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Abstract. The q-characters were introduced by Frenkel and Reshetikhin [FR2] to study finite dimen-
sional representations of the untwisted quantum affine algebra Uq(ĝ) for q generic. The ε-characters at
roots of unity were constructed by Frenkel and Mukhin [FM2] to study finite dimensional representations
of various specializations of Uq(ĝ) at qs = 1. In the finite simply laced case Nakajima [N2][N3] defined
deformations of q-characters called q, t-characters for q generic and also at roots of unity. The definition
is combinatorial but the proof of the existence uses the geometric theory of quiver varieties which holds
only in the simply laced case. In [He2] we proposed an algebraic general (non necessarily simply laced)
new approach to q, t-characters for q generic. In this paper we treat the root of unity case. Moreover we
construct q-characters and q, t-characters for a large class of generalized Cartan matrices (including finite

and affine cases except A
(1)
1 , A

(2)
2 ) by extending the approach of [He2]. In particular we generalize the

construction of analogs of Kazhdan-Lusztig polynomials at roots of unity of [N3] to those cases. We also
study properties of various objects used in this article : deformed screening operators at roots of unity,
t-deformed polynomial algebras, bicharacters arising from symmetrizable Cartan matrices, deformation
of the Frenkel-Mukhin’s algorithm.
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1. Introduction

V.G. Drinfel’d [D1] and M. Jimbo [J] associated, independently, to any symmetrizable Kac-Moody
algebra g and any complex number q ∈ C∗ a Hopf algebra Uq(g) called quantum group or quantum
Kac-Moody algebra.

First we suppose that q ∈ C∗ is not a root of unity. In the case of a semi-simple Lie algebra g of rank n,
the structure of the Grothendieck ring Rep(Uq(g)) of finite dimensional representations of the quantum
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finite algebra Uq(g) is well understood. It is analogous to the classical case q = 1. In particular we have
ring isomorphisms:

Rep(Uq(g)) ' Rep(g) ' Z[Λ]W ' Z[T1, ..., Tn]

deduced from the injective homomorphism of characters χ:

χ(V ) =
∑

λ∈Λ

dim(Vλ)λ

where Vλ are weight spaces of a representation V and Λ is the weight lattice.

For the general case of Kac-Moody algebras the picture is less clear. The representation theory of the
quantum affine algebra Uq(ĝ) is of particular interest (see [CP1], [CP2]). In this case there is a crucial
property of Uq(ĝ): it has two realizations, the usual Drinfel’d-Jimbo realization and a new realization
(see [D2] and [Be]) as a quantum affinization of the quantum finite algebra Uq(g).

To study the finite dimensional representations of Uq(ĝ) Frenkel and Reshetikhin [FR2] introduced q-
characters which encode the (pseudo)-eigenvalues of some commuting elements in the Cartan subalgebra

Uq(ĥ) ⊂ Uq(ĝ) (see also [Kn]). The morphism of q-characters is an injective ring homomorphism:

χq : Rep(Uq(ĝ)) → Z[Y ±i,a]i∈I,a∈C∗

where Rep(Uq(ĝ)) is the Grothendieck ring of finite dimensional (type 1)-representations of Uq(ĝ) and
I = {1, ..., n}. In particular Rep(Uq(ĝ)) is commutative and isomorphic to Z[Xi,a]i∈I,a∈C∗ .

The morphism of q-characters has a symmetry property analogous to the classical action of the Weyl
group Im(χ) = Z[Λ]W : Frenkel and Reshetikhin [FR2] defined n screening operators Si and showed that
Im(χq) =

⋂

i∈I

Ker(Si) for g = sl2. The result was proved by Frenkel and Mukhin for all finite g in [FM1].

In the simply laced case Nakajima [N2][N3] introduced t-analogs of q-characters. The motivations are
the study of filtrations induced on representations by (pseudo)-Jordan decompositions, the study of the
decomposition in irreducible modules of tensorial products and the study of cohomologies of certain quiver
varieties. The morphism of q, t-characters is a Z[t±]-linear map

χq,t : Rep(Uq(ĝ)) → Z[Y ±i,a, t±]i∈I,a∈C∗

which is a deformation of χq and multiplicative in a certain sense. A combinatorial axiomatic definition
of q, t-characters is given. But the existence is non-trivial and is proved with the geometric theory of
quiver varieties which holds only in the simply laced case.

In [He2] we defined and constructed q, t-characters in the general (non necessarily simply laced) case with

a new approach motivated by the non-commutative structure of Uq(ĥ) ⊂ Uq(ĝ), the study of screening
currents of [FR1] and of deformed screening operators Si,t of [He1]. In particular we have a symmetry
property: the image of χq,t is a completion of

⋂

i∈I

Ker(Si,t).

The representation theory of the quantum affine algebras Uq(ĝ) depends crucially whether q is a root of
unity or not (see [CP3]). Frenkel and Mukhin [FM1] generalized q-characters at roots of unity : if ε is a
sth-primitive root of unity the morphism of ε-characters is:

χε : Rep(U res
ε (ĝ)) → Z[Y ±i,a]i∈I,a∈C∗

where Rep(U res
ε (ĝ)) is the Grothendieck ring of finite dimensional (type 1)-representations of the restricted

specialization U res
ε (ĝ) of Uq(ĝ) at q = ε. In particular Rep(U res

ε (ĝ)) is commutative and isomorphic to
Z[Xi,a]i∈I,a∈C∗ .

Moreover χε can be characterized by

χε(
∏

i∈I,l∈Z/sZ

X
xi,l

i,εl ) = τs(χq(
∏

i∈I,0≤l≤s−1

X
xi,[l]

i,ql ))

where τs : Z[Y ±
i,ql ]i∈I,l∈Z → Z[Y ±

i,εl ]i∈I,l∈Z/sZ is the ring homomorphism such that τs(Y
±
i,ql ) = Y ±

i,ε[l]
(for

l ∈ Z we denote by [l] its image in Z/sZ).
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In the simply laced case Nakajima generalized the theory of q, t-characters at roots of unity with the help
of quiver varieties [N3].

In this paper we construct q, t-characters at roots of unity in the general (non necessarily simply laced)
case by extending the approach of [He2]. As an application we construct analogs of Kazhdan-Lusztig
polynomials at roots of unity in the same spirit as Nakajima did for the simply laced case. We also study
properties of various objects used in this paper: deformed screening operators at roots of unity, t-deformed
polynomial algebras, bicharacters arising from general symmetrizable Cartan matrices, deformation of
the Frenkel-Mukhin’s algorithm.

The construction is also extended beyond the case of a quantum affine algebra, that is to say by replacing
the finite Cartan matrix by a generalized symmetrizable Cartan matrix: the construction of q-characters
as well as q, t-characters (generic and roots of unity cases) is explained in this paper for (non necessarily

finite) Cartan matrices such that i 6= j ⇒ Ci,jCj,i ≤ 3 (it includes finite and affine types except A
(1)
1 , A

(2)
2 ).

The notion of a quantum affinization is more general than the construction of a quantum affine algebra
from a quantum finite algebra: it can be extended to any general symmetrizable Cartan matrix (see [N1]).
For example for an affine Cartan matrix one gets a quantum toroidal algebra (see [VV1]). In general a
quantum affinization is not a quantum Kac-Moody algebra and few is known about the representation
theory outside the quantum affine algebra case. However for an integrable representation one can define
q-characters as Frenkel-Reshetikhin did for quantum affine algebras. So the q-characters constructed in
this paper for some generalized symmetrizable Cartan matrix are to be linked with representation theory
of the associated quantum affinization. We will address further developments on this point in a separate
publication.

This paper is organized as follows: after some backgrounds in section 2, we generalize in section 3 the
construction of t-deformed polynomial algebras of [He2] to the root of unity case. We give a “concrete”
construction using Heisenberg algebras. We show that this twisted multiplication can also be “abstractly”
defined with two bicharacters d1, d2 as Nakajima did for the simply laced case (for which there is only
one bicharacter d1 = d2).

In section 4 we remind how q, t-characters are constructed for q generic and C finite in [He2]. We extend
the construction of q-characters and of q, t-characters to symmetrizable (non necessarily finite) Cartan

matrices such that i 6= j ⇒ Ci,jCj,i ≤ 3, in particular for affine Cartan matrices (except A
(1)
1 and A

(2)
2 ).

The q, t-characters can be computed by the algorithm described in [He2] which is a deformation of the
algorithm of Frenkel-Mukhin [FM1].

In section 5 we construct q, t-characters at roots of unity. Let us explain the crucial technical point of this
section: we can not use directly a t-deformation of the definition of Frenkel-Mukhin because there is no
analog of τs which is an algebra homomorphism for the t-deformed structures. But we can construct τs,t

which is multiplicative for some ordered products (see section 5.2.1). In particular τs,t has nice properties
and we can define χε,t such that “χε,t = τs,t ◦ χq,t”. We give properties of χε,t analogous to the property
of χε (proposition 4.11, theorems 5.10 and 5.16). In particular in the ADE-case we get a formula which
is Axiom 4 of [N3], and so the construction coincides with the construction of [N3] for the ADE-case.

In section 6 we give some applications about Kazhdan-Lusztig polynomials and quantization of the
Grothendieck ring. If C is finite the technical point in the root of unity case is to show that the algorithm
produces a finite number of dominant monomials. We give a conjecture about the multiplicity of an
irreducible module in a standard module at roots of unity. For the ADE-case it is a result of Nakajima
[N3]. An analogous conjecture was given in [He2] for q generic. We also study the non finite cases.

In section 7 we give some complements: first we discuss the finiteness of the algorithm; at t = 1 it stops
if C is finite and it does not stop if C is affine. We relate the structure of the deformed ring in the affine

A
(1)
r -case to the structure of quantum toroidal algebras. We study some combinatorial properties of the

Cartan matrices which are related to the bicharacters d1 and d2 (propositions 7.9, 7.11, 7.12 and theorem
7.10).
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For convenience of the reader we give at the end of this article an index of notations defined in the main
body of the text.

In the course of writing this paper we were informed by H. Nakajima that the t-analogs of q-characters
for some quantum toroidal algebras are also mentioned in the remark 6.9 of [N5]. This incited us to add
the construction of analogs of Kazdhan-Lusztig polynomials at roots of unity also in the non finite cases
(section 6.2.4).

Acknowledgments. The author would like to thank H. Nakajima for useful comments on a previous
version of this paper, N. Reshetikhin and M. Rosso for encouraging him to study the root of unity cases,
and M. Varagnolo for indications on quantum toroidal algebras.

2. Background

2.1. Cartan matrices. A generalized Cartan matrix is C = (Ci,j)1≤i,j≤n such that Ci,j ∈ Z and:

Ci,i = 2

i 6= j ⇒ Ci,j ≤ 0

Ci,j = 0 ⇔ Cj,i = 0

Let I = {1, ..., n}.

C is said to be decomposable if it can be written in the form C = P

(

A 0
0 B

)

P−1 where P is a

permutation matrix, A and B are square matrices. Otherwise C is said to be indecomposable.

C is said to be symmetrizable if there is a matrix D = diag(r1, ..., rn) (ri ∈ N∗) such that B = DC is
symmetric. In particular if C is symmetric then it is symmetrizable with D = In.

If C is indecomposable and symmetrizable then there is a unique choice of r1, ..., rn > 0 such that

r1 ∧ ... ∧ rn = 1: indeed if Cj,i 6= 0 we have the relation ri =
Cj,i

Ci,j
rj .

In the following C is a symmetrizable and indecomposable generalized Cartan matrix. For example:

C is said to be of finite type if all its principal minors are positive (see [Bo] for a classification).

C is said to be of affine type if all its proper principal minor are positive and det(C) = 0 (see [Ka] for a
classification).

Let r∨ = max{ri−1−Cj,i)/i 6= j}∪{1}. If C is finite we have r∨ = max{ri/i ∈ I} = max{−Ci,j/i 6= j}.
In particular if C is of type ADE we have r∨ = 1, if C is of type BlClF4 (l ≥ 2) we have r∨ = 2, if C of
type G2 we have r∨ = 3.

Let z be an indeterminate and zi = zri . The matrix C(z) = (Ci,j(z))1≤i,j≤n with coefficients in Z[z±] is

defined by Ci,i(z) = [2]zi = zi + z−1
i and Ci,j = [Ci,j ]z for i 6= j where for l ∈ Z, we use the notation:

[l]z =
zl − z−l

z − z−1
(= z−l+1 + z−l+3 + ... + zl−1 for l ≥ 1)

Let B(z) = D(z)C(z) where D(z) is the diagonal matrix Di,j(z) = δi,j [ri]z, that is to say Bi,j(z) =
[ri]zCi,j(z).

In particular, the coefficients of C(z) and B(z) are symmetric Laurent polynomials (invariant under
z 7→ z−1).

In the following we suppose that det(C(z)) 6= 0. It includes finite and affine Cartan matrices (if C is of

type A
(1)
1 we set r1 = r2 = 2) and also the matrices such that i 6= j ⇒ Ci,jCj,i ≤ 3 which will appear

later (see lemma 6.9 and section 7.3 for complements).
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2.2. Quantum affine algebras. In the following q is a complex number q ∈ C∗. If q is not a root of
unity we set s = 0 and we say that q is generic. Otherwise s ≥ 1 is set such that q is a sth primitive root
of unity.

We suppose in this section that C is finite. We refer to [FM2] for the definition of the untwisted quantum
affine algebra Uq(ĝ) associated to C (for q generic) and of the restricted specialization U res

ε (ĝ) of Uq(ĝ) at
q = ε (for ε root of unity).

We briefly describe the construction of U res
ε (ĝ) from Uq(ĝ): we consider a Z[q, q−1]-subalgebra of Uq(ĝ)

containing the (x±i )(r) =
(x±

i )s

[r]qi
! (where [r]q ! = [r]q [r− 1]q...[1]q) for some generators x±i , and we set q = ε.

One can define a Hopf algebra structure on Uq(ĝ) and U res
ε (ĝ), and so we consider the Grothendieck ring

of finite dimensional (type 1)-representations: Rep(Uq(ĝ)) and Rep(U res
ε (ĝ)).

The morphism of q-characters χq (Frenkel-Reshetikhin [FR2]) and the morphism of ε-character χε

(Frenkel-Mukhin [FM2]) are injective ring homomorphisms:

χq : Rep(Uq(ĝ)) → Z[Y ±i,a]i∈I,a∈C∗ , χε : Rep(U res
ε (ĝ)) → Z[Y ±i,a]i∈I,a∈C∗

In particular Rep(Uq(ĝ)) and Rep(U res
ε (ĝ)) are commutative and isomorphic to Z[Xi,a]i∈I,a∈C∗ .

Frenkel and Mukhin [FM1][FM2] have proven that for i ∈ I , a ∈ C∗:

χq(Xi,a) ∈ Z[Y ±i,aqm ]i∈I,m∈Z and χε(Xi,a) ∈ Z[Y ±i,aεm ]i∈I,m∈Z

Indeed it suffices to study (see [He2] for details):

χq : Rep = Z[Xi,l]i∈I,l∈Z → Y = Z[Y ±i,l ]i∈I,l∈Z

(where Xi,l = Xi,ql , Y ±i,l = Y ±
i,ql ), and:

χs
ε : Reps = Z[Xi,l]i∈I,l∈Z/sZ → Ys = Z[Y ±i,l ]i∈I,l∈Z/sZ

(where Xi,l = Xi,εl , Y ±i,l = Y ±
i,εl).

3. t-deformed polynomial algebras

3.1. The t-deformed algebra Ŷs
t . In this section we generalize at roots of unity the construction of

[He2] of t-deformed polynomial algebras.

3.1.1. Construction. In this section we suppose that B(z) is symmetric.

Definition 3.1. Ĥ is the C-algebra defined by generators ai[m], yi[m] (i ∈ I, m ∈ Z − {0}), central
elements cr (r > 0) and relations (i, j ∈ I, m, r ∈ Z − {0}):

(1) [ai[m], aj [r]] = δm,−r(q
m − q−m)Bi,j(q

m)c|m|

(2) [ai[m], yj [r]] = (qmri − q−rim)δm,−rδi,jc|m|

(3) [yi[m], yj [r]] = 0

Let Ĥh = Ĥ[[h]]. For i ∈ I , l ∈ Z/sZ we define Ỹ ±i,l , Ã
±
i,l, t

±
l ∈ Ĥh such that:

Ỹi,l = exp(
∑

m>0

hmqlmyi[m])exp(
∑

m>0

hmq−lmyi[−m])

Ãi,l = exp(
∑

m>0

hmqlmai[m])exp(
∑

m>0

hmq−lmai[−m])

tl = exp(
∑

m>0

h2mqlmcm)
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and for R =
∑

l∈Z

Rlz
l ∈ Z[z±]:

tR =
∏

l∈Z

tRl

l = exp(
∑

m>0

h2mR(qm)cm) ∈ Ĥh

Note that the root of unity condition, that is to say s ≥ 1, is a periodic condition (Ỹi,l+s = Ỹi,l).

Lemma 3.2. ([He2]) We have the following relations in Ĥh:

Ãi,lỸj,kÃ−1
i,l Ỹ −1

j,k = tδi,j(z−ri−zri )(−z(l−k)+z(k−l))

Ãi,lÃj,kÃ−1
i,l Ã−1

j,k = tBi,j(z)(z−1−z)(−z(l−k)+z(k−l))

Definition 3.3. Ŷs
u is the Z-subalgebra of Ĥh generated by the Ỹi,l, Ã

−1
i,l , tl (i ∈ I, l ∈ Z/zZ).

Note that if s ≥ 1, the elements Ã−1
i,0 Ã−1

i,1 ...Ã−1
i,s−1 and Ỹi,0Ỹi,1...Ỹi,s−1 are central in Ŷu.

Definition 3.4. Ŷs
t is the quotient-algebra of Ŷs

u by relations tl = 1 if l ∈ Z/sZ − {0}.

We keep the notations Ỹi,l, Ã
−1
i,l for their image in Ŷs

t . We denote by t the image of t0 = exp(
∑

m>0
h2mcm)

in Ŷs
t . In particular the image of tR is tR0 . We denote by Ŷt = Ŷ0

t the algebra in the generic case.

3.1.2. Structure. For a, b ∈ Z/sZ, let δa,b = 1 if a = b and δa,b = 0 if a 6= b.

The following theorem gives the structure of Ŷs
t :

Theorem 3.5. The algebra Ŷs
t is defined by generators Ỹi,l, Ã

−1
i,l , t± (i ∈ I, l ∈ Z/sZ) and relations

(i, j ∈ I, k, l ∈ Z/sZ):

Ỹi,lỸj,k = Ỹj,kỸi,l

Ã−1
i,l Ã−1

j,k = tα(i,l,j,k)Ã−1
j,kÃ−1

i,l

Ỹj,kÃ−1
i,l = tβ(i,l,j,k)Ã−1

i,l Ỹj,k

where α, β : (I × Z/sZ)2 → Z are given by (l, k ∈ Z/sZ, i, j ∈ I):

α(i, l, i, k) = 2(δl−k,−2ri − δl−k,2ri)

α(i, l, j, k) = 2
∑

r=Ci,j+1,Ci,j+3,...,−Ci,j−1

(δl−k,r+ri − δl−k,r−ri) (if i 6= j)

β(i, l, j, k) = 2δi,j(−δl−k,ri + δl−k,−ri)

Note that for i, j ∈ I and l, k ∈ Z/sZ we have α(i, l, j, k) = −α(j, k, i, l) and β(i, l, j, k) = −β(j, k, i, l).

This theorem is a generalization of theorem 3.11 of [He2]. It is proved in the same way except for lemma
3.7 of [He2] whose proof is changed at roots of unity: for N ≥ 1 we denote by ZN [z] ⊂ Z[z] the subset
of polynomials of degree lower that N . The following lemma is a generalization of lemma 3.7 of [He2] at
roots of unity :

Lemma 3.6. We suppose that s ≥ 1. Let J = {1, ..., r} be a finite set of cardinal r and Λ be the
polynomial commutative algebra
Λ = C[λj,m]j∈J,m≥0. For R = (R1, ..., Rr) ∈ Zs−1[z]r, consider:

ΛR = exp(
∑

j∈I,m>0

hmRj(q
m)λj,m) ∈ Λ[[h]]

Then the (ΛR)R∈Zs−1[z]r are C-linearly independent. In particular the Λj,l = Λ(0,...,0,zl,0,...,0) (j ∈ I,
0 ≤ l ≤ s − 1) are C-algebraically independent.
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Proof: Suppose we have a linear combination (µR ∈ C, only a finite number of µR 6= 0):
∑

R∈Zs−1[z]r

µRΛR = 0

In the proof of lemma 3.7 of [He2] we saw that for N ≥ 0, j1, ..., jN ∈ J , l1, ..., lN > 0, α1, ..., αN ∈ C we
have:

∑

R∈Zs−1[z]r/Rj1 (ql1 )=α1,...,RjN
(qlR )=αN

µR = 0

We set N = sr and

((j1, l1), ..., (jN , lN )) = ((1, 1), (1, 2), ..., (1, s), (2, 1), ..., (2, s), (3, 1), ..., (r, s))

We get for all αj,l ∈ C (j ∈ J, 1 ≤ l ≤ L):
∑

R∈Zs−1[z]r/∀j∈J,1≤l≤s,Rj(ql)=αj,l

µR = 0

It suffices to show that there is at most one term is this sum. But consider P, Q ∈ Zs−1[z] such that for
all 1 ≤ l ≤ s, P (ql) = P ′(ql). As q is primitive the ql are different and so P − P ′ = 0. �

3.2. Bicharacters, monomials and involution.

3.2.1. Presentation with bicharacters. The definition of the algebra Ŷs
t with the Heisenberg algebra Ĥ

is a “concrete” construction. It can also be defined “abstractly” with bicharacters in the same spirit as
Nakajima [N3] did for the simply laced case :

We define π+ as the algebra homomorphism:

π+ : Ŷs
t → Ŷs = Z[Yi,l, A

−1
i,l ]i∈I,l∈Z/sZ

such that π+(Ỹ ±i,l ) = Y ±i,l , π+(Ã±i,l) = A±i,l and π+(t) = 1 (Ŷs is commutative).

We say that m ∈ Ŷs
t is a Ŷs

t -monomial if it is a product of the Ã−1
i,l , Ỹi,l, t

±. For m a Ŷs
t -monomial, i ∈ I ,

l ∈ Z/sZ we define yi,l(m), vi,l(m) ≥ 0 such that π+(m) =
∏

i∈I,l∈Z/sZ

Y
yi,l

i,l A
−vi,l

i,l . In order to simplify the

formulas for a Laurent polynomial let P (z) =
∑

k∈Z

Pkzk ∈ Z[z±] (i ∈ I, l ∈ Z/sZ):

(P (z))opVi,l(m) =
∑

k∈Z

Pkvi,l+[k](m)

We define ui,l(m) ∈ Z by :

ui,l(m) = yi,l(m) −
∑

j∈I

(Ci,j(z))opVj,l(m)

In particular if Ci,j = 0 we have ui,l(Ã
−1
j,k) = 0 and if Ci,j < 0:

ui,l(Ã
−1
j,k) = −([Ci,j ]z)opVj,l(Ã

−1
j,k) =

∑

r=Ci,j+1...−Ci,j−1

δl+r,k

In the ADE-case the coefficients of C are −1, 0 or 2, and we have the expression:

ui,l(m) = yi,l(m) − [z + z−1]opVi,l(m) +
∑

j∈I/Ci,j=−1

vj,l(m)

= yi,l(m) − vi,l+1(m) − vi,l−1(m) +
∑

j∈I/Ci,j=−1

vj,l(m)

which is the formula used in [N3].
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Definition 3.7. For m1, m2 Ŷs
t -monomials we define:

d1(m1, m2) =
∑

i∈I,l∈Z/sZ

vi,l+ri(m1)ui,l(m2) + yi,l+ri(m1)vi,l(m2)

d2(m1, m2) =
∑

i∈I,l∈Z/sZ

ui,l+ri(m1)vi,l(m2) + vi,l+ri(m1)yi,l(m2)

For m a Ŷs
t -monomial we have always d1(m, m) = d2(m, m) (see section 7.3). In the ADE-case we have

d1 = d2 and it is the bicharacter of Nakajima [N3].

Proposition 3.8. For m1, m2 Ŷs
t -monomials, we have in Ŷs

t :

m1m2 = t2d1(m1,m2)−2d2(m2,m1)m2m1 = t2d2(m1,m2)−2d1(m2,m1)m2m1

Proof: First we check that m1m2 = t2d1(m1,m2)−2d2(m2,m1)m2m1 on generators:

2d1(Ã
−1
i,l , Ã−1

i,k ) − 2d2(Ã
−1
i,k , Ã−1

i,l ) = 2ui,l−ri(Ã
−1
i,k ) − 2ui,l+ri(Ã

−1
i,k ) = 2(δl−k,−2ri − δl−k,2ri) = α(i, l, i, k)

2d1(Ã
−1
i,l , Ã−1

j,k) − 2d2(Ã
−1
j,k , Ã−1

i,l ) = 2ui,l−ri(Ã
−1
j,k) − 2ui,l+ri(Ã

−1
j,k) = α(i, l, j, k)

2d1(Ã
−1
i,l , Ỹj,k) − 2d2(Ỹj,k, Ã−1

i,l ) = 2ui,l−ri(Ỹj,k) − 2ui,l+ri(Ỹj,k) = −β(i, l, j, k)

2d1(Ỹi,l, Ã
−1
j,k) − 2d2(Ã

−1
j,k , Ỹi,l) = 2vi,l−ri(Ã

−1
j,k) − 2vi,l+ri(Ã

−1
j,k) = −β(i, l, j, k) = βj,k,i,l

The other equality m1m2 = t2d2(m1,m2)−2d1(m2,m1)m2m1 is checked in the same way. �

If B(z) is not symmetric, the product is defined in section 7.3.4.

3.2.2. Involution. We consider the Z[t±]-antilinear antimultiplicative involution of Ŷs
t such that Ỹi,l =

Ỹi,l, Ã−1
i,l = Ã−1

i,l , t = t−1.

In [He2] we gave a “concrete” construction of this involution for the generic case: in Ŷu the involution is
defined by cm → −cm.

Lemma 3.9. There is a Z[t±]-basis A
s

of Ŷs
t such that all m ∈ A

s
is a Ŷs

t -monomial and:

m = t2d1(m,m)m = t2d2(m,m)m

Moreover for m1, m2 ∈ A
s

we have m1m2t
−d1(m1,m2)−d2(m1,m2) ∈ A

s
.

Proof: For the first point it suffices to show that for m a Ŷs
t -monomial there is a unique α ∈ Z such

that tαm = t2d1(m,m)+αm, that is to say for m a Ŷs
t -monomial we have mm−1 ∈ t2Z. This is proved as

in lemma 6.12 of [He2].

For the second point we compute:

t−d1(m1,m2)−d2(m1,m2)m1m2 = td1(m1,m2)+d2(m1,m2)m2m1

= t2d1(m2,m2)+2d1(m1,m1)+d1(m1,m2)+d2(m1,m2)m2m1

= t2d1(m2,m2)+2d1(m1,m1)+2d1(m2,m1)+d1(m1,m2)−d2(m1,m2)m1m2

= t2d1(m1m2,m1m2)(t−d1(m1,m2)−d2(m1,m2)m1m2) �

For example we have Ỹi,l ∈ A
s

(because d1(Ỹi,l, Ỹi,l) = 0) and if s = 0 or s > 2ri we have tÃ−1
i,l ∈ A

s

(because d1(Ã
−1
i,l , Ã−1

i,l ) = −1).

For m1, m2 ∈ A
s

we set m1.m2 = m1m2t
−d1(m1,m2)−d2(m1,m2) ∈ A

s
. We have m1.m2 = m2.m1. The non

commutative multiplication can be defined from . by setting (m1, m2 ∈ A
s
):

m1m2 = td1(m1,m2)+d2(m1,m2)m1.m2

In the ADE-case it is the point of view adopted in [N3]. In particular if s = 0 or s > 2ri, Ỹi,l (resp. Ã−1
i,l )

is denoted by Wi,l (resp. t−1Vi,l) in [N3].
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Let A = A
0

and for s ≥ 0 there is a surjective map ps : A → A
s

such that for m ∈ A, ps(m) is the unique

element of A
s

such that for i ∈ I, l ∈ Z/sZ:

yi,l(ps(m)) =
∑

l′∈Z/[l′]=l

yi,l(m) , vi,l(ps(m)) =
∑

l′∈Z/[l′]=l

vi,l(m)

In particular it gives a Z[t±]-linear map ps : Ŷt → Ŷs
t .

3.2.3. Notations and technical complements. A Ŷs
t -monomial is said to be i-dominant (resp.

i-antidominant) if ∀l ∈ Z/sZ, ui,l(m) ≥ 0 (resp. ui,l(m) ≤ 0). We denote by B
s

i the set of i-dominant

monomials m such that m ∈ A
s
.

A Ŷs
t -monomial is said to be dominant (resp. antidominant) if ∀l ∈ Z/sZ, ∀i ∈ I , ui,l(m) ≥ 0 (resp.

ui,l(m) ≤ 0). We denote by B
s

the set of dominant monomials m such that m ∈ A
s
. In the generic case

let A = A
0
, Bi = B

0

i , B = B
0
.

We denote by Âs = {m =
∏

i∈I,l∈Z/sZ

Y
yi,l

i,l A
−vi,l

i,l /ui,l, vi,l ≥ 0} ⊂ Ŷs the set of Ŷs-monomials. It is a Z-basis

of Ŷs and π+(A
s
) = Âs. Let B̂s

i = {m ∈ As/∀l ∈ Z/sZ, ui,l(m) ≥ 0} = π+(B
s

i ), B̂s =
⋂

i∈I

B̂s
i = π+(B

s
).

We define Π̂ : Ŷs
t → Ys = Z[Y ±i,l ]i∈I,l∈Z/sZ as the ring morphism such that for m a Ŷt-monomial Π̂(m) =

∏

i∈I,l∈Z/sZ

Y
ui,l(m)
i,l (Ys is commutative).

In particular for i ∈ I , l ∈ Z/sZ, we have:

Π̂(Ã−1
i,l ) = Y −1

i,l−ri
Y −1

i,l+ri

∏

j/Cj,i<0

∏

k=Cj,i+1,Cj,i+3,...,−Cj,i−1

Yj,l+2k

and we denote this term by A−1
i,l = Π̂(Ã−1

i,l ). Let As = {m =
∏

i∈I,l∈Z/sZ

Y
ui,l(m)
i,l /ui,l(m) ∈ Z} = Π̂(A

s
)

the set of Ys-monomials, Bs
i = {m ∈ As/∀l ∈ Z/sZ, ui,l(m) ≥ 0} = Π̂(B

s

i ), Bs =
⋂

i∈I

Bs
i = Π̂(B

s
).

If q is generic then for M ∈ A and m ∈ A there at most one m′ ∈ A
s

of the form m′ = tαMÃ−1
i1,l1

...Ã−1
iK ,lK

such that Π̂(m′) = m (the A−1
i,l are algebraically independant because we have supposed det(C(z)) 6= 0 ,

see [He2]).

If q is a root of unity the situation can be different: for example we suppose that C is of type A
(1)
2 and

s = 3 (so det(C(q)) = q−3(q3 − 1)2 = 0). Then for all L ≥ 0, we have:

Π̂(Ỹ1,0Ã
−L
1,1 Ã−L

2,2 Ã−L
3,3 ) = Y1,0

and Π̂−1(Y1,0) is infinite.

If C is finite the situation is better. We have a generalization of lemma 3.14 of [He2] at roots of unity:

Lemma 3.10. We suppose that C is finite and that s ≥ 1. Let M be in A
s
. Then:

i) There is at most a finite number of m′ ∈ A
s

of the form m′ = tαMÃ−1
i1,l1

...Ã−1
iK ,lK

such that m′ is
dominant.

ii) For m ∈ As there is at most a finite number of m′ ∈ A
s

of the form m′ = tαMÃ−1
i1,l1

...Ã−1
iK ,lK

such

that Π̂(m′) = m.

Proof: First let us show (i) : let m′ be in A
s

with m′ = tαM
∏

i∈I,l∈Z/sZ

A
−vi,l

i,l and the vi,l ≥ 0. It suffices

to show that the condition m′ dominant implies that the vi =
∑

l′∈Z/sZ

vi,l are bounded (because Z/sZ is



10 DAVID HERNANDEZ

finite). This condition implies :

ui(m
′) = −2vi +

∑

j 6=i

(−Ci,jvj) + ui(M) ≥ 0

Let U be the column vector with coefficients (u1(M), ..., un(M)) and V the column vector with coefficients
(v1, ..., vn). So we have U − CV ≥ 0. As C is finite, the theorem 4.3 of [Ka] implies that C−1U − V ≥ 0
and so the vi are bounded.

For the (ii) we use the same proof with the condition :

ui(m
′) = −2vi +

∑

j 6=i

(−Ci,jvj) + ui(M) = ui(m)

�

In some cases we have another result. For i ∈ I let Li = (Ci,1, ..., Ci,n).

Lemma 3.11. We suppose that s ≥ 1 and that there are (αi)i∈I ∈ ZI such that αi > 0 and:
∑

j∈I

αjLj = 0

Then for M ∈ As there are at most a finite number of dominant monomials m ∈ Bs of the form
m = MA−1

i1,l1
A−1

i2,l3
...A−1

ik ,lk
.

In particular an affine Cartan matrix verifies the property of the lemma (see [Ka] for the coefficients αj).

Proof: Consider m′ =
∏

i∈I,l∈Z/sZ

A
−vi,l

i,l and m = Mm′. For i ∈ I let vi =
∑

l∈Z/sZ

vi,l ≥ 0. We have:

∑

i∈I

αiui(m
′) =

∑

i∈I

αi

∑

j∈I

(−Ci,j)vj = −
∑

j∈I

vj(
∑

i∈I

αiCi,j) = 0

We suppose that m is dominant, in particular ui,l(m
′) ≥ −ui,l(M). So:

ui,l(m
′) = ui(m

′) −
∑

l′∈Z/sZ,l′ 6=l

ui,l′(m
′) ≤ ui(m

′) +
∑

l′∈Z/sZ,l′ 6=l

ui,l′(M)

≤
1

αi

∑

j 6=i

αj(−uj(m
′)) +

∑

l′∈Z/sZ,l′ 6=l

ui,l′(M) ≤
1

αi

∑

j 6=i

αjuj(M) +
∑

l′∈Z/sZ,l′ 6=l

ui,l′(M)

So the ui,l(m
′) (i ∈ I, l ∈ Z/sZ) are bounded and there is at most a finite number of m′ such that m is

dominant. �

4. q, t-characters in the generic case

In [He2] we defined q, t-characters for all finite Cartan matrices in the generic case. In this section
we define q and q, t-characters for all symmetrizable (non necessarily finite) Cartan matrix such that

i 6= j ⇒ Ci,jCj,i ≤ 3, in particular for Cartan matrices of affine type (except A
(1)
1 , A

(2)
2 ). We suppose

s = 0, that is to say q is generic. The root of unity case will be studied in section 5.

4.1. Deformed screening operators. Classical screening operators were introduced in [FR2] and t-
deformed screening operators were introduced in [He1] for C finite. We define and study deformed
screening operators in the general case:

Definition 4.1. Ŷi,u is the Ŷu-bimodule defined by generators S̃i,l (i ∈ I, l ∈ Z) and relations :

S̃i,lÃ
−1
j,k = t−Ci,j(z)(z(k−l)+z(l−k))Ã

−1
j,kS̃i,l

S̃i,lỸj,k = tδi,j(z(k−l)+z(l−k))Ỹj,kS̃i,l , S̃i,lt = tS̃i,l

S̃i,l−ri − t−q−2ri−1Ã
−1
i,l S̃i,l+ri = 0
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In [He2] we made a concrete construction of Ŷi,u by realizing it in Ĥh. Note that Ŷt is a Ŷu-bimodule

using the projection Ŷu → Ŷt.

Definition 4.2. Ŷi,t is the Ŷt-bimodule Ŷt ⊗Ŷu
Ŷi,u ⊗Ŷu

Ŷt.

For l ∈ Z we denote by S̃i,l the image of S̃i,l in Ŷi,t. The Ŷt-module Ŷi,t is torsion free.

For m a Ŷs
t -monomial only a finite number of [S̃i,l, m] = (t2 − 1)tui,l(m)−1[ui,l(m)]tS̃i,l ∈ (t2 − 1)Ŷi,t are

not equal to 0, so we can define:

Definition 4.3. The ith-deformed screening operator is the map Si,t : Ŷt → Ŷi,t defined by (λ ∈ Ŷt):

Si,t(λ) =
1

t2 − 1

∑

l∈Z

[S̃i,l, λ] ∈ Ŷi,t

Let K̂i,t = Ker(Si,t). As Si,t is a derivation, K̂i,t is a subalgebra of Ŷt.

At t = 1 we define Si : Y → Yi =
⊕

l∈Z

YSi,l/
∑

l∈Z

Y .(Si,l−ri − A−1
i,l Si,l+ri) such for m ∈ A, Si(m) =

m
∑

l∈Z

ui,l(m)Si,l. It is the classical screening operator (see [FR2]). For m ∈ Ŷt we have Si(Π̂(m)) =

Π̂(Si,t(m)) where Π̂ : Ŷi,t → Yi is defined by Π̂(mS̃i,l) = Π̂(m)Si,l.

We set Ki = Ker(Si) and K =
⋂

i∈I

Ki.

In the following a product
→
∏

l∈Z

Ml (resp.
←
∏

l∈Z

Ml) is the ordered product ...M−2M−1M0M1...

(resp. ...M2M1M0M−1...).

Definition 4.4. For M ∈ Ŷt a i-dominant monomial we define:

←

Ei,t(M) = M(
∏

l∈Z

Ỹ
ui,l(M)
i,l )−1

←
∏

l∈Z

(Ỹi,l(1 + tÃ−1
i,l+ri

))ui,l(M) ∈ Ŷt

For example we have
←

Ei,t(Ỹi,l) = Ỹi,l(1 + tÃ−1
i,l+ri

),
←

Ei,t(Ã
−1
i,l Ỹi,l+ri Ỹi,l−ri) = Ã−1

i,l Ỹi,l+ri Ỹi,l−ri and for

j 6= i:
←

Ei,t(Ỹj,l) = Ỹj,l.

Theorem 4.5. ([He1]) For all Cartan matrix C, the kernel K̂i,t of Si,t is the Z[t±]-subalgebra of Ŷt

generated by the (l ∈ Z, j 6= i):

Ỹi,l(1 + tÃ−1
i,l+ri

) , Ã−1
i,l Ỹi,l+ri Ỹi,l−ri , Ỹj,l ,

←

Ei,t(Ã
−1
j,l )

For M a i-dominant monomial we have
←

Ei,t(M) ∈ K̂i,t, and:

K̂i,t =
⊕

M∈Bi

Z[t±]
←

Ei,t(M)

Note that the proof of [He1] works also if C is not finite : the point of this proof is that an element

χ ∈ K̂i,t − {0} has at least one i-dominant monomial, which is shown as in the sl2-case.

At t = 1 it is a classical result of [FR2].

Note that in the ADE-case the identification (see section 3.2.2) between the tÃ−1
i,l and the Vi,l shows that

the notation K̂i,t coincides with the notation of [N3].

4.2. Reminder on the algorithm of Frenkel-Mukhin and on the deformed algorithm.
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4.2.1. Completed algebras. Let K̂t =
⋂

i∈I

Ker(Si,t) ⊂ Ŷt. It is a subalgebra of Ŷt.

We recall that a partial ordering is defined on the Ŷt-monomials by m ∈ tZÃ−1
i,l m′ ⇔ m < m′.

We define a N-graduation of Ŷt by putting deg(Ã−1
i,l ) = 1, deg(Ỹi,l) = 0. Note that m < m′ ⇒ deg(m) >

deg(m′).

We define the algebra Ŷ∞t ⊃ Ŷt as the completion for this gradation. In particular the elements of Ŷ∞t
are (infinite) sums

∑

k≥0

λk such that λk is homogeneous of degree k.

In the same way we define K̂∞i,t such that Ŷ∞t ⊃ K̂∞i,t ⊃ K̂i,t, that is to say χ ∈ Ŷ∞t is in K̂∞i,t if and only if

it is of the form χ =
∑

k≥0

χk where:

χk ∈
⊕

M∈Bi/deg(M)=k

Z[t±]
←

Ei,t(M)

Let K̂∞t =
⋂

i∈I

K̂∞i,t.

In the same way for t = 1 we define Ŷ∞ ⊃ Ŷ , Y∞ ⊃ Y , K̂∞ ⊃ K̂, K∞ ⊃ K. They are well defined because
in Ŷ and in Y the A−1

i,l are algebraically independent (see section 3.2.3) and π+ preserves the degree. In

particular the maps π+ and Π̂ can be extended to maps π+ : Ŷ∞t → Ŷ∞ and Π̂ : Ŷ∞t → Y∞.

For m a Ŷt-monomial let u(m) = max{l ∈ Z/∀k < l, ∀i ∈ I, ui,k(m) = 0}. We define the subset C(m) ⊂ A

C(m) = {tZmÃ−1
i1,l1

...Ã−1
iN ,lN

/N ≥ 0, l1, ..., lN ≥ u(m)} ∩ A

We define the Z[t±]-submodule of Ŷ∞t :

C̃(m) = {χ ∈ Ŷ∞t /χ =
∑

m′∈C(m)

λm′(t)m′}

Lemma 4.6. An element of K̂∞t −{0} has at least one dominant monomial. An element of K̂t −{0} has
at least one dominant monomial and one antidominant monomial.

Proof: For χ ∈ K̂∞t let M be a maximal monomial of χ. Then in the decomposition χ =
∑

k≥0

χ
(i)
k where

χ
(i)
k ∈

⊕

M∈Bi/deg(M)=k

Z[t±]
←

Ei,t(M) we see that M is i-dominant.

For χ ∈ K̂t, we can consider a maximal and a minimal monomial, and so we have a dominant monomial
and an antidominant monomial in χ. �

4.2.2. Algorithms. In [He2] we defined a deformed algorithm to compute q, t-characters for C finite. We
had to show that this algorithm is well defined, that is to say that at each step the different ways to
compute each term give the same result.

The formulas of [He2] gives also a (non necessarily well defined) deformed algorithm for all Cartan
matrices, that is to say:

Let m ∈ B. If the deformed algorithm beginning with m is well defined, it gives an element F̂t(m) ∈ K̂∞t
such that m is the unique dominant monomial of F̂t(m).

An algorithm was also used by Nakajima in the ADE-case in [N2]. If we set t = 1 and apply Π̂ (where Π̂
is defined in section 3.2.3) we get a classical algorithm (it is analogous to the algorithm constructed by
Frenkel and Mukhin in [FM1]). So:

Let m ∈ B. If the classical algorithm beginning with m is well defined, it gives an element F (m) ∈ K∞

such that m is the unique dominant monomial of F (m).



THE t-ANALOGS OF q-CHARACTERS AT ROOTS OF UNITY 13

We say that the classical algorithm (resp. the deformed algorithm) is well defined if for all m ∈ B (resp.
all m ∈ B) the classical algorithm (resp. deformed algorithm) beginning with m is well defined.

Lemma 4.7. If the deformed algorithm is well defined then the classical algorithm is well defined.

Proof: If the deformed algorithm beginning with m is well defined then the classical algorithm beginning
with Π̂(m) is well defined and F (Π̂(m)) = Π̂(F̂t(m)). �

The following results are known:

If C is finite then the classical algorithm is well defined ([FM1]).

If C is finite and symmetric then the deformed algorithm is well defined ([N3]).

If C is finite then the deformed algorithm is well defined ([He2]).

In this section (theorem 4.9) we show that the classical and the deformed algorithms are well defined for
a (non necessarily finite) Cartan matrix such that i 6= j ⇒ Ci,jCj,i ≤ 3.

4.3. Morphism of q, t-characters. The construction of [He2] is based on the fact that we can compute
explicitly q, t-characters for the submatrices of format 2 of the Cartan matrix. So:

4.3.1. The case n = 2.

Proposition 4.8. We suppose that C is a Cartan matrix of rank 2. The following properties are equiv-
alent:

i) For all m ∈ B, F (m) ∈ K

ii) C is finite

iii) C1,2C2,1 ≤ 3

iv) For i = 1 or 2, K̂t ∩ C̃(Ỹi,0) 6= {0}

v) For i = 1 or 2, C(Yi,0) has an antidominant monomial

Proof: The Cartan matrices of rank 2 such that C1,2C2,1 ≤ 3 are matrices of type A1 ×A1, A2, B2, C2,
G2 or Gt

2. Those are finite Cartan matrices of rank 2, so (ii) ⇔ (iii). Moreover if C is finite, the classical
theory of q-characters shows (ii) ⇒ (i).

We have seen in [He2] that (ii) ⇒ (iv). It follows from lemma 4.6 that (iv) ⇒ (v) and (i) ⇒ (v).

So it suffices to show that (v) ⇒ (iii). We suppose there is an antidominant monomial m ∈ C(Y1,0). We

can suppose C1,2 < 0 and C2,1 < 0. m verifies Π̂(m) = Y1,0A
−1
1,l1

...A−1
1,lL

A−1
2,l1

...A−1
2,lM

where L, M ≥ 0. In
particular we have:

u1(m) = 1 − 2L − MC1,2 and u2(m) = −2M − LC2,1

As m is antidominant, we have u1(m), u2(m) ≤ 0.

if M = 0, we have u2(m) = −LC2,1 ≤ 0 ⇒ L = 0 and u1(m) = 1 > 0, impossible.

if M > 0, we have:

L

M
>

−C1,2

2
and

L

M
≤

2

−C2,1

−C1,2

2
<

2

−C2,1
⇒ C1,2C2,1 ≤ 3

�
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4.3.2. General case.

Theorem 4.9. If i 6= j ⇒ Ci,jCj,i ≤ 3, then the classical and the deformed algorithms are well defined.

Proof: It suffices to show that the deformed algorithm is well defined (lemma 4.7).We follow the proof

of theorem 5.13 of [He2]: it suffices to construct F̂t(m) for m = Ỹi,0 (i ∈ I) and it suffices to see the

property for the matrices

(

2 Ci,j

Cj,i 2

)

. If ri ∧ rj = 1 this follows from proposition 4.8. If ri ∧ rj > 1 it

suffices to replace ri, rj with ri

ri∧rj
,

rj

ri∧rj
(in fact it means that we replace q by qri∧rj ). �

In the following we suppose that i 6= j ⇒ Ci,jCj,i ≤ 3. For example C could be of finite or affine type

(except A
(1)
1 , A

(2)
2 ).

We conjecture that for C of type A
(1)
1 (with r1 = r2 = 2) and of type A

(2)
2 the algorithms are well defined.

This conjecture is motivated by the remarks of the introduction about representation theory of quantum

affinization algebras (note that for C of type A
(1)
1 and r1 = r2 = 1 the classical algorithm is not well

defined).

4.3.3. Definition of χq,t. We verify as in [He2] that F̂t(Ỹi,l)F̂t(Ỹj,l) = F̂t(Ỹj,l)F̂t(Ỹi,l). Let Rep =
Z[Xi,l]i∈I,l∈Z as in section 2.2 and a Rep-monomials is a product of the Xi,l.

Definition 4.10. The morphism of q, t-characters χq,t : Rep → K̂∞t is the Z-linear map such that:

χq,t(
∏

i∈I,l∈Z

X
xi,l

i,l ) =

→
∏

l∈Z

∏

i∈I

F̂t(Ỹi,l)
xi,l

The morphism of q-characters χq : Rep → K∞ is defined by χq = Π̂ ◦ χ̂q,t.

Theorem 4.11. ([He2]) The Z-linear map χq,t : Rep → Ŷ∞t is injective and is characterized by the three
following properties:

1) For M a Rep-monomial define m =
∏

i∈I,l∈Z

Ỹ
xi,l(M)
i,l ∈ B. Then we have :

χq,t(M) = m +
∑

m′<m

am′(t)m′ (where am′(t) ∈ Z[t±])

2) The image Im(χq,t) is contained in K̂∞t .

3) Let M1, M2 be Rep-monomials such that max{l/
∑

i∈I

xi,l(M1) > 0} ≤ min{l/
∑

i∈I

xi,l(M2) > 0}. We

have :
χq,t(M1M2) = χq,t(M1)χq,t(M2)

Those properties are generalizations of Nakajima’s axioms [N3] for q generic, so:

Corollary 4.12. If C is finite then we have π+(Im(χq,t)) ⊂ Ŷ and χq : Rep → Y is the classical
morphism of q-characters and χq,t is the morphism of [He2]. In particular if C is of type ADE then χq,t

is the morphism of q, t-characters of [N3].

5. ε, t-characters in the root of unity case

In this section we define and study ε, t-characters at roots of unity: let ε ∈ C∗ be a sth-primitive root
of unity. We suppose that s > 2r∨.

The case t = 1 was study in [FM2] (but classical screening operators in the root of unity case were not
defined). The t-deformations were studied in the ADE-case by Nakajima in [N3] using quiver varieties.
In this section we suppose that i 6= j ⇒ Ci,jCj,i ≤ 3 and B(z) is symmetric. In particular C can be of

finite type or of affine type (except A
(1)
1 , A

(2)
2l , l ≥ 1, see section 7.3.3). The deformed algorithm is well

defined and χq,t exists (theorem 4.9).
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5.1. Reminder: classical ε-characters at roots of unity. We define τs : Y → Ys as the ring
homomorphism such that τs(Yi,l) = Yi,[l] where for l ∈ Z we denote by [l] its image in Z/sZ.

If C is finite the morphism of ε-characters χε : Reps → Ys is defined by Frenkel and Mukhin (see section
2.2). We have the following characterization:

Theorem 5.1. ([FM2]) If C is finite, the morphism of ε-characters χε : Reps → Ys verifies (l0 ∈ Z):

χε(
∏

i∈I,l∈Z/sZ

X
xi,l

i,l ) = τs(χq(
∏

i∈I,l0≤l≤l0+s−1

X
xi,[l]

i,l ))

Note that this formula suffices to characterize the Z-linear map χε.

If C is not finite, we can consider Ŷs = Z[Yi,l, A
−1
i,l ]i∈I,l∈Z/sZ and the completion Ŷs,∞

t as in the generic

case. We define χ̂ε : Reps → Ŷs,∞ with the formula of the theorem 5.1. The map χ̂ε is also an injective
ring homomorphism.

In the following we give an analogous construction in the deformed case t 6= 1.

5.2. Construction of χε,t. The point for the t-deformation is that we can not define a natural t-analog
of τs which is a ring homomorphism. In this section we construct an analog τs,t of τs which is not a ring
homomorphism but has nice properties.

5.2.1. Definition of τs,t. First let us briefly explain how τs,t is constructed. The main property is a

compatibility with some ordered products: suppose that l1 > l2 (l1, l2 ∈ Z), that m1 ∈ Ŷt involves only

the Ỹi,l1 , Ã
−1
i,l1

and that m2 involves only the Ỹi,l2 , Ã
−1
i,l2

. Then τs,t is defined such that τs,t(m1m2) =

τs,t(m1)τs,t(m2). Let us now write it in a formal way:

For m a Ŷt-monomial and l ∈ Z, let :

πl(m) = (
∏

i∈I

Ỹ
yi,l(m)
i,l )(

∏

i∈I

Ã
−vi,l(m)
i,l )

It is well defined because for i, j ∈ I and l ∈ Z we have Ỹi,lỸj,l = Ỹj,lỸi,l, Ã−1
i,l Ã−1

j,l = Ã−1
j,l Ã−1

i,l and for

i 6= j, Ã−1
i,l Ỹj,l = Ỹj,lÃ

−1
i,l (theorem 3.5).

Let
→
m =

→
∏

l∈Z

πl(m),
←
m =

←
∏

l∈Z

πl(m), and :

→

A = {
→
m/ m Ŷt-monomial} and

←

A = {
←
m/ m Ŷt-monomial}

It follows from theorem 3.5 that
→

A and
←

A are Z[t±]-basis of Ŷt.

Definition 5.2. We define τs,t : Ŷt → Ŷs
t as the Z[t±]-linear map such that for m ∈

←

A:

τs,t(m) =

←
∏

l∈Z

(
∏

j∈I

Ã
−vj,l(m)

j,[l] )(
∏

j∈I

Ỹ
yj,l(m)

j,[l] )

Note that τs,t is not a ring homomorphism and is not injective.

5.2.2. Definition of χε,t. We define a N-gradation of Ŷs
t , the completed algebra Ŷs,∞

t in the same way as

we did for the generic case (section 4.2.1). In particular τs,t is compatible with the gradations of Ŷt and

Ŷs
t and is extended to a map τs,t : Ŷ∞t → Ŷs,∞

t .

Definition 5.3. The morphism of q, t-characters at the sth-primitive roots of unity χε,t : Reps → Ŷs,∞
t

is the Z-linear map such that:

χε,t(
∏

i∈I,l∈Z/sZ

X
xi,l

i,l ) = τs,t(χq,t(
∏

i∈I,0≤l≤s−1

X
xi,[l]

i,l ))
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Proposition 5.4. The morphism χε,t verifies the following properties:

1) The following diagram is commutative:

Reps χε,t
−→ Im(χε,t)

id ↓ ↓ π+

Reps χ̂ε
−→ Ŷs,∞

2) If C is finite we have π+(Im(χε,t)) ⊂ Ŷs and Π̂ ◦ χε,t = χε.

3) The map χε,t is injective.

4) For a Rep-monomial M define m =
∏

i∈I,l∈Z/sZ

Ỹ
xi,l(M)
i,l ∈ B

s
. Then we have :

χq,t(M) = m +
∑

m′<m

am′(t)m′ (where am′(t) ∈ Z[t±])

Proof:

1) Consequence of the definition and of (τs,t)t=1 = τs.

2) Consequence of (1) and of theorem 5.1.

3) Consequence of (1) and of the injectivity of χ̂ε (see section 2.2).

4) Consequence of the analogous property of χq,t (1. of theorem 4.11). �

Note that 2) means that in the finite case we get at t = 1 the map of [FM1].

In the following we show other fundamental properties of χε,t (theorem 5.10 and theorem 5.16).

5.3. Classical and deformed screening operators at roots of unity. We define classical and de-
formed screening operators at roots of unity in order to have an analog of the property 2 of theorem 4.11
at roots of unity.

5.3.1. Deformed bimodules.

Definition 5.5. Ŷs
i,u is the Ŷs

u-bimodule defined by generators S̃i,l (i ∈ I, l ∈ Z/sZ) and relations :

S̃i,lÃ
−1
j,k = t−Ci,j(z)(z(k−l)+z(l−k))Ã

−1
j,kS̃i,l , S̃i,lỸj,k = tδi,j(z(k−l)+z(l−k))Ỹj,kS̃i,l

S̃i,lt = tS̃i,l , S̃i,l−ri − t−q−2ri−1Ã
−1
i,l S̃i,l+ri , S̃i,l+s − S̃i,l

Note that this structure is well-defined: if s ≥ 1, for example we have t−Ci,j(z)(z(k+s−l)+z(l−k−s)) =
t−Ci,j(z)(z(k−l)+z(l−k)).

Note that Ŷs
t is a Ŷs

u-bimodule using the projection Ŷs
u → Ŷs

t .

Definition 5.6. Ŷs
i,t is the Ŷs

t -bimodule Ŷs
t ⊗Ŷs

u
Ŷs

i,u ⊗Ŷs
u
Ŷs

t .

For l ∈ Z/sZ we denote by S̃i,l the image of S̃i,l in Ŷs
i,t. If s ≥ 1, the Ŷs

t -module Ŷs
i,t has torsion:

S̃0 = tαÃ−1
ri

Ã−1
3ri

...Ã−1
(2s−1)ri

S̃2ris = tαÃ−1
ri

Ã−1
3ri

...Ã−1
(2s−1)ri

S̃0

where α = −2s if s|2ri and α = −s otherwise.
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5.3.2. Deformed screening operators. As in the generic case, we can define:

Definition 5.7. The ith-deformed screening operator is the map Ss
i,t : Ŷs

t → Ŷs
i,t defined by (λ ∈ Ŷs

t ):

Ss
i,t(λ) =

1

t2 − 1

∑

l∈Z/sZ

[S̃i,l, λ] ∈ Ŷs
i,t

We define K̂s
i,t = Ker(Ss

i,t) and we complete this algebra K̂
s,∞
i,t ⊃ K̂s

i,t.

5.3.3. Classical screening operators at roots of unity. We suppose in this section that t = 1.

The classical screening operators at roots of unity are

Ss
i : Ys → Ys

i =
⊕

l∈Z/sZ

YsSi,l/
∑

l∈Z/sZ

Ys.(Si,l−ri − A−1
i,l Si,l+ri)

such that for m ∈ As, Ss
i (m) = m

∑

l∈Z/sZ

ui,l(m)Si,l.

For λ ∈ Ŷs
t we have Si(Π̂(λ)) = Π̂(Si,t(λ)) where Π̂ : Ŷs

i,t → Ys
i is defined by Π̂(mS̃i,l) = Π̂(m)Si,l.

The map τs : Y → Ys is a ring homomorphism. In particular we can define a Z-linear map τs : Yi → Ys
i

such that:
τs(mSi,l) = Πs(m)Si,[l]

Indeed it suffices to see it agrees with the defining relations of Yi:

τs(mA−1
i,l+ri

Si,l+2ri) = τs(mA−1
i,l+ri

)Si,[l+2ri] = τs(m)A−1
i,[l+ri]

Si,[l+2ri] = τs(m)Si,[l] = τs(mSi,l)

Note that the crucial point is that τs is a ring homomorphism.

Lemma 5.8. We have τs ◦ Si = Ss
i ◦ τs.

Proof: It suffices to see for m a Y-monomial:

τs(Si(m)) =
∑

l∈Z

ui,l(m)τs(mSi,l) = τs(m)
∑

l∈Z

ui,l(m)Si,[l] = τs(m)
∑

0≤l≤s−1

(
∑

r∈Z

ui,l+rs(m))Si,[l]

= τs(m)
∑

0≤l≤s−1

ui,[l](τs(m))Si,[l] = Ss
i (τs(m))

�

For m ∈ Bs
i , we set Ei(m) = m

∏

l∈Z/sZ

(1 + A−1
i,l+ri

)ui,l(m). Let Ks
i = Ker(Ss

i ).

Proposition 5.9. τs(Ki) is a subalgebra of Ks
i . Moreover:

τs(Ki) =
⊕

m∈Bs

Ei(m)

In particular if χ ∈ τs(Ki) has no i-dominant monomial then χ = 0.

Proof: The lemma 5.8 gives τs(Ki) ⊂ Ks
i and τs is an algebra homomorphism.

For m ∈ B we have τs(Ei(m)) = Ei(τs(m)) and so it follows from theorem 4.5 that τs(Ki) =
⊕

m∈Bs

Ei(m).

�

5.4. The image of χε,t. In this section we show an analog of the property 2 of theorem 4.11 at roots of
unity.

Theorem 5.10. The image of χε,t is contained in K̂
s,∞
t .

With the help of theorem 4.11 it suffices to show that τs,t(K̂i,t) ⊂ K̂s
i,t which will be done in proposition

5.15.
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5.4.1. The bicharacters D1, D2. For m a Ŷt-monomial and k ∈ Z let:

m[k] = m(
←
m)−1

←
∏

l∈Z

(
∏

j∈I

Ỹ
yj,l+k(m)
j,l )(

∏

j∈I

Ã
−vj,l+k(m)
j,l )

Note that τs,t(m[ks]) = τs,t(m) and for m ∈
←

A, k ∈ Z we have m[k] ∈
←

A.

For m1, m2 Ŷt-monomials, and k ∈ Z we have :

d1(m1, m2[k]) = d1(m1[−k], m2) and d2(m1, m2[k]) = d2(m1[−k], m2)

Moreover there is only a finite number of k ∈ Z such that d1(m1, m2[k]) 6= 0 or d2(m1, m2[k]) 6= 0. So we
can define:

Definition 5.11. For m1, m2 Ŷt-monomials we define:

D1(m1, m2) =
∑

r∈Z

d1(m1, m2[rs]) =
∑

r∈Z

d1(m1[rs], m2)

D2(m1, m2) =
∑

r∈Z

d2(m1, m2[rs]) =
∑

r∈Z

d2(m1[rs], m2)

Lemma 5.12. For m1, m2 Ŷt-monomials we have:

D1(m1, m2) = d1(τs,t(m1), τs,t(m2)) , D2(m1, m2) = d2(τs,t(m1), τs,t(m2))

In particular we have in Ŷs
t :

τs,t(m1)τs,t(m2) = tD1(m1,m2)−D2(m2,m1)τs,t(m2)τs,t(m1)

Proof: For example for d1 we compute:

d1(τs,t(m1), τs,t(m2))
=

∑

i∈I,l∈Z/sZ

vi,l+ri(τs,t(m1))ui,l(τs,t(m2)) + wi,l+ri(τs,t(m1))vi,l(τs,t(m2))

=
∑

i∈I,0≤l≤s−1,r∈Z,r′∈Z

vi,l+ri+rs(m1)ui,l+r′s(m2) + wi,l+ri+rs(m1)vi,l+r′s(m2)

=
∑

i∈I,l∈Z,r∈Z

vi,l+ri(m1)ui,l+rs(m2) + wi,l+ri (m1)vi,l+rs(m2)

=
∑

r∈Z

d1(m1, m2[rs]) �

5.4.2. Technical lemmas.

Lemma 5.13. Let m be a Ŷt-monomial of the form m = Z1Z2...ZK where Zk = Ỹik ,lk or Zk = Ã−1
ik ,lk

.

We suppose that k > k′ implies lk ≤ lk′ + r∨ and (Zk, Zk′) /∈ {(Ã−1
i,l , Ã−1

i,l′ )/i ∈ I, l′ < l}. Then we have:

τs,t(m) = τs,t(Z1)τs,t(Z2)...τs,t(ZK)

Proof: First we order the factors of m:

m = t
2

P

k<k′/lk<l
k′

d1(Zk,Zk′ )−d2(Zk′ ,Zk)
←
m

So we can apply τs,t:

τs,t(m) = t
2

P

k<k′/lk<l
k′

d1(Zk,Zk′ )−d2(Zk′ ,Zk)

τs,t(
←
m)

where:

τs,t(
←
m) =

←
∏

l∈Z

(
∏

j∈I

Ỹ
yj,l(m)

j,[l] )(
∏

j∈I

Ã
−vj,l(m)

j,[l] )

If we order the factors of τs,t(Z1)τs,t(Z2)...τs,t(Zk), we get:

τs,t(Z1)τs,t(Z2)...τs,t(Zk) = t
2

P

k<k′/lk<l
k′

(D1(Zk,Zk′ )−D2(Zk′ ,Zk))

τs,t(
←
m)
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So it suffices to show that k < k′ and lk < lk′ implies d1(Zk, Zk′)−d2(Zk′ , Zk) = D1(Zk, Zk′)−D2(Zk′ , Zk).
But we have 0 < lk′ − lk ≤ r∨ and s > 2r∨. So for p ∈ Z such that p 6= 0 we have |lk − lk′ + ps| > r∨.
But in general for k1, k2, we have:

[Zk1 , Zk2 ] 6= 0 ⇒ (Zk1 , Zk2) = (Ã−1
ik ,lk

, Ã−1
ik ,lk±2rik

) or |lk1 − lk2 | ≤ r∨

So in our situation we have d1(Zk, Zk′ [ps]) = d2(Zk′ , Zk[ps]) = 0. In particular:

D1(Zk, Zk′) − D2(Zk′ , Zk)

= d1(Zk, Zk′) − d2(Zk′ , Zk) +
∑

p6=0

(d1(Zk, Zk′ [ps]) − d2(Zk′ , Zk[ps])) = d1(Zk, Zk′) − d2(Zk′ , Zk)

�

Lemma 5.14. Let m be a Ŷs
t -monomial and l, l′ ∈ Z.

l′ ≥ l + s − ri ⇒ ui,l′(πl(m)) = 0

l′ ≤ l + ri − s + 1 ⇒ ui,l′(πl(m)πl−1(m)...) = ui,l′(m)

Proof: First notice that for l, l′ ∈ Z, we have:

ui,l′(Ỹi,l) 6= 0 ⇒ l′ = l , ui,l′(Ãi,l) 6= 0 ⇒ l′ = l ± ri

i 6= j , ui,l′(Ãj,l) 6= 0 ⇒ |l′ − l| ≤ −Cj,i − 1 ≤ r∨ − 1

As ri ≤ r∨ we have: ui,l′(πl(m)) 6= 0 ⇒ l − r∨ ≤ l′ ≤ l + r∨.

If we suppose l′ ≥ l + s − ri ≥ l + 2r∨ + 1 − ri ≥ l + r∨ + 1 we have ui,l′(πl(m)) = 0 and this gives the
first point.

We suppose that l′ ≤ l + ri − s + 1. If k ≥ l + 1 ≥ l′ + s− ri ≥ l′ + r∨ + 1 we have ui,l′(πk(m)) = 0. So:
ui,l′(πl(m)πl−1(m)...) = ui,l′(m) −

∑

k>l

ui,l′(πk(m)) = ui,l′(m). �

5.4.3. Elements of K̂s
i,t.

Proposition 5.15. We have τs,t(K̂i,t) ⊂ K̂s
i,t. Moreover for m a i-dominant monomial:

τs,t(
←

Ei,t(m)) = τs,t(m)τs,t(m̂
i)−1

←
∏

l∈Z

(Ỹi,[l](1 + tÃ−1
i,[l+ri]

))ui,l(m)

where m̂i =
∏

l∈Z

Ỹ
ui,l(m)
i,l ∈ Bi.

Proof: We have to show that for m a i-dominant monomial, τs,t(
←

Ei,t(m)) ∈ K̂s
i,t. The proof has three

steps:

1) First we suppose that m = Ỹi,l where l ∈ Z. We have
←

Ei,t(Ỹi,l) = Ỹi,l(1 + tÃ−1
i,l+ri

), and:

τs,t(
←

Ei,t(Ỹi,l)) = τs,t((1 + t−1Ã−1
i,l+ri

)Ỹi,l) = 1 + t−1Ã−1
i,[l+ri]

)Ỹi,[l] = Ỹi,[l](1 + tÃ−1
i,[l+ri]

)

and so:

Ss
i,t(τs,t(

←

Ei,t(Ỹi,l)) = Ỹi,[l]Si,[l] − t−2tỸi,[l]Ã
−1
i,[l+ri]

Si,[l+2ri] = Ỹi,[l](Si,[l] − t−1Ã−1
i,[l+ri]

Si,[l+2ri]) = 0

2) Next we suppose that m =
∏

l∈Z

Ỹ
ui,l

i,l . We have
←

Ei,t(m) =
←
∏

l∈Z

(
←

Ei,t(Ỹi,l))
ui,l . But ri ≤ r∨, and in

(
←

Ei,t(Ỹi,l))
ui,l there are only Ỹi,l and Ã−1

i,l+ri
. So we are in the situation of the lemma 5.13, and:

τs,t(
←

Ei,t(m)) =

←
∏

l∈Z

(τs,t(
←

Ei,t(Ỹi,l)))
ui,l
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As K̂s
i,t is a subalgebra of Ŷs

t , it follows from the first step that τs,t(
←

Ei,t(m)) ∈ K̂s
i,t.

3) Finally let m ∈ Bi be an i-dominant monomial. As for all l ∈ Z, ui,l(m) = ui,l(m̂
i), we have:

(τs,t(m))−1Ss
i,t(τs,t(m)) = (τs,t(m̂

i))−1Ss
i,t(τs,t(m̂

i))

It follows from the second point that τs,t(
←

Ei,t(m̂
i)) ∈ K̂s

i,t. Let χ̂ be in Ŷs
t defined by:

χ̂ = τs,t(m̂
i)−1τs,t(

←

Ei,t(m̂
i))

We have τs,t(m)χ̂ ∈ K̂s
i,t, because:

Ss
i,t(τs,t(m)χ̂) = Ss

i,t(τs,t(m))χ̂ + τs,t(m)Ss
i,t(χ̂)

= τs,t(m)(τs,t(m̂
i))−1(Ss

i,t(τs,t(m̂
i))χ̂ + τs,t(m̂

i)Ss
i,t(χ̂))

= τs,t(m)(τs,t(m̂
i))−1Ss

i,t(τs,t(m̂
i)χ̂)

= Ss
i,t(τs,t(

←

Ei,t(m))) = 0

So it suffices to show that τs,t(
←

Ei,t(m)) = τs,t(m)χ̂.

Let χ be in Ŷt defined by:

χ = (m̂i)−1
←

Ei,t(m̂
i)

By definition of
←

Ei,t(m), we have in Ŷt:
←

Ei,t(m) = mχ

In particular we want to show that τs,t(mχ) = τs,t(m)τs,t(m̂
i)−1τs,t(m̂

iχ). Let λm′(t) be in Z[t±] such
that:

χ =
∑

m′∈A

λm′(t)m′

If λm′(t) 6= 0 then m′ is of the form m′ = Ã−1
i,l1

...Ã−1
i,lk

. As τs,t is Z[t±]-linear, it suffices to show that for

all m′ of this form, we have:

τs,t(m)τs,t(m̂
i)−1τs,t(m̂

im′) = τs,t(mm′)

That is to say α = β where α, β ∈ Z are defined by:

τs,t(mm′) = tατs,t(m)τs,t(m
′) and τs,t(m̂

im′) = tβτs,t(m̂
i)τs,t(m

′)

We can suppose without loss of generality that m ∈
←

A and m′ ∈
←

A (because τs,t is Z[t±]-linear). Let us

compute α. First we have in Ŷt:

mm′ = t
2

P

l′>l

d2(πl(m),πl′ (m
′))−d1(πl′ (m

′),πl(m)) ←∏

l∈Z

πl(m)πl(m
′)

We are in the situation of lemma 5.13, so:

τs,t(mm′) = t
2

P

l′>l

d2(πl(m),πl′ (m
′))−d1(πl′ (m

′),πl(m)) ←∏

l∈Z

τs,t(πl(m))τs,t(πl(m
′))

But we have in Ŷs
t (lemma 5.12):

τs,t(m)τs,t(m
′) = t

2
P

l′>l

D2(πl(m),πl′ (m
′))−D1(πl′ (m

′),πl(m)) ←∏

l∈Z

τs,t(πl(m))τs,t(πl(m
′))

And we get:

α = 2
∑

l′>l

d2(πl(m), πl′ (m
′)) − d1(πl′ (m

′), πl(m)) − 2
∑

l′>l

D2(πl(m), πl′(m
′)) − D1(πl′(m

′), πl(m))

And so we have from lemma 5.12:
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α = 2
∑

l′>l

(d2(πl(m), πl′(m
′))−d1(πl′ (m

′), πl(m)))−2
∑

l′>l,r∈Z

(d2(πl(m)[rs], πl′ (m
′))−d1(πl′(m

′), πl(m)[rs]))

= −2
∑

l′>l,r 6=0

(d2(πl(m)[rs], πl′ (m
′)) − d1(πl′(m

′), πl(m)[rs]))

But we have πl′(m
′) of the form Ã

−vi,l′

i,l′ , and so:

α = −2
∑

l′>l,r 6=0

vi,l′(m
′)(ui,l′+ri(πl(m)[rs]) − ui,l′−ri(πl(m)[rs]))

= −2
∑

l′∈Z

vi,l′ (m
′)

∑

l<l′,r 6=0

(ui,l′+ri−rs − ui,l′−ri−rs)(πl(m))

= −2
∑

l′∈Z

vi,l′ (m
′)

∑

r 6=0

(ui,l′+ri−rs − ui,l′−ri−rs)(πl′−1(m)πl′−2(m)...)

We use lemma 5.14:

α = −2
∑

l′∈Z

vi,l′(m
′)

∑

r>0
(ui,l′+ri−rs − ui,l′−ri−rs)(πl′−1(m)πl′−2(m)...)

= −2
∑

l′∈Z

vi,l′ (m
′)

∑

r>0
(ui,l′+ri−rs − ui,l′−ri−rs)(m)

It depends only of the ui,l(m), so with the same computation we get:

β = −2
∑

l′∈Z

vi,l′(m
′)

∑

r>0

(ui,l′+ri−rs − ui,l′−ri−rs)(m̂
i)

and we can conclude α = β because for all l ∈ Z, ui,l(m) = ui,l(m̂
i). �

Note that there is another more direct proof if C is symmetric (in particular if C is of type ADE):

Proof: Let m be an i-dominant monomial.

←
m =

←
∏

l∈Z

∏

j∈I

Ã
−vj,l+1

j,l+1

∏

j∈I

Ỹ
yj,l

j,l =

←
∏

l∈Z

Ã
−vi,l+1

i,l+1 Ỹ
yi,l

i,l (
∏

j 6=i

Ỹ
yj,l

j,l

∏

j 6=i

Ã
−vj,l

j,l )

For l ∈ Z, let Ml =
∏

j 6=i

Ỹ
yj,l

j,l

∏

j/Ci,j=0

Ã
−vj,l

j,l . We have
←

Ei,t(Ml) = Ml. The Ỹi,l and the Ã−1
j,l with Ci,j = −1

have the same relations with the Ã−1
i,l , so we use indifferently the notation Zi,l for Ỹi,l or Ã−1

j,l . The power
of Zi,l is:

zi,l = yi,l +
∑

j/Cj,i=−1

vj,l+1 + vj,l−1 = ui,l + vi,l−1 + vi,l+1

In particular we have:
←

Ei,t(m) =

←
∏

l∈Z

(Zi,lÃ
−1
i,l+1)

vi,l+1
←

Ei,t(Z
ui,l

i,l )MlZ
vi,l−1

i,l

and it follows from lemma 5.13 that:

τs,t(
←

Ei,t(m)) =

←
∏

l∈Z

(τs,t(Zi,lÃ
−1
i,l+1))

vi,l+1τs,t(
←

Ei,t(Zi,l))
ui,lτs,t(Ml)τs,t(Z

vi,l−1

i,l ) ∈ K̂s
i,t

�

5.5. Description of χε,t. In this section we prove the following theorem (the map ps is defined in section
3.2.2):

Theorem 5.16. If χq,t(
∏

i∈I,0≤l≤s−1

X
xi,[l]

i,l ) =
∑

m∈A

λm(t)m, then:

χε,t(
∏

i∈I,0≤l≤s−1

X
xi,l

i,[l] ) =
∑

m∈A

λm(t)tD
−

1 (m)+D−

2 (m)ps(m)

where for m a Ŷt-monomial:

D−1 (m) =
∑

k<0

d1(m, m[ks]) , D−2 (m) =
∑

k<0

d2(m, m[ks])
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Note that this result is a generalization of the axiom 4 of [N3] to the non necessarily finite simply laced
case. In particular our construction fits with [N3] in the ADE-case.

5.5.1. Description of the basis A.

Lemma 5.17. For m a Ŷt-monomial we have tγ
→
m ∈ A and t−γ−2d1(m,m)←m ∈ A where:

γ =
∑

l∈Z

(
∑

i∈I

v2
i,l(m) −

∑

i,j/Ci,j+ri=−1

vi,l(m)vj,l(m) −
∑

i,j/Ci,j=−3 and ri=1

vi,l(m)(vj,l+1(m) + vj,l−1(m)))

Proof: We have
→
m =

←
m = t2β→m where:

β =
∑

l>l′

d1(πl(m), πl′(m)) − d2(πl′ (m), πl(m))

= d1(m, m) −
∑

l∈Z

d1(πl(m), πl(m)) −
∑

l<l′

d1(πl(m), πl′ (m)) + d2(πl(m), πl′(m))

So tγ
→
m = t2d1(m,m)tγ

→
m where :

γ = −
∑

l∈Z

d1(πl(m), πl(m)) −
∑

l<l′

d1(πl(m), πl′ (m)) + d2(πl(m), πl′(m))

But for l ∈ Z we have

d1(πl(m), πl(m)) = −
∑

i∈I

v2
i,l(m) +

∑

i,j/Ci,j=−2 and ri=−1

vi,l(m)vj,l(m) +
∑

i,j/Ci,j=−3 and ri=2

vi,l(m)vj,l(m)

= −
∑

i∈I

v2
i,l(m) +

∑

i,j/Ci,j+ri=−1

vi,l(m)vj,l(m)

For l < l′ we have:

d1(πl(m), πl′(m)) = δl′=l+1

∑

i,j/Ci,j=−3 and ri=1

vi,l(m)vj,l+1(m)

d2(πl(m), πl′(m)) = δl′=l+1

∑

i,j/Ci,j=−3 and ri=1

vi,l+1(m)vj,l(m)

and we get for γ the annonced value.

For the second point we show that t−γ−2d1(m,m)←m ∈ A:

t−γ−2d1(m,m)←m = tγ+2d1(m,m)←m = tγ+2d1(m,m)−2β←m = t−γ←m = t2d1(m,m)(t−γ−2d1(m,m)←m)

�

5.5.2. Description of τs,t.

Proposition 5.18. For m ∈ A we have:

τs,t(m) = tD
−

1 (m)+D−

2 (m)ps(m)

Proof: Using lemma 5.17 we can write m = t−γ−2d1(m,m)←m. So we have:

τs,t(m) = t−γ−2d1(m,m)
←
∏

l∈Z

τs,t(πl)

where πl = πl(m). So we have τs,t(m) = t2ατs,t(m) where:

α = γ + 2d1(m, m) +
∑

l<l′

d1(τs,t(πl), τs,t(πl′ )) − d2(τs,t(πl′), τs,t(πl))

= γ + 2d1(m, m) +
∑

l<l′

D1(πl, πl′ ) − D2(πl′ , πl)
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So it suffices to show that α = −D−1 (m) − D−2 (m) + d1(ps(m), ps(m)). But we have:

d1(ps(m), ps(m)) = D1(m, m) =
∑

l<l′

D1(πl, πl′) +
∑

l≥l′

D1(πl, πl′)

So we want to show:

−D2(πl′ , πl) =
∑

l≥l′

D1(πl, πl′) − (d1(m, m) + D−1 (m)) − (d2(m, m) + D−2 (m)) − γ

The second term is:
∑

l≥l′,r∈Z

d1(πl, πl′ [rs])−
∑

l,l′∈Z,r≤0

(d1(πl, πl′ [rs])+d2(πl, πl′ [rs]))+
∑

l∈Z

d2(πl, πl)+
∑

l<l′

(d1(πl, πl′)+d2(πl, πl′))

But for l < l′ and r < 0 (resp. l ≥ l′ and r > 0) we have d1(πl, πl′ [rs]) = d2(πl, πl′ [rs]) = 0. So this term
is:

∑

l≥l′,r≤0

d1(πl, πl′ [rs]) −
∑

l≥l′,r≤0

(d1(πl, πl′ [rs]) + d2(πl, πl′ [rs])) +
∑

l∈Z

d2(πl, πl)

= −
∑

l>l′,r≤0

d2(πl, πl′ [rs]) = −
∑

l>l′,r∈Z

d2(πl, πl′ [rs]) = −
∑

l>l′

D2(πl, πl′)

�

6. Applications

In this section we see how we can generalize at roots of unity results of [He2] about Kazhdan-Lusztig
polynomials and quantization of the Grothendieck ring. We suppose that i 6= j ⇒ Ci,jCj,i ≤ 3.

Such constructions were made by Nakajima [N3] in the simply laced case.

6.1. Reminder: Kazhdan-Lusztig polynomials in the generic case [N3][He2]. In this section we

suppose that s = 0. The involution of Ŷt is naturally extended to an involution of Ŷ∞t .

For m a dominant Ŷt-monomial we set:

→

Et(m) = m(
→
∏

l∈Z

∏

i∈I

Ỹ
ui,l(m)
i,l )−1

→
∏

l∈Z

∏

i∈I

F̂t(Ỹi,l)
ui,l(m)

We denote by K̂
f,∞
t ⊂ K̂∞t the subset of elements with only a finite number of dominant monomials.

We show as in [He2] that for m ∈ B, C(m) ∩ B is finite,
→

Et(m) ∈ K̂
f,∞
t , and:

Proposition 6.1. ([He2]) K̂
f,∞
t is a subalgebra of K̂∞t , and:

K̂
f,∞
t =

⊕

m∈B

Z[t±]F̂t(m) =
⊕

m∈B

Z[t±]
→

Et(m)

Moreover K̂
f,∞
t is stable by the involution.

For m a Ŷs
t -monomial there is a unique α(m) ∈ Z such that tα(m)m = tα(m)m (see the proof of lemma

6.12 of [He2]).

Let Âinv = {tα(m)m/m ∈ A} and B̂inv = {tα(m)m/m ∈ B}.

The following theorem was given in [N3] for the ADE-case and in [He2] for the general finite case:

Theorem 6.2. For m ∈ B̂inv there is a unique L̂t(m) ∈ K̂
f,∞
t such that:

L̂t(m) = L̂t(m)
→

Et(m) = L̂t(m) +
∑

m′<m,m′∈B̂inv

Pm′,m(t)L̂t(m
′)
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where Pm′,m(t) ∈ t−1Z[t−1].

6.2. Kazhdan-Lusztig polynomials at roots of unity. In this section we suppose that s > 2r∨. The
involution of Ŷs

t is extended to an involution of Ŷs,∞
t .

6.2.1. Construction of stable subalgebras. For m ∈ B
s

i a i-dominant Ŷs
t -monomial we set:

←

Ei,t(m) = m(
∏

i∈I,l=0..s−1

Ỹ
ui,[l](m)

i,[l] )−1
←
∏

i∈I,l=0..s−1

(Ỹi,[l](1 + tÃ−1
i,[l+ri]

))ui,[l](m)

In particular the formula of proposition 5.15 implies:

←

Ei,t(m) = m(τs,t(M))−1τs,t(
←

Ei,t(M)) where M =
∏

l=0...s−1

Ỹ
ui,[l](m)

i,l

We define:

K̃s
i,t =

⊕

m∈B
s
i

Z[t±]
←

Ei,t(m)

In particular if χ ∈ K̃s
i,t has no i-dominant monomial then χ = 0.

Lemma 6.3. We have τs,t(K̂i,t) ⊂ K̃s
i,t ⊂ K̂s

i,t. Moreover K̃s
i,t is a subalgebra of K̂s

i,t and is stable by the
involution.

Proof: As K̂s
i,t is a subalgebra of Ŷs

t and Ỹi,[l](1 + tÃ−1
i,[l+ri]

) ∈ K̂s
i,t, m(

∏

i∈I,l=0..s−1

Ỹ
ui,[l](m)

i,[l] )−1 ∈ K̂s
i,t we

have K̃s
i,t ⊂ K̂s

i,t.

Let us show that
⊕

m∈B
s
i

Z[t±]
←

Ei,t(m) is a subalgebra of K̃s
i,t (note that in the generic case s = 0 this point

needs no proof because K̃i,t = K̂i,t). For this point our proof is analogous to theorem 3.8 of [N3]. It

suffices to show that for 0 ≤ k ≤ s − 1, M =
∏

l∈Z/sZ

Ỹ
ui,l

i,l we have
←

Ei,t(M)
←

Ei,t(Ỹi,k) ∈
⊕

m∈B
s
i

Z[t±]
←

Ei,t(m).

We can suppose without loss of generality that we are in the sl2-case and that ri = r1 = 1. The
←

Et(Ỹk)

do not commute with
←

Et(Ỹ
uk−2

k−2 ) and
←

Et(Ỹ
uk+2

k+2 ). So if k ≥ 2 that fact that s 6= 0 do not change anything
and the result follows from the generic case. If k = 0, we have:

←

Et(m)
←

Et(Ỹi,0) =
←

Et(mỸi,0) +
←

Et(Ỹ
ui,0

i,0 Ỹ
ui,1

i,1 )[
←

Et(Ỹ
ui,2

i,2 ),
←

Et(Ỹi,0)]
←

Et(Ỹ
ui,3

i,3 ...Ỹ
ui,s−1

i,s−1 )

+
←

Et(Ỹ
ui,0

i,0 ...Ỹ
ui,s−3

i,s−3 )[
←

Et(Ỹ
ui,s−2

i,s−2 ),
←

Et(Ỹi,0)]
←

Et(Ỹ
ui,s−1

i,s−1 )

It follows from the study of the generic case that:

[
←

Et(Ỹ
ui,2

i,2 ),
←

Et(Ỹi,0)] ∈
⊕

0≤r<ui,2

Z[t±]
←

Et(Ỹi,2)
r

[
←

Et(Ỹ
ui,s−2

i,s−2 ),
←

Et(Ỹi,0)] ∈
⊕

0≤r<ui,s−2

Z[t±]
←

Et(Ỹi,s−2)
r

and we can conclude by induction. The case k = 1 is studied in the same way.

Let us study the stability by the involution: we see that
←

Ei,t(Ỹi,l) =
←

Ei,t(Ỹi,l), and:

←

Ei,t(m) =

→
∏

i∈I,l=s−1,s−2,...0

←

Ei,t(Ỹi,[l])
ui,[l](m)←

Ei,t(m(

→
∏

i∈I,l=0..s−1

Ỹ
ui,[l](m)

i,[l] )−1) ∈ K̃i,t
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Let us show that τs,t(K̂i,t) ⊂ K̃s
i,t: the formula of proposition 5.15 implies that for m ∈ Bi:

τs,t(
←

Ei,t(m)) = τs,t(m)τs,t(m̂
i)−1

←
∏

l∈Z

(Ỹi,[l](1 + tÃ−1
i,[l+ri]

))ui,l(m)

=
←

Ei,t(τs,t(m)τs,t(m̂
i)−1)

←
∏

l∈Z

←

Ei,t(Ỹ
ui,l(m)

i,[l] )

and we can conclude because K̃s
i,t is an algebra. �

We define the completion K̃
s,∞
i,t ⊂ K̂

s,∞
i,t (as in section 4.2.1) and:

K̃
s,∞
t =

⋂

i∈I

K̃
s,∞
i,t

For m ∈ B
s

we define
→

Et(m) = m(τs,t(M))−1τs,t(
→

Et(M)) where M =
∏

i∈I,l=0...s

Ỹ
ui,[l](m)

i,l .

6.2.2. Polynomials at roots of unity (finite case). In this section we suppose that C is finite. Note that

it follows from the lemma 3.10 that for m ∈ B
s
, the set C(m) ∩ B

s
is finite.

We denote by K̃
s,f,∞
t the set of elements of K̃

s,∞
t with only a finite number of dominant monomials.

Lemma 6.4. K̃
s,f,∞
t is a subalgebra of Ŷs,∞

t , is stable by the involution, and:

K̃
s,f,∞
t =

⊕

m∈B
s

Z[t±]
→

Et(m)

Proof: It follows from lemma 6.3 that K̃
s,∞
t is a subalgebra of Ŷs,∞

t . Let m be in B
s
. For all i ∈ I we

have m(τs,t(M))−1 =
←

Ei,t(m(τs,t(M))−1) and so m(τs,t(M))−1 ∈ K̃
s,∞
t . But τs,t(

→

Et(M)) ∈ K̃
s,∞
i,t for all

i ∈ I . So
→

Et(m) ∈ K̃
s,∞
t . Moreover lemma 3.10 shows that

→

Et(m) has only a finite number of dominant

monomials, so
→

Et(m) ∈ K̃
s,f,∞
t . It follows from lemma 6.3 that a maximal monomial of an element of

K̃
s,f,∞
t is dominant, and so we have the other inclusion K̃

s,f,∞
t ⊂

⊕

m∈B
s

Z[t±]
→

Et(m).

It follows from lemma 6.3 that K̃
s,∞
t is stable by the involution. But for m a dominant monomial, m is

a dominant monomial and so K̃
s,f,∞
t is stable by the involution.

As K̃
s,∞
t is an algebra, K̃

s,f,∞
t is an algebra if for m, m′ ∈ B

s
,
→

Et(m)
→

Et(m
′) has only a finite number of

dominant monomials. But the monomials of
→

Et(m)
→

Et(m
′) are in C(mm′) and we can conclude with the

help of lemma 3.10. �

Let Âs,inv = {tα(m)m/m ∈ A
s
} and B̂s,inv = {tα(m)m/m ∈ B

s
} where α(m) is defined by tαm = tα(m)m

(see the proof of lemma 6.12 of [He2]).

Theorem 6.5. For m ∈ B̂s,inv there is a unique L̂s
t (m) ∈ K̂

s,f,∞
t such that:

L̂s
t (m) = L̂s

t (m)

→

Et(m) = L̂s
t (m) +

∑

m′<m,m′∈B̂s,inv

P s
m′,m(t)L̂s

t (m
′)

where P s
m′,m(t) ∈ t−1Z[t−1].

The proof is analogous to the proof of theorem 6.2 with the help of lemma 6.4. The result was first given
by Nakajima [N3] for the ADE-case.
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6.2.3. Example and conjecture (finite case). In the following example we suppose that we are in the

sl2-case and we study the decomposition with m = Ỹ0Ỹ1Ỹ2.

If s = 0, we have:
→

Et(Ỹ0Ỹ1Ỹ2) = Ỹ0(1 + tÃ−1
1 )Ỹ1(1 + tÃ−1

2 )Ỹ2(1 + tÃ−1
3 )

= L̂t(Ỹ0Ỹ1Ỹ2) + t−1L̂t(t
2Ỹ0Ã

−1
1 Ỹ1Ỹ2)

where:

L̂t(Ỹ0Ỹ1Ỹ2) = Ỹ0Ỹ1Ỹ2(1 + tÃ−1
3 (1 + tÃ−1

1 ))(1 + tÃ−1
2 )

L̂t(t
2Ỹ0Ã

−1
1 Ỹ1Ỹ2) = t2Ỹ0Ã

−1
1 Ỹ1Ỹ2(1 + tÃ−1

2 )

If s = 3, we have:
→

Et(Ỹ0Ỹ1Ỹ2) = τs,t(Ỹ0(1 + tÃ−1
1 )Ỹ1(1 + tÃ−1

2 )Ỹ2(1 + tÃ−1
3 ))

= Ỹ0Ỹ1Ỹ2 + tỸ0Ã
−1
1 Ỹ1Ỹ2 + t−1Ỹ0Ỹ1Ã

−1
2 Ỹ2 + t−1Ỹ0Ỹ1Ã

−1
2 Ỹ2

+ t2Ỹ0Ã
−1
1 Ỹ1Ỹ2Ã

−1
2 + Ỹ0Ỹ1Ã

−1
2 Ỹ2Ã

−1
3 + Ỹ0Ỹ1Ã

−1
1 Ã−1

2 Ỹ2 + t−3Ỹ0Ã
−1
1 Ỹ1Ã

−1
2 Ỹ2Ã

−1
3

and so:
→

Et(Ỹ0Ỹ1Ỹ2) = L̂s
t (Ỹ0Ỹ1Ỹ2) + t−1L̂s

t (t
2Ỹ0Ã

−1
1 Ỹ1Ỹ2) + t−1L̂s

t (Ỹ0Ỹ1Ã
−1
2 Ỹ2) + t−1L̂s

t (Ỹ0Ỹ1Ỹ2Ã
−1
3 )

where:

L̂s
t (Ỹ0Ỹ1Ỹ2) = Ỹ0Ỹ1Ỹ2 + t−3Ỹ0Ã

−1
1 Ỹ2Ã

−1
3 Ỹ4Ã

−1
5

L̂s
t (t

2Ỹ0Ã
−1
1 Ỹ1Ỹ2) = t2Ỹ0Ã

−1
1 Ỹ1Ỹ2(1 + Ã−1

3 )

L̂s
t (Ỹ0Ỹ1Ã

−1
2 Ỹ2) = Ỹ0Ỹ1Ã

−1
2 Ỹ2(1 + tÃ−1

2 )

L̂s
t (Ỹ0Ỹ1Ỹ2Ã

−1
3 ) = Ỹ0Ỹ1Ỹ2Ã

−1
3 (1 + tÃ−1

2 )

In particular we see in this example that the decomposition of
→

Et(m) in general is not necessarily the
same if s = 0 or s 6= 0.

We recall that irreducible representations of Uq(ĝ) (resp. U res
ε (ĝ)) are classified by dominant monomials

of Y (resp. Ys) or by Drinfel’d polynomials (see [CP1], [CP3], [FR2], [FM2]).

For m ∈ B (resp. m ∈ Bs) we denote by V 0
m = Vm ∈ Rep(Uq(ĝ)) (resp. V s

m ∈ Rep(U res
ε (ĝ))) the

irreducible module of highest weight m. In particular for i ∈ I, l ∈ Z/sZ let V s
i,l = VYi,l

. The simple

modules V s
i,l are called fundamental representations. In the ring Reps it is denoted by Xi,l.

For m ∈ B (resp. m ∈ Bs) we denote by M s
m ∈ Rep(Uq(ĝ)) (resp. M s

m ∈ Rep(U res
ε (ĝ))) the module

Ms
m =

⊗

i∈I,l∈Z/sZ

V
s,⊗ui,l(m)
i,l . It is called a standard module and in Reps it is denoted by

∏

i∈I,l∈Z/sZ

X
ui,l(m)
i,l .

The irreducible Uq(ŝl2)-representation with highest weight m is Vm = VY0Y2 ⊗ VY1 (see [CP1] or [FR2]).

In particular dim(Vm) = 6, that is to say the number of monomials of L̂t(m).

For ε such that s = 3, the irreducible U res
ε (ĝ)-representation with highest weight m is V s

m the pull back

by the Frobenius morphism of the U(ŝl2)-module V of Drinfel’d polynomial (1−u) (see [CP3] or [FM2]).

In particular dim(V s
m) = 2, that is to say the number of monomials of L̂s

t (m).

Those observations would be explained by the following conjecture which is a generalization of the con-
jecture 7.3 of [He2] to the root of unity case. We know from [N3] that the result is true in the simply
laced case (in particular in the last example).

For m =
∏

i∈I,l∈Z/sZ

Y
ui,l

i,l a dominant Ys-monomial let M =
∏

i∈I,l∈Z/sZ

Ỹ
ui,l

i,l ∈ Ŷs
t . We suppose that C is

finite.
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Conjecture 6.6. For m a dominant Ys-monomial, Π̂(L̂s
t (M)) is the ε-character of the irreducible

Ures
ε (ĝ)-representation V s

m associated to m. In particular for m′ another dominant Ys-monomials the
multiplicity of V s

m′ in the standard module M s
m associated to m is:
∑

m′′∈B̂s,inv/Π̂(m′′)=m′

P s
m′′,M (1)

Let us look at an application of the conjecture in the non-simply laced case: we suppose that C =
(

2 −2
−1 2

)

and m = Ỹ1,0Ỹ1,1. We have for l ∈ Z/sZ:

Ã−1
1,l =: Ỹ1,l−1Ỹ1,l+1Ỹ2,l : , Ã−1

2,l =: Ỹ −1
2,l−2Ỹ

−1
2,l+2Ỹ1,l−1Ỹ1,l+1 :

First we suppose that s = 0. The formulas for F̂t(Ỹ1,0) and F̂t(Ỹ1,1) are given in [He2]:

F̂t(Ỹ1,0) = Ỹ1,0(1 + tÃ−1
1,1(1 + tÃ−1

2,3(1 + tÃ−1
1,5)))

F̂t(Ỹ1,1) = Ỹ1,1(1 + tÃ−1
1,2(1 + tÃ−1

2,4(1 + tÃ−1
1,6)))

The product F̂t(Ỹ1,0)F̂t(Ỹ1,1) has a unique dominant monomial Ỹ1,0Ỹ2,0, so:

→

Et(Ỹ1,0Ỹ2,0) = F̂t(Ỹ1,0Ỹ2,0) = L̂t(Ỹ1,0Ỹ2,0) = F̂t(Ỹ1,0)F̂t(Ỹ1,1)

In particular the V1,0 ⊗ V1,1 is irreducible. Note that it is not a consequence of the conjecture but of
classical theory of q-characters.

We suppose now that s = 5 > 4 = 2r∨. There are two dominant monomials in τs,t(
→

Et(Ỹ1,0Ỹ1,1)):

τs,t(Ỹ1,0Ỹ1,1) = Ỹ1,0Ỹ1,1 and τs,t(t
3Ỹ1,0Ã

−1
1,1Ã

−1
2,3Ã

−1
1,5Ỹ1,1) = t−1

And so we have:

τs,t(
→

Et(Ỹ1,0Ỹ1,1)) = L̂s
t (Ỹ1,0Ỹ1,1) + t−1L̂t(1)

where L̂t(1) = 1. So if the conjecture is true, at s = 5 the V s
1,0 ⊗ V s

1,1 is not irreducible and contains the
trivial representation with multiplicity one.

6.2.4. Non finite cases. In this section we suppose that B(z) is symmetric and s > 2r∨. An important
difference with the finite case is that an infinite number of dominant monomials can appear in the q, t-

character : let us briefly explain it for the example of section 3.2.3. We consider the case C of type A
(1)
2

and s = 3. We have the following subgraph in the q-character given by the classical algorithm:

Y1,0 → Y −1
1,2 Y2,1Y3,1 → Y3,2Y3,1Y

−1
2,3 → Y −1

3,4 Y3,1Y1,0

But at s = 3 we have Y −1
3,4 Y3,1Y1,0 ' Y1,0. So we have a periodic chain and an infinity of dominant

monomials in τs,t(F̂t(Ỹ1,0)).

However we propose a construction of analogs of Kazdhan-Lusztig polynomials. As there is an infinity of
dominant monomials, we have to begin the induction from the highest weight monomial. Let us describe
it in a more formal way:

For m ∈ B̂s,inv and k ≥ 0 we denote by B̂s
k(m) ⊂ B̂s,inv the set of dominant monomials of the form

m′ = tαmÃ−1
i1,l1

...Ã−1
ik ,lk

. We set also Bs(m) =
⋃

k≥0

Bs
k(m).

For m ∈ B̂s,inv,
→

Et(m) ∈ K̂
s,∞
t is defined as in section 6.2.1. It will be useful to construct the element

F̂ s
t (m) ∈ K̂

s,∞
t with a unique dominant monomial m: we denote by m0 = m > m1 > m2 > ... the

dominant monomials appearing in
→

Et(m) with a total ordering compatible with the partial ordering and
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the degree (the set is countable because there is a finite number of monomials of degree k). We define

λk(t) ∈ Z[t±] inductively as the coefficient of mk in
→

Et(m) −
∑

1≤l≤k−1

λl(t)
→

Et(ml). We define :

F̂ s
t (m) =

→

Et(m) −
∑

l≥1

λl(t)
→

Et(ml) ∈ K̃
s,∞
t

(this infinite sum is allowed in K̃
s,∞
t ). The unique dominant monomial of F̂ s

t (m) is m. In particular

F̂ s
t (m) = F̂ s

t (m) (see section 6.2.1). In the following theorem the infinite sums are well-defined in K̃
s,∞
t :

Theorem 6.7. For m ∈ B̂s,inv there is a unique L̂s
t (m) ∈ K̃

s,∞
t of the form L̂s

t (m) = m+
∑

m′<m

µm′,m(t)m′

such that:

L̂s
t (m) = L̂s

t (m)
→

Et(m) = L̂s
t(m) +

∑

m′∈B̂s
k(m),k≥1

P s
m′,m(t)L̂s

t (m
′)

where P s
m′,m(t) ∈ t−1Z[t−1]. Moreover we have:

Π̂(m) = Π̂(m′) ⇒ m−1L̂s
t (m) = m′

−1
L̂s

t (m
′)

Proof: We aim at defining the µm′m(t) ∈ Z[t±] such that:

L̂s
t (m) =

∑

m′∈B̂s(m)

µm′,m(t)F̂t(m
′)

The condition L̂s
t (m) = L̂s

t (m) means that µm′,m(t−1) = µm′,m(t).

We define by induction on k ≥ 0, for m′ ∈ B̂s
k(m) the P s

m′,m(t) and the µm′,m(t) such that:

Êt(m) −
∑

k≥l≥0,m′∈B̂s
l (m)

P s
m′,m(t)

∑

k≥r≥0,m′′∈B̂s
r(m′)

µm′′,m′(t)F̂t(m
′′)

∈
∑

m′∈B̂s
k+1(m)

(µm′,m(t) + P s
m′,m(t))F̂t(m

′) +
∑

l>k+1,m′∈B̂s
l (m′)

Z[t±]F̂t(m
′)

For k = 0 we have P s
m,m(t) = µm,m(t) = 1. And the the equation determines uniquely P s

m′,m(t) ∈

t−1Z[t−1] and µm′,m(t) ∈ Z[t±] such that µm′,m(t) = µm′,m(t−1).

For the last point we see also by induction on k that for m1, m2 ∈ B̂s,inv such that Π̂(m1) = Π̂(m2) and

m′1 ∈ B̂s(m1), m′2 ∈ B̂s(m2) such that m−1
1 m′1 ∈ tZm−1

2 m′2 we have:

µm′
1,m1

(t) = µm′
2,m2

(t) , P s
m′

1,m1
(t) = P s

m′
2,m2

(t)

�

Let us look at an example: we suppose that C is of type A
(1)
2 . In the generic case, the classical algorithm

gives the q-characters beginning with Y1,0, and the first terms are:

Y1,0

1,1

��

Y −1
1,2 Y3,1Y2,1

3,2
wwppppppppppp

2,2

''NNNNNNNNNNN

Y −1
2,0 Y3,1Y3,2 Y −1

3,3 Y2,1Y2,2

The deformed algorithm gives:
→

Et(Ỹ1,0) = Ỹ1,0(1 + tÃ−1
1,1(1 + tÃ−1

2,2 + tÃ3,2)) + terms of higher degree



THE t-ANALOGS OF q-CHARACTERS AT ROOTS OF UNITY 29

We suppose now that s = 3. First let m = Ỹ1,0Ỹ1,2, m′ = t2Ỹ1,0Ã
−1
1,1Ỹ1,2. We have:

→

Et(m) = F̂t(m) + t−1F̂t(m
′) + ...

In particular P s
m′,m(t) = t−1.

Let m = Ỹ2,1Ỹ3,1, m′ = tỸ2,1Ỹ3,1Ã
−1
3,2Ã

−1
2,3, m′′ = tỸ2,1Ỹ3,1Ã

−1
2,2Ã

−1
3,3. We have:

→

Et(m) = F̂t(m) + t−1F̂t(m
′) + t−1F̂t(m

′′) + ...

In particular P s
m′,m(t) = t−1 and P s

m′′,m(t) = t−1.

Let us go back to general case and we want to define P s
m′,m(t) for m, m′ ∈ Bs. We can not set as in the

finite case P s
m′,m(t) =

∑

M ′∈B̂s(M)/Π̂(M ′)=m′

PM ′,M (t) (where M ∈ B̂s,inv verifies Π̂(M) = m) because this

sum is not finite in general. However we propose the following construction. For m, m′ ∈ Bs, we define
k(m, m′) ≥ 0 such that for M ∈ Π̂−1(m) we have k(m, m′) = min{k ≥ 0/∃M ′ ∈ B̂s

k(M), Π̂(M ′) = m′}.

Definition 6.8. For m, m′ ∈ Bs we define P s
m′,m(t) ∈ Z[t±] by:

P s
m′,m(t) =

∑

M ′∈B̂s(M)/Π̂(M ′)=m′ and deg(M ′)=deg(M)+k(m,m′)

PM ′ ,M (t)

where M an element of B̂s,inv ∩ Π̂−1(m).

Note that if C affine it follows from lemma 3.11 that for each m ∈ Bs, there is a finite number of
m′ ∈ Bs such that P s

m′,m(t) 6= 0. In particular in this situation the proof of the theorem gives an

algorithm to compute the polynomials with a finite number of steps (although there could be an infinite
number of monomials in the ε, t-character).

For example if C is of type A
(1)
2 and s = 3 we have:

PY3,1Y2,1,Y1,0Y1,2(t) = t−1 , PY1,0,Y1,2,Y3,1Y2,1 = 2t−1

6.3. Quantization of the Grothendieck ring.

6.3.1. General quantization. We set Reps
t = Reps ⊗ Z[t±] = Z[Xi,l, t

±]i∈I,l∈Z/sZ and we extend χε,t to a

Z[t±]-linear injective map χε,t : Reps
t → K̃

∞,s
t . We set Bs = {m =

∏

i∈I,l∈Z/sZ

Ỹ
ui,l(m)
i,l } ⊂ B

s
. We have a

map π : B
s
→ Bs defined by π(m) =

∏

i∈I,l∈Z/sZ

Ỹ
ui,l(m)
i,l .

We have:

Im(χε,t) =
⊕

m∈Bs

Z[t±]
→

Et(m) ⊂ K̃
s,∞
t

But in general Im(χε,t) is not a subalgebra of K̃
s,∞
t .

If s = 0 or C is finite we have Im(χε,t) ⊂ K̃
s,f,∞
t =

⊕

m∈B
s

Z[t±]
→

Et(m) and we have a Z[t±]-linear map

π : K̃
s,f,∞
t → Im(χq,t) such that for m ∈ B

s
:

π(
→

Et(m)) =
→

Et(π(m))

If s > 2r∨ and C verifies the property of lemma 3.11 (for example C is affine) then there is a Z[t±]-

linear map π : K̃
s,∞
t → Im(χq,t) such that for m ∈ B

s
of the form m = Mm′ where M ∈ Bs and

m′ = tαÃ−1
i1 ,l1

...Ã−1
ik ,lk

(see the definition of k(m1, m2) ∈ Z in section 6.2.4):

π(
→

Et(m)) =
→

Et(π(m)) if k = k(Π̂(m), Π̂(M))

π(
→

Et(m)) = 0 if k > k(Π̂(m), Π̂(M))
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In both cases, as χε,t is injective, we can define a Z[t±]-bilinear map ∗ such that for α, β ∈ Reps
t :

α ∗ β = χ−1
q,t (π(χq,t(α)χq,t(β)))

This is a deformed multiplication on Reps
t . But in general this multiplication is not associative.

6.3.2. Associative quantization. In some cases it is possible to define an associative quantization (see

[VV2], [N3], [He2]). The point is to use a t-deformed algebra Yt = Z[Ỹ ±i,l , t
±]i∈I,l∈Z instead of Ŷt: in this

case Im(χq,t) is an algebra and we have an associative quantization of the Grothendieck ring (see [He2]
for details). In this section we see how this construction can be generalized to other Cartan matrices.
We suppose that s = 0 and that q is transcendental.

Lemma 6.9. Let C be a Cartan matrix such that:

Ci,j < −1 ⇒ −Cj,i ≤ ri

Then:
det(C(z)) = z−R + α−R+1z

−R+1 + ... + αR−1z
R−1 + zR

where R =
∑

i=1...n

ri and α(−l) = α(l) ∈ Z.

In particular finite and affine Cartan matrices (A
(1)
1 with r1 = r2 = 2) verify the property of lemma 6.9.

Note that the condition Ci,j < 0 ⇒ Ci,j = −1 or Cj,i = −1 is sufficient; in particular Cartan matrices
such that i 6= j ⇒ Ci,jCj,i ≤ 3 verify the property.

Proof: For σ ∈ Sn let us look at the term detσ =
∏

i∈I

Ci,σ(i)(z) of det(C(z)). If σ = Id then the degree

deg(detId) is
∑

i∈I

ri. So it suffices to show that for σ 6= Id we have deg(detσ) <
∑

i∈I

ri. If i 6= σ(i), we have

the following cases:

if Ci,σ(i) = 0 or −1, deg([Ci,σ(i)]z) ≤ 0 < rσ(i)

if Ci,σ(i) < −1, we have Cσ(i),i = −1 and so riCi,σ(i) = −rσ(i) and so

deg([Ci,σ(i)]z) = −Ci,σ(i) − 1 = −
rσ(i)Cσ(i),i

ri
− 1 ≤ rσ(i) − 1 < rσ(i)

So if σ 6= Id we have:

deg(detσ) =
∑

i∈I/i=σ(i)

ri +
∑

i∈I/i6=σ(i)

deg([Ci,σ(i)]zi) <
∑

i∈I/i=σ(i)

ri +
∑

i∈I/i6=σ(i)

rσ(i) =
∑

i∈I

ri

For the last point det(C(z)) is symmetric polynomial because the coefficients of C(z) are symmetric. �

We suppose in this section that C verifies the property of lemma 6.9.

In particular det(C(z)) 6= 0 and C(z) has an inverse C̃(z) with coefficients of the form P (z)
Q(z−1) where P (z) ∈

Z[z±], Q(z) ∈ Z[z], Q(0) = ±1 and the dominant coefficient of Q is ±1. We denote by V ⊂ Z((z−1)) the
set of rational fractions of this form. Note that V is a subring of Q(z), and for R(z) ∈ V, m ∈ Z we have

R(zm) ∈ V. In particular for m ∈ Z − {0}, C̃(qm) makes sense.

We denote by Z((z−1)) the ring of series of the form P =
∑

r≤RP

Prz
r where RP ∈ Z and the coefficients

Pr ∈ Z. We have an embedding V ⊂ Z((z−1)) by expanding 1
Q(z−1) in Z[[z−1]] for Q(z) ∈ Z[z] such that

Q(0) = 1. So we can introduce maps (πr, r ∈ Z):

πr : V → Z , P =
∑

r≤RP

Prz
r 7→ Pr

We denote by H the algebra with generators ai[m], yi[m], cr, relations 1, 2 (of definition 3.1) and (j ∈
I, m 6= 0):

(4) yj [m] =
∑

i∈I

C̃i,j(q
m)ai[m]
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Note that the relations 4 are compatible with the relations 2.

We define Yu as the subalgebra of H[[h]] generated by the Ỹ ±i,l , Ã±i,l (i ∈ I, l ∈ Z), tR (R ∈ V).

Let the algebra Yt be the quotient of Yu by relations

tR = tR′ if π0(R) = π0(R
′)

We keep the notations Ỹ ±i,l , Ã
±
i,l for their image in Yt. We denote by t the image of t1 = exp(

∑

m>0
h2mcm)

in Yt.

The following theorem is a generalization of theorem 3.11 of [He2]:

Theorem 6.10. ([He2]) The algebra Yt is defined by generators Ỹ ±i,l , (i ∈ I, l ∈ Z) central elements t±

and relations (i, j ∈ I, k, l ∈ Z):

Ỹi,lỸj,k = tγ(i,l,j,k)Ỹj,kỸi,l

where γ : (I × Z)2 → Z is given by:

γ(i, l, j, k) =
∑

r∈Z

πr(C̃j,i(z))(−δl−k,−rj−r − δl−k,r−rj + δl−k,rj−r + δl−k,rj+r)

7. Complements

7.1. Finiteness of algorithms. In the construction of q, t and ε, t-character we deal with completed
algebras Ŷs,∞

t , so the algorithms can produce an infinite number of monomials. In some cases we can
say when this number is finite:

7.1.1. Finiteness of the classical and deformed algorithms.

Definition 7.1. We say that the classical algorithm stops if the classical algorithm is well defined and
for all m ∈ B, F (m) ∈ K.

It follows from the classical theory of q-characters that if C is finite then the classical algorithm stops.

For i ∈ I let Li = (Ci,1, ..., Ci,n).

Proposition 7.2. We suppose that there are (αi)i∈I ∈ ZI such that αi > 0 and:
∑

j∈I

αjLj = 0

Then the classical algorithm does not stop.

In particular if C is an affine Cartan matrix then the classical algorithm does not stop.

Proof: It follows from lemma 4.6 at t = 1 that it suffices to show that there is no antidominant monomial

in C(Y1,0). So let m = Y1,0

∏

i∈I,l∈Z

A
−vi,l

i,l be in C(Y1,0). We see as in lemma 3.11 ui(Y
−1
1,0 m) = 0. In

particular u1(m) = 1 and m is not antidominant. �

Note that in the A
(1)
r -case (r ≥ 2) we have a more “intuitive” proof : for all l ∈ Z, i ∈ I we have

A−1
i,l = Y −1

i,l+1Y
−1
i,l−1Yi+1,lYi−1,l, and:

u(A−1
i,l ) =

∑

j∈I,k∈Z

uj,k(A−1
i,l ) = (−ui,l+1 − ui,l−1 + ui+1,l + ui−1,l)(A

−1
i,l ) = 0

where we set in I : (1) − 1 = r + 1 and (r + 1) + 1 = 1. So for all m ∈ C(Y1,0) we have u(m) = 1 and m
is not antidominant.
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7.1.2. Finiteness of the deformed algorithm.

Proposition 7.3. The following properties are equivalent:

i) For all i ∈ I, F̂t(Ỹi,0) ∈ K̂t.

ii) For all m ∈ B, F̂t(m) ∈ K̂t.

iii) Im(χq,t) ⊂ K̂t.

Definition 7.4. If the properties of the proposition 7.3 are verified we say that the deformed algorithm
stops.

Let us give some examples:

-If C is of type ADE then the deformed algorithm stops: [N3] (geometric proof) and [N4] (algebraic
proof in AD cases)

-If C is of rank 2 (A1×A1, A2, B2, C2, G2) then the deformed algorithm stops: [He2] (algebraic proof)

-In [He2] we give an alternative algebraic proof for Cartan matrices of type An (n ≥ 1) and we
conjecture that for all finite Cartan matrices the deformed algorithm stops. The cases F4, Bn, Cn

(n ≤ 10) have been checked on a computer (with the help of T. Schedler).

Lemma 7.5. If the deformed algorithm stops then the classical algorithm stops.

Proof: This is a consequence of the formula F (Π̂(m)) = Π̂(F̂t(m)) (see section 4.2.2). �

In particular if C is affine then the deformed algorithm does not stop.

Let C be a Cartan matrix such that i 6= j ⇒ Ci,jCj,i ≤ 3. We conjecture that the deformed algorithm
stops if and only if the classical algorithm stops.

7.2. q, t-characters of affine type and quantum toroidal algebras. We have seen in [He2] that if

C is finite then the defining relations of Ĥ:

[ai[m], aj [r]] = δm,−r(q
m − q−m)Bi,j(q

m)c|m|

appear in the C-subalgebra Uq(ĥ) of Uq(ĝ) generated by the hi,m, c± (i ∈ I, m ∈ Z − {0}): it suffices to

send ai[m] to (q − q−1)hi,m and cr to cr−c−r

r .

In this section we see that in the affine case A
(1)
n (n ≥ 2) the relations of Ĥ appear in the structure of

the quantum toroidal algebra. In particular we hope that q, t-characters will play a role in representation
theory of quantum toroidal algebras (see the introduction).

7.2.1. Reminder on quantum toroidal algebras [VV1]. Let be d ∈ C∗ and n ≥ 3. In the quantum toroidal
algebra of type sln there is a subalgebra Z generated by the k±i , hi,l (i ∈ {1, ..., n}, l ∈ Z − {0}) with
relations :

kik
−1
i = cc−1 = 1 , [k±,i(z), k±,j(w)] = 0

(5) θ−ai,j (c
2d−mi,j wz−1)k+,i(z)k−,j(w) = θ−ai,j (c

−2d−mi,j wz−1)k−,jk+,i(z)

where k±,i(z) ∈ Z [[z]] is defined by:

k±,i(z) = k±i exp(±(q − q−1)
∑

k>0

hi,±kz∓k)
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θm(z) ∈ C[[z]] is the expansion of qmz−1
z−qm , A = (ai,j)0≤i,j≤n is the affine Cartan matrix of type A

(1)
n−1:

A =















2 −1 ... 0 −1
−1 2 ... 0 0

. . .

0 0 ... 2 −1
−1 0 ... −1 2















and M = (mi,j)1≤i,j≤n is given by:

M =















0 −1 ... 0 1
1 0 ... 0 0

. . .

0 0 ... 0 −1
−1 0 ... 1 0















7.2.2. Relations of the Heisenberg algebra.

Lemma 7.6. The relation (5) are consequences of:

[hi,l, hj,m] = δl,−m
qlai,j − q−lai,j

(q − q−1)2
d−|l|mi,j

c2l − c−2l

l

Proof: First for m ∈ Z, we have in C[[z]]:

θm(z) =
qmz − 1

z − qm
= q−mexp(ln(1 − qmz)− ln(1 − q−mz)) = q−mexp(

∑

r≥1

(−
(qmz)r

r
+

(q−mz)r

r
))

and so k+,i(z)k−,j(z)k+,i(z)−1k−,j(w)−1 = θ−ai,j (c
−2d−mi,j wz−1)θ−ai,j (c

2d−mi,j wz−1)−1 is given by:

θ−ai,j (c
−2d−mi,j wz−1)θ−ai,j (c

2d−mi,j wz−1)−1 = exp(
∑

r≥1

(q−rai,j − qrai,j )d−rmi,j (wz−1)r c2r − c−2r

r
))

But following the proof of lemma 3.2 we see that the relation of lemma 7.6 give:

[−(q − q−1)
∑

r≥1

hj,−rw
r,−(q − q−1)

∑

l≥1

hi,lz
−r] =

∑

r≥1

(q − q−1)2
q−rai,j − qrai,j

(q − q−1)2
d−rmi,j (wz−1)r c2r − c−2r

r

�

In particular for d = 1, ai[m] =
hi,m

q−q−1 and cm = c2m−c−2m

m , we get the defining relation of the Heisenberg

algebra Ĥ of section 3.1.1 in the affine case A
(1)
n−1:

[ai[m], aj [r]] = δm,−r(q
m − q−m)[Bi,j ]qmc|m|

In the case d 6= 1 we have to extend the former construction:

7.2.3. Twisted multiplication with two variables. Let us study the case d 6= 1: in this section we suppose
that q, d are indeterminate and we construct a t-deformation of Z[Ã±i,l,k ]i∈I,l,k∈Z.

We define the C[q±, d±]-algebra Ĥd by generators ai[m] (i ∈ I = {1, ..., n}, m ∈ Z) and relations:

[ai[m], aj [r]] = δm,−r(q
m − q−m)[Ai,j ]qmd−|m|mi,j c|m|

For i ∈ I, l, k ∈ Z we define Ãi,l,k ∈ Ĥd[[h]] by:

Ãi,l,k = exp(
∑

m>0

hmqlmdkmai[m])exp(
∑

m>0

hmq−lmd−kmai[−m])

and for R(q, d) ∈ Z[q±, d±], tR ∈ Ĥd[[h]] by:

tR(q,d) = exp(
∑

m>0

hmR(qm, dm)cm)
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A computation analogous to the proof of lemma 3.2 gives:

Ãi,l,pÃj,k,rÃ
−1
i,l,pÃ

−1
j,k,r = t(q−q−1)[Ai,j ]q(−ql−kdp−r+qk−ldr−p)d−mi,j

In particular, in the quotient of Ĥd[[h]] by relations tR = 1 if R 6= 0, we have:

Ã−1
i,l,pÃ

−1
j,k,r = tα(i,j,k,l,p,r)Ã−1

j,k,rÃ
−1
i,l,p

where α : (I × Z × Z)2 → Z is given by (l, k ∈ Z, i, j ∈ I):

α(i, i, l, k, p, r) = 2(δl−k,2ri − δl−k,−2ri)δr,p

α(i, j, l, k, p, r) =
∑

r=riCi,j+1,riCi,j+3,...,−riCi,j−1

(−δl−k,r+riδp−r,mi,j + δl−k,r−riδr−p,mi,j ) (if i 6= j)

In particular this would lead to the construction of q, t-characters with variables Ỹi,l,p, Ã
−1
i,l,p associated

to quantum toroidal algebras. But we shall leave further discussion of this point to another place.

7.3. Combinatorics of bicharacters and Cartan matrices. In this section C = (Ci,j)1≤i,j≤n is an
indecomposable generalized (non necessarily symmetrizable) Cartan matrix and (r1, ..., rn) are positive
integers. Let D = diag(r1, ..., rn) and B = DC (which is non necessarily symmetric).

We show that the quantization of Ŷs ⊗ Z[t±] = Z[Yi,l, Vi,l, t
±]i∈I,l∈Z/sZ is linked to fundamental combi-

natorial properties of C and (r1, ..., rn) (propositions 7.9, 7.11, 7.12 and theorem 7.10). Let us begin with
some general background about twisted multiplication defined by bicharacters.

7.3.1. Bicharacters and twisted multiplication. Let Λ be a set, Y be the commutative polynomial ring:

Y = Z[Xα, t±]α∈Λ

and A the set of monomials of the form m =
∏

α∈Λ

X
xα(m)
α ∈ Y . The usual commutative multiplication of

Y is denoted by . in the following.

Definition 7.7. A bicharacter on A is a map d : A × A → Z such that (m1, m2, m3 ∈ A):

d(m1.m2, m3) = d(m1, m3) + d(m2, m3) , d(m1, m2.m3) = d(m1, m2) + d(m1, m3)

The symmetric bicharacter Sd and the antisymmetric bicharacter Ad of d are defined by:

Sd(m1, m2) =
1

2
(d(m1, m2) + d(m2, m1)) , Ad(m1, m2) =

1

2
(d(m1, m2) − d(m2, m1))

and we have d = Ad + Sd.

Let be d be a bicharacter on A. One can define a Z[t±]-bilinear map ∗ : Y × Y → Y such that:

m1 ∗ m2 = td(m1,m2)m1.m2

This map is associative1 and we get a Z[t±]-algebra structure on Y . We say that the new multiplication
is the twisted multiplication associated to the bicharacter d, and it is given by formulas:

m1 ∗ m2 = td(m1,m2)−d(m2,m1)m2 ∗ m1 = t2Ad(m1,m2)m2 ∗ m1

Lemma 7.8. Let d1, d2 be two bicharacters. One can define a multiplication on Y such that (m1, m2 ∈ A):

m1 ∗ m2 = t2d1(m1,m2)−2d2(m2,m1)m2 ∗ m1

if and only if Sd1 = Sd2.

In this case, the multiplication is the twisted multiplication associated to the bicharacter d = d1 + d2:

m1 ∗ m2 = td1(m1,m2)+d2(m1,m2)m1.m2

1In fact it suffices that −d(m2 ,m3) + d(m1m2,m3) − d(m1 ,m2m3) + d(m1 ,m2) = 0.
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Proof: It follows immediately from the definition of ∗:

m1 ∗ m2 = t2d1(m1,m2)−2d2(m2,m1)m2 ∗ m1 = t4(Sd1−Sd2)(m1,m2)m1 ∗ m2

If Sd1 = Sd2, let ∗ be the twisted multiplication associated with the bicharacter d = d1 + d2. We have:

m1 ∗ m2 = td1(m1,m2)+d2(m1,m2)−d1(m2,m1)−d2(m2,m1)m2 ∗ m1 = t2d1(m1,m2)−2d2(m2,m1)m2 ∗ m1

�

7.3.2. Definition of d1 and d2. For s ≥ 0 let Λs = I × (Z/sZ) and A
s

be the set of monomials of Ŷs, that

is to say elements of the form m =
∏

(i,l)∈Λs

Y
yi,l(m)
i,l V

vi,l(m)
i,l . Let D(z) = diag([r1]z, ..., [rn]z).

For α ∈ Λs, we define a character 2 uα on A
s

as in section 3.2.1. In particular uα(Yβ) = δα,β.

We define d1, d2 the bicharacters on A
s

as in section 3.2.1, that is to say (m1, m2 ∈ A
s
):

d1(m1, m2) =
∑

α∈Λs

vb(α)(m1)uα(m2) + yb(α)(m1)vα(m2)

d2(m1, m2) =
∑

α∈Λs

ub(α)(m1)vα(m2) + vb(α)(m1)yα(m2)

where b : Λs → Λs is the bijection defined by b(i, l) = (i, l + ri).

Proposition 7.9. The following properties are equivalent:

i) For s ≥ 0, d1 = d2

ii) For s ≥ 0, ∀α, β ∈ Λs, uα(Vβ) = ub(β)(Vb(α))

iii) C is symmetric and ∀i, j ∈ I, ri = rj .

Proof: We have always:

d1(Yα, Yβ) = d2(Yα, Yβ) = 0

For α, β ∈ Λs, we have uα(Yβ) = δα,β. In particular:

d1(Yα, Vβ) = δb(β),α = ub(β)(Yα) = d2(Yα, Vβ)

d1(Vβ , Yα) = ub−1(β)(Yα) = δb(α),β = d2(Vβ , Yα)

So the condition d1 = d2 means ∀α, β ∈ Λs, d1(Vα, Vβ) = d2(Vα, Vβ). But the equation (ii) means:

d1(Vα, Vβ) = ub−1(α)(Vβ) = ub(β)(Vα) = d2(Vα, Vβ)

In particular we have (i) ⇔ (ii).

For i, j ∈ I and l, k ∈ Z/sZ we have:

ui,l(Vj,k) =
∑

r=Ci,j+1...−Ci,j−1

δl+r,k =
∑

r=Ci,j+1...−Ci,j−1

δl−k,r

uj,k+rj (Vi,l+ri) =
∑

r=Cj,i+1...−Cj,i−1

δk+r+rj ,l+ri =
∑

r=Cj,i+1...−Cj,i−1

δl−k,rj−ri+r

If s = 0, those terms are equal for all l, k ∈ Z if and only if Ci,j 6= 0 implies Ci,j = Cj,i and ri = rj . So
as C is indecomposable we have (ii) ⇔ (iii).

If s ≥ 0 and (iii) is verified we see in the same way that those terms are equal, so (iii) ⇒ (ii). �

In particular if C is of type ADE, we get the bicharacter of [N3] and d1 = d2 is the equation ([N3], 2.1).

2ie. uα(m1.m2) = uα(m1) + uα(m2)



36 DAVID HERNANDEZ

7.3.3. Bicharacters and symmetrizable Cartan matrices. We have seen in lemma 7.8 that we can define
a twisted multiplication if and only if Sd1 = Sd2, so we investigate those cases:

Theorem 7.10. The following properties are equivalent:

i) For s ≥ 0, we have Sd1 = Sd2

ii) For s ≥ 0, ∀α, β ∈ Λs, uα(Vb(β)) − ub2(α)(Vb(β)) = ub2(β)(Vb(α)) − uβ(Vb(α))

iii) For s ≥ 0 and m ∈ A
s
, d1(m, m) = d2(m, m)

iv) B(z) is symmetric

v) B is symmetric and Ci,j 6= Cj,i =⇒ (ri = −Cj,i and rj = −Ci,j)

Proof:

First we show that (i) ⇔ (ii). We have always:

Sd1(Yα, Yβ) = Sd2(Yα, Yβ) = 0

and:

2Sd1(Yα, Vβ) = ub(β)(Yα) − ub−1(β)(Yα) = δb(β),α − δb(α),β = 2Sd2(Yα, Vβ)

But the equation (ii) means:

d1(Vα, Vβ) − d2(Vβ , Vα) = d2(Vα, Vβ) − d1(Vβ , Vα)

that is to say:

2Sd1(Vα, Vβ) = 2Sd2(Vα, Vβ)

and we can conclude because d1, d2 are bicharacters.

Let us show that (iv) ⇔ (v): the matrix B(z) is symmetric if and only if for all i 6= j we have:

(zri − z−ri)(zCi,j − z−Ci,j ) = (zrj − z−rj )(zCj,i − z−Cj,i)

If Ci,j = Cj,i = 0 it is obvious. If Ci,j = Cj,i 6= 0, the equation means ri = rj . If Ci,j 6= Cj,i, the equality
means (ri = −Cj,i and rj = −Ci,j).

The equation (ii) means:
∑

r=Ci,j+1...−Ci,j−1

δl−k,rj−r − δl−k,rj−2ri−r =
∑

r=Cj,i+1...−Cj,i−1

δl−k,2rj+r−ri − δl−k,r−ri

At s = 0, the formula holds for all l, k ∈ Z, if and only the coefficients of Kronecker’s functions are equal,
that is to say in Z[X±]:

∑

r=Ci,j+1...−Ci,j−1

Xrj−r − Xrj−2ri−r =
∑

r=Cj,i+1...−Cj,i−1

X2rj+r−ri − Xr−ri

(Xrj − Xrj−2ri)XCi,j+1 1 − X−2Ci,j

1 − X2
= (X2rj−ri − X−ri)XCj,i+1 1 − X−2Cj,i

1 − X2

Xrj−2ri+Ci,j (1 − X−2Ci,j )(1 − X2ri) = X−ri+Cj,i(1 − X−2Cj,i)(1 − X2rj )

(Ci,j = Cj,i = 0) or (ri = rj and Ci,j = Cj,i 6= 0) or (rj = −Ci,j and ri = −Cj,i)

and so (ii) ⇒ (v). If we suppose that (iv) is true, then the above equation is also verified in Z[X±]/(Xs =
1) and (ii) is true.

To conclude it suffices to show that (iii) ⇔ (i). If (iii) is verified we have for m, m′ ∈ A
s
:

d1(m, m′) + d1(m
′, m) = d1(mm′, mm′) − d1(m, m) − d1(m

′, m′) = d2(m, m′) + d2(m
′, m)

and (i) is verified. If (i) is verified we have for m ∈ A
s
: 2d1(m, m) = 2d2(m, m). �
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7.3.4. Bicharacters and q-symmetrizable Cartan matrices. There is a way to define a deformation mul-
tiplication if B(z) is non necessarily symmetric. First we define the matrix C ′i,j(z) = [Ci,j ]zi and the
characters :

u′i,l(m) = yi,l(m) −
∑

j∈I

(C ′i,j(z))opVj,l(m)

We define the bicharacters d′1 and d′2 from ũi,l in the same way d1 and d2 were defined from ui,l (section
7.3.2).

We also define B′i,j(z) = [Bi,j ]z . Note that we have always B′(z) = D(z)C ′(z). Indeed:

B′i,j(z) =
zriCi,j − z−riCi,j

z − z−1
=

zi − z−1
i

z − z−1

z
Ci,j

i − z
−Ci,j

i

zi − z−1
i

= Di,i(z)C ′i,j(z)

Proposition 7.11. The following properties are equivalent:

i) For s ≥ 0, Sd′1 = Sd′2

ii) For s ≥ 0, ∀α, β ∈ Λs, u
′
α(Vb(β)) − u′b2(α)(Vb(β)) = u′b2(β)(Vb(α)) − u′β(Vb(α))

iii) B is symmetric

iv) B′(z) is symmetric

In particular if C is symmetrizable we can define the deformed structure for all s ≥ 0.

Proof: First we have (iii) ⇔ (iv) because B′i,j(z) = [Bi,j ]z.

We show as in theorem 7.10 that (ii) ⇔ (i).

Let us write the equation (ii):

u′i,l(Vj,k+rj ) − u′i,l+2ri
(Vj,k+rj ) = u′j,k+2rj

(Vi,l+ri) − u′j,k(Vi,l+ri )

If i = j, we are in the symmetric case, and it follows from proposition 7.9 that this equation is verified.
In the case i 6= j, if Ci,j = 0 then all is equal to 0. In the cases Ci,j < 0 the equation reads:

∑

r=Ci,j+1...−Ci,j−1

δl+rir,k+rj − δl+2ri+rri,k+rj =
∑

l=Cj,i+1...−Cj,i−1

δk+2rj+lrj ,l+ri − δk+rrj ,l+ri

∑

r=Ci,j+1...−Ci,j−1

δl−k,rj−rri − δl−k,rj−2ri−rir =
∑

r=Cj,i+1...−Cj,i−1

δl−k,2rj+rrj−ri − δl−k,rrj−ri

δl−k,rj−ri−riCi,j − δl−k,rj−ri+riCi,j = δl−k,rj−ri−rjCj,i − δl−k,rj−ri+rjCj,i

That is to say:

(2riCi,j ∈ sZ and 2rjCj,i ∈ sZ) or riCi,j − rjCj,i ∈ sZ

If s = 0, the equation means riCi,j = rjCj,i that is to say B = DC symmetric. So (ii) ⇔ (iii).

If s ≥ 0 and B symmetric we have riCi,j − rjCj,i ∈ sZ. So (iii) ⇒ (ii). �

In some situations the two constructions are the same:

Proposition 7.12. The following properties are equivalent:

i) For s ≥ 0, u′ = u

ii) For s ≥ 0, d′1 = d1

iii) For s ≥ 0, d′2 = d2

iv) C ′(z) = C(z)

v) B′(z) = B(z)

vi) i 6= j ⇒ (ri = 1 or Ci,j = −1 or Ci,j = 0)
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Proof: We have (iv) ⇔ (v) because B(z) = D(z)C(z), B ′(z) = D(z)C ′(z) and D(z) is invertible.

The (i) ⇒ (ii) (resp. (i) ⇒ (iii)) is clear and we get (ii) ⇒ (i) (resp. (iii) ⇒ (i)) by looking at
d1(Vi,l, Vj,k) = d′1(Vi,l, Vj,k) (resp. d2(Vi,l, Vj,k) = d′2(Vi,l, Vj,k)).

The (iv) ⇒ (i) is clear. If (i) is true we have for i 6= j and all l, k ∈ Z:

ui,l(Vj,k) =
∑

r=Ci,j+1,Ci,j+3,...,−1Ci,j−1

δl−k,r =
∑

r=Ci,j+1,Ci,j+3,...,−1Ci,j−1

δl−k,rri = u′i,l(Vj,k)

and so zCi,j−z−Ci,j

z−z−1 =
z

Ci,j
i −z

−Ci,j
i

zi−z−1
i

that is to say (iv).

So it suffices to show that (v) ⇔ (vi). We have always:

Bi,i(z) =
zri − z−ri

z − z−1
(zri + z−ri) =

z2ri − z−2ri

z − z−1
= [2ri]z = [Bi,i]z

If i 6= j, the equality Bi,j(z) = B′i,j(z) means:

zri+Ci,j + z−ri−Ci,j − zCi,j−ri − zri−Ci,j = zriCi,j+1 + z−1−riCi,j − zriCi,j−1 − z1−riCi,j

If ri = 1 or Ci,j = −1 or Ci,j = 0 the equality is clear and so (vi) ⇒ (v). Suppose that (v) is true and
let be i 6= j. We have to study different cases:

ri + Ci,j = Ci,j − ri ⇒ ri = 0 (impossible)

ri + Ci,j = ri − Ci,j ⇒ Ci,j = 0

ri + Ci,j = riCi,j + 1 and riCi,j − 1 = Ci,j − ri ⇒ ri = 1

ri + Ci,j = riCi,j + 1 and − riCi,j + 1 = Ci,j − ri ⇒ Ci,j = 1 (impossible)

ri + Ci,j = −riCi,j − 1 and riCi,j − 1 = Ci,j − ri ⇒ Ci,j = −1

ri + Ci,j = −riCi,j − 1 and − riCi,j + 1 = Ci,j − ri ⇒ ri = −1 (impossible)

and so we get (vi). �

Lemma 7.13. If the properties of the proposition 7.12 are verified and B = DC is symmetric then the
properties of the proposition 7.11 are verified.

Proof: We verify the property (iv) of proposition 7.11: we suppose that Ci,j 6= Cj,i. So Ci,j 6= 0, Cj,i 6= 0
and we do not have Ci,j = Cj,i = −1. As riCi,j = rjCj,i, we do not have ri = rj = 1. So we have
(property (vi) of proposition 7.12) ri = −Cj,i = 1 or rj = −Ci,j = 1. For example in the first case,
riCi,j = rjCj,i leads to Ci,j = −rj . �

Definition 7.14. We say that C is q-symmetrizable if B = DC is symmetric and:

i 6= j ⇒ (ri = 1 or Ci,j = −1 or Ci,j = 0)

In particular C q-symmetrizable verifies the properties of proposition 7.11, 7.12 and of theorem 7.10.

7.3.5. Examples. If C is symmetric then for all i ∈ I we have ri = 1 and so C is q-symmetrizable.

Lemma 7.15. The Cartan matrices of finite or affine type (except A
(1)
1 , A

(2)
2l case, l ≥ 2) are q-

symmetrizable. The affine Cartan matrices A
(1)
1 , A

(2)
2l with l ≥ 2 are not q-symmetrizable.

In particular if C is finite then u = ũ and the presentation adopted in this paper fits with former articles,
in particular in the non symmetric cases ([FR2], [FM1], [FM2], [He2]).

Proof: As those matrices are symmetrizable, it suffices to check the property (vi) of proposition 7.12:

the finite Cartan matrices Al (l ≥ 1), Dl (l ≥ 4), E6, E7, E8 and the affine Cartan matrices A
(1)
l

(l ≥ 1), D
(1)
l (l ≥ 4), E

(1)
6 , E

(1)
7 , E

(1)
8 are symmetric and so q-symmetrizable.
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the finite Cartan matrices Bl (l ≥ 2), G2 and the affine Cartan matrices B
(1)
l (l ≥ 3), G

(1)
2 verify

rn = 1 and for i 6= j: i ≤ n − 1 ⇒ Ci,j = −1 or 0.

the finite Cartan matrices Cl (l ≥ 2), the affine Cartan matrices A
(2)
2l−1 (l ≥ 3), D

(3)
4 verify r1 = ... =

rn−1 = 1, Cn,1 = ... = Cn,n−2 = 0 and Cn,n−1 = −1.

the affine Cartan matrices C
(1)
l (l ≥ 2) verify r2 = ... = rn−1 = 1 and C1,3 = ... = C1,n = 0, C1,2 = −1,

Cn,1 = ... = Cn,n−2 = 0, Cn,n−1 = −1.

the affine Cartan matrices D
(2)
l+1 (l ≥ 2) verify r1 = rn = 1 and for i 6= j: 2 ≤ i ≤ n − 1 ⇒ Ci,j =

−1 or 0.

The other particular cases are studied one after one:

for the finite Cartan matrix F4 =









2 −1 0 0
−1 2 −1 0
0 −2 2 −1
0 0 −1 2









we have (2, 2, 1, 1)

for the affine Cartan matrix F
(1)
4 =













2 −1 0 0 0
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −2 2 −1
0 0 0 −1 2













we have (2, 2, 2, 1, 1)

for the affine Cartan matrix A
(2)
2 =

(

2 −4
−1 2

)

we have (1, 4)

for the affine Cartan matrix E
(2)
6 =













2 −1 0 0 0
−1 2 −1 0 0
0 −1 2 −2 0
0 0 −1 2 −1
0 0 0 −1 2













we have (1, 1, 1, 2, 2).

Finally the affine Cartan matrices A
(1)
1 and A

(2)
2l (l ≥ 2) are not q-symmetrizable because Cn−1,n = −2

and rn−1 = 2. �

One can understand “intuitively” the fact that A
(2)
2l (l ≥ 2) is not q-symmetrizable: in the Dynkin diagram

there is an oriented path without loop with two arrows in the same direction.

There are q-symmetrizable Cartan matrices which are not finite and not affine: here is an example such
that for all i, j ∈ I , Ci,j ≥ −2:

C =









2 −2 −2 0
−1 2 0 −1
−1 0 2 −1
0 −2 −2 2









(r1, r2, r3, r4) = (1, 2, 2, 1)
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Notations

As set of Ys-monomials p 9

A, A
s

sets of Ŷt, Ŷ
s
t -monomials p 8

Âinv, B̂inv sets of Ŷt-monomials p 23

Âs,inv, B̂s,inv sets of Ŷs
t -monomials p 25

→

A,
←

A sets of Ŷt-monomials p 15
α map (I × Z/sZ)2 → Z p 6
α(m) character p 23

ai[m] element of Ĥ p 5

Ãi,l, Ã
−1
i,l elements of Ŷu or Ŷt p 5

Ai,l, A
−1
i,l elements of Ŷ p 9

b bijection of Λs p 35

Bi, B sets of Ŷt-monomials p 9

B
s

i , B
s

sets of Ŷs
t -monomials p 9

Bs, Bs
i sets of Ys-monomials p 9

B = (Bi,j) symmetrized
Cartan matrix p 4

B(z) deformation of B p 4
B′(z) deformation of B p 37
β map (I × Z/sZ)2 → Z p 6
C = (Ci,j) Cartan matrix p 4
C(z) deformation of B p 4
C ′(z) deformation of B p 37
C(m) set of monomials p 12

(C̃i,j) inverse of C p 30

cr central element of Ĥ p 5
d1, d2 bicharacters p 8
d′1, d

′
2 bicharacters p 37

D1, D2 bicharacters p 18
ε root of unity p 2
Ei(m) element of Ki, K

s
i p 17

←

Ei,t(m) element of K̂i,t, K̂
s
i,t p 11

→

Et(m) element of K̂∞t p 23

F (m) element of K̂ p 12

F̂t(m) element of K̂∞t p 12
γ map (I × Z/sZ)2 → Z p 31

Ĥ Heisenberg algebra p 5

Ĥh formal series in Ĥ p 5
Ki, K subrings of Y p 11

K̂i,t, K̂t subrings of Ŷt p 11

K̂∞i,t, K̂
∞
t subrings of Ŷ∞t p 12

Ks
i , K

s subrings of Ys p 17

K̂s
i,t, K̂

s
t subrings of Ŷs

t p 17

K̂
s,∞
i,t , K̂∞t subrings of Ŷs,∞

t p 17

K̃s
i,t subring of Ŷs

t p 24

K̃
s,∞
i,t , K̃s,∞,f

t subring of Ŷs,∞
t p 25

χε morphism
of ε-characters p 5

χε,t morphism
of ε, t-characters p 15

χq morphism
of q-characters p 5

χq,t morphism
of q, t-characters p 14

[l] element of Z/sZ p 2

L̂t(m) element of K̂∞t p 23

L̂s
t (m) element of K̂

s,∞
t p 25

Λs set p 35
→
m,
←
m Ŷs

t -monomial p 15
op operator p 7
ps morphism p 9
πr map to Z p 30
π+ ring homomorphism of p 7

Π̂ morphism p 9
Pm′,m(t) polynomial p 24
P s

m′,m(t) polynomial p 25

q complex number p 5
r∨ integer p 4
ri integer p 4
Rep Grothendieck ring p 5
Reps Grothendieck ring p 5
Reps

t deformed
Grothendieck ring p 29

s integer p 5
Si screening operator p 11
Ss

i screening operator p 17

S̃i,l screening current p 10
Si,t t-screening operator p 11
Ss

i,t t-screening operator p 17
t central element of Yt p 6
tR central element of Yu p 6
τs morphism p 15
τs,t morphism p 15
ui,l character p 7
u′i,l character p 37

Xi,l element of Rep, Reps p 5

yi[m] element of Ĥ p 5
Yi,l, Y

−1
i,l elements of Y p 7

Ỹi,l, Ỹ
−1
i,l elements of Ŷu or Ŷt p 5

Y commutative algebra p 2

Ŷs
t , Ŷt quotient of Ŷs

u, Ŷu p 6

Ŷs
u, Ŷu subalgebra of Ĥh p 6

Ŷi,t Ŷt-module p 11

Ŷs
i,t Ŷs

t -module p 16

Ŷ∞t completion of Ŷt p 12

Ŷs,∞
t completion of Ŷs

t p 15
z indeterminate p 5
∗ t-product p 30
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