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Abstract. We prove the Kirillov-Reshetikhin conjecture for all untwisted quantum affine alge-
bras : we prove that the character of Kirillov-Reshetikhin modules solve the Q-system and we give
an explicit formula for the character of their tensor products. In the proof we show that Kirillov-
Reshetikhin modules are special in the sense of monomials and that their q-characters solve the
T -system (functional relations appearing in the study of solvable lattice models). Moreover we
prove that the T -system can be written in the form of an exact sequence. For simply-laced cases,
these results were proved by Nakajima in [31, 32] with geometric arguments (main result of [31])
which are not available in general. The proof we use is different and purely algebraic, and so
can be extended uniformly to non simply-laced cases.

2000 Mathematics Subject Classification: Primary 17B37, Secondary 81R50, 82B23.

1. Introduction

Let Uq(ĝ) be an untwisted quantum affine algebra of rank n. The Kirillov-Reshetikhin modules
form a certain infinite class of simple finite dimensional representations of Uq(ĝ). The main question
answered in this paper is the following : what it is the character of the Kirillov-Reshetikhin modules
and of their tensor products for the quantum group of finite type Uq(g) ⊂ Uq(ĝ) ? This problem
goes back to 1931 as Bethe [1] solved it for certain modules of type A1 in another language. The
methods to solve physical models involved here are now known as “Bethe Ansatz”. In the 80s, in
a serie of fundamental and striking papers, Kirillov and Reshetikhin [29, 20, 21, 22] solved the
problem for type A and proposed formulas for all types by analyzing the Bethe Ansatz. These
papers became the starting point of an intense research. The description of these characters is
called the Kirillov-Reshetikhin conjecture.

Let us describe the conjecture and recall some previous results on this problem in more details :

The Kirillov-Reshetikhin modules are simple l-highest weight modules (notion analog to the
notion of highest weight module adapted to the Drinfeld realization of quantum affine algebras, see
the definition 2.6). They are characterized by their Drinfeld polynomials (Pj(u))1≤j≤n (analogs of
the highest weight) which are of the form (qi = qri , see section 2):

Pi(u) = (1 − au)(1 − aq2
i u)...(1 − q2k−2

i u) , and for j 6= i : Pj(u) = 0

(for k = 1 the Kirillov-Reshetikhin modules are called fundamental representations). The Kirillov-
Reshetikhin conjecture predicts the character of these modules and of their tensor products for
the subalgebra Uq(g) ⊂ Uq(ĝ) (Uq(g) is a quantum Kac-Moody algebra of finite type) : in [29]
conjectural formulas were given for these characters (they were obtained by observation of the
Bethe Ansatz related to solvable lattice models). A conjectural induction rule called Q-system (see
the theorem 3.3) was also given in [29] (the Q-system for exceptional types was given in [22]). We
will denote by F(ν) the formulas for the characters (see definition 3.1; we use here the version of
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[20, 21, 16, 27]. The version of [29] is slightly different because the definition of binomial coefficients
is a little changed, see remark 1.3 of [27]). The Kirillov-Reshetikhin conjecture can be stated in
the following form (see [27]) : the characters of Kirillov-Reshetikhin modules solve the Q-system
and any of their tensors products are given by the formulas F(ν). There are many results for these
conjectures and related problems (see [27] for an historic and a guide through the huge literature
on this subject; to name a few of very interesting recent ones see [23, 16, 25, 3, 31, 32]), but no
proof for all types.

In [16] it was proved that the Q-system implies the formulas F(ν) (a certain asymptotic property,
simplified in [25], is also needed). In [26] functional relations called T -system were defined (they
are motivated by the observation of transfer matrices in solvable lattice models). Transposed in
the language of Frenkel-Reshetikhin q-characters (analogs of characters for quantum affine algebras
introduced in [11]; see also [24]), and motivated by the relations between q-characters and Bethe-
Anzatz in [11], it was naturally conjectured that the q-characters of Kirillov-Reshetikhin modules
solve the T -system [28] (see the theorem 3.4 for explicit definition of the T -systems). As in terms
of usual characters the T -system becomes the Q-system, this conjecture combined with the results
of [16, 25] implies the Kirillov-Reshetikhin conjecture.

In general there is no explicit formula for q-characters of finite dimensional simple modules. How-
ever Frenkel and Mukhin [10] defined an algorithm to compute the q-character of a class of simple
modules (satisfying the “special” property, term defined in [31], see below), and Nakajima [31]
defined an algorithm to compute the q-character of arbitrary simple modules in simply-laced cases.
Although in general no explicit formula has been obtained from them (they are very complicated),
in some cases they give useful informations.

In particular Nakajima [31, 32] made a remarkable advance by proving the Kirillov-Reshetikhin
conjecture and T -systems in simply-laced cases : using the main result of [31] (the algorithm) he
proved that in simply-laced cases the Kirillov-Reshetikhin modules are special and noticed that
this property is useful in the study of these modules (the algorithm of [31] is drastically simplified
in this situation). He also proved in [32] that the T -systems that he established can be written in
the form of exact sequences.

The main result of [31] is based on the study of quiver varieties [30] and is not known in non
simply-laced cases (see the conjecture of [12]), and so Nakajima’s proof can not be used for all
types.

In the present paper we propose a general uniform proof for all types of these conjectures
(Kirillov-Reshetikhin conjecture, special property, T -systems and exact sequence). Our proof is
purely algebraic (the results of [31] are not used) and so can be extended to non simply-laced cases.

Let us describe the results and methods of this paper in more details :

The q-characters morphism introduced by Frenkel and Reshetikhin [11] for finite dimensional mod-
ules of quantum affine algebras is a ring morphism χq : Rep(Uq(ĝ)) → Z[Y ±

i,a]i∈I,a∈C∗ that describes

the decomposition of a representation in l-weight spaces for the Cartan subalgebra Uq(ĥ) ⊂ Uq(ĝ).

So the monomials m =
∏

i∈I,a∈C∗

Y
ui,a(m)
i,a of the Laurent polynomials ring Z[Y ±

i,a]i∈I,a∈C∗ are analogs

of weight for quantum affine algebras. Note that we can get the usual character of a representation
V : it is equal to (β ◦ χq)(V ) where β(m) =

∏

i∈I,a∈C∗

eui,a(m)Λi (Λi is a fundamental weight). So to

prove the Kirillov-Reshetikhin conjectures it suffices to get enough information on the q-character
of Kirillov-Reshetikhin modules. Although one can not give a formula from it, the algorithm
of Frenkel and Mukhin [10] works for special modules (ie. with a unique dominant monomial
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(ui,a(m) ≥ 0) in the corresponding q-character). So there are two points in our proof : first we
prove that the Kirillov-Reshetikhin modules are special; then we extract enough information from
this property (and the algorithm) to prove the T -system (and the Kirillov-Reshetikhin conjecture).

First point : the Kirillov-Reshetikhin modules are special. The problem of determining which
modules are special is not easy in general, as we do not know a priori how to compute the q-
character otherwise than having the explicit action of the Cartan subalgebra (the fundamental
representations are special [11, 10, 30], and in simply-laced cases the Kirillov-Reshetikhin modules
are special [31, 32]). In [14] we proposed a new method to prove a certain “cone” property for
simple representations of general quantum affinizations. This method is used in a fundamental
way in this paper : it is based on an induction argument and the study of Weyl-module of type
sl2 (Weyl modules are some maximal finite dimensional representations of l-highest weight, see
[8]). Adapting this argument, one gets information on what kind of monomials can appear in the
q-character of a simple module, and prove that Kirillov-Reshetikhin modules are special for all
types.

Second point : the q-characters of Kirillov-Reshetikhin modules solve the T -system. The "func-
tional" relations of the T -system take place in Im(χq). This space is known to be

⋂

i∈I

Ker(Si) where

the Si are the screening operators [11, 10, 30]. In particular an element of Im(χq) is character-
ized by his dominant monomials. So we have to know what are the dominant monomials in each
member of the equality of the T -system, and what are the multiplicities. For this point we can
get informations from the fact that the Kirillov-Reshetikhin modules are special : a product of
Kirillov-Reshetikhin modules can only have some specific kinds of dominant monomials. With the
help of an induction argument and the Frenkel-Mukhin algorithm, we achieve the goal of proving
the conjectures.

Complementary result : the exact sequence. The T -system is a relation in the Grothendieck
ring. As the category of finite dimensional representations of Uq(ĝ) is not semi-simple, it can not
be directly transposed in terms of modules. However we get an exact sequence (generalizing [32])
by proving that a certain tensor product of Kirillov-Reshetikhin modules is simple, and by using
a theorem of Chari [4] and Kashiwara [19] that proves that a certain tensor product is l-highest
weight.

For a geometric side, in analogy with the simply-laced cases, our result gives an explicit formula
of what would be the Euler number of a “quiver variety” in non simply-laced cases (a construction
of such a variety is not known yet).

Note that the methods of our proof may also be used to prove the conjectures of [15] for twisted
cases, and to establish a T -system for representations of general quantum affinizations (such as
quantum toroidal algebras) considered in [13]. We let these points for another paper.

Note that for classical type ABCD, the formulas F(ν) for the character of Kirillov-Reshetikhin
modules can be written in another “numerical” form, see the theorem 7.1 of [16] (such formulas
were first conjectured in [29]). So the results of this paper also imply these formulas.

Let us describe the organization of this paper :

In section 2 we give backgrounds on quantum Kac-Moody algebras, Drinfeld realization, finite
dimensional representations of quantum affine algebras and q-characters. In section 3 we give the
Kirillov-Reshetikhin conjecture, Q-systems and T -systems : as proved in [16, 25] the formulas F(ν)
(theorem 3.2) are a consequence of the Q-system (theorem 3.3). This Q-system is a consequence of
the T -system (theorem 3.4) that we establish in general by proving that the Kirillov-Reshetikhin
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modules are special (theorem 4.1) in section 4. The end of the proof of the theorem 3.4 is given in
the section 5. In the section 6 we prove that the T -system can be written in the form of an exact
sequence (theorem 6.1). In the section 7 we give formulas of the T -system for each type.

Acknowledgments : A part of this paper was written when the author visited the RIMS
(Kyoto) in the summer of 2004. He is very grateful to Hiraku Nakajima for this invitation, for his
help in the course of the preparation of this paper and for encouraging him to prove the Kirillov-
Reshetikhin conjecture; his precious comments on a previous version of this paper improved the
clarity of the proofs. The author would also like to thank Edward Frenkel, Nicolai Reshetikhin
and Marc Rosso for their support.

2. Background

2.1. Cartan matrix and quantized Cartan matrix. Let C = (Ci,j)1≤i,j≤n be a Cartan matrix
of finite type. We denote I = {1, ..., n}. C is symmetrizable : there is a matrix D = diag(r1, ..., rn)
(ri ∈ N∗) such that B = DC is symmetric. In particular if C is symmetric then it D = In

(simply-laced case). We consider a realization (h, Π, Π∨) of C (see [18]): h is a n dimensional
Q-vector space, Π = {α1, ..., αn} ⊂ h∗ (set of the simple roots) and Π∨ = {α∨

1 , ..., α∨
n} ⊂ h (set

of simple coroots) are set such that for 1 ≤ i, j ≤ n: αj(α
∨
i ) = Ci,j . Let Λ1, ..., Λn ∈ h∗ (resp.

Λ∨
1 , ..., Λ∨

n ∈ h) be the the fundamental weights (resp. coweights) : Λi(α
∨
j ) = αi(Λ

∨
j ) = δi,j .

Denote P = {λ ∈ h∗/∀i ∈ I, λ(α∨
i ) ∈ Z} the set of weights and P + = {λ ∈ P/∀i ∈ I, λ(α∨

i ) ≥ 0}
the set of dominant weights. For example we have α1, ..., αn ∈ P and Λ1, ..., Λn ∈ P+. Denote
Q =

⊕

i∈I

Zαi ⊂ P the root lattice, Q+ =
∑

i∈I

Nαi ⊂ Q, ∆ the set of roots and ∆+ the set of positive

roots. For λ, µ ∈ h∗, denote λ ≥ µ if λ − µ ∈ Q+. Let ν : h∗ → h linear such that for all i ∈ I we
have ν(αi) = riα

∨
i . For λ, µ ∈ h∗, λ(ν(µ)) = µ(ν(λ)).

In the following we suppose that q ∈ C∗ is not a root of unity. We denote qi = qri and for
l ∈ Z, r ≥ 0, m ≥ m′ ≥ 0 we define in Z[q±] :

[l]q =
ql − q−l

q − q−1
∈ Z[q±] , [r]q ! = [r]q [r − 1]q...[1]q ,

[

m
m′

]

q

=
[m]q !

[m − m′]q ![m′]q !
.

Let C(z) be the quantized Cartan matrix defined by (i 6= j ∈ I):

Ci,i(z) = zi + z−1
i , Ci,j(z) = [Ci,j ]z

C(z) is invertible (see [11]). We denote by C̃(z) the inverse matrix of C(z) and D(z) the diagonal
matrix such that for i, j ∈ I , Di,j(z) = δi,j [ri]z.

2.2. Quantum algebras.

2.2.1. Quantum groups.

Definition 2.1. The quantum group Uq(g) is the C-algebra with generators k±1
i , x±

i (i ∈ I) and
relations:

kikj = kjki , kix
±
j = q

±Ci,j

i x±
j ki,

[x+
i , x−

j ] = δi,j
ki − k−1

i

qi − q−1
i

,

∑

r=0...1−Ci,j

(−1)r

[

1− Ci,j

r

]

qi

(x±
i )1−Ci,j−rx±

j (x±
i )r = 0 (for i 6= j).
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This algebra was introduced independently by Drinfeld [9] and Jimbo [17]. It is remarkable that
one can define a Hopf algebra structure on Uq(g) by :

∆(ki) = ki ⊗ ki,

∆(x+
i ) = x+

i ⊗ 1 + ki ⊗ x+
i , ∆(x−

i ) = x−
i ⊗ k−1

i + 1⊗ x−
i ,

S(ki) = k−1
i , S(x+

i ) = −x+
i k−1

i , S(x−
i ) = −kix

−
i ,

ε(ki) = 1 , ε(x+
i ) = ε(x−

i ) = 0.

Let Uq(h) the commutative subalgebra of Uq(g) generated by the k±1
i (i ∈ I).

For V a Uq(h)-module and ω ∈ P we denote by Vω the weight space of weight ω:

Vω = {v ∈ V/∀i ∈ I, ki.v = q
ω(α∨

i )
i v}.

In particular we have x±
i .Vω ⊂ Vω±αi

.

We say that V is Uq(h)-diagonalizable if V =
⊕

ω∈P

Vω (in particular V is of type 1).

For V a finite dimensional Uq(h)-diagonalizable module we set χ(V ) =
∑

ω∈P

dim(Vω)eω ∈ Z[eω ]ω∈P

the usual character.

2.2.2. Quantum loop algebras. We will use the second realization (Drinfeld realization) of the
quantum loop algebra Uq(Lg) (subquotient of the quantum affine algebra Uq(ĝ)) :

Definition 2.2. Uq(Lg) is the algebra with generators x±
i,r (i ∈ I, r ∈ Z), k±1

i (i ∈ I), hi,m

(i ∈ I, m ∈ Z − {0}) and the following relations (i, j ∈ I, r, r′ ∈ Z, m ∈ Z − {0}):

[ki, kj ] = [kh, hj,m] = [hi,m, hj,m′ ] = 0,

kix
±
j,r = q

±Ci,j

i x±
j,rki,

[hi,m, x±
j,r] = ±

1

m
[mBi,j ]qc

|m|/2x±
j,m+r,

[x+
i,r , x

−
j,r′ ] = δi,j

φ+
i,r+r′ − φ−

i,r+r′

qi − q−1
i

,

x±
i,r+1x

±
j,r′ − q±Bi,j x±

j,r′x
±
i,r+1 = q±Bi,j x±

i,rx
±
j,r′+1 − x±

j,r′+1x
±
i,r ,

∑

π∈Σs

∑

k=0..s

(−1)k

[

s
k

]

qi

x±
i,rπ(1)

...x±
i,rπ(k)

x±
j,r′x

±
i,rπ(k+1)

...x±
i,rπ(s)

= 0,

where the last relation holds for all i 6= j, s = 1−Ci,j, all sequences of integers r1, ..., rs. Σs is the
symmetric group on s letters. For i ∈ I and m ∈ Z, φ±

i,m ∈ Uq(Lg) is determined by the formal

power series in Uq(Lg)[[z]] (resp. in Uq(Lg)[[z−1]]):
∑

m≥0

φ±
i,±mz±m = k±1

i exp(±(q − q−1)
∑

m′≥1

hi,±m′z±m′

)

and φ+
i,m = 0 for m < 0, φ−

i,m = 0 for m > 0.

Uq(Lg) has a structure of Hopf algebra (from the Hopf algebra structure of Uq(ĝ)).

For J ⊂ I we denote by gJ the semi-simple Lie algebra of Cartan matrix (Ci,j)i,j∈J . We have
Uq(LgJ ) ⊂ Uq(Lg) and for i ∈ I , Uq(Lgi) ' Uqi

(Lsl2).
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2.3. Finite dimensional representations of quantum loop algebras. Denote by Rep(Uq(Lg))
the Grothendieck ring of finite dimensional representations of Uq(Lg).

2.3.1. Monomials and q-characters. The subalgebra Uq(Lh) ⊂ Uq(Lg) generated by the φ±
i,±m, k±1

i

is commutative, so for V a Uq(Lg)-module we have :

V =
⊕

γ=(γ±
i,±m

)i∈I,m≥0

Vγ

where : Vγ = {v ∈ V/∃p ≥ 0, ∀i ∈ I, m ≥ 0, (φ±
i,±m − γ±

i,±m)p.v = 0}.

One can prove [11] that γ satisfies in C[[u]] (resp. in C[[u−1]]) :

(1)
∑

m≥0

γ±
i,±mu±m = qdeg(Qi)−deg(Ri)

Qi(uq−1
i )Ri(uqi)

Qi(uqi)Ri(uq−1
i )

.

The Frenkel-Reshetikhin q-characters morphism χq [11] encodes the l-weight γ of Uq(Lh) (see also
[24]). It is an injective ring morphism :

χq : Rep(Uq(Lg)) → Z[Y ±
i,a]i∈I,a∈C∗ , χq(V ) =

∑

γ

dim(Vγ)mγ

where

mγ =
∏

i∈I,a∈C∗

Y
qi,a−ri,a

i,a , Qi(u) =
∏

a∈C∗

(1 − ua)qi,a , Ri(u) =
∏

a∈C∗

(1 − ua)ri,a .

The mγ are called monomials or l-weight (they are analogs of weight) and we denote Vγ = Vmγ
.

We denote by A the set of monomials of Z[Y ±
i,a]i∈I,a∈C∗ .

For J ⊂ I , χJ
q is the morphism of q-characters for Uq(LgJ ) ⊂ Uq(Lg).

For a monomial m =
∏

i∈I,a∈C∗

Y
ui,a(m)
i,a denote ω(m) =

∑

i∈I,a∈C∗

ui,a(m)Λi. m is said to be J-

dominant if for all j ∈ J, a ∈ C∗ we have uj,a(m) ≥ 0. An I-dominant monomials is said to be
dominant. BJ is the set of J-dominant monomials, B is the set of dominant monomials.

Note that χq, χ
J
q can also be defined for finite dimensional Uq(Lh)-modules in the same way.

In the following for M a finite dimensional Uq(Lg)-module, we denote by M(M) the set of mono-
mials of χq(M).

For i ∈ I, a ∈ C∗ we set :

(2) Ai,a = Yi,aq−1
i

Yi,aqi

∏

j/Cj,i=−1

Y −1
j,a

∏

j/Cj,i=−2

Y −1
j,aq−1Y

−1
j,aq

∏

j/Cj,i=−3

Y −1
j,aq2Y

−1
j,a Y −1

j,aq−2 .

As the A−1
i,a are algebraically independent [11] (because C(z) is invertible), for M a product of A−1

i,a

we can define vi,a(M) ≥ 0 by M =
∏

i∈I,a∈C∗

A
−vi,a(m)
i,a . We put v(M) =

∑

i∈I,a∈C∗

vi,a(m).

For m, m′ ∈ A, we denote m ≤ m′ if m′m−1 is a product of Ai,a (i ∈ I, a ∈ C∗).

For λ ∈ −Q+ we set v(λ) = −λ(Λ∨
1 + ...+Λ∨

n). For M a product of A−1
i,a , we have v(M) = v(ω(λ)).

Definition 2.3. [10] A monomial m ∈ A − {1} is said to be right-negative if for all a ∈ C∗, for
L = max{l ∈ Z/∃i ∈ I, ui,aqL(m) 6= 0}, we have ∀j ∈ I, uj,aqL(m) 6= 0 ⇒ uj,aqL(m) < 0.

Note that a right-negative monomial is not dominant.
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Lemma 2.4. [10] 1) For i ∈ I, a ∈ C∗, A−1
i,a is right-negative.

2) A product of right-negative monomials is right-negative.

3) If m is right-negative, then m′ ≤ m implies that m′ is right-negative.

Let β : Z[Y ±
j,b]j∈I,b∈C∗ → Z[eω]ω∈P be the ring morphism such that β(m) = eω(m).

Proposition 2.5. [11] For a module V ∈ Rep(Uq(Lg)), let Res(V ) be the restricted Uq(g)-module.
We have (β ◦ χq)(V ) = χ(Res(V )).

2.3.2. l-highest weight representations. The irreducible finite dimensional Uq(Lg)-modules have
been classified by Chari-Pressley. They are parameterized by dominant monomials :

Definition 2.6. A Uq(Lg)-module V is said to be of l-highest weight m ∈ A if there is v ∈ Vm

such that V = Uq(Lg)−.v and ∀i ∈ I, m ∈ Z, x+
i,m.v = 0.

For m ∈ A, there is a unique simple module L(m) of l-highest weight m.

Theorem 2.7. [7] The dimension of L(m) is finite if and only if m ∈ B.

Definition 2.8. For i ∈ I, a ∈ C∗, k ≥ 1, the Kirillov-Reshetikhin module W
(i)
k,a is the simple

Uq(Lg)-modules of l-highest weight m
(i)
k,a =

∏

s=1...k

Yi,aq2s−2
i

.

We denote by W
(i)
0,a the trivial representation (it is of dimension 1). For i ∈ I and a ∈ C∗, W

(i)
1,a is

called a fundamental representation and is denoted by Vi,a.

The monomials m1 = m
(i)
k1,a1

, m2 = m
(i)
k2,a2

are said to be in special position if the monomial

m3 =
∏

a∈C∗

Y
max(ui,a(m1),ui,a(m2))
i,a is of the form m3 = m

(i)
k3,a3

and m3 6= m1, m3 6= m2.

A normal writing of an dominant monomial m is a product decomposition m =
∏

i=1,...,L

m
(il)
kl,al

such

that for l 6= l′, if il = il′ then m
(il)
kl,al

, m
(il′ )
kl′ ,al′

are not in special position. Any dominant monomial

has a unique normal writing up to permuting the monomials (see [7]).

It follows from the study of the representations of Uq(Lsl2) in [5, 6, 11] that :

Proposition 2.9. Suppose that g = sl2.

(1) Wk,a is of dimension k + 1 and :

χq(Wk,a) = mk,a(1 + A−1
aq2k−1(1 + A−1

aq2(k−1)−1 (1 + ...(1 + A−1
aq2−1 ))...).

(2) L(Ya) ⊗ L(Yaq2) ⊗ ... ⊗ L(Yaq2(k−1) ) is of dimension 2k and of q-character :

mk,a(1 + A−1
aq )(1 + A−1

aq3)...(1 + A−1
aq2k−1 ).

In particular all l-weight spaces are of dimension 1.

(3) for m a dominant monomial and m = mk1,a1 ...mkl,al
a normal writing we have :

L(m) ' Wk1,a1 ⊗ ... ⊗ Wkl,al
.
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2.3.3. Complementary reminders.

Definition 2.10. [31] A Uq(Lg)-module is said to be special if his q-character has a unique dom-
inant monomial.

Note that a special module is a simple l-highest weight module. But in general all simple l-highest
weight module are not special.

For example for g = sl2 the Kirillov-Reshetikhin modules are special (see proposition 2.9), and :

Theorem 2.11. [10] The fundamental representations are special.

Theorem 2.12. [31, 32] For simply-laced cases, the Kirillov-Reshetikhin modules are special.

We will prove (theorem 4.1) that the Kirillov-Reshetikhin modules are special for all types.

In [10] an algorithm is proposed to compute q-characters of special l-highest weight modules (the
proposition 2.14 with |J | = 1 is a formal reinterpretation of it). As a consequence :

Corollary 2.13. [10] For m ∈ M(Vi,a), m 6= Yi,a ⇒ m ≤ Yi,aA−1
i,aqi

and m ∈ Z[Y ±
j,aql ]j∈I,l>0.

In particular for V a l-highest weight module of highest weight monomial m, for all m′ ∈ M(m),
we have m′ ≤ m and the vi,a(m′m−1), v(m′m−1) = v(ω(m′) − ω(m)) ≥ 0 are well-defined.

For J ⊂ I and m ∈ A denote m(J) =
∏

j∈J,a∈C∗

Y
uj,a(m)
j,a . For j ∈ J, a ∈ C∗ consider AJ,±

j,a = (A±
j,a)(J).

Define µI
J : Z[AJ,±

j,a ]j∈J,a∈C∗ → Z[A±
j,a]j∈J,a∈C∗ the ring morphism such that µI

J(AJ,±
j,a ) = A±

j,a. For

m ∈ BJ , denote LJ(m(J)) defined for gJ . Define :

LJ(m) = m(I−J)µI
J((m(J))−1LJ(m(J)))

We have :

Proposition 2.14. ([14], proposition 3.9) For a module V ∈ Rep(Uq(Lg)) and J ⊂ I, there is
unique decomposition in a finite sum :

χq(V ) =
∑

m′∈BJ

λJ (m′)LJ(m′).

Moreover for all m′, λJ (m′) ≥ 0.

(In [13] the λJ (m′) ≥ 0 were assumed, but the proof of the uniqueness does not depend on it).

3. The Kirillov-Reshetikhin conjecture and T -system

Let i ∈ I, a ∈ C∗, k ≥ 1. We investigate the q-character of the Kirillov-Reshetikhin module

W
(i)
k,a : in this paper we prove the Kirillov-Reshetikhin conjecture and that χq(W

(i)
k,a) satisfies the

T -system.

3.1. Statement of the Kirillov-Reshetikhin conjecture. For i ∈ I, k ≥ 1 consider the

Kirillov-Reshetikhin module restricted to Uq(g) : Q
(i)
k = Res(W

(i)
k,a) (it is independent of a ∈ C∗).

Let Q
(i)
k = e−kΛiχ(Q

(i)
k ) be his the normalized character. The Kirillov-Reshetikhin conjecture is

the statement of the theorems 3.2 and 3.3 proved in this paper :
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Definition 3.1. For a sequence ν = (ν
(i)
k )i∈I,k>0 such that for all but finitely many ν

(i)
k are non

zero let us define :

F(ν) =
∑

N=(N
(i)
k

)

∏

i∈I,k>0

(

P
(i)
k (ν, N) + N

(i)
k

N
(i)
k

)

e−kN
(i)
k

αi

where

P
(i)
k (ν, N) =

∑

l=1...∞

ν
(i)
l min(k, l) −

∑

j∈I,l>0

N
(j)
l riCi,jmin(k/rj , l/ri),

(

a
b

)

=
Γ(a + 1)

Γ(a − b + 1)Γ(b + 1)
.

The above formulas are called non-deformed fermionic formulas (we use here the version of [20,
21, 16, 27]; the version of [29] is slightly different because the definition of binomial coefficients is
a little changed, see [27]).

Theorem 3.2 (The Kirillov-Reshetikhin conjecture). For a sequence ν = (ν
(i)
k )i∈I,k>0 such that

for all but finitely many ν
(i)
k are zero, we set Qν =

∏

i∈I,k≥1

(Q
(i)
k )ν

(i)
k . Then we have :

Qν

∏

α∈∆+

(1 − e−α) = F(ν).

In particular the formula obtained for Qν =
∏

i∈I,k≥1

(χ(Q
(i)
k ))ν

(i)
k is the character of a Uq(g)-module

(and so invariant by the Weyl group action). Although this formula can be given explicitly from
the definition 3.1, this combinatorial consequence was conjectural for exceptional types (see [25]).

3.2. Q-system. For k ≥ 1 and i ∈ I consider the Uq(g)-modules R
(i)
k defined by :

for ri ≥ 2 :

R
(i)
k = (

⊗

j/Cj,i=−1

Q
(j)
k ) ⊗ (

⊗

j/Cj,i≤−2

Q
(j)
rik

),

for ri = 1 and g not of type G2 :

k = 2r : R
(i)
k = (

⊗

j/Ci,j=−1

Q
(j)
k ) ⊗ (

⊗

j/Ci,j=−2

Q(j)
r ⊗ Q(j)

r ),

k = 2r + 1 : R
(i)
k = (

⊗

j/Ci,j=−1

Q
(j)
k ) ⊗ (

⊗

j/Ci,j=−2

Q
(j)
r+1 ⊗ Q(j)

r ),

for ri = 1 and g of type G2 let j ∈ I such that j 6= i :

k = 3r : R
(i)
k = Q(j)

r ⊗ Q(j)
r ⊗ Q(j)

r ,

k = 3r + 1 : R
(i)
k = Q

(j)
r+1 ⊗ Q(j)

r ⊗ Q(j)
r ,

k = 3r + 2 : R
(i)
k = Q

(j)
r+1 ⊗ Q

(j)
r+1 ⊗ Q(j)

r .
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Theorem 3.3 (The Q-system). Let a ∈ C∗, k ≥ 1, i ∈ I.

(1) We have :

Q
(i)
k ⊗ Q

(i)
k = Q

(i)
k+1 ⊗ Q

(i)
k−1 ⊕ R

(i)
k .

(2) Q
(i)
k considered as a polynomial in e−αj has a limit as a formal power series :

∃ lim
k→∞

Q
(i)
k ∈ Z[[e−αj ]]j∈I .

Note that in the simply-laced case the Q-system is :Q
(i)
k ⊗ Q

(i)
k = Q

(i)
k+1 ⊗ Q

(i)
k−1 ⊕

⊕

j/Ci,j=−1

Q
(j)
k .

(1) is the Q-system defined in [29, 22]. It is proved in [16] that if a solution of the Q-system is
a sum of character of g-modules and satisfies a certain asymptotic property, then it equals the
formulas F(ν). In [25] this asymptotic property was simplified to the property (2) (in [25] it is not
assumed that the solution of the Q-system is a sum of character of g-modules; see the section 5.3.3
for more comments on the asymptotic property of [16]). So the theorem 3.3 implies the theorem
3.2 .

We will prove a stronger version of the theorem 3.3 called T -system (theorem 3.4).

3.3. T -system. The T -system was introduced in [26] as a system of functional relations associated
with solvable lattice models. Motivated by results of [11], it was conjectured in [28] that the q-
characters of Kirillov-Reshetikhin modules solve the T -system. This conjecture is proved in this
paper (theorem 3.4). For simply-laced cases, the conjecture was proved by Nakajima [31, 32] with
the help of q, t-characters, and in particular with the main result of [31] whose proof involves quiver
varieties. Although q, t-characters can be defined in general (see [12]), this result in [31] has not
been proved for non simply-laced cases (see the conjectures of [12]). The method of the proof used
in this paper is different and based on the result of the theorem 4.1 (an induction argument of [14]
(lemma 4.2) is used). As it is purely algebraic, it can be uniformly extended to non simply-laced
cases.

For i ∈, k ≥ 1, a ∈ C∗ define the Uq(Lg)-module S
(i)
k,a by :

for ri ≥ 2 :

S
(i)
k,a = (

⊗

j/Cj,i=−1

W
(j)
k,aqi

) ⊗ (
⊗

j/Cj,i≤−2

W
(j)
rik,aq),

for ri = 1 and g not of type G2 :

k = 2r : S
(i)
k,a = (

⊗

j/Ci,j=−1

W
(j)
k,aq) ⊗ (

⊗

j/Ci,j=−2

W (j)
r,aq ⊗ W

(j)
r,aq3),

k = 2r + 1 : S
(i)
k,a = (

⊗

j/Ci,j=−1

W
(j)
k,aq) ⊗ (

⊗

j/Ci,j=−2

W
(j)
r+1,aq ⊗ W

(j)
r,aq3 ),

for ri = 1 and g of type G2 let j ∈ I such that j 6= i :

k = 3r : S
(i)
k,a = W (j)

r,aq ⊗ W
(j)
r,aq3 ⊗ W

(j)
r,aq5 ,

k = 3r + 1 : S
(i)
k,a = W

(j)
r+1,aq ⊗ W

(j)
r,aq3 ⊗ W

(j)
r,aq5 ,

k = 3r + 2 : S
(i)
k,a = W

(j)
r+1,aq ⊗ W

(j)
r+1,aq3 ⊗ W

(j)
r,aq5 .
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Remark : we will see later, in view of the lemma 5.1 and the proposition 5.3, that in all cases

the tensor products of the modules involved in the definition of S
(i)
k,a commute, and so S

(i)
k,a is

well-defined. However until section 6, we only consider χq(S
(i)
k,a) which is clearly well-defined.

Theorem 3.4 (The T -system). Let a ∈ C∗, k ≥ 1, i ∈ I.

(1) We have :

χq(W
(i)
k,a)χq(W

(i)

k,aq2
i

) = χq(W
(i)
k+1,a)χq(W

(i)

k−1,aq2
i

) + χq(S
(i)
k,a).

(2) The normalized q-character of W
(i)
k,a considered as a polynomial in A−1

j,b has a limit as a formal
power series :

∃ lim
k→∞

χq(W
(i)

k,aq−2k
i

)

m
(i)

k,aq−2k
i

∈ Z[[A−1
j,aqm ]]j∈I,m∈Z.

Note that in the simply-laced cases the T-system is :

χq(W
(i)
k,a)χq(W

(i)
k,aq2 ) = χq(W

(i)
k+1,a)χq(W

(i)
k−1,aq2 ) +

∏

j/Ci,j=−1

χq(W
(i)
k,aq)

(see the section 7 for the other formulas of the T -systems)

The theorem 3.4 implies the theorem 3.3 because Res(W
(i)
k,a) = Q

(i)
k and Res(S

(i)
k,a) = R

(i)
k . The

theorem 3.4 is proved in section 5 with the main result of the section 4.

Note that the methods of our proof may also be used to prove the conjectures of [15] for twisted
cases, and to establish a T -system for representations of general quantum affinizations (such as
quantum toroidal algebras) considered in [13]. We let these points for another paper.

First we need the following result :

4. The Kirillov-Reshetikhin modules are special

In this section we prove :

Theorem 4.1. The Kirillov-Reshetikhin modules are special.

This result was proved for fundamental representations in [10], for Kirillov-Reshetikhin modules
of type sl2 in [11] (see proposition 2.9), and in simply-laced cases in [31, 32]. An alternative proof
for fundamental representations was proposed in [14]. Arguments of this last proof are used here.

This result implies that the Frenkel-Mukhin algorithm works for Kirillov-Reshetikhin modules. In
particular we could have informations on the structure of their q-character (for example we will
prove in a paper in preparation precise results for l-weight spaces of Kirillov-Reshetikhin modules
of type A, B with technics developed in [14]).

4.1. Preliminary results. The following ingredient is used in the proof :

Lemma 4.2. ([14], lemma 3.3, 3.4) Let V be a finite dimensional Uq(Lg)-module .

(i) For W ⊂ V a Uq(Lh)-submodule of V and i ∈ I, W ′
i =

∑

r∈Z

x−
i,r.W is a Uq(Lh)-submodule of V .

(ii) Suppose that g = sl2. For p ∈ Z let L≥p =
∑

q≥p

LqΛ and L′
≥p =

∑

r∈Z

x−
r .L≥p. Then L≥p, L

′
≥p are

Uq(Lh)-submodule of L and (L′
≥p)m 6= 0 ⇒ ∃m′, (L≥p)m′ 6= {0} and m ≤ m′.
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We will also use a result of [10] in the more precise form of [13] :

Let i ∈ I , h⊥
i = {µ ∈ h/αi(µ) = 0} and A(i) be the commutative group of monomials generated by

variables Y ±
i,a (a ∈ C∗), kµ (µ ∈ h⊥i ), Z±

j,c (j 6= i, c ∈ C∗). Let τi : A → A(i) be the group morphism

defined by (j ∈ I , a ∈ C∗):

τi(Yj,a) = Y
δj,i

j,a

∏

k 6=i

∏

r∈Z

Z
pj,k(r)
k,aqr kν(Λj )−δj,iriα∨

i
/2.

The pi,j(r) ∈ Z are defined in the following way : we write C̃(z) = C̃′(z)
d(z) where d(z), C̃ ′

i,j(z) ∈

Z[z±] and (D(z)C̃ ′(z))i,j =
∑

r∈Z

pi,j(r)z
r. Note that we have ν(Λj) − δj,iriα

∨
i /2 ∈ h⊥i because

αi(ν(Λj) − δj,iriα
∨
i /2) = Λj(riα

∨
i ) − riδi,j = 0.

This morphism was defined in [10], section 3.3 without the terms kµ, and was then refined in [13],
section 5.5.2 with this term (which will be used in the section 4.2).

For M ∈ A(i) consider µ(M) ∈ h⊥
i , ui,a(M) ∈ Z, such that :

M ∈ kµ(M)

∏

a∈C∗

Y
ui,a(M)
i,a Z[Z±

j,c]j 6=i,c∈C∗ .

We also set ui(M) =
∑

a∈C∗

ui,a(M). Note that for m ∈ A and a ∈ C∗ we have ui,a(m) = ui,a(τi(m))

and :
ν(ω(m)) = µ(τi(m)) + ui(m)riα

∨
i /2 = µ(τi(m)) + ui(τi(m))riα

∨
i /2,

or equivalently :
µ(τi(m)) = ν(ω(m)) − αi(ν(ω(m)))α∨

i /2

(see the definition of [13], section 5.5.2).

Lemma 4.3. Let V ∈ Rep(Uq(Lg)) and consider a decomposition τi(χq(V )) =
∑

r
PrQr where

Pr ∈ Z[Y ±
i,a]a∈C∗, Qr is a monomial in Z[Z±

j,c, kλ]j 6=i,c∈C∗,λ∈h⊥
i

and all monomials Qr are distinct.

Then the Uq(Lgi)-module V is isomorphic to a direct sum
⊕

r
Vr where χi

q(Vr) = Pr.

This result was proved in [10], lemma 3.4 without the term kµ, and in [13], lemma 5.10 the proof
was extended for the terms kµ.

4.2. Proof of the theorem 4.1. The theorem 4.1 is a consequence of :

Lemma 4.4. For m ∈ M(W
(i)
k,a), we have m 6= m

(i)
k,a ⇒ m ≤ m

(i)
k,aA−1

i,aq2k−1
i

. In particular m is

right-negative and not dominant.

Proof: For m ≤ m
(i)
k,a we denote w(m) = v(m(m

(i)
k,a)−1). Let M = Vi,a ⊗ Vi,aq2

i
⊗ ... ⊗ Vi,aq2k−2

i
.

m
(i)
k,a is the monomial of highest weight in M(M). M is an l-highest weight module (see [4, 19];

we do not really need this point as we could work with M ′ ⊂ M the submodule generated by

an l-highest weight vector v). So W
(i)
k,a is the quotient of M by the maximal sub Uq(Lg)-module

N ⊂ M .

Consider the sub-Uq(Lgi)-submodule M ′
i of M generated by an highest weight vector v. It is an

l-highest weight Uq(Lgi)-module of l-highest weight m
(i)
k,a, and so it has a simple quotient which is

a Kirillov-Reshetikhin module Li of type sl2. So there is Ni a maximal Uq(Lgi)-submodule of M ′
i

such that (M ′
i/Ni) ' Li. For j 6= i and R ≥ 0, we have MkΛi−Rαi+αj

= {0} and so for all m ∈ Z,
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we have x+
j,m.M ′

i = {0}. So Uq(Lg).Ni is a proper submodule of M ′. So W
(i)
k,a is subquotient

of M/Uq(Lg).Ni. In particular the Uq(Lgi)-submodule Mi of W
(i)
k,a generated by v is simple and

isomorphic to Li.

It follows from the corollary 2.13 that :
∑

m≤m
(i)
k,a

/w(m)=1

Mm ⊂ MkΛ∨
i
−αi

⊂ Uq(Lgi).v.

In particular
∑

m≤m
(i)
k,a

/w(m)=1

(W
(i)
k,a)m ⊂ Mi. So it follows from the last paragraph and from the (1)

of the proposition 2.9 that :
∑

m≤m
(i)
k,a

/w(m)=1

(W
(i)
k,a)m = (W

(i)
k,a)

m
(i)
k,a

A−1

i,aq
2k−1
i

and that this space is of dimension 1.

Now consider m ∈ M(W
(i)
k,a) such that m 6= m

(i)
k,a, and let us prove by induction on w(m) ≥ 1 that

m ≤ m
(i)
k,aA−1

i,aq2k−1
i

. For w(m) = 1 we have proved that m = m
(i)
k,aA−1

i,aq2k−1
i

. In general suppose that

w(m) = p + 1 (p ≥ 1). It follows from the structure of Mi ' Li (which is also a Uq(Lh)-module)
that we can suppose that (Mi)m = {0}. Consider :

W =
⊕

m′≤m
(i)
k,a

/w(m′)≤p

(W
(i)
k,a)m′ =

⊕

λ∈h/v(λ−kΛi)≤p

(W
(i)
k,a)λ.

Note that W is a Uq(Lh)-submodule of W
(i)
k,a. As W

(i)
k,a is a l-highest weight modules, we have :

⊕

m′≤m
(i)
k,a

/w(m′)=p+1

(W
(i)
k,a)m′ =

⊕

λ∈h/v(λ−kΛi)=p+1

(W
(i)
k,a)λ ⊂

∑

j∈I

Wj where Wj =
∑

r∈Z

x−
j,r.W.

For j ∈ I , Wj is a Uq(Lh)-submodule of W
(i)
k,a ((i) of lemma 4.2). So ∃j ∈ I , (Wj)m 6= {0}.

Consider the decomposition τj(χq(W
(i)
k,a)) =

∑

r
PrQr of the lemma 4.3 and the decomposition of

W
(i)
k,a as a Uq(Lgj)-module: W

(i)
k,a =

⊕

r
Vr . For a given r, consider Mr ∈ M(W

(i)
k,a) such that τj(Mr)

appears in PrQr. For another such M , we have µ(τj(M)) = µ(τj(Mr)) and so ω(MM−1
r ) =

uj(τj(MM−1
r ))α∨

j /2, and :

uj(τj(M)) = uj(τj(Mr)) − 2w(M) + 2w(Mr) = 2(p − w(M)) + pr

where pr = −2p + 2w(Mr) + uj(τj(Mr)) (it does not depend of M). So we have w(M) ≤ p ⇔

uj(τj(M)) ≥ pr. So W =
⊕

r
((Vr)≥pr

) =
⊕

r
(Vr ∩W ). As the Vr are sub Uq(Lgj)-modules of W

(i)
k,a,

we have Wj =
⊕

r
(Vr ∩ Wj).

Let R such that τj(m) is a monomial of PRQR. We can apply the (ii) of lemma 4.2 to the Uq(Lgj)-

module VR with pR for Q−1
R τj(m) : we get that there is M ′ a monomial of χj

q(W ) such that

Q−1
R τi(m) ∈ M ′Z[(Yj,aYj,aq2

j
)−1]a∈C∗ . Consider m′ = τ−1

j (QRM ′) (it is a monomial of χq(W )).

Note that we can suppose that m′ 6= m
(i)
k,a (if m′ = m

(i)
k,a, consider Z = Uq(Lgj).(W

(i)
k,a)

m
(i)
k,a

=

(W
(i)
k,a)

m
(i)
k,a

or Mi. As Z is a sub Uq(Lgj)-module of VR and Q−1
R τj(m) is not a monomial of χj

q(Z),

we can use above VR/Z instead of VR).
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It follows from [10], lemma 3.5 that τj(Aj,aqj
) = Yj,aYj,aq2

j
k0 (see [13], lemma 5.9 for the term

k0). So m < m′ and m ∈ m′Z[A−1
j,b ]b∈C∗ . As m′ 6= m

(i)
k,a we have w(m′) ≥ 1 and the induction

hypothesis gives the result. �

5. Proof of the theorem 3.4

5.1. Preliminary results. First let us prove the following :

Lemma 5.1. Let V be a special module. Suppose that V ' V1 ⊗ .... ⊗ Vr where V1, ..., Vr are
l-highest weight modules. Then V1, ..., Vr are special and for all σ permutation of {1, ..., r} we have
V ' Vσ(1) ⊗ ... ⊗ Vσ(r).

Proof: Let m1, ..., mr be the monomials of highest weight of V1, ..., Vr . If for r′ ∈ {1, ..., r} a
module Vr′ is not special, let m′

r′ 6= mr′ be a dominant monomial of M(Vr′). Then

m1...mr′−1m
′
r′mr′+1...mr ∈ M(V )

is dominant and not equal to the highest weight monomial m1...mr. In particular for all σ,
Vσ(1) ⊗ ... ⊗ Vσ(r) is special and so is simple isomorphic to the simple l-highest weight module
L(m1...mr) ' V . �

Let i ∈ I, k ≥ 1, a ∈ C∗. Let M = m
(i)
k,am

(i)

k,aq2
i

= m
(i)
k+1,am

(i)

k−1,aq2
i

, and M ′ = MA−1

i,aq2k−1
i

...A−1
i,aqi

the highest weight monomial of S
(i)
k,a. Let us write the dominant monomial M ′ in a normal way :

(3) M ′ =
∏

l=1...L

m
(il)
kl,al

where il 6= i.

Consider the sets of monomials :

B = {m
(i)
k,aA−1

i,aq2k−1
i

...A−1

i,aq
2(k−k′ )−1
i

A−1

il,alq
2kl−1

il

/0 ≤ k′ ≤ k − 1 , 1 ≤ l ≤ L},

B′ = {m
(i)
k,a, m

(i)
k,aA−1

i,aq2k−1
i

, m
(i)
k,aA−1

i,aq2k−1
i

A−1

i,aq2k−3
i

, ..., m
(i)
k,aA−1

i,aq2k−1
i

...A−1
i,aqi

}.

Lemma 5.2. The monomials of m
(i)

k,aq2
i

.B are right negative.

Proof: For a ∈ C∗ and m ∈ A, let us define µa(m) = max{l ∈ Z/∃i ∈ I, ui,aql(m) 6= 0}. Let

α = MA−1

i,aq2k−1
i

...A−1

i,aq
2(k−k′ )−1
i

, and αA−1

il,aq
2kl−1

il

∈ m
(i)

k,aq2
i

B. It suffices to check that µa(α) <

µa(A−1

il ,aq
2kl−1

il

) :

Case 1: ri = 1 : µa(α) ≤ 2k − 1.

If ril
= 1 : al = aq2k−1, µa(A−1

il,alq
ril

) = 2k + 1.

If ril
= 2 : al = aq2k−1 or aq2k−3, µa(A−1

il,alq
ril

) = 2k + 3 or 2k + 1.

If ril
= 3 : al = aq2k−1 or aq2k−3 or aq2k−5, µa(A−1

il,alq
ril

) = 2k + 5 or 2k + 3 or 2k + 1.

Case 2 : ri = 2 : µa(α) ≤ 4k − 1.

If ril
= 1 : al = aq4k−1, µa(A−1

il,alq
ril

) = 4k + 1.

If ril
= 2 : al = aq4k−1

i or aq4k−3
i , µa(A−1

il,alq
ril

) = 4k + 3 or 4k + 1.
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Case 3 : ri = 3 : µa(α) ≤ 6k − 1.

If ril
= 1 : al = aq6k−1, µa(A−1

il,alq
ril

) = 6k + 1. �

Proposition 5.3. For i ∈ I, k ≥ 1, a ∈ C∗, the module S
(i)
k,a is special. In particular M ′ is the

unique dominant monomial of χq(S
(i)
k,a).

Note that this result, combined with lemma 5.1, implies that the modules in the tensor product

S
(i)
k,a commute.

Proof: Let us write it :

χq(S
(i)
k,a) = χq(W

(i1)
k1 ,a1

)...χq(W
(iL)
kL,aL

).

The monomials of M(S
(i)
k,a) − {m

(i1)
k1,a1

...m
(iL)
kL,aL

} are lower than one of the following monomials

m
(il)
kl,al

A−1

il,alq
2kl−1

il

∏

l′ 6=l

m
(il′ )
kl′ ,al′

(lemma 4.4). But in each case these monomials are right-negative

(these monomials are exactly the monomials of m
(i)

k,aq2
i

B with k′ = k−1, and it is checked in lemma

5.2 that these monomials are right-negative). So the monomials of M(S
(i)
k,a) − {m

(i1)
k1,a1

...m
(iL)
kL,aL

},
are right-negative so not dominant. �

5.2. Proof of the theorem 3.4 (1). The screening operators Si were defined in [11].

Theorem 5.4. [11, 10] We have Im(χq) =
⋂

i∈I

Ker(Si). In particular a non zero element in Im(χq)

has at least one dominant monomial.

In this paper we will only use the second part of this theorem, and so we do not directly use the
screening operators.

The two terms of the equality of the theorem 3.4 are in Im(χq) and so are characterized by the
coefficient of their dominant monomials. So it suffices to determine the dominant monomials of
each product.

First let us prove the following lemma concerning the monomials of χq(W
(i)
k,a) :

Lemma 5.5. The monomials m of χq(W
(i)
k,a) are lower than a monomial of B or are in B′.

(An analog result is proved in [32] for the simply-laced cases).

Proof: We prove this statement by induction on w(m) = v(m(m
(i)
k,a)−1) ≥ 0. For w(m) = 0

we have m = m
(i)
k,a ∈ B′. For w(m) ≥ 1 it follows from the theorem 4.1 that there is j ∈ I

such that m /∈ Bj . So we get from the proposition 2.14 a monomial m′ ∈ M(χq(W
(i)
k,a)) such

that w(m′) < w(m) and m is a monomial of Lj(m
′) and Lj(m

′) appears in the decomposition of

χq(W
(i)
k,a). In particular m ≤ m′, and if m′ is lower than a monomial in B, so is m. So we can

suppose that m′ ∈ B′. If m′ = m
(i)
k,a, we have j = i and the monomials of Li(m) are the monomials

of B′ (see the proof of lemma 4.4, Mi ' Li and the proposition 2.9 (1)). For m′ 6= m
(i)
k,a, Lj(m)

corresponds to the q-character of a tensor product of Kirillov-Reshetikhin modules of type sl2 ((3)
of the proposition 2.9). Let mkl′ ,al′

be the corresponding monomials (that it to say a normal

form). For each l′, al′q
2(kl′−1)
j is equal to one alq

2(kl−1)
il

with il = j (see the decomposition (3) of

the section 5.1). We can conclude with (1) of proposition 2.9. �
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Lemma 5.6. 1) The dominant monomials of χq(W
(i)
k,a)χq(W

(i)

k,aq2
i

) are

M, MA−1

i,aq2k−1
i

, MA−1

i,aq2k−1
i

A−1

i,aq2k−3
i

, ..., MA−1

i,aq2k−1
i

...A−1
i,aqi

.

2) The dominant monomials of χq(W
(i)
k+1,a)χq(W

(i)

k−1,aq2
i

) are

M, MA−1

i,aq2k−1
i

, MA−1

i,aq2k−1
i

A−1

i,aq2k−3
i

, ..., MA−1

i,aq2k−1
i

...A−1
i,aq3

i

.

In each case the dominant monomials appear with multiplicity 1.

Proof: We prove 1) (the proof is analog for 2)). Let m1 ∈ M(W
(i)
k,a), m2 ∈ M(W

(i)

k,aq2
i

) and

suppose that m1m2 is dominant. If m1 6= m
(i)
k,a and m2 6= m

(i)

k,aq2
i

, the theorem 4.1 gives that

m1 and m2 are right-negative, so m1m2 is right-negative and not dominant. If m2 6= m
(i)

k,aq2
i

we have m1 = m
(i)
k,a and it follows from the lemma 4.4 that we have m2 ≤ m

(i)

k,aq2
i

A−1
i,aq3

i

, and so

m1m2 ≤ m
(i)
k,am

(i)

k,aq2
i

A−1
i,aq3

i

. But this last monomial is right-negative, so m1m2 is not dominant. So

m2 = m
(i)

k,aq2
i

.

Consider the decomposition (3) of M ′ (section 5.1). It follows from the lemma 5.5 that the

monomials m of χq(W
(i)
k,a) not in B′ are lower than a monomial in B. We can conclude because the

monomials in m
(i)

k,aq2
i

B are right-negative (see lemma 5.2). �

End of the proof of the theorem 3.4 (1) :

The unique dominant monomial that appears in χq(W
(i)
k,a)χq(W

(i)

k,aq2
i

)−χq(W
(i)
k+1,a)χq(W

(i)

k−1,aq2
i

) is

M ′, and it has a multiplicity 1. We can conclude with the theorem 5.4 because M ′ is the unique

dominant monomial of χq(S
(i)
k,a) (proposition 5.3). �

5.3. Proof of the theorem 3.4 (2).

5.3.1. Preliminary. First let us see that :

Lemma 5.7. Let a ∈ C∗ and m be a monomial in Z[Y ±
j,aql ]j∈I,l≥0. Let i ∈ I and suppose that

ui,a(m) ≥ 1. Let j ∈ I such that m is j-dominant.

1) If j 6= i we have Yi,aLj(Y
−1
i,a m) = Lj(m).

2) If j = i let nm′ ≥ 0 such that Li(m) =
∑

m′

nm′m′. We have :

Yi,aLj(Y
−1
i,a m) =

∑

m′≤m/vi,aqi
(m′m−1)=0

nm′m′.

Proof: It follows from the definition of the Lj(M) (section 2.3.3) that it suffices to look at the
sl2-case. But for g = sl2 one can use the explicit description of Li(m) in the proposition 2.9. �

In [32] an argument based on the Frenkel-Mukhin algorithm was used to prove the (2) of the
theorem 3.4 (and the lemma 5.8) in simply-laced cases. For the general case we use a different
proof based on an explicit formulation of the Frenkel-Mukhin algorithm (the proposition 2.14).
Let us prove the following lemma :
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Lemma 5.8. We have :

χq(W
(i)
k+1,a) = Yi,aχq(W

(i)

k,aq2
i

) + E

where E ∈ m
(i)
k+1,aA−1

i,aqi
A−1

i,aq3
i

...A−1

i,aq2k+1
i

Z[A−1
j,aqm ]j∈I,m≥0. Moreover E has positive coefficients.

Proof: First let us prove by induction on w′(m) = v(m(m
(i)

k,aq2
i

)−1) ≥ 0 that for m ∈ M(W
(i)

k,aq2
i

)

we have Yi,am ∈ M(W
(i)
k+1,a) and the coefficient of m in χq(W

(i)

k,aq2
i

) is equal to the coefficient

of Yi,am in χq(W
(i)
k+1,a). For m = m

(i)

k,aq2
i

= Y −1
i,a m

(i)
k+1,a, it is clear. For m < m

(i)

k,aq2
i

it follows

from the theorem 4.1 that there is j ∈ I such that m /∈ Bj . From the proposition 2.14 there is

m′ ∈ Bj ∩M(W
(i)

k,aq2
i

) such that w′(m′) < w′(m), m is a monomial of Lj(m
′), and Lj(m

′) appears

in the decomposition of the proposition 2.14. Note that the corollary 2.13 implies that we can use
the lemma 5.7 for all such m′. It gives that the coefficient of m in Lj(m

′) is equal to the coefficient

of mYi,a in Lj(m
′Yi,a). But by the induction hypothesis, the coefficients of Lj(m

′) in χq(W
(i)

k,aq2
i

)

is equal to the coefficient of Lj(m
′Yi,a) in χq(W

(i)
k+1,a) and so we get the result for m.

So we have proved that E has positive coefficients. Consider the following property P (m) of a
monomial m :

P (m) : “m ∈ m
(i)
k+1,aA−1

i,aqi
A−1

i,aq3
i

...A−1

i,aq2k+1
i

Z[A−1
j,aqm ]j∈I,m≥0.”

To conclude our proof it suffices to show that for m ∈ M(W
(i)
k+1,a) we have m ∈ Yi,aM(W

(i)

k,aq2
i

) or

P (m) is satisfied. We use an induction and we have to prove a little more in this induction :

For m ∈ M(W
(i)
k+1,a), put wj,b(m) = vj,b(m(m

(i)
k+1,a)−1) and w(m) = v(m(m

(i)
k+1,a)−1). We prove

by induction on w(m) ≥ 0 that a monomial m ∈ M(W
(i)
k+1,a) satisfies the property P (m), or the

following properties α1(m), α2(m), α3(m) are simultaneously satisfied :

α1(m) : “m ∈ Yi,aM(W
(i)

k,aq2
i

).”

α2(m) : “for k(m) = max{k′ ≤ k/w
i,aq1+2k′

i

(m) = 0} we have :

w
i,aq

3+2k(m)
i

(m), w
i,aq

5+2k(m)
i

(m), ..., wi,aq2k+1
i

(m) ≥ 1.”

α3(m) : “for all j ∈ I , all l < 2ri(k(m) + 1) we have wj,aql+rj (m) = 0.”

For m = m
(i)
k+1,a = Yi,am

(i)

k,aq2
i

, α1(m), α3(m) are clear, and α2(m) is satisfied with k(m) = k. For

m < m
(i)
k+1,a it follows from the theorem 4.1 that there is j ∈ I such that m /∈ Bj . From the

proposition 2.14 there is m′ ∈ Bj ∩ M(W
(i)
k+1,a) such that w(m′) < w(m), m is a monomial of

Lj(m
′) and Lj(m

′) appears in the decomposition of the proposition 2.14. In particular m ≤ m′.
So P (m′) implies P (m). So we can suppose that α1(m

′), α2(m
′), α3(m

′) are satisfied.

If j 6= i : let us prove that α1(m), α2(m), α3(m) are satisfied :

α1(m) : it follows from the lemma 5.7 with j 6= i that we have Lj(m
′) = Yi,aLj(Y

−1
i,a m′), and

so α1(m
′) ⇒ α1(m).

α2(m) : as m(m′)−1 ∈ Z[A−1
j,b ]b∈C∗ , we have k(m) = k(m′) and so α2(m

′) implies α2(m).
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α3(m) : for j′ 6= j, we get α3(m) for j′ in the same way. Let us look at it for j : for all l ∈ Z,

uj,l(m
(i)
k+1,a) = 0, and so it follows from α3(m

′) that for l < 2ri(k(m) + 1) we have uj,l(m) = 0. So

for such a l, A−1

j,aql+rj
does not appear in Lj(m

′), and we get α3(m).

If j = i : it follows from α3(m
′) that for 0 ≤ k′ ≤ k(m′), ui,aq2k′

i
(m′) = 1. So it follows from the

proposition 2.9 for Li(m
′) that for 0 ≤ k′ ≤ k(m) :

(4) w
i,aq1+2k′

i

(m) ≥ 1 ⇒ ∀k′ ≤ k′′ ≤ k − 1, w
i,aq1+2k′′

i

(m) ≥ 1.

So if k(m) < 1, α2(m
′) ⇒ P (m). If k(m) ≥ 1 the properties α1(m), α2(m), α3(m) are satisfied :

α1(m) : we have ui,a(m
′) ≥ 1 and so we can use the (2) of the lemma 5.7. As vi,aqi

(m(m′)−1) = 0
we have α1(m

′) ⇒ α1(m).

α2(m) : consequence of the argument (4).

α3(m) : we have k(m) ≤ k(m′) and m(m′)−1 ∈ Z[A−1
i,b ]b∈C∗ and so α3(m) with j′ 6= i is clear.

For j′ = i the property follows from the definition of k(m) and the argument (4). �

5.3.2. End of the proof of the theorem 3.4 (2) : Let us denote :

R
(i)
k,a = (m

(i)
k,a)−1χq(W

(i)
k,a) ∈ 1 + A−1

i,aq2k−1
i

Z[A−1
j,aqm ]j∈I,m≥0,

E
(i)
k,a = (m

(i)
k+1,a)−1Ai,aqi

Ai,aq3
i
...Ai,aq2k+1

i
(χq(W

(i)
k+1,a) − Yi,aχq(W

(i)

k,aq2
i

)).

We have R
(i)
k+1,a = R

(i)

k,aq2
i

+ A−1
i,aqi

A−1
i,aq3

i

...A−1

i,aq2k+1
i

E
(i)
k,a and from lemma 5.8 we have E

(i)
k,a ∈

Z[A−1
j,aqm ]j∈I,m≥0. In particular by induction on k we get :

R
(i)
k+1,a = 1 +

∑

k′=0...k

A−1

i,aq
1+2(k−k′)
i

A−1

i,aq
3+2(k−k′ )
i

...A−1

i,aq2k+1
i

E
(i)

k′ ,aq
2(k−k′)
i

,

R
(i)

k+1,aq
−2(k+1)
i

= 1 +
∑

k′=0...k

A−1

i,aq
1+2(−k′−1)
i

A−1

i,aq
3+2(−k′−1)
i

...A−1

i,aq−1
i

E
(i)

k′,aq
2(−k′−1)
i

.

We get a graded sum (because all monomial m of the k′th term of the sum satisfies w(m) ≥ k′ +1)

and so the formal power series R
(i)

k+1,aq
−2(k+1)
i

has a limit when k → ∞. �

5.3.3. Complement. In this section we give complements that are not used for the main results of
this paper : in [16] the asymptotic property is different than the asymptotic property used in the
theorem 3.4 (see [25] for more comments on the property that we use). Although we do not use
the property of [16] for the purpose of this paper, we can prove the following version of it :

Proposition 5.9. Let i ∈ I, let L be the dimension of a fundamental representation L = dim(Vi,a)
(it is independent of a ∈ C∗) and let r < 1 such that 1/r > 2L.

(1) On the domain |Aj,a| ≥ 1/r we have : lim
k→∞

χq(W
(i)

k,aq
2−2k
i

)

χq(W
(i)

k+1,aq
−2k
i

)
= Y −1

i,a .

(2) On the domain |eαj | ≥ 1/r we have : lim
k→∞

Q
(i)
k

Q
(i)
k+1

= e−Λi .

The asymptotic property of [16] is the statement (2) on the domain |eαj | > 1. But the hypothesis
|eαj | > 1/r is enough for their proof : if a solution of the Q-system is a sum of characters of
g-modules and satisfies the property (2) of the proposition 5.9, then it equals the formulas F(ν).
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Proof: It suffices to prove (1). Consider :

Yi,aχq(Wk,aq2−2k
i

)

χq(Wk+1,aq−2k
i

)
=

R
(i)

k,aq
−2(k−1)
i

R
(i)

k+1,aq−2k
i

= 1 −
A−1

i,aq1−2k
i

A−1

i,aq3−2k
i

...A−1
i,aqi

E
(i)

k,aq−2k
i

R
(i)

k+1,aq−2k
i

= 1 −
A−1

i,aq1−2k
i

A−1

i,aq3−2k
i

...A−1
i,aqi

E
(i)

k,aq−2k
i

1 + A−1
i,aqi

∑

k′=0...k

A−1

i,aq1−2k′

i

A−1

i,aq3−2k′

i

...A−1

i,aq−1
i

E
(i)

k′,aq−2k′

i

As E
(i)
k,a has positive coefficients (lemma 5.8) we have |E

(i)
k,a| ≤ dim(W

(i)
k+1,a) ≤ Lk+1. So :

|
Yi,aχq(Wk,aq2−2k

i
)

χq(Wk+1,aq−2k
i

)
− 1| ≤ rk+1Lk+1

∑

j≥0

rj(
∑

k′=0...k

rk′

Lk′+1)j ≤ (rL)k+1
∑

j≥0

(Lr)j 1

(1 − rL)j

and the last term has the limit 0 when k → ∞ because rL < 1/2 and rL/(1 − rL) < 1. �

Note that we could replace the condition 1/r > 2L by the condition 1/r > 2(L − 1) because the

property P in the proof of the lemma 5.8 implies that E
(i)
k,a is a sum of monomials of (χq(W

(i)
1,a) −

Yi,a)(χq(W
(i)

1,aq2
i

) − Yi,aq2
i
)...(χq(W

(i)

1,aq2k
i

) − Yi,aq2k
i

), and so |E
(i)
k,a| ≤ (L − 1)k+1.

6. Exact sequence

The category of finite dimensional representations of quantum affine algebras is not semi-simple,
and so the T -system can not be directly written in terms of modules. In [32] Nakajima proved
that the T -system can be written in the form of an exact sequence for simply-laced cases. We
present here a new proof (without q, t-characters [31]) which allows us to extend the result to non
simply-laced cases :

Theorem 6.1. Let i ∈ I, a ∈ C∗, k ≥ 1. We have :

(1) The module S
(i)
k,a is special and simple.

(2) The module W
(i)
k+1,a ⊗ W

(i)

k−1,aq2
i

is simple.

(3) There exists an exact sequence :

0 → S
(i)
k,a → W

(i)
k,a ⊗ W

(i)

k,aq2
i

→ W
(i)
k+1,a ⊗ W

(i)

k−1,aq2
i

→ 0.

The (1) is a direct consequence of the proposition 5.3.

6.1. Proof of the theorem 6.1 (2). Suppose that W
(i)
k+1,a⊗W

(i)

k−1,aq2
i

is not simple. The dominant

monomials of χq(W
(i)
k+1,a)χq(W

(i)

k−1,aq2
i

) are given in the lemma 5.6. So there is 0 ≤ R ≤ k − 2 such

that :

χq(W
(i)
k+1,a)χq(W

(i)

k−1,aq2
i

) = χq(L(M)) + χq(L(MR)) +
∑

v(m′M−1)>R+1

nm′χq(L(m′))

where MR = MA−1

i,aq2k−1
i

...A−1

i,aq2k−1−2R
i

and nm′ ≥ 0.

But we have :

MR = Yi,aY 2
i,aq2

i
...Y 2

i,aq
2(2k−2(R+2))
i

Y
i,aq

2k−2(R+1)
i

∏

b∈C∗,j 6=i

Y
uj,b(MR)
j,b .
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In particular MRA−1

i,aq2k−1−2R
i

∈ M(L(MR)). But the monomials of M(W
(i)
k+1,a)M(W

(i)

k−1,aq2
i

) lower

than MRA−1
i,b (b ∈ C∗) are lower than MRA−1

i,aq2k−3−2R
i

or than MRA−1

i,aq2k+1
i

, contradiction. �

6.2. Proof of the theorem 6.1 (3). To prove (3) we can adapt arguments of [32] :

Theorem 6.2. [4] Let i1, ..., iL ∈ I, a1, ..., al ∈ C and m1, ..., ml ≥ 1. the condition :

l < m ⇒ ∀p ≥ 0, al/am 6= qril
kl−rimkm−ril

−rim−p

implies that W
(i1)
k1,a1

⊗ ... ⊗ W
(iL)
kL,aL

is an l-highest weight module.

Corollary 6.3. For i ∈ I, a ∈ C∗, k ≥ 1, the module W
(i)
k,a ⊗W

(i)

k,aq2
i

is an l-highest weight module.

End of the proof of the theorem 6.1 (3) : W
(i)
k,a ⊗ W

(i)

k,aq2
i

has a unique simple quotient. It is

isomorphic to the simple l-highest weight module L(m
(i)
k,am

(i)

k,aq2
i

) ' W
(i)
k+1,a ⊗ W

(i)

k−1,aq2
i

. So it

follows from the theorem 3.4 that the unique maximal proper submodule M of W
(i)
k,a ⊗W

(i)

k,aq2
i

has

the q-character of S
(i)
k,a. But S

(i)
k,a is simple, so M ' S

(i)
k,a. �

7. Formulas for the T -systems

In this section we give explicit formulas for the T -system of the theorem 3.4. It is written in
the form of an exact sequence from theorem 6.1 (the T -system is the q-characters identity derived
from the exact sequence; for identification with the functional formulas of [26], let r = max

i∈I
(ri), let

identify u + Z/r with aqZ by u + m/r → aqm, and T
(i)
k (u + m/r) with χq(W

(i)

k,aqm−ri(k−1) )).

Type ADE :

0 →
⊗

j/Ci,j=−1

W
(j)
k,aq → W

(i)
k,a ⊗ W

(i)
k,aq2 → W

(i)
k−1,aq2 ⊗ W

(i)
k+1,a → 0.

Type Bn :

For 2 ≤ i ≤ n − 2 :

0 → W
(i−1)
k,aq2 ⊗ W

(i+1)
k,aq2 → W

(i)
k,a ⊗ W

(i)
k,aq4 → W

(i)
k−1,aq4 ⊗ W

(i)
k+1,a → 0,

0 → W
(2)
k,aq2 → W

(1)
k,a ⊗ W

(1)
k,aq4 → W

(1)
k−1,aq4 ⊗ W

(1)
k+1,a → 0,

0 → W
(n−2)
k,aq2 ⊗ W

(n)
2k,aq → W

(n−1)
k,a ⊗ W

(n−1)
k,aq4 → W

(n−1)
k−1,aq4 ⊗ W

(n−1)
k+1,a → 0,

0 → W (n−1)
r,aq ⊗ W

(n−1)
r,aq3 → W

(n)
2r,a ⊗ W

(n)
2r,aq2 → W

(n)
2r−1,aq2 ⊗ W

(n)
2r+1,a → 0,

0 → W
(n−1)
r+1,aq ⊗ W

(n−1)
r,aq3 → W

(n)
2r+1,a ⊗ W

(n)
2r+1,aq2 → W

(n)
2r,aq2 ⊗ W

(n)
2r+2,a → 0.

Type Cn :
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For 2 ≤ i ≤ n − 2 :

0 → W
(i−1)
k,aq ⊗ W

(i+1)
k,aq → W

(i)
k,a ⊗ W

(i)
k,aq2 → W

(i)
k−1,aq2 ⊗ W

(i)
k+1,a → 0,

0 → W
(2)
k,aq → W

(1)
k,a ⊗ W

(1)
k,aq2 → W

(1)
k−1,aq2 ⊗ W

(1)
k+1,a → 0,

0 → W
(n−2)
2r,aq ⊗ W (n)

r,aq ⊗ W
(n)
r,aq3 → W

(n−1)
2r,a ⊗ W

(n−1)
2r,aq2 → W

(n−1)
2r−1,aq2 ⊗ W

(n−1)
2r+1,a → 0,

0 → W
(n−2)
2r+1,aq ⊗ W

(n)
r+1,aq ⊗ W

(n)
r,aq3 → W

(n−1)
2r+1,a ⊗ W

(n−1)
2r+1,aq2 → W

(n−1)
2r,aq2 ⊗ W

(n−1)
2r+2,a → 0,

0 → W
(n−1)
2k,aq → W

(n)
k,a ⊗ W

(n)
k,aq4 → W

(n)
k−1,aq4 ⊗ W

(n)
k+1,a → 0.

Type F4 :

0 → W
(2)
k,aq2 → W

(1)
k,a ⊗ W

(1)
k,aq4 → W

(1)
k−1,aq4 ⊗ W

(1)
k+1,a → 0,

0 → W
(1)
k,aq2 ⊗ W

(3)
2k,aq → W

(2)
k,a ⊗ W

(2)
k,aq4 → W

(2)
k−1,aq4 ⊗ W

(2)
k+1,a → 0,

0 → W (2)
r,aq ⊗ W

(2)
r,aq3 ⊗ W

(4)
2r,aq → W

(3)
2r,a ⊗ W

(3)
2r,aq2 → W

(3)
2r−1,aq2 ⊗ W

(3)
2r+1,a → 0,

0 → W
(2)
r+1,aq ⊗ W

(2)
r,aq3 ⊗ W

(4)
2r+1,aq → W

(3)
2r+1,a ⊗ W

(3)
2r+1,aq2 → W

(3)
2r,aq2 ⊗ W

(3)
2r+2,a → 0,

0 → W
(3)
k,aq → W

(4)
k,a ⊗ W

(4)
k,aq2 → W

(4)
k−1,aq2 ⊗ W

(4)
k+1,a → 0.

Type G2 :

0 → W
(2)
3k,aq → W

(1)
k,a ⊗ W

(1)
k,aq6 → W

(1)
k−1,aq6 ⊗ W

(1)
k+1,a → 0,

0 → W (1)
r,aq ⊗ W

(1)
r,aq3 ⊗ W

(1)
r,aq5 → W

(2)
3r,a ⊗ W

(2)
3r,aq2 → W

(2)
3r−1,aq2 ⊗ W

(2)
3r+1,a → 0,

0 → W
(1)
r+1,aq ⊗ W

(1)
r,aq3 ⊗ W

(1)
r,aq5 → W

(2)
3r+1,a ⊗ W

(2)
3r+1,aq2 → W

(2)
3r,aq2 ⊗ W

(2)
3r+2,a → 0,

0 → W
(1)
r+1,aq ⊗ W

(1)
r+1,aq3 ⊗ W

(1)
r,aq5 → W

(2)
3r+2,a ⊗ W

(2)
3r+2,aq2 → W

(2)
3r+1,aq2 ⊗ W

(2)
3r+3,a → 0.
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