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Abstract. The geometric small property (Borho-MacPherson [BM]) of pro-

jective morphisms implies a description of their singularities in terms of in-
tersection homology. In this paper we solve the smallness problem raised by

Nakajima [N8, N6] for certain resolutions of quiver varieties [N8] (analogs of
the Springer resolution) : for Kirillov-Reshetikhin modules of simply-laced

quantum affine algebras, we characterize explicitly the Drinfeld polynomials

corresponding to the small resolutions. We use an elimination theorem for
monomials of Frenkel-Reshetikhin q-characters that we establish for non nec-

essarily simply-laced quantum affine algebras. We also refine results of [He4]

and extend the main result to general simply-laced quantum affinizations, in
particular to quantum toröıdal algebras (double affine quantum algebras).
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PROBLÈME DE PETITESSE POUR LES ALGÈBRES AFFINES

QUANTIQUES ET LES VARIÉTÉS CARQUOIS

RÉSUMÉ. La propriété géométrique de petitesse (Borho-MacPherson [BM])
des morphismes projectifs implique une description de leurs singularités en ter-

mes d’homologie d’intersection. Dans cet article nous résolvons le problème

de petitesse posé par Nakajima [N8, N6] pour certaines résolutions de variétés
carquois [N8] (analogues de la résolution de Springer) : pour les modules de

Kirillov-Reshetikhin des algèbres affines quantiques simplement lacées, nous

caractérisons explicitement les polynômes de Drinfeld correspondant aux résolutions
petites. Nous utilisons un théorème d’élimination pour les monômes des

q-caractères de Frenkel-Reshetikhin, que nous établissons pour les algèbres

affines quantiques non nécessairement simplement lacées. Nous raffinons également
des résultats de [He4] et étendons le résultat principal aux affinisées quantiques

générales simplement lacées, en particulier aux algèbres toröıdales quantiques

(algèbres quantiques doublement affines).
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1. Introduction

Borho and MacPherson introduced [BM, Section 1.1] remarkable geometric prop-
erties (smallness and semi-smallness) for a proper algebraic map π : Z → X where
Z,X are irreducible complex algebraic varieties : for a finite stratification of X
into irreducible smooth subvarieties, π is said to be semi-small if the dimension of
the inverse image of a point in a stratum is at most half the codimension of the
stratum, and π is said to be small if moreover the equality holds only if the stratum
is dense. These properties does not depend of the stratification.
This geometric situation is of particular interest as the Beilinson-Bernstein-Deligne-
Gabber decomposition Theorem [BBD] is simplified [BM, Section 1.5] and provides
an elegant description of the singularities of such maps in terms of intersection
homology sheaves [GM1, GM2]. A fundamental example of a semi-small morphism
is given by the Springer resolution of the nilpotent cone of a complex simple Lie
algebra, and the corresponding partial resolutions [BM]. Nakajima [N1, N2] defined
important and intensively studied varieties called quiver varieties which depend on
a quiver Q. They come with a resolution which is semi-small [N2, Corollary 10.11]
for a finite Dynkin diagram (see [N5, Section 5.2]).
The graded version of quiver varieties are also of particular importance, for example
for their deep relations with representations of quantum affine algebras (see [N8];
the precise definition is reminded bellow). They also come with resolutions. A
natural problem addressed in the present paper is to study the small property of
these resolutions : in the present paper we address [N8, Conjecture 10.4] (see also
[N6]). Our study relies on the representation theory of quantum affine algebras.
Let us also give the representation theoretical context for our study.

In this paper q ∈ C∗ is fixed and is not a root of unity. Affine Kac-Moody
algebras ĝ are infinite dimensional analogs of semi-simple Lie algebras g, and have
remarkable applications in several branches of mathematics and physics (see [Ka]).
Their quantizations Uq(ĝ), called quantum affine algebras, have a very rich repre-
sentation theory which has been intensively studied (see [CP6, DM] for references).
In particular Drinfeld [Dr2] discovered that they can also be realized as quan-
tum affinization of usual quantum groups Uq(g). By using this new realization,
Chari-Pressley [CP6] classified their finite dimensional representations : they are
parametrized by Drinfeld polynomials (Pi(u))1≤i≤n where n is the rank of g and
Pi(u) ∈ C[u] satisfies Pi(0) = 1 .
A particular class of finite dimensional representations, called special modules, at-
tracted much attention as Frenkel-Mukhin [FM] proposed an algorithm which gives
their q-character (analogs of usual characters adapted to the Drinfeld presentation
of quantum affine algebras introduced by Frenkel-Reshetikhin [FR]). Let us give
some examples : for k > 0, i ∈ I, a ∈ C∗, the Kirillov-Reshetikhin module W

(i)
k,a is

the simple module with Drinfeld polynomials{
Pj(u) = 1 for j 6= i,

Pi(u) = (1− uaqk−1
i )(1− uaqk−3

i ) · · · (1− uaq1−k
i ).

(The qi are certain power of q, see section 3). The Vi(a) = W
(i)
1,a are called funda-

mental representations. The fundamental representations [FM], and the Kirillov-
Reshetikhin modules [N7, He4] are special modules (this is the crucial point for the
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proof of the Kirillov-Reshetikhin conjecture). The corresponding standard module

M(X(i)
k,a) = Vi(aq1−k

i )⊗ Vi(aq3−k
i )⊗ · · · ⊗ Vi(aqk−1

i )

is not special in general.
The breakthrough geometric approach of Nakajima [N3, N8] to q-characters of
representations of simply-laced quantum affine algebras via (graded) quiver varieties
led to remarkable advances in the description of finite dimensional representations
: for example this approach provides an algorithm [N8] which computes the q-
characters of any simple finite dimensional representations. Although in general
the algorithm is very complicated, in some situations it provides a powerful tool to
study these representations (for instance see [N7]).

From the geometric point of view, the natural notion of small modules appeared
in the following way : the small property of modules [N8] is the representation
theoretical interpretation of the smallness of certain resolutions of (graded) quiver
varieties mentioned above.
A small module is special (but the converse is false in general). The representation
theoretical interest of this notion is that all simple modules occurring in the Jordan-
Hölder series of a small module are special, and so can be described by using the
Frenkel-Mukhin algorithm.
A natural question is to characterize these small modules, and so the corresponding
small resolutions. In particular, Nakajima ([N8, Conjecture 10.4], [N6]) raised the
problem of characterizing the small standard modules corresponding to Kirillov-
Reshetikhin modules.

In this paper we solve this problem by giving explicitly the corresponding Drinfeld
polynomials.

The crucial point for our proof is an elimination theorem for monomials of q-
characters, that we establish by refining our results of [He4]. Indeed it is easy to
produce monomials that occur in a certain q-character (for example see remark 3.16
bellow). But in general it is not clear if a given monomial does not occur in a q-
character. The elimination theorem gives a criterion which implies that a monomial
can be eliminated from the q-character of a simple module. Beyond the main result
of the present paper (answer to the geometric smallness problem), we hope that
this elimination theorem will be useful for other open problems in representation
theory of quantum affine algebras. We already used it in a weak (non explicitly
stated) form to prove the Kirillov-Reshetikhin conjecture [He4]. Moreover it is used
in [He6] to study minimal affinizations of representations of quantum groups.
Let us state the main result of this paper. It can be stated in a simple compact way
by using the following elementary definitions (I = {1, · · · , n} is the set of vertices
of the Dynkin diagram of g) :

Definition 1.1. A node i ∈ {1, · · · , n} is said to be extremal (resp. special) if there
is a unique j ∈ I (resp. three distinct j, k, l ∈ I) such that Ci,j < 0 (resp. Ci,j < 0,
Ci,k < 0 and Ci,l < 0).

For i ∈ I, we denote by di the minimal d ≥ 1 such that there are distinct
i1, · · · , id ∈ I satisfying Cij ,ij+1 < 0 and id is special (if there are no special vertices,
we set di = +∞ for all i ∈ I).

For example for g of type A, we have di = +∞ for all i ∈ I.
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For illustration, examples are given on the following pictures :
Extremal node i :

i◦−−
j
◦−−◦ . . .

Special node i :
j
◦−−i◦−−k◦−−◦ . . .|◦ l

Distance d to a special node :
1◦−−0◦−−1◦−−2◦ . . .|◦ 1

Theorem 1.2. [Smallness problem] Let k > 0, i ∈ I, a ∈ C∗. Then M(X(i)
k,a) is

small if and only if k ≤ 2 or (i is extremal and k ≤ di + 1).

Remark : the condition is independent of the parameter a ∈ C∗.
In particular for g = sl2 or g = sl3, all M(X(i)

k,a) are small (it proves the cor-
responding [N8, Conjecture 10.4]). In general it gives an explicit criterion so that
the smallness holds. On the geometric side, it characterizes the small resolutions
mentioned above.
Besides the statement of Theorem 1.2 is also satisfied for all simply-laced quan-
tum affinizations Uq(ĝ) (g is an arbitrary simply-laced Kac-Moody algebra, not
necessarily semi-simple), in particular for quantum toröıdal algebras (double affine
quantum algebras).

The general idea of the proof is first to establish the result for type A by using
the elimination strategy of monomials explained above. We prove by induction
on the highest weight that representations in a certain class are special. Then an
argument allows to use the type A to prove the result for general types.

Let us describe the organization of this paper. In section 2 we explain the
geometric context of our results. In section 3 we give some background on finite
dimensional representations of quantum affine algebras and q-characters. In section
4 we recall from [N8] the definition of small modules and the geometric characteri-
zation (Theorem 4.3). We refine a Theorem of [N8] and give a more representation
theoretical characterization (Theorem 4.8). However this last result is not enough
to prove Theorem 1.2, and technical work is needed in the next sections. The first
point is the (representation theoretical) elimination Theorem (Theorem 5.1) which
is proved in section 5 : it gives a condition which implies that a monomial does not
appear in the q-character of a simple module. Additional technical results are also
proved in section 5 : in particular the notion of thin modules (with l-weight spaces
of dimension 1) is introduced and studied. In section 6, we complete the proof of
Theorem 1.2 : first type A is discussed, and then the general case is treated. The
proof of the result for general simply-laced quantum affinizations is also discussed.

Acknowledgments : The author is very grateful to Hiraku Nakajima for having
attracted his attention to the smallness problem, and to Olivier Schiffmann for
useful discussions.
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2. The geometric problem : small property and graded quiver
varieties

The geometric motivations and context of the results of the present paper have
been explained at the beginning of the introduction. In this section we develop this
discussion and define more precisely the involved geometric objects.

2.1. Small property. Let us recall the notion of semi-small and small morphism
maps in the sense of Borho-MacPherson [BM] for a proper algebraic map π : Z → X
where Z,X are irreducible complex algebraic varieties.
We consider a finite stratification X = tiXi into irreducible smooth subvarieties
such that π|π−1(Xi) is a topological fibration with base Xi and fiber π−1(xi) where
xi ∈ Xi is a distinguished base point.

Definition 2.1. [BM] π is said to be semi-small if for all i,

2dim(π−1(xi)) ≤ dim(X)− dim(Xi).

π is said to be small if π is semi-small and if

(2dim(π−1(xi)) = dim(X)− dim(Xi) ⇒ dim(X) = dim(Xi)).

In this case Xi is said to be relevant.

Note that stratification X = tiXi exists ([Ha, T]) and that the property of being
semi-small or small does not depend of the stratification.
When π is projective and Z is rationally smooth, this geometric situation is of
particular interest as there is a very elegant description [BM, Section 1.5] of the
singularities of such maps in terms of intersection homology sheaves [GM1, GM2]
: by using [BM, Section 1.7] the decomposition Theorem of Beilinson-Bernstein-
Deligne-Gabber [BBD], for u ∈ X, the cohomology groups Hi(π−1(u), Q) of the
fiber π−1(u) are given by explicit formula involving the intersection homology of
the closures Xi of strata such that u ∈ Xi. The formula [BM, Section 1.5]can be
expressed as a sum indexed by certain pairs (Xi, φ) where :

Xi is a relevant stratum,
u ∈ Xi,
φ is an irreducible representation of the fundamental group π1(Xi) of Xi,
φ occurs in the decomposition of the representation of π1(Xi) on

H2dim(π−1(xi))(π−1(xi), Q) by monodromy.
The case of small resolutions is remarkable, as the formula reduces to a single
summand (and in this case the result is essentially given in [GM2]).
A fundamental example of semi-small morphism is given by the Springer resolu-
tion T ∗B → N of the nilpotent cone of a complex simple Lie algebra, and the
corresponding partial resolutions [BM].
Nakajima [N1, N2] defined important and intensively studied varieties M(v, w),
M0(v, w) called quiver varieties which depend on a quiver Q (see [N5, S] for recent
reviews). They come with a resolution

π : M(v, w) → M0(v, w),

which gives an analog of the Springer resolution. It is proved in [N2, Corollary
10.11] for Q a finite Dynkin diagram type that π is semi-small (see [N5, Section
5.2]).
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The graded version of quiver varieties M•(V,W ),M•
0(V,W ) are also of particular

importance, for example for their deep relations with representations of quantum
affine algebras (see [N8]).

Let us recall the definition of these varieties :

2.2. (Graded) Quiver varieties. This section is essentially contained in [N8].
Fix a Dynkin diagram and an orientation on this diagram. Let H be the set

of oriented edges of the Dynkin diagram. For h ∈ H, in(h) (resp. out(h)) is the
incoming (resp. outgoing) vertex of h, and h is the same edge as h with the reverse
orientation. We fix q : H → {1,−1} such that q(h) = −q(h) for any h ∈ H.

Let V =
⊕

i∈I,a∈C∗ Vi,a (resp. W =
⊕

i∈I,a∈C∗ Wi,a) be a I × C∗-graded vector
spaces such that the Vi,a (resp. Wi,a) are finite dimensional and for at most finitely
many i× a, Vi,a 6= 0 (resp. Wi,a 6= 0). Consider for n ∈ Z :

L•(V,W )[n] =
⊕

i∈I,a∈C∗
Hom(Vi,a,Wi,aqn),

E•(V,W )[n] =
⊕

h∈H,a∈C∗
Hom(Vout(h),a,Win(h),aqn),

M•(V,W ) = E•(V, V )[−1] ⊕ L•(W,V )[−1] ⊕ L•(V,W )[−1].

The above three components for an element of M•(V,W ) are denoted by B, α, β
respectively, the Hom(Vout(h),a, Vin(h),aq−1)-component of B is denoted by Bh,a and
we denote by αi,a, βi,a the components of α, β. Consider the map

µ : M•(V,W ) → L•(V, V )[−2]

defined by
µi,a(B,α, β) =

∑
in(h)=i

q(h)Bh,aq−1Bh,a + αi,aq−1βi,a,

where µi,a is the (i, a)-component of µ. We have an action of GV =
∏

i,a GL(Vi,a)
on M•(V,W ) defined by

(B,α, β) 7→ g · (B,α, β) = (gin(h),aq−1Bh,ag−1
out(h),a, gi,aq−1αi,a, βi,ag−1

i,a ).

The subvariety µ−1(0) in M•(V,W ) is stable under the action.
Let us denote by µ−1(0)s the set of stable points (B,α, β) ∈ µ−1(0), that is to

say satisfying the condition : if an I × C∗-graded subspace S of V is B-invariant
and contained in Ker(β), then S = 0. The stability condition is invariant under the
action of GV , so we may say an orbit is stable or not.

Consider the following quotient spaces of µ−1(0):

M•
0(V,W ) = µ−1(0)//GV , M•(V,W ) = µ−1(0)s/GV .

Here // is the affine algebro-geometric quotient, the second one is the set-theoretical
quotient. By [N2, 3.18], there exists a natural projective morphism

π : M•(V,W ) → M•
0(V,W ).

For x ∈ µ−1(0)s, π(GV .x) is the unique closed orbit contained in the closure of
GV .x.
Here M•(V,W ) is non singular and π can be considered as an analog of the Springer
resolution.
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A natural problem addressed in the present paper is to study the small property
of such resolutions π : in the present paper we address [N8, Conjecture 10.4] (see
also [N6]).
As our proof relies on the representation theory of quantum affine algebras, let us
give some background about this subject :

3. Quantum affine algebras and their representations

In this section we recall definitions and results about the representation theory
of quantum affine algebras.

3.1. Cartan matrix and quantized Cartan matrix. Let C = (Ci,j)1≤i,j≤n be
a Cartan matrix of finite type. We denote I = {1, · · · , n}. C is symmetrizable :
there is a matrix D = diag(r1, · · · , rn) (ri ∈ N∗) such that B = DC is symmetric.
In particular if C is symmetric then D = In (simply-laced case).
We consider a realization (h,Π,Π∨) of C (see [B, Ka]): h is a n dimensional Q-vector
space, Π = {α1, · · · , αn} ⊂ h∗ (set of the simple roots) and Π∨ = {α∨1 , · · · , α∨n} ⊂ h
(set of simple coroots) are set such that for 1 ≤ i, j ≤ n, αj(α∨i ) = Ci,j . Let
Λ1, · · · ,Λn ∈ h∗ (resp. Λ∨1 , · · · ,Λ∨n ∈ h) be the the fundamental weights (resp.
coweights) : Λi(α∨j ) = αi(Λ∨j ) = δi,j where δi,j is 1 if i = j and 0 otherwise.
Denote P = {λ ∈ h∗|∀i ∈ I, λ(α∨i ) ∈ Z} the set of weights and P+ = {λ ∈ P |∀i ∈
I, λ(α∨i ) ≥ 0} the set of dominant weights. For example we have α1, · · · , αn ∈ P
and Λ1, · · · ,Λn ∈ P+. Denote Q =

⊕
i∈IZαi ⊂ P the root lattice and Q+ =∑

i∈INαi ⊂ Q. For λ, µ ∈ h∗, denote λ ≥ µ if λ − µ ∈ Q+. Let ν : h∗ → h linear
such that for all i ∈ I, we have ν(αi) = riα

∨
i . For λ, µ ∈ h∗, λ(ν(µ)) = µ(ν(λ)).

We use the enumeration of vertices of [Ka].
We denote qi = qri and for l ∈ Z, r ≥ 0,m ≥ m′ ≥ 0 we define in Z[q±] :

[l]q =
ql − q−l

q − q−1
, [r]q! = [r]q[r − 1]q · · · [1]q ,

[
m
m′

]
q

=
[m]q!

[m−m′]q![m′]q!
.

For a, b ∈ Z, we denote qa+bZ = {qa+br|r ∈ Z} and qa+bN = {qa+br|r ∈ Z, r ≥ 0}.
Let C(z) be the quantized Cartan matrix defined by (i 6= j ∈ I):

Ci,i(z) = zi + z−1
i , Ci,j(z) = [Ci,j ]z.

C(z) is invertible (see [FR]). We denote by C̃(z) the inverse matrix of C(z) and by
D(z) the diagonal matrix such that for i, j ∈ I, Di,j(z) = δi,j [ri]z.

3.2. Quantum algebras.

3.2.1. Quantum groups.

Definition 3.1. The quantum group Uq(g) is the C-algebra with generators k±1
i ,

x±i (i ∈ I) and relations:

kikj = kjki , kix
±
j = q

±Ci,j

i x±j ki,

[x+
i , x−j ] = δi,j

ki − k−1
i

qi − q−1
i

,

∑
r=0···1−Ci,j

(−1)r

[
1− Ci,j

r

]
qi

(x±i )1−Ci,j−rx±j (x±i )r = 0 (for i 6= j).
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This algebra was introduced independently by Drinfeld [Dr1] and Jimbo [J]. It is
remarkable that one can define a Hopf algebra structure on Uq(g) by :

∆(ki) = ki ⊗ ki,

∆(x+
i ) = x+

i ⊗ 1 + ki ⊗ x+
i , ∆(x−i ) = x−i ⊗ k−1

i + 1⊗ x−i ,

S(ki) = k−1
i , S(x+

i ) = −x+
i k−1

i , S(x−i ) = −kix
−
i ,

ε(ki) = 1 , ε(x+
i ) = ε(x−i ) = 0.

Let Uq(h) be the commutative subalgebra of Uq(g) generated by the k±1
i (i ∈ I).

For V a Uq(h)-module and ω ∈ P we denote by Vω the weight space of weight ω :

Vω = {v ∈ V |∀i ∈ I, ki.v = q
ω(α∨i )
i v}.

In particular we have x±i .Vω ⊂ Vω±αi . We say that V is Uq(h)-diagonalizable if
V =

⊕
ω∈P Vω (in particular V is of type 1).

3.2.2. Quantum loop algebras. We will use the second realization (Drinfeld real-
ization) of the quantum loop algebra Uq(Lg) (subquotient of the quantum affine
algebra Uq(ĝ)) :

Definition 3.2. Uq(Lg) is the algebra with generators x±i,r (i ∈ I, r ∈ Z), k±1
i

(i ∈ I), hi,m (i ∈ I,m ∈ Z − {0}) and the following relations (i, j ∈ I, r, r′ ∈
Z,m, m′ ∈ Z− {0}):

[ki, kj ] = [ki, hj,m] = [hi,m, hj,m′ ] = 0,

kix
±
j,r = q

±Ci,j

i x±j,rki,

[hi,m, x±j,r] = ± 1
m

[mBi,j ]qx±j,m+r,

[x+
i,r, x

−
j,r′ ] = δi,j

φ+
i,r+r′ − φ−i,r+r′

qi − q−1
i

,

x±i,r+1x
±
j,r′ − q±Bi,j x±j,r′x

±
i,r+1 = q±Bi,j x±i,rx

±
j,r′+1 − x±j,r′+1x

±
i,r,∑

π∈Σs

∑
k=0···s

(−1)k

[
s
k

]
qi

x±i,rπ(1)
· · ·x±i,rπ(k)

x±j,r′x
±
i,rπ(k+1)

· · ·x±i,rπ(s)
= 0,

where the last relation holds for all i 6= j, s = 1 − Ci,j, all sequences of inte-
gers r1, · · · , rs. Σs is the symmetric group on s letters. For i ∈ I and m ∈ Z,
φ±i,m ∈ Uq(Lg) is determined by the formal power series in Uq(Lg)[[z]] (resp. in
Uq(Lg)[[z−1]]):∑

m≥0
φ±i,±mz±m = k±i exp(±(q − q−1)

∑
m′≥1

hi,±m′z±m′
),

and φ±i,∓m = 0 for m > 0.

Uq(Lg) has a Hopf algebra structure (from the Hopf algebra structure of Uq(ĝ)).
For J ⊂ I we denote by Uq(LgJ) ⊂ Uq(Lg) the subalgebra generated by the x±i,m,
hi,m, k±1

i for i ∈ J . Uq(LgJ) is a quantum loop algebra associated to the semi-
simple Lie algebra gJ of Cartan matrix (Ci,j)i,j∈J . For example for i ∈ I, we denote
Uq(Lgi) = Uq(Lg{i}) ' Uqi(Lsl2).
The subalgebra of Uq(Lg) generated by the hi,m, k±1

i (resp. by the x±i,r) is denoted
by Uq(Lh) (resp. Uq(Lg)±).
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3.3. Finite dimensional representations of quantum loop algebras. Denote
by Rep(Uq(Lg)) the Grothendieck ring of (type 1) finite dimensional representations
of Uq(Lg).

3.3.1. Monomials and q-characters. Let V be a representation in Rep(Uq(Lg)). The
subalgebra Uq(Lh) ⊂ Uq(Lg) is commutative, so we have :

V =
⊕

γ=(γ±i,±m)i∈I,m≥0
Vγ ,

where : Vγ = {v ∈ V |∃p ≥ 0,∀i ∈ I,m ≥ 0, (φ±i,±m − γ±i,±m)p.v = 0}.
The γ = (γ±i,±m)i∈I,m≥0 are called l-weights (or pseudo-weights) and the Vγ 6= {0}
are called l-weight spaces (or pseudo-weight spaces) of V . One can prove [FR] that
γ is necessarily of the form :∑

m≥0
γ±i,±mu±m = q

deg(Qi)−deg(Ri)
i

Qi(uq−1
i )Ri(uqi)

Qi(uqi)Ri(uq−1
i )

,

where Qi, Ri ∈ C(u) satisfy Qi(0) = Ri(0) = 1.
Consider the ring Y = Z[Y ±

i,a]i∈I,a∈C∗ . The Frenkel-Reshetikhin q-characters mor-
phism χq [FR] encodes the l-weights γ (see also [Kn]). It is an injective ring
morphism :

χq : Rep(Uq(Lg)) → Y
defined by

χq(V ) =
∑

γ
dim(Vγ)mγ ,

where :
mγ =

∏
i∈I,a∈C∗

Y
qi,a−ri,a

i,a ,

Qi(u) =
∏

a∈C∗
(1− ua)qi,a , Ri(u) =

∏
a∈C∗

(1− ua)ri,a .

The mγ are called monomials (they are analogs of weight). We denote by A the set
of monomials of Z[Y ±

i,a]i∈I,a∈C∗ . For an l-weight γ, we denote Vγ = Vmγ
. We will

also use the notation ipr = Y p
i,qr for i ∈ I and r, p ∈ Z.

For J ⊂ I, χJ
q is the morphism of q-characters for Uq(LgJ) ⊂ Uq(Lg). For a m

monomial we denote ui,a(m) ∈ Z such that m =
∏

i∈I,a∈C∗Y
ui,a(m)
i,a . We also denote

ω(m) =
∑

i∈I,a∈C∗
ui,a(m)Λi , ui(m) =

∑
a∈C∗

ui,a(m) , u(m) =
∑
i∈I

ui(m).

m is said to be J-dominant if for all j ∈ J, a ∈ C∗ we have uj,a(m) ≥ 0. An
I-dominant monomials is said to be dominant.
Observe that χq, χ

J
q can also be defined for finite dimensional Uq(Lh)-modules in

the same way.
In the following for V a finite dimensional Uq(Lh)-module, we denote by M(V ) the
set of monomials occurring in χq(V ).
For i ∈ I, a ∈ C∗, consider the analogs of simple roots for monomials :

Ai,a =Yi,aq−1
i

Yi,aqi

∏
{j|Cj,i=−1}

Y −1
j,a

×
∏

{j|Cj,i=−2}

Y −1
j,aq−1Y

−1
j,aq

∏
{j|Cj,i=−3}

Y −1
j,aq2Y

−1
j,a Y −1

j,aq−2 .
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As the Ai,a are algebraically independent [FR] (because C(z) is invertible), for M

a product of A±1
i,a we can define vi,a(M) ∈ Z by M =

∏
i∈I,a∈C∗A

−vi,a(m)
i,a . We put

vi(M) =
∑

a∈C∗vi,a(M) and v(M) =
∑

i∈Ivi(M).
For λ ∈ Q+ we set v(λ) = −λ(Λ∨1 + · · · + Λ∨n). For M a product of A±1

i,a , we have
v(M) = v(ω(λ)).
For m,m′ two monomials, we write m′ ≤ m if m′m−1 is a product of A−1

i,a .

Definition 3.3. [FM] A monomial m ∈ A−{1} is said to be right-negative if for all
a ∈ C∗, for L = max{l ∈ Z|∃i ∈ I, ui,aql(m) 6= 0}, we have ∀j ∈ I, uj,aqL(m) ≤ 0.

Observe that a right-negative monomial is not dominant.

Lemma 3.4. [FM] 1) For i ∈ I, a ∈ C∗, A−1
i,a is right-negative.

2) A product of right-negative monomials is right-negative.
3) If m is right-negative, then m′ ≤ m implies that m′ is right-negative.

For J ⊂ I and Z ∈ Y, we denote Z→J the element of Y obtained from Z by putting
Y ±1

j,a = 1 for j /∈ J .

3.3.2. l-highest weight representations. The irreducible finite dimensional Uq(Lg)-
modules have been classified by Chari-Pressley. They are parameterized by domi-
nant monomials :

Definition 3.5. A Uq(Lg)-module V is said to be of l-highest weight m ∈ A if
there is v ∈ Vm such that V = Uq(Lg)−.v and ∀i ∈ I, r ∈ Z, x+

i,r.v = 0.

For m ∈ A, there is a unique simple module L(m) of l-highest weight m.

Theorem 3.6. [CP6, Theorem 12.2.6] The dimension of L(m) is finite if and only
if m is dominant.

For i ∈ I, a ∈ C∗, k ≥ 0 we denote X
(i)
k,a =

∏
k′∈{1,··· ,k}Yi,aqk−2k′+1

i

.

Definition 3.7. The Kirillov-Reshetikhin modules are the W
(i)
k,a = L(X(i)

k,a).

For i ∈ I and a ∈ C∗, W
(i)
1,a is called a fundamental representation and is denoted

by Vi(a) (in the case g = sl2 we simply write Wk,a and V (a)).
For m ∈ Z[Yi,a]i∈I,a∈C∗ a dominant monomial, the standard module M(m) is

defined [N3, VV] as the tensor product :

M(m) =
⊗

a∈(C∗/qZ)

(· · · ⊗ (
⊗
i∈I

Vi(aq)⊗ui,aq(m))⊗ (
⊗
i∈I

Vi(aq2)⊗ui,aq2 (m))⊗ · · · ).

It is well-defined as for i, j ∈ I and a ∈ C∗ we have Vi(a) ⊗ Vj(a) ' Vj(a) ⊗ Vi(a)
and for a′ /∈ aqZ, we have Vi(a)⊗Vj(a′) ' Vj(a′)⊗Vj(a). Observe that fundamental
representations are particular cases of standard modules.

Let g = sl2. The monomials m1 = Xk1,a1 , m2 = Xk2,a2 are said to be in
special position if the monomial m3 =

∏
a∈C∗Y

max(ua(m1),ua(m2))
a is of the form

m3 = Xk3,a3 and m3 6= m1,m3 6= m2. A normal writing of a dominant monomial
m is a product decomposition m =

∏
i=1,··· ,LXkl,al

such that for l 6= l′, Xkl,al
,

Xkl′ ,al′ are not in special position. Any dominant monomial has a unique normal
writing up to permuting the monomials (see [CP6, Section 12.2]). It follows from
the study of the representations of Uq(Lsl2) in [CP1, CP2, FR] that :
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Proposition 3.8. Suppose that g = sl2.
(1) Wk,a is of dimension k + 1 and :

χq(Wk,a) = Xk,a(1 + A−1
aqk(1 + A−1

aqk−2(1 + · · · (1 + A−1
aq2−k)) · · · ).

(2) V (aq1−k)⊗ V (aq3−k)⊗ · · · ⊗ V (aqk−1) is of q-character :

Xk,a(1 + A−1
aqk)(1 + A−1

aqk−2) · · · (1 + A−1
aq2−k).

In particular all l-weight spaces of the tensor product are of dimension 1.
(3) For m a dominant monomial and m = Xk1,a1 · · ·Xkl,al

a normal writing we
have :

L(m) ' Wk1,a1 ⊗ · · · ⊗Wkl,al
.

3.3.3. Special modules and complementary reminders. Let us consider analogs of
cones of weights (for example used to define category O for affine Kac-Moody
algebras) adapted to monomials :

Definition 3.9. For m ∈ A, D(m) is the set of monomials m′ ∈ A such that there
are m0 = m,m1, · · · ,mN = m′ ∈ A satisfying for all j ∈ {1, · · · , N} :

(1) mj = mj−1A
−1
ij ,a1qij

· · ·A−1
ij ,arj

qij
where ij ∈ I, rj ≥ 1 and a1, · · · , arj

∈ C∗,
(2) for 1 ≤ r ≤ rj, uij ,ar

(mj−1) ≥ |{r′ ∈ {1, · · · , rj}|ar′ = ar}| where rj , ij , ar

are as in condition (1).

The motivation for this definition comes from the two simple facts :
for all m′ ∈ D(m), m′ ≤ m,
if m′ ∈ D(m), then (D(m′) ⊂ D(m)),

and from the following result which gives a strong condition for a monomial to
appear in a q-character :

Theorem 3.10. [He5, Theorem 5.21] For V a finite dimensional l-highest weight
module of highest monomial m, we have M(V ) ⊂ D(m).

In particular for all m′ ∈M(V ), we have m′ ≤ m and the vi,a(m′m−1), v(m′m−1) ≥
0 are well-defined. As a direct consequence of Theorem 3.10, we also have :

Lemma 3.11. For i ∈ I, a ∈ C∗, we have (χq(Vi(a))− Yi,a) ∈ Z[Y ±
j,aql ]j∈I,l>0.

This last result was first proved in [FM, Lemma 6.1, Remark 6.2].
The notion of special module was introduced in [N8] :

Definition 3.12. A Uq(Lg)-module is said to be special if his q-character has a
unique dominant monomial.

This notion is of particular importance because an algorithm of Frenkel-Mukhin
[FM] gives the q-character of special modules. Observe that a special module is a
simple l-highest weight module (as each simple module occurring in the Jordan-
Hölder series of a representation contributes with at least one dominant monomial
in the q-character). But in general all simple l-highest weight module are not
special.
The following result was proved in [N8, N7] for simply laced types, and in full
generality in [He4] (see [FM] for previous results). It gives a remarkable example
of a family of special modules and is the crucial point for the proof of the Kirillov-
Reshetikhin conjecture :
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Theorem 3.13. [He4, Theorem 4.1, Lemma 4.4] The Kirillov-Reshetikhin modules
are special. Moreover for m ∈M(W (i)

k,a), m 6= X
(i)
k,a implies m ≤ X

(i)
k,aA−1

i,aqk
i

.

Now let us recall a decomposition result of q-characters relatively to sub-Dynkin
diagrams corresponding to J ⊂ I (Proposition 3.14). This is the analog at the
level of q-character of the decomposition of a simple representation in simple rep-
resentations for the subalgebra Uq(LgJ). This result will be intensively used in the
following.
Define

µI
J : Z[(A±

j,a)→(J)]j∈J,a∈C∗ → Z[A±
j,a]j∈J,a∈C∗ ,

the ring morphism such that µI
J((A±

j,a)→(J)) = A±
j,a. For m J-dominant, denote by

LJ(m→(J)) the simple Uq(LgJ)-module of l-highest weight m→(J). Define :

LJ(m) = mµI
J((m→(J))−1χJ

q (LJ(m→(J)))).

(Observe that from Proposition 3.8, we have explicit formulas for the L{i}(m) for
i ∈ I.)

Proposition 3.14. [He3, Proposition 3.1] For a representation V ∈ Rep(Uq(Lg))
and J ⊂ I, there is unique decomposition in a finite sum :

(1) χq(V ) =
∑

m′ J-dominant

λJ(m′)LJ(m′).

Moreover for all m′ J-dominant we have λJ(m′) ≥ 0.

(In [He3] the λJ(m′) ≥ 0 were assumed, but the proof of the uniqueness does
not depend on it.)
As a consequence :

Corollary 3.15. Let m be a dominant monomial and m′ such that
(i) m′ ∈M(L(m)),
(ii) m′ is J-dominant monomial,
(iii) there are no m′′ > m′ satisfying m′′ ∈M(m) and m′ appears in LJ(m′′).

Then the monomials of LJ(m′) are in M(L(m)).

Proof: From the last condition LJ(m′) occurs in the decomposition of Proposition
3.14. As the coefficients in this decomposition are positive, all monomials on LJ(m′)
occur in χq(L(m)). �

Remark 3.16. In Corollary 3.15, we can start with m′ = m, and then we use for
m′ monomials in LJ(m), and so on. This process gives inductively from m a set of
monomial occurring in χq(L(m)).

4. Representation theoretical interpretation of the small property

In this section g is simply laced.
Originally the notion of small modules was given in terms of q, t-characters [N8].

We recall this definition and the relation [N8] with the geometric small property of
Section 2 (Theorem 4.3).

Although the representation theoretical meaning of q, t-character is not totally
understood (see [N4, Conjecture 3.1.1]), the notion of small modules can be purely
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algebraically formulated : we give an additional representation theoretical inter-
pretation of the notion (Theorem 4.8) by refining a proof of [N8] (this provides an
additional algebraic motivation for the study of the small modules).

We also comment the main result of the present paper (Theorem 1.2).

4.1. Definition of small modules and q, t-characters. The notion of small
modules is related to the notion of q, t-characters defined in [N4, N8]. There are t-
deformations of q-characters which can be purely algebraically defined (see [He1] for
non-simply laced cases with a different approach including a purely algebraic proof
of the existence). They are a very powerful tool as Nakajima proved they provide
an algorithm which allows to compute the q-character of any simple representation.

Consider the commutative ring Ŷt = Z[Vi,a,Wi,a, t±]i∈I,a∈C∗ . A monomial of Ŷt

is a product of Vi,a, Wi,a. One says m′ ≤ m if m′m−1 is a product of Vi,a. The
q, t-characters map χq,t : Rep(Uq(Lg)) → Ŷt is a Z-linear map defined by three
axioms in [N8] :

1) the data of the image of χq,t,
2) a compatibility property of the tensor product with a certain twisted product

on Ŷt,
3) for m ∈ Z[Yi,a]i∈I,a∈C∗ a dominant monomial of Y, the relation :

χq,t(M(m)) ∈ M0 +
∑

m′<M0

Z[t±]m′ where M0 =
∏

i∈I,a∈C∗
W

ui,a(m)
i,a .

(Only the last axiom will be explicitly used in the following, and so we refer to [N8]
for the details of the first two axioms).

Let m be a monomial of Ŷt. For i ∈ I, a ∈ C∗, one defines wi,a(m), vi,a(m) ≥ 0
by m =

∏
i∈I,a∈C∗ W

wi,a(m)
i,a V

vi,a(m)
i,a , and :

ui,a(m) = wi,a(m)− vi,aq−1(m)− vi,aq(m) +
∑
j∈I

Ci,jvj,a(m),

d(m) =
∑

i∈I,a∈C∗
(vi,aq(m)ui,a(m) + wi,aq(m)vi,a(m)).

We define a Z-linear map Π̂ : Ŷt → Y by (m is a monomial) :

Π̂(m) =
∏

i∈I,a∈C∗
Y

ui,a(m)
i,a , Π̂(t) = 1.

It is clear that Π̂ is a ring morphism.
A monomial m of Ŷt is said to be dominant if Π̂(m) is dominant. For m a dominant
monomial of Ŷt, one defines Mt(m) ∈ Ŷt by :

Mt(m) = td(m)m(
∏

i∈I,a∈C∗
W

−ui,a(m)
i,a )χq,t(M(

∏
i∈I,a∈C∗

Y
ui,a(m)
i,a )) ∈ Ŷt.

Lemma 4.1. For m a dominant monomial, we have Π̂(Mt(m)) = χq(M(Π̂(m))).

Proof: From the defining axioms of q, t-characters, the evaluation at t = 1 give
q-characters [N8], that is to say :

Π̂(χq,t(M(
∏

i∈I,a∈C∗
Y

ui,a(m)
i,a ))) = χq(M(

∏
i∈I,a∈C∗

Y
ui,a(m)
i,a )) = χq(M(Π̂(m))).
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As Π̂(td(m)m(
∏

i∈I,a∈C∗ W
−ui,a(m)
i,a )) = 1, the result is clear. �

For m a dominant monomial and m′ ≤ m a monomial, cm,m′(t) ∈ Z[t±] is defined
by :

Mt(m) =
∑

m′≤m

cm,m′(t)td(m′)m′.

Definition 4.2. [N8] Let m be a dominant monomial of Y. The standard module
M(m) is said to be small if for all dominant monomials m′,m′′ ≤ m, we have
cm′,m′′(t) ∈ t−1Z[t−1].

Remark : Observe that in general there is no hope to have cm′,m′′(t) ∈ t−1Z[t−1]
without assuming that m′′ is dominant. For example for g = sl2, we have

χq,t(M(Wa)) = Wa + WaVaq , d(WaVaq) = 0 , cWa,WaVaq = 1 /∈ t−1Z[t−1].

However M(Wa) is small (see Proposition 6.2 bellow).

4.2. Geometric characterization. The motivation for this Definition 4.2 comes
from geometry [N8] and from the relation to the small property of Section 2 :

Consider the monomials mW , mV ∈ Ŷt defined by

MW =
∏

i∈I,a∈C∗
W

dim(Wi,a)
i,a , mV =

∏
i∈I,a∈C∗

V
dim(Vi,a)
i,a .

As a consequence of the geometric construction of representations of quantum affine
algebras, we have the following geometric characterization of small standard mod-
ules (see [N8, Remark 10.2]) :

Theorem 4.3. [N8] Let m be a dominant monomial of Ŷt and W =
⊕

i∈I,a∈C∗ Wi,a

be the graded space satisfying dim(Wi,a) = ui,a(m). The standard module M(m)
is small if and only if for all V such that MW mV is dominant, the resolution
π : M•(V,W ) → M•

0(V,W ) is small.

4.3. Representation theoretical characterization. Let us give another char-
acterization of small modules.

Consider the Z-linear involution of Ŷt defined by m = t2d(m)m, t = t−1. Observe
that for m a monomial of Ŷt, td(m)m is invariant by the involution.

In [N8] Nakajima constructed a family L(m) ∈ Ŷt, indexed by the set of dominant
monomial m of Ŷt, characterized by the properties :

i) L(m) = L(m),
ii) L(m) ∈ Mt(m) +

∑
{m′ dominant|m′<m} t−1Z[t−1]Mt(m′).

They are analogs of canonical bases in Ŷ for the bar involution, and the transition
coefficient to the basis (Mt(m))m are analogs of Kazhdan-Lusztig polynomials.

Nakajima proved [N8] the following deep result :

Theorem 4.4. [N8] For all m dominant monomial of Ŷt, we have

Π̂(L(m)) = χq(L(Π̂(m))).

In particular this provides an algorithm to compute the q-characters of simple
modules. It is very complicated in general, and it is difficult to get explicit formu-
las from it, but it provides applications in situations where the algorithm can be
simplified (for example see [N7]).

As a consequence of this result, we have :
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Theorem 4.5. [N8] Let m be a dominant monomial monomial of Y. If M(m) is
small, then for all dominant monomial m′ ≤ m, L(m′) is special.

In fact the converse is true by using the following two results :

Theorem 4.6. [N8, Theorem 3.5 (6)] For all dominant monomial m of Ŷt, the
coefficient of a monomial occurring in Mt(m) is a Laurent polynomial with non-
negative coefficients.

Lemma 4.7. For M a dominant monomial of Ŷt, the set

{M ′|M ′ ≤ M and M ′ is dominant}

is finite.

Proof: We can suppose that M ∈ Z[Yi,aqr ]i∈I,r∈Z where a ∈ C∗. Let K = max{r ∈
Z|∃i ∈ I, ui,aqr (M) 6= 0}. For M ′ < M , M ′M−1 is right-negative so M ′ dominant
implies

∑
i∈I,r≥K vi,aqr (M ′M−1) = 0. It is proved in [He1, Lemma 3.14] that the

set

{M ′ = MA−1
i1,aql1

· · ·A−1
iR,aqlR

|R ≥ 0 , l1, · · · , lR ≤ K, M ′ is dominant}

is finite, and so we can conclude (note that in [He1], l1, · · · , lR ≤ K is replaced by
l1, · · · , lR ≥ K, but the proof is the same). �

By using a slight modification of the proof of Theorem 4.5 in [N8], we get the
following characterization :

Theorem 4.8. Let m be a dominant monomial of Y. M(m) is small if and only
if for all dominant monomial m′ ≤ m, L(m′) is special.

Observe that it is a purely representation theoretical characterization of small
modules involving q-characters, without q, t-characters. This provides an additional
algebraic motivation for the study of the small modules : all simple module which
could appear in the ”cone of monomial” of a small module are special, and so can
be described by using the Frenkel-Mukhin algorithm.
Proof: The only if part is the statement of Theorem 4.4. Let us prove the if part.
For m,m′ dominant monomials of Ŷt, we consider Zm,m′(t) ∈ Z[t±] defined by

Mt(m) =
∑

m′ dominant

Zm,m′(t)L(m′).

By definition of L(m′) we have Zm,m(t) = 1 and Zm,m′(t) ∈ t−1Z[t−1] for m′ < m.
If m′ � m, we have Zm,m′(t) = 0.

As M = m(
∏

i∈I,a∈C∗ W
ui,a(m)
i,a )−1 satisfies ui,a(M) = 0 for any i ∈ I, a ∈ C∗,

we can suppose that m =
∏

i∈I,a∈C∗ W
ui,a(m)
i,a . Suppose that for all dominant

monomial m′ ≤ m, L(Π̂(m′)) is special. From Lemma 4.7, there is a finite number
of dominant monomial m′ ≤ m. Choose a numbering m1,m2, · · · ,mN = m of
these monomials such that mr < mr′ implies r < r′. Denote by Z ′

mr,mr′
(t) the

coefficients of m′
r in L(mr). As L(Π̂(mr)) is special, it follows from Theorem 4.5

that Z ′
mr,mr′

(1) = 0. Let us prove by induction r that

∀r′′ < r′ ≤ r , cmr′ ,mr′′ (t) ∈ t−1Z[t−1] and Z ′
mr′ ,mr′′

(t) = 0.
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For r = 1, we have L(m1) = Mt(m1). Now we consider r > 1. By the induction
hypothesis, for all r′ < r, L(mr′) has no dominant monomial except mr′ . So for
r′′ < r,

cmr,mr′′ (t) = Zmr,mr′′ (t) + Z ′
mr,mr′′

(t).
From Theorem 4.6, we have

cmr,mr′′ (t) = tP+(t) + α + t−1P−(t−1)

where α ≥ 0, P+, P− ∈ N[t]. As Zmr,mr′′ (t) ∈ t−1Z[t−1] and Z ′
mr,mr′′

(t) =
Z ′

mr,mr′′
(t−1), we have

Z ′
mr,mr′′

(t) = tP+(t) + α + t−1P+(t−1).

So Z ′
mr,mr′′

(t) has positive coefficients, so Z ′
mr,mr′′

(1) = 0 implies Z ′
mr,mr′′

(t) = 0.
So cmr,mr′′ (t) = Zmr,mr′′ (t) ∈ t−1Z[t−1]. As a conclusion, M(m) is small. �

4.4. Main result. A natural question is to characterize small modules and so
the corresponding small resolutions. In particular, Nakajima [N8, Conjecture 10.4],
[N6] raised the problem of characterizing the Drinfeld polynomials of small standard
modules corresponding to Kirillov-Reshetikhin modules.

The main result of this paper is an explicit answer to this question (Theorem
1.2). First let us note in general the standard modules corresponding to Kirillov-
Reshetikhin modules are not necessarily small :

Remark 4.9. Let g = sl4 and m = Y2,1Y2,q2Y2,q4 . Consider m′ = mA−1
2,q =

Y1,qY3,qY2,q4 . Then by using the process described in remark 3.16, the monomi-
als Y −1

1,q3Y
−1
3,q3Y

2
2,q2Y2,q4 = m′A−1

1,q2A
−1
3,q2 and Y2,q2 = m′A−1

1,q2A
−1
3,q2A

−1
2,q3 occur in

χq(L(m′)) and L(m′) is not special. So M(m) is not small.

A crucial step for the proof of Theorem 1.2 is the elimination theorem proved in
the next section.

5. Elimination theorem and preliminary results

In this section g is an arbitrary semi-simple Lie algebra. We prove several pre-
liminary results so that we can prove Theorem 1.2 in the last section of the paper.

5.1. Elimination Theorem. We have seen a (combinatorial) procedure which
allows to produce monomials occurring in a q-character (remark 3.16). We first
prove in this section a (representation theoretical) theorem (Theorem 5.1) which
gives a criterion so that a monomial m′ does not occur in the q-character of a simple
modules L(m).
This theorem is used in [He6] to study minimal affinizations of representations of
quantum groups.

5.1.1. Statement.

Theorem 5.1. Let V = L(m) be a Uq(Lg)-module simple module. Let m′ < m
and i ∈ I satisfying the following conditions :

(i) there is a unique i-dominant M ∈ (M(V ) ∩m′Z[Ai,a]a∈C∗) − {m′} and its
coefficient is 1,

(ii)
∑

r∈Z x+
i,r(VM ) = {0},

(iii) m′ is not a monomial of Li(M),
(iv) if m′′ ∈M(Uq(Lgi).VM ) is i-dominant, then v(m′′m−1) ≥ v(m′m−1),
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(v) for all j 6= i, {m′′ ∈M(V )|v(m′′m−1) < v(m′m−1)} ∩m′Z[A±1
j,a]a∈C∗ = ∅.

Then m′ /∈M(V ).

To prove this result, we first need some preliminary lemmas.

5.1.2. Technical lemmas. First let us consider a refined version of the operators
τj of [FR] which allows to study ”independently” the subalgebras Uq(Lgi) of the
quantum loop algebra.

Let i ∈ I, h⊥i = {µ ∈ h|αi(µ) = 0} and A(i) be the commutative group of
monomials generated by variables Y ±

i,a (a ∈ C∗), kµ (µ ∈ h⊥i ), Z±
j,c (j 6= i, c ∈ C∗).

Let
τi : A → A(i)

be the group morphism defined by (j ∈ I, a ∈ C∗):

τi(Yj,a) = Y
δj,i

j,a

∏
k 6=i,r∈Z

Z
pj,k(r)
k,aqr kν(Λj)−δj,iriα∨i /2.

The pj,k(r) ∈ Z are defined in the following way : we write C̃(z) = C̃′(z)
d(z) where

d(z), C̃ ′
j,k(z) ∈ Z[z±] and (D(z)C̃ ′(z))j,k =

∑
r∈Zpj,k(r)zr.

Observe that we have ν(Λj) − δj,iriα
∨
i /2 ∈ h⊥i because αi(ν(Λj) − δj,iriα

∨
i /2) =

Λj(riα
∨
i )− riδi,j = 0.

This morphism τi was first defined [FM], and then refined in [He4] with the terms
k which will be used in the following. Moreover it is proved in [FM, Lemma 3.5]
(in [He2, Lemma 20] with the term k0) that :

Lemma 5.2. For j ∈ I, a ∈ C∗, we have τj(Aj,a) = Yj,aq−1
j

Yj,aqj k0.

This result indicates that the root monomials Aj,a are sent to their analogs of type
sl2, as announced above.
The following result was proved in [FM, Lemma 3.4] without the term kµ, and in
[He2, Lemma 21] the proof was extended for the terms kµ. It gives a decomposition
of a q-character ”compatible” with the action of the subalgebra Uq(Lgi) :

Lemma 5.3. Let V ∈ Rep(Uq(Lg)) and consider a decomposition τi(χq(V )) =∑
rPrQr where Pr ∈ Z[Y ±

i,a]a∈C∗ , Qr is a monomial in Z[Z±
j,c, kλ]j 6=i,c∈C∗,λ∈h⊥i

and
all monomials Qr are distinct. Then the Uq(Lgi)-module V is isomorphic to a direct
sum

⊕
rVr where χi

q(Vr) = Pr.

The following result gives information on a cyclic Uq(Lgj)-submodule of a Uq(Lg)-
module :

Lemma 5.4. Let V ∈ Rep(Uq(Lg)) be a Uq(Lg)-module, m ∈ M(L(m)) and v ∈
Vm. Then for j ∈ I, Uq(Lgj).v is a sub-Uq(Lh)-module of V and χq(Uq(Lgj).v) ∈
mZ[A±

j,a]a∈C∗ .

Proof: From the relation 3.2, Uq(Lgj).v is a sub-Uq(Lh)-module of V . Consider the
decomposition τj(χq(V )) =

∑
rPrQr of the Lemma 5.3 and the decomposition of V

as a Uq(Lgj)-module: V =
⊕

rVr. Then there is R such that τj(m) is a monomial
of PRQR, and so v ∈ VR. We have Uq(Lgj).v ⊂ VR. Let us write τj(m) = mRQR.
It follows from [CM1, Theorem 7.2] for Uq(Lgj) ' Uqj

(Lsl2), that the q-character
of the Uq(Lgj)-module Uq(Lgj).v is included in mRZ[(Yj,aq−1

j
Yaqj

)±]a∈C∗ . From
Lemma 5.2, the q-character of Uq(Lgj).v viewed as a Uq(Lh)-module belongs to
mZ[A±

j,a]a∈C∗ . �
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In the sl2-case, the following Lemma produces a dominant monomial higher than
a given monomial in a q-character (note that a weak version was proved in [He3,
Lemma 3.2 (ii)]) :

Lemma 5.5. Let L be a finite dimensional Uq(Lsl2)-module. For p ∈ Z, let Lp =∑
{λ∈P∗|λ(Λ∨)≥p}Lλ and L′p =

∑
r∈Zx−r .Lp. Then for m′ ∈ M(L′p) there is m ∈

M(Lp) such that
(i) m is dominant,
(ii) m′ ≤ m,
(iii) (Uq(Lsl2).Lm) ∩ Lm′ 6= {0}.

Proof: Let m′ ∈ M(L′p). Let us prove the result by induction on dim(Lp) : if
Lp = {0} we have L′p = {0}. In general let v be an l-highest weight vector of Lp

(it exists, see for example the proof of [He2, Proposition 15]) and denote by M the
corresponding monomial. Consider V = Uq(ĝ).v. It is an l-highest weight module
and so it follows from Theorem 3.10 that (Vm 6= {0} ⇒ m ≤ M). If Vm′ 6= {0}
the result is clear with m = M . Otherwise consider L(1) = L/V . Observe that
χq(L) = χq(V ) + χq(L(1)). We use the induction hypothesis with L(1) and we get
m ∈ M((L(1))p) ⊂ M(Lp) such that m ≥ m′ and (Uq(Lsl2).(L(1))m) ∩ (L(1))m′ 6=
{0}. Let v ∈ (L(1))m and α ∈ Uq(Lsl2) such that αv ∈ (L(1))m′ − {0}. Let
w ∈ v + V and consider the decomposition w = wm + w′ where wm ∈ Lm and
w′ ∈

⊕
m′′ 6=m Lm′′ . Consider v ∈ (L(1))m, we have w′ ∈ V and wm ∈ v + V . Then

αwm = v′ + v′′ ∈ Lm′ ⊕V where v′ 6= 0. As V ′
m = {0}, there is h ∈ Uq(h) such that

hαwm = hv′ 6= 0 and so we get the result. �
An analog result is available for general type :

Lemma 5.6. Let V = L(m) be a Uq(Lg)-module simple module and m′ < m in
M(L(m)). Then there is j ∈ I and M ′ ∈M(V ) such that

(i) M ′ is j-dominant,
(ii) M ′ > m′,
(iii) M ′ ∈ m′Z[Aj,b]b∈C∗ ,
(iv) ((Uq(Lgj).VM ′) ∩ (V )m′) 6= {0}.

(A weak version of the following lemma was proved in the proof of [He4, Lemma
4.4] with different notations).

To prove this result, we need the following additional notations : for M ∈ A(i),
we define µ(M) ∈ h⊥i , ui,a(M) ∈ Z, by :

M ∈ kµ(M)

∏
a∈C∗

Y
ui,a(M)
i,a Z[Z±

j,c]j 6=i,c∈C∗ .

We also set ui(M) =
∑

a∈C∗ui,a(M). Observe that for m ∈ A and a ∈ C∗ we have
ui,a(m) = ui,a(τi(m)) and :

ν(ω(m)) = µ(τi(m)) + ui(m)riα
∨
i /2 = µ(τi(m)) + ui(τi(m))riα

∨
i /2,

or equivalently
µ(τi(m)) = ν(ω(m))− αi(ν(ω(m)))α∨i /2.

(See the definition of [He2, Section 5.5].) Now let us prove Lemma 5.6 :
Proof: For m′′ ∈M(V ) denote w(m′′) = v(ω(m′′)− ω(m)). Let

W =
⊕

{m′′|w(m′′)<w(m′)}

Vm′′ .



SMALLNESS PROBLEM FOR QUANTUM AFFINE ALGEBRAS AND QUIVER VARIETIES19

As V is an l-highest weight module, there is j ∈ I such that (Uq(Lgj).W )m′ 6=
{0}. Consider the decomposition τj(χq(V )) =

∑
rPrQr of Lemma 5.3 and the

decomposition of V as a Uq(Lgj)-module: V =
⊕

rVr.
For a given r, consider Mr ∈ M(V ) such that τj(Mr) appears in PrQr. For

another such M , we have µ(τj(M)) = µ(τj(Mr)) and so

ω(MM−1
r ) = uj(τj(MM−1

r ))α∨j /2,

and

uj(τj(M)) = uj(τj(Mr))− 2w(M) + 2w(Mr) = 2(p− w(M)) + pr,

where pr = −2p + 2w(Mr) + uj(τj(Mr)) (it does not depend of M). So we have
w(M) ≤ p ⇔ uj(τj(M)) ≥ pr. So W =

⊕
r((Vr)≥pr

) =
⊕

r(Vr ∩W ). As Vr is a
sub Uq(Lgj)-modules of V , we have Wj =

⊕
r(Vr ∩Wj). Let M ∈ M(Wj) and R

such that τj(M) is a monomial of PRQR. We can apply Lemma 5.5 to the Uq(Lgj)-
module VR with p = pR and the monomial Q−1

R τj(m) : we get m′′ ∈ M(VR)
dominant such that Q−1

R τj(M) ∈ m′′Z[(Yj,aYj,aq2
j
)−1]a∈C∗ and ((Uq(Lgj).(VR)m′′)∩

(VR)Q−1
R τj(M)) 6= {0}. Let us translate this result in terms of monomials of χq(V ).

Consider the j-dominant monomial M ′ = τ−1
j (QRm′). Then M ′ ∈ M(W ) and

(Uq(Lgj).VM ′) ∩ VM 6= {0}. From Lemma 5.2 we have M ∈ M ′Z[A−1
j,b ]b∈C∗ . �

5.1.3. Proof of Theorem 5.1. Suppose that m′ ∈M(V ). Let

W =
⊕

{M ′≤m|v(M ′m−1)<v(m′m−1)}

VM ′ .

As V is an l-highest weight modules, there is k ∈ I such that
∑

r∈Z(x−k,r.W )m′ 6=
{0}. From condition (v) and Lemma 5.4, we have k = i. From Lemma 5.6 and
condition (i), we have (Vm′ ∩ Uq(Lgi)VM ) 6= {0}. Consider u ∈ VM and x ∈
(Uq(Lgi).u ∩ Vm′) such that x 6= 0. From condition (ii), u is an highest weight
vectors for Uq(Lgi), so x ∈

∑
r∈Z Cx−i,r.u. By condition (iii), x is in the maximal

proper Uq(Lgi)-submodule of Uq(Lgi).x. By condition (iv), v(m′M−1) is maximal
for this condition. So for all r ∈ Z, we have x+

i,r(x) = 0. For j 6= i, r ∈ Z, it follows
from Lemma 5.4 that x+

j,r(x) ∈
⊕

m′′∈m′Z[A±1
j,a]a∈C∗

Vm′′ , and so from condition (v)

we have x+
j,r(x) = 0. So Uq(Lg).x is a proper submodule of V , contradiction. �

5.2. Other preliminary results. In this section, g is an arbitrary semi-simple
Lie algebra. We prove additional preliminary results.

5.2.1. q-characters of simple modules.

Lemma 5.7. Let L(m1), L(m2) be two simple modules. Then L(m1m2) is a sub-
quotient of L(m1)⊗ L(m2). In particular M(L(m1m2)) ⊂M(L(m1))M(L(m2)).

This first part of the lemma is proved in [CP6], and the second part is direct
from [CP6, FR].

As a direct consequence of Theorem 3.10, we have :

Lemma 5.8. Let a ∈ C∗ and m be a monomial of Z[Yi,aqr ]i∈I,r≥0. Then for
m′ ∈M(L(m)) and b ∈ C∗, (vi,b(m′m−1) 6= 0 ⇒ b ∈ aqri+N).
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(Observe that it also a direct consequence of Lemma 3.11 as a simple module is a
subquotient of a tensor product of fundamental representations.)

The following result gives information on the sub Uq(LgJ)-module generated by
an highest weight vector (the definition of LJ(m) and LJ(m→(J)) were given in
section 3.3.3) :

Lemma 5.9. Let m be a dominant monomial and J ⊂ I. Let v be an highest
weight vector of L(m) and L′ ⊂ L(m) the Uq(LgJ)-submodule of L(m) generated
by v. Then L′ is an Uq(Lh)-submodule of L(m) and χq(L′) = LJ(m).

In particular for µ ∈ ω(m)−
∑

j∈JNαj , we have

dim((L(m))µ) = dim((LJ(m→(J)))µ→(J)),

where µ→(J) =
∑

j∈Jµ(α∨j )ωj .
Proof: It is clear that L′ =

⊕
µ∈ω(m)−

P
j∈J N.αj

(L(m))µ. So it is an Uq(Lh)-

submodule of L(m) and χq(L′) makes sense. Moreover χq(L′) ∈ mZ[A±
j,a]j∈J,a∈C∗

and m′ ∈ M(L′) is uniquely determined by (m′)→(J). So it suffices to prove that
L′ ' LJ(m→(J)) as Uq(LgJ)-module. As L′ is an highest weight Uq(LgJ)-module
of highest weight monomial m→(J), it suffices to prove that L′ is simple. If it is
not simple, there is w ∈ L′ ∩ (L(m))µ where µ < ω(m) and such that for all j ∈ J ,
m ∈ Z, x+

j,m.w = 0. But as L(m) is an highest weight module and the weight of L′

are in ω(m)−
∑

j∈J Nαj , for weight reason we have :

∀j ∈ (I − J) , ∀m ∈ Z , x+
j,m(L′) = {0}.

So Uq(Lg).w is a proper submodule of L(m), contradiction. �

5.2.2. Thin modules and thin monomials. Let us introduce the notion of thin mod-
ule :

Definition 5.10. A Uq(Lg)-module V is said to be thin if his l-weight spaces are
of dimension 1.

In [He3, Theorem 3.2], we proved that for g of type A, B, C, all fundamental
representations are thin (this result was also proved later by a different method in
[CM2]. It should be also possible to check this result directly from the formulas in
[KS]). We will discuss in more detail the notion of thin modules in [He6], but let
us give some results that will be used in the present paper.

Lemma 5.11. Let V be a Uq(Lg)-module and m′ ∈M(V ) such that there is i ∈ I
satisfying Min{ui,a(m′)|a ∈ C∗} ≤ −2. Then there is M ∈M(V ) such that

M > m′,
M is i-dominant,
Max{ui,b(M)|b ∈ C∗} ≥ 2.

Proof: Consider Li(M) occurring in the decomposition of χq(V ) described in Propo-
sition 3.14 and such that m′ is a monomial of Li(M). Li(M) corresponds to the
q-character χi

q(W ) where W is a Uq(Lgi)-simple module, so subquotient of a stan-
dard module. In particular m′ appears in

(2) M
∏

a∈C∗
(Y −1

i,a (1 + A−1
i,aqi

))ui,a(M).
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By hypothesis there is b ∈ C∗ such that ui,b(m′) ≤ −2. As m′ appears in the formula
(2), necessarily (1 + A−1

i,aqi
) appears at least twice in (2), and so ui,bq−1

i
(M) ≥ 2.

Moreover by construction M > m′ and M is i-dominant. �

Definition 5.12. A monomial m is said to be thin if Maxi∈I,a∈C∗ |ui,a(m)| ≤ 1.

Lemma 5.13. Let V be a special module such that

Max{ui,a(m)|m ∈M(V ), i ∈ I, a ∈ C∗} ≤ 1.

Then V is thin. Moreover all m ∈M(V ) are thin.

Proof: In [He3, Proposition 3.3], the first statement is proved for fundamental
representations. The proof of the first statement of the Lemma is the same (χq(V ) is
given by the Frenkel-Mukhin algorithm, and so the property is proved by induction
on the weight of monomials, see the proof of [He3, Proposition 3.3] for details).
Now consider m′ ∈ M(V ). If m′ is not thin, there is i ∈ I and a ∈ C∗ such that
ui,a(m′) ≤ −2. From Lemma 5.11, there is another monomial M ∈ M(V ) and
b ∈ C∗ such that ui,b(M) ≥ 2, contradiction with the hypothesis on V , so m′ is
thin. �

Proposition 5.14. If V is thin then all m ∈ M(V ) are thin. If V is special and
all m ∈M(V ) are thin, then V is thin.

Proof: If V is special and all m ∈ M(V ) are thin, then the hypothesis of Lemma
5.13 are satisfied and so V is thin.
For the first statement, suppose that V is thin and that there is a monomial of
M(V ) which is not thin. We can suppose there is m ∈ M(V ), i ∈ I, a ∈ C∗ such
that ui,a(m) ≥ 2 (in the case ui,a(m) ≤ −2 it follows from Lemma 5.11 that there
is another monomial satisfying the condition with ≥ 2). Consider Li(M) occurring
in the decomposition of χq(V ) described in Proposition 3.14 and such that m is
a monomial of Li(M). We can see as in the proof of Lemma 5.11 that there is
b ∈ C∗ satisfying ui,b(M) ≥ 2. From the explicit description of simple modules in

Proposition 3.8 in the case sl2, the monomial MA−1
i,bqi

∏
r>0 A

−ui,bqr
i
(M)

i,b(qi)r+1 occurs with
multiplicity at least 2 in the q-character of the Uqi(Lsl2)-module L(M→(i)), and
so it is not a thin module. As the coefficients in the decomposition of Proposition
3.14 are positive, there is an l-weight space of V of dimension at least 2, and so V
is not thin. �

Lemma 5.15. Let L(m) be a simple Uq(Lg)-module and (m′, i) ∈ M(L(m)) × I
such that

all m′′ ∈M(L(m)) satisfying v(m′′m−1) < v(m′m−1) is thin,
m′ is not i-dominant.

Then there is a ∈ C∗ such that ui,a(m′) < 0 and m′Ai,aq−1
i
∈M(L(m)).

Proof: Consider Li(M) occurring in the decomposition of χq(V ) described in Propo-
sition 3.14 and such that m is a monomial of Li(M). From the first hypothesis M is
thin. If Li(M) correspond to a Kirillov-Reshetikhin module of type sl2, the result
follows from the explicit formula of Proposition 3.8 (1). In general Li(M) is also
known from the explicit description of q-characters of simple modules in the sl2-case
in Proposition 3.8 (3), and Li(M) corresponds to a product of Kirillov-Reshetikhin
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modules Li(M) =
∏

k Wk. As M is thin we have moreover the following property
: for m1 appearing in Wk and m2 appearing in Wk′ , we have

ui,a(m1) 6= 0 and ui,a(m2) 6= 0 ⇒ k = k′.

And so the result can be reduced to the case of Kirillov-Reshetikhin modules. �

Lemma 5.16. Suppose that g = sln+1 and L(m) be a simple Uq(Lg)-module. Let
(m′, i, a) ∈M(L(m))× I × C∗ such that :

all m′′ ∈M(L(m)) satisfying v(m′′m−1) < v(m′m−1) is thin,
ui,a(m′) = −1,
m′Yi,a is dominant.

Then there is M ∈ M(L(m)) dominant such that M > m′ and vn(m′M−1) ≤ 1,
v1(m′M−1) ≤ 1.

Proof: By using Lemma 5.15, we construct inductively a sequence of monomials
of M(L(m)) starting with m′. Indeed as ui,a(m′) = −1 we first get m′Ai,aq−1 ∈
M(L(m)). Then from the property m′Yi,a dominant we have

(ui−1,b(m′Ai,aq−1) < 0 or ui+1,b(m′Ai,aq−1) < 0) ⇒ b = aq−1.

Then we use again Lemma 5.15 (i− 1, aq−1) and (i + 1, aq−1) when it is possible.
We get a monomial and we apply Lemma 5.15 with (i− 2, aq−2) and (i + 2, aq−2)
when it is possible. We continue by induction until this is not possible, and we get
a monomial :

m1 =m′(Ai,aq−1Ai−1,aq−2 · · ·Ai−α,aq−1−α)

× (Ai+1,aq−2Ai+2,aq−3 · · ·Ai+β,aq−1−β ) ∈M(L(m)),

where α, β ≥ 0, i−α ≥ 1, i+β ≤ n. By construction m1 is (I−{i})-dominant and
we have (ui,b(m1) < 0 ⇒ b = aq−2). If α = 0 or β = 0, m1 is dominant and we take
M = m1. Otherwise, we can suppose α ≥ β (the case β ≥ α can be treated in the
same way). As at each step we get by construction thin monomials, we continue
by induction, and for 2 ≤ r ≤ β + 1, we have

mr =mr−1(Ai,aq1−2rAi−1,aq−2r · · ·Ai−α+r−1,aq−α−r )

× (Ai+1,aq−2rAi+2,aq−2r−1 · · ·Ai+β−r+1,aq−r−β ) ∈M(L(m)),

and mr is (I−{i}) dominant. Moreover mβ+1 is dominant, so we take M = mβ+1.
By construction we have M > m′ and vn(m′M−1) ≤ 1, v1(m′M−1) ≤ 1. �

Lemma 5.17. Let g = sln+1 and L(m) be a simple Uq(Lg)-module. Let (m′, j) ∈
M(L(m))× I such that

all m′′ ∈M(L(m)) satisfying v(m′′m−1) < v(m′m−1) is thin,
m′ is (I − {j})-dominant,
if j ≤ n− 1, then for all a ∈ C∗, (uj,a(m′) < 0 ⇒ uj+1,aq−1(m′) > 0).

Then there is M ∈M(L(m)) dominant of the form

M = m′
∏

{a∈C∗|uj,a(m′)<0}

(Aj,aq−1Aj−1,aq−3 · · ·Aia,aqia−j−1),

where for a ∈ C∗, 1 ≤ ia ≤ j.

Proof: If j < n, the additional hypothesis (uj,a(m′) < 0 ⇒ uj+1,aq−1(m′) > 0)
allows to use the result for g{1,··· ,j}. So we can suppose that j = n. We prove
the result by induction on n. For n = 1 the result is clear. In general, by using
Proposition 3.14 we get m1 ∈M(L(m)) n-dominant such that m′ is a monomial of
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Ln(m1). As m1 > m′ and v(m1m
−1) ≤ P , we have by the explicit description of

Ln(m1) in Proposition 3.8 :

m′(m1)−1 =
∏

{a∈C∗|un,a(m′)<0}

An,aq−1 .

Moreover by construction :
m1 is {1, · · · , n− 2}-dominant,
∀a ∈ C∗, (un−1,a(m1) < 0 ⇒ (un,aq−1(m1) = 1 and un−1,a(m1) = −1)).

By Lemma 5.15 there is m2 ∈M(L(m)) which is {1, · · · , n−1}-dominant and such
that m1 is a monomial of L{1,··· ,n−1}(m2). Then by using the induction property
for g{1,··· ,n−1} on m1 monomial of L{1,··· ,n−1}(m2), we get the monomial M . �

6. Proof of Theorem 1.2

In this section, g is simply-laced. We complete the proof of Theorem 1.2 : after
a technical lemma on dominant monomials (Lemma 6.1), fundamental representa-
tions (Proposition 6.2) and standard modules of the form M(X(i)

2,a) (Proposition
6.3) are studied. Then the type A is discussed (Proposition 6.4), and finally we
give the proof of Theorem 1.2 for the general case.

6.1. Dominant monomials. First let us prove some properties of dominant mono-
mials lower than a monomial X

(i)
k,a. To do this, let us define the following number

attached to the structure of the Dynkin diagram : for i, j ∈ I, we denote by d(i, j)
the minimal d such that there is a sequence (i1, · · · , id) ∈ Id satisfying i = i1, j = id
and for all k ∈ {1, · · · , d− 1}, Cik,ik+1 = −1.

Lemma 6.1. Let i ∈ I, a ∈ C∗, k ≥ 0 and m = X
(i)
k,a. Let m′ ≤ m dominant.

Then we have :
m′m−1 ∈ Z[A−1

j,aql ]j∈I,l∈Z,
∀j ∈ I, l ∈ Z, vj,aql(m′m−1) > 0 ⇒ (d(i, j) + 1− k ≤ l ≤ k − 1− d(i, j)),
∀j ∈ I, vj(m′m−1) > 0 ⇒ d(i, j) ≤ k − 1.

Proof: The last statement in a direct consequence of the second statement.
Let us prove that for any j ∈ I, b ∈ C∗ we have :

vj,b(m′m−1) 6= 0 ⇒ b ∈ aqk−1−d(i,j)−N.

We prove this statement by induction on d(i, j).
For d(i, j) = 1, we have j = i. Suppose that there is b ∈ (C∗ − aqk−2−N) such
that vi,b(m′m−1) > 0. Let L ∈ Z maximal such that there is p ∈ I satisfying
vp,bqL(m′m−1) > 0. We have bqL /∈ aqk−2−N. As m′ 6= m, we have m′ < m
and m′m−1 is right negative. So up,bqL+1(m′m−1) < 0. As moreover up,c(m) > 0
implies c ∈ aqk−1−N, we have up,bqL+1(m′) = up,bqL+1(m′m−1) < 0. So m′ is not
dominant, contradiction.
In general suppose that d(i, j) ≥ 2 and that there is b ∈ (C∗− aqk−d(i,j)−1−N) such
that vj,b(m′m−1) > 0. If b /∈ aqZ, we can prove as in the previous case that m′ is
not dominant, contradiction. Otherwise let L maximal such that∑

{p∈I|d(i,p)≥d(i,j)}

vp,aqL(m′m−1) > 0.
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As vj,b(m′m−1) > 0, we have L > k−1−d(i, j). Let P ∈ I such that d(i, P ) ≥ d(i, j)
and vP,aqL(m′m−1) > 0. We have

uP,aqL+1(
∏

{p∈I|d(i,p)≥d(i,j)}

∏
c∈C∗

A−1
p,c) < 0.

As uP,aqL+1(m) = 0 and m′ is dominant, there is j′ satisfying d(i, j′) = d(i, j) − 1
and vj′,aqL+1(m′m−1) > 0. But L + 1 ≥ k + 1− d(i, j) = k − d(i, j′), contradiction
with the induction hypothesis.
In the same way we can prove that for any j ∈ I, b ∈ C∗ :

vj,b(m′m−1) 6= 0 ⇒ b ∈ aq−k+1+d(i,j)+N.

This implies the first two statements of the Lemma. �

6.2. Fundamental representations and k = 2 case.

Proposition 6.2. All fundamental representations are small.

Proof: Let i ∈ I and a ∈ C∗. Then from Lemma 6.1, a monomial satisfying
m′ < Yi,a is not dominant. So Vi(a) is small. �

Proposition 6.3. Let i ∈ I, a ∈ C∗. Then M(X(i)
2,a) is small.

Proof: From Lemma 6.1, a dominant monomial m′ < X
(i)
2,a is equal to

m′ = X
(i)
2,aA−1

i,a =
∏

j∈I|Ci,j=−1

Yj,a.

Consider a monomial m′′ < m′.
Suppose that there is j ∈ I, b ∈ (C∗ − aqZ) such that vj,b(m′′(m′)−1) > 0. Let
L ∈ Z maximal such that there is p ∈ I satisfying vp,bqL(m′′(m′)−1) > 0. We have
up,bqL+1(m′′) = up,bqL+1(m′′(m′)−1) < 0 and so m′′ is not dominant.
Otherwise let L ∈ Z maximal such that there is p ∈ I satisfying vp,aqL(m′′(m′)−1) >
0. If L ≥ 0, we can prove as in the previous case that m′′ is not dominant. Otherwise
let L′ < 0 minimal such that there is p ∈ I satisfying vp,aqL′ (m′′(m′)−1) > 0. We
have up,bqL′−1(m′′) = up,bqL′−1(m′′(m′)−1) < 0, and so m′′ is not dominant.

So L(m′) is special and M(X(i)
2,a) is small. �

6.3. Type A. In this section g is of type A.

Proposition 6.4. Let k ≥ 1, i ∈ I, a ∈ C∗. Then M(X(i)
k,a) is small if and only if

(i = 1 or i = n or k ≤ 2).

In particular for g = sl2 or g = sl3, all M(X(i)
k,a) are small.

We prove this proposition in three steps :
(1) we determine the dominant monomials m′ such that m′ ≤ X

(1)
k,a (Lemma 6.5),

(2) we prove that the corresponding simple modules are special (Proposition
6.6),

(3) we study the remaining cases (Lemma 6.8).

Lemma 6.5. Let k ≥ 1, a ∈ C∗ and m′ ≤ X
(1)
k,a dominant. Then m′ is of the form

m′ = Yi1,aql1 Yi2,aql2 · · ·YiR,aqlR ,
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where R ≥ 0, i1, i2, · · · , iR ∈ I, l1, l2, · · · , lR ∈ Z satisfy for all 1 ≤ r ≤ R− 1 :

lr+1 − lr ≥ ir + ir+1.

Proof: Let m = Y1,aY1,aq2 · · ·Y1,aq2(k−1) and m′ ≤ m dominant. For i ∈ I, l ∈ Z,
let us denote vi,l = vi,aql(m′m−1) and ui,l = ui,aql(m′). We denote vn+1,l = 0. As
m′ is dominant, we have for 2 ≤ i ≤ n and l ∈ Z :

vi,l−1 + vi,l+1 ≤ vi−1,l + vi+1,l,

v1,l−1 + v1,l+1 ≤ 1 + v2,l.

From Lemma 6.1, for l ≤ i− 1 or l ≥ 2k− i− 2, we have vi,l = 0. Let us prove that
for all i ∈ I, (vi,l 6= 0 ⇒ (l ∈ i + 2Z)). Indeed m′′ =

∏
i∈I,l∈i+1+2Z A

−vi,l

i,aql is right
negative and for all i ∈ I, l ∈ i + 2Z, ui,l(m′′) = ui,l(m′). So m′′ = 1.

Let us prove that for all l ∈ Z we have v1,l ≤ 1, and for all n ≥ i ≥ 2, l ∈ Z
we have vi,l ≤ vi−1,l−1. We prove the result by induction on d = l − i ≥ 0. First
suppose that d = 0. First we have v1,1 ≤ −v1,−1 + 1 + v2,1 = 1. For i ≥ 2,
vi,i ≤ −vi,i−2 + vi−1,i−1 + vi+1,i−1 = vi−1,i−1. Now consider a general d > 0. First
we have v1,1+d ≤ 1 + v2,d − v1,d−1. But by the induction hypothesis, v2,d ≤ v1,d−1.
So v1,1+d ≤ 1. For i ≥ 2, vi,i+d ≤ (vi+1,d+i−1 − vi,d+i−2) + vi−1,d+i−1. But by the
induction hypothesis, vi+1,d+i−1 − vi,d+i−2 ≤ 0, and so vi,i+d ≤ vi−1,d+i−1.

In particular for all i ∈ I, l ∈ Z, vi,l ≤ 1.
In the same way, for all n ≥ i ≥ 2, vi,l ≤ vi−1,l+1. Let n ≥ i ≥ 2. We have

proved vi,l ≤ Min{vi−1,l−1, vi−1,l+1, 1}. In particular

(vi,l = 1 ⇒ vi−1,l−1 = vi−1,l+1 = 1).

Moreover if vi,l−1 = vi,l+1 = 1, we have 2 = vi,l−1 + vi,l+1 ≤ vi+1,l + vi−1,l and so
vi+1,l = vi−1,l = 1. So

(vi,l = 1 ⇔ vi−1,l−1 = vi−1,l+1 = 1).

As a conclusion, this can be rewritten in the following way. m′m−1 is of the form :

m′m−1 = Bp1,f1Bp2,f2 · · ·BpR,fR
,

where R ≥ 0, n− 1 ≥ p1, · · · , pR ≥ 0, f1, · · · , fR ∈ Z,

Bp,f =(A1,aqf−pA1,aqf+2−p · · ·A1,aqf+p)

× (A2,aqf+1−pA2,aqf+3−p · · ·A2,aqf+p−1) · · · (Ap+1,aqf ),

fi − pi ∈ 1 + 2Z, f1 − p1 ≥ 1, fR + pR ≤ 2k − 3 and fi + pi + 4 ≤ fi+1 − pi+1.
If p ≤ n− 2, we have

Bp,l = (Y −1
1,qf−p−1Y

−1
1,qf−p+1 · · ·Y −1

1,qf+p+1)Yp+2,aqf ,

and we have
Bn−1,l = Y −1

1,qf−nY −1
1,qf−n+2 · · ·Y −1

1,qf+n .

So we get the result. �

Proposition 6.6. Let m = Yi1,aql1 Yi2,aql2 · · ·YiR,aqlR where R ≥ 0, i1, i2, · · · , iR ∈
I, l1, l2, · · · , lR ∈ Z satisfying for all 1 ≤ r ≤ R− 1, lr+1 − lr ≥ ir + ir+1. Then :

(1) For m′ ∈M(L(m)), if viR,aqlR−1(m′) ≥ 1 then viR,aqlR+1(m′) ≥ 1.
(2) L(m) is special.
(3) L(m) is thin.
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To prove this Proposition, we will need the following direct consequence of the
results in [FM] :

Lemma 6.7. Let V be a fundamental representation of a quantum loop algebra
Uq(Lg) and let Yi,a (resp. Y −1

j,b ) be the highest (resp. lowest) weight monomial of
χq(V ). Then we have :

χq(V ) ∈ Yi,a(1 + A−1
i,aq(1 +

∑
{k∈I|Ci,k=−1}

A−1
k,bq2 .Z[A−1

l,d ]l∈I,d∈C∗)),

χq(V ) ∈ Y −1
j,b (1 + Aj,bq−1(1 +

∑
{k∈I|Cj,k=−1}

Ak,bq−2 .Z[Al,d]l∈I,d∈C∗)).

Proof: As V is special, we can use the algorithm proposed by Frenkel-Mukhin [FM]
to compute χq(V ) (see [FM, Section 5.5] for details) : we start with Yi,a. Then we
get Yi,aA−1

i,aq with multiplicity 1 as Li(Yi,a) = Yi,a + Yi,aA−1
i,aq. As

Yi,aA−1
i,aq = Y −1

i,aq2

∏
{k∈I|Ci,k=−1}

Yk,aq,

the next step of the algorithm gives the monomials Yi,aA−1
i,aqA

−1
k,aq2 with multiplicity

one, and then inductively the other monomials occurring in χq(V ) are lower then
these monomials.

The second statement is obtained by the duality stated in [FM, Proposition
6.18] (by replacing the Yi,aqn by Y −1

i,aq−n , we get the q-character of a fundamental
representation). �

Now let us prove Proposition 6.6 :
Proof: Let us denote (1R) (resp. (2R), (3R)) the condition that the statement
(1) (resp. (2), (3)) of the Proposition is satisfied for any R′ ≤ R. We prove by
induction on R simultaneously that (1R), (2R) and (3R) are satisfied. For R = 0
this is clear.
Now we prove the following for R ≥ 1 :

• ((1R−1) and (2R−1) and (3R−1)) implies (1R),
• ((1R) and (2R−1) and (3R−1)) implies (2R),
• ((1R) and (2R) and (3R−1)) implies (3R).

Let us start with : ((1R) and (2R−1) and (3R−1)) implies (2R).
By Lemma 5.7

M(L(m)) ⊂ (mY −1
iR,aqlR

M(ViR
(aqlR))) ∪ (M(L(mY −1

iR,aqlR
))YiR,aqlR ).

As all monomials of mY −1
iR,aqlR

(χq(ViR
(aqlR))−YiR,aqlR ) are lower than mA−1

iR,aqlR+1

(Theorem 3.13) which is right-negative, they are not dominant. Consider m′ ∈
(M(L(mY −1

iR,aqlR
))YiR,aqlR−{m}). If viR,aqlR+1(m′m−1) ≥ 1 or viR,aqlR−1(m′m−1) ≥

1, it follows from the (1R) that m′ is lower than mA−1
iR,aqlR+1 which is right-negative,

so m′ is not dominant. We suppose that

viR,aqlR−1(m′m−1) = viR,aqlR+1(m′m−1) = 0.

So we have uiR,aqlR (m′Y −1
iR,aqlR

) ≥ 0. By (2R−1), the monomial m′Y −1
iR,aqlR

∈
M(L(mY −1

iR,aqlR
)) is not dominant. So there is i ∈ I, b ∈ C∗, such that (i, b) 6=
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(iR, aqlR) and ui,b(m′Y −1
iR,aqlR

) < 0. As ui,b(m′Y −1
iR,aqlR

) = ui,b(m′), m′ is not dom-
inant. So (2R) is satisfied.

Now let us prove : ((1R) and (2R) and (3R−1)) implies (3R).
From property (2R) and Proposition 5.14, it suffices to prove that all monomials
of M(L(m)) are thin. Suppose that there is a monomial in M(L(m)) which is
not thin. From Lemma 5.11, we can suppose that there is m′ ∈ M(L(m)) such
that there are i ∈ I, a ∈ C∗ satisfying ui,a(m′) = 2 and such that all m′′ satisfying
v(m′′m−1) < v(m′m−1) is thin. In particular from Proposition 3.14 :

m′ is ({1, · · · , i− 2} ∪ {i} ∪ {i + 2, . . . , n})-dominant,
(ui−1,b(m′) < 0 ⇒ b = aq),
(ui+1,b(m′) < 0 ⇒ b = aq).

(Otherwise we could construct m′′ ∈ M(L(m)) not thin such that v(m′′m−1) <
v(m′m−1)). We can apply Lemma 5.17 for g{1,...,i−1} of type Ai−1 and then for
g{i+1,...,n} of type An−i. We get a monomial M ∈M(L(m)), and by construction

M is I − {i}-dominant,
uj1,aqj1−i(M) ≥ 1 with j1 ≤ i,
uj2,aqi−j2 (M) ≥ 1 with j1 < j2, i ≤ j2.

Moreover as ui,a(m′) = 2, by construction M is dominant. From property (2R) we
have m = M . In particular there are r < r′ such that (ir, lr) = (j1, j1 − i) and
(ir′ , lr′) = (j2, i− j2). We have

lr′ − lr = 2i− j2 − j1 = ir + ir′ + 2(i− j2)− 2j1 < ir + ir′ .

But we have
lr′ − lr = (lr′ − lr′−1) + · · ·+ (lr+1 − lr)

≥ ir′ + 2(ir′−1 + · · ·+ ir+1) + ir ≥ ir′ + ir,

contradiction. So (3R) is satisfied.
Finally we prove : ((1R−1) and (2R−1) and (3R−1)) implies (1R).

We prove (1R) by induction on v(m′m−1) ≥ 0. For v(m′m−1) = 0 we have m′ = m
and the result is clear. In general consider a monomial m′ < m such that for
m′′ satisfying v(m′′m−1) < v(m′m−1), the property (1R) is satisfied. We sup-
pose that moreover the the property is not satisfied for m′, that is to say that
viR,aqlR−1(m′m−1) ≥ 1 and viR,aqlR+1(m′m−1) = 0. It follows from Proposition
3.14 and the induction hypothesis on v that m′ is (I − {iR})-dominant (otherwise
we could construct m′′ such that v(m′′m−1) < v(m′m−1) and the property is not
satisfied for m′′).
If m′ is not dominant, m′ is not iR-dominant and so it follows from Proposition
3.14 that there is m′′ ∈ M(L(m)) iR-dominant such that m′′ > m′ and m′ is a
monomial of Lir

(m′′). Moreover there is b ∈ C∗ such that m′ ≤ m′AiR,b ≤ m′′,
and m′AiR,b is a monomial of LiR

(m′′) and so in M(L(m)). By the induction
hypothesis on v, m′AiR,b satisfied the property (1R), and so we have b = aqlR−1.
So viR,aqlR−1(m′′m−1) = viR,aqlR+1(m′′m−1) = 0. In particular uiR,aqlR (m′′) ≥
uiR,aqlR (m) ≥ 1. By Lemma 5.7, we have m′ ∈ M(L(YiR,aqlR ))M(L(mY −1

iR,aqlR
)).

But by Theorem 3.13 the monomials of M(L(YiR,aqlR )) not equal to YiR,aqlR are
lower than YiR,aqlR A−1

iR,aqLR+1 . So we have m′ ∈ YiR,aqlRM(L(mY −1
iR,aqlR

)). By
the properties (2R−1) and (3R−1), L(mY −1

iR,aqlR
) is special and thin. In particular

uiR,aqlR−2(m′′) ≤ 1, and so by Proposition 3.8, m′ is not a monomial of LiR
(m′′),

contradiction. So m′ is dominant.
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As L(mY −1
iR,aqlR

) is special, the monomial m′Y −1
iR,aqlR

is not dominant. So
uiR,aqlR (m′Y −1

iR,aqlR
) = −1,

uj,b(m′Y −1
iR,aqlR

) < 0 ⇒ (j = iR and b = aqlR).
So we can use Lemma 5.16 for the thin module L(m′Y −1

iR,aqlR
). Let α, β as in the

proof of Lemma 5.16. Let j = iR + β − α and b = aqlR−α−β−2. By construction
of m from m′ in the proof of Lemma 5.16, we have uj,b(mY −1

iR,aqlR
) ≥ 1 and m′ ∈

mY −1
j,b M(Vj(b)). Moreover there is R′ < R such that j = iR′ and lR−α−β−2 = lR′ .

We have

α + β + 2 = lR − lR′ ≥ iR + 2iR−1 + · · ·+ 2iR′+1 + iR′

≥ 2(iR + · · ·+ iR′+1) + β − α.

So iR + · · ·+ iR′+1 ≤ α + 1 and (iR − α) + iR−1 + · · ·+ iR′+1 ≤ 1. As iR − α ≥ 1,
we have iR−1 + · · ·+ iR′+1 = 0, R′ = R− 1 and iR − α = 1.
By construction, we have m′m−1 ∈ Z[A−1

i,aqr ]i≤iR+β,r∈Z. So from Lemma 5.9 we
can suppose that iR + β = n.
We have iR = n + 1− iR−1. As

ω(m(m′)−1) = (α1 + · · ·+ αn) + (α2 + · · ·+ αn−1)

+ · · ·+ (αiR−1 + · · ·+ αn+1−iR−1)

= α1 + αn + 2(α2 + αn−2) + · · ·+ iR−1(αiR−1 + αn+1−iR−1)

+ iR−1(αiR−1+1 + · · ·+ αn−iR−1),

the monomial m′(mY −1

iR−1,aqlR−1
)−1 is the lowest monomial of M(ViR−1(aqlR−1))

(the weight of the lowest weight of fundamental representations has been computed
in [FM, Lemma 6.8]).
Let us prove that

(3) M(L(m)) ∩m′Z[AiR,d]d∈C∗ ⊂ {m′,m′AiR,aqlR−1}.

Let m′′ ∈ (M(L(m)) ∩ m′Z[AiR,d]d∈C∗) different from m′. In particular m ≥
m′′ > m′. By construction of m′ from m, as R′ = R − 1, we have for k 6= iR−1,
vk,aqlk+1(m′m−1) = 0. So by Theorem 3.13 (for fundamental representations, that
is to say the particular case proved in [FM]), m′,m′′ ∈ mY −1

iR−1,aqlR−1
M(ViR−1(aqlR−1)).

As m′(mY −1

iR−1,aqlR−1
)−1 is the lowest monomial of M(ViR−1(aqlR−1)), Lemma 6.7

gives :

(χq(ViR−1(aqlR−1))YiR,aqLR − 1)A−1
iR,aqlR−1 ∈1 + AiR+1,aqlR−2Z[Ak,d]k∈I,d∈C∗

+ AiR−1,aqlR−2Z[Ak,d]k∈I,d∈C∗ .

As by hypothesis viR−1(m′(m′′)−1) = viR+1(m′(m′′)−1) = 0, we get :

m′′(mY −1

iR−1,aqlR−1
)−1 = m′AiR,aqlR−1(mY −1

iR−1,aqlR−1
)−1.

Let us prove that

(4) m′′ ∈ (M(L(m)) ∩m′Z[A±1
iR,d]d∈C∗)− {m′AiR,b} ⇒ viR

(m′′(m′)−1) ≥ 0.
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Consider a monomial m′′ satisfying the left property of (4). By Lemma 5.8, for
k 6= R− 1 we have vik,aqlk+1(m′m−1) = 0. So

m′′ ∈ m(Y −1

iR−1,aqlR−1
M(ViR−1(aqlR−1)))(

∏
{k|ik=iR}

YiR,aqlk )−1
∏

{k|ik=iR}

M(ViR
(aqlk)).

Let us write this decomposition

m′′ = mY −1

iR−1,aqlR−1
(m′′)R−1(

∏
{k|ik=iR}

YiR,aqlk )−1
∏

{k|ik=iR}

(m′′)k.

(If iR−1 = iR we put (m′′)R−1 only one time). Let k 6= R − 1 satisfying ik = iR.
Observe that for R1 < R2, we have lR2 − lR1 ≥ iR1 + iR2 ≥ 2. So by Lemma
5.8, viR+1,aqlk+2(m′m−1) = viR−1,aqlk+2(m′m−1) = 0. So (m′′)k = YiR,aqlk or
(m′′)k = YiR,aqlk A−1

iR,aqlk+1 . As a consequence, (m′′)R−1 = Y −1
iR,aqlR

or (m′′)R−1 =

Y −1
iR,aqlR

AiR,aqlR−1 (Lemma 5.8). So

viR
(m′′(m′)−1) = viR

((m′′)R−1YiR,aqlR ) +
∑

{k 6=R−1|ik=iR}

viR
((m′′)kY −1

iR,aqlk
)

≥ viR
((m′′)R−1YiR,aqlR ) ≥ −1.

If viR
(m′′(m′)−1) = −1, then for all k satisfying ik = iR we have (m′′)k = YiR,aqlk

and (m′′)R−1 = Y −1
iR,aqlR

AiR,aqlR−1 . So m′′ = m′AiR,aqlR−1 and we can conclude
the proof of (4).
Now to prove it suffices to prove that the conditions of Theorem 5.1 with i = iR
are satisfied for m′.

Condition (i) of Theorem 5.1 :
the unicity follows from the statement (3) above. For the existence, it suffices to
prove that M = m′AiR,aqlR−1 is in M(L(m)). By Lemma 5.6, there is j ∈ I,
M ′ ∈ M(L(m)) j-dominant such that M ′ > m′ and M ′ ∈ m′Z[Aj,a]a∈C∗ . By the
induction hypothesis on v we have j = iR, and so by unicity M ′ = M .

Condition (ii) of Theorem 5.1 :
we have by Lemma 5.4∑

r∈Z
x+

i,r(VM ) ⊂
∑

m′∈mZ[A±i,d]d∈C∗

(L(m))m′ ,

and so the result follows from the statement (4) above.
Condition (iii) of Theorem 5.1 :

by Lemma 5.7, we have M ∈ M(L(YiR,aqlR ))M(L(mY −1
iR,aqlR

)). But by Theo-
rem 3.13 the monomials of M(L(YiR,aqlR )) not equal to YiR,aqlR are lower than
YiR,aqlR A−1

iR,aqLR+1 . So we have M ∈ YiR,aqlRM(L(mY −1
iR,aqlR

)). By (3R−1), the
module L(mY −1

iR,aqlR
) is thin and so uiR,aqlR−2(M) ≤ 1. Moreover by the induction

hypothesis on v, viR,aqlR−1(Mm−1) = viR,aqlR+1(Mm−1) = 0. So uiR,aqlR (M) ≥ 1.
So by Proposition 3.8, m′ is not a monomial of M(LiR

(M)).
Condition (iv) of Theorem 5.1 :

the result follows from the statement (4) above.
Condition (v) of Theorem 5.1 :

clear by the induction hypothesis on v.
�
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The case of standard modules M(X(n)
k,a ) can be studied in the same way by

replacing i by i = n− i + 1.
We can conclude the proof of Proposition 6.4 with Proposition 6.2, Proposition

6.3 and the following counter examples :

Lemma 6.8. We suppose that n ≥ 3. Let k ≥ 3, a ∈ C∗ and 1 < i < n. Then
M(X(i)

k,a) is not small.

Proof: Consider m′ = X
(i)
k,aA−1

i,aq−2k+2 ≤ X
(i)
k,a. Then m′ is dominant. As g{i−1,i,i+1}

is of type sl4, by using Lemma 5.9, we can check as in remark 4.9 that L(m′) is not
special, and so M(X(i)

k,a) is not small. �

6.4. End of the proof of Theorem 1.2. In general for g not of type A, i extremal
does not imply that M(X(i)

k,a) is small. For example :

Remark 6.9. Let g be of type D4 and m = Y1,q3Y1,q5Y2,1. By using the process
described in remark 3.16, the following monomials occur in χq(L(m)) : 131521,
1113152−1

2 3141, 111315223−1
3 4−1

3 , 1112
3152−1

4 , 1113. So L(m) is not special. As
Y1,q3Y1,q5Y2,1 = X

(1)
4,q2A

−1
1,1 ∈M(M(X(1)

4,q2)), M(X(1)
4,q2) is not small.

Let us end the proof of Theorem 1.2 :
The case k = 1 follows from Lemma 6.2. The case k = 2 follows from Lemma

6.3. In the rest of the proof we suppose that k ≥ 3.
Suppose that i is not extremal. There are j 6= j′ such that Ci,j = Ci,j′ = −1.
Consider m′ = X

(i)
k,aA−1

i,aq−2k+2 ≤ X
(i)
k,a. Then m′ is dominant. Let J = {i, j, j′}. gJ

is of type A3 and so by using Lemma 5.9, we can check as in remark 4.9 that L(m′)
is not special.
Suppose that i is extremal. Let i2 be the unique element of I satisfying Ci,i2 = −1.
Let i3, · · · , idi such that for 2 ≤ r ≤ di − 1, Cir,ir+1 = −1 and idi is special.
Let idi+1 6= idi+2 such that Cidi

,idi+1 = Cidi
,idi+2 = −1 and idi−1, idi+1, idi+2 are

distinct.
For illustration an example is given on the following picture :

i◦−−i2◦−−i3◦ · · ·
idi◦−−

idi+1

◦ . . .|◦ idi+2

Suppose that k ≥ di + 2. Let m′ = X
(i)
k,aA−1

i,aq2−k = Yi2,aq2−kX
(i)
k−1,aq. By remark

3.16,

m′′ =m′(A−1
i2,aq3−kA−1

i3,aq4−k · · ·A−1
idi+1,aqdi+2−k)

× (A−1
idi+2,aqdi+2−kA−1

idi
,aqdi+3−kA−1

idi−1,aqdi+4−k · · ·A−1
i2,aq2di+1−k) ∈M(L(m′)).

But

(m′′)→(i) = X
(i)
k−1,aq(A

−1
i2,aq3−kA−1

i2,aq2di+1−k)→(i)

= Yi,aq3−kYi,aq5−k · · ·Yi,aqk−1Yi,aq2di+1−k ,

and 3 − k ≤ 2di + 1 − k ≤ k − 3. So m′′A−1
i,aq2di+2−k is dominant and occurs in

χq(L(m′′)). So L(m′′) is not special and M(X(i)
k,a) is not small.
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Suppose that k ≤ di + 1 and there there is a dominant monomial m′ < X
(i)
k,a. By

Lemma 6.1, (vj(m′m−1) 6= 0 ⇒ j ∈ {i1, · · · , idi
}). So from Lemma 5.9, we can

work with g{i1,··· ,idi
} of type Adi

. So it follows from Proposition 6.4 that M(X(i)
k,a)

is small. �

6.5. General simply laced quantum affinizations. The notion of quantum
affinization can be extended beyond quantum affine algebras : the quantum affiniza-
tion Uq(ĝ) of a quantum Kac-Moody algebra Uq(g) is defined with the same gener-
ators and relations as the Drinfeld realization of quantum affine algebras, but by
using the generalized symmetrizable Cartan matrix of g instead of a Cartan matrix
of finite type. The quantum affine algebra, quantum affinizations of usual quantum
groups, are the simplest examples have the particular property of being also quan-
tum Kac-Moody algebras. The quantum affinization of a quantum affine algebra
is called a quantum toroidal algebra (or double affine quantum algebra). It is not
a quantum Kac-Moody algebra, but is also of particular interest, in particular in
relation to double affine Hecke algebras (Cherednik algebras).

In [M, N3, He2], the category O of integrable representations is studied. One
can define for general quantum affinizations analogs of Kirillov-Reshetikhin modules
(these representations are not finite dimensional in general). We can also define the
notion of small modules by using the characterization in Theorem 4.8.

The statement of Theorem 1.2 is satisfied for all simply-laced quantum affiniza-
tions, by using exactly the same proof, except that in the end of the proof of
Theorem 1.2 (subsection 6.4), for J = {i, j, j′}, gJ may be of type A3 or of type
A

(1)
2 (in the second case we have Ci,j = Ci,j′ = Cj,j′ = −1). In this case and we

can check as in the following remark that for m′ as in subsection 6.4, L(m′) is not
small.

Remark 6.10. Let g be of A
(1)
2 , consider m = Y2,1Y2,q2Y2,q4 , m′ = mA−1

2,q =
Y1,qY0,qY2,q4 . Then by using the process described in remark 3.16, the monomials

Y −1
1,q3Y

−1
0,q3Y1,q2Y0,q2Y 2

2,q2Y2,q4 = m′A−1
1,q2A

−1
0,q2 ,

Y2,q2Y1,q2Y0,q2 = m′A−1
1,q2A

−1
0,q2A

−1
2,q3 ,

occur in χq(L(m′)) and L(m′) is not special. So M(m) is not small.
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[B] N. Bourbaki, Groupes et algèbres de Lie, Chapitres IV-VI, Hermann (1968)

[BBD] A. Beilinson, J. Bernstein and P. Deligne, Faisceaux pervers, Analysis and topology
on singular spaces, I (Luminy, 1981), 5–171, Astérisque, 100, Soc. Math. France, Paris (1982)
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