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Abstract. In this paper we study general quantum affinizations Uq(ĝ) of symmetrizable quantum Kac-
Moody algebras and we develop their representation theory. We prove a triangular decomposition and we
give a classication of (type 1) highest weight simple integrable representations analog to Drinfel’d-Chari-
Pressley one. A generalization of the q-characters morphism, introduced by Frenkel-Reshetikhin for
quantum affine algebras, appears to be a powerful tool for this investigation. For a large class of quantum
affinizations (including quantum affine algebras and quantum toroidal algebras), the combinatorics of q-
characters give a ring structure ∗ on the Grothendieck group Rep(Uq(ĝ)) of the integrable representations
that we classified. We propose a new construction of tensor products in a larger category by using the
Drinfel’d new coproduct (it can not directly be used for Rep(Uq(ĝ)) because it involves infinite sums).
In particular we prove that ∗ is a fusion product (a product of representations is a representation).
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1. Introduction

In this paper q ∈ C∗ is not a root of unity.

V.G. Drinfel’d [Dr1] and M. Jimbo [Jim] associated, independently, to any symmetrizable Kac-Moody
algebra g and q ∈ C∗ a Hopf algebra Uq(g) called quantum Kac-Moody algebra. The structure of the
Grothendieck ring of integrable representations is well understood : it is analogous to the classical case
q = 1.

The quantum algebras of finite type Uq(g) (g of finite type) have been intensively studied (see for example
[CP4, L, R] and references therein). The quantum affine algebras Uq(ĝ) (ĝ affine algebra) are also
of particular interest : they have two realizations, the usual Drinfel’d-Jimbo realization and a new
realization (see [Dr2, Be]) as a quantum affinization of a quantum algebra of finite type Uq(g). The finite
dimensional representations of quantum affine algebras are the subject of intense research (see among
others [AK, CP1, CP3, CP4, EM, FR, FM, N1, N2, VV2] and references therein). In particular they
were classified by Chari-Pressley [CP3, CP4], and Frenkel-Reshetikhin [FR] introduced the q-characters
morphism which is a powerful tool for the study of these representations (see also [Kn, FM]).

The quantum affinization process (that Drinfel’d [Dr2] described for constructing the second realization of
a quantum affine algebra) can be extended to all symmetrizable quantum Kac-Moody algebras Uq(g) (see
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[Jin, N1]). One obtains a new class of algebras called quantum affinizations : the quantum affinization of
Uq(g) is denoted by Uq(ĝ). The quantum affine algebras are the simplest examples and are very special
because they are also quantum Kac-Moody algebras. When C is affine, the quantum affinization Uq(ĝ)
is called a quantum toroidal algebra. It is known not to be a quantum Kac-Moody algebra but it is also
of particular interest (see for example [GKV, M1, M2, N1, N3, Sa, Sc, STU, TU, VV1] and references
therein). This setting is summed up in this picture :

QAQKMA

Quantum Affinization Process

QTAQAA

QAAQFA

(QKMA : Quantum Kac-Moody Algebras, QFA : Quantum Algebras of Finite type, QAA : Quantum
Affine Algebras, QTA : Quantum Toroidal Algebras, QA : Quantum Affinizations; the line between the
two QAA symbolizes the Drinfel’d-Beck correspondence.)

In [N1] Nakajima gave a classification of (type 1) simple integrable highest weight modules of Uq(ĝ) when

g is symmetric. The case C of type A
(1)
n (toroidal ˆsln-case) was also studied by Miki in [M1] (a coproduct

is also used with an approach specific to the A
(1)
n -case; but it is technically different from the general

construction proposed in this paper). In [H3] we proposed a combinatorial construction of q-characters
(and also of their t-deformations) for generalized Cartan matrix C such that i 6= j ⇒ Ci,jCj,i ≤ 3 (it

includes finite and affine types except A
(1)
1 , A

(2)
2 ); we conjectured that they were linked with a general

representation theory. But in general little is known about the representation theory outside the case of
quantum affine algebras.

In this paper we study general quantum affinizations and we develop their representation theory. First
we prove a triangular decomposition of Uq(ĝ). We classify the (type 1) simple highest weight integrable
representations, we define and study a generalization of the morphism of q-characters χq which appears
to be a natural tool for this investigation (the approach is different from [H3] because q-characters
are obtained from the representation theory and not from purely combinatorial constructions). If the
quantized Cartan matrix C(z) is invertible (it includes all quantum affine algebras and quantum toroidal
algebras), a symmetry property of those q-characters with respect to the action of screening operators
is proved (analog of the invariance for the action of the Weyl group in classical finite cases; the result
is proved in [FM] for quantum affine algebras); in particular those q-characters are the combinatorial
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objects considered in [H3]. Moreover we get that the image of χq is a ring and we can define a formal ring
structure on the Grothendieck group. Although quantum affine algebras are Hopf algebras, in general no
coproduct has been defined for quantum affinizations (this point was also raised by Nakajima in [N3]).
Drinfel’d gave formulas for a new coproduct which can be written for all quantum affinizations. They
can not directly be used to define a tensor product of representations because they involve infinite sums.
We propose a new construction of tensor products in a larger category with a generalization of the new
Drinfel’d coproduct. We define a specialization process which allows us to interpret the ring structure that
we defined on the Grothendieck group : we prove that it is a fusion product, that is to say that a product
of representations is a representation (see [F] for generalities on fusion rings and physical motivations).

In more details, this paper is organized as follows :

in section 2 we recall backgrounds on quantum Kac-Moody algebras. In section 3 we recall the definition
of quantum affinizations and we prove a triangular decomposition (theorem 3.2). Some computations are
needed to prove the compatibility with affine quantum Serre relations (section 3.3); note that we get a
new proof of a combinatorial identity discovered by Jing (consequence of lemma 3.10). The triangular
decomposition is used in section 4.2.1 to define the Verma modules of Uq(ĝ).

In section 4 we recall the classification of (type 1) simple integrable highest weight representations of
quantum Kac-Moody algebras, and we prove such a classification for quantum affinizations (theorem 4.9;
the proof is analogous to the proof given by Chari-Pressley for quantum affine algebras). The point is to
give an adapted definition of a weight which we call a l-weight : we need a more precise definition than

in the case of quantum affine algebras (a l-weight must be characterized by the action of Uq(ĥ) ⊂ Uq(ĝ)
on a l-weight space). We also give the definition of the category O(Uq(ĝ)).

In section 5 we construct q-characters of integrable modules in the category O(Uq(ĝ)). New technical
points are to be considered (in comparison to quantum affine algebra cases) : we have to add terms of
the form kλ (λ coweight of Uq(g)) for the well-definedness in the general case. The original definition of
q-characters ([FR]) was based on an explicit formula for the universal R-matrix. In general no universal
R-matrix has been defined for a quantum affinization. However q-characters can be obtained with a piece
of the formula of a “R-matrix” in the same spirit as the original approach (theorem 5.7). In section 5.5 we
prove that the image of χq is the intersection of the kernels of screening operators (theorem 5.15) in the
same spirit as Frenkel-Mukhin [FM] did for quantum affine algebras; new technical points are involved
because of the kλ (we suppose that the quantized Cartan matrix C(z) is invertible). In particular it
unifies this approach with [H3] and enables us to prove some results announced in [H3]. We prove that
the image of χq is a ring. As χq is injective, we get an induced ring structure ∗ on the Grothendieck
group.

In section 6 we prove that ∗ is a fusion product (theorem 6.2), that is to say that there is a product of
modules. We use the new Drinfel’d coproduct (proposition 6.3); as it involves infinite sums, we have to
work in a larger category where the tensor product is well-defined (theorem 6.7). To conclude the proof
of theorem 6.2 we define specializations of certain forms which allow us to go from the larger category to
O(Uq(ĝ)) (section 6.5.2). We also give some concrete examples of explicit computations in section 6.6.

Acknowledgments : the author would like to thank Marc Rosso for his continued support and Olivier
Schiffmann for his accurate remarks.

2. Background

2.1. Cartan matrix. In this section we give some general backgrounds about Cartan matrices (for
more details see [Ka]). A generalized Cartan matrix is C = (Ci,j)1≤i,j≤n such that Ci,j ∈ Z, Ci,i = 2,
i 6= j ⇒ Ci,j ≤ 0, Ci,j = 0 ⇔ Cj,i = 0. We denote I = {1, ..., n} and l = rank(C).

In the following we suppose that C is symmetrizable, that is to say there is a matrix D = diag(r1, ..., rn)
(ri ∈ N∗) such that B = DC is symmetric. In particular if C is symmetric then it is symmetrizable with
D = In. For example:

C is said to be of finite type if all its principal minors are in N∗ (see [Bo] for a classification).
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C is said to be of affine type if all its proper principal minor are in N∗ and det(C) = 0 (see [Ka] for a
classification).

Let z be an indeterminate. We put zi = zri and for l ∈ Z, we set [l]z = zl−z−l

z−z−1 ∈ Z[z±]. Let C(z) be the

quantized Cartan matrix defined by (i 6= j ∈ I):

Ci,i(z) = zi + z−1
i , Ci,j(z) = [Ci,j ]z

In sections 5.5 and 6 we suppose that C(z) is invertible. We have seen in lemma 6.9 of [H3] that the
condition (Ci,j < −1 ⇒ −Cj,i ≤ ri) implies that det(C(z)) 6= 0. In particular finite and affine Cartan

matrices (where we impose r1 = r2 = 2 for A
(1)
1 ) satisfy this condition and so the quantum affine algebras

and quantum toroidal algebra are included in our study. We denote by C̃(z) the inverse matrix of C(z)
and D(z) the diagonal matrix such that for i, j ∈ I , Di,j(z) = δi,j [ri]z .

We consider a realization (h, Π, Π∨) of C (see [Ka]): h is a 2n − l dimensional Q-vector space, Π =
{α1, ..., αn} ⊂ h∗ (set of the simple roots) and Π∨ = {α∨

1 , ..., α∨
n} ⊂ h (set of simple coroots) and for

1 ≤ i, j ≤ n:

αj(α
∨
i ) = Ci,j

Denote by Λ1, ..., Λn ∈ h∗ (resp. the Λ∨
1 , ..., Λ∨

n ∈ h) the fundamental weights (resp. coweights) : we have
αi(Λ

∨
j ) = Λi(α

∨
j ) = δi,j .

Consider a symmetric bilinear form (, ) : h∗ × h∗ → Q such that for i ∈ I , h ∈ h∗ : (αi, h) = h(riα
∨
i ). It

is non degenerate and gives an isomorphism ν : h∗ → h. In particular for i ∈ I we have ν(αi) = riα
∨
i and

for λ, µ ∈ h∗, λ(ν(µ)) = µ(ν(λ)).

Denote P = {λ ∈ h∗/∀i ∈ I, λ(α∨
i ) ∈ Z} the set of weights and P + = {λ ∈ P/∀i ∈ I, λ(α∨

i ) ≥ 0} the set
of dominant weights. For example we have α1, ..., αn ∈ P and Λ1, ..., Λn ∈ P+. Denote Q =

⊕

i∈I

Zαi ⊂ P

the root lattice and Q+ =
∑

i∈I

Nαi ⊂ Q. For λ, µ ∈ h∗, write λ ≥ µ if λ − µ ∈ Q+.

If C is finite we have n = l = dim(h) and for λ ∈ h∗, λ =
∑

i∈I

α∨
i (λ)Λi. In particular αi =

∑

j∈I

Cj,iΛj . In

general the simple roots can not be expressed in terms of the fundamental weights.

2.2. Quantum Kac-Moody algebra.

Definition 2.1. The quantum Kac-Moody algebra Uq(g) is the C-algebra with generators kh (h ∈ h), x±
i

(i ∈ I) and relations:

(1) khkh′ = kh+h′ , k0 = 1

(2) khx±
j k−h = q±αj(h)x±

j

(3) [x+
i , x−

j ] = δi,j

kriα∨
i
− k−riα∨

i

qi − q−1
i

(4)
∑

r=0...1−Ci,j

(−1)r

[

1 − Ci,j

r

]

qi

(x±
i )1−Ci,j−rx±

j (x±
i )r = 0 (for i 6= j)

This algebra was introduced independently by Jimbo [Jim] and Drinfel’d [Dr1] and is also called a quantum
group. It is remarkable that one can define a Hopf algebra structure on Uq(g) by setting :

∆(kh) = kh ⊗ kh

∆(x+
i ) = x+

i ⊗ 1 + k+
i ⊗ x+

i , ∆(x−
i ) = x−

i ⊗ k−
i + 1⊗ x−

i

S(kh) = k−h , S(x+
i ) = −x+

i k−1
i , S(x−

i ) = −k+
i x−

i

ε(kh) = 1 , ε(x+
i ) = ε(x−

i ) = 0

where we use the notation k±
i = k±riα∨

i
.
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For i ∈ I let Ui be the subalgebra of Uq(g) generated by the x±
i , kpα∨

i
(p ∈ Q). Then Ui is isomorphic to

Uqi
(sl2), and so a Uq(g)-module has also a structure of Uqi

(sl2)-module.

Definition 2.2. A triangular decomposition of an algebra A is the data of three subalgebras (A−, H, A+)
of A such that the multiplication x− ⊗ h ⊗ x+ 7→ x−hx+ defines an isomorphism of C-vector space
A− ⊗ H ⊗ A+ ' A.

Let Uq(g)+ (resp. Uq(g)−, Uq(h)) be the subalgebra of Uq(g) generated by the x+
i (resp. the x−

i , resp.
the kh). We have (see [L]) :

Theorem 2.3. (Uq(g)−,Uq(h),Uq(g)+) is a triangular decomposition of Uq(g). Moreover Uq(h) (resp.
Uq(g)+, Uq(g)−) is isomorphic to the algebra with generators kh (resp x+

i , x−
i ) and relations (1) (resp.

relations (4) with +, relations (4) with −).

3. Quantum affinization Uq(ĝ) and triangular decomposition

In this section we define general quantum affinizations (without central charge), we give the relations
between the currents (section 3.2) and we prove a triangular decomposition (theorem 3.2).

3.1. Definition.

Definition 3.1. The quantum affinization of Uq(g) is the C-algebra Uq(ĝ) with generators x±
i,r (i ∈ I, r ∈

Z), kh (h ∈ h), hi,m (i ∈ I, m ∈ Z − {0}) and the following relations (i, j ∈ I, r, r′ ∈ Z, m ∈ Z − {0}):

(5) khkh′ = kh+h′ , k0 = 1 , [kh, hj,m] = 0 , [hi,m, hj,m′ ] = 0

(6) khx±
j,rk−h = q±αj(h)x±

j,r

(7) [hi,m, x±
j,r] = ±

1

m
[mBi,j ]qx

±
j,m+r

(8) [x+
i,r, x

−
j,r′ ] = δij

φ+
i,r+r′ − φ−

i,r+r′

qi − q−1
i

(9) x±
i,r+1x

±
j,r′ − q±Bij x±

j,r′x
±
i,r+1 = q±Bij x±

i,rx
±
j,r′+1 − x±

j,r′+1x
±
i,r

(10)
∑

π∈Σs

∑

k=0..s

(−1)k

[

s
k

]

qi

x±
i,rπ(1)

...x±
i,rπ(k)

x±
j,r′x

±
i,rπ(k+1)

...x±
i,rπ(s)

= 0

where the last relation holds for all i 6= j, s = 1 − Cij , all sequences of integers r1, ..., rs. Σs is the
symmetric group on s letters. For i ∈ I and m ∈ Z, φ±

i,m ∈ Uq(ĝ) is determined by the formal power

series in Uq(ĝ)[[z]] (resp. in Uq(ĝ)[[z−1]]):
∑

m≥0

φ±
i,±mz±m = k±riα∨

i
exp(±(q − q−1)

∑

m′≥1

hi,±m′z±m′

)

and φ+
i,m = 0 for m < 0, φ−

i,m = 0 for m > 0.

The relations (10) are called affine quantum Serre relations. The notation k±
i = k±riα∨

i
is also used. We

have kik
−1
i = k−1

i ki = 1 , kix
±
j,mk−1

i = q±Bij x±
j,m.

There is an algebra morphism Uq(g) → Uq(ĝ) defined by (h ∈ h, i ∈ I) kh 7→ kh , x±
i 7→ x±

i,0. In particular

a Uq(ĝ)-module has also a structure of a Uq(g)-module.
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3.2. Relations between the currents. For i ∈ I , consider the series (also called currents):

x±
i (w) =

∑

r∈Z

x±
i,rw

r , φ+
i (z) =

∑

m≥0

φ+
i,mzm , φ−

i (z) =
∑

m≥0

φ−
i,−mz−m

The defining relations of Uq(ĝ) can be written with currents (h, h′ ∈ h, i, j ∈ I):

(11) khkh′ = kh+h′ , k0 = 1 , khφ±
i (z) = φ±

i (z)kh

(12) khx±
j (z) = q±αj(h)x±

j (z)kh

(13) φ+
i (z)x±

j (w) =
q±Bi,j w − z

w − q±Bi,j z
x±

j (w)φ+
i (z)

(14) φ−
i (z)x±

j (w) =
q±Bi,j w − z

w − q±Bi,j z
x±

j (w)φ−
i (z)

(15) [x+
i (z), x−

j (w)] =
δi,j

qi − q−1
i

[δ(
w

z
)φ+

i (w) − δ(
z

w
)φ−

i (z)]

(16) (w − q±Bi,j z)x±
i (z)x±

j (w) = (q±Bi,j w − z)x±
j (w)x±

i (z)

(17)
∑

π∈Σs

∑

k=0...s

(−1)k

[

s
k

]

qi

x±
i (wπ(1))...x

±
i (wπ(k))x

±
j (z)x±

i (wπ(k+1))...x
±
i (wπ(s)) = 0

where δ(z) =
∑

r∈Z

zr. The equation (13) (resp. equation (14)) is expanded for |z| < |w| (resp. |w| < |z|).

Remark: in the relations (16), the terms can not be divided by w − q±Bi,j z : it would involve infinite
sums and make no sense.

The following equivalences are clear : (relations (5) ⇔ relations (11)) ; (relations (6) ⇔ relations (12)) ;
(relations (9) ⇔ relations (16)) ; (relations (8) ⇔ relations (15)) ; (relations (10) ⇔ relations (17)).

We suppose that the relations (6) are verified and we prove the equivalence (relations (7) with m ≥ 1
⇔ relations (13)) ((relations (7) with m ≤ −1 ⇔ relations (14)) is proved in an similar way): consider
h+

i (z) =
∑

m≥1

mhi,mzm−1. The relation (7) with m ≥ 1 are equivalent to (expanded for |z| < |w|):

[h+
i (z), x±

j (w)] = ±[Bi,j ]q
w−1x±

j (w)

(1 − z
w qBi,j )(1 − z

w q−Bi,j )

It is equivalent to the data of a α±(z, w) ∈ (C[w, w−1])[[z]] such that φ+
i (z)x±

j (w) = α±(z, w)x±
j (w)φ+

i (z).

So it suffices to prove that this term is the q±Bi,j w−z

w−q±Bi,j z
of relation (13). Let us compute this term : we

have
∂φ+

i
(z)

∂z = (q − q−1)h+
i (z)φ+

i (z) and so the relations (7) imply :

(q − q−1)φ+
i (z)[h+

i (z), x±
j (w)] =

∂α±(z, w)

∂z
x±

j (w)φ+
i (z)

(±[Bi,j ]q
w−1

(1 − z
w qBi,j )(1 − z

wq−Bi,j )
α±(z, w) −

1

q − q−1

∂α±(z, w)

∂z
)x±

j (w)φ+
i (z) = 0

∂α±(z, w)

∂z
= ±(qBi,j − q−Bi,j )

w−1

(1 − z
w qBi,j )(1 − z

wq−Bi,j )
α±(z, w)

As q±Bi,j w−z

w−q±Bi,j z
is a solution, we have α±(z, w) = λ(w) q±Bi,j w−z

w−q±Bi,j z
. But at z = 0 we know α±(0, w) = q±Bi,j

(relations (6)) and so λ(w) = 1.

3.3. Triangular decomposition.
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3.3.1. Statement. Let Uq(ĝ)+ (resp. Uq(ĝ)−, Uq(ĥ)) be the subalgebra of Uq(ĝ) generated by the x+
i,r

(resp. the x−
i,r, resp. the kh, hi,r).

Theorem 3.2. (Uq(ĝ)−,Uq(ĥ),Uq(ĝ)+) is a triangular decomposition of Uq(ĝ). Moreover Uq(ĥ) (resp.

Uq(ĝ)+, Uq(ĝ)−) is isomorphic to the algebra with generators kh, hi,m (resp x+
i,r, x−

i,r) and relations (5)

(resp. relations (9), (10) with +, relations (9), (10) with −).

For a quantum affine algebra (C finite) it is proved in [Be].

In this section 3.3 we prove this theorem in general. We will use the algebras U l
q(ĝ), Ũq(ĝ) defined by :

Definition 3.3. U l
q(ĝ) is the C-algebra with generators x±

i,r, hi,m, kh (i ∈ I, r ∈ Z, m ∈ Z−{0}, h ∈ h)

and relations (5), (6), (7), (8) (or relations (11), (12), (13), (14), (15)).

Ũq(ĝ) is the quotient of U l
q(ĝ) by relations (9) (or relations (16)).

Note that Uq(ĝ) is a quotient of U l
q(ĝ) and that (U l,−

q (ĝ),Uq(ĥ),U l,+
q (ĝ)) is a triangular decomposition of

U l
q(ĝ) where U l,±

q (ĝ) is generated by the x±
i,r without relations. In the sl2-case we have Ũq(ŝl2) = Uq(ŝl2).

Let us sketch the proof of theorem 3.2. We use a method analog to the proof for classic cases or quantum
Kac-Moody algebras (see for example the chapter 4 of [Ja]) : we have to check a compatibility condition
between the relations and the product as explained in section 3.3.2. After some preliminary technical
lemmas about polynomials in section 3.3.3, the heart of the proof is given in section 3.3.4 : properties
of U l

q(ĝ) (lemma 3.9) lead to a triangular decomposition of Ũq(ĝ). Properties of Ũq(ĝ) proved in lemmas

3.10, 3.11 imply theorem 3.2. Note that the intermediate algebra Ũq(ĝ) is also studied because it will be
used in the last section of this paper.

Remark : lemma 3.10 gives a new proof of a combinatorial identity discovered by Jing.

The theorem 3.2 is used in section 4.2.1 to define the Verma modules of Uq(ĝ). Let us give another

consequence of theorem 3.2 : for i ∈ I , let Ûi be the subalgebra of Uq(ĝ) generated by the x±
i,r , kpα∨

i
, hi,m

(r ∈ Z, m ∈ Z − {0}, p ∈ Q). We have a morphism Uqi
(ŝl2) → Ûi (in particular any Uq(ĝ)-module also

has a structure of Uqi
(ŝl2)-module). Moreover theorem 3.2 implies:

Corollary 3.4. Ûi is isomorphic to Uqi
(ŝl2).

3.3.2. General proof of triangular decompositions. Let A be an algebra with a triangular decomposition
(A−, H, A+). Let B+ (resp. B−) be a two-sided ideal of A+ (resp. A−). Let C = A/(A.(B+ + B−).A)
and denote by C± the image of B± in C.

Lemma 3.5. If B+.A ⊂ A.B+ and A.B− ⊂ B−.A then (C−, H, C+) is a triangular decomposition of C
and the algebra C± is isomorphic to A±/B±.

Proof: We use the proof of section 4.21 in [Ja] : indeed the product gives an isomorphism of C-vector
space A.(B+ + B−).A ' B+ ⊗ H ⊗ A− + A+ ⊗ H ⊗ B−. �

3.3.3. Technical lemmas. Let i 6= j and s = 1 − Ci,j . Define P±(w1, ..., ws, z) ∈ C[w1, ..., ws, z] by the
formula :

P±(w1, ..., ws, z) =
∑

k=0...s

(−1)k

[

s
k

]

qi

(w1 − q±Bi,j z)...(wk − q±Bi,j z)(wk+1q
±Bi,j − z)...(wsq

±Bi,j − z)

Lemma 3.6. There are polynomials (f±,r)r=1,...,s−1 of s − 1 variables such that:

P±(w1, ..., ws, z) =
∑

1≤r≤s−1

(wr+1 − q±2
i wr)f±,r(w1, ..., wr−1, wr+2, ..., ws, z)
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Proof: It suffices to prove it for P+ (because P− is obtained from P+ by q 7→ q−1). First we prove that

P+(q
−2(s−1)
i w, q

−2(s−2)
i w, ..., q−2

i w, w, z) = 0. Indeed it is equal to:

ws
∑

k=0...s

(−1)k

[

s
k

]

qi

q
k(1−s)
i (q

−2(s−1)
i qs−1

i −
z

w
)...(q

−2(s−k)
i qs−1

i −
z

w
)(q

−2(s−k−1)
i q1−s

i −
z

w
)...(q1−s

i −
z

w
)

= zs(q1−s
i −

z

w
)q−3s+3Mqi

(
z

w
q3s−3)

where:

Mq(u) =
∑

k=0...s

(−1)k

[

s
k

]

q

qk(1−s)(q2k − u)(q2(k+1) − u)...(q2(k+s−2) − u)

Let α0(q), ..., αs−1(q) ∈ Z[q] such that (a− u)(a− uq2)...(a − uq2(s−2)) = us−1αs−1(q) + us−2aαs−2(q) +
... + as−1α0(q). So:

Mq(u) =
∑

p=0...s−1

αs−p(q)u
s−p

∑

k=0...s

(−1)k

[

s
k

]

q

qk(1−s+2p)

And so Mq(u) = 0 because of the q-binomial identity for p′ = 1 − s, 3 − s, ..., s − 1 (see [L]):

∑

k=0...s

(−1)k

[

s
k

]

q

qrp′

= 0

As a consequence P+ is in the kernel of the projection

φ : C[w1, ..., ws, z] → C[w1, ..., ws, z]/((w2 − q2
i w1), ..., (ws − q2

i ws−1))

that is to say P+(w1, ..., ws, z) =
∑

1≤r≤s−1

(wr+1 − qBi,j wr)fr(w1, ..., ws, z) where the fr ∈ C[w1, ..., ws, z].

Let us prove that we can choose the (fr)1≤r≤s−1 so that for all 1 ≤ s ≤ r − 1, fr does not depend of
wr, wr+1. Let A ⊂ Ker(φ) be the subspace of polynomials which are degree at most of 1 in each variable
w1, ..., ws. In particular P ∈ A. We can decompose in a unique way P = α + w2β + w1γ where α, γ ∈
C[w3, ..., ws, z], β ∈ C[w1, w3, ..., ws, z]. Consider λ(1) = −q−2

i γ(w2 −q2
i w1) ∈ A and P (1) = P −λ(1) ∈ A.

We have in particular P (1) = µ
(1)
3 + w2µ

(1)
2 + w2w1µ

(1)
1 where µ

(1)
1 , µ

(1)
2 , µ

(1)
3 ∈ C[w3, ..., ws, z]. In the

same way we define by induction on r (1 ≤ r ≤ s − 1) the λ(r) ∈ A such that P (r) = P (r−1) − λ(r) ∈ A
is of the form:

P (r) = µ
(r)
r+2 + wr+1µ

(r)
r+1 + wr+1wrµ

(r)
r + ... + wr+1wr...w1µ

(r)
1

where for 1 ≤ r′ ≤ r +2, µ
(r)
r′ ∈ C[wr+2, ..., ws, z]. Indeed in the part of P (r) without wr+2 we can change

the terms wr+1λ(wr+3, ..., ws, z) to q−2
i wr+2λ(wr+3, ..., ws, z) by adding q−2

i (wr+2 − q2
i wr+1)λ ∈ A, we

can change the terms wr+1wrλ
′(wr+3, ..., ws, z) to q−4

i wr+2wr+1λ
′(wr+3, ..., ws, z) by adding q−4

i (wr+2 −

q2
i wr+1)λ + q−2

i (wr+2 − q2
i wr+1)λ ∈ A, and so on. In particular for r = s − 1 :

P (s−1) = µ
(s−1)
s+1 + µ(s−1)

s ws + µ
(s−1)
s−1 wsws−1 + ... + µ

(s−1)
1 wsws−1...w1

where µ
(s−1)
s+1 , ..., µ

(s−1)
1 ∈ C[z]. But :

0 = φ(P (s−1)) = µ
(s−1)
s+1 + µ(s−1)

s ws + µ
(s−1)
s−1 q−2

i w2
s + ... + µ

(s−1)
1 q

−2−4−...−2(s−1)
i ws

s

So for all 1 ≤ r′ ≤ s + 1, µ
(s−1)
r′ = 0, and so P (s−1) = 0. In particular P = λ(1) + λ(2) + ... + λ(s−1). �

For 1 ≤ k ≤ s consider P
(k)
± (w1, w2, ..., ws, z) ∈ C[w1, ..., ws, z] defined by:

(−1)k

[

s
k

]

qi

∑

k′=1...k

(zq
±(1−s)
i − w1)(w2 − q±2

i w1)...(wk′ − q±2
i w1)(wk′+1q

±2
i − w1)...(wsq

±2
i − w1)

+(−1)k−1

[

s
k − 1

]

qi

∑

k′=k...s

(z − w1q
±(1−s)
i )(w2 − q±2

i w1)...(wk′ − q±2
i w1)(wk′+1q

±2
i − w1)...(wsq

±2
i − w1)
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Lemma 3.7. i) For 2 ≤ k ≤ s − 1 there are polynomials (f
(k)
±,r)r=1,...,s−1 of s − 1 variables, of degree at

most 1 in each variable, such that P
(k)
± (w1, ..., ws, z) is equal to :

(z − q
±(1−s)
i wk)f

(k)
±,k−1(w1, ..., wk−1, wk+1, ..., ws, z) + (wk+1 − q

±(1−s)
i z)f

(k)
±,s−1(w1, ..., wk , wk+2, ..., ws, z)

+
∑

1≤r≤s−2,r 6=k−1

(wr+2 − q±2
i wr+1)f

(k)
±,r(w1, ..., wr−1, wr+2, ..., ws, z)

ii) There are polynomials (f
(1)
±,r)r=1,...,s−1 of s− 1 variables, of degree at most 1 in each variable, such

that P
(1)
± (w1, ..., ws, z) is equal to :

(w2 − q
±(1−s)
i z)f

(1)
±,s(w3, ..., ws, z) +

∑

1≤r≤s−2

(wr+2 − q±2
i wr+1)f

(k)
±,r(w1, ..., wr−1, wr+2, ..., ws, z)

iii) There are polynomials (f
(s)
±,r)r=1,...,s−1 of s− 1 variables, of degree at most 1 in each variable, such

that P
(s)
± (w1, ..., ws, z) is equal to :

(z − q
±(1−s)
i ws)f

(s)
±,s−1(w1, ..., ws−1, z) +

∑

1≤r≤s−2

(wr+2 − q±2
i wr+1)f

(s)
±,r(w1, ..., wr−1, wr+2, ..., ws, z)

Proof: It suffices to prove it for P
(k)
+ (because P

(k)
− is obtained from P

(k)
+ by q 7→ q−1).

For i) : we see as in lemma 3.6 that it suffices to check that P
(k)
+ (w1, ..., ws, z) = 0 if w3 = q2

i w2, ... ,

wk = q2
i wk−1, wk+2 = q2

i wk+1, ... , ws = q2
i ws−1, z = q1−s

i wk and wk+1 = q1−s
i z. It means w3 = q2

i w2,

..., wk = q
2(k−2)
i w2, wk+1 = q2k−2−2sw2, ... ,ws = q−4w2, z = q2k−3−sw2. So if we set u = w1/w2 we

find for P
(k)
+ w−s

2 :

(−1)k

[

s
k

]

qi

∑

k′=1...k

q
2(k′−1)
i (q2k−2−2s

i − u)(q2k−2s
i − u)...(q2k′−6

i − u)(q2k′

i − u)...(q2k−2
i − u)(q−2

i − u)

+ (−1)k−1

[

s
k − 1

]

qi

∑

k′=k...s

q2k′−s−1
i (q2k−2s−4

i − u)...(q2k′−2s−6
i − u)(q2k′−2s

i − u)...(q2k−4
i − u)(q−2

i − u)

It is a multiple of:

[s−k+1]qi

q2k−2s−4
i

−u
[

∑

k′=1...k

q2k′−1
i

(q2k′−2
i

−u)(q2k′−4
i

−u)
] −

[k]qi

q2k−2
i

−u
qs
i [

∑

k′=k...s

q2k′−1−s
i

(q2k′−2s−2
i

−u)(q2k′−2s−4
i

−u)
]

=
q2

i [s−k+1]qi

(1−q2
i
)(q2k−2s−4

i
−u)

[
∑

k′=1...k

1

q2k′−2
i

−u
− 1

q2k′−4
i

−u
] −

q2
i [k]qi

(1−q2
i
)q2k−2

i
−u

qs
i [

∑

k′=k...s

1

q2k′−2s−2
i

−u
− 1

q2k′−2s−4
i

−u
]

=
q2

i [s−k+1]qi

(1−q2
i
)(q2k−2s−4

i
−u)

[ 1

q2k−2
i

−u
− 1

q−2
i

−u
] −

q2
i [k]qi

(1−q2
i
)(q2k−2

i
−u)

qs
i [

1
q−2

i
−u

− 1

q2k−2s−4
i

−u
] = 0

For ii) : as for i) we check that P
(1)
+ (w1, ..., ws, z) = 0 if w3 = q2

i w2, ... , ws = q2
i ws−1, z = qs−1

i w2. It

means wk′ = q
2(k′−2)
i w2 for 2 ≤ k′ ≤ s. So it we set u = w1/w2 we find for P

(1)
+ w−s

2 :

−[s]qi
(1−u)(q2

i −u)...(q2s−2
i −u)+q1−s

i

∑

k′=1...s

q2k′−2
i (q2s−2

i −u)(q−2
i −u)...(q2k′−6

i −u)(q2k′

i −u)...(q2s−2
i −u)

It is a multiple of: −
q2

i [s]qi

q2s
i

−1
( 1

q−2
i

−u
− 1

q2s−2
i

−u
) +

q1−s
i

1−q−2
i

( 1
q−2

i
−u

− 1
q2s−2

i
−u

) = 0.

For iii) : as for i) we check that P
(k)
+ (w1, ..., ws, z) = 0 if w3 = q2

i w2, ... , ws = q2
i ws−1, z = q1−s

i ws. It

means wk′ = q
2(k′−2)
i w2 for 2 ≤ k′ ≤ s and z = qs−3

i w2. The computation is analogous to i). �

Lemma 3.8. For all choices of polynomials (f
(k′)
±,r )1≤k′≤s,1≤r≤s−1 in lemma 3.7 and each 2 ≤ k ≤ s there

are polynomials (g
(k)
±,r)r=1,...,s−2 of s − 1 variables such that:

f
(k)
±,k−1 − f

(k−1)
±,s−1 =

∑

1≤r≤s−2

(wr+2 − q±2
i wr+1)g

(k)
±,r(w1, ..., wr−1, wr+2, ..., ws, z)
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Proof: We see as in lemma 3.6 that it suffices to check that f
(k)
+,k−1 + f

(k−1)
+,s−1 = 0 if w3 = q2

i w2, ... ,

ws = q2
i ws−1. So we suppose that wk′ = q

2(k′−2)
i for all 2 ≤ k′ ≤ s. Let Q = ws−1

1 (w2q
−2
i − 1)(w2 −

1)...(w2q
2s−2
i )/(q2

i − 1)). It suffices to prove that for 2 ≤ k ≤ s, we have:

(18) (q2
i − q2−2s

i )f
(k)
+,k−1(Q(−1)k

[

s
k

]

qi

[k]qi
(qi − q−1

i ))−1 =
qk+1+s
i + q−s−k+3

i − q−s+k+1
i − q3−k+s

i

(vq−2
i − 1)(vq2k−4

i − 1)(vq2s−2
i − 1)

(19) (q2
i −q2−2s

i )f
(k−1)
+,s−1(Q(−1)k−1

[

s
k − 1

]

qi

[k−1]qi
(qi−q−1

i ))−1 =
qk+1
i + q−k+3

i − q−2s+k+1
i − q3−k+2s

i

(vq−2
i − 1)(vq2k−4

i − 1)(vq2s−2
i − 1)

because we have the relation :
[

s
k

]

qi

[k]qi
(qk+1+s

i +q−s−k+3
i −q−s+k+1

i −q3−k+s
i ) = −

[

s
k − 1

]

qi

[k−1]qi
(qk+1

i +q−k+3
i −q−2s+k+1

i −q3−k+2s
i )

First suppose that 3 ≤ k ≤ s − 1. We have P
(k)
+ = (z − q1−s

i wk)f
(k)
+,k−1 + (q2

i wk − q1−s
i z)f

(k)
+,s−1. So for

αk, βk such that P
(k)
+ = zαk + wkβk, we have f

(k)
+,k−1 =

q2
i αk+q1−s

i
βk

q2
i
−q2−2s

i

and f
(k)
+,s−1 =

q1−s
i

αk+βk

q2
i
−q2−2s

i

. But we

have P
(k)
+ = z(q1−s

i λk + µk) − w1(λk + q1−s
i µk) where (we put v = w2/w1):

λk = (−1)kws−1
1

[

s
k

]

qi

∑

k′=1...k

(v − q2
i )(vq2

i − q2
i )...(vq

2(k′−2)
i − q2

i )(vq2k′

i − 1)...(vq
2(s−2)+2
i − 1)

= Q(−1)k

[

s
k

]

qi

[ 1
vq−2

i
−1

−
q2k

i

vq2k−2
i −1

]

µk = (−1)k−1ws−1
1

[

s
k − 1

]

qi

∑

k′=k...s

(v − q2
i )(vq2

i − q2
i )...(vq

2(k′−2)
i − q2

i )(vq2k′

i − 1)...(vq
2(s−2)+2
i − 1)

= Q(−1)k−1

[

s
k − 1

]

qi

[
q2k−2

i

vq2k−4
i

−1
−

q2s
i

vq2s−2
i

−1
]

As αk = q1−sλk + µk and βk = −(λk + q1−s
i )/(qk−2

i w2), we have:

αk = Q

(−1)k

[

s
k

]

qi

[k]qi
(qi − q−1

i )((qk+1−s
i − qs+k−1

i ) + v(qs+k−3
i + qs+3k−3

i − q3k−3−s
i − qs+k−1

i ))

(vq−2
i − 1)(vq2k−2

i − 1)(vq2k−4
i − 1)(vq2s−2

i − 1)

βk = Q

(−1)k

[

s
k

]

qi

[k]qi
(qi − q−1

i )((qk
i + q2s−k+2

i − q−k+2
i − qk+2

i ) + v(−qk+2s−2
i + qk

i ))

(vq−2
i − 1)(vq2k−2

i − 1)(vq2k−4
i − 1)(vq2s−2

i − 1)

In particular (q2
i − q2−2s

i )f
(k)
+,k−1(Q(−1)k

[

s
k

]

qi

[k]qi
(qi − q−1

i ))−1 is:

(qk+1−s
i + qs−k+3

i − qs+k+1
i − q3−k−s

i ) + v(qs+3k−1
i + qk+1−s

i − q3k−1−s
i − qs+k+1

i )

(vq−2
i − 1)(vq2k−2

i − 1)(vq2k−4
i − 1)(vq2s−2

i − 1)

and we get formula 18 for k. Moreover (q2
i − q2−2s

i )f
(k)
+,s−1(Q(−1)k

[

s
k

]

qi

[k]qi
(qi − q−1

i ))−1 is:

(qk+2−2s
i + q2s−k+2

i − q−k+2
i − qk+2

i ) + v(qk−2
i + q3k−2

i − q3k−2s−2
i − qk+2s−2

i )

(vq−2
i − 1)(vq2k−2

i − 1)(vq2k−4
i − 1)(vq2s−2

i − 1)

and we get formula 19 for k + 1.

So it remains to prove formula 19 with k = 2 and formula 18 with k = s.

P
(1)
+ = (w2 − q

(1−s)
i z)f

(1)
+,s−1 = −[s]qi

(zq1−s
i − w1)(q

2
i w2 − w1)...(q

2s−2
i w2 − w1)

+(z − w1q
1−s
i )

∑

k′=1...s

q2k′−2
i (q−2

i w2 − w1)...(q
2k′−6
i w2 − w1)(q

2k′

i w2 − w1)...(q
2s−2
i w2 − w1)
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⇒ f
(1)
+,s−1 = −q1−s

i Q[
−[s]qi

q1−s
i (q2

i − 1)

(vq−2
i − 1)(v − 1)

+
∑

k′=1...s

q2k′−2
i

(q2k′−4
i v − 1)(q2k′−2

i v − 1)
]

And so we have for f
(1)
+,s−1(q

2
i − q2−2s

i )(−Q[s]qi
(qi − q−1

i ))−1:

qi + q3
i − q2s+1

i − qi−2s + 3

(vq−2
i − 1)(v − 1)(vq2s−2

i v − 1)

that it to say the formula 19 with k = 2.

P
(s)
+ = (z − q

(1−s)
i q

2(s−2)
i w2)f

(s)
+,s−1 = (−1)s−1[s]qi

(z − w1q
1−s
i )q

2(s−1)
i (q−2

i w2 − w1)...(q
2s−6
i w2 − w1)

+(−1)s(zq1−s
i − w1)

∑

k′=1...s

q2k′−2
i (q−2

i w2 − w1)...(q
2k′−6
i w2 − w1)(q

2k′

i w2 − w1)...(q
2s−2
i w2 − w1)

⇒ f
(s)
+,s−1 = Q[

(−1)s−1[s]qi
q
2(s−1)
i (q2

i − 1)

(vq2s−4
i − 1)(vq2s−2

i − 1)
+ (−1)sq1−s

i

∑

k′=1...s

q2k′−2
i

(q2k′−4
i v − 1)(q2k′−2

i v − 1)
]

And so we have for f
(s)
+,s−1(q

2
i − q2−2s

i )((−1)sQ[s]qi
(qi − q−1

i ))−1:

q2s+1
i + q3−2s

i − qi − q3
i

(vq−2
i − 1)(vq2s−4

i − 1)(vq2s−2
i v − 1)

that it to say the formula 18 with k = s. �

3.3.4. Proof of theorem 3.2. The algebras U l
q(ĝ), Ũq(ĝ),U l,±

q (ĝ) are defined in section 3.3. Let Ũ±
q (ĝ) ⊂

Ũq(ĝ) be the subalgebra generated by the x±
i,r. Let τ± be the two-sided ideal of U l,±

q (ĝ) generated by the

left terms of relations (9) (with the x±
i,r).

Lemma 3.9. We have τ+U
l
q(ĝ) ⊂ U l

q(ĝ)τ+ and U l
q(ĝ)τ− ⊂ τ−U

l
q(ĝ). In particular (Ũ−

q (ĝ),Uq(ĥ), Ũ+
q (ĝ))

is a triangular decomposition of Ũq(ĝ).

Proof: First τ+Uq(ĥ) ⊂ Uq(ĥ)τ+, Uq(ĥ)τ− ⊂ τ−Uq(ĥ) are direct consequences of relations (12), (13), (14).
We have also (we use relations (15) and (13), (14)):

[(w − q±Bi,j z)x±
i (z)x±

j (w) − (q±Bi,j w − z)x±
j (w)x±

i (z), x∓
k (u)]

= (w − q±Bi,j z)x±
i (z)[x±

j (w), x∓
k (u)] − (q±Bi,j w − z)[x±

j (w), x∓
k (u)]x±

i (z)

−(q±Bi,j w − z)x±
j (w)[x±

i (z), x∓
k (u)] + (w − q±Bi,j z)[x±

i (z), x∓
k (u)]x±

j (w) = 0

and so τ+U
l,−
q (ĝ) ⊂ U l

q(ĝ)τ+, U l,+
q (ĝ)τ− ⊂ τ−U

l
q(ĝ).

The last point follows from Ũq(ĝ) = U l
q(ĝ)/(U l

q(ĝ).(τ+ + τ−).U l
q(ĝ)), the triangular decomposition of U l

q(ĝ)
and lemma 3.5. �

Lemma 3.10. Let i 6= j, s = 1 − Ci,j µ = 1 or µ = −1. We have in Ũq(ĝ) :

(20)
∑

π∈Σs

∑

k=0..s

(−1)k

[

s
k

]

qi

x±
i (wπ(1))...x

±
i (wπ(k))φ

µ
j (z)x±

i (wπ(k+1))...x
±
i (wπ(s)) = 0

(21)
∑

π∈Σs

∑

k=0..s

(−1)k

[

s
k

]

qi

ξi(wπ(1))...ξi(wπ(k))x
±
j (z)ξi(wπ(k+1))...ξi(wπ(s)) = 0

where ξi(wp) = x±
i (wp) if p 6= 1 and ξi(w1) = φµ

i (w1).
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Remark : in particular if we multiply the equation (20) by (
∏

r=1...s
(wr − qs−1

i z))(
∏

1≤r′<r≤s

(wr − q2
i wr′))

and we project it on x+
i (w1)...x

+
i (ws)φ

+
j (z) (we can use the relations (16) thanks to the multiplied

polynomial), we get the combinatorial identity discovered by Jing in [Jin], which was also proved in a
combinatorial way in [DJ] : for π ∈ Σs denote by ε(π) ∈ {1,−1} the signature of π (we have replaced
z 7→ z−1, wk′ 7→ w−1

k′ to get the formula in the same form as in [Jin]):

0 =
∑

π∈Σs

ε(π)
∑

k=0...s

[

s
k

]

q

(z − qs−1wπ(1))...(z − qs−1wπ(k))

(wπ(k+1) − qs−1z)...(wπ(s) − qs−1z)
∏

1≤r<r′≤s

(wπ(r) − q2wπ(r′))

Proof: First we prove the equation (20) with µ = 1 (µ = −1 is analog). The left term is (relations (13)):

φ+
j (z)

(w1q±Bi,j − z)...(wsq±Bi,j − z)

∑

π∈Σs

P±(wπ(1), ..., wπ(s), z)x±
i (wπ(1))...x

±
i (wπ(s))

that is to say (see lemma 3.6):
∑

π∈Σs

∑

1≤r≤s−1

(wπ(r+1) − q±2
i wπ(r))fr,±(wπ(1), ..., wπ(r−1), wπ(r+2), ..., wπ(s), z)x±

i (wπ(1))...x
±
i (wπ(s))

For each r, we put together the π, π′ ∈ Σs such that π(r) = π′(r+1), π(r+1) = π′(r), and π(r′′) = π′(r′′)
for all r′′ 6= r, r + 1. So we get a sum of terms:

fr,±(wπ(1), ..., wπ(r−1), wπ(r+2), ..., wπ(s), z)x±
i (wπ(1))...x

±
i (wπ(r−1))A

±
{π(r),π(r+1)}x

±
i (wπ(r+2)...x

±
i (wπ(s))

where A±
{k,k′} = (wk − q±2

i wk′ )x±
i (wk′ )x±

i (wk) + (wk′ − q±2
i wk)x±

i (wk)x±
i (wk′ )

But A±
{k,k′} = 0 in Ũq(g).

Let us prove the equation (21) with µ = 1 (µ = −1 is analog). The left term is :

φ+
i (w1)

(w2q
±2
i − w1)...(wsq

±2
i − w1)(zq

±(1−s)
i − w1)

∑

π∈Σs−1,k=1...s

P
(k)
± (w1, wπ(2), ..., wπ(s), z)x±

i (wπ(2))...x
±
i (wπ(k))x

±
j (z)x±

i (wπ(k+1))...x
±
i (wπ(s))

where Σs−1 acts on {2, ..., s}. With the help of lemma 3.7 and in analogy to the previous case, for each
1 ≤ k ≤ s each r 6= k, we put together the π, π′ ∈ Σs such that π(r) = π′(r + 1), π(r + 1) = π′(r), and

π(r′′) = π′(r′′) for all r′′ 6= r, r + 1. So the terms with polynomials f
(k)
±,k′ with k′ 6= s, k − 1 are erased.

We get :
φ+

i
(w1)

(w2q±2
i

−w1)...(wsq±2
i

−w1)(zq
±(1−s)
i

−w1)
∑

π∈Σs−1,k=1...s

((z − q
±(1−s)
i wπ(k))f

(k)
±,k−1 + (wπ(k+1) − q

±(1−s)
i z)f

(k)
±,s−1)

x±
i (wπ(2))...x

±
i (wπ(k))x

±
j (z)x±

i (wπ(k+1))...x
±
i (wπ(s))

But this last sum is equal to :
∑

π∈Σs−1,k=2...s

(z − q
±(1−s)
i wπ(k))(f

(k)
±,k−1 − f

(k−1)
±,s−1)x

±
i (wπ(2))...x

±
i (wπ(k))x

±
j (z)x±

i (wπ(k+1))...x
±
i (wπ(s))

where we can replace (z−q
±(1−s)
i wπ(k))x

±
i (wπ(k))x

±
j (z) by (−wπ(k) +q

±(1−s)
i z)x±

j (z)x±
i (wπ(k)) (relations

(16) in Ũq(ĝ)). As in the previous cases it follows from lemma 3.8 that this term is equal to 0. �

Let τ̃± be the two-sided ideal of Ũ±
q (ĝ) generated by the left terms of relations (10) with the x±

i,r .

Lemma 3.11. We have τ̃+Ũq(ĝ) ⊂ Ũq(ĝ)τ̃+ and Ũq(ĝ)τ̃− ⊂ τ̃−Ũq(ĝ).
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In particular as Uq(ĝ) = Ũ l
q(ĝ)/(Ũ l

q(ĝ).(τ̃+ + τ̃−).Ũ l
q(ĝ)) the result of theorem 3.2 follows from lemma 3.5

and the triangular decomposition of Ũq(ĝ) proved in lemma 3.9.

Proof: First τ̃+Uq(ĥ) ⊂ Uq(ĥ)τ+, Uq(ĥ)τ̃− ⊂ τ̃−Uq(ĥ) are direct consequences of relations (12), (13), (14).
Let us show that :

(22) [
∑

π∈Σs

∑

k=0..s

(−1)k

[

s
k

]

qi

x±
i (wπ(1))...x

±
i (wπ(k))x

±
j (z)x±

i (wπ(k+1))...x
±
i (wπ(s)), x

∓
l (u)] = 0

where i, j, l ∈ I , i 6= j. If l 6= j and l 6= i the equation (22) follows from relations (15)). If l = j, the
equation (22) follows from the identity (20) of lemma 3.10 because the left term is :

∑

π∈Σs

∑

k=0..s

(−1)k

[

s
k

]

qi

x±
i (wπ(1))...x

±
i (wπ(k))(δ(

z

u
)φ±

j (z) − δ(
z

u
)φ∓

j (z))x±
i (wπ(k+1))...x

±
i (wπ(s))

If l = i, the equation (22) follows from the identity (21) of lemma 3.10 because the left term is :

∑

π∈Σs

∑

k=0..s

(−1)k

[

s
k

]

qi

(
∑

k′=1...k

x±
i (wπ(1))...x

±
i (wπ(k′−1))δ(

wk′

u
)(φ±

i (wk′ ) − φ∓
i (wk′ ))

x±
i (wπ(k′+1))...x

±
i (wπ(k))x

±
j (z)x±

i (wπ(k+1))...x
±
i (wπ(s))

+
∑

k′=k+1...s

x±
i (wπ(1))...x

±
i (wπ(k))x

±
j (z)x±

i (wπ(k+1))...x
±
i (wπ(k′−1))

δ(
wk′

u
)(φ±

i (wk′ ) − φ∓
i (wk′ ))x±

i (wπ(k′+1))...x
±
i (wπ(s)))

So we have proved the equation (22) and in particular τ̃+Ũ
−
q (ĝ) ⊂ Ũq(ĝ)τ̃+, Ũ+

q (ĝ)τ̃− ⊂ τ̃−Ũq(ĝ). �

4. Integrable representations and category O(Uq(ĝ))

In this section we study highest weight representations of Uq(ĝ). In particular theorem 4.9 is a gener-
alization of a result of Chari-Pressley about integrable representations.

4.1. Reminder: integrable representations of quantum Kac-Moody algebras. In this section
we review some known properties of integrable representations of Uq(g).

For V a Uq(h)-module and ω ∈ h∗ we denote by Vω the weight space of weight ω:

Vω = {v ∈ V/∀h ∈ h, kh.v = qω(h)v}

In particular for v ∈ Vω we have ki.v = q
ω(α∨

i )
i v and for i ∈ I we have x±

i .Vω ⊂ Vω±αi
.

We say that V is Uq(h)-diagonalizable if V =
⊕

ω∈h∗

Vω (in particular V is of type 1).

Definition 4.1. A Uq(g)-module V is said to be integrable if V is Uq(h)-diagonalizable, ∀ω ∈ h∗, Vω is
finite dimensional, and for µ ∈ h∗, i ∈ I there is R ≥ 0 such that r ≥ R ⇒ Vµ±rαi

= {0}.

In particular for all v ∈ V there is mv ≥ 0 such that for all i ∈ I , m ≥ mv, (x+
i )m.v = (x−

i )m.v = 0, and
Ui.v is finite dimensional.

Definition 4.2. A Uq(g)-module V is said to be of highest weight ω ∈ h∗ if there is v ∈ Vω such that V
is generated by v and ∀i ∈ I, x+

i .v = 0.

In particular V = Uq(g)−.v (theorem 2.3), V is Uq(h)-diagonalizable, and V =
⊕

λ≤ω

Vλ. We have (see [L]):

Theorem 4.3. For any ω ∈ h∗ there is a unique up to isomorphism simple highest weight module L(ω)
of highest weight ω. The highest weight module L(ω) is integrable if and only ω ∈ P +.
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4.2. Integrable representations of quantum affinizations. In this section we generalize results of
Chari-Pressley [CP3, CP4] to all quantum affinizations.

4.2.1. l-highest weight modules. We give the following notion of l-weight :

Definition 4.4. A couple (λ, Ψ) such that λ ∈ h∗, Ψ = (Ψ±
i,±m)i∈I,m≥0, Ψ±

i,±m ∈ C, Ψ±
i,0 = q

±λ(α∨
i )

i is
called a l-weight.

The condition Ψ±
i,0 = q

±λ(α∨
i )

i is a compatibility condition which comes from φ±
i,0 = k±

i .

We denote by Pl the set of l-weights. Note that in the finite case λ is uniquely determined by Ψ because

λ =
∑

i∈I

λ(α∨
i )Λi. Analogs of those l-weights were also used in [M1] for toroidal ŝln-cases.

Definition 4.5. A Uq(ĝ)-module V is said to be of l-highest weight (λ, Ψ) ∈ Pl if there is v ∈ V such
that (i ∈ I, r ∈ Z, m ≥ 0, h ∈ h):

x+
i,r .v = 0 , V = Uq(ĝ).v , φ±

i,±m.v = Ψ±
i,±mv , kh.v = qλ(h).v

In particular Uq(ĝ)−.v = V (theorem 3.2), V is Uq(h)-diagonalizable and V =
⊕

λ≤ω

Vλ. Note that the

l-weight (λ, Ψ) ∈ Pl is uniquely determined by V . It is called the l-highest weight of V .

The notion of l-highest weight is different from the notion of highest weight for quantum affine algebras.
The term “pseudo highest weight” is also used in the literature.

Example : for any (λ, Ψ) ∈ Pl, define the Verma module M(λ, Ψ) as the quotient of Uq(ĝ) by the left

ideal generated by the x+
i,r (i ∈ I, r ∈ Z), kh − qλ(h) (h ∈ h), φ±

i,±m − Ψ±
i,±m (i ∈ I, m ≥ 0). It follows

from theorem 3.2 that M(λ, Ψ) is a free U−
q (ĝ)-module of rank 1. In particular it is non trivial and it is

a l-highest weight module of highest weight (λ, Ψ). Moreover it has a unique proper submodule (mimic
the classical argument in [Ka]), and :

Proposition 4.6. For any (λ, Ψ) ∈ Pl there is a unique up to isomorphism simple l-highest weight
module L(λ, Ψ) of l-highest weight (λ, Ψ).

4.2.2. Integrable Uq(ĝ)-modules.

Definition 4.7. A Uq(ĝ)-module V is said to be integrable if V is integrable as a Uq(g)-module.

Note that in the case of a quantum affine algebra, the two notions of integrability do not coincide.
Throughout the paper only the notion of integrability of definition 4.7 is used.

For i ∈ I, r ∈ Z and ω ∈ h∗ we have x±
i,r .Vω ⊂ Vω±αi

. So if V is integrable, for all v ∈ V , Ûi.v is finite

dimensional and there is m0 ≥ 1 such that for all i ∈ I , r ∈ Z, m ≥ m0 ⇒ (x+
i,r)

m.v = (x−
i,r)

m.v = 0.

Definition 4.8. The set P +
l of dominant l-weights is the set of (λ, Ψ) ∈ Pl such that there exist

(Drinfel’d)-polynomials Pi(z) ∈ C[z] (i ∈ I) of constant term 1 such that in C[[z]] (resp. in C[[z−1]]):

∑

m≥0

Ψ±
i,±mz±m = q

deg(Pi)
i

Pi(zq−1
i )

Pi(zqi)

In particular for all i ∈ I , λ(α∨
i ) = deg(Pi) ≥ 0 and so λ ∈ P+ is a dominant weight.

Theorem 4.9. For (λ, Ψ) ∈ Pl, L(λ, Ψ) is integrable if and only (λ, Ψ) ∈ P +
l .

If g is finite (case of a quantum affine algebra) it is a result of Chari-Pressley in [CP3] (if part) and in
[CP4] (only if part). Moreover in this case the integrable L(λ, Ψ) are finite dimensional. If g is symmetric

the result is geometrically proved by Nakajima in [N1]. If C is of type A
(1)
n (toroidal ŝln-case) the result

is algebraically proved by Miki in [M1].
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For the general case we propose a proof similar to the proof given by Chari-Pressley in the finite case.
For λ ∈ h∗ denote D(λ) = {ω ∈ h∗/ω ≤ λ}.

Proof: The proof uses the result for Uq(ŝl2) which is proved in [CP1, CP3].

First suppose that L = L(λ, Ψ) is integrable and for i ∈ I let Li be the Ûi-submodule of L generated by

the highest weight vector v. It is a l-highest weight Uqi
(ŝl2)-module of highest weight (λ(α∨

i ), Ψ±
i ). As L

is integrable, Li is finite dimensional. So the result for Uqi
(ŝl2) gives Pi(z) ∈ C[z] such that:

∑

m≥0

Ψ±
i,±mz±m = q

deg(Pi)
i

Pi(zq−1
i )

Pi(zqi)
, λ(α∨

i ) = deg(Pi) ≥ 0

Now we prove that L = L(λ, Ψ) = Uq(ĝ).v is integrable where (λ, Ψ) ∈ P +
l . It suffices to prove that:

(1) For all µ ≤ λ, if Lµ 6= {0} then there exists M > 0 such that m > M ⇒ Lµ−mαi
= Lµ+mαi

= 0
for all i ∈ I .

(2) For all µ ≤ λ, dim(Lµ) < ∞.

The proof goes roughly as in section 5 of [CP3], with the following modifications :

For (1) : the existence of M for Lµ+mαi
= 0 is clear because the weights of L are in D(λ). Put

r∨ = max{−Ci,j/i 6= j}. In particular if C is finite, we have r∨ ≤ 3. First we prove that for m > 0, the
space Lµ−mαi

is spanned by vectors of the form X−
1 x−

i1 ,k1
...X−

h x−
ih,kh

X−
h+1.v where λ−µ = αi1 + ...+αih

,

k1, ..., kh ∈ Z, X−
p is of the form X−

p = x−
i,l1,p

...x−
i,lmp,p

where m1 + ... + mh+1 = m and m1, ..., mh ≤ r∨

(which is the crucial condition). It is proved by induction on h (see [CP3] section 5, (e)) with the help

of the relations (10). Note that in [CP3] r∨ = 3. Now it suffices to prove that Ûi.v is finite dimensional

: indeed if m > r∨h + dim(Ûi.v) we have mh+1 > dim(Ûi.v) and X−
h+1.v = 0. It is shown exactly as in

lemma 2.3 of [CP2] that Ûi.v is irreducible as Ûi-module, and so is finite dimensional.

For (2) : let us write λ − µ = αi1 + ... + αih
. The result is proved by induction on h. We have seen

that Ûi.v is finite dimensional. The induction is shown exactly as in [CP3] (section 5. (b)) by considering
the Lλ−µ+αij

and with the help of relation (9). �

4.3. Category O(Uq(ĝ)). In the following by subcategory we mean full subcategory.

Definition 4.10. A Uq(h)-module V is said to be in the category O(Uq(h)) if:

i) V is Uq(h)-diagonalizable

ii) for all ω ∈ h∗, dim(Vω) < ∞

iii) there is a finite number of element λ1, ..., λs ∈ h∗ such that the weights of V are in
⋃

j=1...s

D(λj)

A Uq(g)-module (resp. a Uq(ĝ)-module) is said to be in the category O(Uq(g)) (resp. O(Uq(ĝ))) if it is in
the category O(Uq(h)) as a Uq(h)-module.

In particular we have a restriction functor res : O(Uq(ĝ)) → O(Uq(g)).

For example a highest weight Uq(g)-module is in the category O(Uq(g)) and the product ⊗ is well-defined
on O(Uq(g)). An integrable l-highest weight module is in the categoryO(Uq(ĝ)). But in general a l-highest
weight module is not in the category O(Uq(ĝ)), indeed (Cr[z] is the space of polynomials of degree lower
that r):

Lemma 4.11. Consider a l-weight (ω, Ψ) ∈ Pl and i ∈ I. If dim(L(ω, Ψ)ω−αi
) = r ∈ N then there is

P (z) ∈ Cr[z] such that P (z)Ψi(z) = 0 where Ψi(z) =
∑

r≥0

(Ψ+
i,rz

r − Ψ−
i,−rz

−r).

In particular the existence of a P (z) ∈ C[z] such that P (z)Ψi(z) = 0 for all i ∈ I is a necessary condition
for L(ω, Ψ) ∈ O(Uq(ĝ)).
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Proof: Let v0, v1, ..., vr ∈ L(ω, Ψ) such that:

L(ω, Ψ)ω = Cv0 , L(ω, Ψ)ω−αi
= Cv1 ⊕ ... ⊕ Cvr

For m ∈ Z let Ψi,m = Ψ+
i,m − Ψ−

i,m. As x+
i.m.v0 = 0, we have:

x+
i,mx−

i,m′ .v0 =
1

qi − q−1
i

Ψi,m+m′v0

As x−
i,m.v0 ∈ L(ω, Ψ)ω−αi

and x+
i,m.vj ∈ L(ω, Ψ)ω, there are λj

m, µj
m ∈ C (m ∈ Z, 1 ≤ j ≤ r) such that:

x−
i,m.v0 = λ1

mv1 + ... + λr
mvr , x+

i,m.vj = µj
mv0

In particular we have: Ψi,m+m′ = (qi − q−1
i )

∑

j=1...r

λj
m′µj

m. We set λj(z) =
∑

m′∈Z

λj
m′zm′

, Ψi(z) =

∑

r≥0

Ψ+
i,rz

r − Ψ−
i,−rz

−r and we have :

z−mΨi(z) = (qi − q−1
i )

∑

j=1...r

µj
mλj(z)

So the {Ψi(z), zΨi(z), ..., zrΨi(z)} are not linearly independent. �

5. q-characters

For a quantum Kac-Moody algebra, one can define a character morphism as in the classical case. For
quantum affine algebras a more precise morphism, called morphism of q-characters, was introduced by
Frenkel-Reshetikhin [FR] (in particular to distinguish finite dimensional representations). In this section
we generalize the construction of q-characters to quantum affinizations. The technical point is to add
terms kλ (λ ∈ h∗) to make it well-defined in the general case. We prove a symmetry property of q-
characters that generalizes a result of Frenkel-Mukhin : the image of χq is the intersection of the kernels
of screening operators (theorem 5.15).

5.1. Reminder: classical character. Let Uq(g) be a quantum Kac-Moody algebra. Let E ⊂ (h∗)Z be
the subset of c : h∗ → Z such that c(λ) = 0 for λ outside the union of a finite number of sets of the form
D(µ). For λ ∈ h∗ denote e(λ) ∈ E such that e(λ)(µ) = δλ,µ. E has a natural structure of commutative
Z-algebra such that e(λ)e(µ) = e(λ + µ) (see [Ka]).

The classical character is the map ch : O(Uq(g)) → E such that for V ∈ O(Uq(g)):

ch(V ) =
∑

ω∈h∗

dim(Vω)e(ω)

ch is a ring morphism and ch(L(ω1)) = ch(L(ω2)) ⇒ ω1 = ω2.

5.2. Formal character. Let Uq(ĝ) be a quantum affinization. In general the map ch ◦ res does not
distinguish the simple integrable representations in O(Uq(ĝ)). That is why Frenkel-Reshetikhin [FR]
introduced the theory of q-characters for quantum affine algebras. We generalize the construction for
quantum affinizations.

Let V be in O(Uq(ĝ)). For ω ∈ h∗, the subspace Vω ⊂ V is stable by the operators φ±
i,±m (i ∈ I , m ≥ 0).

Moreover they commute and [φ±
i,m, kh] = 0, so we have a pseudo-weight space decomposition:

Vω =
⊕

γ/(ω,γ)∈Pl

Vω,γ

where Vω,γ is a simultaneous generalized eigenspace:

Vω,γ = {x ∈ Vω/∃p ∈ N, ∀i ∈ {1, ..., n}, ∀m ≥ 0, (φ±
i,±m − γ±

i,±m)p.x = 0}

As Vω is finite dimensional the Vω,γ are finite dimensional.
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Let El ⊂ P Z

l be the ring of maps c : Pl → Z such that c(λ, Ψ) = 0 for λ outside the union of a finite
number of sets of the form D(µ).

Definition 5.1. The formal character of a module V in the category O(Uq(ĝ)) is chq(V ) ∈ El defined by:

chq(V ) =
∑

(µ,Γ)∈Pl

dim(Vµ,Γ)e(µ, Γ)

We have the following commutative diagram:

O(Uq(ĝ))
chq

−→ El

↓ res ↓ β

O(Uq(g))
ch
−→ E

where β : El → E is constructed from the first projection π1 : Pl → P .

5.3. Morphism of q-characters. The combinatorics of formal characters can be studied with a mor-
phism of q-characters χq which is defined on a category Oint(Uq(ĝ)) :

5.3.1. The category Oint(Uq(ĝ)). Denote by Oint(Uq(g)) (resp. Oint(Uq(ĝ))) the category of integrable
representations in the category O(Uq(g)) (resp. O(Uq(ĝ))). For example a simple integrable l-highest
weight Uq(ĝ)-modules is in Oint(Uq(ĝ)). Moreover:

Proposition 5.2. For V a module in Oint(Uq(ĝ)) there are P(λ,Ψ) ≥ 0 ((λ, Ψ) ∈ P+
l ) such that:

chq(V ) =
∑

(λ,Ψ)∈P+
l

P(λ,Ψ)chq(L(λ, Ψ))

Proof: We have two preliminary points:

1) a submodule, a quotient of an integrable module is integrable.

2) for V ∈ Oint(Uq(ĝ)) a module and µ a maximal weight of V , then there is v ∈ Vµ such that Uq(ĝ).v
is a l-highest weight module : indeed for (µ, γ) ∈ Pl such that Vµ,γ 6= {0} there is v ∈ Vµ,γ − {0} such
that ∀i ∈ I, r ≥ 0, φ±

i,±r.v = γ±
i,±rv (because for all i ∈ I, r ≥ 0, Ker(φ±

i,±r − γ±
i,±r) ∩ Vµ,γ 6= {0}).

The end of the proof is essentially made in [Ka] (proposition 9.7) : first we prove that for λ ∈ h∗ there
exists a filtration by a sequence of submodules in Oint(Uq(ĝ)): V = Vt ⊃ Vt−1 ⊃ ... ⊃ V1 ⊃ V0 = 0 and
J ⊂ {1, ..., t} such that:

(i) if j ∈ J , then Vj/Vj−1 ' L(λj , Ψj) for some (λj , Ψj) ∈ P+
l such that λj ≥ λ

(ii) if j /∈ J , then (Vj/Vj−1)µ = 0 for every µ ≥ λ

(see the lemma 9.6 of [Ka]). Next for (µ, Ψ) ∈ P +
l , fix λ such that µ ≥ λ and introduce P(µ,Ψ) the number

of times (µ, Ψ) appears among the (λj , Ψj) (it is independent of the choice of the filtration and of µ). We
conclude as in proposition 9.7 of [Ka]. �

Definition 5.3. QP+
l is the set of (µ, γ) ∈ Pl satisfying the following condition :

i) there exist polynomials Qi(z), Ri(z) ∈ C[z] (i ∈ I) of constant term 1 such that in C[[z]] (resp. in
C[[z−1]]):

∑

m≥0

γ±
i,±mz±m = q

deg(Qi)−deg(Ri)
i

Qi(zq−1
i )Ri(zqi)

Qi(zqi)Ri(zq−1
i )

ii) there exist ω ∈ P +, α ∈ Q+ satisfying µ = ω − α.

In particular P+
l ⊂ QP+

l .

Proposition 5.4. Let V be a module in Oint(Uq(ĝ)) and (µ, γ) ∈ Pl. If dim(Vµ,γ) > 0 then (µ, γ) ∈ QP +
l .
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Proof: The existence of the polynomials is shown as in [FR] (proposition 1): it reduces to the sl2-case

because for v ∈ V , Ûi.v is finite dimensional. The existence of ω ∈ P and α ∈ Q+ is a consequence of
proposition 5.2 and theorem 4.9. �

5.3.2. Construction of q-characters. Consider formal variables Y ±
i,a (i ∈ I, a ∈ C∗) and kω (ω ∈ h). Let

Ã be the commutative group of monomials of the form m =
∏

i∈I,a∈C∗

Y
ui,a(m)
i,a kω(m) (k0 = 1) where only a

finite number of ui,a(m) ∈ Z are non zero, ω(m) ∈ h (the coweight of m), and such that for i ∈ I :

αi(ω(m)) = riui(m) = ri

∑

a∈C∗

ui,a(m)

The product is given by ui,a(m1m2) = ui,a(m1) + ui,a(m2) and ω(m1m2) = ω(m1) + ω(m2).

For example for i ∈ I, a ∈ C∗, we have kν(Λi)Yi,a ∈ Ã because for j ∈ I , αj(ν(Λi)) = Λi(ν(αj)) =

rjΛi(α
∨
j ) = rjδi,j . For (µ, Γ) ∈ QP+

l we define Yµ,Γ ∈ Ã by:

Yµ,Γ = kν(µ)

∏

i∈I,a∈C∗

Y
βi,a−γi,a

i,a

where βi,a, γi,a ∈ Z are defined by Qi(u) =
∏

a∈C∗

(1−ua)βi,a , Ri(u) =
∏

a∈C∗

(1−ua)γi,a . We have Yµ,Γ ∈ Ã

because for i ∈ I :

αi(ν(µ)) = µ(ν(αi)) = riµ(α∨
i ) = ri(deg(Qi) − deg(Ri)) = riui(Yµ,Γ)

For χ ∈ ÃZ we say χ ∈ Y if there is a finite number of element λ1, ..., λs ∈ h∗ such that the coweights of
monomials of χ are in

⋃

j=1...s

ν(D(λj)). In particular Y has a structure of h-graded Z-algebra.

Definition 5.5. The q-character of a module V ∈ Oint(Uq(ĝ)) is:

χq(V ) =
∑

(µ,Γ)∈QP+
l

d(µ, Γ)Yµ,Γ ∈ Y

where d(µ, Γ) ∈ Z is defined by chq(V ) =
∑

(µ,Γ)∈QP+
l

d(µ, Γ)e(µ, Γ).

We have a commutative diagram :

Oint(Uq(ĝ))
χq

−→ Y
↓ res ↓ β

Oint(Uq(g))
ch
−→ E

where for m ∈ Ã, β(m) = e(ω(m)).

If C is of finite type then the weight of a monomial m ∈ Y is ω(m) =
∑

i∈I

ui(m)ν(Λi). So we can forget

the kh, and we get the q-characters defined in [FR]. In this case the integrable simple modules are finite
dimensional.

Note that in the same way one can define the q-character of a finite dimensional Uq(ĥ)-module.

5.3.3. Morphism of q-characters. Denote by Rep(Uq(g)) (resp. Rep(Uq(ĝ))) the Grothendieck group
generated by the modules V in Oint(Uq(g)) (resp. Oint(Uq(ĝ))) which have a composition series (a
sequence of modules V ⊃ V1 ⊃ V2 ⊃ ... such that Vi/Vi+1 is irreducible).

The tensor product defines a ring structure on Rep(Uq(g)) and ch gives a ring morphism χ : Rep(Uq(g)) →
E .

The q-characters are compatible with exact sequences and so we get a group morphism χq : Rep(Uq(ĝ)) →
Y which is called morphism of q-characters.
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Proposition 5.6. The morphism χq is injective and the following diagram is commutative:

Rep(Uq(ĝ))
χq

−→ Y
↓ res ↓ β

Rep(Uq(g))
χ

−→ E

The commutativity of the diagram follows from the definition. To see that χq is injective, let us give
some definitions:

A monomial m ∈ Ã is said to be dominant if ui,a(m) ≥ 0 for all i ∈ I, a ∈ C∗. If a l-weight (ω, Ψ)

belongs to P+
l then Y(ω,Ψ) ∈ Ã is dominant. Moreover the map (ω, Ψ) 7→ Y(ω,Ψ) defines a bijection

between P+
l and dominant monomials. For m ∈ Ã a dominant monomial we denote by L(m) ∈ Y the

q-character of L(ω, Ψ) where (ω, Ψ) is the corresponding dominant l-weight. In particular L(m) = m +
monomials of lower weight (in the sense of the ordering on P ), and so the L(m) are linearly independent.

A module with composition series in determined in the Grothendieck group by the multiplicity of the
simple modules, and we have seen that the χq(L(λ, Ψ)) ((λ, Ψ) ∈ P +

l ) are linearly independent in Y . So
χq is injective.

5.4. q-characters and universal R-matrix. The original definition of q-characters ([FR]) was based
on an explicit formula for the universal R-matrix established in [KT, LSS, Da]. In general no universal
R-matrix has been defined for a quantum affinization. However q-characters can be obtained with a piece
of the formula of a “R-matrix” in the same spirit as the original approach:

We refer to the chapter 3 of [Gu] for general background on h-formal deformations. Consider Uh(ĝ) the
C[[h]]-algebra which is h-topologically generated by h and the x±

i,r (i ∈ I, r ∈ Z), hi,m (i ∈ I, m ∈ Z−{0})

and with the relations of Uq(ĝ) (where we set for ω ∈ h, kω = exp(hω)). The subalgebra Uh(ĥ) ⊂ Uh(ĝ)
is h-topologically generated by h and the hi,m (i ∈ I, m ∈ Z − {0}).

If V is a Uq(ĝ)-module (resp. Uq(ĥ)-module) which is Uq(h)-diagonalizable then we have an algebra

morphism πV (h) : Uh(ĝ) → End(V )[[h]] (resp. πV (h) : Uh(ĥ) → End(V )[[h]]) (Remark : for λ ∈ h∗,
ω ∈ h, v ∈ Vλ we set ω.v = λ(ω)v).

Define R0 and T in Uh(ĥ)⊗̂Uh(ĥ) ⊂ Uh(ĝ)⊗̂Uh(ĝ) (h-topological completion of the tensor product) by the
formula :

R0 = exp(−(q − q−1)
∑

i,j∈I,m>0

m

[m]q
B̃i,j(q

m)hmhi,m ⊗ hj,−m)

T = exp(−h
∑

1≤i≤2n−l

Λ∨
i ⊗ ν(αi))

Remark : we have the usual property of T (see [FR]): for λ, µ ∈ h∗, x ∈ Vλ, y ∈ Vµ, we have T.(x⊗ y) =

q−(λ,µ)(x ⊗ y). Indeed:

∑

1≤i≤2n−l

λ(Λ∨
i )µ(ν(αi)) = (µ,

∑

1≤i≤2n−l

λ(Λ∨
i )αi) = (µ, λ)

For i ∈ I, m ∈ Z − {0} denote h̃i,m =
∑

j∈I

C̃j,i(q
m)hj,m. We have an inclusion Ã ⊂ Uh(ĥ) because

the elements Y ±
i,a = k∓ν(Λi)exp(∓(q − q−1)

∑

m≥1

hma−mh̃i,m) ∈ Uh(ĝ) (i ∈ I, a ∈ C∗) are algebraically

independent.

Theorem 5.7. For V a finite dimensional Uq(ĥ)-module, ((TrV ◦ πV (h)) ⊗ Id)(R0T )) ∈ Uh(ĥ) is equal
to χq(V ).
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Proof: For (λ, Ψ) ∈ Pl consider V(λ,Ψ) and ((TrV(λ,Ψ)
◦ πV(λ,Ψ)

(h)) ⊗ Id)(R0T ). First we see as in [FR]

that the term R0 gives
∏

i∈I,a∈C∗

Y
ui,a(Yλ,Ψ)
i,a . But we have:

∑

1≤i≤2n−l

λ(Λ∨
i )ν(αi) = ν(

∑

1≤i≤2n−l

λ(Λ∨
i )αi) = ν(λ)

and so T gives k−ν(λ). �

In general for V ∈ Oint(Uq(ĝ)) we can consider a filtration (Vr)r≥0 of finite dimensional sub Uq(ĥ)-modules
of V such that

⋃

r≥0

Vr = V ; so χq(V ) is the “limit” of the ((TrVr
◦ πVr

(h)) ⊗ Id)(R0T ) in Y .

5.5. Combinatorics of q-characters. In this section we prove a symmetry property of general q-
characters : the image of χq is the intersection of the kernels of screening operators (theorem 5.15).
Our proof is analog to the proof used by Frenkel-Mukhin [FM] for quantum affine algebras; however
new technical points are involved because of the kλ and infinite sums. In particular it shows that those
q-characters are the combinatorial objects considered in [H3] (which were constructed in the kernel of
screening operators).

In sections 5.5 and 6 we suppose that C(z) is invertible (it includes the cases of quantum affine algebras and

quantum toroidal algebras, see section 2). We write C̃(z) = C̃′(z)
d(z) where d(z), C̃ ′

i,j(z) ∈ Z[z±]. For r ∈ Z

let pi,j(r) = [(D(z)C̃ ′(z))i,j ]r where for a Laurent polynomial P (z) ∈ Z[z±] we put P (z) =
∑

r∈Z

[P (z)]rz
r.

5.5.1. Construction of screening operators. Let Y int ⊂ Y be the subset consisting of those χ ∈ Y satisfying
the following property : if λ is the coweight of a monomial of χ there is K ≥ 0 such that k ≥ K implies
that for all i ∈ I , λ ± kriα

∨
i is not the coweight of a monomial of χ.

Lemma 5.8. Y int is a subalgebra of Y and Im(χq) ⊂ Y int.

Consider the free Y int-module Ỹi =
∏

a∈C∗

Y intSi,a and the linear map S̃i : Y int → Ỹi such that, for a

monomial m :

S̃i(m) = m
∑

a∈C∗

ui,a(m)Si,a

In particular S̃i is a derivation. Let us choose a representative a for each class of C∗/q2Z
i and consider:

Yi =
∏

a∈C∗/q2Z

i

Y intSi,a

For i ∈ I and a ∈ C∗ we set:

Ai,a = kiYi,aq−1
i

Yi,aqi

∏

j/Cj,i<0 , r=Cj,i+1,Cj,i+3,...,−Cj,i−1

Y −1
j,aqr ∈ Ã

We have Ai,a ∈ Ã because for j ∈ I : αj(riα
∨
i ) = riCi,j = rjCj,i = rjuj(Ai,a).

We would like to see Yi as a quotient of Ỹi by the relations Si,aqi
= Ai,aSi,aq−1

i
. But the projection

is not defined for all elements of Ỹi because there are infinite sums. However if χ ∈ Y int and m is a
monomial of χ there is a finite number of monomials in χ of the form mA−1

i,aqi
A−1

i,aq3
i

...A−1
i,aqr

i
or of the form

mAi,aq−1
i

A−1

i,aq−3
i

...A−1

i,aq−r
i

. So the projection on Yi is well defined on S̃i(Y
int) ⊂ Ỹi. In particular we can

define by projection of S̃i the ith screening operator Si : Y int → Yi.

The original definition for the finite case is in [FR].
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5.5.2. The morphism τi. Some operators τi (i ∈ I) were defined for the finite case in [FM]. We generalize
the construction and the properties of the operators τi (lemma 5.9 and 5.10).

Let i ∈ I . Denote h⊥
i = {ω ∈ h/αi(ω) = 0}.

Consider formal variables k
(i)
r (r ∈ Z), kω (ω ∈ h), Y ±

i,a (a ∈ C∗), Zj,c (j ∈ I − {i}, c ∈ C∗). Let Ã(i) be
the commutative group of monomials :

m = k
(i)
r(m)kω(m)

∏

a∈C∗

Y
ui,a(m)
i,a

∏

j∈I,j 6=i,c∈C∗

Z
zj,c(m)
j,c

where only a finite number of ui,a(m), zj,c(m), r(m) ∈ Z are non zero, ω(m) ∈ h⊥
i and such that r(m) =

riui(m) = ri

∑

a∈C∗

ui,a(m). The product is defined as for Ã. We call (r(m), ω(m)) ∈ Z × h⊥
i the coweight

of the monomial m.

Let τi : Ã → Ã(i) be the group morphism defined by (j ∈ I , a ∈ C∗, λ ∈ h):

τi(Yj,a) = Y
δi,j

i,a

∏

k 6=i , r∈Z

Z
pj,k(r)
k,aqr , τi(kλ) = k

(i)
αi(λ)kλ−αi(λ)

α∨
i
2

(note that it is a formal definition because Yj,akν(Λj ) ∈ Ã but Yj,a /∈ Ã). It is well defined because for

m ∈ Ã, αi(ω(m)) = riui(m) and αi(ω(m) − αi(ω(m))
α∨

i

2 ) = 0.

Lemma 5.9. The morphism τi is injective and for a ∈ C∗ we have:

τi(Ai,a) = k
(i)
2ri

Yi,aq−1
i

Yi,aqi

Proof: Let m ∈ Ã such that τi(m) = 1. For a ∈ C∗ we have ui,a(m) = ui,a(τi(m)) = 0. For k ∈ I ,
a ∈ C∗ denote uk,a(m)(z) =

∑

r∈Z

uk,aqr (m)zr ∈ Z[z±]. For j ∈ I − {i}, we have :

0 = zj,aqR(τi(m)) =
∑

k∈I,r+r′=R

pk,j(r
′)uk,aqr (m) = [

∑

k∈I

C̃ ′
k,j(z)uk,a(m)(z)]R

As C̃(z) is invertible we get uk,a(m) = 0 for all a ∈ C∗. In particular for j ∈ I we have αj(ω(m)) =

rjuj(m) = 0. But ω(m) − αi(ω(m))
α∨

i

2 = 0 = ω(m) and so m = 1.

For the second point let M = τi(Ai,a). First for b ∈ C∗, ui,b(M) = ui,b(Ai,a) = δa/b,qi
+ δa/b,q−1

i
. For

R ∈ Z and j 6= i we have:

zj,aqR(M) = [(C̃ ′(z)C(z))i,j ]R = [(d(z)D(z))i,j ]R = 0

Finally we have r(M) = riαi(α
∨
i ) = −2ri and ω(M) = riα

∨
i − riαi(α

∨
i )

α∨
i

2 = 0. �

Formally we have τi(ki) = k
(i)
2ri

and for j ∈ I − {i} τi(kj) = k
(i)
Bj,i

k
α

(i)
j

where α
(i)
j = rjα

∨
j −

Bj,i

2 α∨
i . This

motivates the following definition: for (r, ω) ∈ Z × h⊥
i denote :

D(r, ω) = {(r′, ω′) ∈ Z × h⊥i /ω′ = ω −
∑

j∈I,j 6=i

mjα
(i)
j , r′ = r −

∑

j∈I,j 6=i

Bj,imj − 2rik/mj , k ≥ 0}

Define Y int,(i) ⊂ (Ã(i))Z as the set of χ such that :

i) there is a finite number of elements (r1, ω1), ..., (rs, ωs) ∈ Z×h⊥i such that the coweights of monomials
of χ are in

⋃

j=1...s

D(rj , ωj).

ii) for (r, λ) the coweight of a monomial of χ there is K ≥ 0 such that k ≥ K implies that for all j ∈ I ,

j 6= i, (r ± Bj,ik, λ ± kα
(i)
j ) and (r ± 2kri, λ) are not the coweight of a monomial of χ.

In particular Y int,(i) has a structure of Z × h⊥
i -graded Z-algebra.
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The morphism τi can be extended to a unique morphism of Z-algebra τi : Y int → Y int,(i). Denote by χi
q

the morphism of q-characters for the algebra Uqi
(ŝl2).

Lemma 5.10. Consider V ∈ Oint(Uq(ĝ)) and a decomposition τi(χq(V )) =
∑

k

PkQk where

Pk ∈ Z[Y ±
i,ak

(i)
±ri

]a∈C∗, Qk is a monomial in Z[Z±
j,c, kh]j 6=i,a∈C∗,h∈h⊥

i
and all monomials Qk are distinct.

Then there exists a Ûi-module
⊕

k

Vk isomorphic to the restriction of V to Ûi and such that χi
q(Vk) = Pk.

Proof: Let Uq(ĥ)⊥i the subalgebra of Uq(ĝ) generated by the kh (h ∈ h⊥i ), hj,m (j 6= i, m ∈ Z−{0}). We

can apply the proof of lemma 3.4 of [FM] with Ûi and Uq(ĥ)⊥i because :

i) Ûi and Uq(ĥ)⊥i commute in Uq(ĝ)

ii) The image ω − αi(ω)
α∨

i

2 in h⊥i of ω ∈ h suffices to encode the action of the kh (h ∈ h⊥i ) on a vector

of weight ν−1(ω) = λ. Indeed for h ∈ h⊥
i , we have:

λ(h) = (ν−1(h), ν−1(ω)) = ν−1(h)(ω) = ν−1(h)(ω − ω(αi)
α∨

i

2
)

because αi(h) = 0 ⇒ ν−1(α∨
i ) = 0. �

5.5.3. τi and screening operators. In this section we prove that Im(χq) ⊂ Ker(Si) (proposition 5.12) with
a generalization of the proof of Frenkel-Mukhin [FM].

Consider the Y int,(i)-module Ỹ
(i)
i =

∏

a∈C∗

Y int,(i)Si,a and the linear map Si : Y int,(i) → Ỹ
(i)
i such that, for

a monomial m :

Si(m) = m
∑

a∈C∗

ui,a(m)Si,a

In particular Si is a derivation. Consider Y
(i)
i =

∏

a∈C∗/q2Z

i

Y int,(i)Si,a. The Si(Y
int,(i)) ⊂ Ỹ

(i)
i can be

projected in Y
(i)
i by the relations :

Si,aqi
= Yi,aqi

Yi,aq−1
i

k
(i)
2ri

Si,aq−1
i

and we get a derivation that we denote also by Si : Y int,(i) → Y
(i)
i .

We also define a map τi : Yi → Y
(i)
i in an obvious way (with the help of lemma 5.9). We see as in lemma

5.4 of [FM] that:

Lemma 5.11. We have a commutative diagram:

Y int Si−→ Yi

↓ τi ↓ τi

Y int,(i) Si−→ Y
(i)
i

With the help of lemma 5.9, 5.10 and 5.11 we see as in corollary 5.5 of [FM]:

Lemma 5.12. We have Im(χq) ⊂
⋂

i∈I

Ker(Si).

In the following we denote Ki = Ker(Si) and K =
⋂

i∈I

Ki.

Lemma 5.13. An element χ ∈ Y int is in Ki if and only if it can be written in the form χ =
∑

k

PkQk where

Pk ∈ Z[kν(Λi)Yi,a(1 + A−1
i,aqi

)]a∈C∗ , Qk is a monomial in Z[Y ±
j,a, kh]j 6=i,a∈C∗,h∈P∗,⊥

i

and all monomials Qk

are distinct.
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Proof: We use the result for the sl2-case which is proved in [FR]. First an element of this form is in Ki.
Consider χ ∈ Ki and write τi(χ) =

∑

k

P ′
kQ′

k as in lemma 5.10. From lemma 5.11 we have 0 = Si(χ) =

∑

k

Si(P
′
k)Qk. So all Si(P

′
k) = 0 and it follows from the sl2-case that P ′

k ∈ Z[Yi,ak
(i)
ri + Y −1

i,aq2
i

k
(i)
−ri

]a∈C∗ .

The lemma 5.9 lead us to the conclusion. �

5.5.4. Description of Im(χq). Dominant monomials are defined in section 5.3.3. We have:

Lemma 5.14. An element χ ∈ K has at least one dominant monomial.

With the help of lemma 5.13 we can use the proof of lemma 5.6 of [FM] (see also the proof of theorem
4.9 in [H1] at t = 1).

Theorem 5.15. We have Im(χq) = K. Moreover the elements of K are the sums:
∑

m dominant

λmL(m)

where λm = 0 for ω(m) outside the union of a finite number of sets of the form D(µ).

Proof: The inclusion Im(χq) ⊂ K is proved in lemma 5.12. For the other one, consider χ ∈ K. We can
suppose that the weights of χ are in a set D(λ) (because the weights of each L(m) are in a set D(µ)). We
define by induction L(k)(m) ∈ Im(χq) (k ≥ 0) in the following way: we set L(0) =

∑

ω(m)=λ

[χ]mL(m). If

L(k) is defined, we consider the set Ãk+1 of monomials m′ which appear in χ−L(k) such that λ−ω(m′) =
m1r1α

∨
1 + ... + mnrnα∨

n where m1, ..., mn ≥ 0 and m1 + ... + mn = k. We set:

L(k+1) = L(k) +
∑

m′∈Ãk+1

[χ − L(k)]m′L(m′)

Then we set L∞ =
∑

k≥0/m∈Ãk

[L(k)]mL(m) ∈ Im(χq) and it follows from lemma 5.14 that L∞ = χ. �

Note that proposition 5.2 gives that for χq(V ) (V module in Oint(Uq(ĝ))) the λm are non-negative.

Remark: for m ∈ Ã a dominant monomial we prove in the same way that there is a unique F (m) ∈ K such
that m has coefficient 1 in F (m) and m is the unique dominant monomial in F (m). In the finite case an
algorithm was given by Frenkel-Mukhin [FM] to compute the F (m). In [H3] we extended the definition
of the algorithm for generalized Cartan matrix and showed that it is well-defined if i 6= j ⇒ Ci,jCj,i ≤ 3
(see also [H2] for the detailed description of this algorithm at t = 1). Theorem 5.15 allows us to prove
two results announced in [H3] : the algorithm is well defined for

A
(1)
1 (with r1 = r2 = 2) because det(C(z)) = z4 − z2 − z−2 + z−4 6= 0

A
(2)
2 (with r1 = 4, r2 = 1) because det(C(z)) = z5 − z − z−1 + z−5 6= 0

But for A
(1)
1 (with r1 = r2 = 1) we have det(C(z)) = 0; we observed in [H3] that the algorithm is not

well-defined in this case.

6. Drinfel’d new coproduct and fusion product

Our study of combinatorics of q-characters gives a ring structure on Im(χq) (corollary 6.1). As χq is
injective we get an induced ring structure on the Grothendieck group. In this section we prove that it
is a fusion product (theorem 6.2), that is to say that the product of two modules is a module. We use
the Drinfel’d new coproduct (proposition 6.3); as it involves infinite sums, we have to work in a larger
category where the tensor product is well-defined (theorem 6.7). To end the proof of theorem 6.2 we
define specializations of certain forms which allow us to go from the larger category to O(Uq(ĝ)). Note
that in our construction we do not use that C(z) is invertible.
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6.1. Fusion product. As the Si are derivations, theorem 5.15 gives:

Corollary 6.1. Im(χq) is a subring of Y.

Since χq is injective on Rep(Uq(ĝ)), the product of Y gives an induced commutative product ∗ on
Rep(Uq(ĝ)). For (λ, Ψ), (λ′, Ψ′) ∈ P+

l there are Qλ,Ψ,λ′,Ψ′(µ, Φ) ∈ Z such that:

L(λ, Ψ) ∗L(λ′, Ψ′) = L(λ + λ′, ΨΨ′) +
∑

(µ,Φ)∈P+
l

/µ<λ+λ′

Qλ,Ψ,λ′,Ψ′(µ, Φ)L(µ, Φ)

We will interpret this product as a fusion product related to the basis of simple modules : that is to say
we will show that a product of modules is a module (see [F] for generalities on fusion rings and physical
motivations). Let us explain it in more details : consider :

Rep+(Uq(ĝ)) =
⊕

(λ,Ψ)∈P+
l

N.L(λ, Ψ) ⊂ Rep(Uq(ĝ)) =
⊕

(λ,Ψ)∈P+
l

Z.L(λ, Ψ)

Theorem 6.2. The subset Rep+(Uq(ĝ)) ⊂ Rep(Uq(ĝ)) is stable by *.

In this section 6 we prove this theorem by interpreting ∗ with the help of a generalization of the new Drin-
fel’d coproduct. Note that theorem 6.2 means that for (λ, Ψ), (λ′, Ψ′) ∈ P+

l we have Qλ,Ψ,λ′,Ψ′(µ, Φ) ≥ 0.

6.2. Coproduct.

6.2.1. Reminder: case of a quantum affine algebra and Drinfel’d-Jimbo coproduct. As said before the case
of a quantum affine algebra is a very special one because there are two realizations (if we add a central
charge); in particular there is a coproduct on Uq(ĝ), a tensor product on Oint(Uq(ĝ)) and Rep(Uq(ĝ)) is a
ring. It is the product * because it is shown in [FR] that χq is a ring morphism. In particular the tensor
product is commutative. So theorem 6.2 is proved in this case.

6.2.2. General case : new Drinfel’d coproduct. In general we have a coproduct ∆
ĥ

: Uq(ĥ) → Uq(ĥ)⊗Uq(ĥ)

for the commutative algebra Uq(ĥ) defined by (h ∈ P ∗, i ∈ I , m 6= 0):

∆
ĥ
(kh) = kh ⊗ kh , ∆

ĥ
(hi,m) = 1 ⊗ hi,m + hi,m ⊗ 1

In particular we have (i ∈ I, m ≥ 0) : ∆
ĥ
(φ±

i,±m) =
∑

0≤l≤m

φ±
i,±(m−l) ⊗ φ±

i,±l.

No coproduct has been defined for the entire Uq(ĝ). However Drinfel’d (unpublished note, see also

[DI, DF]) defined for Uq( ˆsln) a map which behaves as a new coproduct adapted to the affinization
realization. In this section we use those formulas for general quantum affinizations; as infinite sums are
involved, we use a formal parameter u so that it makes sense.

Let C = C((u)) be the field of Laurent series
∑

r≥R

λru
r (R ∈ Z, λr ∈ C). The algebra Ũq(ĝ) is defined in

section 3.3.1. Consider the C-algebra Ũ ′
q(ĝ) = C ⊗ Ũq(ĝ) (resp. U ′

q(ĝ) = C ⊗ Uq(ĝ)). Let Ũ ′
q(ĝ)⊗̂Ũ ′

q(ĝ) =

(Ũq(ĝ) ⊗C Ũq(ĝ))((u)) be the u-topological completion of Ũ ′
q(ĝ) ⊗C Ũ ′

q(ĝ). It is also a C-algebra.

Proposition 6.3. There is a unique morphism of C-algebra ∆u : Ũ ′
q(ĝ) → Ũ ′

q(ĝ)⊗̂Ũ ′
q(ĝ) such that for

i ∈ I, r ∈ Z, m ≥ 0, h ∈ h:

∆u(x+
i,r) = x+

i,r ⊗ 1 +
∑

l≥0

ur+l(φ−
i,−l ⊗ x+

i,r+l)

∆u(x−
i,r) = ur(1 ⊗ x−

i,r) +
∑

l≥0

ul(x−
i,r−l ⊗ φ+

i,l)

∆u(φ±
i,±m) =

∑

0≤l≤m

u±l(φ±
i,±(m−l) ⊗ φ±

i,±l) , ∆u(kh) = kh ⊗ kh
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Proof: We can easily check the compatibility with relations (11), (12), (13), (14), (15), (16) because ∆u

can also be given in terms of the currents of section 3.2: we have in (Ũ ′
q(ĝ) ⊗C Ũ ′

q(ĝ))[[z, z−1]] :

∆u(x+
i (z)) = x+

i (z) ⊗ 1 + φ−
i (z) ⊗ x+

i (zu) , ∆u(x−
i (z)) = 1 ⊗ x−

i (zu) + x−
i (z) ⊗ φ+

i (zu)

∆u(φ±
i (z)) = φ±

i (z) ⊗ φ±
i (zu)

�

Remark 1 : If C is finite or simply laced then ∆u is compatible with the affine quantum Serre relations
(relations (10)) and can be defined for U ′

q(ĝ) (see [DI] for finite symmetric cases and [E, Gr] for other
finite cases). We conjecture that it is also true for general C, but we do not need it for our purposes.

Remark 2 : let T : Ũq(ĝ) → Ũ ′
q(ĝ) be the Z-gradation morphism defined by T (x±

i,r) = urx±
i,r , T (φ±

i,m) =

umφ±
i,m, T (kh) = kh. The u is put in such a way that ∆u = (Id ⊗ T ) ◦ ∆ where ∆ is the usual new

Drinfel’d coproduct (without u).

Remark 3 : The map ∆u is not coassociative , indeed in (Ũ ′
q(ĝ) ⊗C Ũ ′

q(ĝ) ⊗C Ũ ′
q(ĝ))[z]:

((∆u ⊗ Id) ◦ ∆u)(φ+
i (z)) = φ+

i (z) ⊗ φ+
i (uz) ⊗ φ+

i (uz)

((Id ⊗ ∆u) ◦ ∆u)(φ+
i (z)) = φ+

i (z) ⊗ φ+
i (uz) ⊗ φ+

i (u2z)

Remark 4 : Although is is not defined in a strict sense, the “limit” of ∆u at u = 1 is coassociative. On

Uq(ĥ) the limit at u = 1 makes sense and is ∆
ĥ
.

6.3. Tensor products of representations of Ũ ′
q(ĝ). As the coproduct involves infinite sums, we have

to introduce a category larger than O(Uq(ĝ)) in order to define tensor products:

6.3.1. The category O(Ũ ′
q(ĝ)).

Definition 6.4. The set of l, u-weights Pl,u is the set of couple (λ, Ψ(u)) such that λ ∈ h∗, Ψ(u) =

(Ψ±
i,±m(u))i∈I,m≥0, Ψ±

i,±m(u) ∈ C[u, u−1] and Ψ±
i,0(u) = q

±λ(α∨
i )

i .

Definition 6.5. An object V of the category O(Ũ ′
q(ĝ)) is a C-vector space with a structure of Ũ ′

q(ĝ)-module
such that:

i) V is Uq(h)-diagonalizable

ii) For all λ ∈ h∗, the sub C-vector space Vλ ⊂ V is finite dimensional

iii) there are a finite number of element λ1, ..., λs ∈ h∗ such that the weights of V are in
⋃

j=1...s

D(λj)

iv) for λ ∈ h∗, Vλ =
⊕

(λ,Ψ(u))∈Pl,u

V(λ,Ψ(u)) where:

Vλ,Ψ(u) = {x ∈ Vλ/∃p ∈ N, ∀i ∈ {1, ..., n}, ∀r ≥ 0, (φ±
i,±r − Ψ±

i,±r(u))p.x = 0}

The property iv) is added because C is not algebraically closed.

The scalar extension and the projection Ũq(ĝ) → Uq(ĝ) gives an injection i : O(Uq(ĝ)) → O(Ũ ′
q(ĝ)) such

that for V ∈ O(Uq(ĝ)), i(V ) = V ⊗ C.

Let El,u ⊂ P Z

l,u be defined as El. The formal character of a module V in the category O(Ũ ′
q(ĝ)) is:

chq,u(V ) =
∑

(µ,Γ(u))∈Pl,u

dimC(Vµ,Γ(u))e(µ, Γ(u)) ∈ El,u

We have a map iE : El → El,u such that iE((λ, Ψ)) = (λ, (Ψ±m
i,±m)) and a commutative diagram:

O(Uq(ĝ))
chq

−→ El

↓ i ↓ iE

O(Ũ ′
q(ĝ))

chq,u

−→ El,u
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In an analogous way one defines the category O(U ′
q(ĝ)) and a formal character chq,u on O(U ′

q(ĝ)).

6.3.2. Tensor products. We consider subcategories of O(Ũ ′
q(ĝ)). Let R ∈ Z, R ≥ 0:

Definition 6.6. OR(Ũ ′
q(ĝ)) is the category of modules V ∈ O(Ũ ′

q(ĝ)) such that for all λ ∈ h∗, there is a

C-basis (vλ
α)α of Vλ satisfying :

i) for all m ∈ Z, α, β, the coefficient of x+
i,m.vλ

α on vλ+αi

β (resp. of x−
i,m.vλ

α on vλ−αi

β ) is in C[[u]] if

m ≥ 0, in uRmC[[u]] if m ≤ 0.

ii) for all m ≥ 0, α, β the coefficient of φ−
i,−m.vλ

α on vλ
β is in u−mRC[[u]]

iii) for all m ≥ 0, α, β the coefficient of φ+
i,m.vλ

α on vλ
β is in C[[u]]

Example : For V ∈ O(Uq(ĝ)), we have i(V ) ∈ O0(Ũq(ĝ)).

Theorem 6.7. Let V1 ∈ O(Ũq(ĝ)) and V2 ∈ OR(Ũ ′
q(ĝ)). Then ∆u defines a structure of Ũ ′

q(ĝ)-module

on i(V1) ⊗C V2 which is in OR+1(Ũ ′
q(ĝ)). Moreover the l, u-weights of i(V1) ⊗C V2 are of the form (λ1 +

λ2, γ1(z)γ2(uz)) where (λ1, γ1) is a l-weight of V1 and (λ2, γ2) is a l, u-weight of V2.

Remark : γ(u)(z) = γ1(z)γ2(uz) means that for i ∈ I, m ≥ 0 :

γ±
i,±m(u) =

∑

0≤l≤m

(γ1)i,±l(u)(γ2)i,±(m−l)(u)u±(m−l)

Proof: As the definition of ∆u involves infinite sums, we have to prove that the action formally defined
by ∆u makes sense on V ′

1 ⊗C V2 where we denote V ′
1 = i(V1). Indeed the weight spaces of V ′

1 and V2

are finite dimensional and for λ, µ ∈ h∗ we can use a C-base (v1,λ
α )α of (V1)λ as a C-base of (V ′

1)λ and

the C-basis (v2,µ
α′ ) of (V2)µ given by the definition of OR(Ũ ′

q(ĝ)). So consider λ, µ ∈ h∗, i ∈ I and let us
investigate the coefficients (r ∈ Z, m ≥ 0):

we have x+
i,r.((V

′
1 )λ ⊗ (V2)µ) ⊂ (V ′

1)λ+αi
⊗ (V2)µ ⊕ (V ′

1 )λ ⊗ (V2)µ+αi
.

on (V ′
1)λ ⊗ (V2)µ+αi

: the coefficient of x+
i,m.(v1,λ

α ⊗ v2,µ
α′ ) on v1,λ

β ⊗ v2,µ+αi

β′ is in
∑

l≥0

ur+lC[[u]] ⊂ C[[u]]

if r ≥ 0, in
∑

l≥0

ur+luR(r+l)C[[u]] ⊂ u(R+1)rC[[u]] if r ≤ 0.

on (V ′
1 )λ+αi

⊗ (V2)µ : the coefficient of x+
i,r .(v

1,λ
α ⊗ v2,λ

α′ ) on v1,λ+αi

β ⊗ v2,µ
β′ is in C.

we have x−
i,r.((V

′
1 )λ ⊗ (V2)µ) ⊂ (V ′

1)λ−αi
⊗ (V2)µ ⊕ (V ′

1 )λ ⊗ (V2)µ−αi
.

on (V ′
1)λ ⊗ (V2)µ−αi

: the coefficient of x−
i,r.(v

1,λ
α ⊗ v2,µ

α′ ) on v1,λ
β ⊗ v2,µ−αi

β′ is in urC[[u]] ⊂ C[[u]] if

r ≥ 0, in uruRrC[[u]] if r ≤ 0.

on (V ′
1 )λ−αi

⊗ (V2)µ : the coefficient of x−
i,r .(v

1,λ
α ⊗ v2,µ

α′ ) on v1,λ−αi

β ⊗ v2,µ
β′′ is in

∑

l≥0

ulC[[u]] ⊂ C[[u]].

we have φ±
i,±m.((V ′

1 )λ ⊗ (V2)µ) ⊂ ((V ′
1 )λ ⊗ (V2)µ).

the coefficient of φ+
i,m.(v1,λ

α ⊗ v2,µ
α′ ) on v1,λ

β ⊗ v2,µ
β′ is in

∑

0≤l≤m

ulC[[u]] ⊂ C[[u]].

the coefficient of φ−
i,−m.(v1,λ

α ⊗ v2,µ
α′ ) on v1,λ

β ⊗ v2,µ
β′ is in

∑

0≤l≤m

u−lu−lRC[[u]] ⊂ u−m(R+1)C[[u]].

So we have a structure of Ũ ′
q(ĝ)-module on V ′

1 ⊗C V2. Let us prove that it is in O(Ũ ′
q(ĝ)). We verify the

properties of definition 6.5: i) ii) iii) are clear because the restriction of ∆u to Uq(ĥ) is the restriction
of ∆

ĥ
. For iv) we note that for (λ1, γ1), (λ2, γ2) ∈ Pl,u, the (V ′

1)λ1,γ1 ⊗ (V2)λ2,γ2 is in the pseudo weight

space of l, u-weight (λ1 + λ2, γ1(z)γ2(zu)) because ∆u(φ±
i (z)) = φ±

i (z) ⊗ φ±
i (zu) (it also proves the last

point of the proposition).
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Finally we see in the above computations that the coefficients verify the property of
OR+1(Ũ ′

q(ĝ)), so V ′
1 ⊗C V2 is in OR+1(Ũ ′

q(ĝ)). �

Definition 6.8. For R ≥ 0, we denote ⊗R : O(Uq(ĝ)) × OR(Ũ ′
q(ĝ)) → OR+1(Ũ ′

q(ĝ)) the bilinear map
constructed in theorem 6.7.

See section 6.6 for explicit examples. For R ≥ 2 and V1, V2, ..., VR ∈ O(Uq(ĝ)), one can define the iterated

tensor product V1 ⊗R−2 (V2 ⊗R−3 (... ⊗0 VR))...) which is in OR−1(Ũ ′
q(ĝ)).

6.4. Simple modules of Ũ ′
q(ĝ).

6.4.1. l, u-highest weight modules. For (λ, Ψ(u)) ∈ Pl,u, let M̃(λ, Ψ(u)) be the Verma Ũ ′
q(ĝ) module of

highest weight (λ, Ψ(u)) (it is non trivial thanks to the triangular decomposition of Ũq(ĝ) in lemma 3.10).
So we have an analog of proposition 4.6 : for (λ, Ψ(u)) ∈ Pl,u, there is a unique up to isomorphism simple

Ũ ′
q(ĝ)-module L̃(λ, Ψ(u)) of l, u-highest weight (λ, Ψ(u)) that is to say that there is v ∈ L̃(λ, Ψ(u)) such

that (i ∈ I, r ∈ Z, m ≥ 0, h ∈ h):

x+
i,r.v = 0 , L̃(λ, Ψ(u)) = Ũ ′

q(ĝ).v , φ±
i,±m.v = Ψ±

i,±m(u)v , kh.v = qλ(h).v

In a similar way one define the simple U ′
q(ĝ)-module L(λ, Ψ(u)) of l, u-highest weight (λ, Ψ(u)) (it is non

trivial thanks to theorem 3.2).

Lemma 6.9. For (λ, Ψ(u)) ∈ Pl,u we have an isomorphism of Uq(ĥ)-modules L̃(λ, Ψ(u)) ' L(λ, Ψ(u)).

Proof: Let M̃ ′(λ, Ψ(u)) ⊂ M̃(λ, Ψ(u)) be the maximal proper Ũ ′
q(ĝ)-submodule of M̃ ′(λ, Ψ(u)). It

suffices to prove that τ̃−.1 is included in M̃ ′(λ, Ψ(u)) (see section 3.3.4; it implies that L̃(λ, Ψ(u)) is also
a U ′

q(ĝ)-modules). It is a consequence of lemma 3.11. �

In particular L̃(λ, Ψ(u)) ∈ O(Ũ ′
q(ĝ)) ⇔ L(λ, Ψ(u)) ∈ O(U ′

q(ĝ)) and in this case chq,u(L̃(λ, Ψ(u))) =
chq,u(L(λ, Ψ(u))).

6.4.2. The category Oint(Ũ
′
q(ĝ)).

Definition 6.10. QP +
l,u is the set of (λ, Ψ(u)) ∈ Pl,u satifying the following conditions :

i) for i ∈ I there exist polynomials Qi,u(z) = (1 − zai,1u
bi,1)...(1 − zai,Ni

ubi,Ni ), Ri,u(z) = (1 −

zci,1u
di,1)...(1 − zci,N ′

i
u

di,N′
i ) (ai,j , ci,j ∈ C∗, bi,j , di,j ≥ 0) such that in C[u, u−1][[z]] (resp. in

C[u, u−1][[z−1]]):
∑

r≥0

Ψ±
i,±r(u)z±r = q

deg(Qi,u)−deg(Ri,u)
i

Qi,u(zq−1
i )Ri,u(zqi)

Qi,u(zqi)Ri,u(zq−1
i )

ii) there exist ω ∈ P +, α ∈ Q+ satisfying λ = ω − α.

P+
l,u is the set of (λ, Ψ(u)) ∈ QP +

l,u such that one can choose Ri,u = 1 (in this case we denote Pi,u = Qi,u).

Lemma 6.11. If (λ, Ψ(u)) ∈ P +
l,u then L̃(λ, Ψ(u)) ∈ O(Ũ ′

q(ĝ)). Moreover for (µ, γ(u)) ∈ Pl,u we have

dim(L̃(λ, Ψ(u))µ,γ(u)) 6= 0 ⇒ (µ, γ(u)) ∈ QP +
l,u.

Remark : it follows from lemma 6.9 that we have the same results for L(λ, Ψ(u)) ∈ O(U ′
q(ĝ)).

Proof: Let (λ, Ψ(u)) ∈ P +
l,u and decompose Pi,u(z) in the form :

Pi,u(z) = P
(0)
i (z)P

(1)
i (uz)...P

(R)
i (uRz)

where R ≥ 0, P
(k)
i (z) ∈ C[z], P

(k)
i (0) = 1 for 0 ≤ k ≤ R (R can be taken large enough so that we

have this form for all i ∈ I). For 0 ≤ k ≤ R, set Ψ
(k)
i (z) = q

deg(P
(k)
i

)
i

P
(k)
i

(zq−1
i

)

Pi(zqi)
. For 1 ≤ k ≤ R define
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λk =
∑

i∈I

deg(P
(k)
i )Λi ∈ h∗. Set λ0 = λ −

∑

k=1...R

λk. Then for 0 ≤ k ≤ R the (λk , Ψ(k)) ∈ P+
l and we can

consider L(λk, Ψ(k)) ∈ O(Uq(ĝ)). Let V ∈ OR(Ũ ′
q(ĝ)) be defined by :

V = i(L(λ0, Ψ
(0))) ⊗R−1 (i(L(λ1, Ψ

(1))) ⊗R−2 ...(i(L(λR−1, Ψ
(R−1))) ⊗0 i(L(λR, Ψ(R))))...)

Consider the Ũ ′
q(ĝ) submodule L of V generated by the tensor product of the highest weight vectors.

It is a highest weight module of highest weight (λ, Ψ(u)). So L̃(λ, Ψ(u)) is a quotient of L and so is in

O(Ũ ′
q(ĝ)).

For the second point it follows from proposition 5.4 that the l, u-weight of i(L(λk, Ψ(k))) are in QP+
l,u. So

with the help of the last point of theorem 6.7 we see that the l, u-weights of V are in QP +
l,u and we have

the property for L̃(λ, Ψ(u)). �

Definition 6.12. Let Oint(Ũ
′
q(ĝ)) be the subcategory of modules V ∈ O(Ũ ′

q(ĝ)) whose l, u-weights are in

QP+
l,u.

Lemma 6.13. For a module V ∈ Oint(Ũ
′
q(ĝ)) there are P(λ,Ψ(u)) ≥ 0 ((λ, Ψ(u)) ∈ P +

l,u) such that:

chq,u(V ) =
∑

(λ,Ψ(u))∈P+
l,u

P(λ,Ψ(u))chq,u(L̃(λ, Ψ(u))) =
∑

(λ,Ψ(u))∈P+
l,u

P(λ,Ψ(u))chq,u(L(λ, Ψ(u)))

Proof: Analogous to the proof of proposition 5.2 (the second identity follows from lemma 6.9). �

6.5. C[u±]-forms and specialization.

6.5.1. C[u±]-forms. Let Uu
q (ĝ) = Uq(ĝ) ⊗C C[u±] ⊂ U ′

q(ĝ).

Definition 6.14. A C[u±]-form of a U ′
q(ĝ)-module V is a sub-Uu

q (ĝ)-module L of V such that the map
C ⊗C[u±] L → V is an isomorphism of U ′

q(ĝ)-module.

Note that it means that L generates V as C-vector space and that some vectors which are C[u±]-linearly
independent in L are C-linearly independent in V .

Let us look at some examples:

Proposition 6.15. For (λ, Ψ(u)) ∈ Pl,u and v a highest weight vector of the Verma module M(λ, Ψ(u))
(resp. the simple module L(λ, Ψ(u))), the Uu

q (ĝ)-module Uu
q (ĝ).v is a C[u±]-form of M(λ, Ψ(u)) (resp.

of L(λ, Ψ(u))) which is isomorphic to the Verma (resp. the simple) Uu
q (ĝ)-module of l,u-highest weight

(λ, Ψ(u)).

Proof: As (λ, Ψ(u)) is fixed, we omit it. M is the quotient of C ⊗C Uq(ĝ) by the relations generated

by x±
i,r = φ±

i,±m − Ψ±
i,±m(u) = kh − qλ(h) = 0. So the relations between monomials are in C[u±] and

Uu
q (ĝ).1 ⊂ M is a C[u±]-form of M . Moreover those relations are the same as in the construction of the

Verma Uu
q (ĝ)-module Mu as a quotient of C[u±] ⊗C Uq(ĝ); and so Uu

q (ĝ).1 ' Mu.

Let us look at L. Denote by Lu the simple Uu
q (ĝ)-module of highest weight (λ, Ψ(u)). We have L = M/M ′

(resp. Lu = Mu/M ′u) where M ′ (resp. M ′u) in the maximal proper submodule of M (resp. Mu).

The C-subspace M ′′ of M generated by M ′u is isomorphic to C ⊗C[u±] M
′u (because Mu is a C[u±]-form

of M). As M ′′ has no vector of weight λ, it is a proper submodule of M and M ′′ ⊂ M ′. Suppose that
M ′ 6= M ′′ and consider M ′/M ′′ ⊂ M/M ′′. Mu/M ′u is a C[u±]-form of M/M ′′. Let v be a non zero
highest weight vector of M ′/M ′′ and let us write: v =

∑

α
fα(u)vα where vα ∈ Mu/M ′u and fα(u) ∈ C

(as there is a finite number of fα(u), we can suppose that they are C[u±]-linearly independent). For all
i ∈ I, r ∈ Z, we have x+

i,r.v = 0 and so for all α, x+
i,r .vα = 0. Fix wα ∈ Mu whose image in Mu/M ′u is

vα. As for all i ∈ I, r ∈ Z, x+
i,r.wα ∈ M ′u, Uu

q (ĝ).wα is a proper submodule of Mu and wα ∈ M ′u. So

v = 0, contradiction. So M ′ = M ′′. In particular M ′ ' M ′u ⊗C[u±] C, M ′ ∩ Mu = M ′u.
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For v a highest weight vector of L, the Uu
q (ĝ).v ' Uu

q (ĝ).1 = Mu/(Mu ∩ M ′) = Mu/M ′u = Lu is a

C[u±]-form of L. �

6.5.2. Specializations. Consider p : El,u → El the surjection such that p((λ, Ψ(u))) = (λ, Ψ(1)).

Lemma 6.16. Let V be in O(U ′
q(ĝ)). If L is a C[u±]-form of V then the specialization L′ = L/(1− u)L

of L is in O(Uq(ĝ)) and chq(L
′) = p(chq,u(V )).

Proof: Indeed for (µ, γ(u)) ∈ QPl,u consider Lµ,γ(u) = L∩Vµ,γ(u). As p : L⊗C[u]C → V is an isomorphism,

we have Vµ,γ(u) ' p−1(Vµ,γ(u)) = Lµ,γ(u)⊗C[u]C. In particular Lµ,γ(u) is a free C[u±] of rank dimC(Vµ,γ(u)).
So dimC(L′

µ) = dimC(Vµ), and L′ ∈ O(Uq(ĝ)). We can conclude because:

L′
λ,γ =

⊕

(λ,γ(u))∈p−1((λ,γ))

(Lλ,γ(u)/(u − 1)Lλ,γ(u))

�

6.5.3. Proof of theorem 6.2. For (λ, Ψ(u)) ∈ P +
l,u, it follows from proposition 6.15 and lemma 6.16 that

p(chq,u(L(λ, Ψ(u)))) is of the form chq(L) where L ∈ Oint(Uq(ĝ)), that is to say p(chq,u(L(λ, Ψ(u)))) ∈

chq(Rep+(Uq(ĝ))). So (lemma 6.13) for V ∈ Oint(Ũ
′
q(ĝ)) we have p(chq,u(V )) ∈ chq(Rep+(Uq(ĝ))).

Consider V1, V2 ∈ Oint(Uq(ĝ)). We have seen that p(chq,u(i(V1) ⊗0 i(V2)) ∈ chq(Rep+(Uq(ĝ))). But :

p(chq,u(i(V1) ⊗0 i(V2)) = chq(V1)chq(V2)

because the specialization of ∆u on Uq(ĥ) at u = 1 is ∆
ĥ
. This ends the proof of theorem 6.2. �

6.6. Example. We study in detail an example in the case g = sl2 where everything is computable thanks

to Jimbo’s evaluation morphism (see [CP3, CP4]). In this case we have Uq(ŝl2) = Ũq(ŝl2).

For a ∈ C∗ consider V = L(1− za) ∈ Oint(Uq(ŝl2)). V is two dimensional V = Cv0 ⊕ Cv1 and for r ∈ Z,

m ≥ 1 the action of Uq(ŝl2) is given in the following table:

v0 v1

x+
r 0 arv0

x−
r arv1 0

φ±
±m ±(q − q−1)a±mv0 ∓(q − q−1)a±mv1

k± q±v0 q∓v1

φ±(z) q 1−q−2az
1−az v0 q−1 1−q2az

1−az v1

Remark : in the table φ±(z) ∈ Uq(ĝ)[[z±]] acts on V [[z±]].

For a, b ∈ C∗, let V = L(1−za), W = L(1−zb) ∈ Oint(Uq(ĝ)). Consider basis V = Cv0⊕Cv1, W = Cw0⊕

Cw1 as in the previous table. The tensor product ⊗0 defines an action of U ′
q(ŝl2) on X = i(V ) ⊗C i(W )

(see theorem 6.7). X is a 4 dimensional C-vector space of base {v0 ⊗w0, v1 ⊗w0, v0 ⊗w1, v1 ⊗w1}. The

action of U ′
q(ŝl2) is given by (r ∈ Z):

v0 ⊗ w0 v1 ⊗ w0

x+
r 0 ar(v0 ⊗ w0)

x−
r urbr(v0 ⊗ w1) + arq 1−q−2a−1ub

1−a−1ub (v1 ⊗ w0) urbr(v1 ⊗ w1)

φ±(z) q2 (1−q−2az)(1−q−2buz)
(1−az)(1−buz) (v0 ⊗ w0)

(1−q2az)(1−q−2buz)
(1−az)(1−buz) (v1 ⊗ w0)

v0 ⊗ w1 v1 ⊗ w1

x+
r brur 1−q2a−1bu

1−uba−1 (v0 ⊗ w0) ar(v0 ⊗ w1) + brurq 1−q−2a−1bu
1−uba−1 (v1 ⊗ w0)

x−
r arq−1 1−q2ua−1b

1−a−1ub (v1 ⊗ w1) 0

φ±(z) (1−q−2az)(1−q2buz)
(1−az)(1−buz) (v0 ⊗ w1) q−2 (1−q2az)(1−q2buz)

(1−az)(1−buz) (v1 ⊗ w1)



30 DAVID HERNANDEZ

Remark : in the table φ±(z) ∈ Uq(ĝ)[[z±]] acts on X [[z±]].

Consider the l-weights γa, γ′
a, γb, γ

′
b ∈ Pl (the λ ∈ h∗ can be omitted because sl2 is finite) :

γ±
a (z) = q

1− q−2az

1 − az
, γ′±

a (z) = q−1 1 − q2az

1 − az
, γ±

b (z) = q
1 − q−2bz

1 − bz
, γ′±

b (z) = q−1 1 − q2bz

1 − bz

Consider also γa(z)γb(uz), γ′
a(z)γb(uz), γa(z)γ′

b(uz), γ′
a(z)γ′

b(uz) ∈ Pl,u. We see that :

chq,u(X) = e(γa(z)γb(uz)) + e(γ′
a(z)γb(uz)) + e(γa(z)γ′

b(uz)) + e(γa(z)γ′
b(uz))

Those l, u-weights are distinct, the l, u-weights spaces are 1 dimensional:

X = (X)γa(z)γb(uz) ⊕ (X)γ′
a(z)γb(uz) ⊕ (X)γa(z)γ′

b
(uz) ⊕ (X)γ′

a(z)γ′
b
(uz)

We see that X is of highest weight γa(z)γb(uz) ∈ Pl,u. Let us prove that it is simple : indeed X
has no proper submodule : if for all r ∈ Z, x+

r .(α(v1 ⊗ w0) + β(v0 ⊗ w1)) = 0, then for all r ∈ Z,

αar+βbrur 1−q2a−1bu
1−uba−1 = 0. In particular α+β 1−q2a−1bu

1−uba−1 = 0 and ar−brur = 0 for all r ∈ Z, impossible. So

X ' L(γa(z)γb(uz)) as a U ′
q(ŝl2)-module. It follows from proposition 6.15 that X̃ = Uu

q (ĝ).(v0 ⊗w0) ⊂ X

is a C[u±]-form of X .

Let us look explicitly at this C[u±]-form : consider e1, e2, e3, e4 ∈ X̃ defined by:

e1 = v0 ⊗ w0 , e2 = x−
0 .e1 , e3 = −a−1x−

1 .e1 + e2 , e4 = qx−
0 .e2

We have the following formulas:

e1 = v0 ⊗ w0 , e2 = (v0 ⊗ w1) + q
1 − q−2a−1bu

1 − a−1ub
(v1 ⊗ w0) , e3 = (1 − uba−1)(v0 ⊗ w1) , e4 = (v1 ⊗ w1)

Moreover the action of Uu
q (ĝ) is given by (r ∈ Z):

e1 e2

x+
r 0 (qar 1−(a−1ub)r+1

1−a−1ub − q−1buar−1 1−(a−1ub)r−1

1−a−1ub )e1

x−
r ar(e2 −

1−(a−1ub)r

1−a−1ub e3) (q−1ar 1−(a−1ub)r+1

1−a−1ub − qbuar−1 1−(a−1ub)r−1

1−a−1ub )e4

φ±(z) q2 (1−q−2az)(1−q−2buz)
(1−az)(1−buz) e1

(1−q2az)(1−q−2buz)
(1−az)(1−buz) e2 + az(q2−q−2)

(1−az)(1−buz)e3

e3 e4

x+
r brurq−1(1 − q2a−1bu)e1 brure2 + ar 1−(uba−1)r

1−uba−1 e3

x−
r arq−1(1 − q2ua−1b)e4 0

φ±(z) (1−q−2az)(1−q2buz)
(1−az)(1−buz) e3 q−2 (1−q2az)(1−q2buz)

(1−az)(1−buz) e4

In particular we see that C[u±]e1 ⊕ C[u±]e2 ⊕ C[u±]e3 ⊕ C[u±]e4 is stable by the action of Uu
q (ĝ), so is

equal to X̃. So we have verified that X ' X̃ ⊗C[u±] C.

Let us describe the specialization of X̃ at u = 1 : let X̃ ′ = Ce1 ⊕ Ce2 ⊕ Ce3 ⊕ Ce4. The action of Uq(ĝ)

on X̃ ′ is given by (for z ∈ C, r ∈ Z, we denote [z]′r = 1−zr

1−z ∈ Z[z±] (z 6= 1) and [1]′r = r):

e1 e2

x+
r 0 (qar[a−1b]′r+1 − q−1bar−1[a−1b]′r−1)e1

x−
r ar(e2 − [a−1b]′re3) (q−1ar[a−1b]′r+1 − qbar−1[a−1b]′r−1)e4

φ±(z) q2 (1−q−2az)(1−q−2bz)
(1−az)(1−bz) e1

(1−q2az)(1−q−2bz)
(1−az)(1−bz) e2 + az(q2−q−2)

(1−az)(1−bz)e3

e3 e4

x+
r brq−1(1 − q2a−1b)e1 bre2 + ar[a−1b]′re3

x−
r amq−1(1 − q2a−1b)e4 0

φ±(z) (1−q−2az)(1−q2bz)
(1−az)(1−bz) e3 q−2 (1−q2az)(1−q2bz)

(1−az)(1−bz) e4
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We see that X̃ ′ = Uq(ĝ).e1. Moreover if ab−1 /∈ {q2, q−2} : X̃ ′ has no proper submodule because the
formula x+

m(αe2 + βe3) = 0 means that for all r ∈ Z:

α(qar[a−1b]r+1 − q−1bar−1[a−1b]r) + βbrq−1(1 − q2a−1b) = 0

which is possible only if ab−1 ∈ {q2, q−2} or α = β = 0. So:

if ab−1 /∈ {q2, q−2}, X̃ ′ ' L(γaγb) is simple and :

chq(V )chq(W ) = chq(X̃
′) = chq(L(γaγb))

if ab−1 = q2 (resp. ab−1 = q−2), Ce3 ⊂ X̃ ′ (resp. C((q2 − 1)e2 + e3) ⊂ X̃ ′) is a submodule of X̃ ′

isomorphic to L(1) and :

chq(V )chq(W ) = chq(X̃
′) = chq(L(γaγb)) + chq(L(1))
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