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Abstract. In these lectures we give an introduction to a�ne Kac-
Moody algebras, their representations, and applications of this the-
ory.
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1. Introduction

A�ne Kac-Moody algebras ĝ are in�nite dimensional analogs of
semi-simple Lie algebras g and have a central role both in Mathematics
(Modular forms, Geometric Langlands program...) and Mathematical
Physics (Conformal Field Theory...). These lectures are an introduction
to the theory of a�ne Kac-Moody algebras and their representations
with basic results and constructions to enter the theory.
We will �rst explain how ĝ appears naturally as a central extension

of the loop algebra of a semi-simple Lie algebra g. Then it is possible
to de�ne a system of Chevalley generators which gives a uni�ed point
of view on ĝ and g. The representation theory of ĝ is very rich. We
study two class of representations :
- the category O of representations : for example it contains simple

highest weight representations.
- the category of �nite dimensional representations : for example it

contains representations obtained by evaluation from �nite dimensional
representations of g.
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By construction ĝ has a central element. It allows to de�ne the
level of a simple representation. For example the critical level is of
particular importance. We will then study more advanced topics as
the fusion product inside the category of a �xed level and applications
to Knizhnik-Zamolodchikov equations.
Thus a�ne Kac-Moody algebras provide a perfect example where ab-

stract mathematical motivations (to build in�nite dimensional analogs
of semi-simple Lie algebras with analog properties) lead to objects
which are closely related to other �elds as Mathematical Physics.
In each section we give references where complete proofs can be read.

As there is a huge amount of very interesting books and articles on
a�ne Kac-Moody algebras, we listed only a few of them.
Acknowledgments : These are notes from lectures given at the

University of Aarhus (Center for the Topology and Quantization of
Moduli Spaces) in October 2006. The author would like to thank N.
Reshetikhin for the invitation and useful advices during the preparation
of these lectures, J.E. Andersen and E. Frenkel for useful references,
A. Feragen for indicating typos. He also would like to thank the au-
dience of the lectures for enthusiasm and many interesting questions,
and CTQM for the hospitality and excellent working conditions.

2. Quick review on semi-simple Lie algebras

In these lectures, all vectors spaces are over C.
We �rst recall results and constructions from the classical theory of

�nite dimensional semi-simple Lie algebras (they are the starting point
of the theory of a�ne Kac-Moody algebras).

2.1. de�.

De�nition 2.1. A Lie algebra g is a vector space with a bilinear map
[, ] : g× g→ g (called the bracket) satisfying for x, y, z ∈ g :

[x, y] = −[y, x],
[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 (Jacobi identity).

For example an algebra A with the bracket de�ned by [a, b] = ab−ba
is a Lie algebra.
For I, I′ subspaces of a Lie algebra g, we denote by [I, I′] the sub-

space of g generated by {[i, i′]|i ∈ I, i ∈ I′}.
A Lie subalgebra of a Lie algebra g is a subspace g′ ⊂ g satisfying

[g′, g′] ⊂ g′.
An ideal of a Lie algebra g is a subspace I ⊂ g satisfying [I, g] ⊂ g.

For I an ideal of g, I and g/I have an induced structure of a Lie
algebra.
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In the following we suppose that g is �nite dimensional.
For I ⊂ g an ideal, we de�ne a sequence of ideals (Di(I))i≥0 by

induction : we set D0(I) = I and for i ≥ 0 :

Di+1(I) = [Di(I), Di(I)].

(Di(I))i≥0 is called the derived series. I is said to be solvable if there
is i ≥ 0 such that Di(I) = {0}.

De�nition 2.2. A Lie algebra g is said to be semi-simple if {0} is the
unique solvable ideal of g.

Example : for n ≥ 2, consider :

sln = {M ∈Mn(C)|tr(M) = 0}.
It is a Lie subalgebra ofMn(C) (with the Lie algebra structure coming
from the algebra structure; note that sln is not a subalgebra ofMn(C)).
sln is semi-simple.

2.2. Representations. A Lie algebra morphism is a linear map which
preserves the bracket (ie. ρ([x, y]) = [ρ(x), ρ(y)]).

De�nition 2.3. A representation of g on a vector space V is a Lie
algebra morphism ρ : g→ End(V ).

The condition of the de�nition means :

ρ([x, y]) = ρ(x) ◦ ρ(y)− ρ(y) ◦ ρ(x).

One says also that V is a module of g or a g-module.
Examples : For a Lie algebra g and x ∈ g, Adx : g→ g is de�ned by

Adx(y) = [x, y] for y ∈ g. The linear map x 7→ Adx de�nes a structure
of g-module on g (called the adjoint representation). Indeed by the
Jacobi identity, we have for x, y, z ∈ g :

[Adx, Ady](z) = [x, [y, z]]− [y, [x, z]] = [[x, y], z] = Ad[x,y](z).

Cn is naturally a representation of sln+1 ⊂ End(Cn).
In the following for ρ : g → End(V ) a representation of g, for g ∈ g

and v ∈ V , we denote ρ(g)(x) = g.x.

De�nition 2.4. Let V be a representation of g.
A submodule V ′ of V is a subspace V ′ ⊂ V such that g.v′ ∈ V ′ for

all g ∈ g, v′ ∈ V ′.
V is said to be simple if the submodules of V are {0} and V .
V said to be semi-simple if V is a direct sum of simple modules.

One of the most important result of the representation theory of
�nite dimensional semi-simple Lie algebras is :
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Theorem 2.5. A �nite dimensional representation of a �nite dimen-
sional semi-simple Lie algebra is semi-simple.

2.3. Presentation. A semi-simple Lie algebra has a presentation in
terms of Chevalley generators.
We start with a Cartan matrix (Ci,j)1≤i,j≤n satisfying

Ci,j ∈ Z , Ci,i = 2 , (i 6= j ⇒ Ci,j ≤ 0) , (Ci,j = 0⇔ Cj,i = 0),

and all principal minors of C are strictly positive :

det((Ci,j)1≤i,j≤R) > 0 for 1 ≤ R ≤ n.

Then we consider generators (ei)1≤i≤n, (fi)1≤i≤n, (hi)1≤i≤n. The rela-
tions are :

[hi, hj] = 0,

[ei, fj] = δi,jhi,

[hi, ej] = Ci,jej,

[hi, fj] = −Ci,jfj,

(Adei
)1−Ci,j(ej) = 0 for i 6= j,

(Adfi
)1−Ci,j(fj) = 0 for i 6= j.

The two last relations are called Serre relations.

Example : Let e =

(
0 1
0 0

)
, f =

(
0 0
1 0

)
, h =

(
1 0
0 −1

)
. We have

sl2 = Ce ⊕ Cf ⊕ Ch, and we have the relations [e, f ] = h, [h, e] = 2e,
[h, f ] = −2f . So we get the above presentation of sl2 with the Cartan
matrix C = (2).

2.4. Finite dimensional simple representations. Let

h =
⊕

1≤i≤n

Chi ⊂ g.

It is a Lie subalgebra of g which commutative (that is to say [x, x′] = 0
for any x, x′ ∈ h). h is called a Cartan subalgebra of g. Let us de�ne

P = {ω ∈ h∗|ω(hi) ∈ Z,∀i ∈ {1, · · · , n}},
P+ = {ω ∈ P |ω(hi) ≥ 0,∀i ∈ {1, · · · , n}}.

For λ ∈ h∗, there exists a unique simple representation L(λ) of g such
that there is v ∈ L(λ)− {0} satisfying

hi.v = λ(hi)v , ei.v = 0 for i ∈ {1, · · · , n}.
λ is called the highest weight of L(λ). L(λ) is �nite dimensional if and
only if λ ∈ P+. Moreover all simple �nite dimensional representations
of g are of the form L(λ) for one λ ∈ P+.
For complements on this section, the reader may refer to [B, S].
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3. Affine Kac-Moody algebras

A natural problem is to generalize the theory of �nite dimensional
semi-simple Lie algebras to in�nite dimensional Lie algebras. A class
of in�nite dimensional Lie algebras called a�ne Kac-Moody algebra is
of particular importance for this question.
First let us explain the natural geometric construction of a�ne Kac-

Moody as central of extension of loop algebras of semi-simple Lie alge-
bras.
We recall that a central element c ∈ g of a Lie algebra g satis�es by

de�nition [c, g] = 0 for any g ∈ g.

3.1. Loop algebras. Let L = C[t±1] be the algebra of Laurent poly-
nomials. Consider a �nite dimensional semi-simple Lie algebra g.

De�nition 3.1. The loop algebra of g is L(g) = L ⊗ g with the Lie
algebra structure de�ned by putting for P, Q ∈ L, x, y ∈ g :

[P ⊗ x, Q⊗ y] = PQ⊗ [x, y].

Remark : L(g) is the Lie algebra of polynomial maps from the unit
circle to g, that is why it is called the loop algebra of g.

3.2. Central extension. In this subsection we de�ne the a�ne Kac-
Moody g as a central extension of g. To do this construction, we �rst
need a 2-cocycle ν.
We remind that the Killing form of g is the symmetric bilinear map

K : g× g→ C de�ned by K(x, y) = Tr(AdxAdy).

Lemma 3.2. The Killing form K is Ad-invariant, that is to say for
x, y, z ∈ g :

K([x, y], z) = K(x, [y, z]).

Proof: We have :
Tr(Ad[x,y]Adz) = Tr([Adx, Ady]Adz)

= Tr(AdxAdyAdz)− Tr(AdyAdxAdz)
= Tr(Adx[Ay, Adz]) = Tr(AdxAd[y,z]). �
Remark : K is non degenerated (consequence of Cartan criterion).
In the following we use a normalized version of the Killing form

(x, y) = 1
h∨

K(x, y) where h∨ is the dual Coxeter number of g (for
example for g = sln, we have h∨ = n).
Let us de�ne (, )t : L(g)× L(g)→ L by

(Px,Qy)t = PQ× (x, y),

for P, Q ∈ L and x, y ∈ g.
The linear maps d

dt
: L(g)→ Lg and Res : L → C are de�ned by
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d
dt

(Px) = dP
dt

x (for P ∈ L and x ∈ g),
Res(tr) = δr,−1 (for r ∈ Z).

De�nition 3.3. The bilinear map ν : L(g)×L(g)→ C is de�ned by :

ν(f, g) = Res((
df

dt
, g)t).

Lemma 3.4. ν is a 2-cocycle on L(g), that is to say for f, g, h ∈ L(g),

ν(f, g) = −ν(g, f),

ν([f, g], h) + ν([g, h], f) + ν([h, f ], g) = 0.

Proof: For P, Q ∈ L and x, y ∈ g,

ν(x⊗ P, y ⊗Q) + ν(y ⊗Q, x⊗ P )

= (x, y)Res(
dP

dt
Q + P

dQ

dt
) = (x, y)Res(

d(PQ)

dt
) = 0,

and for P, Q, R ∈ L, x, y, z ∈ g :
ν([P⊗x, Q⊗y], R⊗z)+ν([Q⊗y, R⊗z], P⊗x)+ν([R⊗z, P⊗x], Q⊗y)

= ([x, y], z)Res(d(PQ)R
dt

) + ([y, z], x)Res(d(QR)P
dt

) + ([z, x], y)Res(d(RP )Q
dt

)

= ([x, y], z)Res(d(PQ)R
dt

+ d(QR)P
dt

+ d(RP )Q
dt

)

= ([x, y], z)Res(d(PQR)
dt

) = 0. �

De�nition 3.5. The a�ne Kac-Moody algebra is ĝ = L(g)⊕Cc where
c is an additional formal central element and the Lie algebra structure
is de�ned by (f, g ∈ L(g)) :

[f, g] = [f, g]L(g) + ν(f, g)c,

where [f, g]L(g) is the bracket in L(g).

The skew symmetry for ĝ is a consequence of the �rst property of
Lemma 3.4, and the Jabobi identity for ĝ is a consequence of the Jacobi
identity for L(g) and the second property of Lemma 3.4.

3.3. Chevalley generators. In this subsection we give a more alge-
braic presentation of ĝ which allows to have a uni�ed point of view
on �nite dimensional semi-simple Lie algebras and a�ne Kac-Moody
algebras. This is an indication that a�ne Kac-Moody algebras are the
natural generalizations of �nite dimensional semi-simple Lie algebras
and so it is also a motivation for the de�nition of a�ne Kac-Moody
algebras.

Theorem 3.6. ĝ can be presented by generators (Ei)0≤i≤n, (Fi)0≤i≤n,
(Hi)0≤i≤n, and relations :

[Hi, Hj] = 0,
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[Ei, Fj] = δi,jHi,

[Hi, Ej] = Ci,jEj,

[Hi, Fj] = −Ci,jFj,

(AdEi
)1−Ci,j(Ej) = 0 for i 6= j,

(AdFi
)1−Ci,j(Fj) = 0 for i 6= j,

where C = (Ci,j)0≤i,j≤n is an a�ne Cartan matrix, that it to say Ci,j ∈
Z, Ci,i = 2, (i 6= j ⇒ Ci,j ≤ 0), (Ci,j = 0 ⇔ Cj,i = 0), all proper
principal minors are strictly positive

det((Ci,j)0≤i,j≤R) > 0 for 0 ≤ R ≤ n− 1,

and det(C) = 0.

Moreover we can choose the labeling {0, · · · , n} so that the subalge-
bra generated by the Ei, Fi, Hi (1 ≤ i ≤ n) is isomorphic to g, that is
to say (Ci,j)1≤i,j≤n is the Cartan matrix of g.
Let us give the general idea of the construction of the Chevalley

generators of ĝ. Let ei, fi, hi (1 ≤ i ≤ n) be Chevalley generators of g.
For i ∈ {1, · · · , n}, we set

Ei = 1⊗ ei.

The point is to de�ne E0, F0 and H0. Consider the following decom-
position of g :

g = h⊕
⊕
α∈∆

gα,

where for α ∈ h∗,

gα = {x ∈ g|[h, x] = α(x)x, ∀h ∈ h},
and ∆ = {α ∈ h∗ − {0}|gα 6= {0}} (it is called the set of roots). For
example we have ei ∈ gαi

, fi ∈ g−αi
where αi is de�ned by αi(Hj) =

Ci,j. By classical results, we have dim(gα) = 1 for α ∈ ∆, and there
is a unique θ ∈ ∆ such that θ + αi /∈ ∆ ∪ {0} for i ∈ {1, · · · , n}. θ is
called the longest root of g.
Consider ω the linear involution of g de�ned by ω(ei) = −fi, ω(fi) =
−ei, ω(hi) = −hi. Consider a bilinear form (, ) : h∗ × h∗ → C de�ned
by (αi, αj) = Ci,j/εi where the εi are positive integers such that B =
diag(ε1, · · · , εn)C is symmetric (the εi are uniquely de�ned if we assume
that there are prime to each other).
Let us choose f0 ∈ gθ such that

(f0, ω(f0)) = − 2h∨

(θ, θ)
,
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Let us also de�ne :

e0 = −ω(f0) ∈ g−θ.

Then we de�ne

E0 = t⊗ e0 , F0 = t−1 ⊗ f0 , H0 = [E0, F0].

Example : for g = sl2 we have the Cartan matrix C = (2). Let us

check that the corresponding a�ne Cartan matrix for ŝl2 is

(
2 −2
−2 2

)
.

We have

ŝl2 = (L ⊗ e)⊕ (L ⊗ f)⊕ (L ⊗ h)⊕ Cc.

We follow the construction described above : we set E1 = 1⊗ e, F1 =
1 ⊗ f and H1 = 1 ⊗ h. We have h∨ = 2, ∆ = {α,−α} where α is
de�ned by α(h) = 2. The longest root is θ = α and so (sl2)θ = Ce. So
f0 is of the form f0 = λe where λ ∈ C∗. Let us compute λ. We have

(f0, ω(f0)) = λ2(e, f) = λ2K(e, f)/2.

To compute K(e, f) = Tr(AdeAdf ), we compute the action

(AdeAdf )(f) = 0 , (AdeAdf )(e) = 2e , (AdeAdf )(h) = 2h.

So K(e, f) = 4 and (f0, ω(f0)) = 2λ2. We have (α, α) = 2, and so by
de�nition we have (f0, ω(f0)) = −2, and λ2 = 1. Let us �x λ = 1. So
we have :

E0 = t⊗ f , F0 = t−1 ⊗ e.

We can also compute :

H0 = [E0, F0] = 1⊗ [f, e]+ν(t⊗f, t−1⊗e)c = −H1 +(f, e)c = 2c−H1.

Then we can check all relations of Chevalley generators. In particular
[H1, E0] = −2E0 and [H0, E1] = −2E1 give the Cartan matrix. We also
have the Serre relations, for example AdE1(E0) = 2t⊗h so Ad2

E1
(E0) =

−4t⊗ e and Ad3
E1

(E0) = 0.
For complements on this section, the reader may refer to [K1, M, K2].

4. Representations of Lie algebras

A�ne Kac-Moody algebras have a very rich representation theory
which have applications in several �elds of Mathematics and Mathe-
matics Physics. First let us explain how to construct analogs of highest
weight representations of semi-simple Lie algebras.
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4.1. Triangular decomposition of ĝ. g has the classical triangular
decomposition g = n+ ⊕ h ⊕ n− where n+ (resp. n−, h) is the Lie
subalgebra of g generated by the (ei)1≤i≤n (resp. (fi)1≤i≤n, (hi)1≤i≤n).
Consider the following subspaces of ĝ :

n̂+ = tC[t]⊗ (n− ⊕ h)⊕ C[t]⊗ n+,

n̂− = t−1C[t−1]⊗ (n+ ⊕ h)⊕ C[t−1]⊗ n−,

ĥ = (1⊗ h)⊕ Cc.

Lemma 4.1. n̂+, n̂−, ĥ are Lie subalgebras of ĝ, and we have the
triangular decomposition

ĝ = n̂+ ⊕ ĥ⊕ n̂−.

Note that we get the same decomposition by using Chevalley gen-
erators, that it to say n̂+ (resp. n̂−, ĥ) is the Lie subalgebra of ĝ
generated by the Ei (resp. the Fi, the Hi) for 0 ≤ i ≤ n. Indeed
for i ∈ {1, · · · , n}, we have Ei = 1 ⊗ ei ∈ n̂+, Fi = 1 ⊗ fi ∈ n̂− and

Hi = 1⊗ hi ∈ ĥ. Moreover

E0 = t⊗ e0 ∈ t⊗ n− ⊂ n̂+,

F0 = t−1 ⊗ f0 ∈ t−1 ⊗ n+ ⊂ n̂−,

H0 = [E0, F0] ∈ 1⊗ [e0, f0] + Cc ⊂ ĥ.

4.2. The extended algebra g̃. The simple roots αi ∈ ĥ∗ are de�ned
by αi(Hj) = Ci,j for 0 ≤ i, j ≤ n. As det(C) = 0, the simple roots are

not linearly independent. For example for ŝl2, we have α0 + α1 = 0.
For the following constructions, we need linearly independent simple
roots. That is why we consider the extended a�ne Lie algebra

g̃ = ĝ⊕ Cd,

with the additional derivation element d. We extend the Lie algebra
structure of ĝ to g̃ by the relations

[d, P (t)⊗ x] = t
dP (t)

dt
⊗ x , [d, c] = 0,

for P (t) ∈ L and x ∈ g. We have the new Cartan subalgebra h̃ = ĥ⊗Cd.
It is a commutative Lie subalgebra of g̃ of dimension n + 2. We have
the corresponding triangular decomposition :

g̃ = n̂+ ⊕ h̃⊕ n̂−.

Let us de�ne the new simple roots αi ∈ h̃∗ for i ∈ {0, · · · , n}. The

action of αi on ĥ has already been de�ned, and so we have to specify
the αi(d). The condition that leads to the computation is that the Ei
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should be of weight αi for the adjoint representation, that is to say
[H, Ei] = αi(H)Ei for any H ∈ h̃∗. In particular we get for i 6= 0,
αi(d)Ei = [d, 1⊗ ei] = 0 and so αi(d) = 0. We also get

α0(d)E0 = [d, t⊗ e0] = t⊗ e0 = E0,

and so α0(d) = 1.

4.3. Category O of representations.

De�nition 4.2. A module V of g̃ is said to be h̃-diagonalizable if we
have a decomposition V =

⊕
λ∈h̃∗ Vλ where for λ ∈ h̃∗ :

Vλ = {v ∈ V |h.v = λ(h)v, ∀h ∈ h̃}.

Vλ is called the weight space of weight λ of V . The set of weight of
V is

wt(V ) = {λ ∈ h̃∗|Vλ 6= {0}}.
We de�ne a partial ordering � on h̃∗ by

λ � µ⇔ µ = λ +
∑

0≤i≤n

miαi,

where mi ∈ Z, mi ≥ 0.
For λ ∈ h̃∗, we set D(λ) = {µ ∈ h̃∗|µ � λ}.

De�nition 4.3. The category O is the category of g̃-modules V satis-
fying :
1) V is h̃-diagonalizable,
2) the weight spaces of V are �nite-dimensional,

3) there is a �nite number of λ1, · · · , λs ∈ h̃∗ such that

wt(V ) ⊂
⋃

1≤i≤s

D(λi).

The category O is stable by submodules and quotients.
For V1, V2 representations of g̃, we can de�ne a structure of g̃-module

on V1 ⊗ V2, by using the coproduct ∆ : g̃→ g̃⊗ g̃ :

∆(g) = g ⊗ 1 + 1⊗ g for g ∈ g̃.

Proposition 4.4. If V1, V2 are modules in the category O, V1⊕V2 and
V1 ⊗ V2 are in the category O.

The result follows from the following observations : for λ ∈ h̃∗, we
have

(V1 ⊕ V2)λ = (V1)λ ⊕ (V2)λ,

(V1 ⊗ V2)λ =
⊕
µ∈h̃∗

(V1)µ ⊗ (V2)λ−µ,
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D(λ) + D(λ′) = D(λ + λ′) for λ, λ′ ∈ h̃∗.

4.4. Verma modules and simple highest weight modules. In this
subsection we study important examples of modules in the category O.
Let U(ĝ) be the enveloping algebra of ĝ : it is de�ned by generators

Ei, Fi, Hi (where 0 ≤ i ≤ n), and the same relations than ĝ described
in Theorem 3.6 where [a, b] means ab− ba. One can de�ne in the same
way U(g̃).

For λ ∈ h̃∗, let

J(λ) = U(g̃)n̂+ +
∑
h∈h̃∗

U(g̃)(h− λ(h)) ⊂ U(g̃).

As it is a left ideal of U(g̃), M(λ) = U(g̃)/J(λ) has a natural struc-
ture of a U(g̃)-module by left multiplication. M(λ) is called a Verma
module.

Proposition 4.5. M(λ) is in the category O and has a unique maximal
proper submodule N(λ).

Proof: We have wt(M(λ)) ⊂ D(λ) and for µ = λ −
∑

i=0···n miαi ∈
D(λ) (where mi ≥ 0) and m =

∑
0≤i≤n mi we have

(M(λ))µ ⊂
∑

(i1,··· ,im)∈{0,··· ,n}m

CFi1 · · ·Fim .

Note that (M(λ))λ = C.1 is of dimension 1 and that M(λ) is generated
by (M(λ))λ. In particular a proper submodule N of M(λ) satis�es
Nλ = {0}. In particular the sum Nmax of all proper submodules of
M(λ) satis�es (Nmax)λ = 0 and so is proper. This gives the existence
and unicity of the maximal proper submodule of M(λ) : N(λ) = Nmax.

�
As a consequence of the proposition, M(λ) has a unique simple quo-

tient

L(λ) = M(λ)/N(λ).

Proposition 4.6. L(λ) is in the category O and all simple modules of
the category O are of the form L(λ) for a certain λ.

Proof: L(λ) is inO as a quotient of a module inO. Consider L a simple
module in O and let λ maximal for � in wt(λ) (it exists by property
3) of de�nition 4.3). Let v ∈ Lλ − {0}. Then we have n̂+.v = {0} and
so L = U(g̃).v is a quotient of M(λ). As L is simple, this quotient is
isomorphic to L(λ). �
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4.5. Characters and integrable representations. The character
of a module V in O is by de�nition

χ(V ) =
∑
λ∈h̃∗

dim(Vλ)e(λ),

where the e(λ) are formal elements.
In general a representation V in O has no composition series

V0 = V ⊃ V1 ⊃ V2 ⊃ · · ·
where Vi/Vi+1 is simple for i ≥ 0. But we have the following "replace-
ment" :

Lemma 4.7. For V a representation in O and λ ∈ h̃∗, there are sub-
modules {0} = V0 ⊂ V1 ⊂ · · ·Vt−1 ⊂ Vt = V such that for 1 ≤ i ≤ t,
Vi/Vi−1 ' L(λi) for an λi � λ, or (Vi/Vi−1)µ = {0} for all µ � λ.

This is proved by induction on
∑

µ�λ dim(Vµ). As a consequence of
this result, for V in O the character χ(V ) of V is a sum of characters
of simple representations in O.
In general L(λ) is not �nite dimensional : the notion of �nite dimen-

sional representations has to be replaced by the notion of integrable
representations in the category O.
De�nition 4.8. A representation V of g̃ is said to be integrable if
i) V is h̃-diagonalizable,

ii) for λ ∈ h̃∗, dim(Vλ) <∞,
iii) for all λ ∈ wt(V ), for all i ∈ {0, · · · , n}, there is M ≥ 0 such

that for m ≥M , λ + mαi /∈ wt(V ) and λ−mαi /∈ wt(V ).

The character of the simple integrable representations in the category
O satisfy remarkable combinatorial identities (related to MacDonald
identities).

4.6. Evaluation representations. Let a ∈ C∗. For V a �nite dimen-
sional representation of g, one de�nes a structure of ĝ-modules on V
(v ∈ V , x ∈ g, P (t) ∈ L) :

(P (t)x).v = P (a)x.v , c.v = 0.

This module is denoted by V (a) and is called an evaluation represen-
tation (as we evaluate P (t) at a). Note that in general the structure
can not be extended to a representation of g̃.
Example : for g = sl2 and m ≥ 0, consider Vm the m+1 simple �nite

dimensional representation of sl2. Let a ∈ C∗. Then the ŝl2-module
Vm(a) is de�ned by :

Vm(a) = Cv0 ⊕ Cv1 ⊕ · · · ⊕ Cvm,
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(Ktr).vj = ar(m− 2j)vj,

(Etr).vj = ar(m− j + 1)vj−1,

(Ftr).vj = ar(j + 1)vj+1,

c.vj = 0,

where we denote v−1 = vm+1 = 0.

We can see that Vm(a) is ĥ-diagonalizable (the vj are weight vectors).
However it is not an highest weight representation (that is to say it is
not generated by a weight vector v satisfying n̂+.v = {0}) as we have

E0.v0 = (t⊗ f)v0 = av1 6= 0.

To understand there representations from a di�erent "highest weight"
point of view, we have to use the second triangular decomposition of ĝ
:

ĝ = Ln+ ⊕ (Lh⊕ Cc)⊕ Ln−.

Note that the new Cartan subalgebra Lh⊕ Cc is in�nite dimensional,
and so the corresponding theory has major di�erences with the usual
one. For example the notion of "highest weight" has to be replaced
by series of complex numbers corresponding to the eigenvalues of the
(tr ⊗Hi)1≤i≤n,r∈Z.
Let us look at a similar construction of in�nite dimensional "vertex"

representations. Let us consider the algebra g̃′ which is de�ned exactly
as g̃, except that we use C((t)) instead of L. We can de�ne in the same
way the category O, the simple highest weight representations and the
level for g̃′. For V a �nite dimensional representation of g we can de�ne
a structure of g̃′-module on V ((z)) = C((z)) ⊗ V by (v ∈ V , x ∈ g,
f(z), g(z) ∈ C((z))) :

(f(z)⊗ x).(g(z)⊗ v) = f(z)g(z)⊗ (x.v),

c.(g(z)⊗ v) = 0 , d.(g(z)⊗ v) = z
dg(z)

dz
⊗ v.

Analog representations can be considered for ĝ′ (analog of g̃′ for ĝ).

4.7. Level of representations. Let us recall the statement of the
well-known Schur lemma :

Lemma 4.9. A central element c of a Lie algebra acts as a scalar on
a simple �nite dimensional representation L.

Proof: c has an eigenvalue λ, and Ker(c − λId) is a submodule of L,
so L = Ker(c− λId). �
The result holds for g̃-modules which are h̃-diagonalizable with �nite

dimensional weight spaces. In particular, c ∈ g̃ acts as a scalar k ∈ C
on a simple representation V of the category O.
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De�nition 4.10. A representation V is said to be of level k if c acts
as kId on V .

All simple representations of the category O have a level. The cate-
gory of modules of the category O of level k is denoted by Ok.
Note that one can de�ne the same notion for ĝ and then for example

the evaluations representations have level 0.
Note that λ ∈ h̃∗ is characterized by the image of λ in h∗, the level

λ(c) ∈ C and λ(d) ∈ C. So the data of an element of h̃∗ is equivalent
to the data of (λ, k, k′) where λ ∈ h∗ and k, k′ ∈ C. In particular the
notation Lλ,k,k′ is used for the simple modules of the category O.
The level k = −h∨ (where h∨ is the dual Coxeter number of g,

see above) is particular as the center of ĝ/ĝ(c − k) is large and the
representation theory changes drastically at this level (see below). This
level is called critical level. For example it is of particular importance
for application to Conformal Field Theory and Geometric Langlands
Program.
Unless the category O is stable by tensor product, the category Ok

is not stable by tensor product (except for k = 0). Indeed from ∆(c) =
c⊗ 1 + 1⊗ c we get that for V1, V2 representations respectively in Ok1 ,
Ok2 , the module V1 ⊗ V2 is in Ok1+k2 . This is one motivation to study
the fusion product in the next section.
For complements on this section, the reader may refer to [C, EFK,

Fr, K1, K2].

5. Fusion product, conformal blocks and

Knizhnik-Zamolodchikov equations

In this section we give a glimpse on examples of mode advanced
subjects related to representations of a�ne Kac-Moody algebras.
In the following "KZ" means Knizhnik-Zamolodchikov.

5.1. Construction of the fusion product.

De�nition 5.1. A representation V of ĝ′ is said to be smooth if for
all v ∈ V , there is N ≥ 0 such that for all g1, · · · , gN ∈ g :

(t⊗ g1)(t⊗ g2) · · · (t⊗ gN).v = 0.

(The vectors v with such a property are called smooth vectors.)

In this section we explain how to construct a smooth module in Ok

as a fusion of two smooth modules in Ok. In the following the level k
of considered representations of ĝ satis�es k /∈ −h∨ + Q≥0.
Let us give a "reason" why this restriction is required : let V be a

smooth module in Ok such that dim(
⋂

g∈g Ker(t ⊗ g)) < ∞. If k /∈
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−h∨ + Q then V is semi-simple and if k /∈ −h∨ + Q≥0 then V has a
�nite composition series.
However if we restrict to certains subcategories of smooth represen-

tations in Ok, an analog construction holds for any k (see [Fi]).
Consider V1, · · · , Vn smooth representations of ĝ′ of level k. Let

s1, · · · , sn+1 ∈ P1(C) distinct and C ′ = P1(C) − {s1, · · · , sn+1}. Con-
sider the algebra R of functions f : C ′ → C which are regular outside
the points s1, · · · , sn+1 and which are meromorphic at these points.
Let us de�ne the bilinear map {, } : R×R→ C by (f1, f2 ∈ R) :

{f1, f2} = Resn+1(f2d(f1))

where Resi is the residue of the expansion at the point si. By the
residue theorem we have also

(1) {f1, f2} = −
∑

i=1···n

Resi(f2d(f1)).

By using the standard properties of di�erentials, we have :

Lemma 5.2. {, } is skew symmetric

{f1, f2} = −{f2, f1}, for all f1, f2 ∈ R,

and is a cocycle, that is to say :

{f1f2, f3}+ {f2f3, f1}+ {f3f1, f2} = 0 for all f1, f2, f3 ∈ R.

Let Γ = (R ⊗ g)⊕ Cc the Lie algebra such that c is central and for
f, g ∈ R, x, y ∈ g :

[fx, gy] = fg[x, y] + {f, g}(x, y)c.

Consider n copies ĝ′1, · · · , ĝ′n of ĝ′ with respective central elements
c1, · · · , cn and a�ne parameter t− si (if si =∞, t− si means t−1). We
de�ne (ĝ′)n as the Lie algebra

(ĝ′)n = (ĝ′1 ⊕ · · · ⊕ ĝ′n)/(c1 = c2 = · · · = cn).

The image of the central elements ci in (ĝ′)n is denoted by c ∈ (ĝ′)n.

Lemma 5.3. We have two Lie algebra morphisms p1 : Γ → ĝ′, p2 :
Γ→ (ĝ′)n de�ned by (f ∈ R, x ∈ g) :

p1(fx) = (f)n+1x , p1(c) = c,

p2(fx) =
∑

1≤i≤n

(f)ix , p2(c) = −c,

where (f)i ∈ C((t− si)) is the expansion of f at si.

Now let W = V1 ⊗ V2 ⊗ · · · ⊗ Vn.
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Lemma 5.4. W has a structure of (ĝ′)n-module de�ned by :

gi.(v1, · · · , vN) = (v1, · · · , vi−1, givi, vi+1, · · · , vN) for gi ∈ ĝ′i,

c.(v1, · · · , vN) = k(v1, · · · , vN).

So W is also a Γ-module of level −k by Lemma 5.3.
For N ≥ 0, let WN be the subspace of W generated by the elements

of the form

(f1 ⊗ g1)((f2 ⊗ g2)(· · · (fN ⊗ gN)(w)) · · · ),

where w ∈ W , g1, · · · , gN ∈ g and f1, · · · , fN ∈ R have an expansion
in (t− sn+1)C[[(t− sn+1)]] at sn+1.
We get inclusions · · · ⊂ W2 ⊂ W1 ⊂ W and so a sequence of linear

maps

(W/W1)← (W/W2)← · · · .
The projective limit is denoted by Ŵ .
Let us de�ne a structure of ĝ′-module of level −k on Ŵ . An element

w ∈ Ŵ can be written in the form w = (w1, w2, · · · ) where wi ∈ W
and wi+1−wi ∈ Wi. Let f ∈ C((t− sn+1)) and g ∈ g. Consider fi ∈ R
such that f − (fi)n+1 ∈ (t − sn+1)

iC[[(t − sn+1)]] and q ≥ 0 such that
f ∈ (t− sn+1)

−qC[[(t− sn+1)]]. Then we de�ne :

(f ⊗ g)w = ((f1 ⊗ g)wq+1, (f2 ⊗ g)wq+2, · · · ),

where (fi ⊗ g)wq+i is given by the Γ-module structure on W .

Proposition 5.5. The above formula is well-de�ned and gives a struc-
ture of ĝ′-module on Ŵ .

By Lemma 5.3, Ŵ is also a Γ-module.
Remark : to construct a tensor category structure, it is necessary

to consider the ĝ-module Ŵ ω obtained from the ĝ-module Ŵ by the
twisting ω : ĝ → ĝ satisfying ω(tr ⊗ g) = (−t)−r ⊗ g, ω(c) = −c, and

then to consider the submodule of smooth vectors of Ŵ ω. We get a
smooth module of level k.
It is remarkable that the corresponding tensor category is related to

certain categories of representations of quantum groups.
For complements see [D2, KL1, KL2, CP].

5.2. Solutions of KZ equations - examples. In this section and
next section we suppose that k 6= h∨.
Suppose that we have W0, · · · , Wm highest weight representations of

g̃ of level k and whose restricted highest weights to h are respectively
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λ0, · · · , λm ∈ h∗. Let V1, · · · , Vm be simple �nite dimensional represen-
tations of g of corresponding highest weights µ1, · · · , µm. We consider
intertwining operators :

Ij(z) : Wj → Wj−1 ⊗ Vj((z)),

that is to say we have for r ∈ Z, g ∈ g

Ij(z) ◦ (tr ⊗ g) = ((tr ⊗ g)⊗ 1 + 1⊗ (zr ⊗ g)) ◦ Ij(z).

Whe have the existence of such non trivial operators when λj = λj−1 =
µj which are constructed by induction (for the partial ordering on
weights) on the weight spaces of Wj.
Let us de�ne the Casimir element. Let

Ψ : g⊗ g→ End(g),

(g1 ⊗ g2) 7→ (g 7→ (g1, g)g2).

We denote T = Ψ−1(Id) and T ′ the image of T by multiplication in
U(g). For (bk)k a basis of g and (b∗k)k the dual basis of g relatively to (, )
de�ned by (b∗k, bk′) = δk,k′ , we have T =

∑
k b∗k⊗bk and so T ′ =

∑
k b∗kbk.

Note that in general T ′ ∈ U(g) is not in g.
For λ a weight, let Cλ the scalar corresponding to the action of T ′

on the simple g-module of highest weight λ. The conformal weight of
λ is

h(λ) =
Cλ

2(k + h∨)
.

We replace Ij(z) by Ij(z)zh(µj)+h(λj)−h(λj−1).
Let us de�ne Tj,i the image of T in

Id⊗ · · · ⊗ Id⊗ End(Vj)⊗ Id⊗ · · · ⊗ Id⊗ End(Vi)⊗ Id⊗ · · · ⊗ Id,

that is to say for T =
∑

k b∗k⊗bk, b
∗
k acts on End(Vj) and bk on End(Vi).

Consider formal variables z1, · · · , zm and the map

f : Wm → W0 ⊗ V1((z1))⊗ V2((z2))⊗ · · · ⊗ Vm((zm)),

f =(IV1,W0,W1(z1)⊗ Id⊗(m−1)) ◦ · · ·
◦ (IVm−1,Wm−2,Wm−1(zm−1)⊗ Id) ◦ IVm,Wm−1,Wm(zm).

We can look at f as a matrix with coe�cients in

V1((z1))⊗ V2((z2))⊗ · · · ⊗ Vm((zm)).

Proposition 5.6. f satis�es the KZ equation :

∂f

∂zj

=
1

k + h∨

∑
i6=j

Tj,i

zj − zi

(f).
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Let us look at a simple explicit example of a solution. Let g = sl2.
We have h∨ = 2. As (e, f) = 2, (h, h) = 4 and (e, h) = (f, h) = (e, e) =
(f, f) = 0, we have

T =
1

2
(e⊗ f + f ⊗ e +

1

2
h⊗ h).

Let V1, · · · , VN be highest weight vectors representations, vi ∈ Vi an
highest weight vector and λi ≥ 1 the highest weight of Vi (here P+ is
identi�ed with N). Let

v = v1 ⊗ · · · ⊗ vn.

We have Ti,jv =
λiλj

4
v. Then

Ψ(z1, · · · , zN) =
∏
i<j

(zi − zj)
λiλj/(4(2+k))v,

is a solution of the KZ equation. Indeed ∂Ψ(z1,··· ,zN )
∂zj

is equal to

Ψ(z1, · · · , zN)(
∑
i<j

λiλj

4(2 + k)

1

−zi + zj

+
∑
i>j

λiλj

4(2 + k)

1

zj − zi

)

=
1

2 + k

∑
i6=j

Tj,i

zj − zi

(f).

For complements see [KZ, FR, EFK, CP].

5.3. Conformal blocks, space of coinvariants and KZ connec-

tion. The constructions of this section are closely related to the con-
struction of section 5.1. But the context is di�erent as we want to focus
on applications on KZ equations (some objects are de�ned both in this
section and in section 5.1).
The Wess-Zumino-Witten (WZW) model is a model of Conformal

Field Theory whose solutions are realized by a�ne Kac-Moody alge-
bras (Conformal �eld theory has important applications in string the-
ory, statistical mechanics, and condensed matter physics). The Hilbert
space of the WZW model is

⊗
λ∈P+ Lλ,k ⊗ Lλ,k. To study the WZW

model, important algebraic objects are the spaces of conformal blocks
de�ned bellow.
Consider s1, · · · , sn ∈ P1(C)−{∞} distinct. ĝ′i, Γ, (ĝ′)(n) are de�ned

as in section 5.1. We set sn+1 =∞
We consider (t− si) as the a�ne parameter. For M a representation

of g, M has a structure of (g[[(t− si)]]⊕C.c)-module such that tg[[(t−
si)]](M) = 0 and c acts as k on M . Then we consider the ĝ′-module

M̂ = Indĝ′

g[[(t−si)]]⊕CcM . As a vector space M̂ = U((t − si)
−1C[(t −
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si)
−1]⊗ g)⊗C M . For example if M is a Verma module of g then M̂ is

a Verma module of ĝ′ of level k. We denote this structure by (M̂)si
.

Let M1, · · · , Mn be representations of g.
⊗

i=1,··· ,n(M̂)si
is a Γ-

module. The space of conformal blocks C0
k(s1, · · · , sn, M1, · · · , Mn)

is the subspace of the space of linear functions

φ :
⊗

i=1,··· ,n

(M̂)si
→ C

which are invariant by the Lie subalgebra of Γ of maps which vanish
at ∞, that is to say :

φ(g.y) = 0 for all g ∈ Γ,g(∞) = 0.

This is called the Ward identity.

Lemma 5.7. The restriction to
⊗

i=1,··· ,n Mi de�nes an isomorphism

C0
k(s1, · · · , sn, M1, · · · , Mn) ' (

⊗
i=1,··· ,n

Mi)
∗.

Note that the notion of conformal blocks can also be de�ned as sub-
spaces of (

⊗
i=1,··· ,n Mi)

∗ : simple quotients of M̂i are considered instead

of M̂i and the invariance for the whole Γ is required, and so with this
de�nition we get a subspace of g-invariant elements of (

⊗
i=1,··· ,n Mi)

∗

(for instance see [U]).
The space of coinvariants is by de�nition the dual space of the space

of conformal blocks.
Now we suppose that (s1, · · · , sn) can vary in

Cn = Cn −
⋃
i6=j

(si = sj).

We consider C0
k(M1, · · · , Mn) the trivial bundle on Cn with �bers

(
⊗

i=1,··· ,n

Mi)
∗.

The following connection on C0
k(M1, · · · , Mn) arises naturally from

general results on conformal blocks :

5j =
∂

∂sj

− 1

k + h∨

∑
i6=j

Tj,i

sj − si

,

where the operators Ti,j are de�ned as in the previous section. This
connection is called the KZ connection.
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Lemma 5.8. The KZ connection is �at, the operators commute :

[5i,5j] = 0.

For complements see [FFR, Fr, FB, U].
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