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Abstract. Nakajima [N2, N3] introduced the morphism of q, t-characters for finite dimensional rep-
resentation of simply-laced quantum affine algebras : it is a t-deformation of the Frenkel-Reshetikhin’s
morphism of q-characters (sum of monomials in infinite variables). In [H2] we generalized the con-
struction of q, t-characters for non simply-laced quantum affine algebras. First in this paper we prove a
conjecture of [H2] : the monomials of q and q, t-characters of standard representations are the same in
non simply-laced cases (the simply-laced cases were treated in [N3]) and the coefficients are non negative.
In particular those q, t-characters can be considered as t-deformations of q-characters. In the proof we
show that for quantum affine algebras of type A,B, C and quantum toroidal algebras of type A(1) the
l-weight spaces of fundamental representations are of dimension 1. Eventually we show and use a gen-
eralization of a result of [FR3, FM, N1] : for general quantum affinizations we prove that the l-weights
of a l-highest weight simple module are lower than the highest l-weight in the sense of monomials.
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1. Introduction

V.G. Drinfel’d [D] and M. Jimbo [J] associated, independently, to any symmetrizable Kac-Moody
algebra g and any complex number q ∈ C∗ a Hopf algebra Uq(g) called quantum Kac-Moody algebra.

In this paper we suppose that q ∈ C∗ is not a root of unity. In the case of a semi-simple Lie algebra g

of rank n (ie. with a finite Cartan matrix), the structure of the Grothendieck ring Rep(Uq(g)) of finite
dimensional representations of the quantum finite algebra Uq(g) is well understood. It is analogous to
the classical case q = 1.

For the general case of Kac-Moody algebras the picture is less clear. The representation theory of the
quantum affine algebra Uq(ĝ) is of particular interest (see [CP1, CP2]). In this case there is a crucial
property of Uq(ĝ): it has two realizations, the usual Drinfel’d-Jimbo realization and a new realization
(see [D2, Be]) as a quantum affinization of a quantum finite algebra Uq(g).

1



2 DAVID HERNANDEZ

To study the finite dimensional representations of Uq(ĝ) Frenkel and Reshetikhin [FR3] introduced q-

characters which encode the (pseudo)-eigenvalues of some commuting elements φ±
i,±m (m ≥ 0) of the

Cartan subalgebra Uq(ĥ) ⊂ Uq(ĝ) (see also [K]) : for V a finite dimensional representations we have :

V =
⊕

γ∈CI×Z

Vγ

where for γ = (γ
(±)
i,±m)i∈I,m≥0, Vγ is a simultaneous generalized eigenspace (l-weight space):

Vγ = {x ∈ V/∃p ∈ N, ∀i ∈ I, ∀m ≥ 0, (φ
(±)
i,±m − γ

(±)
i,±m)p.x = 0}

The morphism of q-characters is an injective ring homomorphism:

χq : Rep(Uq(ĝ))→ Y = Z[Y ±
i,a]i∈I,a∈C∗

where Rep(Uq(ĝ)) is the Grothendieck ring of finite dimensional (type 1)-representations of Uq(ĝ) and
I = {1, ..., n}, and :

χq(V ) =
∑

γ∈CI×Z

dim(Vγ)mγ

where mγ ∈ Y depends of γ. In particular Rep(Uq(ĝ)) is commutative and isomorphic to Z[Xi,a]i∈I,a∈C∗ .

In the finite simply laced-case (type ADE) Nakajima [N2, N3] introduced t-analogs of q-characters. The
motivations are the study of filtrations induced on representations by (pseudo)-Jordan decompositions,
the study of the decomposition in irreducible modules of tensorial products and the study of cohomologies
of certain quiver varieties. The morphism of q, t-characters is a Z-linear map :

χq,t : Rep(Uq(ĝ))→ Yt = Z[Y ±
i,a, t±]i∈I,a∈C∗

which is a deformation of χq and multiplicative in a certain sense. A combinatorial axiomatic definition
of q, t-characters is given. But the existence is non-trivial and is proved with the geometric theory of
quiver varieties which holds only in the simply laced case.

In [H2] we defined and constructed q, t-characters for a finite (non necessarily simply-laced) Cartan

matrix C with a new approach motivated by the non-commutative structure of Uq(ĥ) ⊂ Uq(ĝ), the
study of screening currents of [FR2] and of deformed screening operators Si,t of [H1]. It generalizes the
construction of Nakajima to non-simply laced cases.

The quantum affinization process (that Drinfel’d [D2] described for constructing the second realization
of a quantum affine algebra) can be extended to all symmetrizable quantum Kac-Moody algebras Uq(g)
(see [Jin, N1, H4]). One obtains a new class of algebras called quantum affinizations : the quantum
affinization of Uq(g) is denoted by Uq(ĝ). It has a triangular decomposition [H4]. For example the
quantum affinization of a quantum affine algebra is called a quantum toroidal algebra. The quantum
affine algebras are the simplest examples and are very special because they are also quantum Kac-Moody
algebras. In the following, general quantum affinization means with an invertible quantum Cartan matrix
(it includes most interesting cases like affine and toroidal quantum affine algebras, see section 2.2). In [H4]
we developed the representation theory of general quantum affinizations and constructed a generalization
of the q-characters morphism which appears to be a powerful tool for this investigation. In particular we
proved that the new Drinfel’d coproduct leads to the construction of a fusion product on the Grothendieck
group.

The results of this paper can be divided in three parts :

1) First we prove that for general quantum affinizations, the l-weights m′ ∈ Y of a simple module of
l-highest weight m ∈ Y are lower than m in the sense of monomials (theorem 3.2) : it means that m′m−1

is a product of certain A−1
i,l ∈ Y . For C finite, this result was conjectured and partly proved in [FR3] and

proved in [N1] (ADE-case) and [FM] (finite case). In the general case no universal R-matrix has been

defined : so we propose a new proof based on the study of Uq(ŝl2)-Weyl modules introduced in [CP3].
This first result is used in the proof of the following points :
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2) We prove a conjecture of [H2] : let Uq(ĝ) be a quantum affine algebra (C finite) and M be a standard
module of Uq(ĝ) (tensorial product of fundamental representations). We prove that the coefficients of
χq,t(M) are in N[t±] and that the monomials of χq,t(M) are the monomials of χq(M) (theorem 7.5) (the
case ADE follows from the work of Nakajima [N3]; in this paper the non-simply laced case is treated.)
In particular the q, t-characters for quantum affine algebras have a finite number of monomials : this
result shows that the q, t-characters of [H2] can be considered as t-deformations of q-characters for all
quantum affine algebras. In particular it is an argument for the existence of a geometric model behind the
q, t-characters in non simply-laced cases (in the simply laced-case the standard module can be realized
in the K-theory of quivers varieties).

3) In the proof of the conjecture we study combinatorial properties of q-characters : we prove that
for quantum affinizations of type A, A(1), B, C the l-weight spaces of fundamental representations are of
dimension 1 (theorem 3.5). Note that this property is not true in general, for example for type D.

Our proof is based on an investigation of the classical algorithm (see [FM, H3]) which gives q-characters.
The proof is direct without explicit computation. Note that for type A, B, C the result could follow from
explicit computation of the specialized R-matrix, as explained in [FR3]. The result should produce the
formulas of [FR1]; however with this method it would not be easy to decide if the coefficients are 1 (for
example it is not the case for type D4). Moreover it allows us to extend the proof to quantum toroidal
algebras of type A(1).

This paper is organized as follows : in section 2 we give reminders on representations of quantum
affinizations and their q-characters. In section 3 we state and prove theorem 3.2 (the l-weights of a
l-highest weight simple module are lower than the highest l-weight in the sense of monomials) and state
theorem 3.5 (on q-characters of fundamental representations) and give technical complements. The proof
of theorem 3.5 is based on a case by case investigation explained in sections 4, 5, 6. In section 7 we
give reminders on q, t-characters and we prove theorem 7.5 (on coefficients of q, t-characters of standard
monomials). For the theorem 7.5 type F4, our proof is based on results obtained by a computer program
written with Travis Schedler, and the results are given in the appendix (section 8).

Acknowledgments : the author would like to thank Travis Schedler for the computer program we wrote.

2. Reminder

2.1. Representations of quantum affinizations. Let C = (Ci,j)1≤i,j≤n be a symmetrizable (non
necessarily finite) Cartan matrix and I = {1, ..., n}. Let D = diag(r1, ..., rn) such that B = DC is
symmetric. We consider (h, Π, Π∨) a realization of C, the weight lattice P ⊂ h∗, the roots α1, ..., αn ∈ P ,
the set of dominant weights P + ⊂ P , the relation ≤ on P , the map ν : h∗ → h (see [H4]).

Let q ∈ C∗ not a root of unity. Let Uq(g) be the quantum Kac-Moody algebra of Cartan matrix

C. Let Uq(ĝ) ⊃ Uq(g) be the quantum affinization of Uq(g), with generators x±
i,r , kh, c±

1
2 , φ

(±)
i,±m, where

i ∈ I, r ∈ Z, m ≥ 0, h ∈ h (see for example [H4]). A Uq(ĝ)-module is said to be integrable if it is integrable
as a Uq(g)-module.

Denote by Pl the set of l-weights, that is to say of couple (λ, Ψ) such that λ ∈ h∗, Ψ = (Ψ±
i,±m)i∈I,m≥0,

Ψ±
i,±m ∈ C, Ψ±

i,0 = q
±λ(α∨

i )
i . Note that if C is finite, λ is uniquely determined by Ψ.

A Uq(ĝ)-module V is said to be of l-highest weight (λ, Ψ) ∈ Pl if there is v ∈ V such that (i ∈ I, r ∈
Z, m ≥ 0, h ∈ h):

x+
i,r.v = 0 , V = Uq(ĝ).v , φ±

i,±m.v = Ψ±
i,±mv , kh.v = qλ(h).v

For (λ, Ψ) ∈ Pl, let L(λ, Ψ) be the simple Uq(ĝ)-module of l-highest weight (λ, Ψ) (see [H4]).

Let P+
l be the set of dominant l-weights, that is to say the set of (λ, Ψ) ∈ Pl such that there exist

(Drinfel’d)-polynomials Pi(z) ∈ C[z] (i ∈ I) of constant term 1 such that in C[[z]] (resp. in C[[z−1]]):

∑

m≥0

Ψ±
i,±mz±m = q

deg(Pi)
i

Pi(zq−1
i )

Pi(zqi)
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Theorem 2.1. For (λ, Ψ) ∈ Pl, L(λ, Ψ) is integrable if and only (λ, Ψ) ∈ P +
l .

If g is finite (case of a quantum affine algebra) it is a result of Chari-Pressley in [CP1, CP2]. Moreover
in this case the integrable L(λ, Ψ) are finite dimensional. If C is simply-laced the result is proved by

Nakajima in [N1]. If C is of type A
(1)
n (toroidal ˆsln-case) the result is proved by Miki in [M1]. In general

the result is proved in [H4].

Denote by Rep(Uq(ĝ)) the Grothendieck group of decomposable integrable representations of type 1 (see

[H4]). The operators kh, φ
(±)
i,±m ∈ Uq(ĝ) (h ∈ h, i ∈ I, m ∈ Z) commute on V ∈ Rep(Uq(ĝ)). So we have a

l-weight space decomposition:

V =
⊕

(λ,γ)∈Pl

Vλ,γ

Vλ,γ = {x ∈ Vλ/∃p ∈ N, ∀i ∈ I, ∀m ≥ 0, (φ
(±)
i,±m − γ

(±)
i,±m)p.x = 0} ⊂ Vλ = {v ∈ V/∀h ∈ h, kh.v = qλ(h)v}

Let QP+
l ⊂ Pl be the set of (µ, γ) ∈ Pl such that there exist polynomials Qi(z), Ri(z) ∈ C[z] (i ∈ I) of

constant term 1 such that in C[[z]] (resp. in C[[z−1]]):

∑

m≥0

γ±
i,±mz±m = q

deg(Qi)−deg(Ri)
i

Qi(zq−1
i )Ri(zqi)

Qi(zqi)Ri(zq−1
i )

In particular P+
l ⊂ QP+

l .

Proposition 2.2. Let V be a module in Rep(Uq(ĝ)) and (µ, γ) ∈ Pl. If dim(Vµ,γ) > 0 then (µ, γ) ∈ QP +
l .

The result is proved in [FR3] for C finite. The generalization is straightforward (see [H4]).

2.2. q-characters. Let z be an indeterminate. We denote zi = zri and for l ∈ Z, [l]z = zl−z−l

z−z−1 ∈ Z[z±].

Let C(z) be the quantized Cartan matrix defined by (i 6= j ∈ I):

Ci,i(z) = zi + z−1
i , Ci,j(z) = [Ci,j ]z

In the rest of this paper we suppose that C(z) is invertible, that is to say det(C(z)) 6= 0. We have seen in
lemma 6.9 of [H3] that the condition (Ci,j < −1⇒ −Cj,i ≤ ri) implies that det(C(z)) 6= 0. In particular

finite and affine Cartan matrices (where we impose r1 = r2 = 2 for A
(1)
1 ) satisfy this condition.

Consider formal variables Y ±
i,a (i ∈ I, a ∈ C∗) and kω (ω ∈ h) (k0 = 1). Let A be the commutative group

of monomials of the form m =
∏

i∈I,a∈C∗

Y
ui,a(m)
i,a kω(m) where a finite number of ui,a(m) ∈ Z are non zero,

ω(m) ∈ h (the coweight of m), and such that for i ∈ I : αi(ω(m)) = ri

∑
a∈C∗

ui,a(m).

For (µ, Γ) ∈ QP+
l we define Yµ,Γ ∈ A by:

Yµ,Γ = kν(µ)

∏

i∈I,a∈C∗

Y
βi,a−γi,a

i,a

where βi,a, γi,a ∈ Z are defined by Qi(u) =
∏

a∈C∗

(1− ua)βi,a , Ri(u) =
∏

a∈C∗

(1− ua)γi,a .

For (µ, Γ) ∈ QP+
L and V a Uq(ĝ)-module, we denote Vm = Vµ,Γ where m = Yµ,Γ.

For χ ∈ AZ we say χ ∈ Y if for λ ∈ h, there is a finite number of monomials of χ such that ω(m) = λ
and there is a finite number of element λ1, ..., λs ∈ h∗ such that the coweights of monomials of χ are in⋃
j=1...s

ν(D(λj)) (where D(λj) = {µ ∈ h∗/µ ≤ λj}). In particular Y has a structure of h-graded Z-algebra.

Definition 2.3. For V ∈ Rep(Uq(ĝ)) a representation, the q-character of V is:

χq(V ) =
∑

(µ,Γ)∈QP+
l

dim(Vµ,Γ)Yµ,Γ ∈ Y
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If C is finite the construction is given in [FR3] and it is proved that χq : Rep(Uq(ĝ))→ Y is an injective
ring homomorphism (with the ring structure on Rep(Uq(ĝ)) deduced from the Hopf algebra structure of
Uq(ĝ)).

For general C, χq is defined in [H4]. A priori there is no ring structure on Y that comes from a tensor
product, but we proved [H4]:

Theorem 2.4. The image Im(χq) ⊂ Y is a subalgebra of Y.

Let ∗ be the induced commutative product on Im(χq) ⊂ Y . Using a deformation of the new Drinfel’d
coproduct we proved in [H4] :

Theorem 2.5. For (λ, Ψ), (λ′, Ψ′) ∈ P+
l we have :

L(λ, Ψ) ∗L(λ′, Ψ′) = L(λ + λ′, ΨΨ′) +
∑

(µ,Φ)∈P+
l

/µ<λ+λ′

Qλ,Ψ,λ′,Ψ′(µ, Φ)L(µ, Φ)

where the integers Qλ,Ψ,λ′,Ψ′(µ, Φ) ≥ 0.

2.3. Notations and technical tools. For i ∈ I and a ∈ C∗ we set:

Ai,a = kriα∨
i
Yi,aq−1

i
Yi,aqi

∏

j/Cj,i<0

∏

r=Cj,i+1,Cj,i+3,...,−Cj,i−1

Y −1
j,aqr ∈ A

The Ai,l are algebraically independent (see [H2]). Let A = Z[A−1
i,a ]i∈I,a∈C∗ ⊂ Y .

For a product M ∈ A such that ω(M) ∈ Zα1 ⊕ ... ⊕ Zαn, denote ω(M) = −v1(M)α1 − ... − vn(M)αn

and v(M) = v1(M) + ... + vn(M). v defines a N-gradation on A.

Definition 2.6. For m, m′ ∈ A, we say that m ≥ m′ if m′m−1 ∈ A.

For m ∈ A and J ⊂ I , denote uJ(m) =
∑

j∈J,a∈C∗

uj,a(m), m(J) = kω(m)

∏
j∈J,a∈C∗

Y
uj,a(m)
j,a and (j ∈ I):

u±
j (m) = ±

∑

l∈Z/±uj,l(m)>0

uj,l(m) , u±
J (m) =

∑

j∈J

u±
j (m)

For J ⊂ I , denote BJ ⊂ A the set of J-dominant monomials (ie ∀j ∈ J, l ∈ Z, uj,l(m) ≥ 0) and B = BI .

Note that for (λ, Ψ) ∈ QP +
l : ((λ, Ψ) ∈ P+

l ⇔ Yλ,Ψ ∈ B).

For m ∈ B denote Vm = L(λ, Ψ) ∈ Rep(Uq(ĝ)) where (λ, Ψ) ∈ P +
l is given by Yλ,Ψ = m. In particular

for i ∈ I, a ∈ C∗ denote Vi(a) = Vkν(Λi)
Yi,a

and Xi,a = χq(Vi,a). The simple modules Vi(a) are called
fundamental representations.

Denote Mm =
∏

i∈I,a∈C∗

V
∗ui,a(m)
i,a ∈ Rep(Uq(ĝ)). We have χq(Mm) =

∏
i∈I,a∈C∗

X
ui,a(m)
i,a .

For J ⊂ I we denote by gJ the Kac-Moody algebra of Cartan matrix (Ci,j)i,j∈J and by χJ
q the

morphism of q-characters for Uq(ĝJ ) ⊂ Uq(ĝ). Let us recall the definition of the morphism τJ (section 3.3
in [FM] for finite case and [H4] for general case) :

We suppose that gJ is finite. Let h⊥
J = {ω ∈ h/∀i ∈ J, αi(ω) = 0} and hJ =

⊕
i∈J

QΛ∨
i . Consider formal

variables k′
ω (ω ∈ hJ ), kω (ω ∈ h⊥J ), Y ±

i,a (i ∈ J, a ∈ C∗), Zj,c (j ∈ I − J , c ∈ C∗). Let A(J) be the
commutative group of monomials :

m = k′
ω′(m)kω(m)

∏

i∈J,a∈C∗

Y
ui,a(m)
i,a

∏

j∈I−J,c∈C∗

Z
zj,c(m)
j,c

where a finite number of ui,a(m), zj,c(m), r(m) ∈ Z are non zero, ω(m) ∈ h⊥
J and such that for i ∈ J ,

αi(ω
′(m)) = riui(m) = ri

∑
a∈C∗

ui,a(m).
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Let τJ : A→ A(J) be the group morphism defined formally by (j ∈ I , a ∈ C∗, λ ∈ h):

τJ (Yj,a) = Y
εj,J

j,a

∏

k∈I−J

∏

r∈Z

Z
pj,k(r)
k,aqr , τJ(kλ) = k′

P

i∈J

αi(λ)Λ∨
i
kλ−

P

i∈J

αi(λ)Λ∨
i

where j ∈ J ⇔ εj,J = 1 and j /∈ J ⇔ εj,J = 0. The pi,j(r) ∈ Z are defined in the following way : we

write C̃(z) = C̃′(z)
d(z) where d(z), C̃ ′

i,j(z) ∈ Z[z±] and (D(z)C̃ ′(z))i,j =
∑
r∈Z

pi,j(r)z
r .

It is proved in [FM] (finite case) and in [H4] (the proof is given for the τ{i} (i ∈ I), but the proof for τJ

(J ⊂ I , gJ finite) is the same) :

Lemma 2.7. Consider V a module in Rep(Uq(ĝ)) and a decomposition τJ(χq(V )) =
∑
k

PkQk where

Pk ∈ Z[Y ±
i,a, k′

h]i∈J,a∈C∗,h∈hJ
, Qk is a monomial in Z[Z±

j,c, kh]j∈I−J,c∈C∗,h∈h⊥
J

and all monomials Qk are

distinct. Then the restriction of V to Uq(ĝJ) is isomorphic to
⊕
k

Vk where Vk is a Uq(ĝJ )-module and

χJ
q (Vk) = Pk.

2.4. Classical algorithm. Consider K =
⋂
i∈I

Ki ⊂ Y where Ki = Ker(Si) ⊂ Y is the kernel of the

screening operator Si (see [H4]).

Theorem 2.8. We have K = Im(χq) and it is a subalgebra of Y.

The result in proved in [FM] for C finite and in [H4] in general. Note that for m ∈ Bi, there is a unique
Fi(m) ∈ Ki such that m is the unique i-dominant monomial of Fi(m) (see [H2]).

In [H2] a classical algorithm (and also a t-deformation of it) is proposed : if it is well-defined, it gives
for m ∈ B a F (m) ∈ K such that m is the unique dominant monomial of F (m). Such an algorithm was
first used in [FM] for finite case (see also [H3]). Note that if F (m) exists, it is unique (see [H2]). Let us
describe this algorithm : first for m ∈ B we have to define the set Dm :

Definition 2.9. For m ∈ B, we say that m′ ∈ Dm if and only if there is a finite sequence (m0 =
m, m1, ..., mR = m′), such that for all 1 ≤ r ≤ R, there is j ∈ I such that mr−1 ∈ Bj and mr is a
monomial of Fj(mr−1).

In particular the set Dm is countable (see [H2]) and m′ ∈ Dm ⇒ m′ ≤ m. Denote Dm = {m0 =
m, m1, m2, ...} such that mr ≤ mr′ ⇒ r ≥ r′.

For r, r′ ≥ 0 and j ∈ I denote [Fj(mr′)]mr
∈ Z the coefficient of mr in Fj(mr′).

We call classical algorithm the following inductive definition of the sequences (s(mr))r≥0 ∈ ZN,
(sj(mr))r≥0 ∈ ZN (j ∈ I) : s(m0) = 1 , sj(m0) = 0 and for r ≥ 1, j ∈ I :

sj(mr) =
∑

r′<r

(s(mr′)− sj(mr′))[Fj(mr′)]mr

mr /∈ Bj ⇒ s(mr) = sj(mr) , mr ∈ B ⇒ s(mr) = 0

It follows from theorem 2.8 that the classical algorithm is weel-defined and for all m ∈ B, F (m) ∈ K

exists (see section 5.5.4 in [H4]).

3. Monomials of q-characters

In this section we state the two main results on q-characters of this paper : theorems 3.2 and 3.5.

3.1. First result. In this section we prove that for m′ a l-weight of Vm we have m′ ≤ m (theorem 3.2).
This result is proved in [FR3, FM] for C finite. In the general case a universal R-matrix has not been
defined so we propose a new proof based on the Weyl modules introduced in [CP3].

Definition 3.1. For m ∈ B, denote L(m) = χq(Vm) and by D(m) the set of monomials of L(m).
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The partial order on monomials is set in definition 2.6.

Theorem 3.2. For m ∈ B and m′ ∈ D(m), we have m′ ≤ m.

In this section 3 we prove this theorem. First let us show some lemmas which will be useful :

Lemma 3.3. Let V be a Uq(ĝ)-module and W ⊂ V a Uq(ĥ)-submodule of V . Then for i ∈ I, W ′
i =∑

r∈Z

x−
i,r .W is a Uq(ĥ)-submodule of V .

Proof: For w ∈W , j ∈ J , m, r ∈ Z (m 6= 0), h ∈ h we have :

hj,m.(x−
i,r .w) = x−

i,r .(hj,m.w)−
1

m
[mBi,j ]qx

−
i,m+r.w ∈ W ′

i

kh.(x−
i,r .w) = x−

i,r.(q
αi(h)kh.w) ∈ W ′

i

�

Note that q-character of an (integrable) Uq(ĥ)-module is well-defined (see section 5.4 of [H4]).

Lemma 3.4. Suppose that g = sl2 and let L be a finite dimensional Uq(ĝ)-module (Λ∨ is the fundamental
coweight).

(i) If L is of l-highest weight M then Lm′ 6= {0} implies m′ ≤M .

(ii) For p ∈ Z, let Lp =
∑

λ∈P∗/λ(Λ∨)≥p

Lλ and L′
p =

∑
r∈Z

x−
r .Lp. Then Lp, L

′
p are Uq(ĥ)-submodule of L

and (L′
p)m′ 6= 0⇒ ∃m, m′ ≤ m and (Lp)m 6= {0}.

Proof: (i) Consider the Weyl module Wq(M) of l-highest weight M defined in [CP3] : Wq(M) is the
universal finite dimensional module of l-highest weight M such that all finite dimensional module of
highest l-weight M is a quotient of Wq(M). In particular L is a quotient of Wq(M). So it suffices to study

Wq(M). For Uq(ŝl2), the Weyl modules are explicitly described in [CP4] : in particular the dimension
of Wq(M) is 2m where m = u(M) =

∑
i∈I,a∈C∗

ui,a(M). But (see [VV, AK, FM]) there is a standard

module (tensorial product of fundamental representation) of highest l-weight M . The dimension of such
a standard module is 2m and it is a quotient of Wq(M). So Wq(M) is isomorphic to a standard module.
The q-character of a standard module is known (see section 2.3), in particular for a l-weight m′ of Wq(M)
we have m′ ≤M .

(ii) Lp is a Uq(ĥ)-submodule of L because the action of Uq(ĥ) does not change the weight, so it follows

from lemma 3.3 that L′
p is a Uq(ĥ)-submodule of L. Let us prove the second point by induction on

dim(Lp) : if Lp = {0} we have L′
p = {0}. In general let v be a l-highest weight vector of Lp (there is at

least one, see the proof of proposition 5.2 in [H4]) and denote by M his l-weight. Consider V = Uq(ĝ).v.
It is a l-highest weight module and so it follows from (i) that Vm 6= {0} ⇒ m ≤ M . We can use the
induction hypothesis with L(1) = L/V and we get the result because χq(L) = χq(V ) + χq(L

(1)). �

End of the proof of theorem 3.2 :

We prove the result by induction on v(m′m−1) ≥ 0. For v(m′m−1) = 0 we have m′ = m. In general
suppose that the result is known for v(m′m−1) ≤ p and let W =

∑
m′/v(m′m−1)≤p

(Vm)m′ . Note that W is

a Uq(ĥ)-submodule of Vm. It follows from the triangular decomposition of Uq(ĝ) (see [H4]) that :
⊕

m′/v(m′m−1)=p+1

(Vm)m′ ⊂
∑

i∈I

W ′
i where W ′

i =
∑

r∈Z

x−
i,r.W

For i ∈ I , W ′
i is a Uq(ĥ)-submodule of Vm (lemma 3.3). In particular W ′

i =
⊕
m′

(W ′
i ∩ (Vm)′m) =

⊕
m′

(Wi)m′

and it suffices to show that for i ∈ I , (W ′
i )m′ 6= {0} ⇒ m′ ≤ m.
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Consider the decomposition of lemma 2.7 with J = {i}: V =
⊕
k

Vk . We have W =
⊕
k

(Vk ∩W ) and so

W ′
i =

⊕
k

(Vk ∩W ′
i ) (because Vk is a sub Uq(ĝi)-module of Vm). So we can use the (ii) of lemma 3.4 to the

Uqi
(ŝl2)-module Vk with pk such that (Vk)pk

= Vk∩W . We get that for m a monomial of χi
q(W

′
i ) there are

m′ a monomial χi
q(W ) and m′′ ∈ Z[Y −1

i,a Y −1
i,aq2

i

(k
(i)
2ri

)−1]a∈C∗ such that m = m′m′′ (the k
(i)
r are the k′

h for

Uqi
(ŝl2), see [H4]). It follows from the lemma 5.9 of [H4] (see also [FM]) that τi(Ai,aqi

) = Yi,aYi,aq2
i
k

(i)
2ri

.

So for M a monomial of χq(W
′
i ) there is M ′ a monomial of χq(W ) such that M ≤M ′. �

3.2. Second result.

Theorem 3.5. Let g be of type An (n ≥ 1), A
(1)
l (l ≥ 2), Bn (n ≥ 2) or Cn (n ≥ 2). Let i ∈ I, a ∈ C∗.

Then for m ∈ D(Yi,a), for all j ∈ I, l ∈ Z, uj,l(m) ≤ 1. In particular all coefficients of L(Yi,a) are equal
to 1 and all l-weight space of Vi(a) are of dimension 1.

The last part of the result for type An is established in [N4].

Note that for type Dn the statement is false : for example for the type D4, the monomial Y2,2Y
−1
2,4 has a

coefficient 2 in χq(V2(q
0)) (see the figure 1 in [N2]). For type F4 it is also false (see section 8).

Let us explain the main points of the proof : it is based on the study of the classical algorithm in a case
by case investigation : for type An a proof is given in [H2] and recalled in section 4. The result for type

A
(1)
l is proved in section 4, the result for type Bn is proved in section 5, the result for type Cn in section

6. In each case we suppose the existence of a m ∈ D(Yi,a), such that there is j ∈ I, l ∈ Z, uj,l(m) ≥ 2.
The classical algorithm starts from the highest weight monomial. In our proof we look at a monomial
m with uj,l(m) ≥ 2 and show that inductively that it implies a condition on some monomials of higher
weight. In particular it leads to a contradiction on the highest weight monomial.

Note that for type An, Bn, Cn the result could follow from explicit computation of χq(Vi(a)). We would
have to compute the specialized R-matrix, as explained in [FR3]. The result should produce the formulas
of [FR1]. However with this method it would not easy to decide if the coefficients are 1 (for example it
is not the case for type D4). In this paper the proof is direct without explicit computation. In particular

it allows us to extend the proof to A
(1)
l .

3.3. Notations. In the following (sections 3, 4, 5, 6) we can forget the terms kλ because we work in a
set D(m) or Dm : indeed m′ such that m′ ≤ m is uniquely determined by m and the vi,l(m

′m−1).

For J ⊂ I , j ∈ J, a ∈ C∗ consider AJ,±
j,a = (A±

j,a)(J). Define µI
J : Z[AJ,±

j,a ]j∈J,a∈C∗ → Z[A±
j,a]j∈J,a∈C∗

the ring morphism such that µI
J (AJ,±

j,a ) = A±
j,a. For m ∈ BJ , denote LJ(m(J)) defined for gJ (gJ is the

Kac-Moody algebra of Cartan matrix (Ci1,i2)i1,i2∈J). Define :

LJ(m) = m(I−J)µI
J((m(J))−1LJ(m(J)))

Definition 3.6. For J ⊂ I and m ∈ BJ , denote by DJ(m) the set of monomials of LJ(m).

For J = {i} and m ∈ Bi, an explicit description of Di(m) is given in [FR3] : a σ ⊂ Z is called a 2-segment
if σ is of the form σ = {l, l + 2, ..., l + 2k} where l ∈ Z, k ≥ 0. Two 2-segment are said to be in special
position if their union is a 2-segment that properly contains each of them. All finite subset of Z with
multiplicity (l, ul)l∈Z (ul ≥ 0) can be broken in a unique way into a union of 2-segments which are not

in pairwise special position. For m ∈ Bi and r ∈ {1, ..., 2ri}, consider (σ
(r)
j )j the decomposition of the

(l, ur+2ril(m))l∈Z as above. Let m(i) =
∏

r=1,...,2ri

∏
j

mr,j where mr,j =
∏

l∈σ
(r)
j

Yi,r+2ril, and we have :

Di(m) = m(I−{i})
∏

r=1,...,2ri

∏

j

Di(mr,j)
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where for m =
∏

k=1...r

Yi,l+2rik :

Di(m) = {mA−1
i,l+2rik+ri

, mA−1
i,l+2rik+ri

A−1
i,l+2ri(k−1)+ri

, ..., mA−1
i,l+2rik+ri

A−1
i,l+2ri(k−1)+ri

...A−1
i,l+ri

}

In particular :

Lemma 3.7. For m ∈ Bi such that ∀l ∈ Z, ui,l(m) ≤ 1, we have Fi(m) = Li(m).

Definition 3.8. Let J ⊂ I and i ∈ I, a ∈ C∗. For m, m′ ∈ D(Yi,a), we denote :

m→J m′ (or m′ ←J m) if m ∈ BJ and m′ ∈ DJ(m).

m ⇀J m′ (or m′ ↼J m) if v(m′Y −1
i,a ) ≥ v(mY −1

i,a ) and ∃m′′ ∈ D(Yi,a) such that m′′ →J m and

m′′ →J m′.

In particular m→J m′ implies m ⇀J m′. For J = {j} (resp. J = I) we denote →j , ⇀J (resp. →, ⇀).

3.4. Technical complements.

Proposition 3.9. For m ∈ B and J ⊂ I such that gJ is finite, there is a unique decomposition:

L(m) =
∑

m′∈BJ∩D(m)

λJ (m′)LJ(m′)

where λJ(m′) ≥ 0.

Proof: Consider the decomposition of lemma 2.7 with J : V =
⊕
k

Vk . We can decompose each Vk in a

sum of simple Uq(ĝJ)-modules in the Grothendieck group : χJ
q (Vk) =

∑
k′

λk,k′LJ(mk,k′ ) where mk.k′ ∈ BJ

and λk,k′ ≥ 0. In particular τ−1
J (PkQk) =

∑
k′

λk,k′LJ(τ−1
J (mk,k′Qk)) (consequence of lemma 5.9 of [H4]).

For the uniqueness the LJ(m′) (m′ ∈ BJ ) are linearly independent. �

We say that a monomial m ∈ B is right (resp. left) negative if : for b ∈ C∗ such that (∃j ∈ I , uj,b(m
′) 6= 0

and ∀k ∈ I, l > 0 (resp. l < 0), uk,bql(m′) = 0), we have ∀k ∈ I , uk,b(m
′) ≤ 0 (see [FM]). A product of

right (resp. left) negative monomials is right (resp. left) negative.

Corollary 3.10. For i ∈ I, a ∈ C∗ and m′ ∈ D(Yi,a), we have :

1) for J ⊂ I such that gJ is finite, there is m′′ →J m′.

2) there is a finite sequence Yi,a = m0 > m1 > m2 > ... > MR = m′ such that for all 1 ≤ r ≤ R,
∃jr ∈ I, mr−1 →jr

mr.

3) if m′ 6= Yi,a, then m′ is right negative

4) for b ∈ Z and j ∈ I, we have uj,b(m
′) 6= 0⇒ b ∈ aqZ.

Note that the (1) will be used intensively in the following. For C finite those results are proved in [FM].

Proof: 1) Consequence of proposition 3.9.

2) We use (1,3) inductively.

3) For m′ ∈ DYi,a
− {Yi,a}, we have m′ < Yi,a (theorem 3.2) and m′ is right or left negative, so not

dominant. So as in [FM] m′ is right negative.

4) As for m ∈ Bj ∩ Z[Yi,aqm ]m∈Z implies Lj(m) ∈ Z[Yi,aqm ]m∈Z (see section 3.3), we have M ∈
B ∩ Z[Yi,aqm ]m∈Z implies Dm ⊂ Z[Yi,aqm ]m∈Z (see also [FM]). �

As a right negative monomial is not dominant, we have :

Corollary 3.11. For i ∈ I, a ∈ C∗, L(Yi,a) = F (Yi,a) has a unique dominant monomial Yi,a.

For c ∈ C∗, let βc : Y → Y be the ring morphism such that βc(Yi,a) = Yi,ac.
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Proposition 3.12. For a, b ∈ C∗, L(Yi,a) = βab−1(L(Yi,b)).

Proof: For c ∈ C∗, we have βc(K) = K (see [FM, H3]). �

It suffices to study (see (4) of corollary 3.10 and [H3]) :

χq : Z[Xi,ql ]i∈I,l∈Z → Z[Yi,ql ]i∈I,l∈Z

In the following we denote Rep = Z[Xi,ql ]i∈I,l∈Z, Xi,l = Xi,ql , Y = Z[Y ±
i,ql ]i∈I,l≥0, Y ±

i,l = Y ±
i,ql . A

Rep-monomials is a product of the Xi,l.

Lemma 3.13. For m ∈ B, we have :

D(m) ⊂
∏

j∈I,l∈Z

D(Yj,l)
uj,l(m)

Proof:
∏

j∈I,l∈Z

D(Yj,l)
uj,l(m) is the set of monomials of χq(Mm). Then see theorem 2.5. �

Lemma 3.14. Let m1, m2 ∈ Bi such that ∀l ∈ Z, ui,l(m1) ≤ 1 and ui,l(m2) ≤ 1. Then Di(m1) = Di(m1)
(resp. Di(m2) = Di(m2)) and Di(m1) ∩Di(m2) = ∅ ⇔ m1 6= m2.

Proof: Let us write m
(i)
1 =

∏
r=1,...,2ri

∏
j

m
(r)

σ
(r)
j

as in section 3.3 . Denote σ
(r)
j = σ

(r)
j ∪ {max(σ

(r)
j ) + 2ri}.

It follows from the hypothesis of the lemma that (j, r) 6= (j ′, r′) ⇒ σ
(r)
j ∩ σ

(r′)
j′ = ∅. Moreover for

m′ ∈ Di(mσ
(r)
j

), we have ui,r+2lri
(m′) 6= 0 ⇒ ∃j, l ∈ σ

(r)
j . In particular the given of m′ suffices to

determine the σ
(r)
j : for example we can find the set M = {max(σ

(r)
j )/j, r} and M′ = {min(σ

(r)
j )/j, r}

in the following way :

if ui,l(m
′) = 1 and ui,l+2ri

(m′) = 0 and ui,l+4ri
(m′) ≥ 0, then l + 2ri ∈ M

if ui,l(m
′) = −1 and ui,l+2ri

(m′) ≥ 0, then l ∈ M

if ui,l(m
′) = −1 and ui,l−2ri

(m′) = 0 and ui,l−4ri
(m′) ≤ 0, then l − 2ri ∈M

′

if ui,l(m
′) = 1 and ui,l−2ri

(m′) ≤ 0, then l ∈M′

So if m′ ∈ Di(m1)∩Di(m2), we have the same decomposition for m1 and m2, that is to say m1 = m2. �

Lemma 3.15. Let m ∈ B, m′ ∈ D(m)∩Bj . We suppose that for all m′′ ∈ D(m) such that v(m′′m−1) <
v(m′m−1), all i ∈ I, l ∈ Z we have ui,l(m

′′) ≤ 1. Then Dj(m
′) ⊂ D(m).

Proof: Let p = v(m′m−1). Consider the decomposition of proposition 3.9 with J = {j} : L(m) =∑
M∈Bj∩D(m)

λj(M)Lj(M). It follows from the hypothesis and from the lemma 3.7 that for v(Mm−1) < p,

m′ /∈ Dj(M). So λj(m
′) > 0, and Dj(m

′) ⊂ D(m). �

Proposition 3.16. Let i ∈ I such that all m ∈ D(Yi,L) satisfies : for j ∈ I, if m ∈ Bj then ∀l ∈
Z, uj,l(m) ≤ 1. Then all coefficients of L(Yi,L) are equal to 1.

Proof: We can compute the coefficients of L(Yi,L) = F (Yi,L) thanks to the classical algorithm (see section

3.3) : let us show by induction on v(mY −1
i,L ) that the coefficients of m is equal to 1. For a monomial

m < Yi,L, there is j ∈ I such that m /∈ Bj . There is M →j m. It follows from the lemma 3.14 that M
is entirely determined by m. So the coefficient of m is the coefficient of M in L(Yi,l) multiplied with the
coefficient of m in Lj(M) = Fj(M), that is to say 1 (section 3.3). �

4. Type A, A(1)

Proposition 4.1. The property of theorem 3.5 is true for g of type An (n ≥ 1) or A
(1)
l (l ≥ 2).

Technical consequences of this result which will be used in the following are discussed in section 4.3.
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4.1. Type A. Let n ≥ 1 and g of type An. For i ∈ {2, ..., n− 1}, l ∈ Z :

Ai,l = Yi,l+1Yi,l−1Y
−1
i+1,lY

−1
i−1,l

A1,l = Y1,l+1Y1,l−1Y
−1
2,l , An,l = Yn,l+1Yn,l−1Y

−1
n−1,l

In particular for all i ∈ I, l ∈ Z, u(A−1
i,l ) ≤ 0. So m ≤ m′ ⇒ u(m) ≤ u(m′).

We can suppose Yi,L = Yi,0 (proposition 3.12).

Lemma 4.2. For m ∈ B and m′ ∈ D(m) we have u(m) ≥ vn(m′m−1).

Proof: For all i ∈ I , we have ωi + ωn+1−i ∈ αn +
∑

j≤n−1

Zαj (see [Bo]).

Consider m′ ∈ D(m). It follows from the lemma 6.8 of [FM] that ω(m) ≥ ω(m′) ≥ −
∑
i∈I

ui(m)ωn+1−i,

and so −ω(m′m−1) ≤
∑
i∈I

ui(m)(ωi + ωn+1−i). So vn(m′m−1) ≤
∑
i∈I

ui(m) = u(m). �

Lemma 4.3. For j ∈ I, if m ∈ Bj ∩D(Yi,0) then uj(m) ≤ 1.

Proof: Suppose there is j ∈ I and m1 ∈ Bj ∩ D(Yi,0) such that uj(m1) ≥ 2. Let J1 = {k ∈ I/k < j},
J2 = {k ∈ I/k > j} and J = J1 ∪ J2. Let m2 →J m1 and v = vj−1(m1m

−1
2 ) + vj+1(m1m

−1
2 ). It follows

from lemma 4.2 (for gJ1 and gJ2) that uJ1(m2)+uJ2(m2) ≥ v. Moreover we have uj(m2) = uj(m1)−v ≥
2− v. So u(m2) = uJ1(m2) + uj(m2) + uJ2(m2) ≥ 2, contradiction because m2 ≤ Yi,0. �

The proposition 4.1 for type An follows from proposition 3.16 and lemma 4.3.

4.2. Type A
(1)
l . Let l ≥ 2 and g of type A

(1)
l . For i ∈ I , l ∈ Z (where Y−1,L = Yn,L, Yn+1,L = Y0,L):

Ai,l = Yi,l+1Yi,l−1Y
−1
i+1,lY

−1
i−1,l

In particular for all i ∈ I, l ∈ Z, u(A−1
i,l ) ≤ 0. So m ≤ m′ ⇒ u(m) ≤ u(m′).

We have an analog of lemma 4.3 by putting in the proof J = I −{j} instead of J1 ∪ J2. In particular we

get proposition 4.1 for type A
(1)
l .

4.3. Consequences. In this section g is general and consider J ⊂ I such that gJ is of type Am (m ≤ n).
We prove technical results which will be useful in the following. Let i ∈ I, a ∈ C∗.

Lemma 4.4. Let m ∈ BJ , j ∈ J and m′ ∈ Bj such that m′ ∈ DJ(m). We have uJ(m) ≥ uj(m
′).

Proof: It follows from lemma 3.13 that we can write :

m′ = m(I−J)
∏

k∈J,l∈Z

m′
k,l,1...m

′
k,l,uk,l(m)

where m′
k,l,1 ∈ DJ(Yk,l). For α ∈ J × Z × N, it follows from lemma 4.3 that u+

j,L(m′
α) ≥ 1 ⇒ (m′

α)(j) =

Yj,L. So there are α1, ..., αuj(m′) such that the (m′
αp

)(j) = Yj,lp and m′
α1

...m′
αuj (m′)

= (m′)(j). So

uj(m
′) ≤

∑
k∈J,l∈Z

uk,l(m) = uJ(m). �

Lemma 4.5. Let M ∈ BJ such that uJ(M) ≥ 2. The following properties are equivalent :

(i) there are j ∈ J , l ∈ Z, M1 ∈ DJ(M) ∩Bj such that uj,l(M1) ≥ 2

(ii) there are M ′ ∈ DJ(M)∩BJ , i1, i2 ∈ J , l1, l2 ∈ Z such that i2− i1 ≥ |l1− l2| and (i2− i1)− (l2− l1)
is even and ui1,l1(M

′) ≥ 1, ui2,l2(M
′) ≥ 1.

Moreover one can choose M ′ such that M1 ∈ DJ(M ′).
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Proof: We can suppose that g = gJ is of type An. For K ⊂ I , in this proof the notation →K , ⇀K is
defined as in definition 3.8 by putting D(M) instead of D(Yi,a).

Let us show that (ii)⇒ (i) : if i2 = i1 we have ui1,l1(M
′) ≥ 2. If i2− i1 > 0, suppose that (i) is not true.

In this situation we can use the lemma 3.15. Consider the integers:

K =
(i2 − i1) + (l2 − l1)

2
, K ′ =

(i2 − i1) + (l1 − l2)

2

We have K, K ′ ≥ 0. Denote i = i1 + K = i2 −K ′, l = l1 + K = l2 + K ′ and consider :

V = A−1
i1,l1+1A

−1
i1+1,l1+2...A

−1
i1+(K−1),l1+KA−1

i2 ,l2+1A
−1
i2−1,l2+2...A

−1
i2−(K′−1),l2+K′

There is M1 ∈ D(M ′) such that M1 ≤M ′V and vi(M1(M
′)−1) = 0 (lemma 3.15). In particular M1 ∈ Bi

and ui,l(M1) ≥ 2, contradiction.

Let us show that (i) ⇒ (ii) : it follows from lemma 3.13 and proposition 4.1 that we can suppose that
u(M) = 2. Denote M = Yi1,l1Yi2,l2 , and let us show the result by induction on n. For n = 1 we have

M1 = M and (ii) is clear. In general let M1 ∈ D(M) ∩ Bj such that M
(j)
1 = Y 2

j,l. We can suppose that

v(M1M
−1) is minimal. If M1 is dominant, we put M1 = M ′. Otherwise consider J ′ = {1, ..., n − 1} if

j ≤ n− 1, and J ′ = {2, ..., n} if j = n (we suppose that j ≤ n− 1, the case j = n can be treated in the

same way). Let M2 →J′ M1. The induction with gJ′ of type An−1 gives that M
(J′)
2 = Yi1,l1Yi2 ,l2 where

i2−i1 ≥ |l1−l2| and (i2−i1)−(l2−l1) is even. We have u(M2) ≤ 2 and so un(M2) = u(M2)−uJ′(M2) ≤ 0.

If M
(n)
2 = 1, we put M2 = M ′. Otherwise it follows from the lemma 4.4 that we are in one the following

cases α, β, γ:

α) if M
(n)
2 = Y −1

n,K1
Y −1

n,K2
, we have :

M2 ←n M3 = Yi1,l1Yi2,l2Y
−1
n−1,K1−1Y

−1
n−1,K2−1Yn,K1−2Yn,K2−2

If Yi2 ,l2 6= Yn−1,K1−1 and Yi2,l2 6= Yn−1,K2−1, there is M4 = M3(M1M
−1
2 ) ∈ D(M3) (lemma 3.15)

such that M
(j)
4 = Y 2

j,l and v(M4M
−1) < v(M1M

−1), contradiction. So for example we have M3 =

Yi1,l1Y
−1
n−1,K2−1Yn,K1−2Yn,K2−2 and i2 = n− 1, l2 = K1 − 1. We have :

M3 ←{i1+1,...,n−1} M4 = Yi1 ,l1Y
−1
i1,K2−1−(n−i1−1)Yi1+1,K2−2−(n−i1−1)Yn,K1−2

If Yi1,l1Y
−1
i1,K2−1−(n−i1−1) 6= 1, there is :

M4 ←{1,...,i1} M5 = Y1,K3Yi1,l1Y
−1
i1+1,K2−2−(n−i1−1)Yi1+1,K2−2−(n−i1−1)Yn,K1−2

and u(M5) = 3, impossible. So l1 = K2− 1− (n− i1− 1) and M4 = Yi′1,l′1
Yi′2,l′2

where i′1 = i1 + 1, i′2 = n,
l′1 = K2 − 2− (n − i1 − 1), l′2 = K1 − 2. Let M ′ = M4. We have i′2 − i′1 = i2 − i1 ≥ |l2 − l1| = |l′2 − l′1|
and (i′2 − i′1)− (l′2 − l′1) = (i2 − i1)− (l2 − l1) is even.

β) if M
(n)
2 = Yn,K1Y

−1
n,K2

, we have :

M2 ←n M3 = Yi1,l1Yi2,l2Y
−1
n−1,K2−1Yn,K1−2Yn,K2−2

and u(M3) = 3, impossible.

γ) if M
(n)
2 = Y −1

n,K1
, we have :

M2 ←n M3 = Yi1,l1Yi2 ,l2Y
−1
n−1,K1−1Yn,K1−2

If Yn−1,K1−1 6= Yi1,l1 and Yn−1,K1−1 6= Yi2,l2 , there is M4 = M3(M1M
−1
2 ) ∈ D(M3) (lemma 3.15) such

that M
(j)
4 = Y 2

j,l and v(M4M
−1) < v(M1M

−1), contradiction. So for example we have M3 = Yi1,l1Yn,K1−2

and i2 = n − 1, l2 = K1 − 1. Let M ′ = M3 and we have n − i1 = i2 − i1 + 1 ≥ |l2 − l1| + 1 ≥
|(K1 − 2)− l1 + 1|+ 1 ≥ |(K1 − 2)− l1| and n− i1 − ((K1 − 2)− l1) = (i2 − i1)− (l2 − l1) is even.

For the last point, the arguments of this proof can be used for any M ′ ∈ B such that M1 ∈ DJ(M ′). �
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5. Type B

5.1. Statement. In this section g is of type Bn (n ≥ 2). For i ∈ {2, ..., n− 2}, l ∈ Z :

Ai,l = Yi,l+2Yi,l−2Y
−1
i+1,lY

−1
i−1,l , A1,l = Y1,l+2Y1,l−2Y

−1
2,l , An,l = Yn,l+1Yn,l−1Y

−1
n−1,l

An−1,l = Yn−1,l+2Yn−1,l−2Y
−1
n−2,lY

−1
n,l−1Y

−1
n,l+1

In this section we prove:

Proposition 5.1. The property of theorem 3.5 is true for g of type Bn (n ≥ 2).

Denote J = {1, ..., n− 1}. We can suppose Yi,L = Yi,0 (proposition 3.12).

As u(A−1
n−1,l) > 0, the m′ ≤ m does not imply u(m′) ≤ u(m).

5.2. Proof of the proposition 5.1. Suppose that there is m ∈ D(Yi,0) such that there is j ∈ J, l ∈ Z,

uj,l(m) ≥ 2, and let m such that v(mY −1
i,0 ) is minimal with this property.

Lemma 5.2. There is M ∈ D(Yi,0) such that v(MY −1
i,0 ) < v(mY −1

i,0 ) and ∃l′ ∈ Z, un,l′(M) ≥ 2.

Proof: Suppose that M does not exists. Let m1 →J m. It follows from lemma 4.5 that m1 =
m′

1Yi1,l1Yi2,l2 where m′
1 ∈ BJ , 2(i2− i1) ≥ |l1− l2|, (i2− i1)− (l2− l1)/2 is even. Let m2 ⇀n m1 such that

v(m1m
−1
2 ) = 1 (m2 exists because it follows from the hypothesis and lemma 3.15 that M2 →n m2 implies

Dn(M2) ⊂ D(Yi,0)). We have m2 = m′
2Yi1,l1Yi2,l2Y

−1
n−1,LYn,L−1 where m′

2 ∈ BJ and un,L−1(m
′
2) ≥ 0.

If Yi1,l1Yi2,l2Y
−1
n−1,L /∈ B, there is m2 ⇀J M2 = m2(mm−1

1 ) (lemma 3.15) such that uj,l(M2) ≥ 2 and

v(M2Y
−1
i,0 ) < v(mY −1

i,0 ), contradiction. So for example Yi2,l2 = Yn−1,L, and m2 ∈ BJ . m2 is not dominant

(because we would have u(m2) ≥ 2), so there is m3 ⇀n m2 such that v(m2m
−1
3 ) = 1 (same argument

as above for the existence of m3). We have m3 = m′
3Yi1,l1Y

−1
n−1,L′Yn,L−1Yn,L′−1 where m′

3 ∈ BJ and

un,L−1(m
′
3) ≥ 0, un,L′−1(m

′
3) ≥ 0.

if we can choose L′ 6= L + 2, the same argument gives Yi1,l1 = Yn−1,L′ because :

m4 = Yi1,l1Yi2,l2Y
−1
n−1,L′Yn,L−1′m′

4 ⇀n m1

where m′
4 ∈ BJ . So we have i1 = i2 = n− 1, so l1 = l2 and L′ = L, ie un,L(m3) ≥ 2, contradiction.

if we can not choose L′ 6= L+2, we can not use the same argument (because : 1 /∈ Ln(Yn,L−1Yn,L+1)).
We have (k ≥ 1):

m3 ←n m5 = m′
5Yi1,l1Y

−1
n−1,L+2Y

−1
n−1,L+4...Y

−1
n−1,L−1+2k+1Yn,L−1Yn,L+1...Yn,L−1+2k

where m′
5 ∈ B. Suppose that m′

5Yi1,l1Y
−1
n−1,L+4 /∈ B. Then we have :

m5 ↼n−1 m6 = m′
5Yi1,l1Yn−1,LY −1

n−1,L+2Y
−1
n−1,L+6...Y

−1
n−1,L−1+2k+1Yn,L−1Yn,L+5...Yn,L−1+2k

But un−1,L(m6A
−1
n,L) = 2, contradiction. In the same way we prove by induction that

m′
5Yi1,l1Y

−1
n−1,L+4Y

−1
n−1,L+8... ∈ B and so :

m5 = m′′
5Yi1,l1Y

−1
n−1,L+2Y

−1
n−1,L+6...Y

−1
n−1,L+2+4K′Yn,L−1Yn,L+1...Yn,L−1+2k

where m′′
5 ∈ B. Suppose that m5 /∈ B. As m5 is right negative, we have L+2+4K ′ = L+2k and so k =

1 + 2K ′. Consider m7 →J m5. We get that m7 is dominant, and so m7 = Yi,0. Let K ′′ = u−(m5) ≤ K ′.
We have 1 = u(m7) ≥ uJ(m7)+un(m7) ≥ K ′′+(k+1−2K ′′) = 1+k−K ′′ ≥ k−K ′ ≥ 1+K ′. So K ′ = 0
and k = 1. In particular m5 = m′′

5Yi1,l1Y
−1
n−1,L+2Yn,L−1Yn,L+1 and so we have i1 = n−1−j, l1 = L+2−2j

where j ≥ 0 (otherwise we would have u(m7) ≥ 2). It implies i2 − i1 − (l2 − l1)/2 = j − (j − 1) = 1 not
even, contradiction. So m5 ∈ B and m5 = Yi,0. But u(m5) ≥ un(m5) ≥ 2, contradiction. �

Lemma 5.3. Let j ∈ I and m ∈ D(Yi,0) ∩ Bj such that uj(m) = 2. For L, L′ ∈ Z such that m(j) =
Yj,LYj,L′ , we have L 6= L′.
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Proof: It follows from lemma 5.2 that we can suppose that j = n and that for v(m′Y −1
i,0 ) ≤ v(mY −1

i,0 ),

for all j ∈ J, l ∈ Z, uj,l(m
′) ≤ 1. Let M such that ∃l ∈ Z, un,l(M) ≥ 2 and suppose that v(MY −1

i,0 ) is

minimal with this property. Let L be maximal such that un,L−1(M) ≥ 2. First it follows from lemma 4.5

that M ∈ Bn. We have M →n M ′ = MA−1
n,L and the coefficient of M ′ in Ln(M) is at least 2. Suppose

that there is j ∈ J such that M ′ /∈ Bj . Let M ′′ →j M ′. It follows from lemma 3.14 that M ′′ is uniquely
determined by M ′, and that the coefficient of M ′ in Fj(M

′) is 1. But the coefficient of M ′′ in L(Yi,0) is
1, so it follows from the proposition 3.9 that the coefficient of M ′ is 1, contradiction. So M ′ ∈ BJ . So
M = Y −1

n−1,LM̃ where M̃ ∈ B and un,L−1(M̃) ≥ 2. As un(M) ≥ 2, M /∈ B. So there is M0 →J M . We
have :

M0 = M̃0Yn,L−1Y
−1
n,L−3

where M̃0 ∈ B and uJ(M̃0) ≥ 1. But M0 is not right negative, so M0 is dominant (corollary 3.10). But

u(M0) ≥ uJ(M̃0) + un,L−1(M0) ≥ 2, contradiction. �

So the proposition 5.1 follows from proposition 3.16 and lemma 5.3.

5.3. Complement : degree of monomials. The aim of this section is to prove that the degrees are
bounded (it is a complement independent of the proof of theorem 3.5):

Proposition 5.4. For j ∈ I and m ∈ Bj ∩D(Yi,0), then uj(m) ≤ 2.

Note that it follows from proposition 5.1 that we can use the lemma 3.15.

For m ∈ A denote w(m) = (u+
J (m), u−

J (m), u+
n (m), u−

n (m)).

Suppose that there is j ∈ J and m0 ∈ D(Yi,0)∩Bj such that uj(m0) ≥ 3. It follows from lemma 4.4 that

there is m→J m0 such that uJ(m) ≥ 3. Suppose that v(mY −1
i,0 ) is minimal for this property.

Lemma 5.5. There is M ∈ D(Yi,0) ∩ Bn such that M > m and un(M) ≥ 3.

Proof: We have m ∈ BJ and uJ(m) = 3 : m = Yi1,l1Yi2,l2Yi3,l3m
′ where (m′)(J) = 1. There is

m ↼n m1 = Yi1,l1Yi2,l2Yi3,l3Y
−1
n−1,Lm′

1Yn,L−1

where (m′
1)

(J) = 1 and un,L−1(m
′
1) ≥ 0. If Yi1,l1Yi2,l2Yi3,l3Y

−1
n−1,L /∈ B, there is M1 →J m1 such that

uJ(M1) ≥ 3, contradiction. So for example m1 = Yi1,l1Yi2,l2m
′
1Yn,l3−1. There is

m1 ↼n m2 = Yi1,l1Yi2,l2Y
−1
n−1,L′m

′
2Yn,l3−1Yn,L′−1

where (m′
2)

(J) = 1 and un,l3−1(m
′
2) ≥ 0, un,L′−1(m

′
2) ≥ 0. It follows from lemma 5.3 that l3 6= L′. If

L′ = l3 + 1, we have m′′
2 →J m2 where m′′

2 is dominant and u(m′′
2 ) ≥ uJ(m′′

2) ≥ 2, contradiction. So we
see as above that for example m2 = Yi1,l1m

′
2Yn,l3−1Yn,l2−1. In the same way

m2 ↼n m3 = m′
3Yi1,l1Y

−1
n−1,L′′Yn,l3−1Yn,l2−1Yn,L′′−1

where (m′
3)

(J) = 1 and un,l3−1(m
′
3) ≥ 0, un,l2−1(m

′
3) ≥ 0, un,l1−1(m

′
3) ≥ 0. We can conclude with lemma

4.4. �

For m ∈ A, denote w(m) = (u+
J (m), u−

J (m), u+
n (m), u−

n (m)).

End of the proof of proposition 5.4 :

Suppose that there is M ∈ D(Yi,0) ∩ Bn such that un(M) ≥ 3. Suppose that v(MY −1
i,0 ) is minimal for

this property. It follows from lemma 5.5 that for M ′ ∈ D(Yi,0), M ′ ≥M for j ∈ J, l ∈ Z, uj,l(M
′) ≤ 2.

We have M ∈ B{1,...,n−2} (if not we would have M ′ →{1,...,n−2} M with M ′ > M and un(M ′) ≥ 3).

If un(M) = 3 : there is M ←J M1. If vn−1(M1M
−1) = 1, we have w(M1) = (a, 0, 3, 2) or (a, 0, 2, 1)

or (a, 0, 1, 0) where a = 1 or 2. For the first two cases we have u+
n (M1) + u−

n (M1) ≥ 3, so there is
M ′

1 →n M1 such that un(M1) ≥ 3, contradiction. For the last case M1 is dominant with u(M1) ≥ 2,
contradiction. So vn−1(M1M

−1) = 2 and w(m1) = (2, 0, 3, 4) or (2, 0, 2, 3) or (2, 0, 1, 2) or (2, 0, 0, 1).
As above we have w(M1) = (2, 0, 0, 1). Let M2 →n M1. If w(M2) = (1, 0, 1, 0), M2 is dominant with
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u(M2) ≥ 2, contradiction. So w(M2) = (2, 1, 1, 0). Let M3 →J M2. If w(M3) = (2, 0, 1, 2), there is
M ′

3 > M3 such that un(M ′
3) ≥ 3, contradiction. So w(M3) = (2, 0, 0, 1). We continue and we get an

infinite sequence such that w(M2k) = (2, 1, 1, 0) and w(M2k+1) = (2, 0, 0, 1). Contradiction because the
sequence v(MkY −1

i,0 ) ≥ 0 decreases strictly.

If un(M) = 4 : there is M ←J M1. If vn−1(M1M
−1) = 1, we have w(M1) = (a, 0, 4, 2) or (a, 0, 3, 1) or

(a, 0, 2, 0) where a = 1 or 2. We see as above that it is impossible. So vn−1(M1M
−1) = 2 and w(m1) =

(2, 0, 4, 4) or (2, 0, 3, 3) or (2, 0, 2, 2) or (2, 0, 1, 1). As above we have w(M1) = (2, 0, 1, 1). Let M2 →n M1.
If w(M2) = (1, 0, 2, 0), M2 is dominant with u(M2) ≥ 2, contradiction. So w(M2) = (2, 1, 2, 0). Let
M3 →J M2. If w(M3) = (2, 0, 2, 2), there is M ′

3 > M3 such that un(M ′
3) ≥ 3, contradiction. So

w(M3) = (2, 0, 1, 1). We continue and we get an infinite sequence such that w(M2k) = (2, 1, 2, 0) and
w(M2k+1) = (2, 0, 1, 1). Contradiction because the sequence v(MkY −1

i,0 ) ≥ 0 decreases strictly. �

6. Type C

6.1. Statement. Let g be of type Cn (n ≥ 2). For i ∈ {2, ..., n− 1}, l ∈ Z :

Ai,l = Yi,l+1Yi,l−1Y
−1
i−1,lY

−1
i+1,l

A1,l = Y1,l+1Y1,l−1Y
−1
2,l , An,l = Yn,l+2Yn,l−2Y

−1
n−1,l+1Y

−1
n−1,l−1

In particular for all i ∈ I, l ∈ Z, u(A−1
i,l ) ≤ 0. So m ≤ m′ ⇒ u(m) ≤ u(m′).

In this section we prove :

Proposition 6.1. The property of theorem 3.5 is true for g of type Cn (n ≥ 2).

Denote J = {1, ..., n− 1} ⊂ I .

6.2. Proof of proposition 6.1. We can suppose Yi,L = Yi,0 (proposition 3.12).

Lemma 6.2. (i) For m ∈ Bn ∩D(Yi,0), we have un(m) ≤ 1.

(ii) For j ≤ n− 1 and m ∈ Bj ∩D(Yi,0), we have uj(m) ≤ 2.

(iii) Let j ≤ n−1 and m ∈ D(Yi,0)∩Bj such that uj(m) = 2. For L, L′ ∈ Z such that m(j) = Yj,LYj,L′ ,
we have L 6= L′.

Proof: (i) suppose that there is m1 ∈ Bn ∩ D(Yi,0) such that un(m1) ≥ 2. Let m2 →J m1. We have

un(m2) ≥ 2 − vn−1(m2m
−1
1 ). But uJ(m2) ≥ vn−1(m2m

−1
1 ) (lemma 4.2) and so u(m2) = uJ(m2) +

un(m2) ≥ 2. As Yi,0 ≥ m2 it is impossible.

(ii) suppose that there is j ≤ n− 1 and m1 ∈ Bj ∩D(Yi,0) such that uj(m1) ≥ 3. Let m2 →J m1. Then
we have uJ(m2) ≥ 3 (lemma 4.4) and so u(m2) ≥ 3+un(m1) ≥ 2 (it follows from (i) that un(m1) ≥ −1).
Contradiction.

(iii) let j 6= n and m1 ∈ D(Yi,0) ∩ Bj such that m
(j)
1 = Y 2

j,L. We can suppose that v(m1m
−1) is

minimal. Let m2 →J m1. It follows from lemma 4.5 for gJ of type An−1 that m
(J)
2 = Yi1,L1Yi2,L2

with i2 − i1 ≥ |L1 − L2| and (i2 − i1) − (L2 − L1) is even. As u(m2) ≤ 1 and un(m2) ≥ −1, we
have un(m2) = −1 and uJ(m2) = 2. In particular m2 = Yi1,L1Yi2,L2Y

−1
n,K . There is m2 ←n m3 =

Yi1,L1Yi2,L2Y
−1
n−1,K−1Y

−1
n−1,K−3Yn,K−4. We are in one the following cases α, β, γ, δ:

α) Yi1,L1Yi2,L2Y
−1
n−1,K−1Y

−1
n−1,K−3 = 1 : impossible because i1 = i2 ⇒ L1 = L2.

β) Yi1 ,L1Yi2,L2Y
−1
n−1,K−1Y

−1
n−1,K−3 = Yi1,L1Y

−1
n−1,K−1 6= 1 (or in the same way Yi2,L2Y

−1
n−1,K−1 6= 1).

There is m3 ←n−1 m4 = m3An−1,K−2. In particular m
(n)
4 = Yn,K−4Y

−1
n,K−2, contradiction with (i).

γ) Yi1,L1Yi2,L2Y
−1
n−1,K−1Y

−1
n−1,K−3 = Yi1,L1Y

−1
n−1,K−3 6= 1 (or in the same way Yi2,L2Y

−1
n−1,K−3 6= 1). In

particular i2 = n−1, L2 = K−1 and m3 = Yi1,L1Y
−1
n−1,K−3Yn,K−4. Let J ′ = {i1 +1, ..., n−1} (J ′ can be
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empty) and m3 ←J′ m4 = Yi1,L1Y
−1
i1,K−2−n+i1

Yi1+1,K−3−n+i1 . If Yi1,L1Y
−1
i1,K−2−n+i1

6= 1, let m5 →i1 m4.

If i1 = 1, we have u(m5) = 2, impossible. If i1 ≥ 2, we have m5 = Y −1
i1−1,K−3−n+i1

Yi1,L1Yi1,K−4−n+i1 .

Let J ′′ = {1, ..., i1 − 1} and m5 ←J′′ m6 = Y1,K′Yi1,L1 . We have u(m6) = 2, impossible. So Yi1,L1 =
Yi1,K−2−n+i1 , that is to say L1 = K − 2 − n + i1. So L2 − L1 = n − i1 + 1 = i2 − i1 + 2 > i2 − i1,
contradiction.

δ) {(i1, L1), (i2, L2)} ∩ {(n− 1, K − 1), (n− 1, K − 3)} is empty : there is m3 →J m4 = m3(m1m
−1
2 )

such that m
(j)
4 = Y 2

j,l (lemma 3.15) and v(m4m
−1) < v(m1m

−1), contradiction. �

The proposition 6.1 follows from proposition 3.16 and lemma 6.2.

7. Application to q, t-characters

In this section we state and prove the main result of this paper on q, t-characters (theorem 7.5).

7.1. Reminder on q, t-characters [N2, N3, H1, H2, H3]. We define the product ∗t on A× (A⊗Z[t±])
such that : for (m, v), (m′, v′) ∈ A×A (m, m′, v, v′ monomials):

(m, v) ∗t (m′, v′) = tD((m,v),(m′,v′))(mm′, vv′)

where :

D((m, v), (m′, v′)) =
∑

i∈I,l∈Z

2ui,l+ri
(m)vi,l(v

′) + 2vi,l+ri
(v)ui,l(m

′) + vi,l+ri
(v)ui,l(v

′) + ui,l+ri
(v)vi,l(v

′)

(see [N3] for the ADE-case and [H2, H3] for other cases).

Let Yt = Y ⊗Z Z[t±]. One can define Ki,t, Kt ⊂ Yt with deformed screening operators (see [H1, H3]).

Definition 7.1. We say that a Z-linear map χq,t : Rep→ Yt is a morphism of q, t-characters if :

1) For M a Rep-monomial define m =
∏

i∈I,l∈Z

(Yi,l)
xi,l(M) ∈ B. We have :

χq,t(M) = m +
∑

m′<m

am′(t)m′ (where am′(t) ∈ Z[t±])

2) The image of χq,t is contained in Kt.

3) Let M1, M2 be Rep-monomials. If max{l/
∑
i∈I

xi,l(M1) > 0} ≤ min{l/
∑
i∈I

xi,l(M2) > 0} then :

(M1M2, (M1M2)
−1χq,t(M1M2)) = (M1, M

−1
1 χq,t(M1)) ∗t (M2, M

−1
2 χq,t(M2))

Those properties are generalizations of the axioms that Nakajima [N3] defined for the ADE-case.

Theorem 7.2. ([N3, H2, H3]) For C such that i 6= j ⇒ Ci,jCj,i ≤ 3, there is a unique morphism of
q, t-characters.

This result (among others) was proved by Nakajima [N3] for C of type ADE. For C finite it is proved in
[H2], and for C such that i 6= j ⇒ Ci,jCj,i ≤ 3 in [H3] (it includes quantum affine and toroidal algebras

except A
(1)
1 , A

(2)
2 ). The existence of χq,t for symmetric toroidal type is also mentioned in [N5].

In [H2] we defined a t-deformed algorithm : for m ∈ B, if it is well-defined it gives an element Ft(m) ∈ Kt

such that m is the unique dominant monomial of Ft(m) (an algorithm was also used by Nakajima in the
ADE-case in [N2]). If we set t = 1 we get the classical algorithm. It follows from theorem 7.2 that the
t-deformed algorithm is well defined if i 6= j ⇒ Ci,jCj,i ≤ 3. We proved in [H2] that if the t-deformed
algorithm is well-defined, for i ∈ I, j ∈ I, l ∈ Z : Ft(Yi,l)Ft(Yj,l) = Ft(Yj,l)Ft(Yi,l).

Note that χq,t is injective and we have (see [H2]):

(1) χq,t(
∏

i∈I,l∈Z

X
xi,l

i,l ) =

→∏

l∈Z

∏

i∈I

Ft(Yi,l)
xi,l = ...(

∏

i∈I

Ft(Yi,l−1)
xi,l−1)(

∏

i∈I

Ft(Yi,l)
xi,l)(

∏

i∈I

Ft(Yi,l+1)
xi,l+1)...
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7.2. Technical complement.

Proposition 7.3. (i) Let m ∈ Bj such that for all l ∈ Z, uj,l(m) ≤ 1. Then Fi,t(m) = Fi(m) = Li(m)
and all coefficients are equal to 1.

(ii) Let i ∈ I such that all m ∈ D(Yi,L) satisfies : for j ∈ I, if m ∈ Bj then ∀l ∈ Z, uj,l(m) ≤ 1. Then
Ft(Yi,L) = F (Yi,L) = L(Yi,L) ∈ Yt is in Kt and all coefficients are equal to 1.

Proof: (i) Direct consequence of the lemma 4.13 of [H2].

(ii) Let j be in I and consider the decomposition of proposition 3.9 :

L(Yi,L) =
∑

m′∈Bj∩D(Yi,L)

λj(m
′)Lj(m

′)

But it follows from (i) that m′ ∈ Bj ∩D(Yi,L) implies that Lj(m
′) = Fj,t(m

′). And so:

L(Yi,l) =
∑

m′∈Bj∩D(Yi,L)

λj(m
′)Fj,t(m

′) ∈ Kj,t

So L(Yi,L) ∈ Kt and Ft(Yi,L) = L(Yi,L) = F (Yi,l). �

7.3. New results for q, t-characters. It follows also from theorem 3.5 and proposition 7.3 :

Proposition 7.4. Let g be of type An (n ≥ 1), A
(1)
l (l ≥ 2), Bn (n ≥ 2) or Cn (n ≥ 2). For i ∈ I, a ∈ C∗,

we have χq,t(Vi(a)) = χq(Vi(a)) and all coefficients are equal to 1.

We prove a conjecture of [H2]:

Theorem 7.5. Let Uq(ĝ) be a quantum affine algebra (C finite) and M be a standard module of Uq(ĝ).
The coefficients of χq,t(M) are in N[t±] and the monomials of χq,t(M) are the monomials of χq(M).

In particular the q, t-characters for quantum affine algebras have a finite number of monomials and this
result shows that the q, t-characters of [H2] can be considered as a t-deformation of q-characters for all
quantum affine algebras. In particular it is an argument for the existence of a geometric model behind
the q, t-characters in non simply-laced cases.

Proof: If follows from formula (1) in section 7.1 that it suffices to look at the Ft(Yi,l). We do it with a
case by case investigation :

the case ADE follows from the work of Nakajima [N3]

the case BC follows from theorem 3.5 and proposition 7.4 (ii)

the case G2 follows from an explicit computation in [H2]

the case F4 follows from an explicit computation on computer (see section 8). �

8. Appendix : explicit computations on computer for type F4

The proof of theorem 7.5 for type F4 is based on an explicit computation on computer. A com-
puter program written in C with Travis Schedler computes explicitly the q, t-characters of fundamental
representations.

For type F4 there are 4 fundamental representations (see [Bo] for the numbers on the Dynkin diagram) :
dim(V1(a)) = 26 (26 monomials), dim(V1(a)) = 299 (283 monomials), dim(V1(a)) = 1703 (1532 monomi-
als), dim(V1(a)) = 53 (53 monomials). We checked that the coefficients are in N[t±]. We give an explicit
list of terms of fundamental representations of type F4 whose coefficient is not 1 (the complete list of
monomials can be found on http://www.dma.ens.fr/∼dhernand/f4monomials.pdf). We can see that the
coefficient are all (t + t−1) ∈ N[t±]. They appear only in fundamental representations 2 and 3 :

Fundamental representation 2 :
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Monomial 70: (t−1 + t) Y1,10Y2,7Y
−1
2,9 Y −1

2,11Y4,6

Monomial 87: (t−1 + t) Y −1
1,12Y2,7Y

−1
2,9 Y4,6

Monomial 89: (t−1 + t) Y1,10Y2,7Y
−1
2,9 Y −1

2,11Y3,8Y
−1
4,10

Monomial 105: (t−1 + t) Y −1
1,12Y2,7Y

−1
2,9 Y3,8Y

−1
4,10

Monomial 109: (t−1 + t) Y1,10Y2,7Y
−1
3,12

Monomial 120: (t−1 + t) Y1,8Y1,10Y
−1
2,9 Y3,8Y

−1
3,12

Monomial 124: (t−1 + t) Y −1
1,12Y2,7Y2,11Y

−1
3,12

Monomial 142: (t−1 + t) Y2,7Y
−1
2,13

Monomial 143: (t−1 + t) Y1,8Y
−1
1,12Y

−1
2,9 Y2,11Y3,8Y

−1
3,12

Monomial 151: (t−1 + t) Y −1
1,10Y

−1
1,12Y2,11Y3,8Y

−1
3,12

Monomial 155: (t−1 + t) Y1,8Y
−1
2,9 Y −1

2,13Y3,8

Monomial 168: (t−1 + t) Y −1
1,10Y

−1
2,13Y3,8

Monomial 173: (t−1 + t) Y1,8Y2,11Y
−1
2,13Y

−1
3,12Y4,10

Monomial 188: (t−1 + t) Y −1
1,10Y2,9Y2,11Y

−1
2,13Y

−1
3,12Y4,10

Monomial 193: (t−1 + t) Y1,8Y2,11Y
−1
2,13Y

−1
4,14

Monomial 206: (t−1 + t) Y −1
1,10Y2,9Y2,11Y

−1
2,13Y

−1
4,14

Fundamental representation 3 :

Monomial 64: (t−1 + t) Y1,3Y1,9Y2,6Y
−1
2,8 Y −1

2,10Y4,5

Monomial 90: (t−1 + t) Y −1
1,5 Y1,9Y2,4Y2,6Y

−1
2,8 Y −1

2,10Y4,5

Monomial 91: (t−1 + t) Y3,5Y
−1
3,9 Y4,5

Monomial 93: (t−1 + t) Y1,3Y
−1
1,11Y2,6Y

−1
2,8 Y4,5

Monomial 96: (t−1 + t) Y1,3Y1,9Y2,6Y
−1
2,8 Y −1

2,10Y3,7Y
−1
4,9

Monomial 117: (t−1 + t) Y −1
1,5 Y −1

1,11Y2,4Y2,6Y
−1
2,8 Y4,5

Monomial 125: (t−1 + t) Y −1
1,5 Y1,9Y2,4Y2,6Y

−1
2,8 Y −1

2,10Y3,7Y
−1
4,9

Monomial 126: (t−1 + t) Y3,5Y3,7Y
−1
3,9 Y −1

4,9

Monomial 128: (t−1 + t) Y1,3Y
−1
1,11Y2,6Y

−1
2,8 Y3,7Y

−1
4,9

Monomial 138: (t−1 + t) Y1,3Y1,9Y2,6Y
−1
3,11

Monomial 152: (t−1 + t) Y −1
1,5 Y −1

1,11Y2,4Y2,6Y
−1
2,8 Y3,7Y

−1
4,9

Monomial 159: (t−1 + t) Y2,8Y2,10Y3,5Y
−1
3,9 Y −1

3,11

Monomial 162: (t−1 + t) Y1,3Y1,7Y1,9Y
−1
2,8 Y3,7Y

−1
3,11

Monomial 165: (t−1 + t) Y1,3Y
−1
1,11Y2,6Y2,10Y

−1
3,11

Monomial 166: (t−1 + t) Y −1
1,5 Y1,9Y2,4Y2,6Y

−1
3,11

Monomial 194: (t−1 + t) Y −1
1,5 Y −1

1,11Y2,4Y2,6Y2,10Y
−1
3,11

Monomial 208: (t−1 + t) Y −1
1,5 Y1,7Y1,9Y2,4Y

−1
2,8 Y3,7Y

−1
3,11

Monomial 209: (t−1 + t) Y1,11Y2,8Y
−1
2,12Y3,5Y

−1
3,9

Monomial 220: (t−1 + t) Y1,3Y2,6Y
−1
2,12

Monomial 221: (t−1 + t) Y1,3Y1,7Y
−1
1,11Y

−1
2,8 Y2,10Y3,7Y

−1
3,11

Monomial 237: (t−1 + t) Y1,9Y1,11Y
−1
2,10Y

−1
2,12Y3,5

Monomial 238: (t−1 + t) Y1,7Y1,9Y
−1
2,6 Y −1

2,8 Y3,5Y3,7Y
−1
3,11

Monomial 251: (t−1 + t) Y −1
1,5 Y2,4Y2,6Y

−1
2,12

Monomial 252: (t−1 + t) Y1,3Y
−1
1,9 Y −1

1,11Y2,10Y3,7Y
−1
3,11

Monomial 253: (t−1 + t) Y −1
1,5 Y1,7Y

−1
1,11Y2,4Y

−1
2,8 Y2,10Y3,7Y

−1
3,11

Monomial 257: (t−1 + t) Y1,3Y1,7Y
−1
2,8 Y −1

2,12Y3,7

Monomial 281: (t−1 + t) Y −1
1,13Y2,8Y3,5Y

−1
3,9

Monomial 289: (t−1 + t) Y −1
1,5 Y −1

1,9 Y −1
1,11Y2,4Y2,10Y3,7Y

−1
3,11

Monomial 294: (t−1 + t) Y1,7Y1,9Y3,7Y
−1
3,9 Y −1

3,11Y4,7
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Monomial 296: (t−1 + t) Y1,9Y1,11Y2,6Y2,8Y
−1
2,10Y

−1
2,12Y

−1
3,9 Y4,7

Monomial 298: (t−1 + t) Y1,3Y
−1
1,9 Y −1

2,12Y3,7

Monomial 300: (t−1 + t) Y −1
1,5 Y1,7Y2,4Y

−1
2,8 Y −1

2,12Y3,7

Monomial 303: (t−1 + t) Y1,7Y
−1
1,11Y

−1
2,6 Y −1

2,8 Y2,10Y3,5Y3,7Y
−1
3,11

Monomial 320: (t−1 + t) Y1,9Y
−1
1,13Y

−1
2,10Y3,5

Monomial 332: (t−1 + t) Y1,3Y1,7Y2,10Y
−1
2,12Y

−1
3,11Y4,9

Monomial 351: (t−1 + t) Y −1
1,5 Y −1

1,9 Y2,4Y
−1
2,12Y3,7

Monomial 353: (t−1 + t) Y1,7Y
−1
2,6 Y −1

2,8 Y −1
2,12Y3,5Y3,7

Monomial 359: (t−1 + t) Y −1
1,9 Y −1

1,11Y
−1
2,6 Y2,10Y3,5Y3,7Y

−1
3,11

Monomial 361: (t−1 + t) Y1,7Y
−1
1,11Y2,10Y3,7Y

−1
3,9 Y −1

3,11Y4,7

Monomial 362: (t−1 + t) Y −1
1,11Y

−1
1,13Y3,5

Monomial 368: (t−1 + t) Y1,7Y1,9Y3,7Y
−1
3,11Y

−1
4,11

Monomial 370: (t−1 + t) Y1,9Y1,11Y2,6Y2,8Y
−1
2,10Y

−1
2,12Y

−1
4,11

Monomial 382: (t−1 + t) Y1,3Y
−1
1,9 Y2,8Y2,10Y

−1
2,12Y

−1
3,11Y4,9

Monomial 384: (t−1 + t) Y −1
1,5 Y1,7Y2,4Y2,10Y

−1
2,12Y

−1
3,11Y4,9

Monomial 394: (t−1 + t) Y1,9Y
−1
1,13Y2,6Y2,8Y

−1
2,10Y

−1
3,9 Y4,7

Monomial 399: (t−1 + t) Y1,3Y1,7Y2,10Y
−1
2,12Y

−1
4,13

Monomial 414: (t−1 + t) Y −1
1,9 Y −1

2,6 Y −1
2,12Y3,5Y3,7

Monomial 422: (t−1 + t) Y −1
1,5 Y −1

1,9 Y2,4Y2,8Y2,10Y
−1
2,12Y

−1
3,11Y4,9

Monomial 428: (t−1 + t) Y −1
1,9 Y −1

1,11Y2,8Y2,10Y3,7Y
−1
3,9 Y −1

3,11Y4,7

Monomial 431: (t−1 + t) Y1,7Y
−1
1,11Y2,10Y3,7Y

−1
3,11Y

−1
4,11

Monomial 432: (t−1 + t) Y −1
1,11Y

−1
1,13Y2,6Y2,8Y

−1
3,9 Y4,7

Monomial 436: (t−1 + t) Y1,7Y
−1
2,6 Y2,10Y

−1
2,12Y3,5Y

−1
3,11Y4,9

Monomial 438: (t−1 + t) Y1,7Y
−1
2,12Y3,7Y

−1
3,9 Y4,7

Monomial 461: (t−1 + t) Y1,3Y
−1
1,9 Y2,8Y2,10Y

−1
2,12Y

−1
4,13

Monomial 463: (t−1 + t) Y −1
1,5 Y1,7Y2,4Y2,10Y

−1
2,12Y

−1
4,13

Monomial 469: (t−1 + t) Y1,9Y
−1
1,13Y2,6Y2,8Y

−1
2,10Y

−1
4,11

Monomial 495: (t−1 + t) Y −1
1,5 Y −1

1,9 Y2,4Y2,8Y2,10Y
−1
2,12Y

−1
4,13

Monomial 498: (t−1 + t) Y1,9Y
−1
1,11Y

−1
1,13Y2,6Y

−1
2,10Y4,7

Monomial 500: (t−1 + t) Y −1
1,9 Y2,8Y

−1
2,12Y3,7Y

−1
3,9 Y4,7

Monomial 502: (t−1 + t) Y1,7Y2,8Y2,10Y
−1
2,12Y

−1
3,9 Y −1

3,11Y4,7Y4,9

Monomial 505: (t−1 + t) Y −1
1,9 Y −1

2,6 Y2,8Y2,10Y
−1
2,12Y3,5Y

−1
3,11Y4,9

Monomial 512: (t−1 + t) Y −1
1,9 Y −1

1,11Y2,8Y2,10Y3,7Y
−1
3,11Y

−1
4,11

Monomial 514: (t−1 + t) Y −1
1,11Y

−1
1,13Y2,6Y2,8Y

−1
4,11

Monomial 526: (t−1 + t) Y1,7Y
−1
2,6 Y2,10Y

−1
2,12Y3,5Y

−1
4,13

Monomial 528: (t−1 + t) Y1,7Y
−1
2,12Y3,7Y

−1
4,11

Monomial 564: (t−1 + t) Y −1
2,10Y

−1
2,12Y3,7Y4,7

Monomial 575: (t−1 + t) Y1,7Y1,9Y
−1
1,11Y

−1
1,13Y

−1
2,8 Y −1

2,10Y3,7Y4,7

Monomial 577: (t−1 + t) Y −1
1,9 Y 2

2,8Y2,10Y
−1
2,12Y

−1
3,9 Y −1

3,11Y4,7Y4,9

Monomial 581: (t−1 + t) Y1,9Y
−1
1,11Y

−1
1,13Y2,6Y

−1
2,10Y3,9Y

−1
4,11

Monomial 583: (t−1 + t) Y −1
1,9 Y2,8Y

−1
2,12Y3,7Y

−1
4,11

Monomial 586: (t−1 + t) Y1,7Y2,8Y2,10Y
−1
2,12Y

−1
3,9 Y4,7Y

−1
4,13

Monomial 591: (t−1 + t) Y −1
1,9 Y −1

2,6 Y2,8Y2,10Y
−1
2,12Y3,5Y

−1
4,13

Monomial 622: (t−1 + t) Y1,7Y2,8Y2,10Y
−1
2,12Y

−1
3,11Y4,9Y

−1
4,11

Monomial 648: (t−1 + t) Y −1
2,10Y

−1
2,12Y3,7Y3,9Y

−1
4,11

Monomial 656: (t−1 + t) Y2,8Y
−1
2,12Y

−1
3,11Y4,7Y4,9
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Monomial 657: (t−1 + t) Y1,7Y1,9Y
−1
1,11Y

−1
1,13Y

−1
2,8 Y −1

2,10Y3,7Y3,9Y
−1
4,11

Monomial 666: (t−1 + t) Y1,7Y1,9Y
−1
1,11Y

−1
1,13Y

−1
3,11Y4,7Y4,9

Monomial 669: (t−1 + t) Y1,7Y2,8Y2,10Y
−1
2,12Y

−1
4,11Y

−1
4,13

Monomial 672: (t−1 + t) Y −1
1,9 Y 2

2,8Y2,10Y
−1
2,12Y

−1
3,9 Y4,7Y

−1
4,13

Monomial 694: (t−1 + t) Y1,9Y
−1
1,11Y

−1
1,13Y2,6Y2,12Y

−1
3,13

Monomial 696: (t−1 + t) Y −1
1,9 Y 2

2,8Y2,10Y
−1
2,12Y

−1
3,11Y4,9Y

−1
4,11

Monomial 729: (t−1 + t) Y1,11Y2,8Y
−1
2,10Y

−2
2,12Y4,7Y4,9

Monomial 755: (t−1 + t) Y −1
1,9 Y 2

2,8Y2,10Y
−1
2,12Y

−1
4,11Y

−1
4,13

Monomial 764: (t−1 + t) Y2,8Y
−1
2,12Y4,7Y

−1
4,13

Monomial 765: (t−1 + t) Y1,7Y1,9Y
−1
1,11Y

−1
1,13Y4,7Y

−1
4,13

Monomial 767: (t−1 + t) Y2,8Y
−1
2,12Y3,9Y

−1
3,11Y4,9Y

−1
4,11

Monomial 768: (t−1 + t) Y1,7Y1,9Y
−1
1,11Y

−1
1,13Y3,9Y

−1
3,11Y4,9Y

−1
4,11Y2,6Y2,8Y

−1
2,12Y

−1
2,14Y

−1
3,9 Y3,11

Monomial 770: (t−1 + t) Y1,9Y
−1
1,11Y2,6Y

−1
2,14

Monomial 771: (t−1 + t) Y1,7Y1,9Y
−1
1,11Y

−1
1,13Y

−1
2,8 Y2,12Y3,7Y

−1
3,13

Monomial 772: (t−1 + t) Y3,7Y
−1
3,13

Monomial 815: (t−1 + t) Y1,11Y2,8Y
−1
2,10Y

−2
2,12Y3,11Y4,7Y

−1
4,13

Monomial 818: (t−1 + t) Y1,11Y2,8Y
−1
2,10Y

−2
2,12Y3,9Y4,9Y

−1
4,11

Monomial 822: (t−1 + t) Y1,7Y1,9Y
−1
1,11Y

−1
2,8 Y −1

2,14Y3,7

Monomial 834: (t−1 + t) Y −1
1,13Y2,8Y

−1
2,10Y

−1
2,12Y4,7Y4,9

Monomial 840: (t−1 + t) Y2,8Y2,10Y
−1
3,11Y

−1
3,13Y4,9

Monomial 844: (t−1 + t) Y2,8Y
−1
2,12Y3,9Y

−1
4,11Y

−1
4,13

Monomial 845: (t−1 + t) Y1,7Y1,9Y
−1
1,11Y

−1
1,13Y2,10Y2,12Y

−1
3,11Y

−1
3,13Y4,9

Monomial 849: (t−1 + t) Y1,7Y1,9Y
−1
1,11Y

−1
1,13Y3,9Y

−1
4,11Y

−1
4,13

Monomial 907: (t−1 + t) Y1,11Y2,8Y
−1
2,10Y

−2
2,12Y3,9Y3,11Y

−1
4,11Y

−1
4,13

Monomial 911: (t−1 + t) Y1,11Y2,8Y
−1
2,10Y

−1
2,12Y2,14Y

−1
3,15Y4,7

Monomial 916: (t−1 + t) Y2,8Y2,10Y
−1
3,13Y

−1
4,13

Monomial 920: (t−1 + t) Y1,11Y2,8Y
−1
2,12Y

−1
3,13Y4,9

Monomial 928: (t−1 + t) Y −1
1,13Y2,8Y

−1
2,10Y

−1
2,12Y3,11Y4,7Y

−1
4,13

Monomial 930: (t−1 + t) Y −1
1,13Y2,8Y

−1
2,10Y

−1
2,12Y3,9Y4,9Y

−1
4,11

Monomial 950: (t−1 + t) Y1,7Y1,9Y
−1
1,11Y

−1
1,13Y2,10Y2,12Y

−1
3,13Y

−1
4,13

Monomial 953: (t−1 + t) Y1,7Y1,9Y
−1
1,11Y2,10Y

−1
2,14Y

−1
3,11Y4,9

Monomial 979: (t−1 + t) Y1,11Y1,15Y2,8Y
−1
2,10Y

−1
2,12Y

−1
2,16Y4,7

Monomial 981: (t−1 + t) Y1,9Y1,11Y
−1
2,10Y

−1
2,12Y3,9Y

−1
3,13Y4,9

Monomial 998: (t−1 + t) Y −1
1,13Y2,8Y

−1
2,10Y2,14Y

−1
3,15Y4,7

Monomial 1001: (t−1 + t) Y −1
1,13Y2,8Y

−1
2,10Y

−1
2,12Y3,9Y3,11Y

−1
4,11Y

−1
4,13

Monomial 1005: (t−1 + t) Y1,11Y2,8Y
−1
2,12Y3,11Y

−1
3,13Y

−1
4,13

Monomial 1016: (t−1 + t) Y1,11Y2,8Y
−1
2,10Y

−1
2,12Y2,14Y3,9Y

−1
3,15Y

−1
4,11

Monomial 1017: (t−1 + t) Y1,7Y1,9Y
−1
2,12Y

−1
2,14Y4,9

Monomial 1026: (t−1 + t) Y −1
1,13Y2,8Y

−1
3,13Y4,9

Monomial 1044: (t−1 + t) Y1,7Y1,9Y
−1
1,11Y2,10Y

−1
2,14Y

−1
4,13

Monomial 1058: (t−1 + t) Y1,11Y1,15Y2,8Y
−1
2,10Y

−1
2,12Y

−1
2,16Y3,9Y

−1
4,11

Monomial 1060: (t−1 + t) Y1,9Y1,11Y
−1
2,10Y

−1
2,12Y3,9Y3,11Y

−1
3,13Y

−1
4,13

Monomial 1074: (t−1 + t) Y1,11Y
−1
1,17Y2,8Y

−1
2,10Y

−1
2,12Y4,7

Monomial 1075: (t−1 + t) Y −1
1,13Y1,15Y2,8Y

−1
2,10Y

−1
2,16Y4,7

Monomial 1076: (t−1 + t) Y1,7Y
−1
1,11Y2,10Y

−1
2,12Y

−1
2,14Y4,9

Monomial 1078: (t−1 + t) Y1,9Y
−1
1,13Y

−1
2,10Y3,9Y

−1
3,13Y4,9
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Monomial 1079: (t−1 + t) Y1,11Y2,8Y2,14Y
−1
3,13Y

−1
3,15

Monomial 1085: (t−1 + t) Y −1
1,13Y2,8Y3,11Y

−1
3,13Y

−1
4,13

Monomial 1096: (t−1 + t) Y −1
1,13Y2,8Y

−1
2,10Y2,14Y3,9Y

−1
3,15Y

−1
4,11

Monomial 1101: (t−1 + t) Y1,7Y1,9Y
−1
2,12Y

−1
2,14Y3,11Y

−1
4,13

Monomial 1123: (t−1 + t) Y −1
1,13Y

−1
1,17Y2,8Y

−1
2,10Y4,7

Monomial 1137: (t−1 + t) Y −1
1,9 Y −1

1,11Y2,8Y2,10Y
−1
2,12Y

−1
2,14Y4,9

Monomial 1138: (t−1 + t) Y −1
1,11Y

−1
1,13Y3,9Y

−1
3,13Y4,9

Monomial 1140: (t−1 + t) Y1,9Y1,11Y
−1
2,10Y2,14Y3,9Y

−1
3,13Y

−1
3,15

Monomial 1146: (t−1 + t) Y1,11Y1,15Y2,8Y
−1
2,16Y

−1
3,13

Monomial 1154: (t−1 + t) Y1,11Y
−1
1,17Y2,8Y

−1
2,10Y

−1
2,12Y3,9Y

−1
4,11

Monomial 1155: (t−1 + t) Y −1
1,13Y1,15Y2,8Y

−1
2,10Y

−1
2,16Y3,9Y

−1
4,11

Monomial 1156: (t−1 + t) Y1,7Y
−1
1,11Y2,10Y

−1
2,12Y

−1
2,14Y3,11Y

−1
4,13

Monomial 1158: (t−1 + t) Y1,9Y
−1
1,13Y

−1
2,10Y3,9Y3,11Y

−1
3,13Y

−1
4,13

Monomial 1160: (t−1 + t) Y −1
1,13Y2,8Y2,12Y2,14Y

−1
3,13Y

−1
3,15

Monomial 1177: (t−1 + t) Y1,7Y1,9Y
−1
3,15

Monomial 1191: (t−1 + t) Y1,9Y1,11Y1,15Y
−1
2,10Y

−1
2,16Y3,9Y

−1
3,13

Monomial 1193: (t−1 + t) Y −1
1,13Y

−1
1,17Y2,8Y

−1
2,10Y3,9Y

−1
4,11

Monomial 1204: (t−1 + t) Y −1
1,9 Y −1

1,11Y2,8Y2,10Y
−1
2,12Y

−1
2,14Y3,11Y

−1
4,13

Monomial 1205: (t−1 + t) Y −1
1,11Y

−1
1,13Y3,9Y3,11Y

−1
3,13Y

−1
4,13

Monomial 1209: (t−1 + t) Y1,9Y
−1
1,13Y

−1
2,10Y2,12Y2,14Y3,9Y

−1
3,13Y

−1
3,15

Monomial 1231: (t−1 + t) Y1,11Y
−1
1,17Y2,8Y

−1
3,13

Monomial 1232: (t−1 + t) Y −1
1,13Y1,15Y2,8Y2,12Y

−1
2,16Y

−1
3,13

Monomial 1239: (t−1 + t) Y1,7Y
−1
1,11Y2,10Y

−1
3,15

Monomial 1256: (t−1 + t) Y −1
1,13Y

−1
1,17Y2,8Y2,12Y

−1
3,13

Monomial 1263: (t−1 + t) Y −1
1,11Y

−1
1,13Y2,12Y2,14Y3,9Y

−1
3,13Y

−1
3,15

Monomial 1276: (t−1 + t) Y1,7Y
−1
2,12Y3,11Y

−1
3,15

Monomial 1277: (t−1 + t) Y1,15Y2,8Y
−1
2,14Y

−1
2,16

Monomial 1278: (t−1 + t) Y1,9Y
−1
1,13Y1,15Y

−1
2,10Y2,12Y

−1
2,16Y3,9Y

−1
3,13

Monomial 1284: (t−1 + t) Y1,9Y1,11Y
−1
1,17Y

−1
2,10Y3,9Y

−1
3,13

Monomial 1288: (t−1 + t) Y −1
1,9 Y −1

1,11Y2,8Y2,10Y
−1
3,15

Monomial 1305: (t−1 + t) Y1,9Y1,15Y
−1
2,10Y

−1
2,14Y

−1
2,16Y3,9

Monomial 1310: (t−1 + t) Y −1
1,17Y2,8Y

−1
2,14

Monomial 1311: (t−1 + t) Y1,9Y
−1
1,13Y

−1
1,17Y

−1
2,10Y2,12Y3,9Y

−1
3,13

Monomial 1312: (t−1 + t) Y −1
1,11Y

−1
1,13Y1,15Y2,12Y

−1
2,16Y3,9Y

−1
3,13

Monomial 1317: (t−1 + t) Y −1
1,9 Y2,8Y

−1
2,12Y3,11Y

−1
3,15

Monomial 1346: (t−1 + t) Y −1
1,11Y

−1
1,13Y

−1
1,17Y2,12Y3,9Y

−1
3,13

Monomial 1348: (t−1 + t) Y −1
1,11Y1,15Y

−1
2,14Y

−1
2,16Y3,9

Monomial 1349: (t−1 + t) Y −1
1,10Y

−1
1,12Y2,9Y2,11Y

−1
2,15

Monomial 1356: (t−1 + t) Y1,9Y
−1
1,17Y

−1
2,10Y

−1
2,14Y3,9

Monomial 1360: (t−1 + t) Y1,9Y1,15Y2,12Y
−1
2,14Y

−1
2,16Y

−1
3,13Y4,11

Monomial 1387: (t−1 + t) Y −1
1,11Y

−1
1,17Y

−1
2,14Y3,9

Monomial 1392: (t−1 + t) Y3,11Y
−1
3,13Y

−1
3,15Y4,11

Monomial 1394: (t−1 + t) Y −1
1,11Y1,15Y2,10Y2,12Y

−1
2,14Y

−1
2,16Y

−1
3,13Y4,11

Monomial 1397: (t−1 + t) Y1,9Y
−1
1,17Y2,12Y

−1
2,14Y

−1
3,13Y4,11

Monomial 1398: (t−1 + t) Y1,9Y1,15Y2,12Y
−1
2,14Y

−1
2,16Y

−1
4,15

Monomial 1424: (t−1 + t) Y −1
1,11Y

−1
1,17Y2,10Y2,12Y

−1
2,14Y

−1
3,13Y4,11
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Monomial 1431: (t−1 + t) Y3,11Y
−1
3,15Y

−1
4,15

Monomial 1433: (t−1 + t) Y −1
1,11Y1,15Y2,10Y2,12Y

−1
2,14Y

−1
2,16Y

−1
4,15

Monomial 1436: (t−1 + t) Y1,9Y
−1
1,17Y2,12Y

−1
2,14Y

−1
4,15

Monomial 1452: (t−1 + t) Y −1
1,11Y

−1
1,17Y2,10Y2,12Y

−1
2,14Y

−1
4,15
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