THE {-ANALOGS OF ¢-CHARACTERS AT ROOTS OF UNITY FOR QUANTUM

AFFINE ALGEBRAS AND BEYOND

DAVID HERNANDEZ

ABsTRACT. The g-characters were introduced by Frenkel and Reshetikhin [FR2] to study finite dimen-
sional representations of the untwisted quantum affine algebra Uy (g) for ¢ generic. The e-characters at
roots of unity were constructed by Frenkel and Mukhin [FM2] to study finite dimensional representations
of various specializations of Uy (§) at ¢° = 1. In the finite simply laced case Nakajima [N2][N3] defined
deformations of g-characters called g, t-characters for g generic and also at roots of unity. The definition
is combinatorial but the proof of the existence uses the geometric theory of quiver varieties which holds
only in the simply laced case. In [He2] we proposed an algebraic general (non necessarily simply laced)
new approach to g, t-characters for g generic. In this paper we treat the root of unity case. Moreover we
construct g-characters and g, t-characters for a large class of generalized Cartan matrices (including finite
and affine cases except Agl), Ag)) by extending the approach of [He2]. In particular we generalize the
construction of analogs of Kazhdan-Lusztig polynomials at roots of unity of [N3] to those cases. We also
study properties of various objects used in this article : deformed screening operators at roots of unity,
t-deformed polynomial algebras, bicharacters arising from symmetrizable Cartan matrices, deformation
of the Frenkel-Mukhin’s algorithm.
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V.G. Drinfel’d [D1] and M. Jimbo [J] associated, independently, to any symmetrizable Kac-Moody
algebra g and any complex number ¢ € C* a Hopf algebra U, (g) called quantum group or quantum

Kac-Moody algebra.

First we suppose that ¢ € C* is not a root of unity. In the case of a semi-simple Lie algebra g of rank n,
the structure of the Grothendieck ring Rep(U,(g)) of finite dimensional representations of the quantum
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finite algebra U, (g) is well understood. It is analogous to the classical case ¢ = 1. In particular we have
ring isomorphisms:
Rep(U,(9)) =~ Rep(g) ~ Z[A)Y ~ Z[T, ..., T,)

deduced from the injective homomorphism of characters x:

(V) = 3 dim(Va)A

AEA
where V) are weight spaces of a representation V' and A is the weight lattice.

For the general case of Kac-Moody algebras the picture is less clear. The representation theory of the
quantum affine algebra U,(g) is of particular interest (see [CP1], [CP2|). In this case there is a crucial
property of U,(g): it has two realizations, the usual Drinfel’d-Jimbo realization and a new realization
(see [D2] and [Be]) as a quantum affinization of the quantum finite algebra U,(g).

To study the finite dimensional representations of U,(g) Frenkel and Reshetikhin [FR2| introduced g-
characters which encode the (pseudo)-eigenvalues of some commuting elements in the Cartan subalgebra

U, (h) C Uy(g) (see also [Kn]). The morphism of g-characters is an injective ring homomorphism:
Xq : Rep(Uy(8)) — Z[Y;;)ier,acce

where Rep(U,(§)) is the Grothendieck ring of finite dimensional (type 1)-representations of U,(§) and
I ={1,...,n}. In particular Rep(U,(§)) is commutative and isomorphic to Z[X; )icr,acc*-

The morphism of g-characters has a symmetry property analogous to the classical action of the Weyl

group Im(y) = Z[A]": Frenkel and Reshetikhin [FR2| defined n screening operators S; and showed that

Im(x4) = (N Ker(S;) for g = sla. The result was proved by Frenkel and Mukhin for all finite g in [FM1].
iel

In the simply laced case Nakajima [N2|[N3| introduced t-analogs of g-characters. The motivations are
the study of filtrations induced on representations by (pseudo)-Jordan decompositions, the study of the
decomposition in irreducible modules of tensorial products and the study of cohomologies of certain quiver
varieties. The morphism of g, t-characters is a Z[t*]-linear map

Xq.t : Rep(Uy(9)) — Z[Yi,iaa ti]iel,aGC*

which is a deformation of x, and multiplicative in a certain sense. A combinatorial axiomatic definition
of ¢,t-characters is given. But the existence is non-trivial and is proved with the geometric theory of
quiver varieties which holds only in the simply laced case.

In [He2| we defined and constructed g, t-characters in the general (non necessarily simply laced) case with
a new approach motivated by the non-commutative structure of Uy(h) C U, (§), the study of screening
currents of [FR1] and of deformed screening operators S; ; of [Hel]. In particular we have a symmetry
property: the image of x4+ is a completion of (| Ker(S; ).

iel
The representation theory of the quantum affine algebras U, (g) depends crucially whether ¢ is a root of
unity or not (see [CP3]). Frenkel and Mukhin [FM1] generalized g-characters at roots of unity : if € is a

stP-primitive root of unity the morphism of e-characters is:
Xe : Rep(U*(8)) — Z[Y;,lier acc

where Rep(U!°*(g)) is the Grothendieck ring of finite dimensional (type 1)-representations of the restricted
specialization U *°(g) of Uy(g) at ¢ = €. In particular Rep(U!**(g)) is commutative and isomorphic to
Z( X aliel,aeccH-

Moreover x. can be characterized by

Xe( H Xj;zl) = Ts(Xq( XZ;L[”))
i€l,l€L/sT. i€I,0<I<s—1
where 7 : Z[Y;)iqz]ieLleZ — Z[Yil]iej,lez/sz is the ring homomorphism such that TS(YSZZ) = Yiim (for

| € Z we denote by [I] its image in Z/sZ).
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In the simply laced case Nakajima generalized the theory of g, t-characters at roots of unity with the help
of quiver varieties [N3].

In this paper we construct g, t-characters at roots of unity in the general (non necessarily simply laced)
case by extending the approach of [He2]. As an application we construct analogs of Kazhdan-Lusztig
polynomials at roots of unity in the same spirit as Nakajima did for the simply laced case. We also study
properties of various objects used in this paper: deformed screening operators at roots of unity, t-deformed
polynomial algebras, bicharacters arising from general symmetrizable Cartan matrices, deformation of
the Frenkel-Mukhin’s algorithm.

The construction is also extended beyond the case of a quantum affine algebra, that is to say by replacing
the finite Cartan matrix by a generalized symmetrizable Cartan matrix: the construction of g-characters
as well as g, t-characters (generic and roots of unity cases) is explained in this paper for (non necessarily
finite) Cartan matrices such that ¢ # j = C; ;C;; < 3 (it includes finite and affine types except Agl), A§2 ).
The notion of a quantum affinization is more general than the construction of a quantum affine algebra
from a quantum finite algebra: it can be extended to any general symmetrizable Cartan matrix (see [N1]).
For example for an affine Cartan matrix one gets a quantum toroidal algebra (see [VV1]). In general a
quantum affinization is not a quantum Kac-Moody algebra and few is known about the representation
theory outside the quantum affine algebra case. However for an integrable representation one can define
g-characters as Frenkel-Reshetikhin did for quantum affine algebras. So the g-characters constructed in
this paper for some generalized symmetrizable Cartan matrix are to be linked with representation theory
of the associated quantum affinization. We will address further developments on this point in a separate
publication.

This paper is organized as follows: after some backgrounds in section 2, we generalize in section 3 the
construction of ¢t-deformed polynomial algebras of [He2] to the root of unity case. We give a “concrete”
construction using Heisenberg algebras. We show that this twisted multiplication can also be “abstractly”
defined with two bicharacters dy, d2 as Nakajima did for the simply laced case (for which there is only
one bicharacter di = ds).

In section 4 we remind how ¢, t-characters are constructed for ¢ generic and C finite in [He2]. We extend
the construction of g-characters and of ¢, t-characters to symmetrizable (non necessarily finite) Cartan

matrices such that i # j = C; ;C;; < 3, in particular for affine Cartan matrices (except Agl) and AéQ)).
The ¢, t-characters can be computed by the algorithm described in [He2| which is a deformation of the
algorithm of Frenkel-Mukhin [FM1].

In section 5 we construct g, t-characters at roots of unity. Let us explain the crucial technical point of this
section: we can not use directly a t-deformation of the definition of Frenkel-Mukhin because there is no
analog of 75 which is an algebra homomorphism for the ¢-deformed structures. But we can construct 7, ¢
which is multiplicative for some ordered products (see section 5.2.1). In particular 7, ; has nice properties
and we can define x. ¢ such that “xc: = 75+ 0 xq,t". We give properties of x: analogous to the property
of x. (proposition 4.11, theorems 5.10 and 5.16). In particular in the ADFE-case we get a formula which
is Axiom 4 of [N3], and so the construction coincides with the construction of [N3] for the ADE-case.

In section 6 we give some applications about Kazhdan-Lusztig polynomials and quantization of the
Grothendieck ring. If C is finite the technical point in the root of unity case is to show that the algorithm
produces a finite number of dominant monomials. We give a conjecture about the multiplicity of an
irreducible module in a standard module at roots of unity. For the ADFE-case it is a result of Nakajima
[N3]. An analogous conjecture was given in [He2| for ¢ generic. We also study the non finite cases.

In section 7 we give some complements: first we discuss the finiteness of the algorithm; at ¢t = 1 it stops
if C' is finite and it does not stop if C' is affine. We relate the structure of the deformed ring in the affine
Agl)—case to the structure of quantum toroidal algebras. We study some combinatorial properties of the
Cartan matrices which are related to the bicharacters d; and dy (propositions 7.9, 7.11, 7.12 and theorem
7.10).
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For convenience of the reader we give at the end of this article an index of notations defined in the main
body of the text.

In the course of writing this paper we were informed by H. Nakajima that the t-analogs of g-characters
for some quantum toroidal algebras are also mentioned in the remark 6.9 of [N5]. This incited us to add
the construction of analogs of Kazdhan-Lusztig polynomials at roots of unity also in the non finite cases
(section 6.2.4).

Acknowledgments. The author would like to thank H. Nakajima for useful comments on a previous
version of this paper, N. Reshetikhin and M. Rosso for encouraging him to study the root of unity cases,
and M. Varagnolo for indications on quantum toroidal algebras.

2. BACKGROUND

2.1. Cartan matrices. A generalized Cartan matrix is C' = (C; j)1<i j<n such that C; ; € Z and:
Cii =2
i#j=0C; <0
Oi,j =0& Cj)i =0

Let I ={1,...,n}.

A 0
0 B
permutation matrix, A and B are square matrices. Otherwise C' is said to be indecomposable.

C is said to be decomposable if it can be written in the form C = P P~! where P is a

C is said to be symmetrizable if there is a matrix D = diag(ry,...,rn) (r; € N*) such that B = DC' is
symmetric. In particular if C' is symmetric then it is symmetrizable with D = I,,.

If C is indecomposable and symmetrizable then there is a unique choice of rq,...,7,, > 0 such that

r1 A ... A1y, = 1: indeed if C;; # 0 we have the relation r; = g’f’f Tj.
1,7

In the following C' is a symmetrizable and indecomposable generalized Cartan matrix. For example:
C is said to be of finite type if all its principal minors are positive (see [Bo] for a classification).

C' is said to be of affine type if all its proper principal minor are positive and det(C) = 0 (see [Ka] for a
classification).

Let ¥ = max{r; —1—Cj;)/i # j} U{1}. If C is finite we have r¥ = max{r;/i € I} = max{—C; ;/i # j}.
In particular if C is of type ADE we have ¥ = 1, if C' is of type BiC;Fy (I > 2) we have r¥ = 2, if C of
type G2 we have rV = 3.

Let z be an indeterminate and z; = 2". The matrix C(z) = (C;,;(2))1<i,j<n With coefficients in Z[z*] is
defined by C; ;(2) = [2]., = zi + zi_l and C; ; = [C; ], for i # j where for [ € Z, we use the notation:

2=z I+1 1+3 -1
(=278 4 4 for 1 >1)

[ =
Let B(z) = D(z)C(z) where D(z) is the diagonal matrix D; ;(z) = 0, ;[r:]., that is to say B, ;(z) =
[ri]=Ci 3 (2)-

In particular, the coefficients of C(z) and B(z) are symmetric Laurent polynomials (invariant under
—1
z 27,

z—z"1

In the following we suppose that det(C(z)) # 0. It includes finite and affine Cartan matrices (if C is of

type Agl) we set 71 = ro = 2) and also the matrices such that ¢ # j = C;;C;; < 3 which will appear
later (see lemma 6.9 and section 7.3 for complements).
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2.2. Quantum affine algebras. In the following ¢ is a complex number ¢ € C*. If ¢ is not a root of
unity we set s = 0 and we say that ¢ is generic. Otherwise s > 1 is set such that ¢ is a s primitive root
of unity.

We suppose in this section that C' is finite. We refer to [FM2] for the definition of the untwisted quantum
affine algebra U,(g) associated to C (for g generic) and of the restricted specialization U (g) of Uy (g) at
q = € (for € root of unity).

We briefly describe the construction of U!**(g) from U,(g): we consider a Z[q, ¢~ ']-subalgebra of U,(g)

+

containing the (z)(") = % (where [r]4! = [r]q[r — 1]4..-[1]4) for some generators -, and we set ¢ = e.

One can define a Hopf algebra structure on U, (g) and U}°(g), and so we consider the Grothendieck ring
of finite dimensional (type 1)-representations: Rep(U,(g)) and Rep(U(g)).

The morphism of g-characters x, (Frenkel-Reshetikhin [FR2]) and the morphism of e-character x.
(Frenkel-Mukhin [FM2]) are injective ring homomorphisms:

Xq : Rep(Uy(8)) — Z[Y; lieraecr » Xe : RepUE™(8)) — Z[Y, 5 lier.aec
In particular Rep(U,(g)) and Rep(U4*(g)) are commutative and isomorphic to Z[X; qlicr,acc-
Frenkel and Mukhin [FM1|[FM2| have proven that for i € I, a € C*:

Xq(X ) € Z[Y; ,aq™ ]1€I7m€Z and Xe(Xz ) € Z[Y; aEM]zEI meZ

Indeed it suffices to study (see [He2] for details):
:Rep = Z[X; 1)icricz = Y = Z[Y licriez
(where X;; = X, 1, Y& = Yi ) and:

i,qts il
:Rep® = Z[Xilicrezysz — V° = LY icriez/s2
(where X;; = X; 2, Y5 = Yj;)

3. t-DEFORMED POLYNOMIAL ALGEBRAS

3.1. The t-deformed algebra )75. In this section we generalize at roots of unity the construction of
[He2] of t-deformed polynomial algebras.
3.1.1. Construction. In this section we suppose that B(z) is symmetric.

Definition 3.1. H is the C-algebra defined by generators a;[m),y;[m] (i € I,m € Z — {0}), central
elements ¢, (r > 0) and relations (i,5 € I,m,r € Z — {0} ):

(1) [ai[m]7 a; [T]] = 5m,7r(qm - qim)Bi,j (qm)clm\
(2) [ai[m], y;[r]] = (@™ — ¢~ """ )0m,—r0i jClm|
(3) lys[m], y;[r]] = 0

Let Hy, = H[[h]]. For i € I, | € Z/sZ we define Y%, A i € H), such that:

Yoo =exp( Y B yi[m])exp( Y b yi[—ml)
m>0 m>0

Ay = exp(z h™q ™ a;[m)])exp( Z g~ a;[—m])
m>0 m>0

ty=exp(Y_B*"q"™en)

m>0
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and for R = " R;2! € Z[z7):
l€zZ

tr = Hthl = exp( Z R R(q"™)em) € Ha

lEZ m>0

Note that the root of unity condition, that is to say s > 1, is a periodic condition (ﬁ-)lﬂ = }7”)
Lemma 3.2. ([He2|) We have the following relations in Hy, :

i i-lv-1

A YAy Y = Ts, (amri—emi)(— 20—k 4260
A A AT AT = ¢

SEEGRELL gk T PBi (2) (77 =) (m2 (7 2 h)

Definition 3.3. jij is the Z-subalgebra of Hy, generated by the ﬁ,l,fl;’ll, ty iel,lel/Z).

Note that if s > 1, the elements fl;olflfllflfl and 571',0}7}71...}71',8,1 are central in J>u

1,5—1
Definition 3.4. V§ is the quotient-algebra of Y by relations t; = 1 if | € Z./sZ — {0}.

We keep the notations }71-,1, fli_ll for their image in )>t5. We denote by t the image of to = exp( Y. h?™c,,)
’ m>0

in V. In particular the image of ¢y is t%°. We denote by )} = Y9 the algebra in the generic case.

3.1.2. Structure. For a,b € Z/sZ, let 0, =1 if a =b and §,p = 0 if a # b.
The following theorem gives the structure of :)75:
Theorem 3.5. The algebra jif is defined by generators ﬁ,l,figll,ti (i € I,l € Z/sZ) and relations
(i,j el kleZ/sZ):
Y Yk =Y 1Y,

A;llg;é _ ta(i,hj,k)jl;]ig;ll

Yj,klei—,ll = tﬁ(iylyjyk)A;llffj,k
where a, B3 : (I x Z/sZ)? — Z are given by (I,k € Z)sZ, i,j € 1):

ali, i k) = 2(01—k,—2r; — O1—k,2r;)
a(i,1,j,k) =2 > (Or—krrs = Oi—trr,) (if i #5)
r:Ci,j+1,Ci,j+3,...,—Ci,j—1
B, 1, 3, k) = 20i j(—= 01—k, + 01—k, —r;)

Note that for ¢,j € I and I,k € Z/sZ we have a(i,1,7,k) = —a(j, k,i,1) and 8(3,1, j, k) = —B(J, k, i,1).

This theorem is a generalization of theorem 3.11 of [He2|. It is proved in the same way except for lemma
3.7 of [He2| whose proof is changed at roots of unity: for N > 1 we denote by Zy[z] C Z[z] the subset
of polynomials of degree lower that N. The following lemma is a generalization of lemma 3.7 of [He2] at
roots of unity :

Lemma 3.6. We suppose that s > 1. Let J = {1,....;r} be a finite set of cardinal v and A be the
polynomial commutative algebra
A = C[N\jmljesm>0. For R = (R1,...,R;) € Zs_1[z]", consider:

Ar=emp( Y K R;(¢™)Ajm) € A[[R]]
JEI,Mm>0

Then the (AR)rez. [z are C-linearly independent. In particular the Aj; = M, o210,..0 ( € 1,
0 <1< s—1) are C-algebraically independent.
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Proof: Suppose we have a linear combination (ur € C, only a finite number of up # 0):
Z purAR =0
ReZs_1[2]"

In the proof of lemma 3.7 of [He2] we saw that for N >0, j1,....,55 € J, l1,...,In >0, a1, ...,an € C we

have:

Z pr =0

Re€Zs 1[2]"/Rj, (¢'1)=au,...,Rj y (¢'R)=an
We set N = sr and
((jlv ll)a ooy (.jNv ZN)) = ((17 1)a (17 2)a ey (17 5)7 (27 1)a ey (27 5)7 (3a 1)7 ceey (Tv 5))

We get for all aj; € C (j € J,1 <1< L):

Z pr =10

REZs—1[2]" /Vj€J1<I<s,R; (¢") =01

It suffices to show that there is at most one term is this sum. But consider P, Q € Z,_1[z] such that for
all 1 <1<s, P(¢") = P'(¢"). As q is primitive the ¢’ are different and so P — P’ = 0. O

3.2. Bicharacters, monomials and involution.

3.2.1. Presentation with bicharacters. The definition of the algebra :)75 with the Heisenberg algebra H
is a “concrete” construction. It can also be defined “abstractly” with bicharacters in the same spirit as
Nakajima [N3] did for the simply laced case :

We define 7y as the algebra homomorphism:
m o Y= V=2V, A Nieriezysz

such that 7T+(}7ﬁ) =v* 7T+(Ai:l) = Afl and 7 (t) = 1 (V* is commutative).

i

We say that m € J>f isa :)A)f—monomial if it is a product of the fl;ll, ffi,l, t*. For m a yf—monomial, iel,

| € Z/sZ we define y; 1 (m),vi1(m) > 0 such that w7y (m) = [ YJ"A; """, In order to simplify the
i€l,l€L/sT
formulas for a Laurent polynomial let P(z) = . Piz* € Z[2*] (i € 1,1 € Z/s7Z):
kEZ
(P(2)opVin(m) = Pivi i (m)
kEZ

We define u; ;(m) € Z by :
wig(m) = yig(m) = > (Ci;(2))opVja(m)

jel

In particular if C; ; = 0 we have u”(ﬁ;;) =0andif C;; <O:

wii(A53) = =([Ciglo)opVia (A ) = > Oltr,k
r:Ci,j—i-l,,,—C’i,j—l

In the ADE-case the coefficients of C' are —1,0 or 2, and we have the expression:

wig(m) = yig(m) = [z + 2" opVia(m) + Y vja(m)

JEI/C; j=—1
= yia(m) —vigpa(m) —viga(m)+ > wu(m)
JEI/Cy j=—1

which is the formula used in [N3].
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Definition 3.7. For mq,ms yf-monomials we define:

dy(my,ma) = > viagr, (ma)uii(ma) + Yiggr, (m1)vi g (mo)
i€1,IEL/SL

da(mi, mg) = Z Wi 1 (M) 0,1 (M2) + V4 14, (M) Y5 1 (M2)
i€1,IEL/ST

For m a Yf-monomial we have always dy (m,m) = dy(m,m) (see section 7.3). In the ADE-case we have
dy = dy and it is the bicharacter of Nakajima [N3].

Proposition 3.8. For my, my Vi -monomials, we have in Yy :

— t2d1 (m1 7m2)72d2 (mz 5 — t2d2 (m1 7m2)72d1 (mz 77TL1)

mima ™) mgmy mamy

Proof: First we check that mqmeg = ¢2@1(m1,m2)=2d2(m2,m1) o1 on generators:
2dy (A7 A = 2da(A7 N AT = 2ui0 0 (A7) = 20 04r, (A7) = 2(01- k20, — O1-k2r,) = (i, 1,0, k)
2dy (A7) AT L) = 2da (A Al ) = 2ui 00, (A7) = 2ui000, (A7) = i1, i )
2d,(A;]Y; k) = 2dy(Yyhy A7) = 2ui 0, (Vi) = 2014, (Yin) = =B, 1, 5, k)
2d1 (Yig, A ) = 2d2(A7 5, Yia) = 20000, (A7) = 20004 (A7) = =B, 1,4, k) = Bj ki
The other equality mimeo = 2d2(m1,m2)=2d1(m2,m1) 1 0m, is checked in the same way. O

If B(z) is not symmetric, the product is defined in section 7.3.4.

3.2.2. Inwolution. We consider the Z[t*]-antilinear antimultiplicative involution of 37,55 such that }7}71 =
Vo A = A 1=t

In [He2] we gave a “concrete” construction of this involution for the generic case: in )>u the involution is
defined by ¢, — —cim-

Lemma 3.9. There is a Z[t*]-basis A° of J>f such that all m € A" is a J>f -monomial and:
m = t2di(mem), — 42da(mm) g,

Moreover for my,mg € A° we have mymat %1 (m1,m2)—dz(m1,mz2) ¢ A°.
Proof: For the first point it suffices to show that for m a ﬁf—monomial there is a unique o € Z such

that 70m = 2 (mm)ten, that is to say for m a Ys-monomial we have mm ' € t22. This is proved as
in lemma 6.12 of [He2].

For the second point we compute:

t—d1(ma,ma)—da(mi,ma) gy = ¢d1(mime)+da(me,me)mem—
— t2d1(m2,m2)+2d1(7n1,m1)+d1(7n1,m2)+d2(7n1,m2)m2m1
— t2d1(m2,m2)+2d1(7n1,m1)+2d1(m2,m1)+d1(7n1,m2)—d2(m1,

— t2d1(mamz,mims) (t*dl (m1,mz)—dz2(m1,m2)

m2)myma

mlmg) O
For example we have }71-,1 c A’ (because dl( f z,Yi,l) =0) and if s = 0 or s > 2r; we have t/l;ll cA’
(because dl(A” ,A b= -1).

For mq,mo € A° we set my.mg = mqmet 4 (mim2)—da(mi,mz) A°. We have mi.mo = mo.m1. The non
commutative multiplication can be defined from . by setting (mq,ms € AS):

mymsy = tda(mi,mz)+dz(my,m2)

my.1mM9
In the AD E-case it is the point of view adopted in [N3]. In particular if s = 0 or s > 2r;, Y;; (resp. fl;ll)

is denoted by W;; (resp. t~1V;;) in [N3].
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Let 4 = A° and for s > 0 there is a surjective map p, : A — A~ such that for m € A, py(m) is the unique
element of A” such that for i € I, € Z/sZ:

yir(ps(m)) = > wia(m)  vialps(m)) = D vig(m)

vez/[=l rez/=l

In particular it gives a Z[t%]-linear map p, : Y, — V5.

3.2.3. Notations and technical complements. A )A)ts—monomial is said to be i-dominant (resp.
i-antidominant) if VI € Z/sZ, u;;(m) > 0 (resp. u;;(m) < 0). We denote by B; the set of i-dominant
monomials m such that m € A°.

A Yj-monomial is said to be dominant (resp. antidominant) if VI € Z/sZ,Vi € I, u;;(m) > 0 (resp.
u;(m) < 0). We denote by B” the set of dominant monomials m such that m € A°. In the generic case
let A=A", B, =B, B=B".

We denote by As = {m = I1 YZJ;’LA;lw’l/ui,l, v >0} C Y* the set of Y*-monomials. It is a Z-basis
i€l,1€L /T
of ¥* and 7, (A°) = A®. Let Bf = {m € AVl € Z/sZ,u;,(m) >0} =7 (B;), B = B =7, (B).
icl

We define 1T : ﬁf — Y5 = Z[}/,L-fll:]iej,lez/sz as the ring morphism such that for m a Y,-monomial f[(m) =

I1 Y;fli’l(m) (Y?® is commutative).
i€1,l€L/ST

In particular for ¢ € I, | € Z/sZ, we have:

T NS R | .
WA =Yl Yas,, 11 11 Yisan
3/Cj,:<0k=Cj:+1,C;5+3,...,—Cji—1

and we denote this term by A} =TI(A;}). Let A°* = {m =[] Yﬁli’l(m)/ui,l(m) ez} =TI(A%)
i€l €/sT
the set of Ys-monomials, Bf = {m € A% /¥l € Z/sZ,u;;(m) > 0} = II(B;), B> = N B = [I(B").
iel

If ¢ is generic then for M € A and m € A there at most one m’ € A° of the form m/ = t*M AL .. A}

41,01 KUK
such that II(m’) = m (the A;ll are algebraically independant because we have supposed det(C(z)) #0 ,
see [He2)).

If ¢ is a root of unity the situation can be different: for example we suppose that C' is of type Aél) and
s =3 (so det(C(q)) = ¢ 3(¢®> — 1) = 0). Then for all L > 0, we have:

(V0471 A3 45 5) = Yig
and I171(Y} o) is infinite.
If C is finite the situation is better. We have a generalization of lemma 3.14 of [He2] at roots of unity:

Lemma 3.10. We suppose that C is finite and that s > 1. Let M be in A°. Then:

i) There is at most a finite number of m' € A° of the form m/ = tO‘MA;’lll...A;KlJK such that m' is
dominant.

i) For m € A there is at most a finite number of m' € A" of the form m' = tO‘MAi_llll...A;{l’lK such
that TI(m') = m.

Proof:  First let us show (i) : let m/ be in A° with m/ =t*M [[ A, "' and the v;; > 0. Tt suffices
i€LIEZ/sZ
to show that the condition m’ dominant implies that the v; = > wv;,; are bounded (because Z/sZ is
U'€L/SL
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finite). This condition implies :
ul(m’) = —2vu; + Z(—C’i,jvj) + ul(M) >0
J#i
Let U be the column vector with coefficients (u1 (M), ..., un(M)) and V' the column vector with coefficients

(V1 .y Up). So we have U — CV > 0. As C is finite, the theorem 4.3 of [Ka| implies that C~1U —V >0
and so the v; are bounded.

For the (i7) we use the same proof with the condition :

wi(m') = =2v; + Y _(=Cijv;) + us(M) = u;(m)
i

In some cases we have another result. For ¢ € I let L; = (C; 1, ..., Ci n).

Lemma 3.11. We suppose that s > 1 and that there are (a;)icr € Z' such that a; > 0 and:

Zaij =0

jel
Then for M € A® there are at most a finite number of dominant monomials m € B?® of the form
m=MA Y AL LAY

41,017 T2, ls T Nl

In particular an affine Cartan matrix verifies the property of the lemma (see [Ka] for the coefficients «;).

Proof: Consider m’ = I Ai_lv'i’l and m=Mm'. ForieIletv,= >, wv;; >0. We have:
i€l /st l€Z/sZ
Zaiui(m’) = Zaiz(_ci’j)vj = —Z’l}j (ZaiCi7j) =0
il iel  jel jel  iel

We suppose that m is dominant, in particular u,; ;(m’) > —u; (M). So:

wi(m') = wi(m') — Z wip(m') <u;(m') + Z ug (M)

I'€Z) ST, #l I'€L) ST, #l
1 1

< 2 aiCwm A+ Y wr(M) S =3 (M) + Y uie(M)
i Ve€Z/ST,l'#1 i V'E€Z/ST,l'#1

So the u; (m’) (i € 1,1 € Z/sZ) are bounded and there is at most a finite number of m’ such that m is
dominant. 0

4. q,t1-CHARACTERS IN THE GENERIC CASE

In [He2] we defined g, t-characters for all finite Cartan matrices in the generic case. In this section
we define ¢ and ¢, t-characters for all symmetrizable (non necessarily finite) Cartan matrix such that

i # 3= C;;C;; <3, in particular for Cartan matrices of affine type (except Agl), A§2)). We suppose
s = 0, that is to say g is generic. The root of unity case will be studied in section 5.

4.1. Deformed screening operators. Classical screening operators were introduced in [FR2] and t-
deformed screening operators were introduced in [Hel] for C finite. We define and study deformed
screening operators in the general case:

Definition 4.1. jim 1s the )A/u—bimodule defined by generators S’i,l (i € 1,1 € Z) and relations :
gi,z[lﬁ = Lcw.(Z)(Z<k—z>+Z<L—k>)x‘i}7;§i,z
SiaYk = tgw.(z<k—1>+z<z—k>)5~/j,k§i,z , Sigt =18,
S —2T¢71A;llgi7l+m =0

SiJ*T‘i - t—q
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In [He2] we made a concrete construction of yz « by realizing it in Hh Note that :))t is a yu bimodule
using the projection yu — yt

Definition 4.2. yi,t is the Y;-bimodule Y, Xy, j}1u ®y. V.

For | € Z we denote by S'i)l the image of S'i)l in JZt The yt—module jii,t is torsion free.

For m a Y?-monomial only a finite number of [S; ;,m] = (t2 — 1)¢%:(™ =1y, 1(m)];S;; € (t2 — 1)Y;, are
not equal to 0, so we can define:

Definition 4.3. The ith—deformed screening operator is the map S; 4 jit — )A/i,t defined by (A € )>t)

1
Si,t(A): t2—1z[ il ]Eyzt
lez

Let fﬁ,t = Ker(S;+). As S;; is a derivation, fﬁ,t is a subalgebra of Y.
At t =1 wedefine S; : Y — Vi = @BYVSit/ D V(Sii—r; — A;IISMM) such for m € A, S;(m) =
ez IEZ ’

m Y u;(m)S;;. Tt is the classical screening operator (see [FR2|). For m € Y; we have S;(II(m)) =
l€zZ

fI(Si,t(m)) where 11 : )A/lv,t — Y, is defined by ﬂ(mgi,l) = f[(m)Slv,l
We set 8; = Ker(S5;) and £ = [ K.

el

In the following a product [][ M; (resp. [] M;) is the ordered product ..M_oM_1 MoM...
lEZ LEZ
(resp. ...MQMlMoM_l...).

Definition 4.4. For M € J>t a i-dominant monomial we define:

H uzl(M) lH il 1+tAzl+r ))uz,l(M) E:)A)t

IEZ leZ

For example we have Elt(ff 1) = Y (1 + tAZ D ), E@t(le;ll}}@lﬂiﬁ,l,”) A NZ l+r,Yzl r and for
J#i Bi) = Yia.

Theorem 4.5. ([Hel|) For all Cartan matriz C, the kernel R;; of Siy is the Z[t]-subalgebra of Y,
generated by the (1 € Z,5 #1i):

Vi (1+tA7} D) Ai_,llﬁurﬂ}i,lfm Y, Ei,t(A;ll)

Note that the proof of [Hel] works also if C' is not finite : the point of this proof is that an element
X € Ri — {0} has at least one i-dominant monomial, which is shown as in the sls-case.

At t =1 it is a classical result of [FR2].

Note that in the ADE-case the identification (see section 3.2.2) between the tfl;ll and the V;; shows that
the notation R;; coincides with the notation of [N3].

4.2. Reminder on the algorithm of Frenkel-Mukhin and on the deformed algorithm.
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4.2.1. Completed algebras. Let & = N Ker(S;:) C V,. Tt is a subalgebra of ).
i€l

We recall that a partial ordering is defined on the )A)t—monomials by m € thl; llm’ Sm<m.

We define a N-graduation of Y, by putting deg([l;ll) =1, deg(ffi)l) = 0. Note that m < m’ = deg(m) >
deg(m’).

We define the algebra )730 D) jit as the completion for this gradation. In particular the elements of )730
are (infinite) sums > Ax such that A\ is homogeneous of degree k.

k>0
In the same way we define ﬁf‘; such that )750 D) .f;l{“;; D) .Q',t, that is to say x € JA);X’ is in ﬁf‘; if and only if
it is of the form x = > xi where:
k>0
Xk € b Lt E; (M)
MEB; /deg(M)=k
Let &2 = ] &3.
iel

In tpe same way for ¢ = 1 we define 3700 D) JA), Yy DY, P! ﬁ, R D K. They are well defined because
in ) and in Y the A;ll are algebraically independent (see section 3.2.3) and 7 preserves the degree. In

particular the maps 7 and II can be extended to maps T4 : )2?" — Y% and IT : jifo — Y.
For m a Y;-monomial let u(m) = max{l € Z/Vk < Vi € I,u;(m) = 0}. We define the subset C'(m) C 4
C(m) = {t*!mAY, A1 /N >0,l1,..,Iy >u(m)}NA

1,017 NN
We define the Z[t*]-submodule of Jp°:
Clm)={xe¥V/x="Y_ Aw(t)m'}

m’eC(m)

Lemma 4.6. An element of R2° — {0} has at least one dominant monomial. An element of & — {0} has
at least one dominant monomial and one antidominant monomial.

Proof: For x € f{too let M be a maximal monomial of y. Then in the decomposition x = > X,(f) where
E>0
x,(f) € éh Z[ti]Em(M) we see that M is i-dominant.
M€eB; /deg(M)=k

For x € R, we can consider a maximal and a minimal monomial, and so we have a dominant monomial
and an antidominant monomial in x. O

4.2.2. Algorithms. In [He2] we defined a deformed algorithm to compute g, t-characters for C finite. We
had to show that this algorithm is well defined, that is to say that at each step the different ways to
compute each term give the same result.

The formulas of [He2| gives also a (non necessarily well defined) deformed algorithm for all Cartan
matrices, that is to say:

Let m € B. If the deformed algorithm beginning with m is well defined, it gives an element F}(m) € £5°
such that m is the unique dominant monomial of F(m).

An algorithm was also used by Nakajima in the ADFE-case in [N2]. If we set ¢ = 1 and apply II (where 11
is defined in section 3.2.3) we get a classical algorithm (it is analogous to the algorithm constructed by
Frenkel and Mukhin in [FM1]). So:

Let m € B. If the classical algorithm beginning with m is well defined, it gives an element F'(m) € £
such that m is the unique dominant monomial of F'(m).
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We say that the classical algorithm (resp. the deformed algorithm) is well defined if for all m € B (resp.
all m € B) the classical algorithm (resp. deformed algorithm) beginning with m is well defined.

Lemma 4.7. If the deformed algorithm is well defined then the classical algorithm is well defined.

Proof: If the deformed algorithm loeginningAwiAth m is well defined then the classical algorithm beginning
with II(m) is well defined and F'(II(m)) = II(Fi(m)). O

The following results are known:
If C is finite then the classical algorithm is well defined ([FM1]).
If C is finite and symmetric then the deformed algorithm is well defined ([N3]).
If C is finite then the deformed algorithm is well defined ([He2]).

In this section (theorem 4.9) we show that the classical and the deformed algorithms are well defined for
a (non necessarily finite) Cartan matrix such that ¢ # j = C; ;C;,; < 3.

4.3. Morphism of ¢, t-characters. The construction of [He2] is based on the fact that we can compute
explicitly g, t-characters for the submatrices of format 2 of the Cartan matrix. So:

4.3.1. The case n = 2.

Proposition 4.8. We suppose that C is a Cartan matriz of rank 2. The following properties are equiv-
alent:

i) For allm € B, F(m) € R

ii) C is finite

iii) C1.2Ca1 < 3

w) Fori=1 or?2, & NC(Yo) # {0}

v) Fori=1 or 2, C(Yio) has an antidominant monomial

Proof: 'The Cartan matrices of rank 2 such that C 2Cs 1 < 3 are matrices of type A; x Ay, Aa, Ba, Cy,
G or GE. Those are finite Cartan matrices of rank 2, so (i) < (iii). Moreover if C' is finite, the classical
theory of g-characters shows (i) = (4).

We have seen in [He2| that (i7) = (iv). It follows from lemma 4.6 that (iv) = (v) and (i) = (v).

So it suffices to show that (v) = (ii7). We suppose there is an antidominant monomial m € C'(Y1,0). We
can suppose C1 2 < 0 and Co 1 < 0. m verifies II(m) = Yl,oAilll...Al’)llLAQ’)lll...A;}M where L, M > 0. In
particular we have:

ui(m) =1—2L— MCi 2 and ug(m) = —2M — LCs 1
As m is antidominant, we have uq(m), ug(m) <0.
if M =0, we have ug(m) = —LC31 < 0= L =0 and u;(m) =1 > 0, impossible.
if M > 0, we have:

L —
— Cua and £ < 2
M 2 M~ —Cy
—Cl 2 2
=< = (12051 <3
5 o 1,2021
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4.3.2. General case.

Theorem 4.9. Ifi# j = C;;C;; < 3, then the classical and the deformed algorithms are well defined.

Proof: Tt suffices to show that the deformed algorithm is well defined (lemma 4.7).We follow the proof
of theorem 5.13 of [He2|: it suffices to construct Fy(m) for m = Y; o (¢ € I) and it suffices to see the

. 2 Cij

property for the matrices v
Ti T
TiAT; ) TiATj

). If ; Ar; =1 this follows from proposition 4.8. If r; Ar; > 1 it

suffices to replace r;, r; with (in fact it means that we replace g by ¢"\"7). O

In the following we suppose that i # j = C;;C;; < 3. For example C could be of finite or affine type
(except Agl), Af)).

We conjecture that for C' of type Agl) (with 1 = ro = 2) and of type Af) the algorithms are well defined.
This conjecture is motivated by the remarks of the introduction about representation theory of quantum

affinization algebras (note that for C of type Agl) and r; = ro = 1 the classical algorithm is not well
defined).

4.3.3. Definition of xq:. We verify as in [He2| that Fy(Y;;)Fi(Yj,) = Fi(Yj1)Fi(Yiy). Let Rep =
Z[Xi)ier,1ez as in section 2.2 and a Rep-monomials is a product of the X ;.

Definition 4.10. The morphism of q,t-characters xq+ : Rep — f%,?o is the Z-linear map such that:

xai [T X000 =TIIIE ()™
icl,leZ leZiel

The morphism of q-characters x4 : Rep — K% is defined by xq = o Xq,t-

Theorem 4.11. ([He2]) The Z-linear map x4, : Rep — Ve° is injective and is characterized by the three
following properties:

1) For M a Rep-monomial define m = ] Yfli‘l(M) € B. Then we have :
iel,lez

Xqt(M) =m + Z Ay (1)Ym' (where am: (t) € Z[t*])
m/<m
2) The image Im(x,.) is contained in R5°.
3) Let My, My be Rep-monomials such that maz{l/> z;;(M1) > 0} < min{l/> x;;(Ms) > 0}. We

i€l i€l

Xaq,t (M1 M3) = xq,6(M1)xq,:(M2)

have :

Those properties are generalizations of Nakajima’s axioms [N3] for ¢ generic, so:

Corollary 4.12. If C is finite then we have my(Im(xq:)) C Y and Xq : Rep — Y is the classical
morphism of q-characters and x4, is the morphism of [He2|. In particular if C is of type ADE then x g4
is the morphism of q,t-characters of [N3].

5. €,t-CHARACTERS IN THE ROOT OF UNITY CASE

In this section we define and study e, t-characters at roots of unity: let € € C* be a s'-primitive root
of unity. We suppose that s > 2r".

The case t = 1 was study in [FM2] (but classical screening operators in the root of unity case were not
defined). The t-deformations were studied in the ADFE-case by Nakajima in [N3] using quiver varieties.
In this section we suppose that i # j = C; ;C;; < 3 and B(z) is symmetric. In particular C' can be of
finite type or of affine type (except Agl), Ag), [ > 1, see section 7.3.3). The deformed algorithm is well
defined and x4 ; exists (theorem 4.9).
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5.1. Reminder: classical e-characters at roots of unity. We define 7, : JJ — ) as the ring
homomorphism such that 7,(Y;;) = Y; j where for [ € Z we denote by [I] its image in Z/sZ.

If C is finite the morphism of e-characters x. : Rep® — Y? is defined by Frenkel and Mukhin (see section
2.2). We have the following characterization:

Theorem 5.1. ([FM2]) If C is finite, the morphism of e-characters x. : Rep® — Y* wverifies (lo € Z):
Xe( H ijl) = Ts(Xq( H XZli’m))

i€l l€L/ST i€l lo<I<lp+s—1

Note that this formula suffices to characterize the Z-linear map ..

If C is not finite, we can consider Y* = Z|Y;y, Ai_ll]ig,lez/sz and the completion JA)tSOO as in the generic
case. We define ¥, : Rep® — Y with the formula of the theorem 5.1. The map X. is also an injective
ring homomorphism.

In the following we give an analogous construction in the deformed case t # 1.

5.2. Construction of x.;. The point for the t-deformation is that we can not define a natural ¢-analog
of 7, which is a ring homomorphism. In this section we construct an analog 7, ¢ of 75 which is not a ring
homomorphism but has nice properties.

5.2.1. Definition of 7s;. First let us briefly explain how 7, is constructed. The main property is a
compatibility with some ordered products: suppose that I; > ls (I1,1l2 € Z), that m; € Y, involves only
the Y/i,lufi;zll and that ms involves only the }71-712,/1;[12. Then 75, is defined such that 74¢(mimsa) =
Ts,t(M1)Ts t(M2). Let us now write it in a formal way:

For m a JA)t—monomial and [ € Z, let :

Hy?h (m) HA v, L(m)
i€l el

It is well defined because for i,j € I and | € Z we have YiYir =YYy, A7 A7) = AZPAT) and for
i, Al Y=Y lA” (theorem 3.5).

Let m = Hm(m)7 m = [[m(m), and :
lEZ €L

A= {m/ m Y-monomial} and A= {m/ m Y;-monomial}
It follows from theorem 3.5 that A and A are Z[t¥]-basis of V.

Definition 5.2. We define 7., : Yy — V§ as the Z[t*)-linear map such that for m € A:
roe(m) = TLQLA; 35 )TV )
I€Z jeI jEI

Note that 7, is not a ring homomorphism and is not injective.

5.2.2. Definition of Xe:. We define a N-gradation of )A)ts, the completed algebra )A)ts " in the same way as
we did for the generic case (section 4.2.1). In particular 75 is compatible with the gradations of }; and
Vi and is extended to a map 7, : Y — V0.

Definition 5.3. The morphism of q,t-characters at the st"-primitive roots of unity Xet : Rep® — 3>f°°
is the Z-linear map such that:

Xe,t( H ijl) = To,t(Xq.t( H lew]))

i€l l€L/ST 1€],0<I<s—1
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Proposition 5.4. The morphism x.: verifies the following properties:

1) The following diagram is commutative:

Rep® Xes [m(Xe,t)

id | 1 Ty
Rep® Xe, :)75700
2) If C is finite we have 7y (Im(xc)) C Y and o xct = Xe.
3) The map X s injective.

(M)

4) For a Rep-monomial M define m =[] f’fll € B°. Then we have :

i€l l€Z/sT.

Xqt(M) =m + Z A ()M (where an (t) € Z[tF))
m/'<m

Proof:

1) Consequence of the definition and of (75¢)t=1 = 7s.

2) Consequence of (1) and of theorem 5.1.

3) Consequence of (1) and of the injectivity of ¥, (see section 2.2).

4) Consequence of the analogous property of x4+ (1. of theorem 4.11). O
Note that 2) means that in the finite case we get at ¢ = 1 the map of [FM1].

In the following we show other fundamental properties of x¢+ (theorem 5.10 and theorem 5.16).

5.3. Classical and deformed screening operators at roots of unity. We define classical and de-
formed screening operators at roots of unity in order to have an analog of the property 2 of theorem 4.11
at roots of unity.

5.3.1. Deformed bimodules.

Definition 5.5. jifu is the V5 -bimodule defined by generators Si; (i € I,1 € Z/sZ) and relations :

_— < s - - .
Si,lAj,k = t—ci,j(z)(z<k*l>+z<l*k>)Aj,ksi,l ’ Sz‘,lngk = tﬁiyj(z(k*l)-}z(l*k))}/j,ksﬁl
N N N - A _ _

Siat =tSi1 s Sijg—ry —t_g—2ri 1 A7) Sitgrs 5 Sijys — Sig

Note that this structure is well-defined: if s > 1, for example we have t,cw_(Z)(Z<k+s_1>+zu_k_s>) =
t_ciyj(z)(z(k—L)_;’_z(L—k)).

Note that :)75 is a :)A)qj—bimodule using the projection JZf — J>f

Definition 5.6. yft s the ﬁf-bimodule J>f @y JA)fu @y J>f

For I € Z/sZ we denote by S'i)l the image of S'i)l in 5)1815 If s > 1, the :)A)f—module 5)1815 has torsion:

So=t"A A5 AL

(2s—1)r;

Sore = t*A7 AZLLAGE S

where a = —2s if $|2r; and @ = —s otherwise.
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5.3.2. Deformed screening operators. As in the generic case, we can define:

Definition 5.7. The i'"-deformed screening operator is the map Siee Vi — )A/ft defined by (A € V5 ):

szt(A):# Y SN ey,

t?2—1
l€Z/ ST
We define f{ft = Ker(S57;) and we complete this algebra ﬁffo D f{ft

5.3.3. Classical screening operators at roots of unity. We suppose in this section that ¢t = 1.
The classical screening operators at roots of unity are
SV = Vi= @B VS D VSiaer — Al Siir,)
USYAEA USYAEA

such that for m € A%, Sf(m)=m > wu;;(m)S;;.
1€Z]sL

For \ € V¥ we have S;(II(\)) = I1(S;,¢(\)) where IT: V¢, — V¢ is defined by II(mS;,;) = II(m)S;,.
The map 75 : Y — V? is a ring homomorphism. In particular we can define a Z-linear map 75 : JV; — V¢
such that:
Ts(msi,l) = Hs(m)8i7[l]
Indeed it suffices to see it agrees with the defining relations of );:
To(mA; L, Sitrar) = T(mALL, ) Si 2 = T (m)A;ﬁﬂi]S@[Hm] = Ts(m)S; ) = Ts(MmSi )
Note that the crucial point is that 7, is a ring homomorphism.

Lemma 5.8. We have 15,0 5; = S} o 75.

Proof: 1t suffices to see for m a Y-monomial:

= uig(m)ra(mSig) = 7a(m)» uii(m)Sy = 7(m) D> O _wisres(m))Sip

IEZ lez 0<i<s—1 reZ

= T75(m) Z U [1) (Ts(m))si,[l] = 57 (15(m))

0<i<s—1

For m € B, we set E;(m)=m [] (1+ A7} . Hui(m) | Tet 8 = Ker(S5).
1€Z/sT.

Proposition 5.9. 7,(8&;) is a subalgebra of 8. Moreover:

fi)= P Ei(m

me B

In particular if x € 75(8;) has no i-dominant monomial then x = 0.

Proof: 'The lemma 5.8 gives 74(R;) C K7 and 7, is an algebra homomorphism.

For m € B we have 74(E;(m)) = E;(7s(m)) and so it follows from theorem 4.5 that 74(&;) = @ FE;(m).
meBg
|

5.4. The image of x. ;. In this section we show an analog of the property 2 of theorem 4.11 at roots of
unity.

Theorem 5.10. The image of X+ is contained in f{’f’oo.

With the help of theorem 4.11 it suffices to show that Ts’t(.?{‘,b‘)t) - f%ft which will be done in proposition
5.15.
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5.4.1. The bicharacters D1, Dy. For m a ﬁt—monomial and k € 7Z let:
m 1H Hyyy itk (m) (HA;ZUJ‘,LM(’”))
lez jeI jerI

—

Note that 7, ;(m[ks]) = 75,+(m) and for m € ;1, k € Z we have m[k] € A.
For mq, mo jit—monomials, and k € Z we have :
dl(ml,mg[k]) = dl(ml [—k]7m2) and dg(ml,mg[k]) = dg(ml[—kng)

Moreover there is only a finite number of k € Z such that dq(mq, ma[k]) # 0 or da(m1, ma[k]) # 0. So we
can define:

Definition 5.11. For my,mo )A/t—monomials we define:

Di(mq1,ma) = g dy(my, malrs]) E dy (mq[rs], mz)

re’ reZ
Dy(my,ma) = E day(my, ma[rs]) E da(mq[rs], ms)
re’ reZ

Lemma 5.12. For mi, my Yi-monomials we have:

Dy (mi1,ma) = di(7s,t(m1), Ts t(Mm2)) , Da(mi,me) = do(7s.¢(m1), Ts,t(m2))

In particular we have in J>f:

— ¢D1(mi,m2)—Da(mz2,m1)

Ts,t(ml)Ts7t(m2) Ts7t(m2)7—s,t(m1)

Proof: For example for d; we compute:

di(Ts,e(m), 75t (M2))

= > it (Tee(ma))ui i (75,6 (m2)) + Wi tgr, (7,6 (m1) )i 1 (75,6 (M2))
icl,l€Z sz

= Z Ui,lJr'riJrrs(ml)uiJJrr’s(m2) + wi,lJr'riJrrs(ml)Ui,lJr'r’s(m2)
i€1,0<I<s—1,r€Z,r €7

= S Vi (M)W s (M2) 4+ Wi 1, (M) Vs 14rs (M)
iel,leZ,re’

= > di(mq, ma[rs]) O
reZ

5.4.2. Technical lemmas.

Lemma 5.13. Let m be a jit—monomial of the form m = 21Z2 ZK where Zy, = }Nﬁklk or Zy, = Alkllk

We suppose that k > k' implies I, < L + 1V and (Zy, Zw) ¢ {(A; ” : Z_ll,)/z e I,l' <l1}. Then we have:
To (M) = T5.t(Z1)76.t(Z2)..Ts t(Z )

Proof: First we order the factors of m:

2 z dl(Z]ka/)*dQ(Zk/,Zk)
¢ k<k! /U <lpr .

m = m
So we can apply T
25 di(ZeZu)=da(Zu Zk) _
Top(m) =t "=/t Ts,t(m)
where:
Y, lm) -v l(m)
ratin) = TIT9 ™ A5

leZ jel jerl
If we order the factors of 75 +(Z1)7s.t(Z2)...7s t(Z1), we get:
2 > (D1(Zk, 21 )—D2(Zy,Z1)) —
Tot(Z1)7s,4(Z2) .75 1 (Z1) =t R T <l Tot(m)
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So it suffices to show that & < k" and I, < Iy, implies dy(Zx, Zi )—do(Zxr, Zr) = D1(Zk, Zir)—D2(Zxsr, Zi,).
But we have 0 < Iy — I, <7V and s > 2rY. So for p € Z such that p # 0 we have |l — lp + ps| > rV.
But in general for k1, ko, we have:

[Zk17Zk72] 7& 0= (Zk17Zk2) (A !

’Lk lk
So in our situation we have dy(Zy, Zy [ps]) = d2(Zy, Zx[ps]) = 0. In particular:
Dl(Zka Zk/) - DQ(Zk/v Zk)

= d1(Zk, Zn) — do(Zar, Zi) + > _(d1(Zk, Zwe [ps)) — do(Zar, Zilps))) = di(Zx, Za) — do(Zir, Z)
p#0

1
A’Lk lk:‘:QTI ) or |lk1 - lk2| S rv

Lemma 5.14. Let m be a jif—monomial and 1,1’ € Z.
U!'>1+s—ri=up(m(m)=0
U'<l+r—s+1=up(mm)m_1(m)..) = u;p(m)

Proof: First notice that for ,1’ € Z, we have:
wip (Vi) #0=0U=1,up(Ay) 0= =1%xn
i A G un(A) #A0= | =1 < —Cji—1 <7 —1
As r; <Y we have: u;p(m(m)) #0=1—r" <U'<l+4r".
If we suppose I’ >l +s—r; >1+2rY +1—7r; > 1+7r" + 1 we have u; (m(m)) = 0 and this gives the
first point.

We suppose that I’ <l+r; —s+1. Ifk>1+1>1'"+s—r; >1'+ 7" +1 we have u; ;/ (mx(m)) = 0. So:
ui,l/ (m(m)m,l(m)...) = uu/(m) — Zui,l/ (ﬂ'k(m)) = ui,l/ (m) O
k>l

5.4.3. Elements of f&’ft

Proposition 5.15. We have Ts,t(f%i,t) C 5;15 . Moreover for m a i-dominant monomial:

Ts,t(Ei7t(m)) = Ts t Ts t 1H 1 + tA l+r ]))ull(m)
lez

where ' = HYU”(m) B;.
lez

Proof: 'We have to show that for m a i-dominant monomial, 7 :(E;+(m)) € ﬁf)t. The proof has three
steps:

1) First we suppose that m = }71-,1 where [ € Z. We have Elt(ﬁl) = Y (1+ tA and:

1l+'r)

Tot(Eip(Yin) = oo (L+ 7 AL )Ya) = T+t A Y = Yo gL+ A5, )

and so:

S5 4(Tot (Bie(Yin)) = YipySiuy — t24Ye A; g Sitrarg = Yam (S — ¢ A Siprar) =0

2) Next we suppose that m = HYul . We have E;;(m) = [[(Ei+(Yis))%*. But r; < 7V, and in
l€z icz

(E”(?”))“l there are only Y” and A7} So we are in the situation of the lemma 5.13, and:

(RE N

—

7ot (Ein(m)) = [[ (o (Bt (Fi))) "

lez
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—

As ﬁst is a subalgebra of V¢, it follows from the first step that 7, .(E;(m)) € ﬁf)t.

)
3) Finally let m € B; be an i-dominant monomial. As for all [ € Z, wi i (m) = u; ('), we have:
(76,0(m)) 7155 1 (7a.6(m)) = (76,0(M")) 1S5, (7,4 (1R2"))

—

It follows from the second point that 75 ;(E; () € f&’ft Let { be in V¢ defined by:

X = Tat (') 74 (Ei e (1))
We have 7, +(m)x € ﬁit, because:

57 4(7s,1(m)X) :Sit(TSt( DX + 7ot ()57, (X)
= 7ot (m) (7a, (M) 1S (7e, (07))X + 752 () 574, (X))
= To,t(m) (7e,¢ (M")) 7157, (7, (17)X)

— §2,(ru(Eii(m)) = 0

So it suffices to show that 7, ¢(E; ((m)) = 7s,+(m)X.
Let x be in 37,5 defined by:
X = (M) B (")

By definition of E;;(m), we have in Vy:

—

E;+(m) =mx
In particular we want to show that 74.(mx) = 7s.+(m)7s,: () 175 1 (PX). Let A (t) be in Z[t*] such
that:
X = Z Amr (£)m/
m/€A
If Ay (t) # 0 then m/ is of the form m’ = A AT As 7y is Z[tF]-linear, it suffices to show that for

all m’ of this form, we have:
Tot(M)7s, (1)) 175, ('m') = 75 ¢ (mm)
That is to say o = 3 where «, 8 € Z are defined by:
Tet(mm') = 1975 1 (m)7s 1 (M) and 74 (1'm') = 77 ()75 1 (M)
We can suppose without loss of generality that m € A and m’ € A (because 7, is Z[t*]-linear). Let us

compute a. First we have in );:
2 5™ da(m(m),my (m’))—dy (7 (m'),m(m)) =

mm’ =t V> Hﬂ'l

leZ
We are in the situation of lemma 5.13, so:
, 2 > da(m(m),m (m'))—dy (m; (m'),m (m)) ,
Tst(mm') =t V> HTs t(m(m))7s ¢ (m (m"))
leZ

But we have in V¢ (lemma 5.12):

23> Da(m(m),my (m')) =D (my (m'),m(m)) =

Tt (m)Ts e (m') =t V> HTS t(m(m))Ts e (m(m'))
IEZ
And we get:
a =2 "dy(m(m), m(m')) — dy (m (m ) = 2> Da(m(m), m(m)) — Dy (mp(m), m(m))
>l >l

And so we have from lemma 5.12:
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a =23 (da(m(m), m: (m'))=dr(m (m'), m(m)))=2 > (da(m(m)rs], m: (m))—di(m (m'), m(m)[rs]))

>l USTrez
=-2 > (de(m(m)[rs],m (m)) — di(m(m'), m(m)[rs]))
U'>Tr#0

But we have 7y (m’) of the form A """, and so:

a==2 > vip(m) (i, (mm)rs]) — wiy—r (m(m)rs]))

USTr#0
= -2 Z V4,11 (m/) Z (ui,l’—i-ri—rs - ui,l’—ri—rs)(ﬂ'l (m))
UVEL <l ,r#£0
= =23 v (m') 3 (Ui tri—rs — Ui —ri—rs) (T —1 (M) T —2(m)...)
UVEL r#0

We use lemma 5.14:

a=-2% Vi, 1 (m') D2 (Wigrgri—rs — ui,l/—m—m)(ﬂ'l’—l(m)ﬂ'l’—Q(m)---)
UVEL >0
=-2 Z Vi, (ml) Z (ui7l’+rrrs - uiJ’*TﬁTS)(m)
el r>0

It depends only of the u;;(m), so with the same computation we get:
B==2 i (m)Y (Uit iri—rs = Witr—r,—rs) (1)
vez >0
and we can conclude o = 3 because for all [ € Z, u; ;(m) = u; (1h?). O
Note that there is another more direct proof if C' is symmetric (in particular if C is of type ADE):
Proof: Let m be an i-dominant monomial.

Vj,l41 Yil Vi l+1vYi,l Yj,l U_]l
in = TIITA e IO = TAG v Q0 TIAS

lezjel jerI IEZ b e

Forle Z,let My = [TY]" 11 A Uit We have ;4 (M;) = M;. The Y;; and the ALl with Gy = —1
J# §/Ci = ’

have the same relations with the Ai) . » so we use indifferently the notation Z;; for Y;; or AJ_I1 The power

of Z; is:

Zil = Yig + E Vji+1 +Vj50—-1 = U0 + V50—1 + Vi i+1

j/Cj,i=—1
In particular we have: _
Bia(m) = [[( Al B (22520
and it follows from lemma 5.13 that: -
Tua(Big(m) = [T e(Zea Ay )07 o (Bia (i)™ o (M) 7o (205 € 5,
lez

O

5.5. Description of x. ;. In this section we prove the following theorem (the map p; is defined in section
3.2.2):

Theorem 5.16. If x,:( [I X, ;7") = 3 An(t)m, then:

iel,0<I<s—1 meA
3311 Dy Dy
Xl [T XT) = 30 A()tPr (P2 M (1)
iel,0<I<s—1 meA

where for m a Yi-monomial:

Zdlmmks s Zdzmmks

k<0 k<0
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Note that this result is a generalization of the axiom 4 of [N3] to the non necessarily finite simply laced
case. In particular our construction fits with [N3] in the ADE-case.

5.5.1. Description of the basis A.

Lemma 5.17. For m a yt—monomial we have Ym € A and t~7 24 (mm)y ¢ A where:

= v} i(m) - > vii(m)v(m) — > v, (M) (V141 (M) + vj1-1(m)))

leZ i€l 4,7/Ci,j+ri=—1 4,7/Ci,j=—3 and r;=1

Proof: We have m = m = t2*m where:

B=" di(m(m),m(m)) — dz(my (m), m(m))

>0
=dy(m,m) = > di(m(m),m(m)) = > di(m(m), 7 (m)) + da(m(m), 7 (m))
leZ <
So @ = 2d1(mm)p7 ) where -
v ==Y _di(m(m),m(m)) =Y di(mi(m), m:(m)) + da(mi(m), m: (m))
leZ <
But for | € Z we have

dy (m(m), m(m)) = => i (m) + > vi(m)vji(m) + > v (m)vji(m)

el 4,j/Ci,j=—2 and r;=—1 4,7/C;,;=—3 and r;=2
==Y vhm)+ Y walmyvu(m)
€l 0,4/Ci j+ri=—1
For [ < I we have:
di(mi(m), mi:(m)) = Ov=i41 > vi1(m)vji41(m)
4,5/Ci,j=—3 and r;=1
do(m(m), Ty (m)) = dp—141 Z 3,141 (M) v (M)

i,j/Ci,j:fB and T‘ri:].
and we get for v the annonced value.

For the second point we show that ¢~7~2d1(mm), ¢ 4.

t—7—2d: (7n’m)7'7l _ t’y+2d1(m,m)% — t’y+2d1(m,m)—26,r‘7l — t—'y,r‘ﬁ — t2d1 (m,m) (t—'y—2d1 (m,m)}?l)

5.5.2. Description of T ¢.

Proposition 5.18. For m € A we have:

Tot(m) = £P7 CPEDE (M, (i)
Proof: Using lemma 5.17 we can write m = t=7=2di(mm)m - Qo we have:

Ts,t(m) = tﬂfzdl(m’m)HT&t(?Tl)
lez

where 1, = m(m). So we have 74 (m) = t>*

a =75+ 2di(m,m) + Zd1(7-57t(7rl)77—s,t(7rl’)) — do(Ts ¢ (7)), Ts ¢ (m1))
1<v

=+ 2d1(m,m) + ZD1(7T1,7T1') — Dy(myr, mp)
I<v

Ts,t(m) where:
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So it suffices to show that o = —D7 (m) — D5 (m) + di(ps(m), ps(m)). But we have:

dy(ps(m), ps(m)) = Dy(m,m) => Di(m,m) + Y _Di(m, m)
<’ >

So we want to show:

—Dy(mp, ) ZDl w1, Ty ) — (di(m,m) + D7 (m)) — (d2(m, m) + D5 (m)) —~
>v

The second term is:

S dilmymifrs))— Y (di(m, e [rs) +da(m, melrs])+ Y da(m,m)+ Y (dy(m, )+ da(m, me)
1>, rez 1,I'eZ,r<0 lEZ <l

But for I <1’ and r < 0 (resp. I >’ and r > 0) we have dy (7, mp[rs]) = da(m, m[rs]) = 0. So this term

is:
Z dy (my, mp[rs]) — Z (dq (my, e [rs]) + da(my, mp [rs]) ng (w1, m1)

>0, r<0 1>1',r<0 IEZ

E dg 71'[,7Tl/ T‘S E dg 7Tl,7Tl/ 7‘8 E Dg 7Tl,7Tl/

>0,r<0 1>V, re’Z >

6. APPLICATIONS

In this section we see how we can generalize at roots of unity results of [He2] about Kazhdan-Lusztig
polynomials and quantization of the Grothendieck ring. We suppose that i # j = C; ;C;; < 3.

Such constructions were made by Nakajima [N3] in the simply laced case.

6.1. Reminder: Kazhdan-Lusztig polynomials in the generic case [N3] [He2] In this section we
suppose that s = 0. The involution of yt is naturally extended to an involution of yt .

For m a dominant yt—monomial we set:

HHYu, z(m) 1HHF u”

leZiel leZiel
We denote by ﬁ{ " C R the subset of elements with only a finite number of dominant monomials.
We show as in [He2] that for m € B, C(m) N B is finite, E,(m) € &>°, and:
Proposition 6.1. ([He2]) &> is a subalgebra of &°, a

Rl = Pzt Fi(m @Zti |E.(m

meB meB

Moreover 5;1{’00 is stable by the involution.

For m a Y$-monomial there is a unique a(m) € Z such that t*(mm = t*(M)m (see the proof of lemma
6.12 of [He2]).
Let A™ = {t*(")m/m € A} and B™ = {t*(™)m/m € B}.
The following theorem was given in [N3] for the ADFE-case and in [He2| for the general finite case:
Theorem 6.2. For m € B there is a unique Li(m) € R1°° such that:
Ly(m) = Ly(m)
Ei(m) = Ly(m) + > Pum(t)Le(m)

m’<m,m’€Binv
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where Py (t) € t7YZ[t71.

6.2. Kazhdan-Lusztig polynomials at roots of unity. In this section we suppose that s > 2rV. The
involution of Y} is extended to an involution of J,;"°.

6.2.1. Construction of stable subalgebras. For m € Ef a i-dominant )A/f—monomial we set:

—

E wi (m) % u; m
E;(m) =m( H Y,[z] mtmy=1 H (Yo (1+ tAl s ])) i, (m)
iel,l=0..s—1 iel,l=0..s—1
In particular the formula of proposition 5.15 implies:
E;¢(m) = m(ry o (M) ruo(Ei(M)) where M = [ 7,50

1=0...s—1
We define:
R = P zZltFIEi(m)
mEEf

In particular if x € ﬁf)t has no i-dominant monomial then x = 0.

Lemma 6.3. We have Ts7t(§i7t) C ﬁit C ﬁit Moreover ﬁst is a subalgebra of R i+ and is stable by the
involution.

Proof: As f%f)t is a subalgebra of Y§ and }7@[ (L+tA ) € ﬁf,t, m( ) ll‘g lﬁzij[zl(m))_l c "éit we
1€1,0=0..s—

have &, C & ,.
Let us show that @ Z[t*]E; (m) is a subalgebra of ﬁit (note that in the generic case s = 0 this point
meﬁf
needs no proof because ;@i,t = ﬁzt) For this point our proof is analogous to theorem 3.8 of [N3]. It
suffices to show that for 0 <k <s—1, M = [] Ylul” we have EZ t(M)E”(}NQk) e &b Z[ti]Ei)t(m).
€27 meB:
We can suppose without loss of generality that we are in the sls-case and that r;, = r{ = 1. The Et(ffk)

do not commute with Et(Yu" ?) and Et( Y,'t5?). So if k > 2 that fact that s # 0 do not change anything
and the result follows from the generic case. If kK = 0, we have:

Ey(m)Ey(Yio) = Bi(mYio) + BV Y, 1B (Yi?), Ee(Yio) B (V5 ° Y50 )
+Et(Yul Oy 3)[Et(327§f52), B (Vi) BV
It follows from the study of the generic case that:
[B/(V5?), By(Vi0)] € P zittE (Vo)
0<r<u;,2
BV (Vo e @ Z[F]E(Yi—2)"
0<r<u;s_2
and we can conclude by induction. The case k =1 is studied in the same way.
Let us study the stability by the involution: we see that EZ t(ff 1) = Ei,t(ﬁ,l), and:
= - = ——uw,mm)_ - oty 1 (m) .
Ei7t(m) = H ELt(Yi,[l]) Ei7t(m( H Y;)[mlj[l] )—1) S ﬁi,t
i€l l=s—1,5—2,...0 i€1,1=0..5—1
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Let us show that 787,5(?{'1',,5) - f{f)t: the formula of proposition 5.15 implies that for m € B;:

Ts,t(Ei7t(m)) = Ts t Ts t 1H 1 + tA l+r ]))ull(m)

leZ
e uz l(m
- E (Ts t( m)Ts t HE1 t
l€Z
and we can conclude because &7, is an algebra. O

We define the completion £;7° C ﬁffo (as in section 4.2.1) and:
=&
iel

For m € B" we define Ey(m) = m(r, «(M))~'7, (B, (M)) where M = [ ¥ 00",
i€1l,l=0...s

6.2.2. Polynomials at roots of unity (finite case). In this section we suppose that C' is finite. Note that
it follows from the lemma 3.10 that for m € B, the set C(m) N B is finite.

We denote by &5/ the set of elements of &> with only a finite number of dominant monomials.
Lemma 6.4. 8> is a subalgebra of V™, is stable by the involution, and:
Roh> = P ZIF|E(m)
meB”
Proof: It follows from lemma 6.3 that &> is a subalgebra of Y"*°. Let m be in B". For all i € I we
have m(7,,+(M))~! = E; +(m(7s¢(M))~") and so m(rs, t(M))‘l € &)™, But 7,4(E(M)) € &)° for all

iel. So E’t( ) € &2°°. Moreover lemma 3.10 shows that Et( ) has only a finite number of dominant

monomials, so Et( ) € &% It follows from lemma 6.3 that a maximal monomial of an element of
&1 is dominant, and so we have the other inclusion & ¢ @ Z[t*]E,(m).
meB’®

It follows from lemma 6.3 that f%f "> is stable by the involution. But for m a dominant monomial, 7 is

a dominant monomial and so & /-2 is stable by the involution.

As R is an algebra, 857 is an algebra if for m,m’ € B’, E,(m)E;(m’) has only a finite number of

dominant monomials. But the monomials of E;(m)FE;(m’) are in C(mm’) and we can conclude with the

help of lemma 3.10. (]

Let A" = {t2(m)p /m e A} and B>™ = {t*"™)m/m € B"} where a(m) is defined by 7@m = t*(™)m
(see the proof of lemma 6.12 of [He2]).

Theorem 6.5. For m € B> there is a unique L$(m) € .élf’f’oo such that:

Ey(m) = Li(m) + > Py () L5 (m)
m’<m,m’€Bs inv

where P, (t) € t7YZ[t™1].

mm.

The proof is analogous to the proof of theorem 6.2 with the help of lemma 6.4. The result was first given
by Nakajima [N3] for the ADE-case.
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6.2.3. Ezample and conjecture (finite case). In the following example we suppose that we are in the
slo-case and we study the decomposition with m = YpY1Ys.

If s =0, we have:
E(YoY1Ya) = Yo(1 + tAT MYy (1 4 tA; ) Ya(1 4 tA5 1)
= Li(YoV1Ya) 4+t L (12Y AT LY, Vy)
where:
Li(YoY1Ys) = YoViVa(1 4+ tA5 1 (1 + tATH) (1 4 tAZY)
[A/t(tQ?OAflffl?z) = Y AT Y Yo (1 + tAS )
If s = 3, we have:
Et(YOY1Y2) =T t(YO(l +tA7 )Yl(l +tA;)Ya(1+ tA ))
= VoVi¥a £ Yo A7 1Y, +7 1A, Y2+t—1YoY1A Y2
+ Y AT Y Yo At + YoYi Ay Yo At + VY AT A, + Y AT Y1 A YR AT

and so:

E(YoViVa) = L (VoVi¥a) + 7 L3 (2Vo AT WiTa) + 1 L3 (Vo Ay Vo) + 1 L3 (VoVa Vadg )
where:
Li(YoY1Ya) = YoViYa + t 3V AT 1Yo Ay ' Vi AS?
Li (Yo AT 'Ya) = Yo AT i Ya (1 + Az
Li(YoY1 A5 'Ys) = VoY1 Ay 1Yo (1 + tA )
Li(VoV1Ya Az h) = YoV Yo A3 (1 + tA7 )

In particular we see in this example that the decomposition of E;(m) in general is not necessarily the
same if s =0 or s # 0.

We recall that irreducible representations of U, (g) (resp. U*®(§)) are classified by dominant monomials
of Y (resp. Y*) or by Drinfel’d polynomials (see [CP1], [CP3|, [FR2], [FM2]).

For m € B (resp. m € B*) we denote by V2 = V,, € Rep(Uy(g)) (resp. V,5 € Rep(U(g))) the
irreducible module of highest weight m. In particular for ¢ € I,l € Z/sZ let V% = Vy,,. The simple
modules V% are called fundamental representations. In the ring Rep® it is denoted by X

For m € B (resp. m € B?®) we denote by M7, € Rep(Uy(§)) (resp. MS, € Rep(Ur®®(§))) the module

M= @ VP Ttis called a standard module and in Rep® it is denoted by [] X pim),
i€ll€EL/ST i€I,IC€Z/sZ

The irreducible U, (sly)-representation with highest weight m is V,, = Vauy, ® Vy, (see [CP1] or [FR2]).

In particular dim(V},,) = 6, that is to say the number of monomials of Li(m).

For e such that s = 3, the irreducible U **(g)-representation with highest weight m is V.7 the pull back

by the Frobenius morphism of the I (sly)-module V of Drinfel’d polynomial (1 — ) (see [CP3] or [FM2]).
In particular dim(V,?) = 2, that is to say the number of monomials of Li(m).

Those observations would be explained by the following conjecture which is a generalization of the con-
jecture 7.3 of [He2] to the root of unity case. We know from [N3] that the result is true in the simply
laced case (in particular in the last example).

Form =[] Y, adominant Y*-monomial let M = ] ffzull € Ys. We suppose that C is
i€1,I€T/sT. i€l,l€L/sT
finite.
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Conjecture 6.6. For m a dominant Ys-monomial, IL(L3(M)) is the e-character of the irreducible
Ures(g)-representation V5 associated to m. In particular for m' another dominant Ys-monomials the
multiplicity of V.7, in the standard module M, associated to m is:

> P (1)

m! EBS,inv/ﬁ(mN):,,n/

Let us look at an application of the conjecture in the non-simply laced case: we suppose that C' =

(_21 _22> and m = 171,0171,1. We have for | € Z/sZ:

1T > > 1ol ol v >
Ay =Y aYimYey: s Ay = Yo o Yo oV Y

First we suppose that s = 0. The formulas for F;(Y; o) and Fy(Y; 1) are given in [He2]:

Fi(Y1,0) = Yio(1 +tAT1(1+ A5 5(1 + tAT})))

F,(Yi1) =Yi.(1+ tA S (1+ A3 51 +tATY)))

The product F‘t(}}LO)E (371,1) has a unique dominant monomial 571,0372,0, So:

E,(Vi,0¥20) = Fy(Yi.0¥20) = Li(V1.0Y20) = Fi(Vi0) Fo(Vi1)
In particular the Vi o ® Vi1 is irreducible. Note that it is not a consequence of the conjecture but of
classical theory of g-characters.
We suppose now that s =5 > 4 = 2rV. There are two dominant monomials in Ts,t(Et(YLOYM)):
Ts,t(i/l,()i/l,l) = 371,0571,1 and Ts,t(tgyl,oﬁiifiz_,éﬁiéﬁ,l) =t
And so we have:
re(Be(Yi0Y11) = L (Vao¥i0) + ¢ Lo(1)

where L;(1) = 1. So if the conjecture is true, at s = 5 the Vo ® Vy°; is not irreducible and contains the
trivial representation with multiplicity one.

6.2.4. Non finite cases. In this section we suppose that B(z) is symmetric and s > 2rV. An important
difference with the finite case is that an infinite number of dominant monomials can appear in the g, t-
character : let us briefly explain it for the example of section 3.2.3. We consider the case C' of type Aél)
and s = 3. We have the following subgraph in the g-character given by the classical algorithm:

1 —1 —1
Yio—= Yo Yo1Ys1 — Va2Vs1Ys 5 — Y5 Y5110

But at s = 3 we have Y3T41Y3,1Y1,0 ~ Y7 9. So we have a periodic chain and an infinity of dominant
monomials in Ts’t(Ft (371,0)).
However we propose a construction of analogs of Kazdhan-Lusztig polynomials. As there is an infinity of

dominant monomials, we have to begin the induction from the highest weight monomial. Let us describe
it in a more formal way:

For m € B>™ and k > 0 we denote by Bj(m) C B*>™ the set of dominant monomials of the form
m' =t*mA; Y, LAY . We set also B5(m) = |J Bi(m).
k>0

1,00 gy

For m € B*™, E,(m) € &> is defined as in section 6.2.1. It will be useful to construct the element
Ff(m) € R°° with a unique dominant monomial m: we denote by mg = m > mj > mg > ... the

dominant monomials appearing in E;(m) with a total ordering compatible with the partial ordering and
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the degree (the set is countable because there is a finite number of monomials of degree k). We define

i (t) € Z[t*] inductively as the coefficient of my, in Et (m)— > )\l(t)Et (my). We define :
1<i<k—1

Fp(m) = Eo(m) = S N Ei(mi) € &
1>1

(this infinite sum is allowed in &°°). The unique dominant monomial of Ff(m) is m. In particular

E#(m) = Ef(m) (see section 6.2.1). In the following theorem the infinite sums are well-defined in &>

Theorem 6.7. Form € B*>™ there is a unique L (m) € & of the form L{(m) = m+ Y fims.m (t)m/
m’<m

such that:

Efm)=Lim)+ Y Pra(t)Lim)
m/€B;(m),k>1
where Pj, . (t) € t"'Z[t™']. Moreover we have:

[I(m) = I(m') = m™1Li(m) = m'

Proof: We aim at defining the fi,,/,(t) € Z[t*] such that:

Lim)= Y ()

m/€Bs(m)

The condition L§(m) = L§(m) means that fiy, (1) = fimr m(t).
We define by induction on k > 0, for m’ € B (m) the P} (t) and the gy m(t) such that:

Ey(m) — > P (1) > e () F (m")

k>1>0,m’ € B (m) k>r>0,m" €Bg(m/)
€ Y wm®+ P O)VEm)+ Y ZEFIR(m)
m/€B} y,(m) I>k+1,m’ €5 (m/)

For k = 0 we have Pj () = pm,m(t) = 1. And the the equation determines uniquely PJ, () €
t1Z[tY) and pir g (t) € Z[tF] such that s m(t) = s m ().

For the last point we see also by induction on k that for my,my € B*™ such that II(m;) = II(my) and
m} € B%(m1), mhy € B*(my) such that mj *m} € t“my "

Homgma (8) = tamgy o () 5 Py iy (8) = P, (1)

mb we have:

O

Let us look at an example: we suppose that C' is of type Agl). In the generic case, the classical algorithm
gives the g-characters beginning with Y] ¢, and the first terms are:

Yio

Y0 Y313 Y4 Ya1Yao
The deformed algorithm gives:
Et(ffl)o) = 371)0(1 + tflf%(l + tfl;% + tfig)g)) + terms of higher degree
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We suppose now that s = 3. First let m = }717017172, m = tg?l,oflﬁ?m. We have:
Ei(m) = F,(m) +t 1 EFy(m/) + ...
In particular P,  (t) =t"".
Let m = ?2)117371, m’ = tfngfngAiéAi%, m” = tffg)l}}gJA;éA?:%. We have:
Ei(m) = Ey(m) +t " Ey(m/) + t  Ey(m) + ...
In particular P3, () =t""and Ps, . (t) =t""

Let us go back to general case and we want to define P;,  (¢) for m,m’ € B®. We can not set as in the

finite case P2, (1) = > P (t) (where M € B verifies [I(M) = m) because this
M’ €Bs(M)/TI(M")=m'

sum is not finite in general. However we propose the following construction. For m,m’ € B®, we define

k(m,m') > 0 such that for M € IT='(m) we have k(m,m’) = min{k > 0/3IM’ € Bi(M),TI(M") = m'}.

Definition 6.8. For m,m’ € B* we define Py, . (t) € Z[t*] by:
Prvm(t) = > P (t)
M’'eBs(M)/TI(M")=m' and deg(M')=deg(M)+k(m,m’)
where M an element of B> N II~1(m).
Note that if C' affine it follows from lemma 3.11 that for each m € B?®, there is a finite number of
m' € B® such that Pj, (t) # 0. In particular in this situation the proof of the theorem gives an

algorithm to compute the polynomials with a finite number of steps (although there could be an infinite
number of monomials in the e, t-character).

For example if C is of type Agl) and s = 3 we have:

-1 —1
PY3,1Y2,17Y1,0Y1,2 (t) =t ) PY1,07Y1,27Y3,1Y2,1 =2t
6.3. Quantization of the Grothendieck ring.

6.3.1. General quantization. We set Rep; = Rep® ® Z[tT] = Z[Xi)l,ti]iej,lez/sz and we extend X to a

Z[t%]-linear injective map y, : Repi — &% Weset BS = {m = ][] ffi"l“(m)} c B°. We have a
i€llez/sT
map 7 : B — B® defined by n(m) = ] }N/iuf‘l(m).
i€llez/sT
We have:

m(xes) = @ ZIF)E(m) C &>

meBs
But in general Tm(x. ) is not a subalgebra of £>.

If s = 0 or C is finite we have Im(x.;) C &7 = @ Z[ti]Et(m) and we have a Z[tT]-linear map

~ o meB
71 &1 I () such that for m € B’

w(Ei(m)) = Ey(n(m))

If s > 27" and C verifies the property of lemma 3.11 (for example C is affine) then there is a Z[t*]-
linear map 7 : &, — Im(x,:) such that for m € B’ of the form m = Mm' where M € B*® and

m =AY L
1,01

Ai_;jlk (see the definition of k(m1,m2) € Z in section 6.2.4):
m(E(m)) = Eq(r(m)) if k = k([L(m), T1(M))
w(By(m)) = 0 if k > k(II(m), TI(M))
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In both cases, as x.: is injective, we can define a Z[t*]-bilinear map * such that for a, 3 € Rep:

a* 3= Xqi (T(Xqt (@) xq.t(0)))

This is a deformed multiplication on Rep;. But in general this multiplication is not associative.

6.3.2. Associative quantization. In some cases it is possible to define an associative quantization (see
[VV2], [N3], [He2]). The point is to use a t-deformed algebra Y = Z[Yﬁ, ti]iej,lez instead of );: in this
case Im(,,1) is an algebra and we have an associative quantization of the Grothendieck ring (see [He2|
for details). In this section we see how this construction can be generalized to other Cartan matrices.
We suppose that s = 0 and that ¢ is transcendental.

Lemma 6.9. Let C be a Cartan matrix such that:
Ol',j < -1= —CjJ‘ <r;
Then:

1
+a R4+1% —REL .+ ar-— 1zR +

det(C(z)) = 2~
whereR:'%: ri and a(=1) = a(l) €

1=

In particular finite and affine Cartan matrices (Agl) with r1 = ro = 2) verify the property of lemma 6.9.

Note that the condition C;; < 0 = C;; = —1 or C;; = —1 is sufficient; in particular Cartan matrices

such that ¢ # j = C; ;C;,; < 3 verify the property.

Proof: For o € S, let us look at the term det, = [[C; ,(;)(2) of det(C(z)). If o = Id then the degree
icl

deg(detiq) is > r;. So it suffices to show that for o # Id we have deg(det,) < > r;. If ¢ # o (i), we have

i€l i€l
the following cases:

if Ci,o'('i) =0or —].7 deg([C’Zyo(l)]z) <0< To(i)
if Cj 55y < —1, we have C,(;); = —1 and so 7;,C; 5(;) = —7T5(;) and so

ro(i)Co(i),i

T

deg([ci,o(i)]z) = _Ci,o(i) -1=-
So if o # Id we have:

deg(dete) = > mt  » deg(Ciowle) < 3 Tt Y Tey =D

i€l /i=o(i) il /i#o(i) iel/i=o (i) il /i#o(i) i€l

—1 <7154 —1 <71,

For the last point det(C(z)) is symmetric polynomial because the coefficients of C'(z) are symmetric. [0

We suppose in this section that C verifies the property of lemma 6.9.

In particular det(C(z)) # 0 and C(z) has an inverse C(z) with coefficients of the form Qlisf)l) where P(z) €

Z[zF], Q(2) € Z[z], Q(0) = £1 and the dominant coefficient of @ is 1. We denote by U C Z((2~!)) the

set of rational fractions of this form. Note that % is a subring of Q(z), and for R(z) € U, m € Z we have

R(z™) € . In particular for m € Z — {0}, C(¢™) makes sense.

We denote by Z((271)) the ring of series of the form P = Y. P,2" where Rp € Z and the coefficients
r<Rp

P, € Z. We have an embedding U C Z((2~!)) by expanding ﬁ in Z[[z71]] for Q(z) € Z[z] such that

Q(0) = 1. So we can introduce maps (., r € Z):

0 —>7Z,P= ZP,,zTHPT
r<Rp

We denote by H the algebra with generators a;[m], y;[m], ¢,, relations 1, 2 (of definition 3.1) and (j €
I,m #0):

(4) 201 7 1

i€l
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Note that the relations 4 are compatible with the relations 2.
We define Y, as the subalgebra of H[[h]] generated by the Yfl, Ai (itel,l€Z),tgr (ReD).
Let the algebra ); be the quotient of ), by relations
tp = tg if mo(R) = mo(R')
We keep the notations Y, il Af:l for their image in ;. We denote by t the image of t; = exp( Y. h?"c,)
in Y. m0
The following theorem is a generalization of theorem 3.11 of [He2]:
Theorem 6.10. ([He2|) The algebra Yy is defined by generators Yﬁ, (i € I,1 € Z) central elements t*
and relations (i,j € I,k,1 € Z):
Y/i,lf/j,k - tV(i’l’j’k)ﬁ)kﬁ,l
where v : (I x Z)? — Z is given by:

v(i,1, 5, k) E 70 (Cj.i(2))(=01—k,—r;—r = Ol—ksr—r; + O1—kyrj—r + O1—rj4r)
rez

7. COMPLEMENTS

7.1. Finiteness of algorithms. In the construction of ¢,t and e, t-character we deal with completed
algebras ),"°° so the algorithms can produce an infinite number of monomials. In some cases we can
say when this number is finite:

7.1.1. Finiteness of the classical and deformed algorithms.

Definition 7.1. We say that the classical algorithm stops if the classical algorithm is well defined and
for allm € B, F(m) € &.

It follows from the classical theory of g-characters that if C' is finite then the classical algorithm stops.
Foriellet L; = (Ci,l7 7Cz7n)

Proposition 7.2. We suppose that there are (o;)ier € Z' such that o;; > 0 and:
ZOZij =0
jeI

Then the classical algorithm does not stop.

In particular if C' is an affine Cartan matrix then the classical algorithm does not stop.

Proof: It follows from lemma 4.6 at ¢ = 1 that it suffices to show that there is no antidominant monomial

in C(Y1,0). Solet m=Yio [[ A4 /" be in C(Y1,0). We see as in lemma 3.11 ui(Ylom) =0. In
iel,leZ
particular u;(m) = 1 and m is not antidominant. O

Note that in the A case (r > 2) we have a more “intuitive” proof : for all I € Z, i € I we have

1
A= Yzl+1Yzz 1Yiy1,:Y5-1,, and:

wA) = ) uir(AL) = (muiin — wiir + i+ i) (A7) =0
Jjel,keZ

where we set in I: (1) —1=r+1and (r+1)+1=1. So for all m € C(Y1,0) we have u(m) =1 and m
is not antidominant.
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7.1.2. Finiteness of the deformed algorithm.

Proposition 7.3. The following properties are equivalent:
i) For alli e I, F,(Yio) € &y.
i) For all m € B, Fy;(m) € &.
iti) Im(xq.) C Ry

Definition 7.4. If the properties of the proposition 7.8 are verified we say that the deformed algorithm
stops.

Let us give some examples:

-If C is of type ADFE then the deformed algorithm stops: [N3] (geometric proof) and [N4] (algebraic
proof in AD cases)

-If Cis of rank 2 (A1 x Ay, Ay, Ba, Ca, G2) then the deformed algorithm stops: [He2| (algebraic proof)

-In [He2] we give an alternative algebraic proof for Cartan matrices of type A, (n > 1) and we
conjecture that for all finite Cartan matrices the deformed algorithm stops. The cases Fy, B, Cp
(n < 10) have been checked on a computer (with the help of T. Schedler).

Lemma 7.5. If the deformed algorithm stops then the classical algorithm stops.
Proof: This is a consequence of the formula F(II(m)) = II(F;(m)) (see section 4.2.2). O

In particular if C is affine then the deformed algorithm does not stop.

Let C be a Cartan matrix such that ¢ # j = C; ;C;; < 3. We conjecture that the deformed algorithm
stops if and only if the classical algorithm stops.

7.2. g,t-characters of affine type and quantum toroidal algebras. We have seen in [He2] that if
C is finite then the defining relations of H:

[ai[m], a;[r]] = 6m (4™ — 47 ") Bi i (4" )Cim|

appear in the C-subalgebra U, (h) of U,(§) generated by the ki, ¢ (i € I, m € Z — {0}): it suffices to

c"—c "

send a;[m] to (¢ — ¢~ 1)h;m and ¢, to

In this section we see that in the affine case ASP (n > 2) the relations of H appear in the structure of
the quantum toroidal algebra. In particular we hope that ¢, t-characters will play a role in representation
theory of quantum toroidal algebras (see the introduction).

7.2.1. Reminder on quantum toroidal algebras [VV1]. Let be d € C* and n > 3. In the quantum toroidal
algebra of type sl,, there is a subalgebra Z generated by the ki, hiy (i € {1,..,n}, | € Z — {0}) with
relations :

kiki_l =ecc =1, (kti(2), ks j(w)] =0

(5) 0., (Pd w2 ey o)k s (w) = 0

s Qg j

(c2d ™ wz k- jky i (2)

where k4 ;(z) € Z][2]] is defined by:

ke i(2) = kifexp(£(q — qil)zhi,ﬂ:kzq:k)
k>0
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0 (z) € C][2]] is the expansion of q:iijnl, A = (ai j)o<i,j<n is the affine Cartan matrix of type Afllzl:
2 -1 0 -1
-1 2 0 0
A =
0 0 2 -1
-1 0 -1 2
and M = (mi7j)1§i,j§n is given by:
0 -1 0 1
1 0 0 0
M =
0 0 0 -1
-1 0 1 0

7.2.2. Relations of the Heisenberg algebra.

Lemma 7.6. The relation (5) are consequences of:

la; —la;,; ) -2l
g =g, € = C

Rt hjn] = 61—y —d 1™

its ] (g—q71)? l

Proof: First for m € Z, we have in C[[#]]:
q"z—1 _ _ _ (q"=2)"  (g™=2)"
om _ 1~ - _ m In(l — g™ —In(1 — m _ m _
(2) ik exp(In(l — ¢™z) —In(1 — q""2)) = ¢~ "exp(d_( )

r>1

and 80 ky i (2)k_ j(2)kt i(2) ko j(w) ™! = 0_q, , (c72d" ™I wz )0,  (PdT™hiwz )Tt is given by:

—2 73—m; j - —my j —1\— —ra; ; ra; i\ J—Tm;, ; — 'rc2r —c
afa'i,j (C 2d “Twz 1)9*%,;' (C2d “Twz 1) t= exp(Z(q “—q 'w)d ol (’U}Z 1) T))
r>1
But following the proof of lemma 3.2 we see that the relation of lemma 7.6 give:
-1 r -1 —r o QT — g T — e
[—(¢—q )Zhjrrw ,—(@—q )thz ] = Z(q -q ) Wd P (w2 -
r>1 >1 r>1 q q

w, we get the defining relation of the Heisenberg

i,m

In particular for d = 1, a;[m] = q}iq_l and ¢, =

algebra 7 of section 3.1.1 in the affine case Afllzl:

[ai[m], a;[r]] = 0m,—r(¢™ — q"™)[Bijlgm Cjm
In the case d # 1 we have to extend the former construction:

7.2.3. Twisted multiplication with two variables. Let us study the case d # 1: in this section we suppose

that ¢, d are indeterminate and we construct a t-deformation of Z[Afh Rliel ke
We define the C[g¥, d¥]-algebra H, by generators a;[m] (i € I = {1,...,n}, m € Z) and relations:
[aslm], as{r]] = m, (4™ — g~ Asslgmd ™"l
For i € 1,1,k € Z we define A, € Ha[[h]] by:
z‘ii,z,k = exp( Z g™ dMm a; [m])exp( Z hmq_lmd_kmai[—m])

m>0 m>0
and for R(q,d) € Z[g*,dF], tr € Hq[[h]] by:
tr(q,a) = exp( Z K" R(g™,d™)cm)

m>0
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A computation analogous to the proof of lemma 3.2 gives:

-1 j-1 _
A“)PAﬁkWAi,lmAj,km - t(q—q”)[Ai,j]q(—ql*’“dP”‘+qk*ld**l’)d‘mm

In particular, in the quotient of Hy([[h]] by relations tz = 1 if R # 0, we have:

A-1 1—1 _ ja(igklpr) j—1 4—1
ApAjer =1 AjerAiip

where a : (I x Z x Z)? — Z is given by (I,k € Z, i,j € I):
a(ia 7;7 l7 kupv 7’) = 2(6l7k,27‘¢ - 5l7k772’ri)5r7p

a(iaja la kvpa 7") = E (_6l*k;7‘+7‘i 5P*T;’m'i,j + 51776,7‘77‘1' 5T*P7mi,j) (1f 7’ # j)
r:mCLj+1,ma-+37...77T¢Ci,j71

In particular this would lead to the construction of g, ¢-characters with variables Y;; p, A;llp associated
to quantum toroidal algebras. But we shall leave further discussion of this point to another place.

7.3. Combinatorics of bicharacters and Cartan matrices. In this section C = (Cz',j)lgz',jgn is an
indecomposable generalized (non necessarily symmetrizable) Cartan matrix and (rq,...,7,) are positive
integers. Let D = diag(r1, ..., r,) and B = DC (which is non necessarily symmetric).

We show that the quantization of Y* ® Z[tE) = Z[Y;1, Vi, ti]ieuez/sz is linked to fundamental combi-
natorial properties of C' and (71, ..., 7,,) (propositions 7.9, 7.11, 7.12 and theorem 7.10). Let us begin with
some general background about twisted multiplication defined by bicharacters.

7.3.1. Bicharacters and twisted multiplication. Let A be a set, Y be the commutative polynomial ring:
Y = Z[Xa, ¥ laen

and A the set of monomials of the form m = [] XZ‘*(””

a€cA

€ Y. The usual commutative multiplication of
Y is denoted by . in the following.
Definition 7.7. A bicharacter on A is a map d: A x A — Z such that (m1,ma,m3 € A):

d(ml.mg, mg) = d(ml, mg) + d(mg, mg) s d(ml, mg.mg) = d(ml, mg) + d(ml, mg)
The symmetric bicharacter &d and the antisymmetric bicharacter 2d of d are defined by:
1 1
Gd(ml, mg) = §(d(m1, mg) + d(mg, ml)) , Qld(ml, mg) = i(d(ml, mg) - d(TTLQ, ml))

and we have d = 24d + &d.
Let be d be a bicharacter on A. One can define a Z[t*]-bilinear map * : Y x Y — Y such that:
my * me = tAMLm2) .y,
This map is associative! and we get a Z[t*]-algebra structure on Y. We say that the new multiplication

is the twisted multiplication associated to the bicharacter d, and it is given by formulas:

— td(mhmg)fd(mg, — t291d(m1,

my * Mo ") ime % my "2) e % My

Lemma 7.8. Let dy,ds be two bicharacters. One can define a multiplication on'Y such that (mq, mq € A):

_ t2d1(m1,m2)72d2(m2,ml)m2 *my

mi * Mo
if and only if Gdy = Gds.
In this case, the multiplication is the twisted multiplication associated to the bicharacter d = di + ds:

— tdl(m1,7n2)+d2(m1,m2)

mi1 x Mo mq.1mo9

n fact it suffices that —d(ma, m3) + d(mima, m3) — d(m1, mams) + d(m1, ma) = 0.
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Proof: It follows immediately from the definition of *:

— 42d1(ma,m2)—2d2(m2,m1) — 4(&d1—-&ds)(m1,m2),

mi x mo mo * My 1 *¥Mo

If &d; = Gda, let * be the twisted multiplication associated with the bicharacter d = d; + ds. We have:

— tdl (ml,mg)—i-dg(ml,mg)—dl (mg,ml)—dg(mg,ml) — thl(ml,mg)—ng(mg,ml)

mi * Mo ma * My ma * My

O

7.3.2. Definition of d; and da. For s > 0let A, = I x (Z/sZ) and A" be the set of monomials of J*, that

is to say elements of the form m = ( I1 Yﬁl'i’l(m)‘/:’;*l(m), Let D(z) = diag([r1]z, ..., [rn]2)-
i,1)EAs

For a € A, we define a character 2 u,, on A° as in section 3.2.1. In particular u,(Y3) = da,5.
We define dy, ds the bicharacters on A° as in section 3.2.1, that is to say (mq,mz € ZS):

dy(m1,ma) = Y Vy(ay(ma)ua(ma) + Yya) (M1 )va(ms)
aEN;

da(my,ma) = Z Up(a) (M1)Va (M2) + Vb(a) (M1)Ya(me)
aEA;

where b: Ay — A; is the bijection defined by b(i,1) = (4,1 + 7).
Proposition 7.9. The following properties are equivalent:

i) For s >0, d; = ds

i) For s >0, Va, B € A, ua(Vs) = up)(Vo(a))

i) C is symmetric and Vi,j € I, r; =r;.

Proof: 'We have always:
di(Ya,Ys) =da(Ya,Y3) =0
For o, B € A, we have uo(Y3) = da,8. In particular:

d1(Ya, Vs) = 0p(g),0 = Upp)(Ya) = d2(Ya, Vs)
d1(Vs, Ya) = up-1(8)(Ya) = 0b(a),s = d2(V, Ya)
So the condition di = ds means Va, 3 € Ag, di(Va, V3) = d2(Va, V). But the equation (ii) means:
d1(Va, V) = up-1() (V) = upp)(Va) = da(Va, V)
In particular we have (i) < (i7).
For i,j € I and I,k € Z/sZ we have:

w1 (Vig) = Z Oirk = Z Ol—k,r

'r:C,in«l»l...fCi,jfl T:Ci,j+1...7cri1jfl
uj7k+'rj (‘/iJer) - Z 5k+r+'rj A+r; = Z 5l7k77‘j —rit+r
T:Cj,i"l‘l»»»_cj,i_l T‘:Cj,i-i-l...—c_j,i—l

If s = 0, those terms are equal for all [,k € Z if and only if C; ; # 0 implies C; ; = Cj; and r; = 7. So
as C is indecomposable we have (ii) < (4i7).

If s > 0 and (4i7) is verified we see in the same way that those terms are equal, so (iii) = (7). O

In particular if C' is of type ADE, we get the bicharacter of [N3] and d; = ds is the equation ([N3], 2.1).

Zie. Ua(mi.m2) = ua(mi) + ua(msa)
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7.3.3. Bicharacters and symmetrizable Cartan matrices. We have seen in lemma 7.8 that we can define
a twisted multiplication if and only if &d; = &ds, so we investigate those cases:

Theorem 7.10. The following properties are equivalent:
1) For s > 0, we have &d; = &ds
i) For s >0, Vo, 8 € Ag, ua(Vis)) — up2(a) (V(a)) = up2(8)(Vi(a)) — us(Vi(a))
iii) For s >0 and m € A°, dy(m,m) = dy(m, m)
iv) B(z) is symmetric

v) B is symmetric and C; ; # Cj; = (r; = —Cj; and r; = —C; ;)

Proof:

First we show that (i) < (i7). We have always:

6dy(Ya,Ys) = 6da(Ya,Ys) =0
and:
26d;1 (Y, V) = upp)(Ya) — up-1(8)(Ya) = 0p(8),a — Ob(a),8 = 26d2(Ya, Vp)
But the equation (ii) means:
di(Va, Vi) = da(Vig, V) = d2(Va, V) — da(Vg, Var)
that is to say:
26d1(Vy, V) = 26d3(Vy, Vs)

and we can conclude because d1,ds are bicharacters.

Let us show that (iv) < (v): the matrix B(z) is symmetric if and only if for all ¢ # j we have:

(7 = 27)(2% — 27O) = (27 — 27 (00 — 27O

If C;; = Cji = 0t is obvious. If C; ; = C;; # 0, the equation means r; = r;. If C; ; # Cj;, the equality
means (r; = —Cj; and r; = —Cj 5).

The equation (ii) means:
§ 5l—k,r]~—r - 6l—k,r]~—2ri—r = § 5l—k,2rj+r—ri - 5l—k,r—ri
r:C¢,j+1...fC¢,j71 T:Cj,rkl...fcj',i*l

At s = 0, the formula holds for all [, k € Z, if and only the coefficients of Kronecker’s functions are equal,
that is to say in Z[X*]:

Z XTiTT — er—ZTi—r _ Z Xer+r—ri _ X
T’:ci,j"rl---_ci,j_l T‘:Cj,i-‘rl...—cj',i—l
ol 1— X—2Ci; 4 1 — X—2Cj
1- X2 1- X2
er72ri+Cw- (1 _ X72Ci’j)(1 _ X2T1) — X*’IﬁrFCj,i(l _ X72CJ’1)(1 _ X2’r'j)
(Ci)j = Oj,i = O) or (7’1' =Ty and Ci)j = Oj,i 75 0) or (’I"j = —Oi,j and r; = —Cjﬂ')

and so (#1) = (v). If we suppose that (iv) is true, then the above equation is also verified in Z[X *]/(X* =
1) and (i) is true.

(X’r'j _ er72”)Xc — (XQij’r'i _ X*Ti)XCj

To conclude it suffices to show that (iii) < (i). If (i) is verified we have for m,m’ € A”:
di(m,m’) +dy(m’,m) = di(mm',mm’) — dy(m,m) — di(m’',m") = da(m,m’) + da(m’,m)

and (i) is verified. If (i) is verified we have for m € A”: 2d;(m, m) = 2dy(m, m). O
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7.3.4. Bicharacters and q-symmetrizable Cartan matrices. There is a way to define a deformation mul-
tiplication if B(z) is non necessarily symmetric. First we define the matrix C; ;(z) = [C;;]., and the
characters :

ufy(m) = yia(m) = > (Cf;(2))opVja(m)

jeI

We define the bicharacters d} and d}, from U;, in the same way di and da were defined from u;; (section
7.3.2).

We also define B; ;(z) = [Bi ;].. Note that we have always B'(z) = D(2)C’(z). Indeed:

iCi —7:Ci -1 Ci; —Ci;
A A - P
! _ _ = 7 7 7 _ . !
Bm(z) = 1 = 1 T = Dl,l(z)Cm(z)
z—z z—z zi — 2;

Proposition 7.11. The following properties are equivalent:
i) For s > 0, 6d) = &d)
ii) For s 2 0, Va, 8 € A, ug (Vi(g)) — (o) (Vas)) = () (Va)) — t(Vi(a))
iii) B is symmetric

w) B'(2) is symmetric

In particular if C' is symmetrizable we can define the deformed structure for all s > 0.
Proof:  First we have (iii) < (iv) because B; ;(z) = [Bi ;]
We show as in theorem 7.10 that (i) < (4).
Let us write the equation (ii):
Wiy (Viktr,) = W yor, (Vikar,) = W pgor, Viger,) — @ (Vigr, )

If i = j, we are in the symmetric case, and it follows from proposition 7.9 that this equation is verified.
In the case @ # j, if C; ; = 0 then all is equal to 0. In the cases C; ; < 0 the equation reads:

§ 5l+rir,k+r]~ - 6l+2ri+rm,k+7’j - g 5k+2r]~+lr]~,l+ri - 5k+rr]~,l+ri
r:Ci,j+1...—Ci,j—1 l:Cj,i-‘rl...—Cj,i—l

g 5l—k,rj—rri - 5l—k,r]~—2ri—rir = § 5l—k,2r]~+7’r]~—ri - 6l—k,rrj—ri
r:Ci,j—i-l,,,—C’i,j—l T’:iji-‘rl...—cj',i—l

O1—kyrj—ri—1:iCi; — Ol—krj—rstrsCi j = Ol—kyrj—ri—r;Cji — Ol—kyrj—ritr; Cy s
That is to say:
(2r;C; j € sZ and 2r;C;; € sZ) or r;C; ; —r;Cj,; € SZ

If s = 0, the equation means r;,C; ; = r;C;; that is to say B = DC symmetric. So (it) < (4ii).
If s > 0 and B symmetric we have r;C; ; — 1;C;; € sZ. So (ii1) = (i1). O
In some situations the two constructions are the same:
Proposition 7.12. The following properties are equivalent:

i) For s >0, u' =u

ii) For s >0, d} = d

iii) For s >0, d) = ds

i) C'(z) = C(z)

v) B'(z) = B(z)

vi)i#j=(ri=10rC;; =—10rC;; =0)
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Proof: 'We have (iv) < (v) because B(z) = D(z)C(z), B'(z) = D(z)C’(z) and D(z) is invertible.

The (i) = (i7) (resp. (i) = (4i%)) is clear and we get (i4) = (i) (resp. (i%4) = (i)) by looking at
dl( il ]k) —dl( zl;V ) (resp- dQ(‘/i,la‘/j,k):dé(%,lv‘/j,k))'
The (iv) = (i) is clear. If (¢) is true we have for ¢ # j and all I,k € Z:

uii(Vig) = Z 01—k = Z O1—kerrs = iy (Vik)

r:Cmv+1,Ci,j+37...7flCi,j71 T:Ci,jJrLCin+37...7flci,j71
Ci s —C s
Cij_,—Cij STy Y . .
and so Z2=2 " = 2% that is to say (iv).
z—z zi—2;

So it suffices to show that (v) < (vi). We have always:

2l 22T TR
— (") = ————— =[2n]. = [Bi,]»

—1

Bi7i (Z) =

z—2z"1 z—z
If i # j, the equality B, j(2) = B; ;(z) means:

Ci,]‘—’r‘i riCi,j—l _ 1—T‘ici,j

STit+Cij + 5 ri=Ciy ri—Cij — ,riCi;+1 + 511l P

—Z —z —Zz

If , =1or C;; = —1 or C;; = 0 the equality is clear and so (vi) = (v). Suppose that (v) is true and
let be ¢ # j. We have to study different cases:

ri+ C;; = C;j —r; = r; = 0 (impossible)

ri+Cij=1i—Ci; = Ci; =0

7+ Ci;=rCij+land rCi; —1=Ci;—ri=r; =1

ri+Ci;=rCij+1land —r,C;;+1=C;; —r; = C;; =1 (impossible)

ri+Ci;=-—1Ci;—land r,Ci; —1=Cy; —1r; = Cy 5 =—1

ri +Cij =—1Cij—land —rCi;+1= C’ —r; = r; = —1 (impossible)
and so we get (vi). O
Lemma 7.13. If the properties of the proposition 7.12 are verified and B = DC' is symmetric then the

properties of the proposition 7.11 are verified.

Proof:  We verify the property (iv) of proposition 7.11: we suppose that C; ; # Cj ;. So C; ; #0,C;; #0
and we do not have C; ; = C;; = —1. As rlC” = r;Cj4, we do not have r; = r; = 1. So we have
(property (vi) of proposition 7.12) r; Cji =1orr; = —C;; = 1. For example in the first case,
1;Cs 5 = 1;Cj 4 leads to Cy j = —r;. O

Definition 7.14. We say that C is q-symmetrizable if B = DC' is symmetric and:
Z;é]:>(7"z=1 OT’Ci)j =-1 07”01',]‘ :O)

In particular C' g-symmetrizable verifies the properties of proposition 7.11, 7.12 and of theorem 7.10.

7.3.5. Examples. If C' is symmetric then for all ¢ € I we have r; = 1 and so C is g-symmetrizable.

Lemma 7.15. The Cartan matrices of finite or affine type (except Agl), Ag) case, 1 > 2) are q-

symmetrizable. The affine Cartan matrices Agl), AS) with I > 2 are not q-symmetrizable.
In particular if C is finite then v = @ and the presentation adopted in this paper fits with former articles,
in particular in the non symmetric cases ([FR2|, [FM1], [FM2], [He2]).

Proof: As those matrices are symmetrizable, it suffices to check the property (vi) of proposition 7.12:

the finite Cartan matrices A; (I > 1), D; (I > 4), Es, E7, Es and the affine Cartan matrices Al(l)
(1>1), Dl(l) (1>4), Eél), Egl), Eél) are symmetric and so g-symmetrizable.



THE t-ANALOGS OF ¢-CHARACTERS AT ROOTS OF UNITY 39

the finite Cartan matrices B; (I > 2), G2 and the affine Cartan matrices Bl(l) (i >3), Ggl) verify
rm=1landfori#j:i<n—-1=C;; =—-1or0.

the finite Cartan matrices C; (I > 2), the affine Cartan matrices Ag)_l (i >3), Df) verify m = ... =

Tn—1 = 1, On,l =..=Upn-2= 0 and Cn,n—l =—1.
the affine Cartan matrices Cl(l) ((>2)verifyrg =...=rp_1 =land C13=..=Cy, =0,C1 2 = —1,
Cn,l = ... = Unpn-2= 07 On,n—l = -1
the affine Cartan matrices Dl(i)l (>2)verify i =rp, =1landfori #j: 2<i<n—-1=C;; =
—1or0.
The other particular cases are studied one after one:
2 -1 0 0
. . -1 2 -1
for the finite Cartan matrix Fy = 0 2 9 _1|We have (2,2,1,1)
0O 0 -1 2
2 -1 0 0 O
-1 2 -1 0 0
for the affine Cartan matrix F4(1) =10 -1 2 -1 0 | wehave(2,2,2,1,1)
0 o -2 2 -1
o 0 0 -1 2
for the affine Cartan matrix A{? = (_21 9 ) we have (1,4)
2 -1 0 0 O
-1 2 -1 0 0
for the affine Cartan matrix E&Y = | 0 —1 2 =2 0 | wehave (1,1,1,2,2).
0 o -1 2 -1
o 0 0 -1 2
Finally the affine Cartan matrices Agl) and Ag) (I > 2) are not g-symmetrizable because Cj—1 p, = —2
and r,—1 = 2. O

One can understand “intuitively” the fact that Ag) (I > 2) is not g-symmetrizable: in the Dynkin diagram

there is an oriented path without loop with two arrows in the same direction.

There are g-symmetrizable Cartan matrices which are not finite and not affine: here is an example such
that for all 4,5 € I, C;; > —2:
2 -2 -2 0
-1 2 0 -1
-1 0 2 -1
0o -2 -2 2
(7"1,7"2,7‘3,7‘4) = (1,272, 1)

C:
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NOTATIONS
set of yf—onnomials p9 Xet
sets of ), Vi-monomials p 8
sets of :)A)t—monomials p 23 Xq
sets of )A)ts—monomials p 25
sets of J;-monomials p15 Xq,t
map (I x Z/sZ)> -7  p6 ]
character p 23 X
element of H pb5 @Z(m)
elements of jiu or 37,5 pb5 it (m)
elements of ) p9 e
bijection of A, p 35 m,m
sets of )A/t—monomials p9 ;p
sets of )A/ts—monomials p9 7;
sets of V*-monomials p9 .

symmetrized I

Cartan matrix p4 Prom(?)
deformation of B p4 ps /’ (1)
deformation of B p 37 mem
map (I x Z/sZ)> -7  p6 z\/
Cartan matrix p4 ’
deformation of B p4 Péep
deformation of B p 37 Rep®
set of monomials p 12 Rep?
inverse of C' p 30 i
central element of H pPo s
bicharacters p38 S,
bicharacters p 37 gs
bicharacters p 18 szl
root of unity p 2 Sl"t
element of &;, & p 17 Sf,t
element of ﬁ’b‘,hﬁit p 1l t
element of R5° p 23 tr
element of & p 12 Ts
element of R5° p 12 Tsi’t
map (I x Z/s7)? — Z p 3l Zf’l
Heisenberg algebfa po Xi;ll
formal series in H po5 y[m]
subrings of 33 p 11 }; Ly
subrings of ), p 11 }; 7{,@1
subrings of Y p 12 yl’l’ il
subrings of )* p 17 SR
subrings of V¢ p 17 ths’ %t
subrings of Y p 17 5)“’ “
subring of jif p 24 Als’t
subring of Y™ p 25 o
morphism Ats,oo
of e-characters pb ft

*

morphism

of e, t-characters
morphism

of g-characters
morphism

of ¢, t-characters
element of Z/sZ
clement of &5°
element of &3>

set

jif—monomial
operator

morphism

map to Z

ring homomorphism of
morphism
polynomial
polynomial

complex number
integer

integer
Grothendieck ring
Grothendieck ring
deformed
Grothendieck ring
integer

screening operator
screening operator
screening current
t-screening operator
t-screening operator
central element of )
central element of ),
morphism
morphism

character

character

element of Rep, Rep®
element of H
elements of Y
elements of Y, or )
commutative algebra
quotient of jij, )>u
subalgebra of H,
ﬁt—module
ﬁf—module
completion of J>t
completion of Y?
indeterminate
t-product

p 15

p 12
p 15

p 30
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