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Abstract. In this paper we study minimal affinizations of representations of
quantum groups (generalizations of Kirillov-Reshetikhin modules of quantum
affine algebras introduced in [Cha1]). We prove that all minimal affinizations
in types A, B, G are special in the sense of monomials. Although this property
is not satisfied in general, we also prove an analog property for a large class
of minimal affinization in types C, D, F . As an application, the Frenkel-

Mukhin algorithm [FM1] works for these modules. For minimal affinizations
of type A, B we prove the thin property (the l-weight spaces are of dimension
1) and a conjecture of [NN1] (already known for type A). The proof of the
special property is extended uniformly for more general quantum affinizations
of quantum Kac-Moody algebras.
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1. Introduction

In this paper q ∈ C∗ is fixed and is not a root of unity.
Affine Kac-Moody algebras ĝ are infinite dimensional analogs of semi-simple Lie

algebras g, and have remarkable applications (see [Ka]). Their quantizations Uq(ĝ),
called quantum affine algebras, have a very rich representation theory which has
been intensively studied in mathematics and physics (see references in [CP6, DM]
and in [CP2, FR, Nak1, Nak4] for various approaches). In particular Drinfeld [Dr2]
discovered that they can also be realized as quantum affinizations of usual quantum
groups Uq(g) ⊂ Uq(ĝ). By using this new realization, Chari-Pressley [CP6] classified
their finite dimensional representations.

Chari [Cha1] introduced the notion of minimal affinizations of representations
of quantum groups : starting from a simple representation V of Uq(ĝ), an affiniza-

tion of V is a simple representation V̂ of Uq(ĝ) such that V is the head in the
1
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decomposition of V̂ in simple Uq(g)-representations. Then one can define a partial
ordering on the set of affinizations of V and so a notion of minimal affinization for
this ordering. For example the minimal affinizations of simple Uq(g)-modules of
highest weight a multiple of a fundamental weight are the Kirillov-Reshetikhin
modules which have been intensively studied in recent years (for example see
[KOS, KNH, Kl, HKOTY, KN, Cha2, Nak4, Nak5, H4, CM3, FL] and references
therein). An (almost) complete classification of minimal affinizations was done in
[Cha1, CP3, CP4, CP5].

The motivation to study minimal affinizations comes from physics : the affiniza-
tions of representations of quantum groups are important objects from the physical
point of view, as stressed for example in [FR, Remark 4.2] and in the introduction
of [Cha1]. For example in the theory of lattice models in statistical mechanics, they
are related to the problem of proving the integrability of the model : the point
is to add spectral parameters to a solution of the related quantum Yang-Baxter
equation (see [CP6]). A second example is related to the quantum particles of the
affine Toda field theory (see [BL, Do]) which correspond to simple finite dimensional
representations of quantum affine algebras.

In the present paper we prove new results on the structure of minimal affiniza-
tions, in particular in the light of recent developments in the representation theory
of quantum affine algebras.

A particular class of finite dimensional representations, called special modules
[Nak4], attracted much attention as Frenkel-Mukhin [FM1] proposed an algorithm
which gives their q-character (analog of the usual character adapted to the Drinfeld
realization and introduced by Frenkel-Reshetikhin [FR] : they encode a certain de-
composition of representations in so called l-weight spaces or pseudo weight spaces).
For example the Kirillov-Reshetikhin modules [Nak4, Nak5, H4] are special (this is
the crucial point of the proof of the Kirillov-Reshetikhin conjecture). A dual class
of modules called antispecial modules is introduced in the present paper (antispe-
cial does not mean the opposite of special), and an analog of the Frenkel-Mukhin
algorithm gives their q-character.

In the present paper we prove that minimal affinizations in type A, B, G are
special and antispecial. We get counter examples for other types, but we prove in
type C, D, F that a large class of minimal affinizations are special or antispecial.
In particular the Frenkel-Mukhin algorithm works for these modules. As an appli-
cation, we prove that minimal affinizations of type A and B are thin (the l-weight
spaces are of dimension 1). We also get the special property for analog simple mod-
ules of quantum affinizations of some non necessarily finite quantum Kac-Moody
algebras.

In the proofs of the present paper, the crucial steps include technics developed
in [H4] to prove the Kirillov-Reshetikhin conjecture and in [H6] to solve the Naka-
jima’s smallness problem. The general idea is to prove simultaneously the special
property and the thin property by induction on the highest weight of the mini-
mal affinizations. This allows to use the elimination theorem [H4] which leads to
eliminate some monomials in the q-character of simple modules.

Nakajima first conjectured the existence of such large classes of special modules
for simply-laced cases (see [Nak4]), and the existence of a large class of special
minimal affinizations was conjectured by Mukhin in a conversation with the author
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in the conference "Representations of Kac-Moody Algebras and Combinatorics" at
Banff in March 2005.

In some situations, the properties are already known or can be proved directly
from already known explicit formulas. Indeed, for Kirillov-Reshetikhin modules the
special property was proved in [Nak5] (simply-laced case) and in [H4] (non simply-
laced case). So for Kirillov-Reshetikhin modules in classical types, the explicit
formulas in [KOS, KNH] are satisfied (the formulas for fundamental representations
are given in [KS]) and we can get the properties directly from them. General
formulas and the thin properties were proved for irreducible tame modules, which
include minimal affinizations, for Yangians of type A [Che1, Che2, NT]. (The author
was told by Nakajima that the same results hold for quantum affine algebras of type
A by [V].) See also [FM2] for the cases of minimal affinizations, which are evaluation
representations in type A.

Explicit formulas are also available for twisted yangians in classical types [Mo,
Naz1]. But the author did not find in the literature a proof of the correspondence
between quantum affine algebras and twisted (or non simply laced) yangians.

In general no explicit formulas for q-characters of quantum affine algebras are
available, so our proofs use direct arguments without explicit formulas and are in-
dependent of previous results on yangians. In particular this allows to extend uni-
formly our arguments to previously unknown situations (like type B, C, D, G2, F4),
and to more general quantum affinizations which are not necessarily quantum affine
algebras.

For quantum affine algebras in classical types, explicit conjectural formulas [NN1,
NN2, NN3] are available for a large class of representations including many minimal
affinizations (all of them for type A; see [KOS, KNH] for more general formulas). In
types A, B, the results proved in the present paper imply [NN1, Conjecture 2.2] for
these minimal affinizations. The author did not find in the literature a proof of this
result, except for type A as explained above. The main subject of the present paper
is minimal affinizations and so we give a proof of [NN1, Conjecture 2.2] in this case.
But it is possible to prove [NN1, Conjecture 2.2] for more general representations
by using a variation of this proof (this and [NN1, Conjecture 2.2] in types C, D
will be discussed in a separate publication).

The results of [NT, KS, KOS] and of [NN1, Conjecture 2.2] (and thin property
as their consequence) were explained to the author by Nakajima in an early stage
of this research, June 2005.

Let us describe the organization of the present paper. In section 2 we give some
backgrounds on the representation theory of quantum affine algebras. In section 3
we recall the definition of minimal affinizations and state the main results of the
paper. In section 4 we give preliminary results, including results from [H6] and
discussion about an involution of Uq(ĝ). In section 5 we prove the main result of
the paper. In section 6 we explain the proof of [NN1, Conjecture 2.2] for minimal
affinizations in types A, B, we state additional results (Theorem 6.6) for more
general quantum affinizations, and we discuss possible further developments, in
particular on generalized induction systems involving minimal affinizations.

Acknowledgments : The author is very grateful Evgeny Mukhin for encour-
aging him to study minimal affinizations in the continuation of the proof of the
Kirillov-Reshetikhin conjecture, to Hiraku Nakajima for useful comments and ref-
erences in an early stage of this research, and to Vyjayanthi Chari, Maxim Nazarov,
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Alexander Molev, Michela Varagnolo for useful comments and references. A part
of this paper was written as the author gave lectures in the East China Normal
University in Shanghai, he would like to thank Naihong Hu for the invitation.

2. Background

2.1. Cartan matrix and quantized Cartan matrix. Let C = (Ci,j)1≤i,j≤n be
a Cartan matrix of finite type. We denote I = {1, · · · , n}. C is symmetrizable :
there is a matrix D = diag(r1, · · · , rn) (ri ∈ N∗) such that B = DC is symmetric.
In particular if C is symmetric then D = In (simply-laced case).
We consider a realization (h, Π, Π∨) of C (see [B, Ka]): h is a n dimensional Q-vector
space, Π = {α1, · · · , αn} ⊂ h∗ (set of the simple roots) and Π∨ = {α∨

1 , · · · , α∨
n} ⊂ h

(set of simple coroots) are set such that for 1 ≤ i, j ≤ n, αj(α
∨
i ) = Ci,j . Let

Λ1, · · · , Λn ∈ h∗ (resp. Λ∨
1 , · · · , Λ∨

n ∈ h) be the the fundamental weights (resp.
coweights) : Λi(α

∨
j ) = αi(Λ

∨
j ) = δi,j where δi,j is 1 if i = j and 0 otherwise.

Denote P = {λ ∈ h∗|∀i ∈ I, λ(α∨
i ) ∈ Z} the set of weights and P+ = {λ ∈ P |∀i ∈

I, λ(α∨
i ) ≥ 0} the set of dominant weights. For example we have α1, · · · , αn ∈ P

and Λ1, · · · , Λn ∈ P+. Denote Q =
⊕

i∈IZαi ⊂ P the root lattice and Q+ =
∑

i∈INαi ⊂ Q. For λ, µ ∈ h∗, denote λ ≥ µ if λ − µ ∈ Q+. Let ν : h∗ → h linear
such that for all i ∈ I we have ν(αi) = riα

∨
i . For λ, µ ∈ h∗, λ(ν(µ)) = µ(ν(λ)). We

use the enumeration of vertices of [Ka].
We denote qi = qri and for l ∈ Z, r ≥ 0, m ≥ m′ ≥ 0 we define in Z[q±] :

[l]q =
ql − q−l

q − q−1
, [r]q ! = [r]q[r − 1]q · · · [1]q ,

[

m
m′

]

q

=
[m]q!

[m − m′]q![m′]q!
.

For a, b ∈ Z, we denote qa+bZ = {qa+br|r ∈ Z} and qa+bN = {qa+br|r ∈ Z, r ≥ 0}.
Let C(z) be the quantized Cartan matrix defined by (i 6= j ∈ I):

Ci,i(z) = zi + z−1
i , Ci,j(z) = [Ci,j ]z .

C(z) is invertible (see [FR]). We denote by C̃(z) the inverse matrix of C(z) and by
D(z) the diagonal matrix such that for i, j ∈ I, Di,j(z) = δi,j [ri]z.

2.2. Quantum algebras.

2.2.1. Quantum groups.

Definition 2.1. The quantum group Uq(g) is the C-algebra with generators k±1
i ,

x±
i (i ∈ I) and relations:

kikj = kjki , kix
±
j = q

±Ci,j

i x±
j ki,

[x+
i , x−

j ] = δi,j
ki − k−1

i

qi − q−1
i

,

∑

r=0···1−Ci,j

(−1)r

[

1 − Ci,j

r

]

qi

(x±
i )1−Ci,j−rx±

j (x±
i )r = 0 (for i 6= j).

This algebra was introduced independently by Drinfeld [Dr1] and Jimbo [J]. It is
remarkable that one can define a Hopf algebra structure on Uq(g) by :

∆(ki) = ki ⊗ ki,

∆(x+
i ) = x+

i ⊗ 1 + ki ⊗ x+
i , ∆(x−

i ) = x−
i ⊗ k−1

i + 1 ⊗ x−
i ,

S(ki) = k−1
i , S(x+

i ) = −x+
i k−1

i , S(x−
i ) = −kix

−
i ,
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ǫ(ki) = 1 , ǫ(x+
i ) = ǫ(x−

i ) = 0.

Let Uq(h) be the commutative subalgebra of Uq(g) generated by the k±1
i (i ∈ I).

For V a Uq(h)-module and ω ∈ P we denote by Vω the weight space of weight ω :

Vω = {v ∈ V |∀i ∈ I, ki.v = q
ω(α∨

i )
i v}.

In particular we have x±
i .Vω ⊂ Vω±αi .

We say that V is Uq(h)-diagonalizable if V =
⊕

ω∈P Vω (in particular V is of type
1).
For V a finite dimensional Uq(h)-diagonalizable module we define the usual charac-
ter

χ(V ) =
∑

ω∈P
dim(Vω)e(ω) ∈ E =

⊕

ω∈P

Z.e(ω).

2.2.2. Quantum loop algebras. We will use the second realization (Drinfeld real-
ization) of the quantum loop algebra Uq(Lg) (subquotient of the quantum affine
algebra Uq(ĝ)) :

Definition 2.2. Uq(Lg) is the algebra with generators x±
i,r (i ∈ I, r ∈ Z), k±1

i

(i ∈ I), hi,m (i ∈ I, m ∈ Z − {0}) and the following relations (i, j ∈ I, r, r′ ∈
Z, m, m′ ∈ Z − {0}):

[ki, kj ] = [ki, hj,m] = [hi,m, hj,m′ ] = 0,

kix
±
j,r = q

±Ci,j

i x±
j,rki,

[hi,m, x±
j,r ] = ±

1

m
[mBi,j ]qx

±
j,m+r,

[x+
i,r , x

−
j,r′ ] = δi,j

φ+
i,r+r′ − φ−

i,r+r′

qi − q−1
i

,

x±
i,r+1x

±
j,r′ − q±Bi,j x±

j,r′x
±
i,r+1 = q±Bi,j x±

i,rx
±
j,r′+1 − x±

j,r′+1x
±
i,r,

∑

π∈Σs

∑

k=0···s
(−1)k

[

s
k

]

qi

x±
i,rπ(1)

· · ·x±
i,rπ(k)

x±
j,r′x

±
i,rπ(k+1)

· · ·x±
i,rπ(s)

= 0,

where the last relation holds for all i 6= j, s = 1 − Ci,j , all sequences of inte-
gers r1, · · · , rs. Σs is the symmetric group on s letters. For i ∈ I and m ∈ Z,
φ±

i,m ∈ Uq(Lg) is determined by the formal power series in Uq(Lg)[[z]] (resp. in

Uq(Lg)[[z−1]]):
∑

m≥0
φ±

i,±mz±m = k±
i exp(±(q − q−1)

∑

m′≥1
hi,±m′z±m′

),

and φ±
i,∓m = 0 for m > 0.

Uq(Lg) has a Hopf algebra structure (from the Hopf algebra structure of Uq(ĝ)).

For J ⊂ I we denote by Uq(LgJ) ⊂ Uq(Lg) the subalgebra generated by the x±
i,m,

hi,m, k±1
i for i ∈ J . Uq(LgJ ) is a quantum loop algebra associated to the semi-

simple Lie algebra gJ of Cartan matrix (Ci,j)i,j∈J . For example for i ∈ I, we denote
Uq(Lgi) = Uq(Lg{i}) ≃ Uqi(Lsl2).

The subalgebra of Uq(Lg) generated by the hi,m, k±1
i (resp. by the x±

i,r) is denoted

by Uq(Lh) (resp. Uq(Lg)±).
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2.3. Finite dimensional representations of quantum loop algebras. Denote
by Rep(Uq(Lg)) the Grothendieck ring of (type 1) finite dimensional representations
of Uq(Lg).

2.3.1. Monomials and q-characters. Let V be a representation in Rep(Uq(Lg)). The
subalgebra Uq(Lh) ⊂ Uq(Lg) is commutative, so we have :

V =
⊕

γ=(γ±
i,±m)i∈I,m≥0

Vγ ,

where : Vγ = {v ∈ V |∃p ≥ 0, ∀i ∈ I, m ≥ 0, (φ±
i,±m − γ±

i,±m)p.v = 0}.

The γ = (γ±
i,±m)i∈I,m≥0 are called l-weights (or pseudo-weights) and the Vγ 6= {0}

are called l-weight spaces (or pseudo-weight spaces) of V . One can prove [FR] that
γ is necessarily of the form :

(1)
∑

m≥0
γ±

i,±mu±m = q
deg(Qi)−deg(Ri)
i

Qi(uq−1
i )Ri(uqi)

Qi(uqi)Ri(uq−1
i )

,

where Qi, Ri ∈ C(u) satisfy Qi(0) = Ri(0) = 1. The Frenkel-Reshetikhin q-
characters morphism χq [FR] encodes the l-weights γ (see also [Kn]). It is an
injective ring morphism :

χq : Rep(Uq(Lg)) → Z[Y ±
i,a]i∈I,a∈C∗

defined by

χq(V ) =
∑

γ
dim(Vγ)mγ ,

where :

mγ =
∏

i∈I,a∈C∗
Y

qi,a−ri,a

i,a ,

Qi(u) =
∏

a∈C∗
(1 − ua)qi,a , Ri(u) =

∏

a∈C∗
(1 − ua)ri,a .

The mγ are called monomials (they are analogs of weight). We denote by A the set

of monomials of Z[Y ±
i,a]i∈I,a∈C∗ . For an l-weight γ, we denote Vγ = Vmγ . We will

also use the notation ipr = Y p
i,qr for i ∈ I and r, p ∈ Z.

For J ⊂ I, χJ
q is the morphism of q-characters for Uq(LgJ ) ⊂ Uq(Lg).

For a m monomial we denote ui,a(m) ∈ Z such that m =
∏

i∈I,a∈C∗Y
ui,a(m)
i,a .

We also denote ω(m) =
∑

i∈I,a∈C∗ui,a(m)Λi, ui(m) =
∑

a∈C∗ ui,a(m) and u(m) =
∑

i∈I ui(m). m is said to be J-dominant if for all j ∈ J, a ∈ C∗ we have uj,a(m) ≥ 0.
An I-dominant monomials is said to be dominant.
Observe that χq, χ

J
q can also be defined for finite dimensional Uq(Lh)-modules in

the same way.
In the following for V a finite dimensional Uq(Lh)-module, we denote by M(V ) the
set of monomials occurring in χq(V ).
For i ∈ I, a ∈ C∗ we set :

Ai,a =Yi,aq−1
i

Yi,aqi

∏

{j|Cj,i=−1}

Y −1
j,a

×
∏

{j|Cj,i=−2}

Y −1
j,aq−1Y

−1
j,aq

∏

{j|Cj,i=−3}

Y −1
j,aq2Y

−1
j,a Y −1

j,aq−2 .
(2)
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As the A−1
i,a are algebraically independent [FR] (because C(z) is invertible), for M

a product of A−1
i,a we can define vi,a(M) ≥ 0 by M =

∏

i∈I,a∈C∗A
−vi,a(m)
i,a . We put

vi(M) =
∑

a∈C∗vi,a(M) and v(M) =
∑

i∈Ivi(M).

For λ ∈ −Q+ we set v(λ) = −λ(Λ∨
1 + · · ·+ Λ∨

n). For M a product of A−1
i,a , we have

v(M) = v(ω(λ)).
For m, m′ two monomials, we write m′ ≤ m if m′m−1 is product of A−1

i,a .

Definition 2.3. [FM1] A monomial m ∈ A − {1} is said to be right-negative if
for all a ∈ C∗, for L = max{l ∈ Z|∃i ∈ I, ui,aqL(m) 6= 0} we have ∀j ∈ I,
uj,aqL(m) ≤ 0.

Observe that a right-negative monomial is not dominant. We can also define left-
negative monomials by replacing max by min in the formula of L in Definition
2.3.

Lemma 2.4. [FM1] 1) For i ∈ I, a ∈ C∗, A−1
i,a is right-negative.

2) A product of right-negative monomials is right-negative.
3) If m is right-negative, then m′ ≤ m implies that m′ is right-negative.

We have the same results by replacing right-negative by left-negative.
For J ⊂ I and Z ∈ Y, we denote Z→J the element of Y obtained from Z by putting
Y ±1

j,a = 1 for j /∈ J .

Let β : Z[Y ±
j,b]j∈I,b∈C∗ → E be the ring morphism such that β(m) = e(ω(m)).

Proposition 2.5. [FR, Theorem 3] For V ∈ Rep(Uq(Lg)), let Res(V ) be the re-
stricted Uq(g)-module. We have (β ◦ χq)(V ) = χ(Res(V )).

2.3.2. l-highest weight representations. The irreducible finite dimensional Uq(Lg)-
modules have been classified by Chari-Pressley. They are parameterized by domi-
nant monomials :

Definition 2.6. A Uq(Lg)-module V is said to be of l-highest weight m ∈ A if

there is v ∈ Vm such that V = Uq(Lg)−.v and ∀i ∈ I, r ∈ Z, x+
i,r .v = 0.

For m ∈ A, there is a unique simple module L(m) of l-highest weight m.

Theorem 2.7. [CP6, Theorem 12.2.6] The dimension of L(m) is finite if and only
if m is dominant.

For i ∈ I, a ∈ C∗, k ≥ 0 we denote X
(i)
k,a =

∏

k′∈{1,··· ,k}Yi,aqk−2k′+1
i

.

Definition 2.8. The Kirillov-Reshetikhin modules are the W
(i)
k,a = L(X

(i)
k,a).

We denote by W
(i)
0,a the trivial representation (it is of dimension 1). For i ∈ I

and a ∈ C∗, W
(i)
1,a is called a fundamental representation and is denoted by Vi(a)

(in the case g = sl2 we simply write Wk,a and V (a)).
For g = sl2, the monomials m1 = Xk1,a1 , m2 = Xk2,a2 are said to be in special

position if the monomial m3 =
∏

a∈C∗Y
max(ua(m1),ua(m2))
a is of the form m3 =

Xk3,a3 and m3 6= m1, m3 6= m2. A normal writing of a dominant monomial m is
a product decomposition m =

∏

i=1,··· ,LXkl,al
such that for l 6= l′, Xkl,al

, Xkl′ ,al′

are not in special position. Any dominant monomial has a unique normal writing
up to permuting the monomials (see [CP6, Section 12.2]).
It follows from the study of the representations of Uq(Lsl2) in [CP1, CP2, FR] that
:



8 DAVID HERNANDEZ

Proposition 2.9. Suppose that g = sl2.
(1) Wk,a is of dimension k + 1 and :

χq(Wk,a) = Xk,a(1 + A−1
aqk(1 + A−1

aqk−2(1 + · · · (1 + A−1
aq2−k )) · · · ).

(2) V (aq1−k) ⊗ V (aq3−k) ⊗ · · · ⊗ V (aqk−1) is of q-character :

Xk,a(1 + A−1
aqk)(1 + A−1

aqk−2) · · · (1 + A−1
aq2−k ).

In particular all l-weight spaces of the tensor product are of dimension 1.
(3) For m a dominant monomial and m = Xk1,a1 · · ·Xkl,al

a normal writing we
have :

L(m) ≃ Wk1,a1 ⊗ · · · ⊗ Wkl,al
.

2.3.3. Special modules and complementary reminders.

Definition 2.10. For m ∈ A let D(m) be the set of monomials m′ ∈ A such that
there are m0 = m, m1, · · · , mN = m′ ∈ A satisfying for all j ∈ {1, · · · , N} :

(1) mj = mj−1A
−1
ij ,a1qij

· · ·A−1
ij ,arj

qij
where ij ∈ I, rj ≥ 1 and a1, · · · , arj ∈ C∗,

(2) for 1 ≤ r ≤ rj , uij ,ar(mj−1) ≥ |{r′ ∈ {1, · · · , rj}|ar′ = ar}| where rj , ij , ar

are as in condition (1).

For all m′ ∈ D(m), m′ ≤ m. Moreover if m′ ∈ D(m), then (D(m′) ⊂ D(m)).

Theorem 2.11. [H5, Theorem 5.21] For V ∈ Mod(Uq(ĝ)) be a l-highest weight
module of highest monomial m, we have M(V ) ⊂ D(m).

In particular for all m′ ∈ M(V ), we have m′ ≤ m and the vi,a(m′m−1), v(m′m−1) ≥
0 are well-defined. As a direct consequence of Theorem 2.11, we also have :

Lemma 2.12. For i ∈ I, a ∈ C∗, we have (χq(Vi(a)) − Yi,a) ∈ Z[Y ±
j,aql ]j∈I,l>0.

This result was first proved in [FM1, Lemma 6.1, Remark 6.2].
A monomial m is said to be antidominant if for all i ∈ I, a ∈ C∗, ui,a(m) ≤ 0.

Definition 2.13. A Uq(Lg)-module is said to be special (resp. antispecial) if his
q-character has a unique dominant (resp. antidominant) monomial.

The notion of special module was introduced in [Nak4]. It is of particular im-
portance because an algorithm of Frenkel-Mukhin [FM1] gives the q-character of
special modules. It is easy to write a similar algorithm for antispecial modules from
the Frenkel-Mukhin algorithm (for example it suffices to use the involution studied
in section 4.2).
Observe that a special (resp. antispecial) module is a simple l-highest weight mod-
ule. But in general all simple l-highest weight module are not special. The following
result was proved in [Nak4, Nak5] for simply-laced types, and in full generality in
[H4] (see [FM1] for previous results).

Theorem 2.14. [H4, Theorem 4.1, Lemma 4.4] The Kirillov-Reshetikhin modules

are special. Moreover for m ∈ M(W
(i)
k,a), m 6= X

(i)
k,a implies m ≤ X

(i)
k,aA−1

i,aqk
i

.

Define

µI
J : Z[(A±

j,a)→(J)]j∈J,a∈C∗ → Z[A±
j,a]j∈J,a∈C∗
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the ring morphism such that µI
J((A±

j,a)→(J)) = A±
j,a. For m J-dominant, denote by

LJ(m→(J)) the simple Uq(LgJ )-module of l-highest weight m→(J). Define :

LJ(m) = mµI
J((m→(J))−1χJ

q (LJ(m→(J)))).

We have :

Proposition 2.15. [H6] For a representation V ∈ Rep(Uq(Lg)) and J ⊂ I, there
is unique decomposition in a finite sum :

(3) χq(V ) =
∑

m′ J-dominant

λJ (m′)LJ(m′).

Moreover for all m′ J-dominant we have λJ (m′) ≥ 0.

Remark 2.16. Let m be a dominant monomial and m′ ∈ M(L(m)) a J-dominant
monomial such that there are no m′′ > m′ satisfying m′′ ∈ M(m) and m′ appears
in LJ(m′′). Then from Proposition 2.15 the monomials of LJ(m′) are in M(L(m)).
It gives inductively from m a set of monomial occurring in χq(L(m)).

2.3.4. Thin modules.

Definition 2.17. [H6] A Uq(Lg)-module V is said to be thin if his l-weight spaces
are of dimension 1.

For example for g of type A, B, C, all fundamental representations are thin
(it can be established directly from the formulas in [KS]; this thin property was
observed and proved with a different method in [H3, Theorem 3.5]; see also [CM2]).
Observe that it follows from [H1, Section 8.4] that for g of type G2, all fundamen-
tal representations are thin. For g of type F4, the fundamental representations
corresponding to i = 1 and i = 4 are thin, but the fundamental representations
corresponding to i = 2 or i = 3 are not thin (see [H3]).
For type D, it is known that fundamental representations are not necessarily thin
: for example for g of type D4, the fundamental representations V2(a) has an l-
weight space of dimension 2. Explicit formulas for the q-character of fundamental
representation in type D are given in [KS] (the thin fundamental representations
of type D are also characterized in [CM2]; see also remark 2.19 bellow for a general
statement).

For m ∈ Z[Yi,a]i∈I,a∈C∗ a dominant monomial, the standard module M(m) is
defined as the tensor product :

M(m) =
⊗

a∈(C∗/qZ)

(· · · ⊗ (
⊗

i∈I

Vi(aq)⊗ui,aq(m)) ⊗ (
⊗

i∈I

Vi(aq2)⊗ui,aq2 (m)) ⊗ · · · ).

It is well-defined as for i, j ∈ I and a ∈ C∗ we have Vi(a) ⊗ Vj(a) ≃ Vj(a) ⊗ Vi(a)
and for a′ /∈ aqZ, we have Vi(a)⊗Vj(a

′) ≃ Vj(a
′)⊗Vi(a). Observe that fundamental

representations are particular cases of standard modules.
As a direct corollary of a result of Nakajima, there is the following result for

simply-laced types :

Corollary 2.18. We suppose that g is simply-laced. Let m =
∏

i∈I Y wi

i,aqφi
where

a ∈ C∗, wi ≥ 0 and φi ∈ Z satisfies (Ci,j < 0 ⇒ |φi − φj | = 1). Then the standard
module M(m) is thin if and only if it is simple as a Uq(g)-module.
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Proof: It follows from [Nak3, Proposition 3.4] that in this situation the number of
monomials in χq(M(m))) is equal to the dimension of the simple Uq(g)-module of
highest weight

∑

i∈I wiΛi. �

Observe that this result is false for not simply-laced g (for example there is a
thin fundamental representation for type G2 which is not simple as a Uq(g)-module,
see [H1, Section 8.4]).

The following remark was communicated to the author by Nakajima :

Remark 2.19. In particular for g simply-laced, a fundamental representation is
thin if and only if the corresponding coefficient of the highest root is 1 (this point
is also a trivial consequence of previously known results, for example the geometric
construction [Nak1]).

We got also the following example :

Proposition 2.20. [H6, Proposition 6.6] Let g = sln+1 and consider a mono-
mial of the form m = Yi1,aql1 Yi2,aql2 · · ·YiR,aqlR where R ≥ 0, i1, i2, · · · , iR ∈ I,
l1, l2, · · · , lR ∈ Z satisfying for all 1 ≤ r ≤ R− 1, lr+1 − lr ≥ ir + ir+1. Then L(m)
is thin.

3. Minimal affinizations and main results

In this section we recall the definition of minimal affinizations and their classifi-
cation in regular cases. Then we state the main results which are proved in other
sections.

3.1. Definitions [Cha1].

Definition 3.1. For V a simple finite dimensional Uq(g)-module, a simple finite
dimensional Uq(Lg)-module L(m) is said to be an affinization of V if ω(m) is the
highest weight of V .

For V a Uq(g)-module and λ ∈ P+, denote by mλ(V ) the multiplicity in V of the
simple Uq(g)-module of highest weight λ.
Two affinizations are said to equivalent if they are isomorphic as Uq(g)-modules.
Denote by QV the equivalence classes of affinizations of V and for L an affinization
of V denote by [L] ∈ QV its classes. For [L], [L′] ∈ QV , we write [L] ≤ [L′] if and
only if for all µ ∈ P+, either

(i) mµ(L) ≤ mµ(L′),
(ii) ∃ν > µ such that mν(L) < mµ(L′).

Proposition 3.2. ≤ defines a partial ordering on QV .

Definition 3.3. A minimal affinizations of V is a minimal element of QV for the
partial ordering.

Remark 3.4. For g = sln+1, we have evaluation morphisms Uq(Lg) → Uq(g)
denoted by eva and eva (for a ∈ C∗) and in particular a minimal affinization L of
V is isomorphic to V as a Uq(g)-module.

3.2. Classification. The minimal affinizations were classified in [Cha1, CP3, CP4,
CP5] for all types, except for type D, E for a weight orthogonal to the special node.
For the regular cases (ie. with a linear Dynkin diagram, that is to say types A, B,
C, F4, G2), the classification is complete :
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Theorem 3.5. [Cha1, CP3, CP4] Suppose that g is regular and let λ ∈ P+. For
i ∈ I let λi = λ(α∨

i ) and for i < n let

ci(λ) = qriλi+ri+1λi+1+ri+1−Ci+1,i−1 and c′i(λ) = qriλi+ri+1λi+1+ri−Ci,i+1−1.

Then a simple Uq(Lg)-module L(m) is a minimal affinization of V (λ) if and only

if m is of the form m =
∏

i∈I X
(i)
λi,ai

with (ai)i∈I ∈ (C∗)I satisfying one of two
conditions :

(I) For all i < j ∈ I, ai/aj =
∏

i≤s<j cs(λ).

(II) For all i < j ∈ I, aj/ai =
∏

i≤s<j c′s(λ).

Observe that we have rewritten the defining formulas of cs, c′s [Cha1, CP3, CP4]
in a slightly different (more homogeneous) way.
Observe that for classical types, minimal affinizations (called generalized Kirillov-
Reshetikhin modules) were also studied in [GK].

Remark 3.6. As a consequence of Theorem 3.5, for k ≥ 0 and i ∈ I, the minimal
affinizations of V (kΛi) are the Kirillov-Reshetikhin modules.

For g of type D, and λ ∈ P+, we define with the same formulas ci(λ) for i < n−1,

and we set cn−1(λ) = qλn−2+λn+1. For a monomial m =
∏

i∈I X
(i)
λi,ai

we have analog

conditions (I) and (II) :
(I) For all i < j ∈ I, ai/aj = (cj−1(λ))ǫj

∏

i≤s≤min(j−1,n−3) cs(λ),

(II) For all i < j ∈ I, aj/ai = (cj−1(λ))ǫj
∏

i≤s≤min(j−1,n−3) cs(λ),

where ǫj = 0 if j ≤ n − 2 and ǫn−1 = ǫn = 1.

It follows from [CP3, Theorem 6.1] that if λn−2 6= 0 and m =
∏

i∈I X
(i)
λi,ai

satisfies

(I) or (II), then L(m) is a minimal affinization of V (λ).

3.3. Main results. It follows directly from Theorem 2.14 and remark 3.6 that (see
also Proposition 6.8 for an alternative general proof) :

Corollary 3.7. For i ∈ I and k ≥ 0, the minimal affinizations of V (kΛi) are
special.

In general a minimal affinization is not special. Let us look at some examples.
First we consider type C.
If m satisfies condition (II) of Theorem 3.5, L(m) is not necessarily special. For

example consider the case g of type C3 and m = Y2,1Y2,q2Y3,q7 . L(m) is a minimal
affinization of V (2Λ2+Λ3). By the process described in remark 2.16, the monomials
11132

−1
2 2−1

4 313337, 1−1
3 1−1

5 313337, 1−1
3 1−1

5 22243
−1
5 3337, 2−1

6 2−1
4 32

337 and 33 occur in
χq(L(m)) and so L(m) is not special.

If m satisfies condition (I) of Theorem 3.5, L(m) is not necessarily special. For
example consider the case g of type C3 and m = Y1,q3Y1,q5Y1,q7Y2,1. L(m) is a
minimal affinization of V (3Λ1 + Λ2). By the process described in remark 2.16, the
monomials 111315172

−1
2 31, 11131517243

−1
5 , 11131

2
5172

−1
6 , 111315 occur in χq(L(m))

and so L(m) is not special.
Eventually, let m = Y1,1Y1,q2Y1,q4Y2,q7Y2,q9Y3,q14 . We can see as for Y2,1Y2,q2Y3,q7

that L(m) is not special. Moreover L(m) is antispecial if and only if the module
L(Y1,q14Y1,q12Y1,q10Y2,q7Y2,q5Y3,1) is special (see Lemma 4.10 and Corollary 4.11
bellow). But we can check as for Y1,q3Y1,q5Y1,q7Y2,1 that this module is not special.
So L(m) is not special and not antispecial.
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For types D, there are minimal affinizations which are not special. For example
let g of type D4 and m = Y1,q3Y1,q5Y2,1. Then L(m) is not special (see [H6, Remark
6.8]).
However we prove in this paper :

Theorem 3.8. For g of type A, B, G, all minimal affinizations are special and
antispecial.

Theorem 3.9. For g of type C, F4 and λ ∈ P satisfying λn = 0, all minimal
affinizations of V (λ) satisfying (I) (resp. (II)) are antispecial (resp. special).

For g of type D and λ ∈ P satisfying λn−1 = λn, all L(m) satisfying (I) (resp.
(II)) and an−1 = an are antispecial (resp. special).

Note that for type D, the condition an−1 = an is automatically satisfied if λj 6= 0
for one j ≤ n − 2.

Theorem 3.10. For g of type A, B, all minimal affinizations are thin.

Theorems 3.8, 3.9 and 3.10 are proved in section 5.
Note for type C, there are minimal affinizations which are not thin : for example

consider g of type C4 and m = Y3,1Y3,q2 . L(m) is a Kirillov-Reshetikhin and a min-
imal affinization of V (2Λ3). By the process described in remark 2.16, the following
monomials occur in χq(L(m)) : 3132, 21233

−1
2 3−1

4 4143, 21234
−1
5 43, 14212

−1
5 344

−1
5 43,

14213
−1
6 43, 1421344

−1
7 , 1−1

6 2125344
−1
7 and 1−1

6 212
2
536454

−1
7 . And so by Proposition

2.15 and Proposition 2.9 the monomial 21252
−1
7 32

6454
−1
7 occurs in χq(L(m)) with

multiplicity larger than 2.
For type G2, there are minimal affinizations which are not thin : for example let

m = Y2,0Y2,2. L(m) is a Kirillov-Reshetikhin and a minimal affinization of V (2Λ2).

We have 2022, 11132
−1
4 2−1

2 , 1−1
7 1−1

9 242
2
628 ∈ M(L(m)), and so Y −1

1,9 Y2,4Y2,6 occurs

in χq(L(m)) with multiplicity larger than 2.

4. Preliminary results

In this section g is an arbitrary semi-simple Lie algebra. We discuss preliminary
results which will be used in the proof of Theorem 3.8, 3.9 and 3.10 in the next
section.

First it is well known that :

Lemma 4.1. Let L(m1), L(m2) be two simple modules. Then L(m1m2) is a sub-
quotient of L(m1) ⊗ L(m2). In particular M(L(m1m2)) ⊂ M(L(m1))M(L(m2)).

4.1. Results of [H6]. All results of this subsection are preliminary results of [H6].

Lemma 4.2. Let a ∈ C∗ and m be a monomial of Z[Yi,aqr ]i∈I,r≥0. Then for
m′ ∈ M(L(m)) and b ∈ C∗, (vi,b(m

′m−1) 6= 0 ⇒ b ∈ aqri+N).

Lemma 4.3. Let V ∈ Rep(Uq(Lg)) be a Uq(Lg)-module and m′ ∈ M(V ) such that
there is i ∈ I satisfying Min{ui,a(m

′)|a ∈ C∗} ≤ −2. Then there is m′′ > m′ in
M(V ) i-dominant such that Max{ui,b(m

′′)|b ∈ C∗} ≥ 2.

We recall [H6] that a monomial m is said to be thin if Maxi∈I,a∈C∗ |ui,a(m)| ≤ 1.

Proposition 4.4. If V is thin then all m ∈ M(V ) are thin. If V is special and all
m ∈ M(V ) are thin, then V is thin.
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Lemma 4.5. Let m dominant and J ⊂ I. Let v be an highest weight vector of
L(m) and L′ ⊂ L(m) the Uq(LgJ )-submodule of L(m) generated by v. Then L′ is
an Uq(Lh)-submodule of L(m) and χq(L

′) = LJ(m).

In particular for µ ∈ ω(m) −
∑

j∈JNαj , we have

dim((L(m))µ) = dim((LJ(m→(J)))µ→(J)),

where µ→(J) =
∑

j∈Jµ(α∨
j )ωj .

Lemma 4.6. Let V = L(m) be a Uq(Lg)-module simple module and consider a
monomial m′ ∈ (M(L(m)) − {m}). Then there is j ∈ I and M ′ ∈ M(V ) j-
dominant such that M ′ > m′, M ′ ∈ m′Z[Aj,b]b∈C∗ and ((Uq(Lgj).VM ′ )∩ (M)m′) 6=
{0}.

We have the following elimination theorem :

Theorem 4.7. Let V = L(m) be a Uq(Lg)-module simple module. Let m′ < m
and i ∈ I satisfying the following conditions

(i) there is a unique i-dominant M ∈ (M(V ) ∩ m′Z[Ai,a]a∈C∗) − {m′},
(ii)

∑

r∈Z
x+

i,r(VM ) = {0},
(iii) m′ is not a monomial of Li(M),
(iv) if m′′ ∈ M(Uq(Lgi).VM ) is i-dominant, then v(m′′m−1) ≥ v(m′m−1),

(v) for all j 6= i, {m′′ ∈ M(V )|v(m′′m−1) < v(m′m−1)} ∩ m′Z[A±1
j,a ]a∈C∗ = ∅.

Then m′ /∈ M(V ).

Lemma 4.8. Let L(m) be a simple Uq(Lg)-module, and m′ ∈ M(L(m)) such that
all m′′ ∈ M(L(m)) satisfying v(m′′m−1) < v(m′m−1) is thin.

1) For i ∈ I such that m′ is not i-dominant, there is a ∈ C∗ such that ui,a(m′) <
0 and m′Ai,aq−1

i
∈ M(L(m)).

2) We suppose that g = sln+1, that there are i ∈ I, a ∈ C∗ satisfying ui,a(m′) =
−1 and m′Yi,a is dominant. Then there is M ∈ M(L(m)) dominant such that
M > m′ and vn(m′M−1) ≤ 1, v1(m

′M−1) ≤ 1.
3) We suppose that g = sln+1, that there is j ∈ I, such that m′ is (I − {j})-

dominant and if j ≤ n−1, then for all a ∈ C∗, (uj,a(m′) < 0 ⇒ uj+1,aq−1(m′) > 0).
Then there is M ∈ M(L(m)) dominant of the form

M = m′
∏

{a∈C∗|uj,a(m′)<0}

(Aj,aq−1Aj−1,aq−3 · · ·Aia,aqia−j−1 ),

where for a ∈ C∗, 1 ≤ ia ≤ j.

Observe that we can prove in the same way an analog result where we replace all
i ∈ I by i = n − i + 1.

4.2. Involution of Uq(Lg) and simple modules. For µ an automorphism of
Uq(Lg) and V a Uq(Lg)-module we denote the corresponding twisted module by

µ∗V . The involution of the algebra Y defined by Y ±
i,a 7→ Y ∓

i,a−1 is denoted by σ.

For all b ∈ C∗, let τb be the automorphism of Uq(Lg) defined by x±
i,m 7→ b−mx±

i,m,

hi,r 7→ b−rhi,r, k±
i 7→ k±

i . For V a Uq(Lg)-module we have χq(τ
∗
b V ) = βb(χq(V ))

where βb : Y → Y is the ring morphism such that βb(Y
±
i,a) = Y ±

i,ab. So τ∗
b L(m) ≃

L(βb(m)) and χq(τ
∗
b L(m)) = βb(χq(L(m))).
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Lemma 4.9. [Cha1, Proposition 1.6] There is a unique involution σ of the algebra
Uq(Lg) such that for all i ∈ I, r ∈ Z, m ∈ Z − {0} :

σ(x±
i,r) = x∓

i,−r , σ(hi,m) = −hi,−m , σ(ki) = k−1
i .

Moreover for m ≥ 0, σ(φ±
i,±m) = φ∓

i,∓m.

(Observe that we could also use σ(x±
i,r) = −x∓

i,−r to define an involution of

Uq(Lg).)

Lemma 4.10. We have χq(σ
∗V ) = σ(χq(V )).

Proof: For γ = (γ±
i,±m)i∈I,m≥0, it follows from the relation σ(φ±

i,±m) = φ∓
i,∓m that

Vγ = (σ∗V )γ′ where γ′ = (γ±
i,∓m)i∈I,m≥0. Let Qi(u) =

∏

a∈C∗(1 − ua)qi,a and

Ri(u) =
∏

a∈C∗(1 − ua)ri,a such that in C[[u±]] we have :

∑

m≥0
γ±

i,±mu±m = q
deg(Qi)−deg(Ri)
i

Qi(uq−1
i )Ri(uqi)

Qi(uqi)Ri(uq−1
i )

.

Then in C[[u±]] we have :

∑

m≥0

γ∓
i,∓mu±m = q

deg(Qi)−deg(Ri)
i

Qi(u
−1q−1

i )Ri(u
−1qi)

Qi(u−1qi)Ri(u−1q−1
i )

= q
deg(Q′

i)−deg(R′
i)

i

Q′
i(uq−1

i )R′
i(uqi)

Q′
i(uqi)R′

i(uq−1
i )

,

where Q′
i(u) =

∏

a∈C∗(1 − ua)ri,a−1 and R′
i(u) =

∏

a∈C∗(1 − ua)qi,a−1 by using the
identities

qi
1 − au−1q−1

i

1 − au−1qi
= q−1

i

1 − a−1uqi

1 − a−1uq−1
i

and q−1
i

1 − au−1qi

1 − au−1q−1
i

= qi
1 − a−1uq−1

i

1 − a−1uqi
.

�

In particular χ(σ∗V ) = σ(χ(V )) where σ : E → E is defined by σ(e(λ)) = e(−λ).
Let w0 be the longest element in the Weyl group of g and i 7→ i be the unique

bijection of I such that w0(αi) = −αi. Let h∨ be the dual Coxeter number of g and
r∨ the maximal number of edges connecting two vertices of the Dynkin diagram of
g.

Corollary 4.11. For m dominant, we have σ∗L(m) ≃ L(m′) where

m′ =
∏

a∈C∗

∏

Y
ui,a(m)

i,a−1q−r∨h∨ .

Proof: A submodule of V is a submodule of σ∗V , so V simple implies σ∗V sim-
ple. As it is proved in [FM1, Corollary 6.9] that the lowest monomial of L(m) is
∏

i∈I,a∈C∗ Y
−ui,a(m)

i,aqr∨h∨ , we get the result from Lemma 4.10. �

Observe that as a by product we get the following symmetry property :

Corollary 4.12. If k = k, then χq(W
(i)
k,a) is invariant by (τa2qr∨h∨ ◦ σ).

For example, this symmetry can be observe on the diagrams of q-characters in
[Nak2, Figure 1] and [H1, Section 8].

Let us go back to the main purposes of this paper. First we get a simplification
in the proof of Theorem 3.8 :
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Corollary 4.13. In Theorem 3.8, it suffices to prove that all minimal affinizations
are special.

Proof: First suppose that g is of type B or G. Then i = i. If m satisfies condition
(II) of Theorem 3.5, then m′ of corollary 4.11 satisfies condition (I). Moreover if M
is dominant, then σ(M) is antidominant. So we can conclude with Lemma 4.10. If
g is of type A, conditions (I) and (II) are the same up to a different numbering. �

Exactly in the same way we get :

Corollary 4.14. In Theorem 3.9, it suffices to prove that the considered simple
representations satisfying the condition (II) are special.

For V a Uq(Lg)-module, denote by V ∗ the dual module of V . As S(ki) = k−1
i , we

have χ(V ∗) = σ(χ(V )). As a direct consequence of [FM1, Corollary 6.9], we have :

Lemma 4.15. For m dominant, we have (L(m))∗ ≃ L(m′′) where

m′′ =
∏

i∈I,a∈C∗
Y

ui,a(m)

i,aq−r∨h∨ .

Note that it was proved in [FM1] that we have the following relation between

the q-character of (Vi(a))∗ ≃ Vi(aq−r∨h∨

) and Vi(a) :

χq((Vi(a))∗) = (τa ◦ σ ◦ τa−1)(χq(Vi(a))).

Proposition 4.16. For m a dominant monomial, we have

χ(L(m)) = χ(L((σ(m))−1)).

Proof: From previous results, we have

χ(σ∗((L(m))∗)) = σ(χ((L(m))∗)) = χ(L(m)),

and σ∗((L(m))∗) ≃ L(
∏

i∈I,a∈C∗Y
ui,a(m)

i,a−1 ) = L((σ(m))−1). �

The above proposition can be extended to χ(L(m)) = χ(L(
∏

i∈I,a∈C∗Y
ui,a(m)

i,ba−1 ))

for all b ∈ C∗.
Observe that we do not have a direct relation between the monomials of the same

weight space : for example for g = sl2 and m = YqY
2
q3 , the term of weight Λ in

χq(L(m)) is 2YqYq3Y −1
q5 and the term of weight Λ in χq(L(σ(m))) is Yq−3 +Y 2

q−3Y −1
q .

4.3. Additional preliminary results.

Lemma 4.17. Let m = X
(i)
k,a. Let m′ ∈ M(W

(i)
k,a) and µ ∈ {k, k − 2, · · · ,−k + 2}.

Then vi,aqµ
i
(m′m−1) ≥ 1 implies

vi,aqk
i
(m′m−1) ≥ 1 , vi,aqk−2

i
(m′m−1) ≥ 1 , · · · , vi,aqµ

i
(m′m−1) ≥ 1.

Proof: For µ = k the result is clear. We suppose that µ < k and we prove the
result by induction on k. For k = 1 the result is clear. For general k ≥ 1 and µ < k,
suppose that vi,aqµ

i
(m′m−1) ≥ 1. So m′ 6= m and it follows from Theorem 2.14 that

m′ ≤ mA−1
i,aqk

i

. By Lemma 4.1, m′ = m1m2 where m1 ∈ M(Vi(aqk−1
i )) and m2 ∈

M(W
(i)

k−1,aq−1
i

). From Lemma 4.2, vj,b(m1Y
−1

i,aqk−1
i

) 6= 0 implies b = aqri(k−1)+R
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with R ≥ 1 and so b = aqµ
i . So we have vi,aqµ

i
(m2(X

(i)

k−1,aq−1
i

)−1) ≥ 1. So by the

induction hypothesis

vi,aqk−2
i

(m2(X
(i)

k−1,aq−1
i

)−1) ≥ 1 , vi,aqk−4
i

(m2(X
(i)

k−1,aq−1
i

)−1) ≥ 1,

· · · , vi,aqµ
i
(m2(X

(i)

k−1,aq−1
i

)−1) ≥ 1.

We can conclude because it follows from Theorem 2.14 that vi,aqk
i
(m′m−1) ≥ 1. �

Lemma 4.18. Let a ∈ C∗ and a monomial m ∈ Z[Yi,aqr ]i∈I,r∈Z. Let m′ ∈
M(L(m)) and R ∈ Z such that for all i ∈ I, (ui,aqr (m′) < 0 ⇒ r ≤ R). Then there
is a dominant monomial M ∈ M(L(m)) ∩ (mZ[Ai,aqr ]{(i,r)|i∈I,r≤R−ri}).

Proof: From Lemma 2.15 it suffices to prove the result for Uq(ŝl2). In this case the
result follows from (3) of Proposition 2.9. �

To conclude this section, let us prove a refined version of Proposition 2.15. For

i ∈ I, a ∈ C∗ and m a monomial denote m→(i,a) =
∏

r∈Z
Y

u
i,aq2r

i
(m)

i,aq2r
i

. Define :

Li,a(m) = mµI
i ((m

→(i,a))−1χi
q(L

i(m→(i,a)))).

Observe that for a′ ∈ aq2Z
i , m→(i,a) = m→(i,a′) and Li,a(m) = Li,a′(m). So the

definition can be given for a ∈ (C∗/q2Z
i ). We have :

Corollary 4.19. For a representation V ∈ Rep(Uq(Lg)), i ∈ I and a ∈ C∗, there
is a unique decomposition in a finite sum :

χq(V ) =
∑

{m′|(m′)→(i,a) is dominant}
λi,a(m′)Li,a(m′).

Moreover for all m′ such that (m′)→(i,a) is dominant, we have λi,a(m′) ≥ 0.

Proof: First we write the decomposition of Lemma 2.15 with J = {i}. Then it
follows from Proposition 2.9 that for m′ an i-dominant monomial we have

Li(m
′) = (m′)→(I−{i})

∏

b∈(C∗/q2Z

i )

Li,b((m
′)→(i,b)).

�

5. Proof of the main results

In this section we prove Theorems 3.8, 3.9 and 3.10. We study successively the
different types.

5.1. Type A. In this section 5.1, g = sln+1.

Lemma 5.1. Let λ ∈ P+ and L(m) be a minimal affinization of V (λ). Suppose
that m satisfies the condition (II) (resp. condition (I)) of Theorem 3.5. Let K =
max{i ∈ I|λi 6= 0} (resp. K = min{i ∈ I|λi 6= 0}). The following properties are
satisfied.

(1) For all m′ ∈ M(L(m)), if vK(m′m−1) ≥ 1, then vK,aKqλK (m′m−1) ≥ 1.
(2) L(m) is special.
(3) L(m) is thin.
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(4) For all m′ ∈ M(L(m)) we have

vj,akqλk+|j−k|(m′m−1) = vj,akqλk+|j−k|−2(m′m−1)

= · · · = vj,akqλk+|j−k|−2R(m′m−1) = 1,

where

j = max{i|vi(m
′m−1) 6= 0} (resp. j = min{i|vi(m

′m−1) 6= 0}),

k = max{i ≤ j|λi 6= 0} (resp. k = min{i ≥ j|λi 6= 0}),

and R = vj(m
′m−1) − 1.

Observe that as a consequence of property (4), for b ∈ C∗, vj,b(m
′m−1) 6= 0

implies
b ∈ {akqλk+|j−k|, akqλk+|j−k|−2, · · · , akqλk+|j−k|−2R}.

Lemma 5.1 combined with corollary 4.13 implies Theorem 3.8 and Theorem 3.10
for type A.
Proof: We suppose that L(m) satisfies (II) (the case (I) is treated in the same
way). We prove by induction on u(m) ≥ 0 simultaneously that (1), (2), (3) and (4)
are satisfied.

For u(m) = 0 the result is clear. Suppose that u(m) ≥ 1.
First we prove (1) by induction on v(m′m−1) ≥ 0. For v(m′m−1) = 0 we

have m′ = m and the result is clear. In general suppose that for m′′ such that
v(m′′m−1) < v(m′m−1), the property is satisfied. Suppose that vK(m′m−1) ≥ 1
and vK,aKqλK (m′m−1) = 0. It suffices to prove that the conditions of Proposition
4.7 with i = K are satisfied.

Condition (i) of Proposition 4.7 : if M > m′ and M ∈ M(L(m)), we have
vK,aKqλK (Mm−1) = 0 and so by the induction hypothesis vK(Mm−1) = 0. So if we

suppose moreover that M ∈ m′Z[AK,a]a∈C∗ , we have M = m′
∏

a∈C∗ A
vK,a(m′m−1)
K,a ,

and so we get the uniqueness. For the existence, it suffices to prove that this

M = m′
∏

a∈C∗ A
vK,a(m′m−1)
K,a is in M(L(m)). By Lemma 4.6, there is j ∈ I,

M ′ ∈ M(L(m)) j-dominant such that M ′ > m′ and M ′ ∈ m′Z[Aj,a]a∈C∗ . By the
induction hypothesis on v we have j = K, and so by uniqueness M ′ = M .

Condition (ii) of Proposition 4.7 : by construction of M we have vK(Mm−1) = 0.
Condition (iii) of Proposition 4.7 : first observe that

M ∈ m→(K)M(L(m(m→(K))−1)).

As u(m(m→(K))−1) < u(m), we have property (4) for L(m(m→(K))−1) and we get

(M)→(K) = YK,aKqλK−1YK,aKqλK−3 · · ·YK,aKq−λK+1−2R′ ,

with R′ ≥ 0. By Lemma 2.9, m′ is not a monomial of M(LK(M)).
Condition (iv) of Proposition 4.7 : let m′′ ∈ M(Uq(LgK).(L(m))M ) such that

v(m′′m−1) < v(m′m−1). Then we have m′′ ∈ MA−1
K,aKqλk

Z[A−1
K,b]b∈C∗ and so

(m′′)→(K) is right negative, so m′′ is not K-dominant.
Condition (v) of Proposition 4.7 : clear by the induction property on v.
Now we prove (2). Let J = {i ∈ I|i < K}. By Lemma 4.1, M(L(m)) ⊂

(m→(J)M(L(m→(K)))) ∪ (M(L(m→(J)))m→(K)). From Theorem 2.14, all mono-
mials of m→(J)(χq(L(m→(K)))−m→(K)) are lower than mA−1

K,aKqλK
which is right-

negative, and so are not dominant. Let m′ ∈ (M(L(m→(J)))m→(K) − {m}). If
vK(m′m−1) ≥ 1, it follows from property (1) that m′ is lower than mA−1

K,aKqλK
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which is right-negative, so m′ is not dominant. If vK(m′m−1) = 0, we have
uK,b(m

′(m→(K))−1) ≥ 0 for all b ∈ C∗. We have m′(m→(K))−1 ∈ M(L(m→(J)))

with u(m→(J)) < u(m), so by the induction hypothesis on u, m′(m→(K))−1 is not
dominant. So there is i 6= K, b ∈ C∗, such that ui,b(m

′(m→(K))−1) < 0. As

ui,b(m
′(m→(K))−1) = ui,b(m

′), m′ is not dominant. So L(m) is special.
Now we prove (3). From property (2) and Proposition 4.4, it suffices to prove

that all monomials of M(L(m)) are thin. From Lemma 4.3, we can suppose that
there is m′ ∈ M(L(m)) such that there are i ∈ I, a ∈ C∗ satisfying ui,a(m′) =
2 and such that all m′′ satisfying v(m′′m−1) < v(m′m−1) is thin. Then m′ is
({1, · · · , i − 2} ∪ {i} ∪ {i + 2, · · · , n})-dominant and (ui−1,b(m

′) < 0 ⇒ b = aq)
and (ui+1,b(m

′) < 0 ⇒ b = aq). We can apply (3) of Lemma 4.8 for g{1,··· ,i−1}

and for g{i+1,··· ,n}. We get M ∈ M(L(m)) dominant satisfying uj1,aqj1−i(M) ≥ 1,
uj2,aqi−j2 (M) ≥ 1 with j1 < j2, j1 ≤ i ≤ j2. From property (2) we have m = M ,
contradiction with condition (II) of Theorem 3.5.

Now we prove (4) by induction on v(m′m−1) ≥ 0. We can suppose that j = n
(Lemma 4.5). So k = K. For v(m′m−1) = 0 we have m′ = m and the result is clear.
Let m′ such that the property is satisfied for m′′ with v(m′′m−1) < v(m′m−1). Let
R ≥ 0 maximal such that

m′ ≤ mA−1
n,akqλk+n−kA−1

n,akqλk+n−k−2 · · ·A
−1
n,akqλk+n−k−2R+2.

We suppose moreover that

m′ ≤ mA−1
n,akqλk+n−kA−1

n,akqλk+n−k−2 · · ·A
−1
n,akqλk+n−k−2R+2A

−1
n,b

with b 6= akqλk+n−k−2R. By the induction property on v, m′ is (I−{n})-dominant,
un,bq(m

′) < 0 and (un,c(m
′) < 0 ⇒ c = bq). By property (3), un,bq(m

′) = −1. m′

is a monomial of Ln(m′An,b). By property (3), we can apply (3) of Lemma 4.8 and
we get M ∈ M(L(m)) dominant of the form M = m′An,bAn−1,bq−1 · · ·An−r,bq−r

with r ≥ 0. From property (2), we have M = m. So R = 0. So n − r = K,
bq−r = aKqλK , that is to say b = aKqλK+n−K , contradiction. �

5.2. Type B. In this section 5.2, we suppose that g is of type Bn.

5.2.1. Preliminary results for type B.

Lemma 5.2. Let a ∈ C∗, m ∈ Z[Yi,aqr ]i∈I,r∈Z a dominant monomial. Consider
m′ ∈ M(L(m)) {1, · · · , n − 1}-dominant such that all m′′ ∈ M(L(m)) satisfying
v(m′′m−1) < v(m′m−1) is thin. Suppose that m′ is not dominant and let R =
min{r ∈ Z|un,aqr (m′) < 0}. Then there is M ∈ M(L(m)) {1, · · · , n− 1}-dominant
such that m ≥ M > m′, m′M−1 ∈ Z[Ai,aqR+2(i−n)+4r−1 ]i∈I,r≤0, un,aqR(M) = 0 and
for all r ≤ R, un,aqr (M) ≥ 0 and

∑

l≥0 un,aqR−2−4l(M) > 0.

Proof: For the shortness of notations, we suppose that m′Yn,aqR is dominant (the
proof is exactly the same if R 6= max{r ∈ Z|un,aqr(m′) < 0}). First there is

m0 = An,aqR−1An−1,aqR−3 · · ·An−α,aqR−1−2αm′ ∈ M(L(m)),

where α ≥ 0 and m0 is {1, · · · , n − 1}-dominant. If α = 0 we take M = m0.
Otherwise, un,aqR−4(m0) = −1 and un,b(m0) > 0 implies b = aqR−4. We continue
and we get inductively (at each step the involved monomials are thin by assumption)
:

mr = An,aqR−1−4rAn−1,aqR−3−4r · · ·An−α+r,aqR−1−2α−2r mr−1 ∈ M(L(m)),
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where 1 ≤ r ≤ α and mr is {1, · · · , n − 1}-dominant. We take M = mα and the
properties are satisfied by construction. �

Lemma 5.3. Let L(m) be a simple Uq(Lg)-module. Let m′ ∈ M(L(m)) such that
all m′′ ∈ M(L(m)) satisfying v(m′′m−1) < v(m′m−1) is thin. Suppose that there
are j ∈ (I − {n}) such that uj,b(m

′) < 0 and mYj,b is dominant. Moreover we
suppose that if j 6= 1, then uj−1,bq−2 (m′) > 0. Then there is M ∈ M(L(m))
dominant satisfying one of the following conditions :

(1) M = m′Aj,bq−2Aj+1,bq−4 · · ·Aj+r,bq−2−2r where 0 ≤ r ≤ n − j,
(2) M = m′(Aj,bq−2Aj+1,bq−4 · · ·An−1,bq−2n+2j )An,bq−2n+2j M ′ where

M ′ ∈ Z[Ak,bq−2n+2j+2(k−n)−4l ]k<n,l≥0Z[An,bq−2n+2j−4l ]l≥1,
(3) M = m′(Aj,bq−2Aj+1,bq−4 · · ·An,bq−2−2n+2j )An,aq−2n+2j ,
(4) M = m′(Aj,bq−2Aj+1,bq−4 · · ·An,bq−2−2n+2j )An,bq−2n+2j An−1,bq−2n−2+2j .

Moreover
in case (1), we have uj+r,bq−2−2r−rj+r (M) = 1,

in case (2), we have un−1,bq−2n+2j−2(M) = 1 and
∑

l≥0 un,bq−2n+2j−1−4l (M) > 0,

in case (3), we have un,bq−3−2n+2j (M) = un,bq−1−2n+2j (M) = 1,
in case (4), we have un−1,bq−2n−4+2j (M) = 1.

Proof: Thanks to the hypothesis uj−1,bq−2 (m′) > 0, we can suppose that j =
1 . By using (3) of Lemma 4.8 with g{1,··· ,n−1} of type An−1, we get m1 =
m′A1,bq−2A2,bq−4 · · ·A1+r,bq−2(r+1) ∈ M(L(m)), {1, · · · , n − 1}-dominant.

If m1 is dominant, then the condition (1) is satisfied, and we set M = m1.
Otherwise we have r = n − 2, un−1,bq−2n(m1) = 1, m1 is not n-dominant and

(un,d(m1) < 0 ⇒ d = bq−2n+3 or d = bq−2n+1).
If un,bq−2n+1(m1) ≥ 0 and un,bq−2n+3(m1) = −1, then we can use Lemma 5.2 and

so condition (2) is satisfied.
If un,bq−2n+1(m1) = −1 and un,bq−2n+3(m1) ≥ 0, M = m1An,bq−2n ∈ M(L(m))

is dominant, so condition (1) is satisfied.
If un,bq−2n+1(m1) = −1 and un,bq−2n+3(m1) = −1, m2 = m1An,bq−2nAn,bq−2n+2 ∈

M(L(m)) is n-dominant and (un−1,d(m2) < 0 ⇒ d = bq−2n+2). If m2 is domi-
nant, condition (3) is satisfied. If un−1,bq−2n+2(m2) = −1, M = m2An−1,bq−2n ∈
M(L(m)) is dominant as un,bq−2n+1(m2) = un,bq−2n−1(m2) = 1. So condition (4) is
satisfied.

The additional properties in the end of the statement are clear by construction
of M . �

5.2.2. Kirillov-Reshetikhin modules W
(n)
λ,a . Now we consider the case of a Kirillov-

Reshetikhin module in the node n, that is to say a minimal affinization of V (λΛn)
(observe that in this case condition (I) and condition (II) of Theorem 3.5 are sat-
isfied).

Lemma 5.4. Let m = X
(n)
λ,a . Then

(1) For all m′ ∈ M(L(m)) and µ ∈ {λ, λ− 2, · · · ,−λ+ 2}, vn,aqµ(m′m−1) ≥ 1
implies vn,aqλ(m′m−1) ≥ 1, vn,aqλ−2(m′m−1) ≥ 1, · · · , vn,aqµ(m′m−1) ≥ 1.

(2) L(m) is special.
(3) L(m) is thin.
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(4) Let m′ ∈ M(L(m)) satisfying
∑

r∈Z,i<n vi,aqλ+2n−2i+4r (m′m−1) ≥ 0. Let

j = min{i < n|
∑

r∈Z
vi,aqλ+2n−2i+4r (m′m−1) 6= 0}. We have

vj,aqλ+2n−2j (m′m−1) = vj,aqλ+2n−2j−4 (m′m−1)

= · · · = vj,aqλ+2n−2j−4R (m′m−1) = 1,

where R =
∑

r∈Z
vj,aqλ+2n−2j+4r (m′m−1) − 1.

Proof: (1) follows from Lemma 4.17. (2) follows from Theorem 2.14.
Let us prove (3). From property (2) and Proposition 4.4, it suffices to prove that

all monomials of M(L(m)) are thin. From Lemma 4.3, we can suppose that there
is m′ ∈ M(L(m)) such that there are l ∈ I, d ∈ C∗ satisfying ul,d(m

′) = 2 and such
that all m′′ ∈ M(L(m)) satisfying v(m′′m−1) < v(m′m−1) is thin. We distinguish
three cases (α), (β), (γ).

(α) Suppose that there is c ∈ C∗ such that un,c(m
′) ≥ 2. Then one of the two

following condition is satisfied.
(α.i) : There is b ∈ C∗ such that un−1,b(m

′) = −1, (un−1,d(m
′) < 0 ⇒ d = b),

(un,bq−1(m′) = 2 or un,bq−3(m′) = 2) and (un,d(m
′) = 2 ⇒ (d = bq−1 or d = bq−3)).

(α.ii) : There is b ∈ C∗ such that un−1,b(m
′) = un−1,bq2(m′) = −1, un,bq−1(m′) =

2, (un−1,d(m
′) < 0 ⇒ (d = b or d = bq2)) and (un,d(m

′) = 2 ⇒ d = bq−1).
Otherwise, by using Proposition 2.15, we would get m′′ ∈ M(L(m)) such that
v(m′′m−1) < v(m′m−1) and m′′ does not satisfy property (3).

First suppose that the condition (α.i) is satisfied. We have the following subcases
:

(α.i.1) : un,bq−1(m′) ≥ 1 and un,bq−3(m′) ≥ 1. Then m′An−1,bq−2 ∈ M(L(m))
is (I − {n − 2})-dominant and by (3) of Lemma 4.8 with g{1,··· ,n−1} we get M ∈
M(L(m)) dominant such that un−R,bq−2−2R(M) ≥ 1 for an R ≥ 1. By property
(2), M = m, contradiction.

(α.i.2) : un,bq−3(m′) = 2 and un,bq−1(m′) = 0. Then m′′ = m′An−1,bq−2 ∈

M(L(m)) and Yn,bq−3Y −1
n,bq−1 appears in m′′. So by Lemma 2.15 there is m′′′ ∈

M(L(m)) such that m′′ < m′′′ and un,bq−3(m′′′) ≥ 2, contradiction.
(α.i.3) : un,bq−1(m′) = 2 and un,bq−3(m′) = 0. Then m′′ = m′An−1,bq−2 ∈

M(L(m)) is (I − {n − 2, n})-dominant and ∀j ∈ I, (uj,bql(m′′) > 0 ⇒ l ≤ −2). So

by Lemma 4.18 we get M ∈ M(L(m)) dominant such that vn,bq−4(m′′M−1) ≥ 1
and m′′M−1 ∈ Z[Aj,bql ]j∈I,l≤−3. So un,bq−1(M) = un,bq−1(m′′) = 1. By property

(2), M = m. By property (1), we have vn,b(m
′′M−1) ≥ 1, contradiction.

Now we suppose that (α.ii) is satisfied. We have the following subcases :
(α.ii.1) : un,bq(m

′) = 0. Then m′′ = m′An−1,bq−2An−1,bAn,b ∈ M(L(m))

and Yn−1,bq−4Yn−1,bq−2Y −1
n−1,bYn,bq−1 appears in m′′. So m′′′ = m′′An−1,bq−2 ∈

M(L(m)) and un−1,bq−4(m′′′) = 2, contradiction.
(α.ii.2) : un,bq(m

′) = un,bq−3(m′) = 1. Consider m′′ = m′An−1,bAn−1,bq−2 .
Then m′′ ∈ M(L(m)) is (I − {n − 2})-dominant and by (3) of Lemma 4.8 with
g{1,··· ,n−2} we get M ∈ M(L(m)) dominant such that

un−r1,bq−2r1 (M) ≥ 1 and un−r2,bq−2−2r2 (M) ≥ 1

with r1, r2 ≥ 1. By property (2), M = m, contradiction.
(α.ii.3) : un,bq(m

′) = 1 and un,bq−3(m′) = 0. Then

m′′ = m′An−1,bq−2An−1,bAn,bq−4 ∈ M(L(m))
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is (I −{n− 2})-dominant, Yn−1,bq−2Yn,bq−5 appears in m′′ and ∀j ∈ I, (uj,d(m
′′) =

−1 ⇒ ((j, d) = (n − 2, bq−2) or (j, d) = (n − 2, b))). So by (3) of Lemma 4.8,
there is m′′′ ∈ M(L(m)) of the form m′′′ = An−2,bq−2An−3,bq−4 · · ·An−R,bq2−2Rm′′

with R ≥ 1 such that ∀j ∈ I, (uj,d(m
′′′) = −1 ⇒ (j, d) = (n − 2, bq−2)). We

have un,bq−5(m′′′) = un−R,bq−2R(m′′′) = 1. If m′′′ is dominant, we have m′′′ = m,
contradiction. So un−2,bq−2(m′′′) = −1. As moreover un,bq−5(m′′′) = 1, we have a
dominant monomial M ∈ M(L(m)) of the form :

M =m′′′(An−2,bq−4An−1,bq−6An,bq−8 )(An−3,bq−6An−2,bq−8An−1,bq−10An,bq−12 )

· · · (An−r,bq−2r An−r+1,bq−2−2r · · ·An,bq−4r )

× (An−r−1,bq−2−2rAn−r,bq−4−2r · · ·An−r−1+r′,bq−2−2r−2r′ ),

where r ≥ 1 and r + 1 ≥ r′ ≥ 0. By property (1), we have M = m. So we have
un−R,bq−2R(m) = un−R,bq−2R(m′′′) = 1, contradiction.

(β) Suppose that there is b ∈ C∗ such that un−1,b(m
′) ≥ 2. Then we have

(un−2,d(m
′) < 0 ⇒ d = bq2) and (un,d(m

′) < 0 ⇒ d = bq). By (3) of Lemma 4.8
with J = {1, · · · , n−1} and J = {n}, we get a dominant monomial M ∈ M(L(m))
satisfying one of the two following condition :

(β.1) uj1,bq2j1−2n+2(M) = 1, un,bq−1(M) = 1 with j1 ≤ n − 1.
(β.2) uj1,bq2j1−2n+2(M) = 1, un−1,b(M) = 1 with j1 ≤ n − 2.

From (2) we have m = M , contradiction.
(γ) Suppose that there is i ≤ n−2 and b ∈ C∗ such that ui,b(m

′) ≥ 2. Then m′ is
({1, · · · , i−2}∪{i}∪{i+2, · · · , n})-dominant. We have (ui−1,d(m

′) < 0 ⇒ d = bq2)
and (ui+1,d(m

′) < 0 ⇒ d = bq2). By applying (3) of Lemma 4.8 and Lemma 5.3,

we get M ∈ M(L(m)) dominant such that (M){1,··· ,n−2} 6= 1. From property (2)
we have m = M , contradiction.

Now we prove property (4) by induction on v(m′m−1) ≥ 0. Let j be as in
property (4). For v(m′m−1) = 0 we have m′ = m and the result is clear. We
suppose that property (4) is satisfied for m′′ satisfying v(m′′m−1) < v(m′m−1). Let
R ≥ 0 maximal such that m′m−1 ≤ A−1

j,aqλ+2n−2j A
−1
j,aqλ+2n−2j−4 · · ·A

−1
j,aqλ+2n−2j+4−4R .

We suppose moreover that

m′m−1 ≤ A−1
j,aqλ+2n−2j A

−1
j,aqλ+2n−2j−4 · · ·A

−1
j,aqλ+2n−2j+4−4RA−1

j,b ,

with b = aqλ+2n−2j−4µ and µ 6= R. If j ≥ 2, we have uj−1,b(m
′) = 1. By

the induction hypothesis on v, m′ is (I − {j})-dominant, uj,bq2(m′) = −1 and
(uj,d(m

′) < 0 ⇒ d = bq2). By property (3), we can apply Lemma 5.3 and we get
a dominant monomial M ∈ M(L(m)). From property (2), we have M = m. As
un−1(m) = 0, we are in the situation (1) or (3) of Lemma 5.3. So

m(m′)−1 = Aj,bAj+1,bq−2 · · ·An−1,bq−2(n−1−j)An,bq−2(n−j)(An,bq2−2(n−j) )ǫ,

where ǫ ∈ {0, 1}. So b = aqλ+2n−2j , µ = 0 and R = 0, contradiction. �

5.2.3. Condition (I). Now we treat the general case of minimal affinization satis-

fying condition (I) of Theorem 3.5 (except the Kirillov-Reshetikhin modules W
(n)
k,a

already studied in Lemma 5.4).

Lemma 5.5. Let λ ∈ P+ and L(m) be a minimal affinization of V (λ) such that
m satisfies condition (I) of Theorem 3.5. Let K = min{i ∈ I|λi 6= 0}. We suppose
that K ≤ n − 1. Then the following conditions are satisfied :
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(1) For all m′ ∈ M(L(m)) satisfying
∑

r∈Z
vK,aKq2λK+4r(m′m−1) ≥ 1, we have

vK,aKq2λK (m′m−1) ≥ 1.
(2) L(m) is special.
(3) L(m) is thin.
(4) Let m′ ∈ M(L(m)) satisfying

∑

r∈Z,i<n vi,aiq2λi+4r(m′m−1) ≥ 1. We have

vj,akqrkλk+2k−2j (m′m−1) = vj,akqrkλk+2k−2j−4 (m′m−1)

= · · · = vj,akqrkλk+2k−2j−4R(m′m−1) = 1,

where

j = min{i < n|
∑

r∈Z

vi,aiq2i+4r (m′m−1) ≥ 1},

k = min{i ≥ j|λi 6= 0} and R = (
∑

r∈Z
vj,ajq2λj+4r(m′m−1)) − 1.

(5) Let m′ ∈ M(L(m)) such that min{i|
∑

r∈Z
vi,aiq2λi+4r(m′m−1) ≥ 1} = n.

Then λn 6= 0 and

vn,anqλn (m′m−1) = vn,anqλn−2(m′m−1)

= · · · = vn,anqλn−2R(m′m−1) = 1,

where R =
∑

r∈Z
vn,anq2λn+2r(m′m−1) − 1.

Proof: We prove by induction on u(m) ≥ 0 simultaneously that (1), (2), (3), (4)
and (5) are satisfied.

For u(m) = 0 the result is clear. Suppose that u(m) ≥ 1.
First we prove (1) by induction on v(m′m−1) ≥ 0. For v(m′m−1) = 0 we

have m′ = m and the result is clear. In general suppose that for m′′ such that
v(m′′m−1) < v(m′m−1) the property is satisfied, that vK,aKq2λK (m′m−1) = 0 and
∑

r∈Z
vK,aKq2λK+4r(m′m−1) ≥ 1. Observe that it follows from Lemma 2.15 and

corollary 4.19 that m′ is (I − {K})-dominant and (m′)→(K,aKq2λK ) is dominant.
If m′ is not dominant, by corollary 4.19, there is m′′ ∈ M(L(m)) K-dominant

such that m′ is a monomial of LK,aKq2λK−2(m′′). Moreover from Proposition 2.9,

there is b ∈ aKq2λK+4Z such that AK,bm
′ ∈ M(L(m)). By the induction property

on v, we have
∑

r∈Z
vK,aKq2λK+4r(m′AK,bm

−1) = 0. So m′′ = m′AK,b. But m′′ ∈

m→(K)M(L(m(m→(K))−1)). As u(m(m→(K))−1) < u(m), we have property (4)
for L(m(m→(K))−1) and we get

(m′′)→(K) ∈ YK,aKq2λK−2YK,aKq2λK−6 · · ·YK,aKq−2λK+2−4R′ Z[YK,aKq4r+2λK ]r∈Z

with R′ ≥ 0. By Lemma 2.9, m′ is not a monomial of M(LK(m′′)), contradiction.
So m′ is dominant.

Let us prove that
∑

r∈Z
vK,aKq2λK+4r+2(m′m−1) = 0. Observe that

m′Y −1
K,aKq2λK−2 ∈ M(L(mY −1

K,aKq2λK−2)).

Moreover uj,a(m′(m→(K))−1) < 0 implies j = K and a = aKq2λK−2. As we have

u(mY −1
K,aKq2λK−2) < u(m), properties (2) and (3) are satisfied by L(mY −1

K,aKq2λK−2).

So we can use (2) of Lemma 4.8 for g{1,··· ,n−1} of type An−1 and we get a monomial

m′′ ∈ M(L(mY −1
K,aKq2λK−2)) ∩ (m′Y −1

K,aKq2λK−2Z[Aj,aKq2λK+4r+2(K−j) ]j≤n−1,r∈Z),
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which is {1, · · · , n − 1}-dominant and satisfying vn−1(m
′Y −1

K,aKq2λK−2(m
′′)−1) ≤

1. If vn−1(m
′Y −1

K,aKq2λK−2(m
′′)−1) = 0, then mY −1

K,aKq2λK−2 = m′′ and the re-

sult is clear. Otherwise, consider the unique b ∈ aKq2λK+2(n−K)+4Z such that
vn−1,b(m

′Y −1
K,aKq2λK−2(m

′′)−1) = 1. We have un,d(m
′′) < 0 ⇒ (d = bq or d =

bq−1). If un,bq(m
′′) = 0 we use Lemma 5.2 and we get the result. If un,bq(m

′′) = −1
and un,bq−1(m′′) = 0, we use Lemma 5.2, and in particular we get a monomial

(mY −1
K,aKq2λK−2)A

−1
j,d ∈ M(L(mY −1

K,aKq2λK−2))

where d /∈ aKq2λK+4Z, contradiction with condition (II). In the same way if we
have un,bq(m

′′) = −1 and un,bq−1(m′′) = −1, then we get a contradiction by using
twice Lemma 5.2.

Now it suffices to prove that the conditions of Proposition 4.7 with i = K are
satisfied.

Condition (i) of Proposition 4.7 : if M > m′ is in M(L(m)), we have necessarily
vK,aKq2λK (Mm−1) = 0. So by induction hypothesis

∑

r∈Z
vK,aKq2λK+4r (Mm−1) =

0, and so vK(Mm−1) = 0. So if we suppose moreover that M ∈ m′Z[AK,a]a∈C∗ ,

we have necessarily M = m
∏

a∈C∗ A
vK,a(m′m−1)
K,a , and so we get the uniqueness.

For the existence, it suffices to prove that this M = m
∏

a∈C∗ A
vK,a(m′m−1)
K,a is in

M(L(m)). By Lemma 4.6, there is j ∈ I, M ′ ∈ M(L(m)) j-dominant such that
M ′ > m′ and M ′ ∈ m′Z[Aj,a]a∈C∗ . By induction hypothesis on v we have j = K,
and so by uniqueness M ′ = M .

Condition (ii) of Proposition 4.7 : by construction of M we have vK(Mm−1) = 0.
Condition (iii) of Proposition 4.7 : first observe that

M ∈ m→(K)M(L(m(m→(K))−1)).

As u(m(m→(K))−1) < u(m), we have property (4) for L(m(m→(K))−1) and we get

(M)→(K) ∈ YK,aKq2λK−2YK,aKq2λK−6 · · ·YK,aKq−2λK+2−4R′ Z[YK,aKq4r+2λK ]r∈Z

with R′ ≥ 0. By Lemma 2.9, m′ is not a monomial of M(LK(M)).
Condition (iv) of Proposition 4.7 : consider a monomial m′′ ∈ M(Uq(LgK).VM )

such that v(m′′m−1) < v(m′m−1). We have m′′ ≤ MA−1
K,aKq2λk

Z[A−1
K,d]d∈C∗ and so

(m′′)→(K,aKq2λK ) is right negative, so m′′ is not K-dominant.
Condition (v) of Proposition 4.7 : clear by the induction property on v.
Now we prove (2). Let J = {i ∈ I|K < i}. From Lemma 4.1,

M(L(m)) ⊂ (m→(J)M(L(m→(K)))) ∪ (M(L(m→(J)))m→(K)).

As all monomials of m→(J)(χq(L(m→(K))) − m→(K)) are lower than mA−1
K,aKqλK

(Theorem 2.14) which is right-negative, they are not dominant. Let m′ be a mono-
mial in (M(L(m→(J)))m→(K) − {m}). As u(m→(J)) < u(m), the induction prop-
erty implies that m′(m→(K))−1 is not dominant. If

∑

l∈Z
vK,aKq2λK+4l(m′m−1) ≥ 1,

it follows from property (1) that m′ is lower than mA−1
K,aKq2λK

which is right-

negative, so m′ is not dominant. We suppose that
∑

l∈Z
vK,aKq2λK+4l(m′m−1) = 0.

We have for all l ∈ Z, uK,q2K+4l(m′(m→(K))−1) ≥ 0, and so there is (i, a) ∈ I × C∗

not of the form (K, q2K+4l) with l ∈ Z such that ui,a(m′(m→(K))−1) < 0. So

ui,a(m
′) = ui,a(m′(m→(K))−1) < 0
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and m′ is not dominant. So L(m) is special.
Now we prove (3). From property (2) and Proposition 4.4, it suffices to prove

that all monomials of M(L(m)) are thin. From Lemma 4.3, we can suppose that
there is m′ ∈ M(L(m)) such that there are l ∈ I, d ∈ C∗ satisfying ul,d(m

′) = 2
and such that all m′′ ∈ M(L(m)) satisfying v(m′′m−1) < v(m′m−1) is thin. We
consider subcases as in the proof of Lemma 5.4.

If (α.i.1) is satisfied, we get un−R,bq−2−2R(m) ≥ 1 with R ≥ 1 and (un,bq−1(m) ≥
1 or un,bq−3(m) ≥ 1). As −2 − 2R < −3, we get a contradiction with condition (I)
of Theorem 3.5.

If (α.i.2) is satisfied, we get a contradiction as for Lemma 5.4.
If (α.i.3) is satisfied, as for Lemma 4.2 we get m′′ ∈ M(L(m))∩mZ[A−1

i,bql ]i∈I,l≤−3

such that un,bq−1(m) = un,bq−1(m′′) = 1, vn,bq−4(m′′m−1) ≥ 1. From Lemma 4.2

and Lemma 4.1, we have m′′ ∈ m{1,··· ,n−1}M(L(m→(n))), and we get a contradic-
tion as for Lemma 5.4.

If condition (α.ii.1) is satisfied, we get a contradiction as for Lemma 5.4.
If condition (α.ii.2) is satisfied, we get as in the proof of Lemma 5.4 that

un−r1,bq−2r1 (m) ≥ 1 and un−r2,bq−2−2r2 (m) ≥ 1

with r1, r2 ≥ 1. Contradiction with condition (I) of Theorem 3.5.
If condition (α.ii.3) is satisfied : we follow the proof of Lemma 5.4 and we

get m′′′. If m′′′ is dominant, we have un,bq−5(m′′′) = un−R,bq−2R(m′′′) = 1 with
−2R− (−5) ≤ 3 < 2(n− (n−R)) + 4, contradiction with condition (I) of Theorem
3.5. So m′′′ is not dominant. Let R, r, r′ and M dominant defined in the proof of
Lemma 5.4. From the property (2) we have m = M . Observe that r′ ≤ r + 1. We
have un−R,bq−2R(m) = 1. We study two cases :

if n − r − 1 + r′ = n, we have moreover un,bq−3−2r−2r′ (m) = 1. But (−3 − 2r −
2r′)−(−2R) ≤ 2R−4 < 2(n−(n−R)), contradiction with condition (I) of Theorem
3.5.

if n − r − 1 + r′ ≤ n − 1, we have moreover un−r−1+r′,bq−4−2r−2r′ (m) = 1. Let

d = (n− r− 1 + r′ − (n−R)) = −1 + (R + r′ − r) and D = (−4− 2r− 2r′) + 2R =
2d − 4r′ − 2.
If d < 0, condition (I) implies D ≥ −2d + 4, so 0 ≤ D + 2d − 4 = 4d− 4r′ − 6 < 0,
contradiction.
If d = 0, condition (I) implies D ∈ 4Z, contradiction as D = −4r′ − 2.
If d > 0, condition (I) implies D ≤ −4 − 2d, so 0 ≥ D + 4 + 2d = 4d + 2 −
4r′ = −2 + 4R − 4r and n − r − 1 < n − R < n − R − 1 + r′. So the product
An−r−1+r′,bq−2−2r−2r′ · · ·An−r−1,bq−2−2r can not appear in m(m′′′)−1 (for example

we may use Theorem 4.7 as in the proof of Lemma 5.1), contradiction.
Now we suppose that there is b ∈ C∗ such that un−1,b(m

′) ≥ 2. By property
(2), we get as in the proof of Lemma 5.4 that m satisfies property (β.1) or (β.2)
of Lemma 5.4. For (β.1), we have (2j1 − 2n + 2 − (−1)) = 2(j1 − n) + 3 <
2(n − j1) + 5, contradiction with condition (I) of Theorem 3.5. For (β.2), we have
(2j1 − 2n + 2− 0) = 2(j1 − n) + 2 < 2(n− 1− j1) + 6, contradiction with condition
(I) of Theorem 3.5.

Finally we suppose that there are i ≤ n − 2, b ∈ C∗ such that ui,b(m
′) ≥ 2.

Then m′ is ({1, · · · , i− 2}∪{i}∪{i+2, · · · , n})-dominant. We have (ui−1,d(m
′) <

0 ⇒ d = bq2), and (ui+1,d(m
′) < 0 ⇒ d = bq2). By applying (3) of Lemma 4.8
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and Lemma 5.3 (with bq2 instead of b and i + 1 instead of j), we get a dominant
monomial M ∈ M(L(m)) satisfying one of the conditions

(γ.1) (case (1) of Lemma 5.3) : uj1,bq2j1−2i(M) ≥ 1, u
j2,bq

2i−2j2+2−rj2
(M) ≥ 1

with j1 < j2, j1 ≤ i ≤ j2 ≤ n,
(γ.2) (case (2) of Lemma 5.3) : uj1,bq2j1−2i(M) ≥ 1 and un−1,bq−2n+2i+2(M) ≥ 1

with j1 ≤ i,
(γ.3) (case (3) of Lemma 5.3) : uj1,bq2j1−2i(M) ≥ 1 and un,bq1−2n+2i(M) ≥ 1,

un,bq3−2n+2i(M) ≥ 1 with j1 ≤ i,
(γ.4) (case (4) of Lemma 5.3) : uj1,bq2j1−2i(M) ≥ 1 and un−1,bq−2n+2i(M) ≥ 1

with j1 ≤ i.
From property (2) we have m = M . For (γ.1), we have 2j1−2i−(2i−2j2+2−rj2) ≤
2(j1+j2)−4i ≤ 2(j2−j1), contradiction with condition (I) of Theorem 3.5. For (γ.2),
we have 2j1−2i− (−2n+2i+2) ≤ 2(n−1− j1), contradiction with condition (I) of
Theorem 3.5. For (γ.3), we have 2j1−2i−(3−2n+2i) ≤ 2(n−j1), contradiction with
condition (I) of Theorem 3.5. For (γ.4), we have 2j1−2i−(2i−2n) < 2(n−1−j1)+4,
contradiction with condition (I) of Theorem 3.5.

Now we prove property (4) by induction on v(m′m−1) ≥ 0. Let j be as in
property (4). For v(m′m−1) = 0 we have m′ = m and the result is clear. We
suppose that property (4) is satisfied for m′′ such that v(m′′m−1) < v(m′m−1).
Let R ≥ 0 maximal such that

m′m−1 ≤ A−1
j,akqrkλk+2(k−j)A

−1
j,akqrkλk+2(k−j)−4 · · ·A

−1
j,akqrkλk+2(k−j)+4−4R .

We suppose moreover that

m′m−1 ≤ A−1
j,akqrkλk+2(k−j)A

−1
j,akqrkλk+2(k−j)−4 · · ·A

−1
j,akqrkλk+2(k−j)+4−4RA−1

j,b

with b = akqrkλk+2(k−j)−4µ and µ 6= R. By the induction hypothesis on v, m′ is
(I − {j})-dominant, uj,bq2(m′) = −1 and (uj,d(m

′) < 0 ⇒ d = bq2). By property
(3), we can apply Lemma 5.3 and we get a dominant monomial M ∈ M(L(m)).
From property (2), we have M = m. So we have one of the following situations :

Case (1) of Lemma 5.3 : m = m′Aj,bAj+1,bq−2 · · ·Aj+r,bq−2r where 0 ≤ r ≤ n−j,

and uj+r,bq−2r−rj+r (M) = 1. So R = 0, j + r = k, b = akqrkλk+2r = akqrkλk+2(k−j),
contradiction.

Case (2) of Lemma 5.3 : m = m′(Aj,bAj+1,bq−2 · · ·An−1,bq2−2n+2j )An,bq2−2n+2j M ′

where

M ′ ∈ Z[Ap,bq2−2n+2j+2(p−n)−4l ]p<n,l≥0Z[An,bq2−2n+2j−4l ]l≥1,

and un−1,bq−2n+2j (m) = 1, so b ∈ an−1q
2λn−1+2(j−n)+2+4Z. There is l ≥ 0 such that

bq−2n+2j+1−4l = anqλn−1. So b ∈ anqλn−2+2n−2j+4Z = an−1q
2λn−1+2(j−n)+4Z from

condition (I) of Theorem 3.5, contradiction.
Case (3) of Lemma 5.3 : un,bq−1−2n+2j (m) = un,bq1−2n+2j (m) = 1 and

m = m′(Aj,bqAj+1,bq−2 · · ·An,bq−2n+2j )An,bq2−2n+2j .

So R = 0 and b = anqλn+2n−2j−2. From condition (I) of Theorem 3.5, anqλn =
akqrkλk+2(k−n)+4r with r ∈ Z. So b = akqrkλk+2(k−j)+4r−2 is not of the form
akqrkλk+2k−2j−4µ, contradiction.

Case (4) of Lemma 5.3 : un−1,bq−2n−2+2j (m) = 1 and

m = m′(Aj,bAj+1,bq−2 · · ·An,bq−2n+2j )An,bq2−2n+2j An−1,bq−2n+2j .
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So bq−2n+2j = an−1q
2λn−1 , and so b = an−1q

2λn−1+2(n−j) ∈ akq2λk+2(k−j)+2+4Z,
contradiction.

Now we prove property (5) by induction on v(m′m−1) ≥ 0. For v(m′m−1) = 0
we have m′ = m and the result is clear. We suppose that property (5) is satisfied
for m′′ such that v(m′′m−1) < v(m′m−1) and we suppose that

min{i|
∑

r∈Z

vi,aiq2λi+4r (m′m−1) ≥ 1} = n.

Let R ≥ 0 maximal such that

m′m−1 ≤ A−1
n,anqλn

A−1
n,anqλn−2 · · ·A

−1
n,anqλn+2−2R .

We suppose moreover that

m′m−1 ≤ A−1
n,anqλn

A−1
n,anqλn−2 · · ·A

−1
n,anqλn+2−2RA−1

n,b

with b = anqλn−2µ and µ 6= R. By the induction hypothesis on v, m′ is (I − {n})-
dominant, un,bq(m

′) = −1 and (un,d(m
′) < 0 ⇒ d = bq). So m′′ = An,bm

′ ∈
M(L(m)) is (I−{n−1})-dominant and (un−1,d(m

′′) < 0 ⇒ d = b). If un−1,b(m
′′) ≥

0, m′′ is dominant equal to m, so R = 0 and b = anqλn , contradiction. So
un−1,b(m

′′) < 0, m′′An−1,bq−2 ∈ M(L(m)) and vn−1,bq−2(m′m−1) ≥ 1. So bq−2 /∈
an−1q

2λn−1+4Z and b /∈ anqλn+4Z. By lemma 5.2 there is l ∈ Z such that bq−1−4l =
anqλn−1, so b ∈ anqλn+4Z, contradiction. �

5.2.4. Condition (II). We study the general case of study condition (II) of Theorem
3.5.

Lemma 5.6. Let λ ∈ P+ and L(m) be a minimal affinization of V (λ) such that
m satisfies condition (II) of Theorem 3.5. Let K = max{i ∈ I|λi 6= 0}. Then

(1) For all m′ ∈ M(L(m)), if vK(m′m−1) ≥ 1, then v
K,aKq

λK
K

(m′m−1) ≥ 1.

(2) L(m) is special.
(3) L(m) is thin.
(4) For all m′ ∈ M(L(m)) such that vn(m′m−1) = 0 we have

vj,akq2(λk+j−k)(m′m−1) = vj,akq2(λk+j−k−2)(m′m−1)

= · · · = vj,akq2(λk+j−k−2R)(m′m−1) = 1,

where j = max{i|vi(m
′m−1) 6= 0}, k = max{i ≤ j|λi 6= 0} and R = vj(m

′m−1)−1.

Observe that Lemma 5.4, Lemma 5.5 and Lemma 5.6 combined with corollary
4.13 imply Theorem 3.8 and Theorem 3.10 for type B.

In this case we do not need to prove simultaneously the different properties.
Proof: Property (4) : as vn(m′m→(−1)) = 0, it follows from Lemma 4.5 that m′

appears in L{1,···n−1}(m). As gJ is of type An−1, the result is exactly property (4)
of Lemma 5.1.

Property (1) and (2) : as property (4) is satisfied, we can use the proof of
property (1) and (2) of Lemma 5.1.

Property (3) : the monomial M =
∏

i∈I,a∈C∗ Y
ui,a(m)

i,a−1q−r∨h∨ satisfies (I), and so

it follows from Lemma 5.4 and Lemma 5.5 that L(M) is thin. But from corollary
4.11, σ∗L(M) ≃ L(m), and so we have property (3) (Lemma 4.10). �
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5.3. Type G2. In this section we suppose that g is of type G2.

Lemma 5.7. Let m be a dominant monomial satisfying condition (I) of Theorem
3.5. Then L(m) is special.

Proof: From Lemma 4.1, M(L(m)) ⊂ M(L(m→(1))M(L(m→(2))). From Lemma
2.14, if m′ is in (M(L(m→(1)) − {m→(1)})M(L(m→(2))), then m′ ≤ mA−1

1,a1q3λ1

which is right-negative, and so m′ is not dominant. Consider m′ = m→(1)m′
2

where m′
2 ∈ (M(L(m→(2))) − {m→(2)}). It follows from Theorem 2.14 that m′

2 is
right-negative. Suppose that m′ is dominant. In particular m′

2 is 2-dominant and
(u1,b(m

′
2) < 0 ⇒ (u1,b(m

′
2) = −1 and b ∈ {a1q

3−3λ1 , a1q
9−3λ1 , · · · , a1q

3λ1−3})).
From Lemma 4.1, m′

2 ∈ M(V2(a2q
1−λ2))M(V2(a2q

3−λ2)) · · ·M(V2(a2q
λ2−1)). But

for b ∈ C∗, it follows from [H1, Section 8.4.1] (with 1 instead of 2 and 2 instead of
1) that

χq(V2(b)) =Y2,b + Y −1
2,bq2Y1,bq + Y −1

1,bq7Y2,bq4Y2,bq6 + Y2,bq4Y −1
2,bq8 + Y1,bq5Y −1

2,bq6Y
−1
2,bq8

+ Y −1
1,bq11Y2,bq10 + Y −1

2,bq12 .

From condition (I), a1q
−3λ1+3 = q7(a2q

λ2−1). So one Y −1
1,b can only appear in

χq(V2(a2q
λ2−1)), and so (u1,b(m

′
2) < 0 ⇒ b = a1q

−3λ1+3 = q7(a2q
λ2−1)). As a

consequence v1,a1q−3λ1 (m′m−1) ≥ 1. From the above explicit description of the
χq(V2(b)), for all

m′′ ∈ M(L(m→(1))(M(L(m→(2))) − {m→(2)}),

if v1,a1q−3λ1 (m′′m−1) = 0 then

∏

l≥0

Y
u
1,a1q−3λ1+3+6l (m

′′)

1,a1q−3λ1−3+6l = Y ǫ
1,a1q−3λ1−3Y1,a1q3−3λ1 Y1,a1q9−3λ1 · · ·Y1,a1q3λ1−3 ,

where ǫ ∈ {0, 1}. In particular we can prove as for property (2) of Lemma 5.1 that
v1,a1q−3λ1 (m′m−1) ≥ 1 implies v1,a1q3λ1 (m′m−1) ≥ 1, contradiction. �

Lemma 5.8. Let m be a dominant monomial satisfying condition (II) of Theorem
3.5. Then L(m) is special.

Proof: It follows from Lemma 4.17 that for m′ ∈ M(L(m)), if v2(m
′m−1) = 0

then (m′)→(2) is of the form

(Y2,a2qλ2−1Y2,a2qλ2−3 · · ·Y2,a2q1−λ2 )Y2,a2q1−λ2−2 · · ·Y2,a2q1−λ2−2R ,

where R ≥ 0 (from condition (II) we have a2q
1−λ2−2 = q5(a1q

3λ1−3)). So we can
use the proof of property (2) of Lemma 5.1. �

Lemma 5.7 and Lemma 5.8 combined with corollary 4.13 imply Theorem 3.8 for
type G.

5.4. Types C, D and F4. In this subsection we prove theorem 3.9.
From corollary 4.14, it suffices to consider the condition (II).
Type C : as λn = 0 and g{1,··· ,n−1} is of type An−1, it follows from (1) of

Lemma 5.1 that the monomials m′ ∈ M(L(m)) satisfying vn(m′m−1) > 0 are
right-negative and so not dominant. For the monomials m′ ∈ M(L(m)) satisfying
vn(m′m−1) = 0, we can use (2) of Lemma 5.1 and Lemma 4.5.

Type D : as an = an−1 and λn = λn−1, all monomials in the set

m→(I−{n−1,n})M(L(m→(n)))M(L(m→(n−1)))
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are right-negative. Moreover we can prove as (1) of Lemma 5.1 that for i = n − 1
or i = n, vi(m

′m−1) > 0 implies vi,aiqλi (m
′m−1) > 0, and so m′ is right-negative.

For the monomials m′ ∈ M(L(m)) satisfying vn−1(m
′m−1) = vn(m′m−1) = 0, we

can use (2) of Lemma 5.1 and Lemma 4.5.
Type F4 : the proof is analog to type C by using Lemma 5.6 for g{1,2,3} of type

B3. �

6. Applications and further possible developments

6.1. Jacobi-Trudi determinants and Nakai-Nakanishi conjecture. In [NN1,
Conjecture 2.2] Nakai-Nakanishi conjectured for classical types that the Jacobi-
Trudi determinant is the q-character of a certain finite dimensional representation
of the corresponding quantum affine algebra. This determinant can be expressed
in terms of tableaux (see [BR] for type A, [KOS] for type B, and [NN1, NN2,
NN3] for general classical type). The cases considered in [NN1] include all minimal
affinizations for type A, and for type B many minimal affinizations (but for example
not the fundamental representations Vn(a)).

As an application of the present paper, we prove this conjecture for minimal
affinizations of type A and B considered in [NN1, Conjecture 2.2] (see the intro-
duction for previous results). Indeed it can be checked for type A and B that
the tableaux expression is special and canceled by screening operators, and so is
given by the Frenkel-Mukhin algorithm (see the proofs bellow; this fact was first
announced and observed in some cases in [NN1, Section 2.3, Rem. 1]). So from
[FM1], Theorem 3.8 proved in the present paper implies that the q-character of a
considered minimal affinization is necessarily equal to the corresponding expression.

Theorem 6.1. For g of type A, B, the q-character of a minimal affinization con-
sidered in [NN1, Conjecture 2.2] is given by the corresponding Jacobi-Trudi deter-
minant.

This result is coherent with the thin property proved in this paper.
With the same strategy, representations more general than minimal affinizations,

and types C, D, will be discussed in a separate publication.
Let us recall the tableaux expression of the Jacobi-Trudi determinant and give

the proof of theorem 6.1. We treat the type B (the proof for type A is more simple).
We recall that a partition λ = (λ1, λ2, · · · ) is a sequence of weakly decreasing

non-negative integers with finitely many non-zero terms. The conjugate partition
is denoted by λ′ = (λ′

1, λ
′
2, · · · ). For λ, µ two partitions, we say that µ ⊂ λ if for all

i ≥ 0, λi ≥ µi. For µ ⊂ λ, the corresponding skew diagram is

λ/µ = {(i, j) ∈ N × N|µi + 1 ≤ j ≤ λi} = {(i, j) ∈ N × N|µ′
j + 1 ≤ i ≤ λ′

j}.

We suppose in the following that d(λ/µ) ≤ n where d(λ/µ) is the length of the
longest column of λ/µ, and that λ/µ is connected (i.e. µi + 1 ≤ λi+1 if λi+1 6= 0).

Let B = {1, · · · , n, 0, n, · · · , 1}. We give the ordering ≺ on the set B by

1 ≺ 2 ≺ · · · ≺ n ≺ 0 ≺ n ≺ · · · ≺ 2 ≺ 1.
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As it is a total ordering, we can define the corresponding maps succ and prec. For
a ∈ C∗, let

1
a

= Y1,a,

i
a

= Y −1
i−1,aq2iYi,aq2(i−1) (2 ≤ i ≤ n − 1),

n
a

= Y −1
n−1,aq2nYn,aq2n−1Yn,aq2n−3 ,

0
a

= Y −1
n,aq2n+1Yn,aq2n−3 ,

n
a

= Yn−1,aq2n−2Y −1
n,aq2n+1Y

−1
n,aq2n−1 ,

i
a

= Yi−1,aq4n−2i−2Y −1
i,aq4n−2i (2 ≤ i ≤ n − 1),

1
a

= Y −1
1,aq4n−2 .

Observe that we have

χq(V1(a)) = 1
a

+ 2
a

+ · · · + n
a

+ 0
a

+ n
a

+ n−1
a

+ · · · + 1
a
.

For T = (Ti,j)(i,j)∈λ/µ a tableaux of shape λ/µ with coefficients in B, let

mT,a =
∏

(i,j)∈λ/µ

Ti,j
aq4(j−i)

∈ Y.

Let Tab(Bn, λ/µ) be the set of tableaux of shape λ/µ with coefficients in B satis-
fying the two conditions :

Ti,j � Ti,j+1 and (Ti,j , Ti,j+1) 6= (0, 0),
Ti,j ≺ Ti+1,j or (Ti,j , Ti+1,j) = (0, 0).
The tableaux expression of the Jacobi-Trudi determinant [KOS, NN1] is :

χλ/µ,a =
∑

T∈Tab(Bn,λ/µ)

mT,a ∈ Y.

For a monomial m, we denote (m)± =
∏

{i∈I,a∈C∗|±ui,a(m)>0} Y
ui,a(m)
i,a the neg-

ative and the positive part of m.
We say that (m)− is partly canceled by (m′)+ if there is i ∈ I and a ∈ C∗ such

that ui,a((m)−) = −ui,a((m)+) 6= 0.

Lemma 6.2. Let T ∈ Tab(Bn, λ/µ) and a ∈ C∗. Let (i, j) 6= (i′, j′) ∈ λ/µ,

α = Ti,j and β = Ti′,j′ . If ( α
aq4(j−i) )

− is partly canceled by ( β
aq4(j′−i′)

)+, then

(i, j) = (i′ + 1, j′) or ((i, j) = (i′ + 1, j′ + 1) and Ti,j = Ti′,j′ = n).

Proof: We study different cases :
Case (1) : 2 � α � n and 1 � β � n − 1. We have α = β + 1 and q4(j−i)+2α =

q4(j′−i′)+2(β−1). So j′− i′ = (j − i)+1. If j < j′, we have i ≤ i′ and so Ti,j � Ti′,j′ ,
contradiction. So j ≥ j′ and i > i′. There is ((ir, jr))1≤r≤R ∈ (λ/µ)R such that
(i0, j0) = (i′, j′) and (iR, jR) = (i, j) and ((ir+1, jr+1) = (ir +1, jr) or (ir+1, jr+1) =
(ir, jr + 1)). Let Tr = Tir ,jr . As (ir+1, jr+1) = (ir + 1, jr) implies n � Tr+1 ≻ Tr,
we have TR � T1 + (i − i′), and so (i, j) = (i′ + 1, j′).

Case (2) : n − 1 � α � 1 and n � β � 2. Analog to case (1).
Case (3) : 2 � α � n and n � β � 2. As

α
aq4(j−i) ∈ Z[Yk,aq2k−2+4r ]k≤n−1,r∈Z × Z[Yn,aq2r ]r∈Z,

and
β

aq4(j′−i′)
∈ Z[Yk,aq2k+4r ]k≤n−1,r∈Z × Z[Yn,aq2r ]r∈Z,
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we have a contradiction.
Case (4) : n − 1 � α � 1 and 1 � β � n − 1. Analog to case (3).

Case (5) : α = 0 and β = n. We have q4(j−i)+2n+1 = q4(j′−i′)+2n−3. So
j′ − i′ = (j − i) + 1. As in case (1), we have j ≥ j′. So i > i′. Consider (ir, jr),
Tr as in case (1). If i ≥ i′ + 2, there is r1 < r2 such that ir1+1 = ir1 + 1 and
ir2+1 = ir2 + 1. We have Tr1 = Tr1+1 = 0 or Tr2 = Tr2+1 = 0. So there is
(p, q) ∈ λ/µ such that (p, q +1), (p+1, q +1) ∈ λ/µ and Tp,q+1 = Tp+1,q+1 = 0 and
Tp,q = n. So (p + 1, q) ∈ λ/µ and Tp+1,q = n, contradiction.

Case (6) : α = 0 and β = 0. We have q4(j−i)+2n+1 = q4(j′−i′)+2n−3 and we can
conclude as in case (5).

Case (7) : α = n and β = 0. We have q4(j−i)+2n+1 = q4(j′−i′)+2n−3. So
j′− i′ = (j− i)+1. As in case (1) we have j ≥ j′. So i > i′. If j > j′, as in case (5)
we get (p, q) ∈ λ/µ such that (p + 1, q), (p + 1, q + 1) ∈ λ/µ and Tp,q = Tp+1,q = 0
and Tp+1,q+1 = n. So (p, q + 1) ∈ λ/µ and Tp,q+1 = n, contradiction.

Case (8) : α = n and β = n. We have q4(j−i)+2n+1 = q4(j′−i′)+2n−3 or

q4(j−i)+2n−1 = q4(j′−i′)+2n−1. In the first case j′ − i′ = (j − i) + 1. As above
we have j ≥ j′. So i > i′. Consider (ir, jr), Tr as in case (1). If there is r
such that ((ir, jr), (ir+1, jr+1), (ir+2, jr+2)) = ((ir, jr), (ir, jr + 1), (ir + 1, jr + 1)),
we have necessarily (Tr, Tr+1, Tr+2) = (n, 0, n). So i′ = ir and i = ir + 1 =
i′ + 1. We can treat in the same way the situation where there is r such that
((ir, jr), (ir+1, jr+1), (ir+2, jr+2)) = ((ir, jr), (ir + 1, jr), (ir + 1, jr + 1)). In the
second case j′ − i′ = (j − i). As above we have j > j′ and i = i′ + 1. �

Lemma 6.3. Let T0 = (i−µ′
j)(i,j)∈λ/µ. Then T0 ∈ Tab(Bn, λ/µ) and mT0,a is the

unique dominant monomial of χλ/µ,a.

Proof: First it is clear that T0 ∈ Tab(Bn, λ/µ) and that mT0,a is dominant. Con-
sider T ∈ Tab(Bn, λ/µ) such that T0 6= T . So there is (i, j) ∈ λ/µ satisfying the
property

(4) (i = µ′
j + 1 and Ti,j 6= 1) or (i 6= µ′

j + 1 and Ti,j 6= succ(Ti−1,j)).

From lemma 6.2 the negative part of the box corresponding to (i, j) is not canceled
in mT,a (in the case (8) of lemma 6.2, the negative part of the box can only be
partly canceled). �

Lemma 6.4. For all T ∈ Tab(Bn, λ/µ), a ∈ C∗, the monomial mT,a is thin.

Proof: Let (i, j) 6= (i′, j′) ∈ λ/µ, α = Ti,j and β = Ti′,j′ . We suppose that

( α
aq4(j−i) )

+ = ( β
aq4(j′−i′)

)+ 6= 0. We study different cases (by symmetry we

can suppose α � β) :
Case (1) : 1 � α � β � n − 1. We have α = β and q4(j−i)+2(α−1) =

q4(j′−i′)+2(β−1). So j′ − i′ = (j − i). If j < j′, we have i > i′ and so Ti,j ≺
Ti′,j′ � n − 1, contradiction. In the same way we get a contradiction for j > j′.

Case (2) : n � α � β � 2. Analog to case (1).
Case (3) : 1 � α � n − 1 and n � β � 2. Analog to case (3) of lemma 6.2.

Case (4) : α = n and β = 0. We have q4(j−i)+2n−3 = q4(j′−i′)+2n−3. So
j′ − i′ = j − i. As above, we have j < j′. So i < i′. We can conclude as in case (5)
of lemma 6.2.
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Case (5) : α = β = 0. We have q4(j−i)+2n−3 = q4(j′−i′)+2n−3. So j′ − i′ = j − i.
If j 6= j′, we get (p, q) ∈ λ/µ such that (p, q + 1) ∈ λ/µ and Tp,q = Tp,q+1 = 0,
contradiction.

Case (6) : α = β = n. We have q4(j−i)+2n−3 = q4(j′−i′)+2n−3 or q4(j−i)+2n−1 =

q4(j′−i′)+2n−1. In both cases j′ − i′ = j − i and we get a contradiction as in case
(1). �

Finally we can conclude the proof of theorem 6.1 :

Lemma 6.5. We have χλ/µ,a ∈ Im(χq).

In the proof we will need the following partial ordering defined on Tab(Bn, λ/µ)
: for T, T ′ ∈ Tab(Bn, λ/µ) we set :

T � T ′ ⇔ (∀(i, j) ∈ λ/µ, Ti,j � T ′
i,j).

Also by convention for any α ∈ B, Ti,j 6= α means ((i, j) ∈ λ/µ ⇒ Ti,j 6= α).
Proof: Let α ∈ I. We want to give a decomposition of χλ/µ as in proposition 2.15
for J = {α}. From Lemma 6.4, the Lα(M) that should appear in this decomposition
are thin. It suffices to prove that the set Tab(Bn, λ/µ) is in bijection with a disjoint
union of sets M(Lα(M)) via T 7→ mT,a.

First suppose that α ≤ n− 1. Let Mα be the set of tableaux T ∈ Tab(Bn, λ/µ)
such that for any (i, j) ∈ λ/µ :

Ti,j = α + 1 ⇒ ((i − 1, j) ∈ λ/µ and Ti−1,j = α),

Ti,j = α ⇒ ((i − 1, j) ∈ λ/µ and Ti−1,j = α + 1).

Then by Lemma 6.2, Mα corresponds to all α-dominant monomials appearing in
χλ/µ,a. For T ∈ Mα, let T̃ be the tableaux defined in the following way. For
(i, j) ∈ λ/µ :

if Ti,j = α and Ti+1,j 6= α + 1, we set T̃i,j = α + 1,

if Ti,j = α + 1 and Ti+1,j 6= α, we set T̃i,j = α,

otherwise we set T̃i,j = Ti,j .

Then T̃ ∈ Tab(Bn, λ/µ). For T ∈ Mα, we define :

Mα(T ) = {T ′ ∈ Tab(Bn, λ/µ)|T � T ′ � T̃}.

Then by Lemma 2.9 we have

Lα(mT,a) =
∑

T ′∈Mα(T )

mT ′,a,

and (Mα(T ))T∈Mα defines a partition of Tab(Bn, λ/µ).
Now we treat the case α = n. Let Mn be the set of tableaux T ∈ Tab(Bn, λ/µ)

such that for any (i, j) ∈ λ/µ :

Ti,j = 0 ⇒ ((i − 1, j) ∈ λ/µ and Ti−1,j ∈ {0, n}),

Ti,j = n ⇒ ((i − 1, j − 1) ∈ λ/µ and Ti−1,j−1 = n).

By definition of skew diagram, the last condition implies that

(Ti,j = n ⇒ ((i − 1, j), (i, j − 1) ∈ λ/µ and Ti−1,j ∈ {0, n} and Ti,j−1 ∈ {0, n})).

This can be rewritten :

Ti,j = n ⇒

(

Ti−1,j−1 Ti,j−1

Ti−1,j Ti,j

)

∈ {

(

n 0
n n

)

,

(

n 0
0 n

)

,

(

n n
n n

)

,

(

n n
0 n

)

}.
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Then by Lemma 6.2, Mn corresponds to all n-dominant monomials appearing in
χλ/µ,a. For T ∈ Mn, let T̃ be the tableaux defined in the following way. For
(i, j) ∈ λ/µ :

if Ti,j = n and Ti+1,j+1 6= n and Ti+1,j 6= 0 and Ti+1,j 6= n, we set T̃i,j = n,

if Ti,j = n and Ti+1,j+1 6= n and Ti+1,j ∈ {0, n}, we set T̃i,j = 0,

if Ti,j = 0 and Ti+1,j 6= 0 and Ti+1,j 6= n, we set T̃i,j = n.

otherwise we set T̃i,j = Ti,j .

Then T̃ ∈ Tab(Bn, λ/µ). For T ∈ Mn, we define :

Mα(T ) = {T ′ ∈ Tab(Bn, λ/µ)|T � T ′ � T̃}.

Then by Lemma 2.9, we have

Ln(mT,a) =
∑

T ′∈Mα(T )

mT ′,a,

and (Mn(T ))T∈Mn defines a partition of Tab(Bn, λ/µ). �

6.2. General quantum affinizations. The quantum affinization Uq(ĝ) of a quan-
tum Kac-Moody algebra Uq(g) is defined with the same generators and relations
as the Drinfeld realization of quantum affine algebras, but by using the generalized
symmetrizable Cartan matrix of g instead of a Cartan matrix of finite type. The
quantum affine algebra, quantum affinizations of usual quantum groups, are the
simplest examples and have the particular property of being also quantum Kac-
Moody algebras. In general these algebras are not a quantum Kac-Moody algebra.
In [Mi, Nak1, H2], the category O of integrable representations is studied. For reg-
ular quantum affinizations (with a linear Dynkin diagram), one can define analogs
of minimal affinizations by using properties (I) and (II) of Theorem 3.5.

For example let us consider the type Bn,p (n ≥ 2, p ≥ 2) corresponding to the
Cartan matrix (Ci,j)1≤i,j≤n defined as the Cartan matrix of type Bn except that
we replace Cn,n−1 = −2 by Cn,n−1 = −p. Then one can prove exactly as for lemma
5.6 that (an analog of Theorem 4.7 is proved by using [H2, Lemma 5.10]):

Theorem 6.6. Let g be of type Bn,p. Then if m satisfies property (I) (resp. (II)),
then L(m) is antispecial (resp. special).

So the analog of the Frenkel-Mukhin algorithm works for these modules and as
an application it should be possible to get additional results for this class of special
modules (see also section 6.4 bellow).

6.3. Multiparameter T -systems. The special property of Kirillov-Reshetikhin
modules allows to prove a system of induction relations involving q-characters of
Kirillov-Reshetikhin modules called T -system (see [Nak5] for the simply-laced cases
and [H4] for the general case). Indeed for i ∈ I, k ≥ 1, a ∈ C∗ define the Uq(Lg)-
module :

S(i)
r,a = (

⊗

{(j,k)|Cj,i<0 , 1≤k≤−Ci,j}
W

(j)

−Cj,i+E(ri(r−k)/rj),aq
−(2k−1)/Ci,j
j

).

Theorem 6.7 (The T -system). Let a ∈ C∗, k ≥ 1, i ∈ I. Then we have :

χq(W
(i)
k,a)χq(W

(i)

k,aq2
i
) = χq(W

(i)
k+1,a)χq(W

(i)

k−1,aq2
i
) + χq(S

(i)
k,a).
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By analogy, the results of the present paper (special property of minimal affiniza-
tions of type A, B, G) should lead to systems of induction relations involving q-
characters of minimal affinizations (multiparameter T -systems). Let us look at an
example. Let g = sl3. Then we have the following relation :

χq(L(X
(1)
3,q2X

(2)
2,q8))χq(L(X

(1)
3,q4X

(2)
2,q10))

= χq(L(X
(1)
4,q3X

(2)
2,q10))χq(L(X

(1)
2,q3X

(2)
2,q8)) + χq(L(X

(2)
6,q6))χq(L(X

(2)
1,q9)).

Let us give the idea of the proof for this example : as a q-character is character-
ized by the multiplicity of his dominant monomials [FM1], it suffices to compare
dominant monomial of both side. By using the process described in remark 2.16,
Theorem 4.7 and arguments of [H4], we get the following results :

The dominant monomials of χq(L(X
(1)
3,q2X

(2)
2,q8) ⊗ L(X

(1)
3,q4X

(2)
2,q10)) are :

101
2
21425272

2
9211, 10122325272

2
9211, 212325272

2
9211, 10121

2
4161102729,

101
2
214110252729, 101211023252729, 1102123252729.

The dominant monomials of χq(L(X
(1)
4,q3X

(2)
2,q10) ⊗ L(X

(1)
2,q3X

(2)
2,q8)) are :

101
2
21425272

2
9211, 10122325272

2
9211, 101

2
21

2
4161102729, 101

2
214110252729,

101211023252729.

The dominant monomials of χq(L(X
(1)
3,q2X

(2)
2,q8) ⊗ L(X

(1)
3,q4X

(2)
2,q10)) are :

212325272
2
9211, 1102, q23252729.

We can conclude as the multiplicity of all these monomials is 1.

6.4. Alternative method for the classification of minimal affinizations. We
explain how to prove certain classification results (included in Theorem 3.5). The
proofs here are written in the context of the paper and could be a general uniform
strategy for other quantum affinizations. Moreover we get some new refined results
on the involved q-characters.

Proposition 6.8. Let L(m) be a minimal affinization of V (λ). Then for all i ∈ I,

there is ai ∈ C∗ such that m→(i) = X
(i)
ai,λi

.

Proof: For λi ≤ 1 it is clear. Suppose that λi ≥ 2 and that m→(i) in not of this
form. Note that λ − αi ∈ P+. It follows from Lemma 4.5 with J = {i} and
Proposition 2.9 that

dim((L(m))λ−αi) = dim((Li(m
→(i)))(λi−2)Λi

≥ 2.

Let a ∈ C∗ and M = m((m)→(i))−1X
(i)
λi,a

. L(M) is an affinization of V (λ). It fol-

lows from Lemma 4.5 with J = {i} that dim((L(M))λ−αi ) = 1 so mλ−αi(L(M)) <
mλ−αi(L(m)). Moreover as (m)→(I−{i}) = (M)→(I−{i}), it follows from Lemma
4.5 with J = I − {i} that for µ ∈ λ −

∑

j 6=iNαj we have dim((L(M))µ) =

dim((LI−{i}(m
→(I−{i})))µ) = dim((L(m))µ) and so mµ(L(M)) = mµ(L(m)). As

µ ≤ λ implies µ = λ or µ ≤ λ−αi or µ ∈ λ−
∑

j 6=iNαj , we have [L(M)] < [L(m)],
contradiction. �

In the following for L(m) a minimal affinization and for i ∈ I such that λi 6= 0,
ai ∈ C∗ denotes the complex number introduced in this Proposition 6.8.

Let g = sln+1 (n ≥ 2) and λ = λ1Λ1+λnΛn (λ1, λn ≥ 1). For µ = α1+α2+ · · ·+

αn, we have dim((V (λ))λ−µ) = n. Let m = X
(1)
λ1,a1

X
(n)
λn,an

. If L(m) is a minimal
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affinization of V (λ) then dim((L(m))λ−µ) = n. For 0 ≤ h ≤ n denote

mh = m
∏

i=1,··· ,h

A−1
i,a1qλ1+i−1

∏

i=h+1,··· ,n

A−1
i,anqλn+n−i .

We have different cases :

(1) a1/an /∈ {q±(λ1+λn+n−1), qλn−λ1+n−1, qλn−λ1+n−3, · · · , qλn−λ1−n+1}.
From remark 2.16, the n + 1 monomials mh for 0 ≤ h ≤ n appear in
χq(L(m)) and are distinct. So dim((L(m))λ−µ) ≥ n + 1 and L(m) is not a
minimal affinization of V (λ).

(2) a1/an = qλn−λ1+n+1−2H with 1 6= H ≤ n. Then mH = mH−1.
From remark 2.16, the n − 1 distinct monomials mh for h /∈ {H − 1, H}
appear in χq(L(m)) with multiplicity 1 and mH appears in χq(L(m)) with
multiplicity 2. So dim((L(m))λ−µ) ≥ n + 1 and L(m) is not a minimal
affinization of V (λ).

(3) a1/an = qλ1+λn+n−1.
(4) an/a1 = qλ1+λn+n−1.

From Proposition 4.16, the character is the same in cases (3) and (4). So nec-
essarily these two cases give a minimal affinization with χ(L(m)) = χ(V (λ)). So
for λ1, λn > 0 , L(m) is a minimal affinization of V (λ1Λ1 + λnΛn) if and only if

m = X
(1)
λ1,a1

X
(n)
λn,an

with a1/an = qλ1+λn+n−1 or an/a1 = qλ1+λn+n−1.
Now we suppose that g is general and consider J ⊂ I such that gJ is of type Ar,

2 ≤ r ≤ n. Denote by i, j ∈ J the two extremes nodes of J . We suppose that we
can decompose I = Ii ⊔ J ⊔ Ij such that Ii ∪ {i} and Ij ∪ {j} are connected, and
∀k ∈ Ii, k

′ ∈ J − {i}, Ck,k′ = 0 and ∀k ∈ Ij , k
′ ∈ J − {j}, Ck,k′ = 0. Observe that

Ii or Ij may be empty and if J is of type A2 there is always such a decomposition.

Proposition 6.9. Let L(m) be a minimal affinization of V (λ) such that λi, λj ≥ 1
and for k ∈ J − {i, j}, λk = 0. Then one of the two following condition holds :

ai

aj
= q

λi+λj+r−1
i or

aj

ai
= q

λi+λj+r−1
i .

Proof: We can suppose in the proof that qi = qj = q. Suppose that ai/aj 6=
q±(λi+λj+r+1). Note that λ −

∑

k∈J αk ∈ P+. It follows from Lemma 4.5 with J
and the above discussion that dim((L(m))λ−

P

k∈J αk
) ≥ r + 1. Let us define

M = m→(Ii∪{i})τqλi+λj+m−1aia
−1
j

(m→({j}∪Ij)).

L(M) is an affinization of V (λ). Let us prove that [L(M)] < [L(m)] (which is
a contradiction). Let ω ≤ λ. If ω ≤ λ −

∑

k∈J αk it follows from Lemma 4.5
with J that dim((L(M))λ−

P

k∈J αk
) < dim((L(m))λ−

P

k∈J αk
). As for J ′ ⊂ J ,

λ −
∑

k∈J′ αk /∈ P+ except for J ′ = J or J = ∅, we get mλ−
P

k∈J αk
(L(M)) <

mλ−
P

k∈J αk
(L(m)). Otherwise it follows from Lemma 4.5 that dim((L(M))µ) =

dim((L(m))µ) as (M)→((Ii∪J)−{j}) = (m)→((Ii∪J)−{j}) and (M)→((Ij∪J)−{i}) =

τqλi+λj+m−1aia
−1
j

(m→((Ij∪J)−{i})). So mµ(L(M)) = mµ(L(m)). �

Let g of type Bn (n ≥ 2), λ = λ1ω1+λnωn (λ1, λn ≥ 1) and µ = α1+α2+· · ·+αn.

Let m = X
(1)
λ1,a1

X
(n)
λn,an

. For 0 ≤ h ≤ n denote

mh = m
∏

i=1,··· ,h

A−1
i,a1qλ1+i−1

∏

i=h+1,··· ,n

A−1
i,anq2λn+1+n−i.
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We have (L(m))λ−µ =
⊕

0≤h≤n(L(m))mh
. Let us study the different cases :

(1) a1/an /∈ {q±(λ1+2λn+n), q2λn−λ1+n, q2λn−λ1+n−2, · · · , q2λn−λ1−n+2}. From
remark 2.16 the n + 1 monomials mh for 0 ≤ h ≤ n appear in χq(L(m))
and are distinct. So dim((L(m))λ−µ) ≥ n + 1.

(2) a1/an = q2λn−λ1+n+2−2H with 1 6= H ≤ n. Then mH = mH−1. From
remark 2.16, the n−1 distinct monomials mh for h /∈ {H−1, H} appear in
χq(L(m)) with multiplicity 1 and mH appears in χq(L(m)) with multiplicity
2. So dim((L(m))λ−µ) ≥ n + 1.

(3) a1/an = qλ1+2λn+n. Then dim((L(m))λ−µ) = n. Indeed We see as for the
proof of the point (3) of Lemma 5.1 that for m′ ∈ M(L(m)), if v1(m

′m−1) ≥
1 then v1,a1qλ1 (m′m−1) ≥ 1. So m0 /∈ M(L(m)) and from remark 2.16
m1, · · · , mH appear in χq(L(m)) with multiplicity 1.

(4) an/a1 = qλ1+2λn+n. As in the case (3), dim((L(m))λ−µ) = n.

From Proposition 4.16, the character is the same in cases (3) and (4).

Proposition 6.10. For g of type Bn with n ≥ 2 and λ1, λn > 0 , L(m) is a

minimal affinization of V (λ1Λ1 + λnΛn) if and only if m = X
(1)
λ1,a1

X
(n)
λn,an

with

a1/an = qλ1+2λn+n or an/a1 = qλ1+2λn+n.

Proof: If m′ satisfies (1) or (2) and m satisfies (3) or (4), then dim((L(m))λ−µ) <
dim((L(m′))λ−µ) and for λ′ ≤ λ if there is j ∈ I such that vj(λ

′ − λ) = 0 then

dim((L(m))λ′ ) =dim((L(m′))λ′ )

=dim(W
(1)
λ1,1)λ1Λ1−

P

k<j vk(λ′−λ)αk
)

× dim(W
(n)
λn,1)λnΛn−

P

k>j vk(λ′−λ)αk
).

As we have the same character in situations (3) and (4), they correspond necessarily
to minimal affinizations. �

Now we suppose that g is general and consider J ⊂ I such that gJ is of type Br,
2 ≤ r ≤ n. Denote by i, j ∈ J the two extremes nodes of J . We suppose that we
can decompose I = Ii ⊔ J ⊔ Ij such that Ii ∪ {i} and Ij ∪ {j} are connected, and
∀k ∈ Ii, k

′ ∈ J − {i}, Ck,k′ = 0 and ∀k ∈ Ij , k
′ ∈ J − {j}, Ck,k′ = 0. Observe that

Ii or Ij may be empty and if J is of type B2 there is always such a decomposition.

Proposition 6.11. Let L(m) be a minimal affinization of V (λ) such that λi, λj ≥ 1
and for k ∈ J − {i, j}, λk = 0. Then one of the two following condition holds :

ai

aj
= q

λi+2λj+r
i or

aj

ai
= q

λi+2λj+r
i .

The proof is analog to the proof of the Proposition 6.9.
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