecture
implies E(Y20Y1,5) = L(Y2,0Y1,5) + L(Y1,1)-

7.3. Further applications and generalizations. We hope to address the following questions in the
future:

7.3.1. Iterated deformed screening operators. Our presentation of deformed screening operators as com-
mutators leads to the definition of iterated deformed screening operators. For example in order 2 we

set:
Sjie(m) =) _8;1,Sie(m)]

lez.
7.3.2. Possible generalizations. Some generalizations of the approach used in this article will be studied:

a) the theory of g-characters at roots of unity ([7]) suggests a generalization to the case ¢~ = 1.

b) in this article we decided to work with ); which is a quotient of ). The same construction with
Y, will give characters with an infinity of parameters of deformation ¢, = exp()_h%q'"¢;) (r € Z).
>0
c) our construction is independent of representation theory and could be established for other gener-
alized Cartan matrices (in particular for twisted affine cases).
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8. APPENDIX

There are 5 types of semi-simple Lie algebra of rank 2: A; x A;, Az, Ca, Ba, G (see for example [9)]).
In each case we give the formula for E(1), E(2) € & and we see that the hypothesis of proposition 5.17 is
verified. In particular we have E; (Y1) = 7~ 1(E(1)), Bt (Y2,0) = 7~ 1(E(2)) € K.

Following [5], we represent the E(1), E(2) € R as a I x Z-oriented colored tree. For x € £ the tree I'y,
is defined as follows: the set of vertices is the set of Y-monomials of x. We draw an arrow of color (i,1)

from m; to my if mg = Az._llml and if in the decomposition x = > pmLi(m) there is M € B; such that
’ meB;
par 7 0 and my,my appear in L;(M).

Then we give a formula for Et(?i,o), Et(Yz,o) and we write it in R ; and in Ro 4.

8.1. A; x Aj-case. The Cartan matrix is C = ((2) (2]> and 11 = ro = 1 (note that in this case the

computations keep unchanged for all r1,rs).

Yio and Ysp
l1,1 l2,1
-1 -1

Y, Y5,

E(Yi0) =77 (Y104 Y75) =Yio(l +tA]]) € Ry
= Y"1,0 + )7—1T21 € Rot

Ey(Yao) =m (Yoo + Y55 ) =Yao(1+1A45]) € Ry
=Yoo +Y;, € Ry

2

8.2. As-case. The Cartan matrix is C = (_1

_21). It is symmetric, rq =ry = 1:

Yipo and Yap

-1 -1
Y1,2 Y2,1 Y2,2 Yl,l
l2,2 ll,z
-1 -1
Yy Yis

E(Yi0) =1 (V1o + Y3 Yan +Y53) =YVio(L+tAD]) + Yy € Ry
=Viot+: V3 Vo : (1+tA7}) € fay

By(Ya0) =7 (Yoo + Yoo Yiu + Yi5) = Vao(1+t451) + Vi3 € Ry
=Yoot : Yoy Vig: (1 +tA7}) € Rae
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8.3. (C5, By-case. The two cases are dual so it suffices to compute for the Cartan matrix C = (_21
and ry =1, r, = 2.

Yio and Y20

)

1,1 2,2
-1 -1
Yo Yo, YoaYiaYis
2,3 1,4
Y, 1Y, Yy, 2
2,5 11,4 11415
1,5 1,2
-1 —1y—1
Yie YigYis Y22
2,4
-1
Ys6

E(Y10) =7 '(Yi0+ Y3 Yo + Yo Vig + V()
=Vio(l+ A7)+ Vot Vi s (1+tAD}) € Ry
=Viot+ : Vo Va1 : (1+tA53) + Y4 € Ry

Ey(Ya0) = 7 (Ya0 + Y5741K,1Y1,3 + Yl,lYlTE)l + Y1731}/1751)/2,2 + YZTGl)
Voot : Yo ViaVig s (1 + AT + 2 ATATS) + Vo g € Ry
201+ tA )+ ViVt + VY Voot (1 +tA7)) € Ray

Rl
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8.4. (Gy-case. The Cartan matrix is C = (_21 _23) andr; =1,7r2 = 3.
8.4.1. First fundamental representation.
Yio
1,1
Y1721Y2,1
2,4

Y2771Y1,4Y1,6
1,7
Yi4Yig
1,5
Vi YisYos
2,8
Y'2T111Yv1,10

1,11

-1
Y1,12

E(Yio)=m"(Yio+Y 3 Yan + Y57 YiaYig+YiaYie + Y Yig Yos + Y511 Y100 + Vi)
=Vi0(Q+ A7)+ Yo ViaVig: L+ tAT + PATIAT )+ Vo | Vino : (L4 tATY)) € Riy
=Yio+: Yy Vot (L4+ A )+ : ViuYie o 4 : Vg Vg Va5 0 (L+tA70)+ : Vi € Ray

43
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8.4.2. Second fundamental representation.

Yoo
2,3

-1
Y, Y151V
1,6

—1
Y #YisYia

1,4

—1y—1
YouYi  Yis Y10

2,7
1,2

—1y—1y —1 -1
Y2 Y5 Y 3Y24Y2 Y5 10Y1,0Y1,1
2,7
2,5 1,10
Yo i, o Yoo Vo Y1 oY Y LY,
2,412.8 2,242,1041,941,3 1,1111,1
1,10
2,7 1,2
2,5
Y, 2V, LY, oY1 7Y Yo oYL Y
2,8 £2,1011,911,711,5 2,2111111,3

1,10
2,5

-1y —1
Yz,s Y1,11Y1,7Y1,5
1,8

—1v-1
Y1,11Y1,9 Y1,5
1,6

—1y -1y -1
Yl,11Y1,9 Y1,7 Y2,6

2,9

-1
Yz,lz

Ey(Ya0) = 77 (Yoo + Yog YisY13Yin + Y7 YiaYi10+ YooV Y Vi + Y Y Y Yo u Yo,
+Y27110Y1,9Yl,1 + 1/;3,4Y2T81 + }3,2137110}/1,91/1731 + Yflllyl,l + }/2781)/27110}/1,9)/1,7}/1,5 + }3,21/171113/1731
+Y2T81 Y1T111Yl,7 Yis + Y1T111 Yl?91Y1;5 + Y1T111 Yljgl Yl,_71Y2,6 + Y2T112)

We use the following relations to write Et(f’z,o) in R ; and in Ry 4: fil,zflzﬂ = fiz,»{fil,z, ‘/12’5./1217 =

Ap7As 5, A1 2A1,10 = A11041,2, Ao 541,10 = A1,10425.

E;(Y2,0) = Yoot : 172?61}71,5?1,3?1,1 : (1+tz‘~1f,é(1+tz‘~1f’i(1+tz‘~1ié)))+ : }72110371,9?1,1 : (1+tf~11_é)(1+tz‘11_j0)
+: Vo uVog o4 Vod Voo VioVi g Vs : (14 tAT (1 + tATE(1 + tAT8))) + Vo € By
=Y o(1+tA )+ V7 ViV o 4 : Yo Vi Y Vi 0 (14 tAg7)
+ eV VY VauYan : U+ A7) (L+ A7)+ Vi Vi o+ Yoo Vi ¥ig ¢ (14 8AS5)
+: Y/'1T111171T91f/1,5 it }71111?1?91?1?71?2,6 ((1+ tfiz_,sl;) € Rot
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NOTATIONS
A set of Y-monomials p 12 T map p 12
A? ' set of )y-monomials p 14 T map to Z p 11
AR B set of }j-monomials p 37 Ty, T endomorphisms of
Ofit product module p 25 Hn, Hi p7
«a map (I x Z)2 -7 p 12 q complex number p3
a(m) character p 36 Q(n) property of n € N p 28
a;[m] element of H p6 Rep Grothendieck ring p6
/L',l, /IZ ll elements of ), or V4 p7 Rep; deformed‘ .
A, AT elements of Y p9 Grothendieck rulg p 32
B ’ a set of Y-monomials p 12 s(mz) 7, 5(mr) sequences of Z[t¥] p 30
B;, By a set of Y-monomials p 12 ‘S:’ screen}ng operator p 17
(Bi;) symmetrized Sii screening current p 18

Cartan matrix p3 Sit t-screening operator  p 19

map (I x Z)? > Z p 12 t central element of J; p 11
(Cij) Cartan matrix D3 tr centr.al ‘el‘ement of Y, p8
(éi,j) inverse of C' p 4 Ui, 1 multiplicity of Y, p 12
Cr central element of H p6 Ui sum _Of the u; p 12
d bicharacter p 15 i subring of Q(q) p 4
Dk, D, set of monomials p 26 Uy (9) quantum
D, submodule of Yy p 26 . affine algebra p4
E;(m) element of §; p 17 Uy(h) Cartan algebra p4
E;4(m) element of ; b 21 Xy element of Rep p 6
E™ map D 25 yi[m] . element of H p6
E(m) element of & p 24 Yits il elements of Y P9
Ei(m) element of K%° p 28 Yi, Yy, elements of Y, or Y, p7
F;(m) element of R&; p 22 Yy subalgebra of Hp, p8
F;(m) element of &;, p 21 Vi quotient of Y, p 11
F(m) element of & p 24 AR subalgebras of H; p 11
F;(m) element of R%° p 26 Vu subalgebra of Hp, p8
Y map (I xZ)? = 7 pl1 Vit Yi-module p 19
H Heisenberg algebra p6 Vi Yy-module N p 19
HE,H™ subalgebras of 1 p7 o, yihee submodules of A p 25
Hn formf'jtl series in H p7 VA, y:l,K submodules of V), p 25
Hi _ quotient of Hr pl1l z indeterminate p3
HT H; subalgebras of H; p 11 .. endomorphism of
Ri, R, R subrings of Y p1l7 H, Hp, Y, Vi p 10
Rit, Ry, R  subrings of )y p 20 " deformed

i 87, R° subrings of i P 25 multiplication p 34

Xaq morphism

of g-characters P
Xa.t morphism

of g, t-characters p 32
L;(m) element of R; p 18
Li(m) element of Kg° p 37
im monomial in A p 10
m monomial in A pl4

N, Ny, N,N; characters, bicharacters p 13
P(n) property of n € N p 26



46

(1]
(2]
(3]

[4]
(5]

[6]

[7
18

9

[10]
[11]
[12]
[13]
[14]

[15]

DAVID HERNANDEZ

REFERENCES

N. Bourbaki, Groupes et algébres de Lie
Chapitres IV-VI, Hermann (1968)

V. Chari and A. Pressley, Quantum affine algebras and their representations
in Representations of groups (Banff, AB, 1994),59-78, CMS Conf. Proc, 16, Amer. Math. Soc., Providence, RI (1995)

V. Chari and A. Pressley, A Guide to Quantum Groups
Cambridge University Press, Cambridge (1994)

E. Frenkel and N. Reshetikhin, Deformations of W -algebras associated to simple Lie algebras

Comm. Math. Phys. 197, no. 1, 1-32 (1998)

E. Frenkel and N. Reshetikhin, The g-Characters of Representations of Quantum Affine Algebras and Deforma-
tions of W -Algebras

Recent Developments in Quantum Affine Algebras and related topics, Cont. Math., vol. 248, pp 163-205 (1999)

E. Frenkel and E. Mukhin, Combinatorics of q-Characters of Finite-Dimensional Representations of Quantum
Affine Algebras
Comm. Math. Phy., vol 216, no. 1, pp 23-57 (2001)

E. Frenkel and E. Mukhin, The g-characters at roots of unity
Adv. Math. 171, no. 1, 139-167 (2002)

D. Hernandez, t-analogues des opérateurs d’écrantage associés auz g-caractéres
Int. Math. Res. Not., vol. 2003, no. 8, pp 451-475 (2003)

V. Kac, Infinite dimensional Lie algebras
3rd Edition, Cambridge University Press (1990)

D. Kazhdan and G. Lusztig, Representations of Cozeter Groups and Hecke Algebras
Inventiones math. 53, pp. 165-184 (1979)

H. Nakajima, t-Analogue of the q-Characters of Finite Dimensional Representations of Quantum Affine Algebras
“Physics and Combinatorics”, Proc. Nagoya 2000 International Workshop, World Scientific, pp 181-212 (2001)

H. Nakajima, Quiver Varieties and t-Analogs of q-Characters of Quantum Affine Algebras
Preprint arXiv:math.QA/0105173

H. Nakajima, t-analogs of q-characters of quantum affine algebras of type Arn, Dn
Preprint arXiv:math.QA /0204184

M. Rosso, Représentations des groupes quantiques
Séminaire Bourbaki exp. no. 744, Astérisque 201-203, 443-83, SMF (1992)

M. Varagnolo and E. Vasserot, Perverse Sheaves and Quantum Grothendieck Rings
Preprint arXiv:math.QA /0103182

Davip HERNANDEZ: EcoLE NORMALE SUPERIEURE - DMA, 45, Rue p’ULm F-75230 PARIS, Cepex 05 FRANCE

E-mail address: David.Hernandez@ens.fr, URL: http://www.dma.ens.fr/~dhernand



