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1. INTRODUCTION

Let g be a simple Lie algebra and g the corresponding affine Kac—Moody algebra. In
[7], N. Reshetikhin and one of the authors introduced a two-parameter deformed W-
algebra Wy +(g). In the limit ¢ — 1 this deformed W-algebra becomes commutative and
gives rise to the Grothendieck ring of finite-dimensional representations of the quantum
affine algebra Uy (g). (The precise relation between the two is explained in [7] and [8].)
On the other hand, in the limit when ¢ — €, where ¢ = 1 if g is simply-laced and

!Supported in part by DARPA and AFOSR through the grant FA9550-07-1-0543 and by Fondation
Sciences mathématiques de Paris.
2Supported partially by ANR through Project ” Géométrie et Structures Algébriques Quantiques”.
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e = exp(mi/r), r being the lacing number of g, otherwise, this algebra contains a large
center. It was conjectured in [7] that it gives rise to the Grothendieck ring of U,(Lg),
where g is the Langlands dual Lie algebra of §. By definition, the Cartan matrix of
LG is the transpose of the Cartan matrix of g, so that g is a twisted affine algebra if
g is non-simply laced.

Thus, it appears that W, +(g) interpolates between the Grothendieck rings of finite-
dimensional representations of quantum affine algebras associated to g and ©g. This
suggests that these representations should be related in some way. Examples of such
a relation were given in [7], but general understanding of this phenomenon has been
lacking. The goal of this paper is to elucidate and provide further evidence for this
duality.

The finite-dimensional analogue of this duality has been studied in our previous paper
[5], in which we have conjectured (and partially proved) the existence of a correspon-
dence, or duality, between finite-dimensional representations of the quantum groups
U,(g) and U,(¥g).! This duality may in fact be extended uniformly to integrable rep-
resentations of quantized enveloping algebras associated to Kac—Moody algebras. But
quantized enveloping algebras associated to the affine Kac-Moody algebras (quantum
affine algebras for short) have another important class of representations; namely, the
finite-dimensional representations. In this paper we describe a Langlands type duality
for these representations.

In this context the Langlands duality was first observed in [7, 8] using the so-called “g-
characters” of finite-dimensional representations of quantum affine algebras. The theory
of g-characters has been developed for untwisted quantum algebras in [8] and for twisted
quantum affine algebras (which naturally appear in the Langlands dual situation) in
[13]. The g-character of a simple representation characterizes its isomorphism class.

In this paper we conjecture a precise relation between the g-characters of finite-
dimensional representations of dual quantum affine algebras U, (g) and U, (g). Namely,
we conjecture that for any finite-dimensional representation V' of U,(g) there exists an
interpolating (q,t)-character, a polynomial which interpolates between the g-character
of V and the t-character of a certain representation of the Langlands dual algebra
U (*g), which we call dual to V (we discuss in which sense it is unique). Moreover, we
prove this conjecture for an important class of representations, the Kirillov—Reshetikhin
modules and their irreducible tensor products.

The g-characters are important in the study of integrable models of statistical me-
chanics (see, e.g., [7, 8]), and therefore their duality indicates the existence of duality
between the models associated to two Langlands dual affine Lie algebras. The existence
of interpolating (g, t)-characters is closely related to [7, Conjecture 1], which also states
the existence of interpolating expressions, but of a different kind. They are elements of
a two-parameter non-commutative algebra (in fact, a Heisenberg algebra), whereas the
interpolating characters that we introduce here are elements of a commutative algebra.
It would be interesting to understand a precise relation between the two pictures.

1We have learned from K. McGerty that in the meantime he has been able to prove one of the
conjectures of [5], see [20]. After this paper was published, we learned from C. Lecouvey that the
statement of this conjecture was proved earlier by P. Littelmann in [19].
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We refer the reader to the Introduction of [5] for a discussion of a possible link
between our results on the duality of finite-dimensional representations of U,(g) and
U;(¥g) and the geometric Langlands correspondence. This link was one of the motiva-
tions for the present paper.

Let us note that the technique and methods in the present paper are not general-
izations of [5], but are new as we use the “rigidity” provided by the appearance of
the spectral parameters in the context of quantum affine algebras. This allows us to
construct the interpolating (g, t)-characters (which have a priori no clear analogues in
finite types). Another difference is that instead of a projection from a weight lattice
to the dual weight lattice, we introduce interpolating maps «(q,t), 3(q,t) in the char-
acters. These maps “kill” some of the terms when we specialize to the Langlands dual
situation. Thus we obtain a much finer form of duality in the affine case than in the
finite-dimensional case.

The paper is organized as follows: in Section 2 we recall the Langlands duality for
quantum groups of finite type from [5]. Then we state consequences of the results of the
present paper in terms of the ordinary characters (Theorem 2.3). In Section 3 we give
a general conjecture about the duality at the level of g-characters. We state and start
proving the main result of the present paper (Theorem 3.11) in the double-laced cases;
namely, that the Kirillov—Reshetikhin modules and their irreducible tensor products
satisfy the Langlands duality. The end of the proof uses results of Section 4 where
interpolating (g, t)-characters are constructed in a systematic way (Theorem 4.4). The
triple-laced is treated in Section 5 (Theorem 5.4 and Theorem 5.5) to complete the
picture. In Section 6, we describe a reverse Langlands duality from twisted quantum
affine algebras to untwisted quantum algebras and we prove analogous results for this
duality (Theorem 6.8 and Theorem 6.9).

2. DUALITY FOR THE ORDINARY CHARACTERS

Although most of the results of the present paper involve g-characters, some conse-
quences of our results may be stated purely in terms of the ordinary characters. We
explain these results in this Section as well as some motivations and results from [5].

Let g be a finite-dimensional simple Lie algebra and Uy (g) the corresponding quantum
group (see, e.g., [3]). We denote r = max;er(r;), where I is the set of vertices of the
Dynkin diagram of g and the r; are the corresponding labels. This is the lacing number
of g (note that it was denoted by 7V in [7, 8]). In some particular cases, we will not make
the choice min;ec7(r;) = 1 (that is we multiply the standard labels by a coefficient).

The Cartan matrix of g will be denoted by C' = (Cj;)ijcr. By definition, the
Langlands dual Lie algebra “g has the Cartan matrix C*, the transpose of the Cartan
matrix C of g.

Let

P:ZZ%

el
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be the weight lattice of g and P™ C P the set of dominant weights. For i € I let
r/ =1+ r —r; and consider the sublattice

(1) P'=> r/Zw; CP.
i€l
Let
Pl =Y "7,
i€l

be the weight lattice of “g. Consider the map II : P — P’ defined by
) =D M) (r)) ™ o
el
if A € P" and II(\) = 0, otherwise. Clearly, II is surjective.

Let Repg be the Grothendieck ring of finite-dimensional representations of g. We
have the character homomorphism

X :Repg — Z[P] = Z[yiil],

where y; = e“i. It sends an irreducible representation L(A) of g with highest weight
A € PT to its character, which we will denote by x(\). We denote the character
homomorphism for g by x”. We use the obvious partial ordering < on polynomials.
It was proved in [5] that for any A € P*, II(x()\)) is in the image of x”. Moreover, we
have the following:

Theorem 2.1. [5] For any A € P+, TI(x(\)) = x*(II(N)).

Let g,t € C* be such that ¢Z Nt%Z = {1}. Let U,(g) be an untwisted quantum
affine algebra which is not Langlands self-dual. Let V be a simple finite-dimensional
representation of U,(g) which is of highest weight A in P’ when viewed as a Ugy(g)-
module. We conjecture the following.

Conjecture 2.2. There exists an irreducible representation V¥ of Uy(g*) of highest
weight TI(A\) such that TI(x(V)) = x*(V1).

Note that the Langlands dual representation V¥ is not necessarily unique. Unique-
ness statements will be discussed later in a more precise form of Langlands duality.
As a consequence of the results of the present paper, we will prove the following.

Theorem 2.3. The statement of Conjecture 2.2 is satisfied for any Kirillov—Reshetikhin
module V' over Uy(g), with the Langlands dual representation VL a Kirillov-Reshetikhin
module over Uy(Lg).

Note also that in contrast to [5], we use t and not —t for the quantization parameter
of the Langlands dual quantum algebra. This is just a consequence of a different choice
of normalization made in the present paper.

The following conjecture of [5] has been proved by K. McGerty in [20]% for any
A € Pt TI(x(\)) is the character of an actual (not only virtual) representation of “g.
Therefore it is natural to make the following.

2After this paper was published, we learned from C. Lecouvey that the statement of this conjecture
was proved earlier by P. Littelmann in [19].
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Conjecture 2.4. II(x(L)) is the character of a representation of Uy(Lg).

Again, this representation of U(“g) is not unique, but it is unique as a U;(Lg)-
module. However it is not necessarily simple as a U;(“g)-module. As an example, for
a b-dimensional fundamental representation of Uq(Cél)), the Langlands dual represen-

tation decomposes into a sum of a 4-dimensional fundamental representation and the
trivial representation of Ut(A:(f)) (see the corresponding g-characters in Section 3.5).

3. DOUBLE-LACED CASES

In this section we suppose that the lacing number r is equal to 2 (the case r = 3 will
be treated in Section 5). We will exclude from consideration the Langlands self-dual
quantum affine Lie algebras (affinizations of simply-laced ones and those Agi))

We have I = I U Iy where I, = {i € I|r; = k}. For i,j € I, we denote i ~ j
if C;; < 0. We can choose ¢ : I — {1,0} such that i ~ j = ¢(i) + ¢(j) = 1 and
Ci,j =-2= qb(l) = 1.

3.1. Reminder on ¢-characters and their twisted analogues. We recall the no-
tion of g-characters first introduced in [8] for untwisted quantum affine algebras (see
[2] for a recent survey) and generalized in [13] to the twisted cases.

The g-character homomorphism [8] is an injective ring morphism

Xq : Rep(Uq(ﬁ)> — Y= Z[Yilha,aeﬂ

(without loss of generality, we restrict ourselves to the tensor subcategory of finite-
dimensional representations whose g-characters are in ),;). By removing the spectral
parameter a, that is to say by replacing each Y; , by y;, we recover the usual character
map for the U,(g)-module obtained by restriction of U, (g)-module. In particular, each
monomial has a weight which is an element of P. For i € I, let ¢; = ¢"".

Theorem 3.1. [6] We have

Im(Xq) = m ﬁi,qa
i€l
+1 —1
where R; 4 = Z[Yj,a Yia(1+ Ai,aqi)]j;ﬁi,aEqZ and
o : -1 1oyl
Ao =Y Yian < [T Yidx IT Vi Vi
jGI,Cj,Z':*l jGI,Cj,i:*Q

A monomial in ), is called dominant if it is a product of positive powers of the Y; 4
(for i € I,a € ¢%). A simple U,(g)-module is characterized by the highest monomial
(in the sense of its weight) of its g-character (this is equivalent to the data of the
Drinfeld polynomials, see [3]). This monomial is dominant. Any element of Im(x,)
is characterized by the list of its dominant monomials. A U,(g)-module is said to be
affine-minuscule if its g-character has a unique dominant monomial.

Definition 3.2. A Kirillov—Reshetikhin (KR) module of Uy(g) is a simple module with
the highest monomial of the form Y, 4 x YZ a2

. 2 -
1,aq; ,aq;



6 EDWARD FRENKEL AND DAVID HERNANDEZ

We have the following result which is due to H. Nakajima [21, 22] in the simply-laced
case and [11] in general (note that for £k = 1 this was proved in [6] in the untwisted
case).

Theorem 3.3. The KR modules of Uy(g) are affine-minuscule.

Now let us look at the Langlands dual situation, i.e., finite-dimensional representa-
tions of the twisted quantum affine algebra Uy (1g). We set € = /™2 and I) = I, Iy =
L.

The twisted t-character morphism [13] is an injective ring homomorphism (we work
in a subcategory defined as in the untwisted case)

xL: Rep(*U(g)) — VL = Z[Z;t:T;/]aEEZtZ,iEI'

Theorem 3.4. [13] We have

i€l
where
L +1 -1
R =147 Z ~(1+4+ B i o Tyl
1t [ j,arjv’ it ( i,(at)rzv )]];ﬁz,aEe t
and
B — Zi,at2Zz’,at*2 X iji\je[; Zj,a X HjNZ'Ue]lv Ha/&ztz‘(a/)zza Zj,a' ifi € 12 s
i,a — ' —1 -1 - v
Zz,atZi,at—l X Hj~i|je]£/ Zj,a2 X Hj~i|je]¥ Zj@ ifie Iy.

Note that a special definition should be used [13] for the B; , in the case of type Agi),
but this case is not considered here.

We have the notions of dominant monomial, affine-minuscule module and KR module
as in the untwisted case. Any element of Im(xF) is again characterized by its dominant
monomials and we have

Theorem 3.5. [13] The KR modules of Uy(“g) are affine-minuscule.

3.2. The interpolating (q,t)-character ring. We first treat study the duality from
untwisted quantum affine algebras to twisted quantum affine algebras. The reverse
Langlands duality will be treated later.

We introduce the interpolating (g, t)-characters, which interpolate between g-characters
of an untwisted quantum affine algebra and the twisted t-characters of its Langlands
dual. To do it, we first need to define an interpolating ring for the target rings of ¢g-and
t-character homomorphisms.

We also need the function «(q,t) such that a(q,1) = 1 and a(e, t) = 0 defined in
[7, 8] (see also [5] for an elementary natural way to introduce it in the framework of
current algebras) by the formula

(g+g¢ gt —g't7")

t) =
a(Qa ) q2t _ q72t71

Let C = ¢*t*. Consider the ring

Vot = Z[W-il aYE! @]z‘el,aec - Z[Y',iala a]ie[,ae&

i,a ) i,a ) [
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Yia if ¢ € I,

Yiag1Yiaq ifi€1q.

For a € C, we will use the following identification for i € I and j € Is:

(2) YiaYi—a = Z; g2(—1)00) and Y, = Zja(~1)20)-

where W; , = {

We then have surjective specialization maps, respectively, at ¢t =1 and ¢ = ¢,
Hy: Vo — Z[}/iil]iel,aEqZ =Yy
i Vg — Z[Zillriv]iel,aGEZtZ = ytL'
We have the ideals
Ker(Ily) = ((a = 1), Wiq = Wiat), a(Yia — Yiat))ieraec,
Ker(Il;) = (a, (Wi,aq - Wz‘,ae)>iel,aec-
Then we have the following:
Lemma 3.6. The ideal Ker(Il;) N Ker(Il;) is generated by the elements
ala—1), O‘(Y;J,a - Yi,at) , (o= 1)(Wi,aq - Wi,aE) , (Wi,a - Wi,at)(Wj,bq - Wj,bs)a
fori,jel, abeC.
Proof:  First, the ideal J generated by these elements is clearly included the intersection

Ker(II;) N Ker(II;) and so we work modulo J. We denote by = the equality modulo J.
Now consider an element y in the intersection. It is of the form

X = (a—1)x(g,t) + Z (Wiger = Wi grer+1)Xi,r (g5 1)
iellrer

= (a—1)x(et) + Z(Wi,qlﬂ = Wi gur+1)Xi 0.0 (€, 1)
i,l,r
If we evaluate at ¢ = €, we get
x(e,t) = Z(Wi,elt’“ - I/Vi,elt”‘l)Xi,l,T(e? t),
il,r
and so
X = Z(Wi,qltr - I/Vz’,qltrJrl + (a - 1)(Wi,elﬂ - Wi,eltTJrl))Xi,l,T(e? t)
il,r

AS (a — 1)(Wi,€ltr — Wi’eltr-s-l) = _(Wi,qlﬂ‘ — Wi,qltr+1)? we get

Z(Wi,qltr - W’i,qltr""l - (Wi,qltr - Wi,qlt’"+1))Xi,l,T(67t) = 0
i,l,r
This concludes the proof. O
We will work in the ring

)7%,5 = Y,/ (Ker(Il,) N Ker(II;)).

2

Note that Y, has zero divisors as o = o in Vg .



8 EDWARD FRENKEL AND DAVID HERNANDEZ

By a monomial in jivqt we will understand an element m of the form (A + pa)M,
where A\, 4 € Z and M is a monomial in the YjEl Note that a monomial may be written
in various way as for example Y , = aYj o and (1-a)Y; 4 = (1-)Y; 4. A monomial
is said to be i-dominant if it can be written by using only the «, Y; , and Yil where
j # i. Let B; be the set of i-dominant monomials and for J C I, let By = OJGJB
Finally, B = By is the set of dominant monomials.

3.3. Subalgebras of JNJq,t.
Definition 3.7. Fori € I and a € C we define
T -1 1 —1
Ai,a = }/i,a(qit)—li/i,aqit X H Y},a X H }/j aq— 11/] aq’
jEI,iji:—l jEI,C]‘,i:—

Note that the definition of fTw is not symmetric in q,t. For i € Ir,a € C we have
Ali; € Yy, and for i € I we have OéAi: € Yyt and (AZ o 1Az aq) £l ¢ YVy,t- But the
specialization maps II,, II; can be applied to any Ai,a and we have the following;:
Lemma 3.8. We have Hq(gm) = Ain,a) fori€l,aeC.

We have T1,((A; ag- 1Ai’aq)) = B; (11,(a))2(~1)¢ fori € Ii,a €C.

We have Ht(Aiya) = Bi7int(a)(71)¢>(i) forie l),aeC.

Proof: The first point is clear. N N
Let o' = II;(a). For i € Iy, the specialization of A; ,,-14;qq at ¢ = € is

(YZ —alt— 1Y ’t*1)<Yvi,a’thi,—a’t) X H (1/]"&/6}/3’_(1/6)71 X Y_ Y_

j,a’e” j,—a’e

Jjeli,jri jElz,j~i
=Z; @y Ziypecneo < 11 Ziecyen * 1 ZadZ; o
Jjel,j~i JEI j~i

Note that if there is j € I such that j ~ 4, by definition of ¢ we have ¢(j) = 0 and
¢(i) = 1. That is why there is no ¢ in the last factor of the product.

For i € I, the specialization of ;L-,a at g =€ is

—1 —1
Yvi,fa’t—lyg,—a’tx H Y',a/ X H ()/j,—a’e}/},a’s)

JE€l2,j~i jeli,jr~i
—1 —
= Zi7_a/t—1(_1)¢(i)Zi,_a/t(_l)qb(i) X H Z47a,( s % H Z
jelz,j~i JE€I,j~i
Note that if there is j € I such that j ~ i, by definition of ¢ we have ¢(j) = 1 and
¢(i) = 0. That is why there is no ¢ in the last factor of the product. ]

For i € I consider the subalgebra of Y, ;
'Qi,%t = Z[vviﬂ(l + OCA/@ . + Az_aq A’L at) aY; a(l + Az aqt) Wjialv Oéy;j(:l ) ]aeC,j?fi,
and for i € Iy
Rigr = ZYia(1+ Al 20)s Wil avE! acc,jti-

7 aq ] a’ ] a ?
Then we have the following:
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Lemma 3.9. Fori € I, we have Iy(Rig:) = Rig and (R q1) = R,
Proof: For ¢ € I, we have
Ig(Rigt) = Z[Yia(1 + Aj aq)? }/;i(zl]aEqZ,jyéi = Rig,

Ht(-ﬁi,q,t) = Z[Y;,aY;,—a<1+(Ai,—eatAi,eat)7 )7 (%,ay},—a)i17 Yk:t:al]aEeZtZ,jell—{i},kelg = ﬁil:t’
as by Lemma 3.8 we have

YiaYi—a(1+ (Ai—eatAicat) ) = Z; a2(—1)e (1 + BZ a2t2(— 1)¢<¢))~
For ¢ € I, we have
Hq(ﬁ’i,q,t) = Z[Yi a(l + Al iq )v }/;:Zl]aEqZ,jyéi - Ri,qy
Ht(ﬁ'i,q,ﬂ - Z[Yi,a(l + Ai_,iat)v (Yj,an,—a)il? Yk:t:zzl]aEeZtZ,jell,kEIQ—{i} - Rim

as by Lemma 3.8 we have
Yia(l+ Ai_,iat) = Zi,a(—l)"’(i) (1+ Bi_,czl(—l)¢<i)t)'

O
We use the same notation ;4 for the image of the subalgebras £; 4 in V. For
J C I we define R; = ﬂjejﬁj and we set & = &1 C V-

3.4. Main conjecture and main theorem. Let us define an analogue of P’ C P,
+1
yq Z[}/z a ]zelg,aeqz ® Z[(E anz ,aq 1) ]ie[l,aEqZ - yQ'

We consider 1I : Yy — y; the projection on J}é whose kernel is generated by mono-
mials not in y{].

Let M € y’ be a dominant monomial and V' the corresponding irreducible represen-
tation of Uy (g ) A representation VE of Uy (* ) is said to be Langlands dual to L(M) if
there is a dominant monomial M € yqt \ ayqt and y, € &N .MZ[AZ o> Oier,aec such
that

Ht()?q) = Xﬁ(VL) and Hq(iq) = Xq(v)-
Besides, we say that X, is an interpolating (q,t)-character of V.

A given representation V' may have different Langlands dual representations (for
example, obtained by a shift of the spectral parameter by ¢V, that is by replacing
each Zmriv by Zi, (atNyY in xF(V%)). Following [4, 15], we will call a representation
which cannot be factorized as a tensor product of non-trivial representations, a prime
representation.

Conjecture 3.10. Any irreducible representation V' of Uy(g) has a Langlands dual
representation VY. Moreover, if V is prime, VL is unique up to a shift of spectral
parameter.

If V' is not prime, the uniqueness statement does not necessarlly hold (see Remark
4.19). Conjecture 3.10 implies Conjecture 2.2 as the condition M e yq £\ ayqt implies
that the highest weight of V' is given by the highest weight of V. The following is the
main result of this paper.
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Theorem 3.11. Let V be a KR module over Uy(g) or an irreducible tensor product of
KR modules. Then V' has a Langlands dual representation. Moreover, the Langlands
dual representation of a KR module over U,(g) is a KR module over Uy (*g).

To prove this Theorem, we will use the affine-minuscule property of the KR modules.

3.5. Examples. Let us give some examples of interpolating (g, t)-characters which will
be useful in the following proofs.
First consider the type A; with » = 1. We choose ¢(1) = 0 and we have the following.

Y11Y1 p2 Y11Y1 02 AR
ll,q?’t ll,q‘"’

aYy 1Y} Y.V} 142

1,1 1,q42 1,1 1,¢% ,t
ll,qt qu

-1 -1 —1y -1 -1

Yl,q?tQYl,q“t2 YI,q?Yl,q4 Zl,t“

Here we use diagrammatic formulas for (interpolating) g-characters as defined in [8].
The left term in the interpolating g-character, and then we have the respective special-
izations at t =1 and g = €.

Consider the type A; with r = 2. We choose ¢(1) = 0 and we have the following.

Yi1 Yi1 Z11
il,qzt \Ll,q2 J/l,t
~1 -1 ~1
}/1,q4t2 Yl,q4 Zl,t2

Next, consider the type Ay with r = 1. We choose ¢(1) = 0, ¢(2) =1 and we have the
following.

Yi1Y) 2 211
1,43t
-1
a}/i71Y17q4t2Y2,q3t 1,62
2,q%t2
1,qt \
YL VLY, 8, Y aY Y} AR
1,262 T 1,¢42 7 2,¢°t 1 2,0t L1149 g5¢3 1,642,
2,q%t2
q %
YL Yo Yok 544
1,g2t2 2,qt 2,¢5t3 )
2,¢%t?
-1 -1 -1
Y27q3t3Y2,q5t3 ZQ,tG
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For the type As with r = 2, we choose ¢(1) =0, ¢(2) = 1 and we have the following,.

Yi1 Yia1 AR
17q2t 17q2 l17t

Yy L.Y. Y LY. AR/
1,g42 7 2,¢%t 1,¢47 2,6 1,t292:¢
2,q%t? 2,q* lzﬁ

-1

Yo g¢3 Yo g6 Zz,t3

The following example was considered in [7] (it is rewritten here in the language of
g-characters and twisted t-characters). The type is Bél) = él) and its Langlands dual
D:(f) = Agz)' We have ¢(1) =0, ¢(2) = 1. II; gives the g-character of a fundamental 5-
dimensional representation of Uq(Cél)) from [6] (see also [18]) and II; gives the following

interpolating (g, t)-character.

Yi1 Yi1 Z11
17q2t 17q2 17t
YL Yo Vs s Y LY, Y, 5 Z7L 7,
1,q4¢2 1 2,at 12,43 1,q4 244 2,¢ 1,422,
2,g*t2 2,¢*
aYs o Yok Yy, YL 1
2,qt 2,¢5t3 2,q 2,¢° 2t
2,q2t? 2,42
Yo L. VoL YV o YoLvoly, ZL 7,
2,¢3t3 7 2,¢5¢3 ~ 1,¢°t 2,37 2,¢5 1.q 2,4641,—t
1,q4t3 l,q4 1,—t3
-1 -1 -1
le,q6t4 Yl,q6 Zl,ft‘L

By [13] this is the twisted ¢-character of a fundamental 4-dimensional representation of

U, (AY).
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Let us give another example for this type.

Y'2’1Y27q2
2,¢%t
-1
O‘YQJYQ,q%?YLq%
1,¢5¢2
2,qt a
DR Tl (P Yo 1Yy 62V L
2,q2t2 7 2, ¢4t2 1 1,gt L 1,3t Q¥ 11t o642 1,q7t3
1,¢°¢2 24713
1,¢%t2 ? lQ,qt g
Yy 3 YL Y, LY 62V LY, aYs Y, L
1,g3t 41 ¢5¢3 2,q2t2412,¢8t2 11 g7y3 4 1,qt 2,149 o844
1,52 2,47t3
I 1,q3¢2 i 1 2,qt
YL YL Vs a2V 6 aY Lyl Y,
1,g5t37 1,¢7¢3 % 2,42 £ 2,¢%12 2,212 12 g8a T L,qt
2,q7t3
1,q3t2
aY LY, apY L
1,53 7 2,q%1% 4 2 ¢844
2,q5t3

Y2,_ql6 t4 Yl_qlg t4
Here we have to check that it is in the R, since a priori it is unclear that
aYo 1Yy oY hs + Yy 5 Yo oY b Vig + Yo 1Y, G4 aY, LYol Yig
q q q q q q
is in Ry 44. But if we subtract aYs (1 + Aiét)YQ’qstz(l + A;,;7t3)yqu17t3 € Ro 4.1, We get

-1 —1 -1
(1 - O‘)YQ?q%zYZ,qﬁt?Y1’q7t3Yl,qt = (1 - O‘)Y17q7t3yi,qt € J?i2,q,t-
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I1, gives the g-character of a 11-dimensional KR module over Uq(Bél) ) (it follows from
[11] that the formula of [17, 16] is satisfied) and II; gives the following.

Za 1
2,—t2
-1
ZQ7_t4 Zl fetZI,et
1,et?
1,—et?
-1 -1
Zl,etzl’ietl’) Zl etSZl,—et
1,€t2
1,—et?
-1 -1
Zl,76t3Z1,et3227—t4
2,—t6
-1
Z2,7t8

By [13] this is the twisted ¢-character of a fundamental 6-dimensional representation of
U (AD).

4. INTERPOLATING (g, t)-CHARACTERS

In this section we construct interpolating (g, t)-characters in a systematic way: we
prove the existence and construct sums in £ with a unique dominant monomial which
can be seen as interpolating (g,t)-characters of virtual representations (Theorem 4.4).
Their existence implies Conjecture 3.10 in many cases. We will prove in Section 4.3
that Theorem 4.4 implies Theorem 3.11.

Let us explain the main ideas of the construction of interpolating (g, t)-characters.
In [9, Section 5] a process is given to construct some deformations of g-characters.
Although the notion of “interpolating (g, t)-characters” considered in the present paper
is completely different from that of the “g,¢-characters” in [9], we use an analogous
process (note that the “g,t-characters” of [9] were first introduced in [21] for simply-
laced affine quantum algebras by a different method). In fact, the process of [9] may be
seen as a general process to produce t-deformations under certain conditions. It is based
on an algorithm which is analogous to the Frenkel-Mukhin algorithm for g-characters
[6].

Let us give the main points of the construction. We define a certain property P(n)
depending on the rank n of the Lie algebra which means the existence of interpolating
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(g, t)-characters in K. To prove it by induction on n, assuming the existence for the fun-
damental representations, we first construct some elements E(m) which are analogues
of interpolating (g, t)-characters for standard modules (tensor products of fundamental
representations). Then we have three additional steps:

Step 1: we prove P(1) and P(2) using a more precise property Q(n) such that Q(n)
implies P(n). The property Q(n) has the following advantage: it can be checked by
computation in elementary cases n = 1, 2.

Step 2: we give some consequences of P(n) which will be used in the proof of P(r)
(r >n).

Step 3 we prove P(n) (n > 3) assuming that P(r), r < n are true. We give an
algorithm to construct explicitly the interpolating (g, t)-characters by using ideas of
[9]. As we do not know a priori that the algorithm is well-defined in the general case,
we have to show that it never fails. This is a consequence of P(2) as it suffices to
check the compatibility conditions for pairs of nodes of the Dynkin diagram. Finally,
we prove that the algorithm stops, that is to say it gives a finite sum which makes sense
in K.

4.1. Statement. In this section we prove, for m € B, the existence of an element
F(m) € R such that m is the unique dominant monomial of F(m). This will imply
Theorem 3.11. N

We have a partial ordering on the monomials of Y, ;:

m<m' e m(m) e Z[ggiya]iel,aec-

Lemma 4.1. A non-zero x in R g has at least one i-dominant monomial.

Proof: Take a monomial m in y maximal for the partial ordering <. It occurs in a
product of generators of £; 4+, whose product M of highest monomials are greater or
equal to m for the partial ordering, that is Mm ™! is a product of v(M) factors Z;al
Let N be the maximal v(M). We suppose that we have written x so that N is minimal.
If N =0, one of the products M is equal to m, so m is i-dominant. Otherwise, N > 0.
The products M such that v(M) = N should cancel as m is maximal in x. But the
only case where generators of &; ,; have the same highest monomial is when i € I; as
the dominant monomial aY; ,Y; 442 is the highest monomial of

aY;.(1+ A

ijc}qt)ayvi,aq2 (1 + A;iq3t)
and of

aYiaY a2 (1+ aﬁ;qu,t +A

But the difference of the two is aYi,aYi,ang;;qt =« ij’ Y aq in ﬁa,t. This monomial is
i-dominant in 8&; 4+ and strictly lower than aY; .Y qq2- So we can rewrite the expression
in such a way that the new maximum of the v(M) is strictly lower than N. This is a
contradiction. O
For J C I, let g; be the semi-simple Lie algebra of Cartan Matrix (C; ;) jes and
U,(g)s the associated quantum affine algebra with coefficient (r;)ic .
As above, by considering a maximal monomial for the partial ordering, we get the

following:

—1 1-1
i,aq3tA’i,aqt) .
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Lemma 4.2. A non-zero element of K5 has at least one J-dominant monomial.

For a monomial m there is a finite number of monomial m’ € mZ[A; |,cc which are

i-dominant. Let m = [[;c; ,ec Y,;:Z’”(m) and let C(m) = {a € C|Fi € I,u;q(m) # 0}.
Then we set

D(m) = {mA;, -~ A7l [N >0,i; € I,a;€Cm)d" ¢V}

i1,a1 ina
Note that D(m) is countable, any m’ € D(m) satisfies m’ < m and D(m’) C D(m).
Finally, set

D(m) = OreD(m)Zm'’.
We prove the following result as in [9, Lemma 3.14].
Lemma 4.3. For any monomial m, the set D(m) N B is finite.

Let us state the main result of this section.

Theorem 4.4. For all n > 1 we have the following property P(n): for all semi-simple
Lie algebras g of rank rk(g) = n and for all m € B there is a unique F(m) € RN D(m)
such that m is the unique dominant monomial of F(m).

Remark 4.5. If m is of the form am/, then the existence of F/(m) follows from the anal-
ogous result for the q-characters. Indeed, in [9] an algorithm inspired by the Frenkel-
Mukhin algorithm [6] was proposed (as well as its t-deformation in the sense of [9]):
if it is well-defined, then for a dominant monomial m € Z[Y; grlicrrez it gives F(m)
in the ring of q-character such that m is the unique dominant monomial of F(m) (see
also [10]). As a consequence, it suffices to prove the result when m is a product of the
Wia.

4.2. Proof of Theorem 4.4. First note that for n = 1 we have already proved this
result. For a general n, the uniqueness follows from lemma 4.2.
First, we define a new property Q(n).

Definition 4.6. For n > 1 denote by Q(n) the property “for all semi-simple Lie alge-
bras g of rank n, for all i € I there is a unique F(W;1) € RN D(W;1) such that Wi
is the unique dominant monomial of F(W;1).”

4.2.1. Construction of the E(m). We suppose that for i € I, there is F(W;;) €
AN l~)(Wzl) such that W;; is the unique dominant monomial of F/(W; 1) (that is the
property Q(n) is satisfied).

For a € C consider s, : Y, — Yy the algebra morphism such that sq(Yjp) = Yj.ap-
We can define for m =[],/ .cc sz;“ the element
Em)= [ (sa(F(Wi))“= € &N( [ (D(Wia))¥s+) C &N D(m).

icl,acC icl,acC
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4.2.2. Step 1. First, we prove that Q(n) implies P(n).
Lemma 4.7. Forn > 1, property Q(n) implies property P(n).

Proof: 'We suppose that Q(n) is true. In particular, we can construct E(m) € 8ND(m)
for m € B as above. Let us prove P(n). Let m € B. The uniqueness of F(m) follows
from Lemma 4.2. Let my = m > mp_1 > --- > my be the dominant monomials of
D(m) with a total ordering compatible with the partial ordering (it follows from Lemma
4.3 that D(m)N B is finite). Let us prove by induction on [ the existence of F'(m;). The
unique dominant monomial of D(m;) is my, so F(my) = E(my) € D(my). In general,
let A\i,--- , \_1 € Z be the coefficient of the dominant monomials mq,---,m;_1 in
E(my). We put
F(my) = E(m) — Y MF(m,).
r=1.--1—1

It follows from the construction that F(m) € D(m) because for m’ € D(m) we have
E(m') € D(m’) C D(m). O
Corollary 4.8. The properties Q(1), Q(2), and hence P(1), P(2), are true.

This allow us to start our induction in the proof of Theorem 4.4.

Proof: For n = 1 we have two cases Ay with r = 1 or r = 2. The explicit formulas
have been given above. For n = 2 we have five cases A1 x A; with r = 1,2, Ay with
r =1,2), Bs. The cases A1 X A; are a direct consequence of the case n = 1. For As,
i = 1,2 are symmetric so it suffices to give the formulas for i = 1 as we did above. We
also gave the formulas for B above. O

4.2.3. Step 2. Let be n > 1. We suppose in this section that P(n) is proved. We give
some consequences of P(n) which will be used in the proof of P(r) (r > n).
From Lemma 4.3, an element of ), ; has a finite number of dominant monomials.

Proposition 4.9. We suppose 7k(g) = n. We have

A= @meBZF(m).

Proof: Let x € K. Let my,--- ,mp € B the dominant monomials occurring in y and

A, -+, AL € Z their coefficients. It follows from Lemma 4.2 that x = > NF(my).
I=1---L

O

Corollary 4.10. We suppose |I| > n and let J C I such that |J| = n. For m € By,
there is a unique Fy(m) € Ky such that m is the unique J-dominant monomial of

F;(m). Moreover, Fy(m) € D(m) and we have
Ry = P ZF;(m).
meBy
Proof:  The uniqueness of F(m) follows from lemma 4.2. Let us write m = m m’ where
my = ]] Yil;i’l(m) € Bj. In particular, Proposition 4.9 with the algebra U,(g) of

)

1€ JIEZ
rank n gives mjyx, where x is a polynomial in the variable Ai_l1 for Uy(g)s. It suffices
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to put Fy(m) = mv;(x), where vy is the ring morphism which sends a variable A; ;
for U,(g)s to the corresponding variable for U,(g). The last assertion is proved as in
Proposition 4.9. U

4.2.4. Step 3. We explain why properties P(r) (r < n) imply P(n). In particular, we
define an algorithm which constructs explicitly the F'(m) by using ideas of [9].

We prove the property P(n) by induction on n > 1. We have proved P(1) and P(2).
Let n > 3 and suppose that P(r) is proved for r < n.

Let mg € B and mg, m1, ma,--- the countable set D(mg) with indexes such that
m; > mj implies j' > j.

For J ¢ I and m € By, it follows from P(r) and corollary 4.10 that there is a unique
Fs(m) € D(m) N Ry such that m is the unique J-dominant monomial of Fy(m) and
that &) = @D,,cp, ZFs(m). If m ¢ B, we denote Fy(m) = 0. For x € j}%t, X|m € Z
is the coefficient of m’ in .

We consider the following inductive definition of the sequences (s(m;))y>o € Z,
(ss(m))rs0 € 2 (J G 1),

S(mO) =1, SJ(mO) =0,

and forr > 1, J C I,

sa(mp) =Y (s(mpr) = s,5(mp) [E(mp)]im,

r’<r

(my) sj(m,) if m, ¢ By,
s(m,) =
0 if m, € B.

The definition of s; means that we add the various contributions of the m,. where
r’ < r with coefficient (s(m,) — sj(m,s)), so that a contribution is not counted twice.
For the definition of s(m,), there is something to be proved, that it that the various
sj(m,.) for m, ¢ B coincide.

We prove that the algorithm defines sequences in a unique way. We see that if
s(my), sj(m,) are defined for r < R, then so are sj(mpy;1) for J C I. Moreover,
sj(mpg) imposes the value of s(mpy1), and by induction the uniqueness is clear. We
say that the algorithm is well-defined to step R if there exist s(m,), sj(m,) such that
the formulas of the algorithm are satisfied for » < R.

Lemma 4.11. The algorithm is well-defined to step r if and only if
VI, Jo G LYY <7, (mp & By, and my & By, = sy, (my) = s5,(my)).

Proof: If for ' < r the s(m,), sj(m,) are well-defined, so is sy(m,). If m, € B,

s(my,) = 0 is well-defined. If m, ¢ B, it is well-defined if and only if {s;(m,)|m, ¢ B}

has a unique element. O
If the algorithm is well-defined to step r, then for J & I we set

pi(my) = s(my) = sy(my) , X5 =Y ps(me)Fy(my) € Ry,

We prove as in [9, Lemma 5.21] (except that the coefficients are in Z and not in
Z[t*1]) the following:
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Lemma 4.12. If the algorithm is well-defined to step r, for J C I we have

X7 € (Zs(mw)mw) + sy(mpp1)mey1 + Z Zmy.
r'<r r'>r+1

For Jy C Jo C I, we have

Xo = Xy + DA F ()

r'>r
where A\ € Z. In particular, if myy1 ¢ By,, we have s, (My41) = Sz, (Myt1).
We prove as in [9, Lemma 5.22] the following.
Lemma 4.13. The algorithm never fails.

Now we aim at proving that the algorithm stops. We will use the following notion

[6]:

Definition 4.14. A non-trivial m = Hie],ae(CX Y;;’“(m) 1s said to be right-negative if
for all a € C*,j € I we have (uj 4410 (M) # 0= U 40ra (M) < 0) where

Lo = maz{l € Z|3i € I, u; 4.(m) # 0}.

D(m) is graded by finite-dimensional subspaces such that the degree of the monomial

m' = mAi:}al e ZZNI ay 1 D(m) is N. Then we can consider the corresponding graded

completion D(m) of D(m). By an infinite sum in Y, We mean an element in such a
completion. We have analogous definitions for infinite sums in ), and in ytL

Lemma 4.15. Let S be an infinite sum in Y, (resp. in Y& ) which is an infinite sum of

elements in R; 4 (resp. in RiL’t) foranyi € I. If S contains a finite number of dominant

monomials, then S is a finite sum in Y, (resp. in YL).

Proof:  We prove the result for ), (the proof is completely analogous for ytL by us-
ing results in [13]). Let my,---,mz be the dominant monomials occurring in S and
A1, -+, Ar their multiplicity. For m a dominant monomial, there is F,(m) € Im(xq)
with a unique dominant monomial m (see the construction in [9, Section 5.1] by using
g-characters which are finite sums). Then

S'=8— > NFy(m)

1<I<L

has no dominant monomial and for any ¢ € I is an infinite sum of elements in £&; 4. So if
S’ # 0, a maximal monomial occurring in S’ is dominant, contradiction. So S’ =0. O
Now we can prove the following:

Lemma 4.16. The algorithm stops and x = 3. s(m,)m, € RN D(mg). Moreover, the
r>0
only dominant monomaal in x is mg.

Proof: Consider the (a priori, non necessarily finite) sum  in D(mg). We prove as in
[9, Lemma 5.23] that for each ¢ € I, x is an infinite sum of elements in &; 4 ;.
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There in N € Z such that mg € Z[}/;’qrtl]iej7r7l§]\[. By construction with the algo-

rithm, only a finite number of monomials of F(mg) are in moZ[A;qlr tl]ré N ori<N- Let

us consider another monomials m’ ¢ Z[Ai_qlr alr<N or 1<n occurring in x. The special-

izations II;(m’) and II;(m') are right-negative. Indeed for any 71,79 > N and j € I,

the specializations of moA;;T1 4> are right-negative. Moreover the specializations of the

/Tl_al are right-negative, and a product of right-negative monomials is right-negative [6].
Since a right-negative monomial is not dominant, we can conclude that the specializa-
tions of m’ are not dominant. So II;(x) and II;(x) have a finite number of dominant
monomials. So these are finite sums by Lemma 4.15. As 5),” is obtained by a quotient
by Ker(II;) N Ker(Il;), x is a finite sum. O

This lemma implies the following.
Corollary 4.17. Forn > 3, if the P(r) (r < n) are true, then P(n) is true.

In particular, Theorem 4.4 is proved by induction on n.

4.3. Proof of Theorem 3.11. Let us explain how Theorem 4.4 implies Theorem 3.11.
First consider the dominant interpolating monomial

m = Wi,aWi,at2q4 v Wi,a(t2q4)k—1 .

The specializations by II,, II; of m correspond to the highest monomials of KR modules
respectively over U, (g) and U;(Lg). By construction, the monomials m’ occurring in
F(m) —m are of the form

r_ -1 T-1 T-1 - -
m = (mAi,aq?kt)Aihal ---AiN,aN where i1,--- ,iy € [ and a1, -+ ,ay € C.

As a consequence, II,(m') and II;(m’) are right-negative. Indeed, the specialization of
mA;;q%,lt and of the A;; are right-negative, and a product of right-negative monomi-

als is right-negative [6]. Since a right-negative monomial is not dominant, the special-
izations of F'(m) are affine-minuscule. By Theorem 3.3 and Theorem 3.5, this completes
the proof of the first statement of Theorem 3.11 for KR modules.

Now we have the following compatibility property with tensor products.

Proposition 4.18. Let Vi and V3 be two simple representations of Uq(g) with respective
Langlands dual representations Vi¥ and ViF. If Vi @ Vs is simple, then V¥ @ VM is a
Langlands dual representation to Vi ® V.

Proof: For x1 and x2 interpolating (g,t)-characters respectively of Vi and Vb, the
product xi1x2 is clearly an interpolating (g,t)-character of V; ® V2 as K is a subring
of ;)N}q,t and Il is a ring morphism. We can conclude for the last point as 1I; is a ring
morphism. O

According to the above discussion, this completes the proof of the first statement of
Theorem 3.11.

Remark 4.19. If V¥ and V& are non trivial, then the uniqueness statement does not
hold for Vi @ Va: by shifting the spectral parameter in x1 by t where N # 1 without
changing x2, we get another Langlands dual representation which can not obtained from
VIE® VL by a shift of spectral parameter.
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Now consider a KR module V' of highest monomial W; oW g4 - - - W; g(ga)k-
pose that we have a Langlands dual representation V' which is not a KR module
and consider a corresponding interpolating (g, t)-character x. Let M be the highest
monomial of x. Then there are b # b such that W;;, W,y occur in M but Wi pgte2,

W, g4z do not occur in M. Suppose that r; = 1 (resp. 7; = 2). As a consequence,

1. Sup-

MAz_bq3tAz blqt and M AT} Ve by bl,qt (resp. MAT! b2t and M AT} Ve »,) occur in x and have
distinct image by H But by [11, Lemma 5. 5] ¢(V) contains a unique monomial of

the form I, (M)A; A o (resp. II (M)A;;,) This contradicts II;(x) = xq(V).

4.4. Additional comments. Note that it is easy to construct interpolating (g, t)-
characters of non-simple representations by using tensor products of KR modules which
are not simple, by the same method as in Proposition 4.18. More interestingly, to
illustrate Conjecture 3.10, let us give an example of a simple non affine-minuscule
module which satisfies the Langlands duality. Consider the Uq(C’él) )-module V' =
L(Ylezqs Y5 ,7). Note that L(Y21Y5 2Y7 ,7)®@L(Y] 47) is simple as it is affine-minuscule.
So by [12, Lemma 4.10}, V' ~ L(Y1,1Y5 ;5Y5 47) ® L(Y1,1). Moreover

Yo L(Y1) ® LYy Y1) = Xa(L(Yar) ® L(Yar)) + Xg(L(Y11 Y Ya 7).
has they have the same multiplicity 1 on the dominant monomials. So

dim(L (Y5 45Y5 47)) = 55 — 16 = 39 and dim(V) = 39 x 5 = 195.

Now consider the Ut(AgQ)) simple module V¥ = L(Zl271227t6). In the same way, by [14
Proposition 4.7], we have V¥ ~ L(Z11Z46) ® L(Z1,1), and as

X7 (L(211) @ L(Za6)) = Xi (L(Z1125,4)) — X7 (L(Z1,-2)),

we get dim(L(Z1,1Z946)) = 24 — 4 = 20 and dim(V*) = 20 x 4 = 80. As for their
dimension above, it is easy to compute the g-character (resp. twisted ¢-character) of V'
(resp. V1), and so to check that V satisfies the Langlands duality with the Langlands
dual module V*. We do not list the 195 monomial of the interpolating (g, t)-character,
but the 80 monomials which do not have a in their coefficient. It suffices to multiply
one of the 4 monomials of the sum

-1 1 1
Via+ Y apYouYogs + Y, 55y 5n Y120 +Y 6t4

by one the following 20 monomials. We use the notation i, = Y; , (analog notation will
also be used in the following).

1,2 5t32 743,111 6t41 8t427715279£5, 174192@2 342 5t32q7t3 111q6t4 1;1121562;711552(]11155,
11 10t61 sy, 1 4t21 6141 8142q1243,2 7t52 nss 141 10t61112t62q9t52qut5, 1;&21;%&62%2(1%1(1%4,

1 —
1q4t21 641 12t62‘1t2 32 7t52q11t5 1 4t21 mtﬁl 12t62qt2 3124945241145,

1 o—1 — — 1 -1 o—1
Loz Tgoe Lgsea 2t 2 2orss 2 o0 112 nﬂz g gz L ibe 2t 2ona Lgsea

1 1 o— 1 1 -1 o—1
]. 2t21 6t41 12t62 3t32 5t32 7t52 11t5,]. 2qt2 5t2 11t72 13t7,1q2t21 10t61 12t62 3t32 5t32 5)1552(111#57

q4t2
1 o1 1 11— - 1 - 4 1
1q2t22q3t32q5t32q11t72 13479 1q6t41 101361 8¢ 1(161541 10t61 12t62 9t52 1146, 1 6t42 111372 1347+
Nakajima [21] has computed the g-characters of s1mple modules from those of stan-
dard modules (tensor products of fundamental representations) using quiver varieties.
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His results are not available for non-simply laced untwisted quantum affine algebras,
but the second author has conjectured [9] that analogous result do hold in this case.
The result on tensor products in Proposition 4.18 is an indication of the compatibility
of the two conjectures.

4.5. Example. We give an example of an interpolating (g, t)-character that we get for
a Lie algebra or rank strictly greater than 2 by the process described in the proof.

Consider U,(C{") with ¢(1) = ¢(3) = 0, $(2) = 1.

Y351
3,¢%t
YL Ye Yy
3,q42 1 2,qt 1 2,¢5¢
2,412
-1
(XY17q4t2 Y27th2,q5t2
1,q5t3
2,¢°t? \
Yy 22Yy LYo L Y] e, 2y LY
3,g212 49 g343 19 o502 11,42 11,4212 1,45¢4 12,0t
1,¢%t3
3,q4t3 2,q2t2
Y, LY e, Vs 2eY, LY LY,
3,q6t4 1 1,g42 11,242 QX3 q2e2 Xy 5430 644 11,q2¢2
1,q5¢3 Lg3t3
3,¢%t3
QY L YY) 20 Y sgs Yy 22 5 V!
3,q6t4 7 1,¢6¢4 " 1,4t 1 2,¢° 3,q°t% % 1 644 1,q4t4
1,q3t3
2,¢5t* 3,q%t3
2 -1 -1 -1 -1
« Yl,q2t21/27q7t4 Y37q6t4Y2,q3t3Y2,q5t3Yl7q6t4Y17q4t4
1,¢3t3 i
2,qbt4
Yy 33Y, L YL
2,q°t> 72 q7T5 T 1,q414
2,q*t4
—1 -1
Y27q5t5Y27q7t5Y3,q4t4
3,¢5t°
-1
Y3,q8t6
The specialization at ¢ = 1 gives the g¢-character of a 14-dimensional fundamental

representation of Uq(Cél)) from [6] (see also [18]). The specialization at ¢ = € gives the
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twisted ¢-character of a 8-dimensional fundamental representation of Ut(DQQ)) [13].

Z3.1

1
3,242,

3,—

1,t8

1
Z3 —t2Z1 t8

3,—t3

-1
Z37—t4Z2 t621 8

2,48

-1
Z2 2510Z3,1f4

3,t°

ZS 6

5. TRIPLE-LACED CASE

Now we suppose that » = 3, that is to say we consider Uq(G(Ql)) and its Langlands

dual Ut(Df)). The results and their proofs are completely analogous to the case r = 2,
except that we have to change some definitions and formulas and we have to check the
existence of interpolating (g, t)-characters in some examples as we did for r = 2.

5.1. Definitions of interpolating structures. We set ¢ = ¢/™/3. For the Dynkin
diagram of G2 we use the convention r1 = 3 and o = 1. We have 'rlv =1 and rg/ =3.

For the g-characters of Uq(G(l)) we have

— - 1 1 _ 1
Al,a = Yl,aq—3yl,aq3Y2 aq— Y Y2aq2 ’ A2,a = Y2,aq—1y27aqyl a’
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Rl,q = Z[Yi7a(1 + Ail ) }/éial]anZ , Ro g Z[Y2 a(l + A2 aq) Yl%al]aeqz'
For the twisted t-characters of Uy(D D )) we have
Bia=Z1 a1 2102y 45 » Boas = Zaas Zoast-321 4%y 027y g

1,a1,ae2“1,ae*’
L - +1 e
ﬁl,t = Z[Zlﬂ(l + Zl,at)’ Z2,a]a€eZtZ ’ ﬁQ,t = [Z2 a(l + A2 t3) 1 a]aEeZtZ'
For a € C let WLQ = Yl,aa WQ@ = Y2,aq*2Y2,a}/2,aq2'
Let us consider an interpolating map (3(q,t) such that

B(g,1) = 1 and B(e, t) = 0.
We can use, for example, the following map introduced in [1]:

(¢°t

(q

gt = C =@ =g D@ P (g — g )
(¢ = ¢ D@t — g3t (gt — tg~)(¢Pt72 — ¢21%)
Consider
y(Lt - [Wz:zla ﬁy;'i:lla ﬁ]ie],aGC-
We have the specializations maps II, II; and the ideal Ker(Il;) N Ker(Il;) is generated
by the elements

BB 1), B(Yia—Yiat) , (B—1)(Wiaqg — Wiae) s Wia = Wiat)(Wjpg — Wipe),
fori,j € I and a,b € C. We work in the ring JNJ(N = Yy.t/ (Ker(Il;) N Ker(11;)).
Definition 5.1. We define for a € C the interpolating root monomials

Ara = Yia@n 1 Yiagpt(Yoag2YoaYou@) " s Aza = Yoo 1 Yaan Y-
We will use the identification 71, = Y1, and Y2,Y5 2,Y5 1 = Z5 _43. The Z@a

interpolate between the root monomials of Uq(Gél)) and Ut(Df)) as we have the fol-
lowing:

Lemma 5.2. We have 11 (A a) = Ain(a) foriel,aeC.
We have Ht(AQ aq—zAg oAy aq?) = Ba (1, (a))3 for a € C.
We have Ht(ALa) = Bi_1,(a) forac C.

Proof: 'The first point is clear. N L
Let a' = Tl (a). The specialization of Ay ,,-2A4244; 42 at ¢ = € is

—1
(Y27—a’t—1Y2,—a’e2t—1}/2,—a’e4t—1)(YVQ,—a’tYVQ,—ae%YQ,—a’e‘lt) X (Yl,a’s—zyl,a’yl,a/EQ)
—1
= Zzy(a/)stszz(a/)?)tfa X (Zl’alefzzl’a/ZLa/g) = Bg}(a/)s.
The specialization of Ay, at ¢ = € is

1
Y1,7a/rlY1,—a’t X (Yia/e—z}é’a/}é’a/g) = Zl —a't— 1Z1 —a't X Z 2,(—a)3 — BQ —al

Consider the following subalgebras of 37q,t.
R0 = 2Vl AL g0 Wiy, BY5 Blacc,
&w=D%%W%WU+M@%+M

ﬁYQ a(l + AQ aqt) 1,a ﬁ]aec-

1 — 1 —
A + A2 ,aqst A2 aq3tA2 aqt)

2,aq5t* " 2,aq3t
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These are interpolating subalgebras as
Lemma 5.3. Fori € {1,2}, we have I1;(Riq¢) = Riq and (R q4) = ﬁiL’t.

Proof: We have

Hq(ﬁZ,q,t) = Z[Yza( + Ay aq) il]aEqZ = R2,45

Ht(ﬁl% ) Z[YQ aY2 ac2Y2 ae4(1 + A ! g A ! ae—Qt) Yl%al]aeeztz = ﬁ;b

—ae?t

as by Lemma 5.2 we have
YQ,aYQ,aeQ}/Q,ae‘*(l +A2 ! A l—atA_ aE—Qt) ZQ,—a3( +B_ a3t3)
Now we have

Hq(ﬁl,q,t> = Z[Yl’a(l + A_

+1
1,aq3 )7 Y2,a ]aeqZ - ﬁl,q,

Ht(ﬁl,q,t) = Z[}/lﬂ(l + Aijiat)ﬂ (}/27GY2,a62Y2,ae4)il]aeeztz = ﬁg,t?

as by Lemma 5.2 we have Y] ,(1 + Ail_at) Z1.(1+ B;, at)
As for the case r = 2, we define the analogue of P’ C P in Yy,

y Z[Ylia , (YQ,aq2 }/é,aY27aq*2)i1]aEqZ‘
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5.2. Examples. Now we have to check the existence of interpolating (g, t)-characters
in some elementary cases. First, consider the following interpolating (g, ¢)-character.

Yi1

1,3t

—1
Yl,q6t2 LENEN CRE ET

2,q6t2

BY, s Yot You

2,q7t3

2,q4t2

—1 —1
/BYI,q4t2 Y27q7t3 Y2,q5t3 YQ,qt

1,47t3
2,q2t2

-1 -1 -1 -1
Y2,q71;3Y2,q5t3Y2,¢131t3Y1,q4t2Yl,th2 ﬁyl’q10t4y2,q9t3}/é,qt
1,q7t3
1,¢5¢3 2,104
2,q%t?
Y, a2 L Yy 22 Y 0, Yo 0 Yok BY; LY
1,q%4t2 1,q5¢4 1,q2¢2 1,q10¢4 2,q9t3 2,g3t3 2,q11¢5 2,qt
2q10t4
1,476 , 2,g%t
1,¢°t3

-1 -1 -1 -1
Y1 gSt4 Yl,q10t4 Y27q9t3 Y2,q7t3 Y2,q5t3 ﬁYLth‘l Yg,q11t5 Y27q3t5

2,q10t4 /
1,q°t5

-1 -1
ﬁYqutAL Y2,q11t5 YQ,q7t3 Y2,q5t3

:

2,¢8t4
-1 -1
ﬁYQ’qllﬁ Y27qgt5 YQ,q5t3
2,q5t*

-1 -1 -1
YQ,q11t5 Y2,q9t5 }/2,q7t5 }/i,q6t4

1,(19t5

Y1Tq112t6
Here we have to check that it is in the K as a prior: it is unclear that

-1 -1 -1 -1 -1 —1
ﬁY17q10t4Y2,q9t3Y2,qt + Yl,q2t2}/17q10t4y2,q9t3y2,q3t3 + BYQ,q11t5Y2,qt + /BY:|_7q2t4Y2’q11t5Y2’q3t5
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is in Ry 4+. But if we subtract Y5 (1 + A;;QtQ)YQ,qgts(l + 142*,;1%4)Yqulmt4 € Roqt, We
get

(1 - ﬁ)Yqulst?sYQ,qgti‘}qjq110t4)/1,q2t2 = (1 - /8)Y1Tq110t4}/1,q2t2 € ﬁlq,t‘
By specializing at ¢ = 1, we get the g-character of the 15-dimensional fundamental
representation of U,(G2) as computed in [9, Appendix]. By specializing at ¢ = €, we
get the following.

2,t6

-1
Z2,t9 Zl,E4t2 Z1,62t2

1,—et3
1,—€d¢3

Z1,€4tQZ_1 ZLEZtZZ_l

1,e2t4 1,e4t4

1,—et3
1,—€d¢3

-1 -1
Zl Z1,€4t4 Z27t9

€214

2,t12

-1
2271515 Zl,t4

1,t5

—1
Zl,t6

This is the twisted t-character of the 8-dimensional fundamental representation of
Ut(Df)) as computed in [13, Section 11.2].

Now we have to consider the case of the monomial Y51V 2V5 4 = Wy 2. The
dimension of the corresponding KR module of Uq(Ggl)) is 133 (this can be obtained,
for example, from the T-system proved in [11]: let T, k(i) be the dimension of a KR module
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of highest weight kw;. Then for the fundamental representations we have Tl(l) = 15,
T =7, 50 TV = (TP)2 = TV = 34 and TY = (TN~ 1(T8))2 — (11V)2) = 133).
There is also an interpolating (g, t)-character in this case. We do not list all 133
monomials, but we list the 29 monomials (with multiplicity) which do not have g in
their coefﬁcient
212,422,445 2; 2t2 41152 ;611521 silgelar 1 3t1qt1—111t32q—21t2 ;31522 812241025 1 5t1;§31qt2;21,522q8t2;
1 otl 3t1 7t371 9t31qt1 11t32q21f,22 6t22 8t22 10t2 ]. St]. 9t31 7t32 4t22 6t22 8t2
]. 11t31 3t1 7t32 10t22 8t22 6t2 1qt]. 7t32 22522(]8{‘/42 8t22 10t42 12t4’ 5t1 5t32 6t42 8t42 10t4;
1q3t1 9t32712t42 107542 8445 1 9,531 743 111532 41;22 6t22 8t22 10423 1g¢1 13,552;211522 8123 1 tl PIETLE
1 3t1 15t52 14442 8t4’2 X 244422 6t22 71014 q12t4’1 743 qlthQ 1422464224842;
1 11t3 q11t52 10t22 8t22 6t2 1 9t31 15t52 14t42 6t42 4t4 2 6t42_8t42 10t42 12t41 5t3]‘ 7t3]‘ 9t3
6t42 8t42 10t42 14t41 5t31 731 15t552 6t42 8t42 10t41 531 13t51q9t3a
qlgtf’l 9¢33
81t42 1apal 11to1q7t31 15457 1 11t51 1345 q115t52q14t42 12t42 104432 4 16t6 (1_1}1,56 (1_112756-
As the other terms dlsappear when we specialize at ¢ = €, we can compute the
specialization from the above terms which is given in the figure bellow. We get the

2
1
2 8t42 10t42 12t4 11t51 7t31 91352 6t42 12t42 14t41 531 131351 15t5’ 1, 11t5
2
q

twisted t-character of the 29-dimensional fundamental representation of Ut(fo’)) as
computed in [13, Section 11.2].
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2

JQ,—ti”

275 letl 415

1,—t

13ltlesy etl_ Lesy Letl t1 €543
1t2l 1651><6t2 165><€t2 lth
-1 -1
2 t61 t3 €5t 2 t61 tl ‘)t3 1€t2_t61—t3155t3
/—t9 155><t9 ll—ﬁ/etz l2,—t9
_ _ 1 _
271, 15y sgs 141 27! 22 (1 1174 15h 2L, lalas
1,—t4
1,65t4l l l2,—t9 1,ett
Y
-1 -1 -1 -1
165t165t5 l—tl_tB 2 X 2—t62_t12 16t1€t5
1,e5t2l 1,—t2l lz,—tﬁ‘ 1,et?
Y
—1 —-11—-1
27t61 51?31 5t5 1 31 2 t6 Et32 t121 t3165t3 27t616t3 Et5
4 1,ett
N‘ —t9><e5t4 ll_t \ 9,19
Y
- ~1 1-1
t32 t121€t31 5t5 1 2 t121€t3165t3 E‘)t32 215t51_t3
_t4l la><e“t4 let4><e5t4 1,—t4
1 1
1~ 1et31 515 t315t51 545 et51 51543

4
1N ll’_t AA#

1;;2_7512 1_ 1, 5t5

JQ,_M

—1
—¢18

5.3. Conclusion. With the existence of the two elementary interpolating (g, t)-characters
in the last subsection, we can conclude the proof of the two main results of this section.
We define R as for the case r = 2 and we have the following:
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Theorem 5.4. For all dominant m there is a unique F'(m) € R such that m is the
unique dominant monomial of F(m).

As in the double-laced case, we have the notion of Langlands dual representation
and interpolating (g, t)-character in & with highest monomial in yqt \ Byqt We get
the following consequence of Theorem 5.4:

Theorem 5.5. An irreducible tensor product of KR modules over Uq(Ggl)) of highest
monomial in y,; has a Langlands dual representation. Moreover, the Langlands dual
representation of a KR module over Uq(Ggl)) is a KR module over Ut(Df)).

6. FROM TWISTED TO UNTWISTED TYPES

In this section we describe the Langlands duality in the opposite direction, from a
twisted quantum algebra U;(“§) to an untwisted quantum affine algebra U, ( ). We
prove the existence of interpolating (¢, q)-characters and we prove the duahty for ir-
reducible tensor product of KR modules (for this duality we have to use a slightly
generalized definition of KR modules over twisted quantum affine algebras).

6.1. Double-laced cases. We use the notation of Section 3, in particular, for ¢, €
Note that ¢; = ¢" and not ¢"i . We need the function a’(t,q) such that o (t,e) = 1
and a®(1,q) = 0 defined by a’(t,q) = 1 — a(q,t). Consider the ring
ytL,q = Z[Xziala L zialv aMieraec C Z[Zizl7 aMieracc,
Z; ifi € I) = I,
where X; , = v o %/ !
Ziaqg-1%iaq i1 €1y =1Is.
We then have surjective specialization maps, respectively, at g =€ and t = 1,

L .~L +1 L
1L 'yt,q - [Z ]zel acetz = Vi’

L. vL +1 _
1_[q . yt,q - Z[i/z‘ya ]ie[,aEqZ - yq7
where for a € C, i € I, we assign

Xia— Yia and 24 — Zi7(,1)1+¢(z’>(a)"¢v'

Note that for i € Iy, a € €“t%, IIf(2i4) = I (2i,—a) = Z; 42. We have the ideals
Ker(Hf) = <(05L —-1), (Xi,aq - Xi,ae)a aL(Zi,aq - Zi,ae)a (Zj,a - Zj,*a»iel,jelg,aea
Ker(Ily) = (o”, (Xiar — Xia))ieL acc-
The ideal Ker(ITF') N Ker(IIL) is generated by the elements
af(a¥ = 1), a¥(2iag — Ziae) » A (2ja — 2j—a),

(aL - 1)(Xi,at - Xi,a) 3 (Xi,a - Xi,at)(Xk,bq - Xk,be) ) (Xi,a - Xi,at)(zj,b - Zj,—b)v
fori,k eI, jely, abeC. Wewill work in the ring

VE, = Yk /(Ker(ITF) N Ker(I12)).

We use the notion of monomial, dominant monomial as above.
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Definition 6.1. Fori € I and a € C we define

= , L1 -1 -1
Bia = Zia(qi)-1 Ziagit X H Zja X H %j.aq—1%jaq"
jEI,C‘yi:* ].GI,CJ"Z'=72

Lemma 6.2. We have IIX(B;,) = Bi,(HtL(a))U‘v(—l)qﬁ(ﬂ foriel, aeC.

We have HqL(Ei’aqui’aq) = Ai’Hé,(a) foriely, aeC.

We have HqL(éw) = Ajnb(a) fori € Iy,a€eC.
Proof: Let a’ = IIf(a). For i € Iy, we have
HtL(Ei,a) = Zj _q/t—1%i,—a't ¥ H Zj_’;,

jeI,CM:—l
_ 1 -1
= Z@(_l)a&(i)a/t—l Zi7(—1)¢(i>a’t X H Z]( 1@ a X H Zj,(a')Q’
Jjey ,Cji=—1 jely \Cji=—1
which is equal to Bi7a/(_1)¢(i). Indeed if there is j € Iy = I; such that Cj; = —1, we
have ¢(j) =1 and so Z; (4)2 = zja'-
For i € Iy, we have
L(p -1 -1 -1
11 (Bi,a) = Zj,—ea't—1%i,eca’t X H Zjal X H Zj—ea' Fjeal
jeI,Cji=—1 Jj€l,Cji=—2
= Zicapo@peZiyeo@wpe < 11 250 1) ()2 = I %zl e
jeI,Cj =2

jeI,CM:—l
which is equal to B; (_1ys()(q7)2- Indeed if there is j € I such that Cj; = —2, we have
#(i) = 1 and so (ea’)? = —(a)? = (—=1)?0)(a')2.
Let a” =TI%(a). For i € I/, we have

Hg((Bi,aqlei,aq)) = (Zia q—3%i,a"q— )(ZZ ,a''q”i.a! g3 ) X H iji”qflzjja”q

JELC)i=—
1 —
oY, g2 X H Y]au X H Y;a q_lifja//q = Ai,a”-

= Y;‘, i,a'’q
je[¥,0j7i:— jelg/,Cj’i:—
For i € I/, we have
I5(B;,) = g X —1x ( )"
q \Pia) = Ziaq=1%ia"q jal Zjaq=1%j.a"q
JeL,Cji=— JeLCji=—
-1
=YiagYiargx [ Vi = A
jGI,Cj’¢<U
O

For i € I/, consider the subalgebra RiLt q of ytLq equal to
L+l aL]

) +
Bzalqt) « zm(l—&—Bmlq ), Xjal, Zi g

Z[Xia(1+a"B; ) o+ By ) 4B, s, a€C,j#is

and for i € I,
L +1 L :tl L
ﬁi,t,q - Z[zl &(1 + Bz aqt) X] a & j ar @ ]aeC,j;ﬁi'
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Then we have the following.
Lemma 6.3. We have II; (R{“tq) = R{jt and I1 (ﬁftq) =R q foriel.

Proof: Forie I, HL(RL

it.q) 18 equal to

1

-1 — +1
Z[Zz,—eazz,ea(l + Bz —eat(~1 )¢(i))(1 + Bi,sat(—1)¢(i))7 Zz’,a( + Bz at(—1 )é(i)Jrl), zj,a]aetzez,jyéi

= Z[Z@a(fl)aﬁ(i)%-l(l + B,;al(_l)qb(i)ﬂt) Zi ]aetz L j#i — ﬁiL,t'
We also have
= Z[Y’ ‘1(1 + Az_aq ); Yj:,zl]aeqzvj¢i = ﬁ«i,q~
Now for i € Iy, we have
HL(R’L ot q) Z[zi,a( + BZ_ 242(— 1)¢(z)+1)7 Z]i;]aetz L, 544
= Z[Zi,aQ(fl)d’(i)H( + Bl ,a2t2(—1)eG )+1) Zi ]aetZeZ NE ﬁz‘L,ta

Hg(ﬁil:t,q) = Z[Y ( + Az aq) }/;:Ezl]aeqz7j7éi - ‘ﬁ’iﬁl'

We set
(ytL), - Z[Z;f:;]iEIQV,aE(eZtZ)Q ® Z[(Zi,azi,—a)il]iellv,aGeZtZ - ytL

and we define &L ¢ j{fq as above.
As in the previous sections, we check the existence of various elements in & that we
call interpolating (¢, ¢)-characters.

First, we suppose that Ut( 9) is of type Ag ), and so that U,(g) is of type C’él), with
rp =1y =2and 1y = ry = 1. We have ¢(1) = 0, ¢(2) = 1. We have the following
interpolating (g, t)-character.

291 Z2.1
2,qt 2,t2
-1
Zy 21271 b2 Zy t4ZL—tZ1,t
1,qt? 1,—¢2
1,q%t2 1,62
L—1 -1 L -1 —1 -1
Q721 13¢6%1,L72,42¢4 %9 4242 QT Z1,tq% %1 1344 Zl 43 21—t Zl,tZL_t3
1,q%t? 1,62
1,q%t2 1,—t2
-1 -1 -1 1
21 13¢471 3¢5 22,12 ¢ Zl,ft?’Zl 342,44
2,t3q5 2,t6
-1 -1
%9 t4q6 Zz,ts

—1
Y2,q2 Yig
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17 gives the twisted t-character of a 6-dimensional fundamental representation of
Ut(Ai(f)) and HqL the g-character of a 4-dimensional fundamental representation of
1
Uy(C").
We also have the following interpolating (¢, q)-character

Zl,tZLtqZ

1,t2q2
1,t2q4

-1 L
(6% ZQ,tZ q2 Zl,tqQ z

L
Q729 24421 12

1,t3¢% 1,t3¢4
1t2q2
2,t3¢5 : 2,13¢3
1,t2q4
L. —1 —1 —1 L. —1
(0% Z27t4q6Z17t21,t3q4 z21t2q4z27t2q2Zl,t3q621,t3q4 (6% Z27t4q4217tq2217t3q2
1,t4q6 i2’t3q5 1,t4q4
L -1 Ly, —1 L -1
A" 21,42] 58 1+« )227]&4(1622,152(12 21 12 2) 56
1,t2q2 i27t3q3 1,t2q4
L —1 —1 —1 —1 L —1 —1
Q7291222 43,471 4548 29 144679 144 71,132 41,3 Q72912421 45,671 4346
3.3 Lttt 3.5
2,t°q T 6 2,t°q
1,t%q
L -1 -1 L -1 -1
Q72113221 45,879 agh Q721134 2) 415,679 a0
17t4q4
1,t4q6

—1 —1
217t5q8 317t5q6

It is easy to check that it is in the 8%, for example

-1 -1 Ly, —1 -1 -1
22,421 2,2q2 %1 434671 134 + 1+« )22,t4q622,t2q2 + 9 14g6%9 gt F13¢2 A 1,t3¢1

=(1- aL) + Z2,t2q4z2,t2q221_77513(162:1_,7513(14(1 + Bg,t3q5)(1 + Bt3q3) € ﬁ%,q,t'

Note that the coefficients a are imposed by the condition that the interpolating (t,q)-
character is in &%, in particular the coefficient (1+ al ) of z; tﬂqﬁ 29 4242

ITF gives the twisted t-character of a tensor product of two 4-dimensional fundamen-
tal representation of Ut(A:(f)) and HqL the g-character of a 5-dimensional fundamental
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representation of Uq(Cél)).

VARRYAR' Y,
N
1,t2
—1 -1
ZQat4Z1?_tZl,t3 Z27t4ZLtZ1743 17q3
1,—t2
2,t6 2,t6
1,62
-1 2 -1 =1 -1 -1
Zz7t821:—tZ1,—t3 Z2,t4Z1,t3Z1,—t3 Z2,t8ZLtZLt3 Yl,q5Y2,q2Y2,q4
1,—t2
1,—t* 2,t6 1,t4 2,4°
1,62
Ty 477t 2x Z k7, 4 ARV A Y, 2 Y5k
) 1,—t 2,832, 91t 422
1,t4
1,—t2 2,t6 1,62 2,¢°
1,—t4
-1 -1 -2 -1 -1 —1y—1
Z27t421,7t3 1,—t5 2,t8Z1,t3Zl7—t3 Z27t421,t5 1,63 Yl,q3Y2,q4Y2,q6
1,t4
2,t6 2,t6
1,—t*
~1 ~1 -1 -1
Zlﬂf?’Zl,—t5 2,18 Zl,—t3zl,t5 2,18 La®
1,t4
1,—t4
1 =1 -1
1,t5Z1,—t5 Y17q7

The multiplicity 2 of Zy 42, tlg in the image by II' is ramified into 1 + o’ in the
interpolating (¢, q)-character. That is why we get just a multiplicity 1 for Y27q2Y27q16.

Note that in particular the interpolating (¢, g)-character can not be factorized.
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Next, consider C;; = C;; = —1 with r{ = ry = 1. We choose ¢(1) =0, ¢(2) = 1,
and we have the following interpolating (¢, ¢)-character.

ZLtZLtqQ
1,t2q2
1,62¢4
L. —1 L -1
(6% zl,t3q6Z17t227t2‘14 « Z2}t2q2217t3q421’tq2
1,242
2,t3q6 2,t3q4
1,t2q4
L. —1 —1 —1 L —1
Q729 148215t 21,3671 13¢1 72,1244 #2,12¢2 Q" Z9 144671 tq2
2,t3q4
1,62¢2 Lt2g*
2,t3q6
L.—1 -1 L —1 -1
072 13,472,1242 %) ags Q2] 13067 14,622,124
2,t3¢* /
2,t3q6
-1 -1
227,54(16227,54(18

I1} gives the t-character of a tensor product of two 3-dimensional fundamental represen-
tation of Ut(Agl)) and HqL the g-character of a 3-dimensional fundamental representation

of U,(A).

AREVAR' Yi,4
K
1,t2
-1 —1
Zl,tBZl,—tZZtQ Z2,—t2Z17_t3ZLt 1,83
1,—t2
2,t3 2,—t3
1,12
zZ;\z Z7 Lzl 202 AV Y ly;
2,441, 1,13 91,—13 92,12 42,—1? 2,—t4 41t 1,45 2,63
2,—t3
1,—t2 5 1,62
2.t
-1 -1 —1 -1
2y Lo 122y Zy 132yl 2,¢°
2,—t3
2,t3
-1 1 -1
Z2,t4Z2,—t4 Y2,q7
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Consider C;; = Cj; = —1 with r{ = ry = 2. We choose ¢(1) = 0, ¢(2) = 1. We have
the following interpolating (¢, q)-character.

22,1 Z2.1 Yo
llqt l2,t2 ilq
-1
22,q2t2217qt Z2 t4Zl 2 Y Yl,q
ll,thQ ll,t‘* il,qQ
-1 1 —1
21,433 Z1 46 Vi

I1F gives the t-character of a 3-dimensional fundamental representation of Ut(Agl)) and
HqL the g-character of a 3-dimensional fundamental representation of U, (Aél)).
6.2. Triple-laced case. We use the notations of Section 5. We need the function

BE(t,q) such that BE(t,€) = 1 and BX(1,q) = 0 defined by B3L(t,q) =1 — B(q,1).
Consider the ring

L _ +1 L L +1 L
yt,q - [Xz ,a Bz 1a7 ]iEI,aEC C Z[zw»ﬁ ]ie],ae&
Z ifi =2
where X;, =< " o ’
Zi aq-2%ia%iag L1 =1

We then have the surjective specialization maps, HtL, HqL, where for a € C, we use
Xia—=Y1ia, 210 Z1,—a , X2 Y20, 220 > 23 g3

Note that the identification is not one to one as Z3 3 is identified with 23 4, 2 2, and
Z c1q- Note also that the identification is not involutive with respect to the identifica-
tion in Section 5 as 21, is identified with Z; _, and note with Z ,.

The ideal Ker(ITF) N Ker(IIL) is generated by the elements

BL(BL - 1) ) 6L(Zi,aq - Zi,ae) ) ﬂL(ZQ,a - ZQ,QEQ) ) (6L - 1)(Xi,at - Xi,a)a
(Xia — Xiat)(Xjpg — Xjpe) » (Xija — Xiat) (22 — 29pe2),
fori,jel, abeC.

Definition 6.4. For a € C we define

—1 n -1 -1 —1
Bl a = Zia(tq®) =1 %iatq3*2,q 1 BQ,“ 22,a(qt) =172 ‘lqtzl aq—Qzl a”1,aq?

Lemma 6.5. Let a € C. We have
I (Bia) = By 1,(1TE (a)) T (Ba,a) = By, (11 (a))s»
L (B ag-2Br.aBy ag2) = Ay (2 (a))» g (B2.a) = Az 12 (a)-

Proof: Let o’ =T1F(a). We have

L=

Ht (Bl,a) Z1,—a/t—1%1 7(1/t22 a’ =27 ,a't= 172 a’tZQ (a)3 Bl,aH
-1 -1 -1

Ht (32 a) = 20 _2q/t-122,calt?q AP g
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= ZQ’,(Q/)Stﬂ%ZQ7 (a )3t3Z a€4Z 1 Ziia’EQ = B2,,(a/)3.
Let a” = 1% (a). We have

L/ ~ ~ . -1 -1 _—1
Hq ((Bl,aq*QBl,aBl,aq2)) = (Zl,a”q*521 a”q*321 a//qfl)(zl a”qzl,a”q3z1,a”q ) 2 a,,q_222 a"ZQ,a”qQ
1 —
= Yl a'q 73Y1 a’ 3}/2 a,/q }/2 a”}/Q a//q A17a//7
L —1
H (B2 CL) = 29 a'g— 129 a//qzl // Y2 ,a'q 1}/2704”Y17a” = A27a//-
O

Consider the subalgebra ﬁf t.q Of yfq generated by the
Xia(1+ BLBl 5t)(1 + ﬂLB1 3t)(1 + ﬂLél_;t) +(1— ﬂL)Xl aBl_aq5tBl_,(1q3t§1_:;qt’
Blz1a(1+ By alqst), s 8",
for a € C, and the subalgebra
ﬁth = Zz2,a(1+ Bz aqt) X7 a75L21 aaﬂL]aeC
Then we have the following.
Lemma 6.6. For i € I, we have 1I; (ﬁZLt 9= ﬁét and Hﬁ(ﬁf’t,q) = Rigq-
Proof: HL(RlLt ) is equal to
Zlore20102102 (L By g )+ BrLo) U+ BrL o) z1a(L+ Br o), 23 glaczes
Z[Zl —a(l + Bl —at) Z;jiii]aetzez - ﬁ1L,t-
We also have
T (8 ) = ZI0G (X1,0(1+ By s, By s By o) Ty (X3 ]aec
= Z[Yl,a(l + Al_aq ), Y2ia1]a€q = Rig;
Ht (ﬁz it q) Zlz2,a(1+ BQ a3t3) Zli,i]aetzez = Z[Zz a3 (1+ Bg asts) Zli,;]aetzez = ﬁ%,tv

and we have

HL(ﬁ2 )t q) Z[YQ a(l + A2 aq) }q:f:al] Z = ﬁQvQ'

acq

We set
(ytL), = Z[Zéi]ae(eztzﬁ ® Z[(ZLCLZI,CL@Zl,a64)i1]a€eztz - ytLv
and we define RL ¢ yfq as above.

As in the previous sections, we check the existence of elements in &% that we call
interpolating (¢, ¢)-characters. First, we have the following.
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1,9

B s Latlg

642
l,q4t2 17q t

L1—1 -1
/8 1q5t3 2q4t2 1q7t3 1q3t

2,¢5t3 1,452
L L -1
/8 6t41 3t1 3t3 /8 1qt1qt3 2q2t4
1,410¢4
l,qﬁt4
Y 4
L -1 L -1
B 1q3t1q9t5 B 1qt1q7t5
1,¢%¢2 1,q*t2
Y 4

L L
Bl 9t3 91552 6¢2 Bl 7t3 7t52 442

2,47t 2,q°t3

L -1 9-1
B 12 bl s 1 grgs

1,410¢4 1,684

ﬂ 1 5t31 9t51 1345

1,(181‘/4

2

2,qt

Y

2 2t21 —ltht1q3t

1,q%t2

ﬂL —1t1 71531

2t2 6t2

1, 1,9

Lq—1 -1
B 1q5t3 2q6t2 1qt1q9t3

27q7t3 1 q4t2
B
Y

1
2 4t22 6t21 5t31 7t31 9t3

2,q°t3
Y

(1 + ﬁL)Qq_l%)ﬁ 2q6t2

2,47t3
Y

-1 -1
1q3t3 2q6t4 2q8t4 1q5t3 1q7t3

1,¢5¢% | 1,40t

Y

L -1 -1
ﬁ 1q5t3 2q8t4 1q3t3 1q13t5

644 8t4

l,q 1,q

L
1 9t5 11t51q7t3

1,q10t4
Y

-1
1q9t5 2q10t4 1, 11t5 1, 13t5

2,q11t5

Y
-1
q12t6

1,¢%¢2

B L1l s

1,q2t2

1,q*t?
4
L
B 1q—1t2 621 7t31 943
17q2t2 2 q7t3

Y

L
B st4 q*lth*1t3

l,qgt4

Y

BEL1,1

oto

1,4%t2

v
L
B 2q4t21 5t31 545

1,qst4
2,¢%t3

Y

L -1
6717 11t5 2q10t4 L33 lyrs

1,¢5t 1,410¢4

Y

L -1
B1 11t5 3t31q13t5

1,¢5¢*
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Remark 6.7. In the diagram we use the following identities which hold in jt,q.-
882, = B2,2 and BY1, = B"1,4.
It is easy to check that the expression is in the 2. For example,

21122g02 1 5s 1 ris Loy + (14 B5)2000,u 2002 + 13192 5002080 1gse 17

= (B" = 1) + 20122521 531 7y Loy (14 Bagsgs) (1 + By gris) € 854
The image by ITF is the twisted ¢-characters of a 29-dimensional fundamental represen-
tation of Uq(DElg)) (see the diagram in Section 5.2).
The image by HqL is the following g-character of a 7-dimensional fundamental represen-
tation of Uq(Gél)), as computed in [9, Appendix].
21 4 2, g + 171204200 + 2425 + 206 25 g5 + 1412010 + 2,5

Now we have to consider the case of the monomial Z; 7 37 ;s. The dimension
of the corresponding simple module of Ut(D( )) is 8% = 512 (the module is the tensor
product of three fundamental representations of dimension 8).

There is also an interpolating (¢, g)-character in this case. We do not list all 512
monomials, but we list the 15 monomials which do not have $% in their coefficient:

111,214 1q61tz1 8121 10,2232 24785 2q3t2q5t2;91tg; 1q4t21q6t21q8t22q3t2;t32;91tg;
1242 124t21 62 1g8422 5t32_7£32_913; 1_1%&41_1121541_1}%42 34241143
Tgzpelgapz o2l 10t41 12t41 14t42_5t32 11435 1 3t41 10t41_112t41q4t21q6t21q8t2;2q3t2q_1%3t5;
1 81t41 1%t41 1%t41—14t42 74320943 241143 2q5t32q113t51q2t21q4t21q6t2; 2q7t32q9t32q—1§t51;81t41q—1%)t41;112t4;
2 71‘/32 111352 1%,155, 2 911502 1111552 1{%5 1q6t4 1qSt“ 1q10t4§ 1;11%6 1;1}1156 1;1%3156'

As the other terms dlsappear when we specialize at t = 1, we can compute the special-
ization from the above terms. We get the g-character of a 15-dimensional fundamental
representation of Uq(Ggl)) (image by II, of the first example in Section 5.2).

6.3. Conclusion. We go back to the general case, that is, r =2 or r = 3.
With the existence of the elementary interpolating (¢, q)-characters in the subsec-
tions, we can conclude the proof of the main results of this section.

Theorem 6.8. For all dominant m there is a unique F(m) € &L such that m is the
unique dominant monomial of F(m).

We state its consequence in terms of KR modules.

As for i € I/, the only KR module of U;(Lg) for the node i with highest monomial
in (VL) is trivial, we extend the definition. For i € I, a simple U;(“g)-module with
the highest monomial of the form

(Zi,aZi,atQ T Zi,atz(k—l))(Zi,*aZi,fatQ 2 at2(k—1>)

/[/7
for the double-laced case and of the form
(ZLaZl,at2 T Zl,atQ(kfl))(Zl,EQazl,EQat2 T Zl752at2<k*1))(Zl,e4aZ1,e4at2 T Z1754at2(7€*1))

for the triple-laced case, will also be called a KR module.
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As above, we have the notion of Langlands dual representation and interpolating
(t,q)-character y € R with highest monomial in jivtq \ aLj/th (f)/vt,q \ ﬁLﬁtvq in the
triple-laced case): IIf(x) is the twisted t-character of a Uy(*g)-module and IIL(x) is
the g-character of a U,(g)-module. We obtain the following consequence of Theorem

6.8:

Theorem 6.9. An irreducible tensor product of KR modules over Uq(L@) of highest
monomial M € (VF)" has a Langlands dual representation. Moreover, the Langlands
dual representation of a KR module over Uy(Lg) is a KR module over U,(g).
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