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Abstract. We prove the Kirillov-Reshetikhin (KR) conjecture in the general case :
for all twisted quantum affine algebras we prove that the characters of KR modules
solve the twisted Q-system [HKOTT] and we get explicit formulas for the character
of their tensor products (the untwisted case was treated in [N4, N5, H4]). The proof
is uniform and provides several new developments for the representation theory of
twisted quantum affine algebras, including twisted Frenkel-Reshetikhin q-characters
(expected in [FR, FM]). We also prove the twisted T -system [KS1]. As an application
we get explicit formulas for the twisted q-characters of fundamental representations

for all types, including the conjectural formulas [R] for types D
(3)
4 , E

(2)
6 . We prove

the conjectural formulas [KS1] for KR modules in types A
(2)
n (n ≥ 2) and D

(3)
4 . Even-

tually our results imply the conjectural branching rules [HKOTT] to the quantum
subalgebra of finite type.
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1. Introduction

Characters and Frenkel-Reshetikhin q-characters of finite dimensional representations
of untwisted quantum affine algebras have attracted much attention in recent years (see
for example [Cha2, CM1, DK, FL, FM, FR, H4, N1, N4, NN1] and references therein).
Twisted quantum affine algebras and their representations have also been intensively
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studied (see for example [A, BN, CP5, Da, HN, Jin, JM, Kas, NS, KMOY, OSS, S]
and references therein), and many conjectures have been formulated for the character
of their finite dimensional representations [HKOTT, KS1, R], but many of them are
still open.

Let Uq(ĝ) be a (untwisted or twisted) quantum affine algebra of rank n. The Kirillov-
Reshetikhin modules form a certain infinite class of simple finite dimensional represen-
tations of Uq(ĝ). The main question answered in this paper is the following : what is
the character of the Kirillov-Reshetikhin modules and of their tensor products for the
quantum group of finite type Uq(g) ⊂ Uq(ĝ) ? This problem goes back to 1931 as Bethe
[Bet] solved it for certain modules of type A1 in another language. The methods to solve
physical models involved here are now known as “Bethe Ansatz”. In the 80s, in a series
of fundamental and striking papers, Kirillov and Reshetikhin [KR, Ki1, Ki2, Ki3] solved
the problem for type A and proposed formulas for all untwisted types by analyzing the
Bethe Ansatz. These papers became the starting point of an intense research. The
description of these characters is called the Kirillov-Reshetikhin conjecture.

For untwisted cases, there are many results for these conjectures and related problems
(see [KNT] for an historic and a guide through the huge literature on this subject; to
name a few of very interesting recent ones see [Kl, HKOTY, KN, Cha2]). The Kirillov-
Reshetikhin conjecture was proved in [N4, N5] for untwisted simply-laces cases, and in
[H4] for general untwisted case with a different uniform algebraic approach.

In this paper we prove the twisted cases and so we get a complete uniform proof of the
conjecture for all quantum affine algebras. As the representation theory in twisted cases
is far less understood than in the untwisted cases, more work is needed than in [H4], and
in this paper we also prove new general results for finite dimensional representations
of twisted quantum affine algebras. In particular we develop the theory of twisted
Frenkel-Reshetikhin q-characters expected in [FR, FM], and we prove additional results
and conjectures :

• the characterization of the image of twisted q-characters,
• the special property of Kirillov-Reshetikhin for all twisted types,
• explicit formulas for twisted q-characters of fundamental representations for all

types, including the Conjectural formulas [R] in types D
(3)
4 , E

(2)
6 ,

• the Conjecture [HKOTT] of twisted Q-systems for all types,
• the Conjecture [KS1] of twisted T -system for all types,
• the Conjecture [KS1] of explicit formulas for twisted q-characters of Kirillov-

Reshetikhin modules for types A
(2)
n (n ≥ 2), D

(3)
4 ,

• the Conjectural branching rules to the quantum subalgebra of finite type con-

jectured in [HKOTT] for types A
(2)
2n , A

(2)
2n−1, D

(2)
n , D

(3)
4 ,

• the Conjecture [KS1, Section 6] that in type D
(3)
4 the conjectural explicit for-

mulas satisfy the twisted T -system.

Note that the set of solutions that we get for twisted Q-systems and twisted T -
systems are Laurent polynomials with positive coefficients (as characters), and so is an
example of the Laurent phenomena for these systems (see [FZ1, FZ2] for a description
in another context).
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Let us describe the conjectures and recall some previous results on this problem in
more details :

The Kirillov-Reshetikhin modules are simple l-highest weight modules (notion analog
to the notion of highest weight module adapted to the Drinfeld realization of quantum
affine algebras [CP3, CP5]). They are characterized by their Drinfeld polynomials

(Pj(u))1≤j≤n (analogs of the highest weight). In types different than A
(2)
2n , they are

of the form :

Pj(u) =

{

(1 − au)(1 − aq2
i u) · · · (1 − q2k−2

i u) if j = i,

0 if j 6= i,

(where qi = qdi , see section 2). In types A
(2)
2n , they are of form :

Pj(u) =

{

(1 − au)(1 − aq2u) · · · (1 − q2k−2u) if j = i,

0 if j 6= i.

For k = 1 the Kirillov-Reshetikhin modules are called fundamental representations.
The Kirillov-Reshetikhin conjecture predicts the character of these modules and of their
tensor products for the subalgebra Uq(g) ⊂ Uq(ĝ) (Uq(g) is a quantum Kac-Moody
algebra of finite type) : in [KR] conjectural formulas were given for these characters
(they were obtained by observation of the Bethe Ansatz related to solvable lattice
models). A conjectural induction rule called Q-system was also given in [KR] (the Q-
system for untwisted exceptional types was given in [Ki3], and twisted Q-systems in
[HKOTT] for twisted types). We will denote by F(ν) the formulas for the characters
(we use here the version of [Ki1, Ki2, HKOTY, HKOTT, KNT]. The version of [KR]
is slightly different because the definition of binomial coefficients is a little changed,
see remark 1.3 of [KNT]). The Kirillov-Reshetikhin conjecture can be stated in the
following form (see [KNT]), proved in the present paper for all types : the characters
of Kirillov-Reshetikhin modules solve the (twisted) Q-system and any of their tensors
products are given by the formulas F(ν).

In the proof of the Kirillov-Reshetikhin conjecture for simply-laced cases [N4, N5] and
for the general untwisted cases [H4], one crucial tool in the theory of Frenkel-Reshetikhin
q-characters. For untwisted quantum affine algebras this theory was introduced in [FR]
(see also [Kn]) as analogs of characters for quantum affine algebras adapted to the
Drinfeld presentation, and then developed in [FM, N4].

Let us remind some points of the theory for untwisted quantum affine algebras. In
[KNS1, KS1] functional relations called T -system were defined (they are motivated
by the observation of transfer matrices in solvable lattice models). Transposed in the
language of Frenkel-Reshetikhin q-characters, and motivated by the relations between q-
characters and Bethe-Anzatz in [FR], it was naturally conjectured that the q-characters
of Kirillov-Reshetikhin modules solve the T -system [KOSY]. As in terms of usual
characters the T -system becomes the Q-system, this conjecture implies the Kirillov-
Reshetikhin conjecture.
In general no explicit formulas for q-characters of finite dimensional simple modules are
known. However Frenkel and Mukhin [FM] defined an algorithm to compute the q-
character of a class of simple modules (satisfying the “special” property, term defined in
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[N4], see below), and Nakajima [N4] defined an algorithm to compute the q-character of
arbitrary simple modules in simply-laced cases. Although in general no explicit formula
has been obtained from them (they are very complicated), in some cases they give useful
informations.
In particular Nakajima [N4, N5] made a remarkable advance by proving the Kirillov-
Reshetikhin conjecture and T -systems in simply-laced cases : using the main result
of [N4] (the algorithm) he proved that in simply-laced cases the Kirillov-Reshetikhin
modules are special and noticed that this property is useful in the study of these modules
(the algorithm of [N4] is drastically simplified in this situation). The main result of [N4]
is based on the study of quiver varieties [N1] and is not known in non simply-laced cases
(see the conjecture of [H1]), and so Nakajima’s proof can not be used for all types.
In [H2] we gave a general uniform proof for all untwisted types of these conjectures
(Kirillov-Reshetikhin conjecture, special property, T -systems). Our proof is purely al-
gebraic (the results of [N4] are not used; see the introduction of [H2] for the main ideas
of the proof) and so extends uniformly to untwisted non simply-laced cases.

Let us go back to general quantum affine algebras. In the present paper we propose
a general uniform proof for all twisted types of these conjectures (Kirillov-Reshetikhin
conjecture, special property, twisted T -systems of [KS1]) which extends the proof of
[H2].
For the proof the main technical tool is the theory of twisted Frenkel-Reshetikhin q-
characters that we develop in the present paper. The existence of an analog theory
for the twisted case was expected in [FR, FM]. Many technical non straightforward
modifications and new developments are given compared to [H2], in particular because

a twisted quantum affine algebras may have "elementary" subalgebras of type A
(1)
1

and of type A
(2)
2 (see the introduction of [Da] for general comments on this point) :

this is one of the crucial technical point for the results of this paper. For example a
characterization of the image of the twisted q-character morphism is proved.

After having developed the theory of twisted q-characters, the proof of the main
results of the present paper has two steps : the special property and then the use of a
twisted analog of the Frenkel-Mukhin algorithm to prove the twisted T -system. In the

proof we have to study in details the "elementary" type A
(2)
2 as the structure of the

corresponding Kirillov-Reshetikhin modules is drastically different than in the untwisted

"elementary" A
(1)
1 type.

As an application we prove several conjectural explicit formulas listed above. Al-
though we see many important differences between representation theory of untwisted
quantum affine algebras and twisted quantum affine algebras, we also prove precise
relations between the (q-)characters from both theory : we construct an isomorphism
between the Grothendieck rings of finite dimensional representations preserving Kirillov-
Reshetikhin modules. As for the untwisted case [FR], the Grothendieck ring of finite
dimensional representations is proved to be commutative.

For a geometric side, in analogy with the untwisted simply-laced cases, our result
gives an explicit formula of what would be the Euler number of a “quiver variety” in
twisted cases. Nakajima told to the author that he knows a geometric approach to the
representation theory of twisted quantum affine algebras.



KIRILLOV-RESHETIKHIN CONJECTURE : THE GENERAL CASE 5

The proof of the twisted T -systems was announced in [H4]. For related results for
current algebras see [CM2], and see [H5] for the case of general untwisted quantum
affinizations.

After the first version of this paper had been written, the author was asked by
Nakajima how he completed the proof of the Drinfeld-Serre relations, sketched in [Dr2,
Jin]. At the time he wrote this paper the author could not complete it, but he noticed
that these relations are not needed for the results of this paper : in the present paper we
start with Drinfeld-Jimbo generators and we give a reference or we prove all relations
that are used in the proofs. In particular we adapt the proof of the classification of
simple finite dimensional representations of twisted quantum affine algebras in [CP5]
without using these relations.

Let us describe the organization of this paper. It can be divided in two parts of
different nature, the first one where the general theory of twisted q-character is developed
and the general uniform proof of twisted T -systems is given, and the second one where
as an application we explain explicit formulas and additional conjectures that follow
from our results. Let us explain the structure of the paper in more details :

In Section 2 we give backgrounds on quantum Kac-Moody algebras, Drinfeld realiza-
tion, finite dimensional representations of (twisted) quantum affine algebras. In Section
3 we develop the theory of twisted Frenkel-Reshetikhin q-characters. We characterize
the image and study the restriction to finite quantum subalgebras. In Section 4 we

give twisted Q-systems and twisted T -systems. The type A
(2)
2 is studied in Section 5.

The special property is proved in Section 6. The end of the proof of the main theorem
(the twisted T -system) is given in the Section 7. In Section 8 we establish a connection
with untwisted types and we give explicit formulas for characters of arbitrary tensor
product of Kirillov-Reshetikhin modules (the Kirillov-Reshetikhin conjecture). Then
we enter the second part of the paper. The branching rules to finite quantum subal-
gebra [HKOTT] that follow from our results are given in Section 9. In Section 10 we
give the explicit formulas for twisted q-characters of Kirillov-Reshetikhin modules in
several types that follow from our results (many of them had been conjectured in other
papers). In Section 11 we give explicit formulas for twisted q-characters of fundamental
representations for all types.

Acknowledgments : The author would like to thank H. Nakajima for useful com-
ments and references, and M. Okado for interesting questions on this work.

2. Quantum Kac-Moody algebras and their representations

2.1. Cartan matrix and quantized Cartan matrix. We consider a generalized
Cartan matrix C = (Ci,j)1≤i,j≤n, i.e., Ci,j ∈ Z, Ci,i = 2, Ci,j ≤ 0 for i 6= j and Ci,j = 0 if
and only if Cj,i = 0. We set I = {1, . . . , n} and l = rank(C). In the following we suppose
that C is symmetrizable, that is to say that there is a matrix D = diag(r1, . . . , rn)
(ri ∈ N∗) such that B = DC is symmetric. We consider a realization (h,Π,Π∨) of C
(see [Kac]): h is a 2n − l dimensional Q-vector space, Π = {α1, . . . , αn} ⊂ h∗ (set of
the simple roots) and Π∨ = {α∨

1 , . . . , α∨
n} ⊂ h (set of simple coroots) are set so that

αj(α
∨
i ) = Ci,j for 1 ≤ i, j ≤ n. Let Λ1, . . . ,Λn ∈ h∗ (resp. the Λ∨

1 , . . . ,Λ∨
n ∈ h) be the

fundamental weights (resp. coweights) : Λi(α
∨
j ) = αi(Λ

∨
j ) = δi,j.
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Let

P = {λ ∈ h∗ | λ(α∨
i ) ∈ Z for all i ∈ I},

P+ = {λ ∈ P | λ(α∨
i ) ≥ 0 for all i ∈ I},

be respectively the weight lattice and the semigroup of dominant weights. Let Q =
⊕

i∈I Zαi ⊂ P (the root lattice) and Q+ =
∑

i∈I Nαi ⊂ Q. For λ, µ ∈ h∗, write λ ≥ µ
if λ − µ ∈ Q+. ∆ is the set of roots and ∆+ is the set of positive roots. Let ν : h∗ → h

linear such that for all i ∈ I we have ν(αi) = riα
∨
i . For λ, µ ∈ h∗, λ(ν(µ)) = µ(ν(λ)).

The matrix C is said to be of finite type if all its principal minors are positive.
The matrix C is said to be of affine type if all its proper principal minors are positive
and det(C) = 0. The indecomposable affine Cartan matrices can be divided into two
classes, the untwisted affines and the twisted affines (see [Kac] for the definition; the
list of twisted affine Cartan matrices will be reminded in Section 2.4). They give rise to
algebras and representation theories which are analog but of different nature for many
aspects, as for example we will see in the present paper.
In the following we suppose that q ∈ C∗ is not a root of unity. We choose h ∈ C such
that q = exp(h) so that qr makes sense for r ∈ Q. For l ∈ Z, r ≥ 0,m ≥ m′ ≥ 0 we
define in Z[q±] :

[l]q =
ql − q−l

q − q−1
, [r]q! = [r]q[r − 1]q...[1]q ,

[

m
m′

]

q

=
[m]q!

[m − m′]q![m′]q!
.

Note that we can also define [l]q for l ∈ Q (but then [l]q is no more in Z[q±1]).

2.2. Quantum Kac-Moody algebras. g is a Kac-Moody Lie algebra of Cartan ma-
trix C.

Definition 2.1. The quantum Kac-Moody algebra Uq(g) is the C-algebra with generators

k±1
i , x±

i (i ∈ I) and relations:

kikj = kjki , kix
±
j = q±riCi,jx±

j ki,

(1) [x+
i , x−

j ] = δi,j
ki − k−1

i

qri − q−ri
,

(2)
∑

r=0...1−Ci,j

(−1)r
[

1 − Ci,j

r

]

qri

(x±
i )1−Ci,j−rx±

j (x±
i )r = 0 (for i 6= j).

This algebra was introduced independently by Drinfeld [Dr1] and Jimbo [Jim]. The last
relations are called quantum Serre relations and can be rewritten in the form

∑

r=0...1−Ci,j

(−1)r(x±
i )(1−Ci,j−r)x±

j (x±
i )(r) = 0 (for i 6= j),

where we denote (x±
i )(r) = (x±

i )r/[r]qri ! for r ≥ 0 (we will also use the notation (x±
i )(r) =

0 for r < 0).
It is remarkable that one can define a Hopf algebra structure on Uq(g) by :

∆(ki) = ki ⊗ ki,
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∆(x+
i ) = x+

i ⊗ 1 + ki ⊗ x+
i , ∆(x−

i ) = x−
i ⊗ k−1

i + 1 ⊗ x−
i ,

S(ki) = k−1
i , S(x+

i ) = −x+
i k−1

i , S(x−
i ) = −kix

−
i ,

ǫ(ki) = 1 , ǫ(x+
i ) = ǫ(x−

i ) = 0.

The quantum Kac-Moody algebras corresponding to Cartan matrices of finite (resp. of
untwisted affine, twisted affine) types are called finite (resp. untwisted affine, twisted
affine) quantum algebras.
Let Uq(h) be the commutative subalgebra of Uq(g) generated by the k±1

i (i ∈ I).
For V a Uq(h)-module and ω ∈ P we denote by Vω the weight space of weight ω:

Vω = {v ∈ V |∀i ∈ I, ki.v = qriω(α∨
i )v}.

In particular we have x±
i .Vω ⊂ Vω±αi .

We say that V is Uq(h)-diagonalizable if V =
⊕

ω∈P
Vω (in particular V is of "type 1").

For V a finite dimensional Uq(h)-diagonalizable module we define the usual character :

χ(V ) =
∑

ω∈P

dim(Vω)eω ∈ Z[eω]ω∈P .

2.3. Untwisted quantum loop algebras. Let be g a simple finite-dimensional Lie
algebra of rank n. To g is associated an untwisted affine Kac-Moody algebra ĝ of rank
n + 1 and its quotient the loop algebra Lg. The nodes of the Dynkin diagram of ĝ

are indexed by {0, 1, · · · , n} where {1, · · · , n} correspond to the Dynkin diagram of g.
There is a unique c ∈

∑

0≤i≤n Nα∨
i and δ ∈ Q+ such that

{h ∈
∑

0≤i≤n

Zα∨
i |∀0 ≤ i ≤ n, αi(h) = 0} = Zc,

{h ∈ Q|∀0 ≤ i ≤ n, h(α∨
i ) = 0} = Zδ.

We consider the a∨i , ai ≥ 0 defined uniquely by c =
∑

0≤i≤n a∨i α∨
i and δ =

∑

0≤i≤n aiαi.

Then there is p ∈ N such that for any 0 ≤ i ≤ n, pa∨i = riai.
Let us give a quick review on the untwisted quantum loop algebras Uq(Lg). The

element
∏

0≤i≤n k
pa∨

i /ri

i =
∏

0≤i≤n kai
i is central in Uq(ĝ). Uq(Lg) is defined as a quotient

of the untwisted quantum affine algebra Uq(ĝ) by the relation
∏

0≤i≤n

kai
i = 1.

It is clear that Uq(Lg) inherits a Hopf algebra structure from Uq(ĝ). We use this algebra
as all finite dimensional representations of the quantum affine algebra Uq(ĝ) can be
factorized through Uq(Lg) (see [CP3]). Let us give the Drinfeld presentation of the
quantum loop algebra Uq(Lg) [Dr2, Bec, Jin]:

Theorem 2.2. Uq(Lg) is the algebra with generators x±
i,r (i ∈ I, r ∈ Z), k±1

i (i ∈ I),

hi,m (i ∈ I,m ∈ Z − {0}) and the following relations (i, j ∈ I, r, r′ ∈ Z,m ∈ Z − {0}):

[ki, kj ] = [kh, hj,m] = [hi,m, hj,m′ ] = 0,

kix
±
j,r = q±riCi,jx±

j,rki,
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[hi,m, x±
j,r] = ±

1

m
[mBi,j ]qx

±
j,m+r,

[x+
i,r, x

−
j,r′ ] = δi,j

φ+
i,r+r′ − φ−

i,r+r′

qri − q−ri
,

x±
i,r+1x

±
j,r′ − q±Bi,jx±

j,r′x
±
i,r+1 = q±Bi,jx±

i,rx
±
j,r′+1 − x±

j,r′+1x
±
i,r,

∑

π∈Σs

∑

k=0..s

(−1)k
[

s
k

]

qri

x±
i,rπ(1)

...x±
i,rπ(k)

x±
j,r′x

±
i,rπ(k+1)

...x±
i,rπ(s)

= 0,

where the last relation holds for all i 6= j, s = 1−Ci,j, all sequences of integers r1, ..., rs.

Σs is the symmetric group on s letters. For i ∈ I and m ∈ Z, φ±
i,m ∈ Uq(Lg) is

determined by the formal power series in Uq(Lg)[[z]] (resp. in Uq(Lg)[[z−1]]):
∑

m≥0

φ±
i,±mz±m = k±1

i exp(±(qri − q−ri)
∑

m′≥1

hi,±m′z±m′
)

and φ+
i,m = 0 for m < 0, φ−

i,m = 0 for m > 0.

One has a triangular decomposition

Uq(Lg) ≃ U+
q (Lg) ⊗ Uq(Lh) ⊗ U−

q (Lg)

where U±
q (Lg) (resp. Uq(Lh)) is the subalgebra generated by the x±

j,r (resp. the k±1
i

and the hi,m).
A Uq(Lg)-module V is said to be of l-highest weight if there is v ∈ V eigenvector of

all φ±
i,m such that V = Uq(Lg)−.v and ∀i ∈ I,m ∈ Z, x+

i,m.v = 0. For such a vector,

denote by γ = (γ±
i,±m)i∈I,m≥0 the corresponding eigenvalues of the φ±

i,±m. Note that we

have necessarily γ+
i,0γ

−
i,0 = 1. Moreover if this condition is satisfied, there is a unique

non trivial simple module L(γ) of l-highest weight γ.

Theorem 2.3. [CP3] The dimension of L(γ) is finite if and only if there exist poly-
nomials (Pi)i∈I , Pi(u) ∈ C[u], such that Pi(0) = 1 and γ satisfies in C[[u]] (resp. in
C[[u−1]]) :

∑

m≥0

γ±
i,±mu±m = qrideg(Pi)

Pi(uq−ri)

Pi(uqri)
.

Moreover all (type 1) simple finite dimensional representations of Uq(Lg) are of this
form.

For example for i ∈ I, a ∈ C∗, k ≥ 1 the simple module corresponding to

Pj(u) =

{

(1 − ua)(1 − uaq2ri) · · · (1 − uaq2(k−1)ri) for j = i,

1 for j 6= i,

is called a Kirillov-Reshetikhin module.
Let us define the Frenkel-Reshetikhin q-characters morphism χq [FR] (see also [Kn]).

Let V be a finite dimensional representation of Uq(Lgσ) and γ such that

Vγ = {v ∈ V |∃p ≥ 0,∀i ∈ I,∀m ≥ 0, (φ±
i,±m − γ±

i,±m)p = 0} 6= {0}.
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Then there exist [FR] polynomials (Pi)i∈I , (Qi)i∈I , Pi(u), Qi(u) ∈ C[u], such that
Pi(0) = Qi(0) = 1 and γ satisfies in C[[u]] (resp. in C[[u−1]]) :

γ±
i (u) = qri(deg(Pi)−deg(Qi))

Pi(uq−ri)Qi(uqri)

Pi(uqri)Qi(uq−ri)
.

Let Rep(Uq(Lg)) be the Grothendieck group of finite dimensional representations of
Uq(Lg).

Definition 2.4. [FR] The q-character morphism is the group morphism

χq : Rep(Uq(Lg)) → Z[Y ±
i,a]i∈I,a∈C∗ , χq(V ) =

∑

γ

dim(Vγ)mγ ,

where

mγ =
∏

i∈I,a∈C∗

Y
qi,a−ri,a

i,a , Pi(u) =
∏

a∈C∗

(1 − ua)qi,a , Qi(u) =
∏

a∈C∗

(1 − ua)ri,a .

Theorem 2.5. [FR] χq is an injective ring morphism. In particular the Grothendieck
ring Rep(Uq(Lg)) is commutative.

For i ∈ I, a ∈ C∗ let

Ai,a = Yi,aqri Yi,aq−ri ×
∏

j|Cj,i=−1

Y −1
j,a ×

∏

j|Cj,i=−2

Y −1
j,aqY

−1
j,aq−1

×
∏

j|Cj,i=−3

Y −1
j,aq−2Y

−1
j,a Y −1

j,aq2.

Theorem 2.6. [FR, FM] We have :

Im(χq) =
⋂

i∈I

(Z[Yi,a(1 + A−1
i,aqri )]a∈C∗ × Z[Yj,a]j 6=i,a∈C∗).

This result was obtained for non-simply quantum affine algebras in [N1] with a dif-
ferent method.

2.4. Twisted quantum loop algebras. g is a simple finite dimensional Lie algebra as
above. Consider an automorphism σ of the Dynkin diagram, that is to say a bijection
σ : I → I of the set I of nodes of the Dynkin diagram of g such that Cσ(i),σ(j) = Ci,j

for all i, j ∈ I. Let M be the order of σ. We study the twisted cases, that is to say we
suppose that M ≥ 2. From the classification of Dynkin diagram of finite type, we have
M ∈ {2, 3} and g is simply-laced (in fact g is of type An (n ≥ 2), Dn (n ≥ 4), or E6).

Iσ is the set of orbits of σ. For i ∈ I we denote by i ∈ Iσ the orbit of i.
The corresponding twisted affine Lie algebra ĝσ is a Kac-Moody algebra with a Cartan

matrix (Cσ
i,j)i,j∈Îσ

of affine type, where Îσ = Iσ ⊔ {ǫ} and ǫ is an additional node (see

[Kac]) : for type not equal to A
(2)
2n we have ǫ = 0 and Iσ = {1, · · · n}, and for type A

(2)
2n

we have ǫ = n and Iσ = {0, · · · , n − 1}. We denote by gσ the semi-simple Lie algebra
of Cartan matrix (Cσ

i,j)i,j∈Iσ (it is of finite type, but not simply-laced except for type

A
(2)
2 ).
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The twisted quantum loop algebra Uq(Lgσ) is defined as a quotient of the twisted
quantum affine algebra Uq(ĝ

σ) by the relation
∏

i∈Îσ
kai

i = 1 as for the untwisted quan-

tum loop algebra. It is clear that Uq(Lgσ) inherits a Hopf algebra structure from Uq(ĝ
σ).

In the following we denote by X±
i , Ki (0 ≤ i ≤ n) the Drinfeld-Jimbo generators of

Uq(Lgσ).
The root vectors of Uq(Lgσ), and in particular the Drinfeld generators x±

i,m ∈ Uq(Lgσ)

for i ∈ I, m ∈ Z (resp. hi,m ∈ Uq(Lgσ) for m ∈ Z) corresponding to the roots
±αi+mδ (resp. mδ) are defined in [Da] by using Drinfeld-Jimbo generators and Lusztig
automorphisms.

Let us introduce some notations. We set (d0, · · · , dn) equal to:

(
1

2
, 2) for type A

(2)
2 ,

(
1

2
, 1, · · · , 1, 2) for type A

(2)
2n (n ≥ 2),

(1, · · · , 1, 2) for type A
(2)
2n−1 (n ≥ 2),

(1, 2, · · · , 2, 1) for type D
(2)
n+1 (n ≥ 2),

(1, 1, 1, 2, 2) for type E
(2)
6 ,

(1, 1, 3) for type D
(3)
4 .

Here we use the numbering of [Kac] given in the following diagrams.

Twisted Affine Dynkin diagrams

• A
(2)
2 : 0

◦=<=
1
◦−−−−−−

• A
(2)
2n (n ≥ 2) :

0
◦=<=

1
◦−−

2
◦ · · ·

n-1
◦=<=

n
◦

• A
(2)
2n−1 (n ≥ 3) :

0
◦−−

2
◦−−

3
◦ · · ·

n-1
◦=<=

n
◦

|
◦ 1

• D
(2)
n+1 (n ≥ 2) :

0
◦=<=

1
◦−−

2
◦ · · ·

n-1
◦=>=

n
◦

• E
(2)
6 :

0
◦−−

1
◦−−

2
◦=<=

3
◦−−

4
◦

• D
(3)
4 :

0
◦−−

1
◦≡<≡

2
◦

We can choose for i ∈ Îσ, ri = di. Here we have an exception to the convention

ri ∈ N as for type A
(2)
2n , r0 = 1/2; this is not a problem as q

1
2 makes sense.

Remark : for i ∈ Iσ, we have

Ci,σ(i) = 0 ⇒ di = 1,

Ci,σ(i) = 2 ⇒ di = M,

Ci,σ(i) = −1 ⇒ di = 1/2.
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Let ω ∈ C be a primitive M th-root of 1. We denote qi = qdi for i ∈ Îσ.
For i, j ∈ I, define di,j ∈ Q and P±

i,j(u1, u2) ∈ Q[u1, u2] by :

if Ci,σ(i) = 2, then di,j = 1
2 and P±

i,j(u1, u2) = 1,

if Ci,σ(i) = 0 and σ(j) 6= j, then di,j = 1
4M and P±

i,j(u1, u2) = 1,

if Ci,σ(i) = 0 and σ(j) = j, then di,j = 1
2 and P±

i,j(u1, u2) =
uM
1 q±2M−uM

2
u1q±2−u2

,

if Ci,σ(i) = −1, then di,j = 1
8 and P±

i,j(u1, u2) = u1q
±1 + u2.

Note that Uq(Lgσ) has a Z-grading defined by deg(X+
i ) = deg(X−

i ) = deg(Ki) = 0
for i ∈ Iσ, deg(X+

ǫ ) = 1, deg(X−
ǫ ) = −1, deg(K±1

ǫ ) = 0. Then we have

deg(x±
i,r) = r , deg(hi,m) = m , deg(k±1

i ) = 0.

Definition 2.7. For m ∈ Z, i ∈ I, φ±
i,m ∈ Uq(Lg) is defined by the formal power series

in Uq(Lgσ)[[z]] (resp. in Uq(Lgσ)[[z−1]]):
∑

m≥0

φ±
i,±mz±m = k±1

i exp(±(qi − q−1
i

)
∑

m′≥1

hi,±m′z±m′
)

and φ+
i,m = 0 for m < 0, φ−

i,m = 0 for m > 0.

Let N+ =
∑

i∈I,m∈Z
Uq(Lgσ)x+

i,m.

Theorem 2.8. For i ∈ I, k ≥ 0, m ∈ Z we have :

∆(Ψ±
i,±k) =

∑

k′=0···k

Ψ±
i,±k′ ⊗ Ψ±

i,±(k−k′) mod (N+ ⊗ Uq(Lgσ) + Uq(Lgσ) ⊗ N+),

∆(x+
i,m) ∈ (N+ ⊗ Uq(Lgσ) + Uq(Lgσ) ⊗ N+).

For the case of A
(2)
2 see [CP5], in general see [Da, Proposition 7.1.2], [Da, Proposition

7.1.5] and [JM, Theorem 2.2].
Example : let Uτ

q = Uq(Lslτ3) where τ is the unique non trivial automorphism of the
Dynkin diagram of sl3. As there is only one orbit |Iτ | = 1, we can consider generators :

k±1, x±
m, hr (in the presentation of Uτ

q in [CP5], we have to replace q by q
1
2 as we choose

the normalization of [Jin]). As we will use it in the next sections, let us describe more
explicitly the algebra Uτ

q .

We have Cτ
1,0 = −1, Cτ

0,1 = −4, q1 = q2, q0 = q
1
2 . Uτ

q is the algebra with generators

X+
0 , X+

1 , X−
0 , X−

1 , K±1
0 , K±1

1 and relations :

K1 = K−2
0 ,

K0X
+
1 K−1

0 = q−2X+
1 , K0X

+
0 K−1

0 = qX+
0 ,

K0X
−
1 K−1

0 = q2X−
1 , K0X

−
0 K−1

0 = q−1X−
0 ,

[X+
1 ,X−

0 ] = [X+
0 ,X−

1 ] = 0 , [X+
0 ,X−

0 ] =
K0 − K−1

0

q
1
2 − q−

1
2

, [X+
1 ,X−

1 ] =
K1 − K−1

1

q2 − q−2
,

X0(X1)
(2) − X1X0X1 + (X1)

(2)X0 = 0,

X1(X0)
(5) − X0X1X

(4)
0 + X

(2)
0 X1X

(3)
0 − X

(3)
0 X1X

(2)
0 + X

(4)
0 X1X0 − X

(5)
0 X1 = 0.
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where X = X+ or X = X−.
Consider the Lusztig automorphisms T0, T1 of Uτ

q defined by (j 6= i) :

Ti(X
+
i ) = −X−

i Ki , Ti(X
−
i ) = −K−1

i X+
i , Ti(Kj) = K

−Ci,j

i Kj ,

Ti(X
+
j ) =

∑

r=0···−Ci,j

(−1)rq−r
i (X+

i )(−Ci,j−r)X+
j (X+

i )(r),

Ti(X
−
j ) =

∑

r=0···−Ci,j

(−1)rqr
i (X

−
i )(r)X−

j (X−
i )(−Ci,j−r).

We have :

T−1
i (X+

i ) = −K−1
i X−

i , T−1
i (X−

i ) = −X+
i Ki , T−1

i (Kj) = K
−Ci,j

i Kj ,

T−1
i (X+

j ) =
∑

r=0···−Ci,j

(−1)rq−r
i (X+

i )(r)X+
j (X+

i )(−Ci,j−r),

T−1
i (X−

j ) =
∑

r=0···−Ci,j

(−1)rqr
i (X

−
i )(−Ci,j−r)X−

j (X−
i )(r).

Let T = T1 ◦ T0. Then we have by definition :

x+
n = T−n(X+

0 ) , x−
n = T n(X−

0 ) , k±1 = K±1
0 .

Lemma 2.9. We have
K0 = k , X+

0 = x+
0 , X−

0 = x−
0 ,

K1 = k−2 , X+
1 = [4]−1

q
1
2
k−2[x−

0 , x−
1 ]q , X−

1 = [4]−1

q
1
2
q[x+

−1, x
+
0 ]q−1k2.

These relations are stated in [A] (note that the Cartan matrix of type A
(2)
2 used in

[A] is the transposed of the one in [KN]). An an illustration let us write the proof as it
is analog for all types :
Proof: By definition we have x+

0 = X+
0 and

x+
−1 = T (X+

0 ) = T1T0(X
+
0 ) = T1(−X−

0 K0) = −(X−
0 X−

1 − q2X−
1 X−

0 )K1K0.

Moreover from the relations

[X+
0 ,X−

0 ] = (K0 − K−1
0 )/(q1/2 − q−1/2) = 0 and [X+

0 ,X−
1 ] = 0

we get that x+
−1x

+
0 − q−1x+

0 x+
−1 is equal to

− (X−
0 X−

1 − q2X−
1 X−

0 )K1K0X
+
0 + q−1X+

0 (X−
0 X−

1 − q2X−
1 X−

0 )K1K0

=q−1[4]q1/2X−
1 K2

0 .

By definition we have

x−
1 = −K−1

1 K−1
0 (X+

1 X+
0 − q−2X+

0 X+
1 ) and x−

0 = X−
0 .

So by using the relation [X+
0 ,X−

0 ] = (K0 − K−1
0 )/(q1/2 − q−1/2) and [X−

0 ,X+
1 ] = 0 we

get that x−
0 x−

1 − qx−
1 x−

0 is equal to

− X−
0 K−1

1 K−1
0 (X+

1 X+
0 − q−2X+

0 X+
1 ) + qK−1

1 K−1
0 (X+

1 X+
0 − q−2X+

0 X+
1 )X−

0

=K2
0X+

1 q[4]q1/2 .
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�

Let us go back to the general case.
It is known that the Drinfeld generators generate the algebra Uq(ĝ

σ). The proof
is word by word the same as for the untwisted case which is given in [Bec] in the last
remark in the proof of [Bec, Theorem 4.7]. Let W be the Weyl group of ĝσ and W0 ⊂ W
the Weyl group of gσ. The Lusztig automorphisms are defined for any element of W .
For i ∈ Iσ, we have X±

i ∈ C∗x±
i,0, and so it suffices to check that X±

ǫ can be expressed
in terms of Drinfeld generators. Let θ = δ − αǫ. Let i 6= ǫ and sθi

∈ W0 such that

sθi
(αi) = θ in the weight lattice of gσ. Then we have X+

ǫ ∈ C[K±1
j ]j 6=ǫTθi

(x−
i (1)) (see

the proof of [Bec, Theorem 4.7]; this is analog for X−
ǫ ). We get explicit formulas for

X±
ǫ , see the formulas in [Dr2, JM]. For illustration of this result see Lemma 2.9 for

type A
(2)
2 , and for other types :

Type A
(2)
2n (n ≥ 2) : gσ is of type Bn and

θ = 2(αn−1 + αn−2 + · · · + α0) = (sn−1sn−2 · · · s1s0s1 · · · sn−2)(αn−1),

Type A
(2)
2n−1 (n ≥ 3) : gσ is of type Cn and

θ = α1 + 2(α2 + · · · + αn−1) + αn = (s2s3 · · · sn−1snsn−1 · · · s2)(α1),

Type D
(2)
n+1 (n ≥ 2) : gσ is of type Bn and

θ = α1 + α2 + · · · + αn = (s1s2 · · · sn−1)(αn),

Type E
(2)
6 : gσ is of type F4 and

θ = 2α1 + 3α2 + 2α3 + α4 = (s1s2s3s2s4s3s2)(α1),

Type D
(3)
4 : gσ is of type G2 and

θ = 2α1 + α2 = (s1s2)(α1).

(Note that for type A
(2)
2n the convention α0 = Λ0 − Λ1 is used).

The following is proved in [Da] (see Section 3, 4, Lemma 5.1 and Theorem 5.3.2 in
[Da]) :

Theorem 2.10. [Da] We have the relations (i, j ∈ I, r, r′ ∈ Z,m ∈ Z − {0}) :

(3) x±
σ(i),r = ωrx±

i,r , hσ(i),m = ωmhi,m , k±1
σ(i) = k±1

i ,

(4) [ki, kj ] = [ki, hj,m] = [hi,m, hj,m′ ] = 0,

(5) kix
±
j,r = q

±
P

k=1,··· ,M C
i,σk(j)x±

j,rki,

(6) [hi,m, x±
j,r] = ±

1

m
(
∑

k=1···M

[mCi,σk(j)/di]qi
ωmk)x±

j,m+r,

(7) [x+
i,r, x

−
j,r′ ] =

∑

k=1···M

δσk(i),jω
kr′

φ+
i,r+r′ − φ−

i,r+r′

qi − q−1
i

,

where the φ±
i,r are given in Definition 2.7.
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As a consequence we have a surjective map :

U+
q (Lgσ) ⊗ Uq(Lhσ) ⊗ U−

q (Lgσ) → Uq(Lgσ),

where U±
q (Lgσ) (resp. Uq(Lhσ)) is the subalgebra generated by the x±

i,m (resp. the hi,r

and the k±1
i ).

The following Drinfeld-Serre relations are stated in [Dr2, Jin] :

(8) (
∏

k=1···M

(u1 − ωkq
±C

i,σk(j)u2))x
±
i (u1)x

±
j (u2)

= (
∏

k=1···M

(u1q
±C

i,σk(j) − ωku2))x
±
j (u2)x

±
i (u1),

if Ci,j = −1 and σ(i) 6= j then (Sym denotes the symmetrization over u1, u2) :

(9) Sym{P±
ij (u1, u2)(x

±
j (v)x±

i (u1)x
±
i (u2)

−(q2mdij + q−2mdij )x±
i (u1)x

±
j (v)x±

i (u2) + x±
i (u1)x

±
i (u2)x

±
j (v))} = 0,

if Ci,σ(i) = −1 then (Sym denotes the symmetrization over u1, u2, u3) :

(10) Sym{(q
3
2 u∓1

1 − (q
1
2 + q−

1
2 )u∓1

2 + q−
3
2 u∓1

3 )x±
i (u1)x

±
i (u2)x

±
i (u3)} = 0,

(11) Sym{(q−
3
2 u±1

1 − (q
1
2 + q−

1
2 )u±1

2 + q
3
2 u±1

3 )x±
i (u1)x

±
i (u2)x

±
i (u3)} = 0,

where for i ∈ I, x±
i (u) =

∑

l∈Z
x±

i,lu
−l. At the time he wrote the paper, the author

could not complete the proof of these relations sketched in [Dr2, Jin], but he noticed
that these additional relations are not needed for the results of this paper and so are
not used.

In the case of Uτ
q , the following relations between Drinfeld generators k±1, hr, x±

m

(r 6= 0, m ∈ Z) are proved in [A, Appendix B] :

(12) kk−1 = k−1k = 1 , [k, hr] = [hr, hr′ ] = 0 , kx±
mk−1 = q±1x±

m,

(13) [x+
r , x−

r′ ] =
φ+

r+r′ − φ−
r+r′

q1/2 − q−1/2
,

(14) [hr, x
±
m] = ±

qr − q−r

r(q1/2 − q−1/2)
(qr + q−r + (−1)r+1)x±

r+m,

(15) x±
p x±

m+2 + (q∓1 − q±2)x±
m+1x

±
p+1 − q±1x±

mx±
p+2

= q±1x±
p x±

m+2 + (q±2 − q∓1)x±
p+1x

±
m+1 − x±

p+2x
±
m,

The following (conjectural) Drinfeld-Serre relations (16), (17) are not used in the present
paper :

(16) Sym(q3/2x±
k∓1x

±
l x±

m − (q1/2 + q−1/2)x±
k x±

l∓1x
±
m + q−3/2x±

k x±
l x±

m∓1) = 0,

(17) Sym(q−3/2x±
k±1x

±
l x±

m − (q1/2 + q−1/2)x±
k x±

l±1x
±
m + q3/2x±

k x±
l x±

m±1) = 0.



KIRILLOV-RESHETIKHIN CONJECTURE : THE GENERAL CASE 15

2.5. Finite dimensional representations of twisted quantum loop algebras.
Denote by Rep(Uq(Lgσ)) the Grothendieck ring of finite dimensional representations of
Uq(Lgσ) (we work with type 1 representations).

Definition 2.11. A Uq(Lgσ)-module V is said to be of l-highest weight if there is v ∈ V
eigenvector of all φ±

i,m such that V = Uq(Lgσ)−.v and ∀i ∈ I,m ∈ Z, x+
i,m.v = 0.

For such a vector, denote by γ = (γ±
i,±m)i∈I,m≥0 the corresponding eigenvalues of the

φ±
i,±m. Note that we have necessarily γ±

σ(i),±m = ω±mγ±
i,±m and γ+

i,0γ
−
i,0 = 1.

Moreover if these conditions are satisfied, a unique simple module L(γ) of l-highest
weight γ is considered in [CP5].

The following result was first stated in [CP5] :

Theorem 2.12. L(γ) is finite dimensional (and non trivial) if and only if there exist
polynomials (Pi)i∈I , Pi(u) ∈ C[u], such that Pi(0) = 1 and γ satisfies in C[[u]] (resp.
in C[[u−1]]) :

∑

m≥0

γ±
i,±mu±m = qMdeg(Pi)

Pi(u
Mq−M )

Pi(uM qM )
if i = σ(i),

∑

m≥0

γ±
i,±mu±m = qdeg(Pi)

Pi(uq−1)

Pi(uq)
if i 6= σ(i).

Moreover all (type 1) simple finite dimensional representations of Uq(Lgσ) are of this
form.

Remarks :
We have necessarily σ(i) 6= i ⇒ Pσ(i)(u) = Pi(ωu). Thus γ is determined by a set of

polynomials indexed by Iσ.
The case Ci,σ(i) = 0 is different than the case Ci,σ(i) = −1 in the statement of [CP5];

here we choose the normalization of [Jin] di = 1/2 if Ci,σ(i) = −1 which allows to unify
both cases.

A priori the fact that L(γ) is not trivial is not clear without the triangular decompo-
sition of Uq(Lgσ) (although this triangular decomposition should follow from the PBW
basis of [Da, A, BN]). We partly rewrite the proof of [CP5] with references or proof of
the relations between Drinfeld generators that are used (see the introduction).

The following relations were first stated in [CP5] :

Proposition 2.13. We have the following relations in Uτ
q for r ≥ 0:

(18) (x+
0 )(r)x+

1 = −q−3r/2[r − 1]q1/2x+
1 (x+

0 )(r) + q(−3r+3)/2x+
0 x+

1 (x+
0 )(r−1)

[h1, (x
+
0 )(r)][3]−1

q1/2 =(
q3(1−r)/2 + q(3−r)/2 − q(1−r)/2 − q−(r+1)/2

q1/2 − q−1/2
)x+

1 (x+
0 )(r−1)

+ q−r+2x+
0 x+

1 (x+
0 )(r−2)

(19)
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[(x0)
+, x−

1 ] =q(1−r)/2kh1(x
+
0 )(r−1)

+
q−r+1/2 + q−r−1/2 − q−r+5/2 − q−2r+5/2

q1/2 − q−1/2
kx+

1 (x+
0 )(r−2)

− q(−3r+5)/2kx+
0 x+

1 (x+
0 )(r−3)

(20)

[(x+
0 )(r), ẽ0] =q(3−r)/2K1x

−
1 (x+

0 )(r−1) + q2−r(q + q−1)k2h1(x
+
0 )(r−2)

+ q(6−3r)/2 q−5/2 + q−3/2 − q−3/2 − q−r+3/2

q1/2 − q−1/2
k2x+

1 (x+
0 )(r−3)

− q−2r+4k2x+
0 x+

1 (x+
0 )(r−4)

(21)

(22) ẽ0x
−
1 − q2x−

1 ẽ0 = 0

(23) [h1, ẽ
(r)
0 ] = q−2r+5/2(q1/2 − q−1/2)[3]q1/2 [4]q1/2 ẽ

(r−1)
0 (x−

1 )2

(24) [x+
0 , ẽ

(r)
0 ] = q−2r+2[4]q1/2 ẽ

(r−1)
0 x−

1 k

Proof: By definition we have x+
0 = X+

1 and

x+
−1 = T (X+

0 ) = T1T0(X
+
0 ) = T1(−X−

0 K0) = −(X−
0 X−

1 − q2X−
1 X−

0 )K1K0.

Moreover from the relation [X+
0 ,X−

0 ] = (K0−K−1
0 )/(q1/2−q−1/2) = 0 and [X+

0 ,X−
1 ] =

0 we get that x+
−1x

+
0 − q−1x+

0 x+
−1 is equal to

− (X−
0 X−

1 − q2X−
1 X−

0 )K1K0X
+
0 + q−1X+

0 (X−
0 X−

1 − q2X−
1 X−

0 )K1K0

=q−1[4]q1/2X−
1 K2

0 .

From the quantum Serre relation (X−
1 )2X−

0 − (q2 + q−2)X−
1 X−

0 X−
1 + X−

0 (X−
1 )2 = 0

we get
X−

1 (X−
1 X−

0 − q−2X−
0 X−

1 ) + (X−
0 X−

1 − q2X−
1 X−

0 )X−
1 = 0

−[x+
−1, x

+
0 ]q−1K2

0q−2x+
−1K0 + x+

−1K0[x
+
−1, x

+
0 ]q−1K2

0 = 0

−q−2[x+
−1, x

+
0 ]q−1x+

−1 + x+
−1[x

+
−1, x

+
0 ]q−1 = 0

(x+
−1)

2x+
0 − (q−1 + q−2)x+

−1x
+
0 x+

−1 + q−3x+
0 (x+

−1)
2 = 0

Now by applying the automorphism T−1 we get :

(x+
0 )2x+

1 − (q−1 + q−2)x+
0 x+

1 x+
0 + q−3x+

1 (x+
0 )2 = 0

This is the relation (18) with r = 2. Then the relation (18) for general r ≥ 2 follows
from the case r = 2 by induction on r as stated in [CP5].

We have [h1, x
+
0 ] = [2]q1/2x+

1 . This is the relation (19) with r = 1. Then by using

the relation (18) this relation (19) is proved by induction for general r ≥ 1 as stated in
[CP5].

We have [x+
0 , x−

1 ] = kh1. This is the relation (20) with r = 1. Then by using the
relation (18) and [x+

0 , x−
1 ] = kh1, [h1, x

+
0 ] = [2]q1/2x+

1 this relation (20) is proved by

induction for general r ≥ 1 as stated in [CP5].
Consider ẽ0 = x−

0 x−
1 − qx−

1 x−
0 . By definition we have

x−
1 = −K−1

1 K−1
0 (X+

1 X+
0 − q−2X+

0 X+
1 ) and x−

0 = X−
0 .
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So by using the relation [X+
0 ,X−

0 ] = (K0 − K−1
0 )/(q1/2 − q−1/2) and [X−

0 ,X+
1 ] = 0 we

get

ẽ0 = −X−
0 K−1

1 K−1
0 (X+

1 X+
0 − q−2X+

0 X+
1 ) + qK−1

1 K−1
0 (X+

1 X+
0 − q−2X+

0 X+
1 )X−

0

= K2
0X+

1 q[4]q1/2 .

So we have

x−
1 = −K−1

1 K−1
0

q−1

[4]q1/2

(K−2
0 ẽ0X

+
0 − q−2X+

0 K−2
0 ẽ0)

and so [x+
0 , ẽ0] = q[4]q1/2K0x

−
1 . This is exactly the relation (21) with r = 1. Then by

using the relation (18) and [x+
0 , x−

1 ] = kh1 this relation (21) is proved by induction for
general r ≥ 1 as stated in [CP5].

From the quantum Serre relation (X+
1 )2X+

0 − (q2 + q−2)X+
1 X+

0 X+
1 + X+

0 (X+
1 )2 = 0,

we get

ẽ0x
−
1 − q2x−

1 ẽ0 =q[4]q1/2(−K2
0X+

1 K−1
1 K−1

0 (X+
1 X+

0 − q−2X+
0 X+

1 )

+ q2K−1
1 K−1

0 (X+
1 X+

0 − q−2X+
0 X+

1 )K2
0X+

1 ) = 0.

This is precisely the relation (22).
We have

[h1, ẽ0] = [2]q1/2(1 + q + q−1)(−(x−
1 )2 − x0x

−
2 + qx−

2 x−
0 + q(x−

1 )2).

So from the relation (15) with p = m = 0, we get

[h1, ẽ0] = −q1/2(q1/2 − q−1/2)[3]q1/2 [4]q1/2(x−
1 )2.

This is precisely the relation (23) with r = 1. Then by using the relation (22) this
relation (23) is proved by induction for general r ≥ 1 as stated in [CP5].

The relation (21) with r = 1 is the relation (24) with r = 1. Then by using the
relation (22) this relation (24) is proved by induction for general r ≥ 1 as stated in
[CP5]. �

We can now end the proof of Theorem 2.12 :
Proof: First let us prove the "if" part. A simple finite dimensional representation
corresponding to (Pi)i∈Iσ is said to be fundamental if

∑

i∈Iσ
deg(Pi) = 1. For each

i ∈ I a fundamental representation such that deg(Pi) = 1 has been constructed in
[Kas] from level 0 fundamental extremal modules (see [N6] for the computation of the
corresponding Drinfeld polynomials). Then we get all fundamental representations by
twisting with the algebra automorphism τa : Uq(Lgσ) → Uq(Lgσ) defined by τa(X

+
i ) =

X+
i , τa(X

−
i ) = X−

i , τa(Ki) = Ki for i ∈ Iσ, τa(X
+
ǫ ) = aX+

ǫ , τa(X
−
ǫ ) = a−1X−

ǫ ,

τa(Kǫ) = Kǫ, that is to say τa(x
±
i,m) = amx±

i,m, τa(hi,m) = amhi,m and τa(ki) = ki. The
existence for general n-uplet of polynomials follows from Theorem 2.8.

So it suffices to prove the "only if" part for Uτ
q . We see how to prove it without using

relations (16) and (17) (other relations were proved in [A]). We follow the proof of [CP5]
without using these relations. The crucial point for this is [CP5, Proposition 4.2]. The
result is a consequence of the relations (7 - 16) in the proof of [CP5, Proposition 4.2].
So it suffices to prove that these relations hold. This is a consequence of Proposition
2.13 (the relation (14) of [CP5] is the relation (21) modified by using relations (19) and
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(20, the relations (15) and (16) of [CP5] follow from the previous relations as stated in
[CP5]). �

2.6. Subalgebras of Uq(Lgσ). The type of gσ corresponding to the type of ĝσ can be
read in the following table (here n ≥ 2) :

ĝσ A
(2)
2 A

(2)
2n A

(2)
2n−1 D

(2)
n+1 E

(2)
6 D

(3)
4

gσ A1 Bn Cn Bn F4 G2

Let Uq(g
σ) be the subalgebra of Uq(Lgσ) generated by the x±

i,0, k
±1
i where i ∈ Iσ. Let

Ũq(g
σ) be the subalgebra of of Uq(Lgσ) generated by the X±

i ,K±1
i , 1 ≤ i ≤ n.

If ĝσ is not of type A
(2)
2n , we have Uq(g

σ) = Ũq(g
σ) ≃ Uq(g

σ).

If ĝσ is of type A
(2)
2n where n ≥ 2, we have Uq(g

σ) ≃ U
q

1
2
(gσ) ≃ U

q
1
2
(Bn) and

Ũq(g
σ) ≃ Uq(Cn).

If ĝσ is of type A
(2)
2 , we have Uq(g

σ) ≃ U
q

1
2
(gσ) = U

q
1
2
(sl2) and Ũq(g

σ) ≃ Uq2(sl2).

Note that we have a natural grading of Uq(Lgσ) by the weight lattice of Uq(g
σ) and

by the weight lattice of Ũq(g
σ).

For i ∈ I, denote by Ûi the subalgebra of Uq(Lgσ) generated by the x±
i,m (m ∈ Z),

hi,r (r ∈ Z − {0}) and k±1
i . We have different cases [Da] :

• Ci,σ(i) = 2 : for m 6= 0[M ], we have 0 = (1 − ωm)x±
i,m = (1 − ωm)hi,m and so

x±
i,m = hi,m = 0. This implies φ±

i,m = 0. So Ui is generated by the x±
i,Mm, φi,Mm where

m ∈ Z. Moreover we have an algebra isomorphism :

UqM (Lsl2) → Ûi

x+
k 7→ x+

i,kM/M , x−
k 7→ x−

i,kM , φ±
m 7→ φ±

i,Mm.

• Ci,σ(i) = 0 : we have an algebra isomorphism

Uq(Lsl2) → Ûi

x+
k 7→ x+

i,k , x−
k 7→ x−

i,k , φ±
m 7→ φ±

i,m.

• Ci,σ(i) = −1 : we have an algebra morphism

Uτ
q → Ûi

x+
k 7→ x+

i,k , x−
k 7→ x−

i,k , φ±
m 7→ φ±

i,m.

In particular the "elementary" subalgebras Ûi may be of type A
(1)
1 or of type A

(2)
2 .

This is an important difference with the theory of untwisted quantum affine algebras

where all "elementary" subalgebras are of type A
(1)
1 and this is one of the reason why

several new technical developments are considered in the present paper.

Remark : the last situation Ci,σ(i) = −1 appears only for types A
(2)
2n .
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2.7. Invariant subalgebra of the quantum loop algebra. In [Jin], the following
subalgebra U ′

q(Lgσ) of Uq(Lg) is introduced. U ′
q(Lgσ) is generated by the :

x′±
i,r =

1

[di]qM
1
2

∑

s=0···M−1

x̃±
σs(i),mω−ms,

h′
i,m =

1

[di]q

∑

s=0···M−1

h̃σs(i),mω−ms , k′
i =

∏

s=0···M−1

k̃σs(i),

where the x̃±
i,m, h̃i,m, k̃±1

i are the generators of Uq(Lg).

In particular U ′
q(Lgσ) is a subalgebra invariant by the automorphism σ of Uq(Lg)

defined by
σ(k̃i) = k̃σ(i) , σ(x̃±

i,r) = ω−rx̃±
σ(i),r , σ(h̃i,r) = ω−rh̃σ(i),r.

But there are invariant elements which are not in this subalgebra as for example
∏

s=0···M−1 h̃σs(i),r.

The identification θ(x±
i,r) = x′±

i,r, θ(hi,m) = h′
i,m, θ(ki) = k′

i considered in [Jin] does

not give an isomorphism between Uq(Lgσ) and U ′
q(Lgσ). For example for Uτ

q we should

have θ(k) = k̃1k̃2, θ([x+
0 , x−

0 ]) =
k̃1k̃2−k̃−1

1 k̃−1
2

q
1
2 −q−

1
2

, but also

θ([x+
0 , x−

0 ]) =
1

2
([x̃+

1,0, x̃
−
1,0] + [x̃+

2,0, x̃
−
2,0])

=
1

2(q
1
2 − q−

1
2 )

(k̃1 − k̃−1
1 + k̃2 − k̃−1

2 ),

but we do not have

2(k̃1k̃2 − k̃−1
1 k̃−1

2 ) = k̃1 + k̃2 − k̃−1
1 − k̃−1

2

as k̃1 and k̃2 are algebraically independent in Uq(Lsl3).

Remark 2.14. Note that in the particular situations where we specialize

k̃1 = 1 or k̃2 = 1 or k̃1 = k̃−1
2 ,

the above relation is satisfied (but is does not imply that the morphism is well-defined
under this condition). This situation will appear in the next sections.

A priori it seems difficult to get direct information from the representation theory in
the untwisted case to the twisted case as in general :

Proposition 2.15. There is no algebra morphism θ : Uτ
q → Uq(Lsl3) satisfying one of

the following properties :
1) θ(x±

0 ) = α±(x̃±
1,0 + β±x̃±

2,0), where α+, α−, β+, β− ∈ C∗,

2) θ(k) = k̃1k̃2 and θ(x±
0 ) ∈ U±

q (Lsl3).

Proof:

1) We have :

θ([x+
0 , x−

0 ]) = α+α−([x̃+
1,0, x̃

−
1,0] + β+β−[x̃+

2,0, x̃
−
2,0])

=
α+α−

(q − q−1)
(k̃1 − k̃−1

1 + β+β−(k̃2 − k̃−1
2 )).



20 DAVID HERNANDEZ

So

θ(k − k−1) = α+α− k̃1 − k̃−1
1 + β+β−(k̃2 − k̃−1

2 )

[12 ]q
.

We have the relation (k − k−1)x+
0 = x+

0 (qk − q−1k). But θ((k − k−1)x+
0 ) is equal to :

α+α− k̃1 − k̃−1
1 + β+β−(k̃2 − k̃−1

2 )

[12 ]q
α+(x̃+

1 + β+x̃+
2 )

=
(α+)2α−

[12 ]q
(x̃+

1 (q2k̃1 − q−2k̃−1
1 + β+β−(q−1k̃2 − qk̃−1

2 ))

+ β+x̃+
2,r(q

−1k̃1 − qk̃−1
1 + β+β−(q2k̃2 − q−2k̃−1

2 ))),

and

θ(x+
0 (qk − q−1k−1)) = α+(x̃+

1 + β+x̃+
2 )(qθ(k) − q−1θ(k)−1).

So :

q2k̃1 − q−2k̃−1
1 + β+β−(q−1k̃2 − qk̃−1

2 )

= q−1k̃1 − qk̃−1
1 + β+β−(q2k̃2 − q−2k̃−1

2 ),

contradiction.
2) As kx+

0 = q±1x+
0 k, θ(x+

0 ) is a sum of elements with weight of form r1α1 + r2α2

where r1 + r2 = 1. By hypothesis r1, r2 ≥ 0. We get θ(x+
0 ) = ax̃+

1 + bx̃+
2 with a, b ∈ C.

In the same way θ(x−
0 ) = cx̃−

1 + dx̃−
2 . Contradiction as

[θ(x+
0 ), θ(x−

0 )] =
k̃1k̃2 − k̃−1

2 k̃−1
1

q
1
2 − q−

1
2

.

�

So a priori it is not clear if U ′
q(Lgσ) has a Hopf algebra structure or if its representation

theory is related to the one of Uq(Lgσ). As the main subject of this paper is to study
twisted quantum affine algebras, we will not discuss U ′

q(Lgσ) outside this section.
First from the triangular decomposition of Uq(Lg) we get a triangular decomposition

of U ′
q(Lgσ) :

U ′+
q (Lgσ) ⊗ U ′

q(Lhσ) ⊗ U ′−
q (Lgσ) ≃ U ′

q(Lgσ),

where U ′±
q (Lgσ) (resp. U ′

q(Lhσ)) is the subalgebra generated by the x′±
i,m (resp. the h′

i,r

and the k′±1
i ).

So we can define the simple U ′
q(Lgσ)-modules L̃(γ) as for Uq(Lgσ).

Proposition 2.16. Suppose that the conditions of Theorem 2.12 are satisfied by γ.
Then L̃(γ) is finite dimensional.

Proof: As U ′
q(Lgσ) is a subalgebra of Uq(Lg) the result is a direct consequence of

Theorem 2.3. �
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3. Twisted q-characters

In this section we develop the theory of twisted Frenkel-Reshetikhin q-characters
which is a crucial tool in the proofs of the conjectures in this paper. It is a generalization
of the theory for untwisted quantum affine algebras developed in [FR, FM]. For many
points the generalization is not straightforward, as for example the characterization of
the image. The existence of such a theory for twisted cases was expected in [FR, FM].

3.1. Definition. First let us explain the construction of twisted q-characters.

3.1.1. l-weight spaces. From the relation (4), the subalgebra Uq(Lhσ) ⊂ Uq(Lgσ) is
commutative. So for V a finite dimensional Uq(Lgγ)-module we have :

V =
⊕

γ=(γ±
i,±m)i∈I,m≥0

Vγ ,

where :
Vγ = {v ∈ V |∃p ≥ 0,∀i ∈ I,m ≥ 0, (φ±

i,±m − γ±
i,±m)p.v = 0}.

The Vγ are called the l-weight spaces of V . We prove in the following that the γ satisfying
Vγ 6= {0} have a particular form. For an l-weight γ we consider the generating series

γ+
i (z) =

∑

m≥0

γ+
i,mzm ∈ C[[z]] , γ−

i (z) =
∑

m≤0

γ−
i,−mz−m ∈ C[[z−1]].

3.1.2. Example : case of Uτ
q . We study Uτ

q .
For a ∈ C∗, the simple finite dimensional representation corresponding to P (u) =

1 − aq−1u is of dimension 3 and was explicitly constructed in [CP5] with Drinfeld
generators. Let us give this construction in terms of the Drinfeld-Jimbo generators.

Let V = Cv0 ⊕ Cv1 ⊕ Cv2. The action of Uτ
q is defined as follows

v0 v1 v2

X+
0 0 [2]

q
1
2
v0 [2]

q
1
2
v1

X−
0 v1 v2 0

K0 qv0 v1 q−1v2

X+
1 [4]−1

q
1
2
q(a(1 + q2))v2 0 0

X−
1 0 0 [4]−1

q
1
2
q−1[2]2

q
1
2
a−1(1 + q−2)v0

K1 q−2v0 v1 q2v2

We check directly that the relations and in particular the quantum Serre relations are
satisfied.
Proof:

The quantum Serre relations with i = 0 and j = 1 are trivial as (X+
0 )3 = (X−

0 )3 = 0
on the representation.

The quantum Serre relations with i = 1 and j = 0 are also clear as (X+
1 )2 =

(X−
1 )2 = 0 on the representation, and Im(X+

0 X+
1 ) = Cv1 ⊂ Ker(X+

1 ) so X+
1 X+

0 X+
1 = 0

on the representation, and Im(X−
0 X−

1 ) = Cv1 ⊂ Ker(X−
1 ) so X−

1 X−
0 X−

1 = 0 on the
representation.

The relations between the E,F and the K are clear by construction.
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We have [X+
0 ,X−

1 ] = 0 as Im(X−
1 ) = Cv0 ⊂ Ker(X+

0 ), and Im(X+
0 ) = Cv0 ⊕ Cv1 ⊂

Ker(X−
1 ) and so X−

1 X+
0 = X+

0 X−
1 = 0 on the representation. In the same way we have

[X+
1 ,X−

0 ] = 0.
The action of [X+

0 ,X−
0 ] is diagonal with eigenvectors (v0, v1, v2) with respective eigen-

values ([2]
q

1
2
, 0,−[2]

q
1
2
) and so is equal to the action of

K0−K−1
0

q
1
2 −q−

1
2

.

The action of [X+
1 ,X−

1 ] is diagonal with eigenvectors (v0, v1, v2) with respective eigen-

values (−
[2]

q
1
2

(1+q2)(1+q−2)

[4]
q
1
2

, 0,
[2]

q
1
2

(1+q2)(1+q−2)

[4]
q
1
2

) = (−1, 0, 1) and so is equal to the action

of
K1−K−1

1
q2−q−2 . �

We can compute the action in terms of the Drinfeld generators and we recover the
formulas of [CP5] (m ∈ Z, r ∈ Z − {0}) :

v0 v1 v2

x+
m 0 am[2]

q
1
2
v0 [2]

q
1
2
(−aq)mv1

x−
m amv1 (−aq)mv2 0

k qv0 v1 q−1v2
rhr

[2r]
q
1
2

(aq−1)rv0 ((−a)r − (aq)r)v1 −(−aq2)rv2

In particular for m > 0 :

φ±
±m.v0 = ±a±(q − q−1)v0

φ±
±m.v1 = ±(q − q−1)((−aq)±m − a±m)v1,

φ±
±m.v2 = ∓(q − q−1)(−aq)±mv2.

Remark : we are in the situation of remark 2.14.
It is checked in [CP5] that the relations between Drinfeld generators are satisfied.
We have the l-weight spaces C.v0 = Vγ0 , C.v1 = Vγ1 , C.v2 = Vγ2 where γ0, γ1, γ2 are

given by the above formulas. Let us compute the corresponding generating series. First
in C[[z]] (and in C[[z−1]] for the second identity):

γ+
0 (z) = q +

∑

m≥1

am(q − q−1)zm = q + (q − q−1)
az

1 − az
= q

1 − q−2az

1 − az
,

γ−
0 (z) = q−1 −

∑

m≥1

a−m(q − q−1)z−m = q−1 + (−q + q−1)
(az)−1

1 − (az)−1
= q

1 − aq−2z

1 − az
.
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In fact γ+
0 (z), γ−

0 (z) where already computed in [CP5] and correspond to the l-highest
weight. In the present paper we are also interested in the lower l-weights.

γ+
1 (z) = 1 +

∑

m≥1

(q − q−1)((−aq)m − am)zm

= 1 + (q − q−1)(
−aqz

1 + aqz
−

az

1 − az
) =

(1 − zaq2)(1 + zaq−1)

(1 + aqz)(1 − az)
,

γ−
1 (z) = 1 −

∑

m≥1

(q − q−1)((−aq)−m − a−m)z−m

= 1 + (−q + q−1)(
−(aqz)−1

1 + (aqz)−1
−

(az)−1

1 − (az)−1
)

=
(1 − (zaq2)−1)(1 + (zaq−1)−1)

(1 + (aqz)−1)(1 − (az)−1)
=

(1 − zaq2)(1 + zaq−1)

(1 + aqz)(1 − az)
,

γ+
2 (z) = q−1 −

∑

m≥1

(−aq)m(q − q−1)zm = q−1 + (−q + q−1)
−aqz

1 + aqz
= q−1 1 + q3az

1 + aqz
,

γ−
2 (z) = q +

∑

m≥1

(−aq)−m(q − q−1)z−m = q + (q − q−1)
(−aqz)−1

1 − (−aqz)−1
= q−1 1 + aq3z

1 + aqz
.

We have :

γ±
0 (z) = qdeg(P0) P0(zq−1)

P0(zq)
,

γ±
1 (z) = q(deg(P1)−deg(Q1)) P1(zq−1)Q1(zq)

P1(zq)Q1(zq−1)
,

γ±
2 (z) = q−deg(Q2) Q2(zq)

Q2(zq−1)
,

where P0(z) = (1 − azq−1), P1(z) = (1 + az), Q1(z) = (1 − azq), Q2(z) = (1 + zaq2).
In fact we can deduce from this observation the general statement :

Lemma 3.1. Let V be a finite dimensional representation of Uτ
q and γ be an l-weight of

V . Then there are polynomials P,Q ∈ C[z] such that P (0) = Q(0) = 1 and in C[[z±1]]
:

γ±(z) = q(deg(P )−deg(Q)) P (zq−1)Q(zq)

P (zq)Q(zq−1)
.

Proof: From the above computation and Theorem 2.8, Theorem 2.12, the result is
true for simple finite dimensional representations, and so for any finite dimensional
representations. �

3.1.3. Definition of twisted q-characters.

Theorem 3.2. Let V be a finite dimensional representation of Uq(Lgσ) and γ an l-
weight of V . Then there exists polynomials (Pi)i∈I , (Qi)i∈I , Pi(u), Qi(u) ∈ C[u], such
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that Pi(0) = Qi(0) = 1 and γ satisfies in C[[u]] (resp. in C[[u−1]]) :

γ±
i (u) = qM(deg(Pi)−deg(Qi))

Pi(u
Mq−M )Qi(u

M qM )

Pi(uMqM )Qi(uMq−M )
if i = σ(i),

γ±
i (u) = qdeg(Pi)−deg(Qi)

Pi(uq−1)Qi(uq)

Pi(uq)Qi(uq−1)
if i 6= σ(i).

Proof: It suffices to look at the subalgebras Ûi considered in section 2.6, and then the
result follows from Lemma 3.1 and Section 2.3. �

Remark : we have necessarily σ(i) 6= i ⇒ Pσ(i)(u) = Pi(ωu), Qσ(i)(u) = Qi(ωu).
First we can define the twisted version of the Frenkel-Reshetikhin q-characters mor-

phism χq [FR] (see also [Kn]) considered in section 2.3.
Let Rep(Uq(Lgσ)) be the Grothendieck group of (type 1) finite dimensional represen-

tations of Uq(Lgσ).

Definition 3.3. The twisted q-character morphism is the group morphism

χσ
q : Rep(Uq(Lgσ)) → Z[Y ±

i,a]i∈I,a∈C∗ , χσ
q (V ) =

∑

γ

dim(Vγ)mγ

where

mγ =
∏

i∈I,a∈C∗

Y
qi,a−ri,a

i,a , Pi(u) =
∏

a∈C∗

(1 − ua)qi,a , Qi(u) =
∏

a∈C∗

(1 − ua)ri,a ,

where Pi, Qi are the polynomials considered in Theorem 3.2.

The mγ are called monomials or l-weight (they are analogs of weight) and we denote
Vγ = Vmγ . Note that χσ

q also makes sense for finite dimensional representations of
Uq(Lhσ) which are a sub Uq(Lhσ) of a finite dimensional representation of Uq(Lgσ).

3.2. First properties. For each i ∈ Iσ choose a representative i ∈ Iσ. We can make
this choice such that

(Ci,j, Ci,σ(j), · · · , Ci,σM−1(j)) 6= (0, · · · , 0) ⇒ Ci,j = −1.

This choice is fixed in the following. Moreover we identify i and i.
Let i ∈ I such that i 6= σ(i). As above for any a ∈ C∗, r ∈ Z, qσr(i),a = qi,aωr and

rσr(i),a = ri,aωr . For a ∈ C∗, we put Zi,a =
∏

k=1···M Yσk(i),aωk .

Let i ∈ I such that i = σ(i). For a ∈ C∗, we put Zi,a = Yi,a.

As a conclusion, we have Im(χσ
q ) ⊂ Z[Z±1

i,a ]a∈C∗,i∈Iσ . In the following we will consider
the twisted q-character morphism :

χσ
q : Rep(Uq(Lgσ)) → Z[Z±

i,a]i∈Iσ ,a∈C∗ .

Theorem 3.4. χσ
q is an injective ring morphism.

Proof: The additivity is clear. As the {χσ
q (L)| L is simple} are linearly independent,

the map is injective. The multiplicity follows from Theorem 2.8. �

As in the untwisted case, we have the following consequence :

Corollary 3.5. The Grothendieck ring Rep(Uq(Lgσ)) is commutative.
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For J ⊂ Iσ, a monomial m =
∏

i∈Iσ,a∈C∗

Z
zi,a(m)
i,a is said to be J-dominant if for all

j ∈ J, a ∈ C∗ we have zj,a(m) ≥ 0. An Iσ-dominant monomials is said to be dominant.
In the following for M a finite dimensional Uq(Lgσ)-module, we denote by M(M) the
set of monomials occurring in χσ

q (M).

3.3. Restriction maps. The compatibility with the restriction functors requires addi-
tional work.

Let χσ : Rep(Ũq(g
σ)) → Z[z±1

i ]1≤i≤n be the usual character map (here we denote

zi = eΛi). Let

β : Z[Z±1
i,a ]a∈C∗,i∈Iσ → Z[z±1

i ]1≤i≤n,

be the ring morphism such that for any i ∈ Iσ, a ∈ C∗ :

β(Zi,a) =

{

zi if ĝσ 6= A
(2)
2n ,

zn−i if ĝσ = A
(2)
2n .

Eventually let resσ be the restriction map from Rep(Uq(ĝ
σ)) to Rep(Ũq(g

σ)).

Proposition 3.6. The following diagram is commutative :

Rep(Uq(ĝ
σ))

χσ
q

−−−−→ Z[Z±1
i,a ]i∈Iσ,a∈C∗





y
resσ





y

β

Rep(Uq(g
σ))

χσ

−−−−→ Z[z±1
i ]1≤i≤n

.

The analog result for untwisted quantum affine algebras was proved in [FR]. In

general the proof is modified, as for example for type A
(2)
2n , Uq(g

σ) and Ũq(g
σ) are not

isomorphic.
Proof: Let m be a monomial corresponding to ((Pi, Qi))i∈Iσ and let i ∈ Iσ.

If i = σ(i) : the multiplicity zi(m) of zi in β(m) is the sum of the multiplicities of
the Zi,a in m for a ∈ C∗, that is to say

zi(m) = deg(Pi) − deg(Qi).

The corresponding eigenvalue of ki is qM(deg(Pi)−deg(Qi)) = qdizi(m).
If i 6= σ(i) : the multiplicity zi(m) of zi in β(m) is the sum of the multiplicities of

the Zj,a in m for a ∈ C∗, j ∈ i, that is to say

zi(m) = M(deg(Pi) − deg(Qi))/M = deg(Pi) − deg(Qi).

The corresponding eigenvalue of ki is q(deg(Pi)−deg(Qi)) = qdizi(m).

If ĝσ is not of type A
(2)
2n , for i ∈ Iσ, qdizi(m) is the eigenvalue of ki = Ki ∈ Uq(ĝ

σ)

corresponding to z
zi(m)
i . So the result is clear.

For ĝσ of type A
(2)
2n and 0 ≤ i ≤ n − 1 the eigenvalue of ki is qzi(m). For 0 ≤ i ≤ n,

we have by definition :

Ki =

{

ki if 0 ≤ i ≤ n − 1,

(k0k1 · · · kn−1)
−2 if i = n.
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So the eigenvalue of Kn corresponding to m is q−2(z0(m)+···+zn−2(m)+zn−1(m)). Let V be
a representation of Uq(Lgσ) in Rep(Uq(Lgσ)). For m a monomial in the z±1

i , let nm be
the multiplicity of m in β(χσ

q (V )). We have :

χσ(resσ(V )) =
∑

m

nmz
z1(m)
1 z

z2(m)
2 · · · z

zn−1(m)
n−1 z−z0(m)−···−zn−2(m)−zn−1(m)

n .

By the usual invariance of characters by the Weyl group, we get that χσ(resσ(V )) is
equal to :
∑

m

nmz
z1(m)
1 z

z2(m)
2 · · · z

zn−2(m)+zn−1(m)
n−2 z

−zn−1(m)
n−1 z−z1(m)−···−zn−2(m)

n

=
∑

m

nmz
z1(m)
1 z

z2(m)
2 · · · z

zn−3(m)+zn−2(m)+zn−3(m)
n−3 z

−zn−1(m)
n−2 z

−zn−2(m)
n−1 z−z1(m)−···−zn−3(m)

n

= · · · =
∑

m

nmz
−zn−1(m)
1 z

−zn−2(m)
2 · · · z

−z1(m)
n−1 z−z0(m)

n .

As the Dynkin diagram of type C has no non trivial Dynkin automorphism, the character
of a Uq(g

σ)-module is invariant by the transformation satisfying for any 1 ≤ i ≤ n,

zi 7→ z−1
i . We can conclude that β(χσ

q (V )) = χσ(resσ(V )). �

Let χσ : Rep(Uq(g
σ)) → Z[z±1

i ]i∈Iσ and

β : Z[Z±1
i,a ]a∈C∗,i∈Iσ → Z[z±1

i ]i∈Iσ ,

be the ring morphism such that for any a ∈ C∗, i ∈ Iσ :

β(Zi,a) =

{

zi if (ĝσ, i) 6= (A
(2)
2n , 0),

z2
0 if (ĝσ, i) = (A

(2)
2n , 0).

It is somewhat analog to a such a morphism considered in [HKOTT]. Eventually let
resσ be the restriction map from Rep(Uq(ĝ

σ)) to Rep(Uq(g
σ)).

Proposition 3.7. The following diagram is commutative :

Rep(Uq(ĝ
σ))

χσ
q

−−−−→ Z[Z±1
i,a ]i∈Iσ ,a∈C∗





y
resσ





y
β

Rep(Uq(g
σ))

χσ

−−−−→ Z[z±1
i ]i∈Iσ

.

Proof: We follows the proof of Proposition 3.6. In the case A
(2)
2n , the eigenvalue of K0

is qz0(m) = (q
1
2 )2z0(m), that is why z0 has to be replaced by z2

0 in the definition of β. �

3.4. Examples. Let us look at two examples which will be crucial for the following.
For Uq(Lsl2), we have χq(Va) = Ya+Y −1

aq2 , where Va is a two dimensional fundamental

representation of Uq(Lsl2). We have (in fact it is a particular case of Theorem 2.6) :

Proposition 3.8. [FR] We have Im(χq) = Z[(Ya + Y −1
aq2 )]a∈C∗ .
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For Uτ
q , we have

χτ
q (Va) = Y1,aY2,−a + Y1,−aq2Y −1

1,aq4Y2,aq2Y −1
2,−aq4 + Y −1

1,−aq6Y
−1
2,aq6

= Za + Z−aq2Z−1
aq4 + Z−1

−aq6

where Va is the representation described in section 3.1.2. In particular

Proposition 3.9. We have Im(χτ
q ) = Z[Za + Z−aq2Z−1

aq4 + Z−1
aq6 ]a∈C∗.

Remark : consider the fundamental representations V1(a), V2(a) of the untwisted
algebra quantum affine algebra Uq2(Lsl3). We have :

χq(V1(a)) = Y1,a + Y −1
1,aq4Y2,aq2 + Y −1

2,aq6 ,

χq(V2(a)) = Y2,a + Y −1
2,aq4Y1,aq2 + Y −1

1,aq6 .

Consider the ring morphism π : Z[Y ±
1,a, Y

±
2,a]a∈C∗ → Z[Z±

a ]a∈C∗ defined by π(Y1,a) = Za

and π(Y2,a) = Z−a. Then :

π(χq(V1(a))) = χτ
q (Va) , π(χq(V2(a))) = χτ

q (V−a).

So Im(χτ
q ) = π(Im(χq)). This a particular case of a more general relation between

twisted and untwisted case that we will study below (in section 8).

Let us look at another example : consider the type A
(2)
4 and the fundamental repre-

sentation V1(a). We have :

χσ
q (V1(a)) = Z1,a + Z−1

1,aq2Z0,aq + Z−1
0,aq3Z0,−aq2 + Z−1

0,−aq4Z1,−aq3 + Z−1
1,−aq5 .

In particular we have

χσ(resσ(V1(a))) = (z1 + z2z
−1
1 + z1z

−1
2 + z−1

1 ) + 1 = χσ(V (Λ1) ⊕ V (0)),

χσ(resσ(V1(a))) = z1 + z−1
1 z2

0 + 1 + z1z
−2
0 + z−1

1 = χσ(V (Λ1)),

where the V (λ) (resp. V (λ)) are the simple representations of Uq(g
σ) (resp. Uq(g

σ)).
In particular resσ(V1(a)) is not simple, but resσ(V1(a)) is simple. These branching rules
were known as V1(a) is a fundamental representation, but more general branching rules
will be proved in Section 9.

This representation V1(a) has a also crystal basis [Kas] and the crystal graph can be
computed (see [KKMMNN]) :

v5 00

v3 v4 v1 v2
1 2 1

Figure 1. (Type A
(2)
4 ) the crystal of V1(a)

By erasing the 0-arrows we get the Ũq(g
σ)-crystal graph which is not connected.
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In fact we can have the identification (see the discussion in the last section of [HN]) :

(V1(a))Z1,a = C.v1 , (V1(a))Z−1

1,aq2
Z2,aq

= C.v2 , (V1(a))Z−1

2,aq3
Z2,−aq2

= C.v5,

(V1(a))Z−1

2,−aq4
Z1,−aq3

= C.v3 , (V1(a))Z−1

1,−aq5
= C.v4.

To get the graph associated with twisted q-characters as in [FR], we should add a 2-
arrow from v2 to v5 and from v5 to v2 (see section 11.2 for the general definition of such
a graph).

Note that by renumbering the nodes (0, 1, 2) ↔ (2, 1, 0) we get the crystal graph of

V1(a) viewed as a representation of type A
(2)†

4 (see [HN] for example). By erasing the

0-arrows we get the Uq(g
σ)-crystal graph which is connected.

v1 v2 v5 v3 v4
1 2 2 1

0

Figure 2. (Type A
(2)†

4 ) the crystal of V1(a)

3.5. Combinatorics of twisted q-characters. The aim of this section is to compute
Im(χσ

q ), and so to prove an analog of Theorem 2.6 for twisted q-characters (Theorem
3.13).

Let ǫi defined by ǫi = M if i = σ(i), and ǫi = 1 if i 6= σ(i).
For i, j ∈ I and m 6= 0 denote

Fi,j(m) =
∑

k=1···M

[ǫimCi,σk(j)/di]qi
ωǫimk.

In fact this definition is set such that :

[hi,ǫim, x±
j,r] = ±

1

ǫim
Fi,j(m)x±

j,ǫim+r.

We remind that this is the relation (6) proved in [Da, Theorem 5.3.2].
As we choose a class of representative of Iσ, it makes sense to consider the matrix

F (m) = (Fi,j(m))i,j∈Iσ .

Lemma 3.10. For a generic parameter q, for any m ∈ Z − {0} the matrix F (m) is

invertible and the diagonal coefficients of the inverse matrix F̃ (m) of F (m) are non
zero.

Here q generic means that there is a finite set of algebraic equations such that for
any m ∈ Z, qm is not a solution of one of these equations.
Proof: Let Dm(q) be the determinant of

F ′(m) = (
∏

i∈Iσ

(qi − q−1
i

))F (m)
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and for i ∈ Iσ, let Di,m(q) be the determinant of

(
∏

j∈Iσ,j 6=i

(qj − q−1
j

))(Fj,k(m))j,k∈Iσ,j 6=i,k 6=i.

Then there are D(z) ∈ C[z±1] and Di(z) ∈ C[z±1] such that for any m ∈ Z :

Dm(q) = D(qm) and Di,m(q) = Di(q
m).

So it suffices to prove that D(z) 6= 0 and Di(z) 6= 0. By looking at the degree in q of
the coefficients of F ′(m), we notice that for each row i the maximal degree is on the
diagonal where qǫi2m appears. The coefficient of qǫi2m is 1 if i 6= σ(i) and M if i = σ(i).

So the maximal degree in P (z) is 2
∑

i∈Iσ
ǫi and the coefficient of z2

P

i∈Iσ
ǫi in P (z) is

∏

i∈Iσ
ǫi, so P (z) 6= 0.

A similar argument gives the result for Di(z). �

In the untwisted case, it suffices to suppose that q is not a root of unity to have a
similar result (see [FR, FM]). For the untwisted case it is not true in general : indeed

for type D
(3)
4 we have

Dm(q) = 3(qm − q−m)(q3m − q−3m)(q4m + q−4m + q2m + q−2m − 1 − jm − j2m)

and so for m ∈ Z, we have D3m(q) = 0 if Q = q6m + q−6m satisfies the equation

Q2 + Q− 5 = 0. We get for example q = (2(21)
1
2 − 6)

1
2 /2 which is obviously not a root

of one.

Lemma 3.11. For types A
(2)
2n , the statement of Lemma 3.10 it satisfied if q is not a

root of unity.

Proof: Let us denote D
(n)
m (q) = Dm(q) and D

(n)
i,m(q) = Di,m(q) for type A

(2)
2n . From

classical result we have

D(n)
n,m(q) =

qmn − q−mn

qm − q−m
.

Moreover by developing the determinant we have :

D(n)
m (q) = (qm + q−m − (−1)m)D(n)

n,m(q) − D
(n−1)
n−1,m(q)

=
(1 + (−q−2n−1)m)((qn+1)m − (−qn)m)

qm − q−m
,

whose roots are roots of unity. We can conclude as

D
(n)
i,m(q) = D

(i)
i,m(q)D(n−i)

m (q).

�

Note that ǫi is crucial in the definition of F (m) : indeed if σ(i) = i and m 6= 0 mod M ,
then the determinant of the matrix defined with 1 instead of ǫi is 0. In fact this follows
from the fact that in this case hi,m = 0. In particular we do not loose information by
using the ǫi.

In the following we suppose that q is generic, that is to say that the conditions of
Lemma 3.10 are satisfied.
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F̃ (m) = (F̃i,j(m))i,j∈Iσ is the inverse matrix of F (m). For m 6= 0 and i ∈ Iσ let us
define

h̃i,m =
∑

j∈Iσ

F̃i,j(m)hj,ǫjm.

Remark : as for i, j ∈ I, Fσ(i),j(m) = ωǫimFi,j(m), we have F̃i,σ(j)(m) = ω−ǫjmF̃i,j(m).

Moreover we have h̃σ(j),ǫjm = ωǫjmh̃j,ǫjm, so F̃i,j(m)hj,ǫjm does not depend of the

choice of the representative j. Moreover C.h̃i,m does not depend of the choice of the
representatives of Iσ.

Let i ∈ Iσ and
Uq(h

σ)⊥i = {K ∈ C[k±
i ]i∈I |[Ûi,K] = 0}.

Let Uq(Lhσ)⊥i be the subalgebra of Uq(Lh) generated by Uq(h
σ)⊥i and the h̃j,m, j ∈ Iσ,

j 6= i, m 6= 0.
For γ an l-weight, we denote by τi(γ) the couple (γi(z), γ′

i) where γ′
i : Uq(Lhσ)⊥i → C is

the algebra morphism induced by γ. τi can be extended to a map :

τi : Z[Zj,a]j∈Iσ,a∈C∗ → Z[Zi,a]a∈C∗ ⊗ (Uq(Lhσ)⊥i )∗.

Note that τi is clearly injective. We set ui(τi(m)) = zi(m), so ui is well-defined on
Im(τi).

Lemma 3.12. Let V ∈ Rep(Uq(Lg)) and consider a decomposition :

τi(χ
σ
q (V )) =

∑

r

Pr ⊗ Qr,

where all monomials Qr ∈ (Uq(Lhσ)⊥i )∗ are distinct. Then the Ûi-module V is isomor-

phic to a direct sum V =
⊕

r
Vr where the twisted q-character of the Ûi-module Vr is

Pr.

There are previous analog results for untwisted cases ([FM, Lemma 3.4]) and untwisted
general quantum affinizations ([H2, Lemma 5.10]).
Proof: For i ∈ I, we have

hi,ǫim =
∑

j∈Iσ

Fi,j(m)h̃j,m.

As moreover for i ∈ Iσ, F̃i,i(m) 6= 0, we have :
⊕

j∈Iσ

Chi,ǫim =
⊕

j∈Iσ

Ch̃j,m = Chi,ǫim ⊕
⊕

j∈Iσ,j 6=i

Ch̃j,m.

From the relation (6) proved in [Da, Theorem 5.3.2], for j 6= i we have [Ûi, h̃j,m] = 0. We

have [Ûi,Uq(Lhσ)⊥i ] = 0 and Uq(Lh) is generated by Uq(Lhσ)⊥i and the k±1
i , hi,r, r 6= 0.

As Uq(Lhσ)⊥i is commutative, it suffices to decompose V in common eigensubspaces for

all elements of Uq(Lhσ)⊥i . �

For i ∈ Iσ, we denote j ∼ i if j ∈ Iσ and Ci,j = −1.
For i ∈ Iσ, a ∈ C∗, let us define elements Ai,a ∈ Z[Zj,b]j∈Iσ,b∈C∗ analogs of simple root
for monomials. In [FR] the definition of the Ai,a in the untwisted case was given. For
the twisted case we have a new definition with modifications. Indeed for a ∈ C∗, i ∈ Iσ
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we set :
If Ci,σ(i) = 2 :

Ai,a = Zi,aqM Zi,aq−M ×
∏

j∼i|j=σ(j)

Z−1
j,a ×

∏

j∼i|j 6=σ(j)

(
∏

a′∈C∗|(a′)M =a

Z−1
j,a′).

If Ci,σ(i) = 0 :

Ai,a = Zi,aqZi,aq−1 ×
∏

j∼i|j=σ(j)

Z−1
j,aM ×

∏

j∼i|j 6=σ(j)

Z−1
j,a .

If Ci,σ(i) = −1 :

Ai,a = Zi,aqZi,aq−1Z−1
i,−a ×

∏

j∼i

Z−1
j,a .

The motivation for the definition of the Ai,a will appear in the proof of Theorem 3.13.
For i ∈ Iσ such that Ci,σ(i) = 2 define

Ki = Z[Zi,a(1 + A−1
i,aqM )]a∈C∗ × Z[Z±1

j,a ]j∈Iσ,j 6=i,a∈C∗.

For i ∈ Iσ such that Ci,σ(i) = 0 define

Ki = Z[Zi,a(1 + A−1
i,aq)]a∈C∗ × Z[Z±1

j,a ]j∈Iσ,j 6=i,a∈C∗.

For i ∈ Iσ such that Ci,σ(i) = −1 define

Ki = Z[Zi,a(1 + A−1
i,aq + A−1

i,aqA
−1
i,−aq2)]a∈C∗ × Z[Z±1

j,a ]j∈Iσ,j 6=i,a∈C∗.

Let us state and prove the analog of Theorem 2.6 for the twisted cases, which is the
main result of this section :

Theorem 3.13. We have Im(χσ
q ) =

⋂

i∈Iσ
Ki.

Proof: First let us prove that Im(χσ
q ) ⊂

⋂

i∈Iσ
Ki.

We start with the decomposition of Lemma 3.12. On each component Vr, γ′
i is

constant. For γ an l-weight satisfying γ′
i = 0, we have for l ∈ Iσ and m 6= 0,

Fi,i(m)γ(hl,ǫlm) = Fl,i(m)γ(hi,ǫim).

So if we have a given γi(z) we can determine uniquely and explicitly a corresponding
γ(z). So it suffices to prove that the monomials Ai,a defined above are the monomials

corresponding by this process to the Ai,a for the subalgebra Ûi. Let us check it case by
case.

Let i, j ∈ iσ such that i 6= j and Ci,j = −1.
Remark : we can not have simultaneously Ci,σ(i) = 2 and Cj,σ(j) = −1.
We study the different cases corresponding to the values of Ci,σ(i) in {−1, 0, 2}.

• Ci,σ(i) = 2. We have Fi,i(m) = M q2mM−q−2mM

qi−q−1

i

. From the sl2-case we set for

m ∈ Z − {0} :

γ(hi,mM ) =
qmM − q−mM

m(qM − q−M )
(−(aq−M )m − (aqM )m).
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If Cj,σ(j) = 2 : we have in this situation di = dj , and :

Fj,i(m) = M
q−mM − qmM

qj − q−1
j

.

So γ(hj,mM ) is equal to :

qi − q−1
i

M(q2mM − q−2mM )
M

q−mM − qmM

qj − q−1
j

×
qmM − q−mM

m(qM − q−M )
(−(aq−M )m − (aqM )m)

=
q−mM − qmM

q2mM − q−2mM

qmM − q−mM

m(qM − q−M)
am(−q−mM − qmM ) =

qmM − q−mM

m(qM − q−M )
am.

This corresponds to Zj,a.

If Cj,σ(j) = 0 : we have in this situation di = M and dj = 1. We denote δ
[M ]
m equal

to 1 if m = 0 mod[M ] and equal to 0 otherwise. We have :

Fj,i(m) = M
q−m − qm

q − q−1
δ[M ]
m .

Let a′ ∈ C∗ such that (a′)M = a. We have

γ(hj,m) =
qM − q−M

M(q2m − q−2m)
M

q−m − qm

q − q−1
×

M(qm − q−m)

m(qM − q−M )
(a′)m(−qm − qm)δ[M ]

m

=
(qm − q−m)

m(q − q−1)
M(a′)mδ[M ]

m =
(qm − q−m)

m(q − q−1)

∑

b∈C∗|bM =a

bm.

This corresponds to
∏

{b∈C∗|bM=a} Zj,b.

The case Cj,σ(j) = −1 can not occur.

• Ci,σ(i) = 0 : We have Fi,i(m) = q2m−q−2m

qi−q−1

i

. From the sl2-cases we set for m ∈ Z−{0}

:

γ(hi,m) =
qm − q−m

m(q − q−1)
(−(aq−1)m − (aq)m).

If Cj,σ(j) = 2 : we have in this situation di = 1 and dj = M . So we have

Fj,i(m) =
q−mM − qmM

qM − q−M
M,

γ(hj,mM ) = M
q−mM − qmM

qM − q−M

q − q−1

q2mM − q−2mM
×

qmM − q−mM

mM(q − q−1)
(−(aq−1)mM − (aq)mM )

=
qmM − q−mM

m(qM − q−M )
(aM )m.

This corresponds to Zj,aM .
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If Cj,σ(j) = 0 : we have in this situation di = dj = 1. We have :

Fj,i(m) =
q−m − qm

q − q−1
.

γ(hi,m) =
q−m − qm

q − q−1

qm − q−m

m(q − q−1)
(−(aq−1)m − (aq)m)

q − q−1

q2m − q−2m
= am qm − q−m

m(q − q−1)
.

This corresponds to Zj,a.

If Cj,σ(j) = −1 : we have in this situation dj = 1
2 and di = 1. So we have

Fj,i(m) =
q−m − qm

q
1
2 − q−

1
2

.

γ(hi,m) =
q−m − qm

q
1
2 − q−

1
2

qm − q−m

m(q − q−1)
(−(aq−1)m − (aq)m)

q − q−1

q2m − q−2m

= am (q
1
2 )m − (q

1
2 )−m

m(q
1
2 − q−

1
2 )

.

This corresponds to Zj,a.
• Ci,σ(i) = −1. The cases Cj,σ(j) = 2 and Cj,σ(j) = −1 do not occur. So Cj,σ(j) = 0.

We have di = 1
2 and dj = 1. We have

Fi,i(m) = [4m]
q

1
2

+ (−1)m[−2m]
q

1
2

=
q2m − q−2m + (−1)mq−m − (−1)mqm

q
1
2 − q−

1
2

=
(qm − q−m)(qm + q−m − (−1)m)

q
1
2 − q−

1
2

.

From the case of Uτ
q , we set

γ(hi,m) =
(q

1
2 )2m − (q

1
2 )−2m

m(q
1
2 − q−

1
2 )

(−(aq)m − (aq−1)m + (−a)m)

=
qm − q−m

m(q
1
2 − q−

1
2 )

am(−qm − q−m + (−1)m).

So Fj,i(m) = q−m−qm

q−q−1 and

γ(hj,m) =
qm − q−m

m(q
1
2 − q−

1
2 )

am(−qm − q−m + (−1)m)

×
q−m − qm

q − q−1

q
1
2 − q−

1
2

(qm − q−m)(qm + q−m − (−1)m)
=

qm − q−m

m(q − q−1)
am.

This corresponds to Zj,a.
Now we prove the other inclusion. Here we consider the usual order on the integral

weight lattice of gσ. For χ ∈
⋂

i∈Iσ
Ki non equal to 0, an highest weight element is

clearly dominant in the sense of monomials. So a non zero element of
⋂

i∈Iσ
Ki has
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at least one dominant monomial. As the twisted q-characters of simple modules give
elements in Im(χσ

q ) of the form

m + elements of lower weight,

it suffices to prove that there is a finite number of possible weights corresponding to
dominant monomials lower than m. For such an m′, we have

β(m) = β(m′) +
∑

i∈Iσ

aiαi where for any i ∈ Iσ, ai ≥ 0.

As the Cartan matrix of gσ is of finite type and so invertible, there are bi ∈ Q such that
β(m) =

∑

i∈Iσ
biαi. So we have

β(m′) =
∑

i∈Iσ

(bi − ai)αi.

From [Kac, Theorem 4.3], we have bi − ai ≥ 0 for any i, and so 0 ≤ ai ≤ bi. As the bi

are fixed, there is only a finite number of possible ai ∈ Z. �

It is possible to define corresponding twisted screening operators such that Ki =
Ker(Si) (see [FR] for the untwisted case).

As explained in the proof of Theorem 3.13, we have :

Corollary 3.14. A non-zero element of Im(χσ
q ) has at least one dominant monomial.

In particular an element of Im(χσ
q ) with a unique dominant monomial is uniquely

determined by this monomial.

For j ∈ Iσ and m ∈ A denote m(j) =
∏

a∈C∗

Z
zj,a(m)
j,a . For a ∈ C∗ consider Aj,±

j,a = (A±
j,a)

(j).

Define

µI
j : Z[AJ,±

j,a ]a∈C∗ → Z[A±
j,a]a∈C∗

as the ring morphism such that µI
j (A

j,±
j,a ) = A±

j,a. For m ∈ Bj, denote Lj(m(j)) the

(twisted) q-characters defined for the sub (twisted) quantum affine algebra Ûj . Define :

Lj(m) = mµI
j ((m

(j))−1Lj(m
(j))).

We have :

Proposition 3.15. For a module V ∈ Rep(Uq(Lgσ)) and j ∈ Iσ, there is unique de-
composition in a finite sum :

χσ
q (V ) =

∑

m′∈Bj

λj(m
′)Lj(m

′).

Moreover for all m′, λj(m
′) ≥ 0.

See [H3, Proposition 3.9] for the analog result in the untwisted case. The proof in
the twisted case is analog by using Theorem 3.12 and Lemma 3.13.
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3.6. Additional definitions. As the A−1
i,a are algebraically independent (as the ma-

trices F (m) are invertible), for M a product of A−1
i,a we can define vi,a(M) ≥ 0 by

M =
∏

i∈Iσ,a∈C∗

A
−vi,a(m)
i,a . We put v(M) =

∑

i∈Iσ,a∈C∗

vi,a(m).

We denote m ≤ m′ if m′m−1 is a product of Ai,a (i ∈ I, a ∈ C∗). This partial ordering
is called the partial ordering in the sense of monomials.
We remind the maps β, β defined in Section 3.3. For m a monomial, we can consider
β(m) (resp. β(m)) as an element of the weight lattice of Uq(g

σ) (resp. Uq(g
σ).

For λ in the weight lattice of Uq(g
σ), we set

v(λ) = −λ(Λ∨
1 + ... + Λ∨

n).

For a product P of A−1
i,a , we have v(P) = v(β(P)). So the map v can be extended to

any monomial.
For the untwisted case, the notion of right-negative monomial was introduced in [FM].

The definition in the untwisted case is modified :

Definition 3.16. Suppose that ĝσ is not of type A
(2)
2n . A monomial m 6= 1 is said to be

right-negative if for all a ∈ C∗, for

L = max{l ∈ Z|∃i ∈ Iσ,∃r ∈ Z, zi,(aωrqL)di (m) 6= 0},

we have ∀j ∈ Iσ,∀r ∈ Z, zj,(aωrqL)di (m) ≤ 0.

Suppose that ĝσ is of type A
(2)
2n . A monomial m 6= 1 is said to be right-negative if for

all a ∈ C∗, for

L = max{l ∈ Z|∃i ∈ Iσ, zi,aqL(m) 6= 0 or zi,−aqL(m) 6= 0},

we have ∀j ∈ Iσ, zj,aqL(m) ≤ 0 and zj,−aqL(m) ≤ 0.

Note that a right-negative monomial is not dominant. As in [FM], we have :

Lemma 3.17. 1) For i ∈ Iσ, a ∈ C∗, A−1
i,a is right-negative.

2) A product of right-negative monomials is right-negative.
3) If m is right-negative, then m′ ≤ m implies that m′ is right-negative.

Let k ≥ 0, a ∈ C∗, i ∈ Iσ. We set

m
(i)
k,a =











∏

s=1···k

Zi,aq2s−2
i

for ĝσ not of type A
(2)
2n ,

∏

s=1···k

Zi,aq2s−2 for ĝσ of type A
(2)
2n .

Definition 3.18. For k ≥ 0, a ∈ C∗, i ∈ Iσ, the Kirillov-Reshetikhin module W
(i)
k,a is

the simple module corresponding to the monomial m
(i)
k,a.

For the untwisted case, the definition of Kirillov-Reshetikhin modules is analog where
the highest monomials

∏

s=1···k

Yi,aqri(2s−2) are used.

For i ∈ Iσ and a ∈ C∗, W
(i)
1,a = Vi,a is called a fundamental representation (this coincides

with the definition of Section 2.5).
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Two dominant monomials m1 = m
(i)
k1,a1

, m2 = m
(i)
k2,a2

are said to be in special position

if the monomial m3 =
∏

a∈C∗

Z
max(zi,a(m1),zi,a(m2))
i,a is of the form m3 = m

(i)
k3,a3

and m3 6=

m1,m3 6= m2.
A normal writing of a dominant monomial m is a product decomposition

m =
∏

i=1,...,L

m
(il)
kl,al

such that for l 6= l′, if il = il′ then m
(il)
kl,al

, m
(il′ )
kl′ ,al′

are not in special position. Any

dominant monomial has a unique normal writing up to permuting the monomials (see
[CP3]).
It follows from the study of the representations of Uq(Lsl2) in [CP1, CP2, FR] that :

Proposition 3.19. Suppose that g = sl2.
(1) Wk,a is of dimension k + 1 and :

χq(Wk,a) = mk,a(1 + A−1
aq2k−1(1 + A−1

aq2(k−1)−1(1 + ...(1 + A−1
aq2−1))...).

(2) For m a dominant monomial and m = mk1,a1...mkl,al
a normal writing we have :

L(m) ≃ Wk1,a1 ⊗ ... ⊗ Wkl,al
.

We extend the notion of special modules [N4] to the twisted case :

Definition 3.20. A Uq(Lgσ)-module is said to be special if his twisted q-character has
a unique dominant monomial.

Note that a special module is a simple l-highest weight module. But in general all
simple l-highest weight module are not special.
For example the following result was proved in [FR] for the sl2-case, [FM] for funda-
mental representation in the untwisted cases, [N4, N5] in the simply-laced untwisted
case and in [H4] in the general untwisted case :

Theorem 3.21. The Kirillov-Reshetikhin modules of an untwisted quantum affine al-
gebra are special.

In the present paper we will prove that this statement also holds for twisted quantum
affine algebras. This is a crucial point for the results of this paper.

4. Twisted T -systems and main results

In this section we state the main results about twisted Q-systems and twisted T -
systems.

4.1. Twisted Q-systems. For i ∈ Iσ, k ≥ 1 consider the Kirillov-Reshetikhin module

restricted to Uq(g
σ) : Q

(i)
k = Res(W

(i)
k,a) (it is independent of a ∈ C∗).

For i ∈ Iσ, k ≥ 1 define the Uq(g
σ)-module R

(i)
k by :

If Ci,σ(i) = 2 :

R
(i)
k = (

⊗

{j∈Iσ |Ci,j=−1,σ(j)=j}

Q
(j)
k ) ⊗ (

⊗

{j∈Iσ |Ci,j=−1,σ(j)6=j}

(Q
(j)
k )⊗m).
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If Ci,σ(i) = 0 :

R
(i)
k = (

⊗

{j∈Iσ|Ci,j=−1,σ(j)=j}

Q
(j)
k ) ⊗ (

⊗

{j∈Iσ|Ci,j=−1,σ(j)6=j}

Q
(j)
k ).

If Ci,σ(i) = −1 :

R
(i)
k = Q

(i)
k ⊗ (

⊗

{j∈Iσ |Ci,j=−1}

Q
(j)
k ).

Note that ⊗ is commutative in the category of finite dimensional representations of
Uq(g

σ) which is semi-simple.

Theorem 4.1 (The twisted Q-system). Let a ∈ C∗, k ≥ 1, i ∈ Iσ. We have :

Q
(i)
k ⊗ Q

(i)
k = Q

(i)
k+1 ⊗ Q

(i)
k−1 ⊕ R

(i)
k .

Moreover in type A
(2)
2n , the same relations hold between the restrictions resσ(W

(i)
k,a)

to the subalgebra Uq(g
σ).

This Q-system appeared in [HKOTY]. As a consequence we prove the conjecture of
[HKOTY] that there is a solution which is the character of a representation (it is a purely
combinatorial statement). Note that this is a particular case of the general Laurent
phenomena described in another context in [FZ1, FZ2] : a priori the solutions could be
rational fractions in the variables zi = eΛi , but in fact they are Laurent polynomials
(with positive coefficients) as they correspond to characters of representations.
We will prove a stronger version of Theorem 4.1 called twisted T -system (Theorem 4.2).

4.2. Twisted T -system. For untwisted types, the T -system was introduced in [KNS1]
as a system of functional relations associated with solvable lattice models. Motivated
by results of [FR], it was conjectured in [KOSY] that the q-characters of Kirillov-
Reshetikhin modules solve the T -system. This was proved in [N4, N5] for simply-laced
types and in [H4] for untwisted non simply-laced types.

For twisted types, the twisted T -system were defined in [KS1].

For i ∈ Iσ, k ≥ 1, a ∈ C∗ define the Uq(Lgσ)-module S
(i)
k,a by :

If Ci,σ(i) = 2 :

S
(i)
k,a = (

⊗

{j∈Iσ|Ci,j=−1,σ(j)=j}

W
(j)
k,aqi

) ⊗ (
⊗

{j∈Iσ,a′∈C|Ci,j=−1,σ(j)6=j,(a′)M =aqi}

W
(j)
k,a′).

If Ci,σ(i) = 0 :

S
(i)
k,a = (

⊗

{j∈Iσ |Ci,j=−1,σ(j)=j}

W
(j)
k,(aq)m) ⊗ (

⊗

{j∈Iσ|Ci,j=−1,σ(j)6=j}

W
(j)
k,aq).

If Ci,σ(i) = −1 :

S
(i)
k,a = W

(i)
k,−aq ⊗ (

⊗

{j∈Iσ|Ci,j=−1}

W
(j)
k,aq).

Remark : we will see later, in view of Lemma 7.1 and Proposition 7.3, that in all cases

the tensor products of the modules involved in the definition of S
(i)
k,a commute for ⊗, and

so S
(i)
k,a is well-defined. However we only consider χσ

q (S
(i)
k,a) which is clearly well-defined.
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Theorem 4.2 (The twisted T -system). Let a ∈ C∗, k ≥ 1, i ∈ Iσ. We have :

χσ
q (W

(i)
k,a)χ

σ
q (W

(i)

k,aq2
i
) = χσ

q (W
(i)
k+1,a)χ

σ
q (W

(i)

k−1,aq2
i
) + χσ

q (S
(i)
k,a).

By Proposition 3.6, Theorem 4.2 implies Theorem 4.1 because resσ(W
(i)
k,a) = Q

(i)
k ,

resσ(S
(i)
k,a) = R

(i)
k and the category of finite dimensional representations of Uq(g

σ) is

semi-simple. By Proposition 3.7, this is the same for the restrictions to Uq(g
σ).

Note that as the category of finite dimensional representations of Uq(Lgσ) is not semi-
simple, the twisted T -system can not a priori be directly translated in the category, as
we did for the twisted Q-system.
Theorem 4.2 will follow from the following result proved in section 6 :

Theorem 4.3. The Kirillov-Reshetikhin modules of a twisted quantum affine algebra
are special.

4.3. Formulas for the twisted T -systems. In this section we give explicit formulas
for the twisted T -system of the theorem 4.2 (these formulas appeared in [KS1]).

We denote by X
(i)
k,a the representative of W

(i)
k,a in the Grothendieck ring.

Type A
(2)
2 :

Xk,aXk,aq2 = Xk+1,aXk−1,aq2 + Xk,−aq.

Type A
(2)
2n (n ≥ 2) : for 1 ≤ i ≤ n − 1 :

X
(i)
k,aX

(i)
k,aq2 = X

(i)
k+1,aX

(i)
k−1,aq2 + X

(i−1)
k,aq X

(i+1)
k,aq ,

X
(n−1)
k,a X

(n−1)
k,aq2 = X

(n−1)
k+1,aX

(n−1)
k−1,aq2 + X

(n−2)
k,aq ,

X
(0)
k,aX

(0)
k,aq2 = X

(0)
k+1,aX

(0)
k−1,aq2 + X

(1)
k,aqX

(0)
k,−aq.

Type A
(2)
2n−1 (n ≥ 3) : for 2 ≤ i ≤ n − 2 :

X
(i)
k,aX

(i)
k,aq2 = X

(i)
k+1,aX

(i)
k−1,aq2 + X

(i−1)
k,aq X

(i+1)
k,aq ,

X
(1)
k,aX

(1)
k,aq2 = X

(1)
k+1,aX

(1)
k−1,aq2 + X

(2)
k,aq,

X
(n−1)
k,a X

(n−1)
k,aq2 = X

(n−1)
k+1,a X

(n−1)
k−1,aq2 + X

(n−2)
k,aq X

(n)
k,a2q2,

X
(n)
k,a X

(n)
k,aq4 = X

(n)
k+1,aX

(n)
k−1,aq4 + X

(n−1)
k,a′q X

(n−1)
k,−a′q.

where a′ satisfies (a′)2 = a.

Type D
(2)
n+1 (n ≥ 2) : for 2 ≤ i ≤ n − 2 :

X
(i)
k,aX

(i)
k,aq4 = X

(i)
k+1,aX

(i)
k−1,aq4 + X

(i−1)
k,aq2 X

(i+1)
k,aq2 ,

X
(1)
k,aX

(1)
k,aq4 = X

(1)
k+1,aX

(1)
k−1,aq4 + X

(2)
k,aq2 ,

X
(n−1)
k,a X

(n−1)
k,aq4 = X

(n−1)
k+1,a X

(n−1)
k−1,aq4 + X

(n−2)
k,aq2 X

(n)
k,a′qX

(n)
k,a′q,

X
(n)
k,aX

(n)
k,aq2 = X

(n)
k+1,aX

(n)
k−1,aq2 + X

(n−1)
k,a2q2,
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where a′ satisfies (a′)2 = a.

Type E
(2)
6 :

X
(1)
k,aX

(1)
k,aq2 = X

(1)
k+1,aX

(1)
k−1,aq2 + X

(2)
k,aq,

X
(2)
k,aX

(2)
k,aq2 = X

(2)
k+1,aX

(2)
k−1,aq2 + X

(1)
k,aqX

(3)
k,a2q2 ,

X
(3)
k,aX

(3)
k,aq4 = X

(3)
k+1,aX

(3)
k−1,aq4 + X

(2)
k,a′qX

(2)
k,−a′qX

(4)
k,aq2 ,

X
(4)
k,aX

(4)
k,aq4 = X

(4)
k+1,aX

(4)
k−1,aq4 + X

(3)
k,aq2 ,

where a′ satisfies (a′)2 = a.

Type D
(3)
4 :

X
(1)
k,aX

(1)
k,aq2 = X

(1)
k+1,aX

(1)
k−1,aq2 + X

(2)
k,a3q3,

X
(2)
k,aX

(2)
k,aq6 = X

(2)
k+1,aX

(2)
k−1,aq6 + X

(1)
k,a′′qX

(1)
k,a′′jqX

(1)
k,a′′j2q

,

where a′′ satisfies (a′′)3 = a and j = exp(2iπ/3).
The specializations of these T -systems give the Q-systems of Theorem 4.1.

5. Case of Uτ
q (type A

(2)
2 )

First we have to study the case of Uτ
q which is crucial for the proof in the twisted

cases. Indeed twisted quantum affine algebras may have "elementary" subalgebras Ûi

not only of type A
(1)
1 , but also of type A

(2)
2 (see Section 2.6). So we have to treat partly

the type A
(2)
2 "by hand".

5.1. The representation W2,a of Uτ
q . The crucial result for our purposes is to describe

the Kirillov-Reshetikhin modules Wk,a of Uτ
q for k = 2 as they will provide important

informations for the following.

Proposition 5.1. The simple representation V = L(ZaZaq2) of Uτ
q has dimension 6

and twisted q-character

χτ
q (V ) =ZaZaq2 + ZaZ−aq3Z−1

aq4 + ZaZ
−1
−aq5 + Z−aqZ

−1
aq2Z−aq3Z−1

aq4

+ Z−aqZ
−1
aq2Z

−1
−aq5 + Z−1

−aq3Z
−1
−aq5 .

Proof: The above formula is first conjecturally given in the following way : V is a
subquotient of W1,a⊗W1,aq2 , and χτ

q (W1,a)χ
τ
q (W1,aq2) has only two dominant monomials

ZaZaq2 and Z−aq . So χτ
q (V ) may have one dominant monomial ZaZaq2 and V is of

dimension 6, or two dominant monomials ZaZaq2 , Z−aq and V is of dimension 9. A
priori it is not clear if the dimension of V is equal to 9 or 6. If it is 6 then χτ

q (V ) is
equal to χτ

q (W1,a)χ
τ
q (W1,aq2) − χτ

q (W1,−aq) which is equal to the above formula.
By the above discussion it suffices to construct a representation of highest monomial

Z1Zq2 of dimension 6. To prove this result we prove that Vaq2 ⊗ Va has a proper
submodule isomorphic to V−aq. Let (v0, v1, v2) be a basis of Vaq2 and (v′0, v

′
1, v

′
2) be a

basis of Va as in the definition of these fundamental representations. Let

ṽ0 = v0 ⊗ v′1 − qv1 ⊗ v′0,
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ṽ1 = X−
0 .ṽ0 = (1 − q)v1 ⊗ v′1 + v0 ⊗ v′2 − v2 ⊗ v′0

and

ṽ2 = X−
0 .ṽ1 = v1 ⊗ v′2 − qv2 ⊗ v′1.

Then C.ṽ0 ⊕ C.ṽ1 ⊕ C.ṽ2 is isomorphic to V−aq by identifying with the corresponding
vector of the definition. It suffices to check that the action of the Drinfeld-Jimbo
generators satisfy the correct relations. By construction it is clear for K0 and K1. For
X−

0 we only have to check that

X−
0 ṽ2 = v2 ⊗ qv′2 − qv2 ⊗ v′2 = 0.

As [X+
0 ,X−

0 ] = (K0 − K−1
0 )/(q

1
2 − q−

1
2 ), for X+

0 we only have to check that

X+
0 .ṽ0 = q(v0 ⊗ [2]

q
1
2
v′0) − q[2]

q
1
2
(v0 ⊗ v′0) = 0.

As [X+
1 ,X−

0 ] = 0, for X+
0 we only have to check

X+
1 .ṽ0 = aq2q(1 + q2)[4]−1

q
1
2
v2 ⊗ v′1 − q(v1 ⊗ v′2)[4]

−1

q
1
2
(1 + q2)aq

= (−aq)[4]−1

q
1
2
q(1 + q2)ṽ2.

As [X+
1 ,X−

1 ] = (K1 − K−1
1 )/(q2 − q−2), for X−

1 we only have to check

X−
1 ṽ0 = 0 as X−

1 v0 = X−
1 v1 = X−

1 ṽ0 = X−
1 ṽ1 = 0,

and

X−
1 ṽ1 = [4]−1

q
1
2
q−1[2]2

q
1
2
a−1(1 + q−2)(v0 ⊗ v′0)(1 − q−2q2) = 0.

�

Remark : Va ⊗ Vaq2 has no proper submodule isomorphic to V−aq. Indeed ṽ0 would

be represented by a vector of respective eigenvalues (q, q−2) for (K0,K1) and so would
be of the form α = λ(v′1 ⊗ v0) + µ(v′0 ⊕ v1). The condition X+

0 α = 0 gives µ = −qλ.
We can compute the vector corresponding to ṽ2 which is

β = (X−
0 )2α = λ(v′1 ⊗ v2 − qv′2 ⊗ v1).

But then X+
1 .α should be equal to (−aq)[4]−1

q
1
2
q(1 + q2)β, contradiction. In particular

Vaq2 ⊗ Va is not semi-simple, and although Vaq2 ⊗ Va and Va ⊗ Vaq2 have the terms in
their Jordan-Hölder decomposition, they are not isomorphic.

We can describe explicitly the representation. Let V be a 6-dimensional vector space
with a basis (v0, v1, v2, v3, v4, v5). The action of Drinfeld-Jimbo generators is given in
the following tables :

X+
0 X−

0 K0 K1

v0 0 [4]
q

1
2
v1 q2v0 q−4v0

v1 v0 v2 + v3 qv1 q−2v1

v2 νv1 νv4 v2 v2

v3 µv1 µv4 v3 v3

v4 v3 + v2 v5 q−1v4 q2v4

v5 [4]
q

1
2
v4 0 q−2v5 q4v5
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X+
1 X−

1
v0 [4]−1

q q−1((q3 + q5)v2 + (q3 − q2)v3) 0
v1 v4 0
v2 ν[4]−1

q
1
2
q3(q3 + q−1)v5 [4]−1

q
1
2
q5ν(q−3 + q−5)v0

v3 µ[4]−1

q
1
2
q3(q3 − q4)v5 µ[4]

q
1
2
q5(q−3 − q−2)v0

v4 0 [4]−1

q
1
2
q−2(µ1 − νq−3 + µq−4 − νq−1)v1

v5 0 q−3((q−1 + q−2)v2 + (q−2 − q−4)v3)

where :

ν = q−3/2 (1 + q)(1 − q + q2 − q3 + q4)

1 − q + q2
, µ = q−

1
2
(1 + q2)(1 + q)

1 − q + q2
.

Note that we have ν and µ are invariant by q 7→ q−1.
So we can give the action of the Drinfeld generators : the action of the operators x±

r ,
k is given in the following table :

x+
r x−

r k
v0 0 q3r[4]

q
1
2
v1 q2v0

v1 q3rv0 (−q4)rv2 + qrv3 qv1

v2 (−q4)rνv1 νqrv4 v2

v3 qrµv1 µ(−q4)rv4 v3

v4 (−q4)rv3 + qrv2 (−q2)rv5 q−1v4

v5 [4]
q

1
2
(−q2)rv4 0 q−2v5

Remark : we are in the situation of remark 2.14.
And so we get the twisted q-character by computing the action of hr = qr−q−r

r(q
1
2 −q−

1
2 )

Hr

for r 6= 0 :

Hr.v0 = (1 + q2r)v0,

Hr.v1 = (1 + (−q3)r − q4r)v1,

Hr.v2 = (1 − (−q5)r)v2,

Hr.v3 = ((−q)r − q2r + (−q3)r − q4r)v3,

Hr.v4 = ((−q)r − q2r − (−q5)r)v4,

Hr.v5 = (−(−q3)r − (−q5)r)v5.

Here we can prove directly that all relations between Drinfeld generators are satisfied
for this representation. We give the complete proof of this point here as this is a new
evidence that the Drinfeld relations hold and as this results could be used to prove
them.

By the notation vi -> vj, we mean the coefficient on vj of the vector obtained from
vi by the action of the considered element of Uτ

q .
Relation (14) : by symmetry we only check that

[Hr, x
−
m] = −(qr + q−r + (−1)r+1)x−

r+m.
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v0 -> v1 :
q3m(1 + (−q3)r − q4r) − q3m(1 + q2r) = −q3(r+m)(qr + (−1)r+1 + q−r),

v1 -> v2 :
(−q4)m(1 − (−q5)r) − (−q4)m(1 + (−q3)r − q4r) = −(−q4)m+r(qr + (−1)r+1 + q−r)

v1 -> v3 :
qm((−q)r − q2r + (−q3)r − q4r) − qm(1 + (−q3)r − q4r) = −qm+r(qr + (−1)r+1 + q−r)

v2 -> v4 :
qm((−q)r − q2r − (−q5)r) − qm(1 − (−q5)r) = −qm+r(qr + (−1)r+1 + q−r)

v3 -> v4 :
(−q4)m((−q)r − q2r − (−q5)r) − (−q4)m((−q)r − q2r + (−q3)r − q4r)
= −(−q4)m+r(qr + (−1)r+1 + q−r)

v4 -> v5 :
(−q2)m(−(−q3)r − (−q5)r) − (−q2)m((−q)r − q2r − (−q5)r)
= −(−q2)m+r(qr + (−1)r+1 + q−r)

Relation (15) :
v0 -> v2 :

(−q4)m+2q3p + (q − q−2)(−q4)m+1q3(p+1) − q−1(−q4)mq3(p+2)

= (−q4)mq3p(q8 − (q − q−2)q7 − q5) = 0

q−1(−q4)pq3(m+2) + (q−2 − q)(−q4)p+1q3(m+1) − (−q4)p+2q3m

= (−q4)pq3m(q5 − (q−2 − q)q7 − q8) = 0
v0 -> v3 :

qm+2q3p + (q − q−2)qm+1q3(p+1) − q−1qmq3(p+2) = qm+3p(q2 + (q − q−2)q4 − q5) = 0
q−1qpq3(m+2) + (q−2 − q)qp+1q3(m+1) − qp+2q3m = qpq3m(q5 + (q−2 − q)q4 − q2) = 0

v1 -> v4 :
ν(qm+2(−q4)p + (q − q−2)qm+1(−q4)p+1 − q−1qm(−q4)p+2)
+ µ((−q4)m+2qp + (q − q−2)(−q4)m+1qp+1 − q−1(−q4)mqp+2)
= νqm(−q4)p(q2 − q6 + q3 − q7) + µqp(−q4)m(q8 − q6 + q3 − q)
= νqp(−q4)m(q7 − q3 + q6 − q2) + µ(−q4)pqm(q − q3 + q6 − q8)
= ν(q−1qp(−q4)m+2 + (q−2 − q)qp+1(−q4)m+1 − qp+2(−q4)m)
+ µ(q−1(−q4)pqm+2 + (q−2 − q)(−q4)p+1qm+1 − (−q4)p+2qm)

v2 -> v5

(−q2)m+2qp + (q − q−2)(−q2)m+1qp+1 − q−1(−q2)mqp+2

= (−q2)mqp(q4 − (q − q−2)q3 − q) = 0
q−1(−q2)pqm+2 + (q−2 − q)(−q2)p+1qm+1 − (−q2)p+2qm

= (−q2)pqm(q − (q−2 − q)q3 − q4) = 0
v3 -> v5

(−q2)m+2(−q4)p + (q − q−2)(−q2)m+1(−q4)p+1 − q−1(−q2)m(−q4)p+2

= (−q2)m(−q4)p(q4 + (q − q−2)q6 − 7) = 0
q−1(−q2)p(−q4)m+2 + (q−2 − q)(−q2)p+1(−q4)m+1 − (−q2)p+2(−q4)m

= (−q2)p(−q4)m(q7 + (q−2 − q)q6 − q4) = 0
Relation (16)
v0 -> v4 : the left member has 6.6 = 36 terms. We associate the terms in 6 sums

corresponding to q3k(−q4)lqm (and permutations of k, l,m). We get :

q3k(−q4)lqm(ν(q3/2q − (q
1
2 + q−

1
2 )(−q4) + q−3/2q3)
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+ µ(q3/2(−q4) − (q
1
2 + q−

1
2 )q + q−3/2q3))

= q3k(−q4)lqmq
1
2 (ν(q + q2 + q3 + q4) + µ(−q5 − 1))

= q3k(−q4)lqmq
1
2 (q + 1)(νq(1 + q2) − µ(1 − q + q2 − q3 + q4)) = 0.

v1 -> v5 :

q3k(−q4)lqm(ν(q3/2(−q2) − (q
1
2 + q−

1
2 )q + q−3/2(−q4))

+ µ(q3/2(−q2) − (q
1
2 + q−

1
2 )(−q4) + q−3/2q))

= q3k(−q4)lqmq
1
2 (ν(−q3 − q − 1 − q2) + µ(q4 + q−1))

= q3k(−q4)lqmq
1
2 (q + 1)q−1(−νq(1 + q2) + µ(1 − q + q2 − q3 + q4)) = 0.

v4 -> v0 :

ν(q3/2q−3 − (q
1
2 + q−

1
2 )(−q−4) + q−3/2q−1)

+ µ(q3/2q−3 − (q
1
2 + q−

1
2 )q−1 + q−3/2(−q−4))

= q−
1
2 (ν(q−1 + q−2 + q−3 + q−4) + µ(−q−5 − 1))

= q−
1
2 (q−1 + 1)(νq−1(1 + q−2) − µ(1 − q−1 + q−2 − q−3 + q−4)) = 0.

v5 -> v1 :

ν(q3/2(−q4)−1 − (q
1
2 + q−

1
2 )q−1 + q−3/2(−q−2)−1)

+ µ(q3/2q−1 − (q
1
2 + q−

1
2 )(−q−4) + q−3/2(−q2)−1)

= q−
1
2 (ν(−q−3 − q−1 − 1 − q−2) + µ(q−4 + q))

= q−
1
2 (q−1 + 1)q(−νq−1(1 + q−2) + µ(1 − q−1 + q−2 − q−3 + q−4)) = 0.

Relation (17)
v0 -> v4 :

q3k(−q4)lqm(ν(q−3/2q−1 − (q
1
2 + q−

1
2 )(−q4)−1 + q3/2q−3)

+ µ(q−3/2(−q4)−1 − (q
1
2 + q−

1
2 )q−1 + q3/2q−3))

= q3k(−q4)lqmq−
1
2 (ν(q−1 + q−2 + q−3 + q−4) + µ(−q−5 − 1))

= q3k(−q4)lqmq−1 1
2 (q + 1)(νq(1 + q2) − µ(1 − q + q2 − q3 + q4)) = 0.

v1 -> v5 :

q3k(−q4)lqm(ν(q−3/2(−q2)−1 − (q
1
2 + q−

1
2 )q−1 + q3/2(−q4)−1)

+ µ(q−3/2(−q2)−1 − (q
1
2 + q−

1
2 )(−q4)−1 + q3/2q−1))

= q3k(−q4)lqmq−
1
2 (ν(−q−3 − 1 − q−1 − q−2) + µ(q−4 + q))

= q3k(−q4)lqmq−9/2(q + 1)(−νq(1 + q2) + µ(1 − q + q2 − q3 + q4)) = 0.
v4 -> v0 :

ν(q−3/2q3 − (q
1
2 + q−

1
2 )(−q4) + q3/2q) + µ(q−3/2q3 − (q

1
2 + q−

1
2 )q + q3/2(−q4))

= q
1
2 (ν(q + q2 + q3 + q4) + µ(−q5 − 1))

= q1 1
2 (q−1 + 1)(νq−1(1 + q−2) − µ(1 − q−1 + q−2 − q−3 + q−4)) = 0.

v5 -> v1 :

ν(q−3/2(−q4) − (q
1
2 + q−

1
2 )q + q3/2(−q2)) + µ(q−3/2q − (q

1
2 + q−

1
2 )(−q4) + q3/2(−q2))

= q
1
2 (ν(−q2 − 1 − q − q3) + µ(q4 + q−1))

= q9/2(q−1 + 1)(−νq−1(1 + q−2) + µ(1 − q−1 + q−2 − q−3 + q−4)) = 0.
Relation (13) : it suffices to prove for r′ ∈ Z the two relations :

∑

r≥0

[x+
r+r′ , x

−
−r′ ]z

r =
φ+(z) − k−1

q
1
2 − q−

1
2

,
∑

r≤0

[x+
r+r′ , x

−
−r′ ]z

r =
k − φ−(z)

q
1
2 − q−

1
2

.
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v0 :
∑

r≥0[4]q
1
2
q3(r+r′)q−3r′zr = q2−q−2

(q
1
2 −q−

1
2 )(1−q3z)

= q2−qz−q−2+qz

(q
1
2 −q−

1
2 )(1−q3z)

= 1

q
1
2 −q−

1
2
(q2 (1−q−1z)(1−qz)

(1−qz)(1−q3z) − q−2).

∑

r≤0[4]q
1
2
q3(r+r′)q−3r′zr = q2−q−2

(q
1
2 −q−

1
2 )(1−q−3z−1)

= −q2+qz+q2−q5z

(q
1
2 −q−

1
2 )(1−q3z)

= 1

q
1
2 −q−

1
2
(−q2 (1−q−1z)(1−qz)

(1−qz)(1−q3z)
+ q2).

v1 :
∑

r≥0((−q4)r+r′ν(−q4)−r′ + qr+r′µq−r′ − q−3r′ [4]
q

1
2
q3(r+r′))zr

= ν
1+q4z

+ µ
1−qz + q−2−q2

(q
1
2 −q−

1
2 )(1−q3z)

= ν(q
1
2 −q−

1
2 )(1−q3z)(1−qz)+µ(q

1
2 −q−

1
2 )(1−q3z)(1+q4z)+(q−2−q2)(1−qz)(1+q4z))

(q
1
2 −q−

1
2 )(1−q3z)(1−qz)(1+q4z)

= 1

q
1
2 −q−

1
2

z2(−q8+q6+q4−q3−q2)+z(q2−q6)+q−q−1

(1−qz)(1−q3z)(1+q4z)

= 1

q
1
2 −q−

1
2
(q (1−q−1z)(1+q2z)(1−q5z)

(1−qz)(1−q3z)(1+q4z)
− q−1).

∑

r≤0((−q4)r+r′ν(−q4)−r′ + qr+r′µq−r′ − q−3r′ [4]
q

1
2
q3(r+r′))zr

= ν
1+q−4z−1 + µ

1−q−1z−1 + q−2−q2

(q
1
2 −q−

1
2 )(1−q−3z−1)

= 1

q
1
2 −q−

1
2

z2(−q8+q6+q4−q3−q2)+z(q2−q6)+q−q−1

(1−qz)(1−q3z)(1+q4z)
= 1

q
1
2 −q−

1
2
(q − q (1−q−1z)(1+q2z)(1−q5z)

(1−qz)(1−q3z)(1+q4z)
).

v2 : v3 does not appear as (−q4)r+r′νq−r′ − q−r′ν(−q4)r + r′ = 0.
∑

r≥0(q
r+r′νq−r′ − (−q4)r+r′ν(−q4)−r′)zr = ν( 1

1−qz − 1
1+q4z

)

= q−3/2 (1+q5)q(1+q3)
1−q+q2

z
(1−qz)(1+q4z)

= q−
1
2

(1+q5)(1+q)(1−q−1)
(1−q−1)

z
(1−qz)(1+q4z)

= 1

q
1
2 −q−

1
2
(z(q6−q−1+q−q4)

(1−qz)(1+q4z)
) = 1

q
1
2 −q−

1
2
( (1−q−1z)(1+q6z)

(1−qz)(1+q4z)
− 1).

∑

r≤0(q
r+r′νq−r′ − (−q4)r+r′ν(−q4)−r′)zr = ν( 1

1−q−1z−1 − 1
1+q−4z−1 )

= −ν( (q4+q)z
(1−qz)(1+q4z)

) = 1

q
1
2 −q−

1
2
(− (1−q−1z)(1+q6z)

(1−qz)(1+q4z)
+ 1).

v3 : v2 does not appear as qr+r′µ(−q4)−r′ − (−q4)−r′µqr + r′ = 0.
∑

r≥0((−q4)r+r′µ(−q4)−r′ − qr+r′µq−r′)zr

= µ( 1
1+q4z − 1

1−qz ) = q−
1
2 (−q(1 + q2)(1 + q)2) z

(1−qz)(1+q4z)

= q−
1
2

(1+q2)(1−q2)(1+q))
(1−q−1)

z
(1−qz)(1+q4z)

= 1

q
1
2 −q−

1
2
( z(1−q5+q+q4)
(1−qz)(1+q4z)

) = 1

q
1
2 −q−

1
2
( (1+z)(1−q5z)
(1+q4z)(1−qz)

− 1)

= 1

q
1
2 −q−

1
2
( (1+z)(1+q2z)(1−q3z)(1−q5z)
(1+q2z)(1+q4z)(1−qz)(1−q3z)

− 1).

∑

r≤0((−q4)r+r′µ(−q4)−r′−qr+r′µq−r′)zr = µ( 1
1+q−4z−1−

1
1−q−1z−1 ) = −µ( z(−q−q4)

(1+q4z)(1−qz)
)

= 1

q
1
2 −q−

1
2
(− (1+z)(1+q2z)(1−q3z)(1−q5z)

(1+q2z)(1+q4z)(1−qz)(1−q3z)
+ 1). �

5.2. The special property and the twisted T -system.

Lemma 5.2. For a ∈ C∗, k ≥ 1, the simple representation Wk,a of Uτ
q is special.
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Proof: Let us prove by induction on k ≥ 1 that a monomial m ∈ M(Wk,a)−{mk,a} sat-

isfies m ≤ mk,aA
−1
aq2k . For k = 1 this follows from section 3.4 and for k = 2 from Proposi-

tion 5.1. Let k ≥ 3 and m ∈ M(Wk,a). Then m is a monomial of χτ
q (W1,a)χ

τ
q (Wk−1,aq2).

From the induction hypothesis we can suppose that m = m′mk−1,aq2 where m′ ∈

M(W1,a). In particular vaq5(m(mk,a)
−1) = 0. But m occurs in χτ

q (W2,a)χ
τ
q (Wk−2,aq4).

So m = m′′mk−2,aq4 where m′′ ∈ M(W2,a). As vaq5(m(mk,a)
−1) = 0 it follows from the

case k = 2 that m′′ = m2,a. So m = mk,a. �

In particular :

Proposition 5.3. For k ≥ 1, a ∈ C∗ we have the explicit formula :

χτ
q (Wk,a) = mk,a

∑

0≤R′≤R≤k

(
∏

r=1···R

A−1
aq2k+1−2r )(

∏

r′=1···R′

A−1
−aq2k+2−2r′

).

They satisfy the twisted T -system :

χτ
q (Wk,a)χ

τ
q (Wk,aq2) = χτ

q (Wk+1,a)χ
τ
q (Wk−1,aq2) + χτ

q (Wk,−aq).

These formulas were considered in [KS1] as combinatorial solutions of the twisted
T -systems. Here we prove that they correspond to characters of Kirillov-Reshetikhin
modules.

Proof: It is clear that the twisted T -system is combinatorially satisfied by the explicit
formula (in [KS1] it is proved in a more general situation). It also clear that the formula
contains a unique dominant monomials.

From Section 3.1.2 and Proposition 5.1, χτ
q (Wk,a) is equal to the formula for k ≥ 2.

Let k ≥ 2. In the proof of Lemma 5.2, we get that the monomials of χτ
q (Wk,aq2) −

mk,aq2 are lower than mk,aq2A−1
aq2k+2 in the sense of monomials. So the dominant mono-

mials appearing in χτ
q (W1,a)χ

τ
q (Wk,aq2) are mk+1,a and Z−aqmk−1,aq4 . The dominant

monomials appearing in χτ
q (W1,−aq)χ

τ
q (Wk−1,aq4) are Z−aqmk−1,aq4 and mk−2,aq6 . So :

χτ
q (Wk+1,a) = χτ

q (W1,a)χ
τ
q (Wk,aq2) − χτ

q (W1,−aq)χ
τ
q (Wk−1,aq4) + χτ

q (Wk−2,aq6).

It is clear that this relation is also satisfied by the explicit relation. So by induction on
k, the formula is equal to χτ

q (Wk,a). �

Formulas for general types A
(2)
n will be proved section 10.

5.3. Weyl modules. For m a dominant monomials, the Weyl module W (m) corre-
sponding to m is by definition the maximal finite dimensional representations of l-
highest weight m.

Kashiwara proved a cyclicity property of some tensor products of fundamental rep-
resentations :

Theorem 5.4. [Kas] For m a dominant monomial, there is a tensor product of funda-
mental representations which is of l-highest weight m.

As a consequence, dim(W (m)) is larger that the product p(m) of the dimensions of
the corresponding fundamental representations.
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The following result is a direct consequence of [BN] where important general results

are obtained (see also [A] for type A
(2)
2 ). Although we only need this result for A

(2)
2 , we

state the result in general :

Theorem 5.5. For twisted quantum affine algebras, Weyl modules are tensor product
of fundamental representations.

By Theorem 5.4, it suffices to prove that dim(W (m)) ≤ p(m). All arguments are
contained in [BN, Section 4]. As this is explained in [CM1, Section 6.4] for untwisted
case, we only sketch the proof :

Let V (λ) be the extremal weight module of extremal weight λ and extremal vector

uλ, and let Ṽ (λ) be the corresponding tensor product of level 0 extremal fundamental
representations with ũ(λ) the tensor product of the extremal vectors. There is an

injective morphism of Uq(Lgσ)-modules from V (λ) to Ṽ (λ) such that uλ 7→ ũλ. The
action of certain elements of Uq(Lhσ) in V (λ) corresponds to symmetric functions of

the Kashiwara automorphisms of Ṽ (λ). As the quotient of Ṽ (λ) for the Kashiwara
automorphisms is a tensor product of finite dimensional fundamental representations of
dimension p(m), it is possible to conclude. All details are contained in [BN].

In particular :

Corollary 5.6. Let P (u) ∈ C[u] such that P (0) = 1 and m be the corresponding
monomial. The Weyl module W (m) corresponding to m is of dimension 3deg(P ) and the
monomial appearing in his q-character are lower than m in the sense of monomials.

Proof: As this result is known for fundamental representations from section 3.1.2, the
corollary is a consequence of Theorem 5.5 and Theorem 2.8. �

6. The Kirillov-Reshetikhin modules are special

In this section we prove the special property of the Kirillov-Reshetikhin modules of
twisted quantum affine algebras. This is the crucial point for the proof of the twisted
T -systems and other results in this paper.

6.1. Preliminary results. We can prove as [H3, Lemma 3.3] :

Lemma 6.1. Let V be a finite dimensional Uq(Lgσ)-module. For W ⊂ V a Uq(Lhσ)-
submodule of V and i ∈ Iσ, W ′

i =
∑

r∈Z

x−
i,r.W is a Uq(Lhσ)-submodule of V .

Lemma 6.2. [H3, Lemma 3.4] Let V be a finite dimensional Uq(Lsl2)-module. For
p ∈ Z, let

L≥p =
∑

q≥p

LqΛ and L′
≥p =

∑

r∈Z

x−
r .L≥p.

Then L≥p, L
′
≥p are Uq(Lh)-submodule of L and we have

((L′
≥p)m 6= 0) ⇒ (∃m′ , (L≥p)m′ 6= {0} and m ≤ m′).

As a consequence of Corollary 5.6, we have an analog result for Uτ
q which can be

proved exactly as [H3, Lemma 3.4] :
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Lemma 6.3. Let V be a finite dimensional Uτ
q -module. For p ∈ Z let

L≥p =
∑

M |β(M)=zq,q≥p

LM and L′
≥p =

∑

r∈Z

x−
r .L≥p.

Then L≥p, L
′
≥p are Uq(Lhτ )-submodule of L and we have

((L′
≥p)m 6= 0) ⇒ (∃m′ , (L≥p)m′ 6= {0} and m ≤ m′).

6.2. Proof of Theorem 4.3. First we can prove as [H6, Lemma 5.3] that :

Proposition 6.4. Let m be a dominant monomial and Mi be the sub Ûi-module of
L(m) generated by an l-highest weight vector of L(m). Then Mi is simple.

The theorem 4.3 is a direct consequence of Lemma 3.17 and the following result :

Lemma 6.5. Let m ∈ M(W
(i)
k,a) − {m

(i)
k,a}. We have

m ≤







m
(i)
k,aA

−1

i,aq2k−1
i

if ĝσ is not of type A
(2n)
2n ,

m
(i)
k,aA

−1
i,aq2k−1 if ĝσ is of type A

(2)
2n .

In particular m is right-negative and not dominant.

The proof of the analog result for untwisted cases [H4, Lemma 4.4] is modified :

Proof: For m ≤ m
(i)
k,a we denote w(m) = v(m(m

(i)
k,a)

−1) (the extended definition of v

for general monomials was given in Section 3.6).

From Proposition 6.4, the Ûi-submodule Mi of W
(i)
k,a generated by v is simple. As

∑

{m≤m
(i)
k,a|w(m)=1}

Mm ⊂ MkΛ∨
i −αi

⊂ Ûi.v,

we have
∑

{m≤m
(i)
k,a|w(m)=1}

(W
(i)
k,a)m ⊂ Mi. So it follows from Proposition 6.4, and

from the (1) of Proposition 3.19 (resp. from Proposition 5.3) if Ci,σ(i) ≥ 0 (resp. if
Ci,σ(i) = −1) that :

∑

m≤m
(i)
k,a/w(m)=1

(W
(i)
k,a)m =











(W
(i)
k,a)m(i)

k,aA−1

i,aq2k−1
i

if ĝσ is not of type A
(2)
2n ,

(W
(i)
k,a)m(i)

k,aA−1

i,aq2k−1

if ĝσ is of type A
(2)
2n ,

and that this space is of dimension 1.

Now consider m ∈ M(W
(i)
k,a) such that m 6= m

(i)
k,a, and let us prove by induction on

w(m) ≥ 1 that

m ≤







m
(i)
k,aA

−1

i,aq2k−1
i

if ĝσ is not of type A
(2)
2n ,

m
(i)
k,aA

−1
i,aq2k−1 if ĝσ is of type A

(2)
2n .

For w(m) = 1 we have proved that m = m
(i)
k,aA

−1

i,aq2k−1
i

. In general suppose that w(m) =

p+1 (p ≥ 1). It follows from the structure of Mi (which is also a Uq(Lhσ)-module) that
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we can suppose that (Mi)m = {0}. Consider :

W =
⊕

{m′≤m
(i)
k,a|w(m′)≤p}

(W
(i)
k,a)m′ .

Here λ − kΛi is Note that W is a Uq(Lhσ)-submodule of W
(i)
k,a. As W

(i)
k,a is a l-highest

weight module, we have :
⊕

{m′≤m
(i)
k,a|w(m′)=p+1}

(W
(i)
k,a)m′ ⊂

∑

j∈I

Wj

where Wj =
∑

r∈Z

x−
j,r.W.

For j ∈ I, Wj is a Uq(Lhσ)-submodule of W
(i)
k,a (Lemma 6.1). So ∃j ∈ I, (Wj)m 6= {0}.

Consider the decomposition τj(χ
σ
q (W

(i)
k,a)) =

∑

rPr ⊗ Qr of Lemma 3.12 and the corre-

sponding decomposition of W
(i)
k,a as a Ûj-module: W

(i)
k,a =

⊕

r
Vr. For a given r, consider

Mr ∈ M(W
(i)
k,a) such that τj(Mr) appears in Pr ⊗ Qr. For another such M , we have

v(MM−1
r ) =

{

uj(τj(MM−1
r ))/2 if (j, ĝσ) 6= (0, A

(2)
2n ),

uj(τj(MM−1
r )) if (j, ĝσ) = (0, A

(2)
2n ),

and so :

uj(τj(M)) =

{

uj(τj(Mr)) − 2w(M) + 2w(Mr) if (j, ĝσ) 6= (0, A
(2)
2n ),

uj(τj(Mr)) − w(M) + w(Mr) if (j, ĝσ) = (0, A
(2)
2n ).

This can be rewritten :

uj(τj(M)) =

{

2(p − w(M)) + pr if (j, ĝσ) 6= (0, A
(2)
2n ),

(p − w(M)) + pr if (j, ĝσ) = (0, A
(2)
2n ),

where

pr =

{

−2p + 2w(Mr) + uj(τj(Mr)) if (j, ĝσ) 6= (0, A
(2)
2n ),

−p + w(Mr) + uj(τj(Mr)) if (j, ĝσ) = (0, A
(2)
2n ).

Note that pr does not depend of M . So we have w(M) ≤ p ⇔ uj(τj(M)) ≥ pr. So

W =
⊕

r
((Vr)≥pr) =

⊕

r
(Vr ∩ W ).

As the Vr are sub Ûj-modules of W
(i)
k,a, we have Wj =

⊕

r
(Vr ∩ Wj). Let R such that

τj(m) is a monomial of PR ⊗ QR. We can apply Lemma 6.2 if Cj,σ(j) ≥ 0 and Lemma

6.3 if Cj,σ(j) = −1 to the Ûj-module VR with pR for Q−1
R τj(m) : we get a monomial M ′

of (χσ
q )j(W ) (twisted q-character as Ûj-module) such that

Q−1
R τi(m) ∈ M ′Z[τj(A

−1
j,a)]a∈C∗ .

Consider m′ = τ−1
j (QR ⊗ M ′) (it is a monomial of χσ

q (W )).
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First suppose that m′ 6= m
(i)
k,a. So m < m′ and m ∈ m′Z[A−1

j,b ]b∈C∗ . As m′ 6= m
(i)
k,a we

have w(m′) ≥ 1 and the induction hypothesis gives the result.

If m′ = m
(i)
k,a, consider Z = Ûj .(W

(i)
k,a)m(i)

k,a

. Then Z is equal to (W
(i)
k,a)m(i)

k,a

or Mi. As

Z is a sub Ûj-module of VR and Q−1
R τj(m) is not a monomial of (χσ

q )j(Z), we can use
the same arguments as above with VR/Z instead of VR. �

7. Proof of Theorem 4.2

The following proof of Theorem 4.2 relies on Theorem 4.3.

7.1. Preliminary results. First we get exactly as [H4, Lemma 5.1] :

Lemma 7.1. Let V be a special module. Suppose that V ≃ V1⊗· · ·⊗Vr where V1, · · · , Vr

are l-highest weight modules. Then V1, · · · , Vr are special and for all σ permutation of
{1, · · · , r}, we have V ≃ Vσ(1) ⊗ · · · ⊗ Vσ(r).

Indeed it is easy to produce a dominant non highest weight monomial of V from such
a monomial in one the Vi. Besides as for any σ the tensor product is special, it is simple.

Let i ∈ I, k ≥ 1, a ∈ C∗. Let

M =







m
(i)
k,am

(i)

k,aq2
i

= m
(i)
k+1,am

(i)

k−1,aq2
i

if ĝσ is not of type A
(2)
2n ,

m
(i)
k,am

(i)
k,aq2 = m

(i)
k+1,am

(i)
k−1,aq2 if ĝσ is of type A

(2)
2n ,

and

M ′ =







MA−1

i,aq2k−1
i

...A−1
i,aqi

if ĝσ is not of type A
(2)
2n ,

MA−1
i,aq2k−1 ...A

−1
i,aq if ĝσ is of type A

(2)
2n .

Note that M ′ is the highest weight monomial of S
(i)
k,a. Let us write the dominant

monomial M ′ in a normal way :

(25) M ′ =
∏

l=1...L

m
(il)
kl,al

.

Consider the sets of monomials for ĝσ not of type A
(2)
2n :

B = {m
(i)
k,aA

−1

i,aq2k−1
i

...A−1

i,aq
2(k−k′)−1
i

A−1

il,alq
2kl−1
il

|0 ≤ k′ ≤ k − 1 , 1 ≤ l ≤ L},

B′ = {m
(i)
k,a,m

(i)
k,aA

−1

i,aq2k−1
i

,m
(i)
k,aA

−1

i,aq2k−1
i

A−1

i,aq2k−3
i

, ...,m
(i)
k,aA

−1

i,aq2k−1
i

...A−1
i,aqi

},

and for ĝσ of type A
(2)
2n :

B = {m
(i)
k,aA

−1
i,aq2k−1 ...A

−1
i,aq2(k−k′)−1

A−1
il,alq

2kl−1|0 ≤ k′ ≤ k − 1 , 1 ≤ l ≤ L},

B′ = {m
(i)
k,a,m

(i)
k,aA

−1
i,aq2k−1 ,m

(i)
k,aA

−1
i,aq2k−1A

−1
i,aq2k−3 , ...,m

(i)
k,aA

−1
i,aq2k−1 ...A

−1
i,aq}.

Lemma 7.2. The monomials of m
(i)

k,aq2
i
.B are right negative.
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Proof: First we suppose that ĝσ is not of type A
(2)
2n .

For b ∈ C∗ and m a monomial, let us define

µb(m) = Max{l ∈ Z|∃i ∈ Iσ, r ∈ Z, zi,(bqlωr)di (m) 6= 0}.

Let α = MA−1

i,aq2k−1
i

...A−1

i,aq
2(k−k′)−1
i

, and αA−1

il,aq
2kl−1

il

∈ m
(i)

k,aq2
i
B. It suffices to check that

µa′(α) < µa′(A−1

il,alq
2kl−1

il

) where a′ satisfies (a′)di = a.

Case 1: di = 1 : µa(α) ≤ 2k − 1.

If dil = 1 : alq
2kl−2
il

= aq2k−1, µa(A
−1

il,alq
2kl−1
il

) = 2k + 1.

If dil ≥ 2 : alq
2kl−2
il

= (aq2k−1)M , µa(A
−1

il,alq
2kl−1
il

) = 2k + 1.

Case 2 : di = 2 : µa(α) ≤ 2k − 1.

If dil = 1 : alq
2kl−2
iL

= a′q2k−1 or −a′q2k−1, µa(A
−1

il,alq
2kl−1

il

) = 2k + 1.

If dil = 2 : alq
2kl−2
iL

= aq4k−2
i , µa(A

−1

il,alq
2kl−1

il

) = 2k + 1.

Case 3 : di = 3 : µa(α) ≤ 2k − 1.

If dil = 1 : alq
2kl−2
iL

= a′q2k−1 or ja′q2k−1 or j2a′q2k−1, µa(A
−1

il,alq
2kl−1
il

) = 2k + 1.

Now we suppose that ĝσ is of type A
(2)
2n . For b ∈ C∗ and m a monomial, let us define

µb(m) = Max{l ∈ Z|∃i ∈ Iσ, zi,bql(m) 6= 0 or zi,−bql(m) 6= 0}.

Let α = MA−1
i,aq2k−1 ...A

−1
i,aq2(k−k′)−1

, and αA−1
il,aq2kl−1 ∈ m

(i)
k,aq2B. It suffices to check that

µa(α) < µa(A
−1
il,alq

2kl−1).

Case 1 : di = 1 : µa(α) ≤ 2k − 1.
If dil = 1 : alq

2kl−2 = aq2k−1, µa(A
−1

il,alq
2kl−1

il

) = 2k + 1.

If dil = 1
2 : alq

2kl−2
iL

= aq2k−1, µa(A
−1

il,alq
2kl−1

il

) = 2k + 1.

Case 2 : di = 1
2 : µa(α) ≤ 2k − 1.

If dil = 1 : alq
2kl−2
iL

= aq2k−1, µa(A
−1

il,alq
2kl−1
il

) = 2k + 1.

If dil = 1
2 : alq

2kl−2
iL

= −aq2k−1, µa(A
−1

il,alq
2kl−1
il

) = 2k + 1. �

As a consequence of Lemma 7.2, we get as in [H4, Proposition 5.3] :

Proposition 7.3. For i ∈ I, k ≥ 1, a ∈ C∗, the module S
(i)
k,a is special. In particular M ′

is the unique dominant monomial of χσ
q (S

(i)
k,a).

7.2. Proof of the theorem 4.2. The two terms of the equality of the theorem 4.2 are
in Im(χσ

q ) and so are characterized by the coefficient of their dominant monomials. So
it suffices to determine the dominant monomials of each product.

First let us prove the following lemma about the monomials of χσ
q (W

(i)
k,a) :

Lemma 7.4. The monomials χσ
q (W

(i)
k,a) are lower than a monomial of B or are in B′.
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An analog result is proved in [N5] for the untwisted simply-laced cases. The general
untwisted case is proved in [H4, Lemma 5.5]. We use this proof with some modification
:
Proof: For m ∈ M(W

(i)
k,a) we prove the statement by induction on

w(m) = v(m(m
(i)
k,a)

−1) ≥ 0.

For w(m) = 0 we have m = m
(i)
k,a ∈ B′. For w(m) ≥ 1 it follows from Theorem 4.3

that there is j ∈ I such that m /∈ Bj . So we get from Proposition 3.15 a monomial

m′ ∈ M(χσ
q (W

(i)
k,a)) such that w(m′) < w(m), m is a monomial of Lj(m

′), and Lj(m
′)

appears in the decomposition of χσ
q (W

(i)
k,a). In particular m ≤ m′, and if m′ is lower

than a monomial in B, so is m.
So we can suppose that m′ ∈ B′.

If m′ = m
(i)
k,a, we have j = i. If moreover (ĝσ, i) 6= (A

(2)
2n , 0), the monomials of Li(m)

are the monomials of B′ from Proposition 6.4 and Proposition 3.19 (1). Otherwise it
follows from Proposition 6.4 and Proposition 5.3 that the monomials of Ln(m) are in
B′ or are lower than a monomial in B (with il = n and al ∈ −aqZ).

Suppose that m′ 6= m
(i)
k,a.

If (ĝσ, j) 6= (A
(2)
2n , 0), Lj(m) corresponds to the q-character of a tensor product of

Kirillov-Reshetikhin modules of type sl2 ((2) of Proposition 3.19). Let mkl′ ,al′
be the

corresponding monomials (that it to say a normal form). For each l′, the complex

number al′q
2(kl′−1)
j is equal to one alq

2(kl−1)
il

with il = j (see the decomposition (25) of

the section 7.1). We can conclude with (1) of Proposition 3.19.

If (ĝσ, j) = (A
(2)
2n , 0), Ln(m) corresponds to a quotient of a tensor product of Kirillov-

Reshetikhin modules of type A
(2)
2 . Let mkl′ ,al′

be the corresponding monomials. For

each l′, al′q
2(kl′−1) is equal to one alq

2(kl−1) with il = n (see the decomposition (25) of
the section 7.1). We can conclude with Proposition 5.3. �

Consider

χ1 =







χσ
q (W

(i)
k,a)χ

σ
q (W

(i)

k,aq2
i
) if ĝσ is not of type A

(2)
2n ,

χσ
q (W

(i)
k,a)χ

σ
q (W

(i)
k,aq2) if ĝσ is of type A

(2)
2n ,

and

χ2 =







χσ
q (W

(i)
k+1,a)χ

σ
q (W

(i)

k−1,aq2
i
) if ĝσ is not of type A

(2)
2n ,

χσ
q (W

(i)
k+1,a)χ

σ
q (W

(i)
k−1,aq2) if ĝσ is of type A

(2)
2n .

As a consequence of Theorem 4.3 (more precisely of Lemma 6.5) :

Lemma 7.5. 1) The dominant monomials of χ1 are

M,MA−1

i,aq2k−1
i

,MA−1

i,aq2k−1
i

A−1

i,aq2k−3
i

, ...,MA−1

i,aq2k−1
i

...A−1
i,aqi

for ĝσ 6= A
(2)
2n ,

M,MA−1
i,aq2k−1 ,MA−1

i,aq2k−1A
−1
i,aq2k−3 , ...,MA−1

i,aq2k−1 ...A
−1
i,aq for ĝσ = A

(2)
2n .
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2) The dominant monomials of χ2 are

M,MA−1

i,aq2k−1
i

,MA−1

i,aq2k−1
i

A−1

i,aq2k−3
i

, ...,MA−1

i,aq2k−1
i

...A−1
i,aq3

i
for ĝσ 6= A

(2)
2n ,

M,MA−1

i,aq2k−1
i

,MA−1
i,aq2k−1A

−1
i,aq2k−3 , ...,MA−1

i,aq2k−1 ...A
−1
i,aq3 for ĝσ = A

(2)
2n .

In each case the dominant monomials appear with multiplicity 1.

End of the proof of the theorem 4.2 :
The unique dominant monomial that appears in χ1−χ2 is M ′, and it has a multiplicity
1. We can conclude with Theorem 3.13 because M ′ is the unique dominant monomial

of χσ
q (S

(i)
k,a) (Proposition 7.3). �

Remark : Theorem 4.2 also follows from Theorem 4.3, from results proved below
(Theorem 8.1) and from the analog result for untwisted cases (but Theorem 4.3 has to
be directly proved as in the present paper). However we gave the proof of (Theorem
4.3 ⇒ Theorem 4.2) in this subsection 7.2 to get all intermediate results, and also for
the uniformity of the proof with the untwisted cases.

7.3. Complement : asymptotic property. It is certainly possible to get as for
the untwisted case an asymptotic property of characters and twisted q-characters of
Kirillov-Reshetikhin modules of twisted quantum affine algebras, that is to say :

(1) The normalized character Q
(i)
k = e−kΛiχσ(Q

(i)
k ) considered as a polynomial in

e−αj has a limit as a formal power series :

∃ lim
k→∞

Q
(i)
k ∈ Z[[e−αj ]]j∈Iσ .

(2) The normalized q-character of W
(i)
k,a considered as a polynomial in A−1

j,b has a limit
as a formal power series :

∃ lim
k→∞

χσ
q (W

(i)

k,aq−2k
i

)

m
(i)

k,aq−2k
i

∈ Z[[A−1
j,aqm ]]j∈Iσ,m∈Z.

Note that (1) is a consequence of (2). Moreover it is certainly possible to get also the
convergence in the analytic sense as in [H4].

8. The twisted Kirillov-Reshetikhin conjecture and general results

In this section by using the results of previous sections we prove a close relation
between the twisted types and the untwisted types (we construct an isomorphism be-
tween the Grothendieck rings of finite dimensional representations preserving Kirillov-
Reshetikhin modules). We get explicit formulas for the character of an arbitrary tensor
product of Kirillov-Reshetikhin modules for all types, and we so we prove the Kirillov-
Reshetikhin conjecture.
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8.1. Relation between twisted and untwisted types. Let us define

π : Z[Y ±1
i,a ]i∈I,a∈C∗ → Z[Z±1

i,a ]i∈Iσ ,a∈C∗ ,

as the ring morphism such that for i ∈ Iσ, p ∈ Z, a ∈ C∗ :

π(Yσp(i),a) =

{

Zi,(ωpa)di if ĝσ is not of type A
(2)
2n ,

Zi,a(−1)p if ĝσ is of type A
(2)
2n .

To avoid confusion, the Kirillov-Reshetikhin modules of the untwisted quantum affine

algebra Uq(Lg) are denoted by W̃
(i)
k,a for a ∈ C∗, k ≥ 0, i ∈ I.

We denote by π(W̃
(i)
k,a) the Kirillov-Reshetikhin module of Uq(Lgσ) of highest mono-

mial π(M) where M is the highest monomial of W̃
(i)
k,a. For i ∈ Iσ, p ∈ Z, k ≥ 0 and

a ∈ C∗, we have :

π(W̃
(σp(i))
k,a ) =

{

W
(i)

k,(aωp)di
if ĝσ is not of type A

(2)
2n ,

W
(i)
k,a(−1)p if ĝσ is of type A

(2)
2n .

Here there is an abuse of notation as we use π twice, but this does not lead to confusion
thanks to the following :

Theorem 8.1. π can be uniquely extended to a well-defined ring isomorphism

π : Rep(Uq(Lg)) → Rep(Uq(Lgσ)),

and the following diagram is commutative :

Rep(Uq(Lg))
χq

−−−−→ Z[Y ±1
i,a ]i∈I,a∈C∗





y

π





y

π

Rep(Uq(Lgσ))
χσ

q
−−−−→ Z[Z±1

i,a ]i∈Iσ ,a∈C∗

.

In particular for i ∈ Iσ, k ≥ 0, p ∈ Z, a ∈ C∗, we have :

π(χq(W̃
(σp(i))
k,a )) =

{

χσ
q (W

(i)

k,(aωp)di
) if ĝσ is not of type A

(2)
2n ,

χσ
q (W

(i)
k,(−1)pa) if ĝσ is of type A

(2)
2n .

Remark : although this works for Kirillov-Reshetikhin modules, the result does not
mean that in general we can compute the twisted q-character of an arbitrary simple
Uq(Lgσ)-module from the q-character of a simple Uq(Lg).

Proof: First let us prove the last identity of the Theorem.
For i ∈ Iσ, p ∈ Z, a ∈ C∗ we have from the explicit defining formulas

π(Aσp(i),a) =

{

Ai,(ωpa)di if ĝσ is not of type A
(2)
2n ,

Ai,(−1)pa if ĝσ is of type A
(2)
2n .
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From Theorem 2.6, we have π(Im(χq)) ⊂ Ki for any i ∈ Iσ : it is obvious if Ci,σ(i) 6= −1.
For Ci,σ(i) = −1 we have :

Im(χq) ⊂ Ki ∩ Kσ(i)

= Z[Yi,b(1 + A−1
i,bq + A−1

i,bqA
−1
σ(i),bq2), Yσ(i),b(1 + A−1

σ(i),bq + A−1
σ(i),bqA

−1
i,bq2)]b∈C∗

× Z[Y ±1
j,d ]j /∈{i,σ(i)},d∈C∗ ,

from Theorem 2.6 for the untwisted quantum affine algebra Uq(Lsl3). And so we also
have the result as for r ∈ Z :

Zi,aqr(1 + A−1
i,aqr+1 + A−1

i,aqr+1A
−1
i,−aqr+2)

=π(Yi,aqr(1 + A−1
i,aqr+1 + A−1

i,aqr+1A
−1
σ(i),aqr+2)),

Zi,−aqr(1 + A−1
i,−aqr+1 + A−1

i,−aqr+1A
−1
i,aqr+2)

=π(Yσ(i),aqr (1 + A−1
σ(i),aqr+1 + A−1

σ(i),aqr+1A
−1
i,aqr+2)).

In particular π(χq(W̃
(σp(i))
k,a )) is in Im(χσ

q ).

Moreover for a monomial m ∈ Z[Yj,b]j∈I,b∈C∗ we have :

(m is dominant) ⇐⇒ (π(m) is dominant).

In particular as the Uq(Lg)-module W̃
(σp(i))
k,a is special, π(χq(W̃

(σp(i))
k,a )) has a unique

dominant monomial. For ĝσ not of type A
(2)
2n (resp. of type A

(2)
2n ), the Uq(Lgσ)-module

W
(i)

k,(aωp)di
(resp. W

(i)
k,(−1)pa) is special, so χσ

q (W
(i)

k,(ωpa)di
) (resp. χσ

q (W
(i)
k,(−1)pa)) has a

unique dominant monomial equal to π(M) where M is the unique dominant monomial

of χq(W̃
(σp(i))
k,a ). This implies the result.

As χq and χσ
q are injective ring morphisms, this result implies that π is well-defined.

Then the diagram is clearly commutative. As the fundamental representations generate
the ring Rep(Uq(Lgσ)), π is surjective. The injectivity follows from the injectivity of
π ◦ χq. �

Let us define π : Z[y±1
i ]i∈I → Z[z±1

i ]1≤i≤n as the ring morphism such that for i ∈ I,

π(yi) =

{

zi if ĝσ 6= A
(2)
2n ,

zn−i if ĝσ = A
(2)
2n .

There is an abuse of notation as we used π for different maps, but this does not lead to
confusion as from Proposition 3.6, we have :

Corollary 8.2. The following diagram is commutative :

Rep(Uq(Lg))
χ◦res
−−−−→ Z[y±1

i ]i∈I




y

π





y

π

Rep(Uq(Lgσ))
χσ◦resσ

−−−−−→ Z[z±1
i ]1≤i≤n

.
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In particular, for i ∈ Iσ, k ≥ 0, a ∈ C∗, p ∈ Z, we have :

π(χ(resσ(W̃
(σp(i))
k,a ))) =

{

χσ(resσ(W
(i)

k,(aωp)di
)) if ĝσ is not of type A

(2)
2n ,

χσ(resσ(W
(i)
k,(−1)pa

)) if ĝσ is of type A
(2)
2n .

Let us define π : Z[y±1
i ]i∈I → Z[z±1

i ]i∈Iσ as the ring morphism such that for i ∈ I,

π(yi) =

{

zi if (ĝσ, i) 6= (A
(2)
2n , 0),

z2
0 if (ĝσ, i) = (A

(2)
2n , 0).

From Proposition 3.7, we have :

Corollary 8.3. The following diagram is commutative :

Rep(Uq(Lg))
χ◦res
−−−−→ Z[y±1

i ]i∈I




y

πR,a





y
π

Rep(Uq(Lgσ))
χσ◦resσ

−−−−−→ Z[z±1
i ]i∈Iσ

.

In particular, for i ∈ Iσ, k ≥ 0, a ∈ C∗, p ∈ Z, we have :

π(χ(resσ(W̃
(σp(i))
k,a ))) =

{

χσ(resσ(W
(i)

k,(aωp)di
)) if ĝσ is not of type A

(2)
2n ,

χσ(resσ(W
(i)
k,(−1)pa)) if ĝσ is of type A

(2)
2n .

Note that π (resp. π) makes sense as a map from P to the intergral weight lattice of
Uq(g

σ) (resp. Uq(g
σ)). By abuse of notation, we also denote this map by π (resp. π).

8.2. The twisted Kirillov-Reshetikhin conjecture. As we have explicit formulas
[N5, H4] for the character of tensor product of the Kirillov-Reshetikhin modules of
Uq(Lg), we also get formulas for the Kirillov-Reshetikhin modules of Uq(Lgσ) (in fact
here we use the simply-laced cases so we only need the results of [N5]).

Let Q
(i)
k = e−kΛiχσ(Q

(i)
k ) and Q

(i)
k = e−kπ(Λi)χσ(resσ(W

(i)
k,a)).

Definition 8.4. For a sequence ν = (ν
(i)
k )i∈Iσ ,k>0 such that for all but finitely many

ν
(i)
k are non zero let us define :

F(ν) =
∑

N=(N
(i)
k )

∏

i∈I,k>0

(

P
(i)
k (ν,N) + N

(i)
k

N
(i)
k

)

e−kN
(i)
k π(αi),

F(ν) =
∑

N=(N
(i)
k )

∏

i∈I,k>0

(

P
(i)
k (ν,N) + N

(i)
k

N
(i)
k

)

e−kN
(i)
k π(αi),

where
P

(i)
k (ν,N) =

∑

l=1...∞

ν
(i)
l min(k, l) −

∑

j∈I,l>0

N
(j)
l riCi,jmin(k/rj , l/ri),

(

a
b

)

=
Γ(a + 1)

Γ(a − b + 1)Γ(b + 1)
.
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The above formulas are obtained via π from the non-deformed fermionic formulas (we
use here the version of [Ki1, Ki2, HKOTY, KNT]; the version of [KR] is slightly different
because the definition of binomial coefficients is a little changed, see [KNT]).

Theorem 8.5 (The twisted Kirillov-Reshetikhin conjecture). For a sequence ν =

(ν
(i)
k )i∈Iσ ,k>0 such that for all but finitely many ν

(i)
k are zero. Then we have :

Qν

∏

α∈∆+

(1 − e−π(α)) = F(ν) , Qν

∏

α∈∆+

(1 − e−π(α)) = F(ν)

where

Qν =
∏

i∈Iσ,k≥1

(Q
(i)
k )ν

(i)
k , Qν =

∏

i∈Iσ,k≥1

(Q
(i)
k )ν

(i)
k .

Proof: This result follows from Corollary 8.2 and the analog result for simply-laced
untwisted case [N5] (see [H4] for non-simply laced untwisted case). �

In particular the formula obtained for Qν =
∏

i∈Iσ ,k≥1

(χσ(Q
(i)
k ))ν

(i)
k is the character of a

Uq(g
σ)-module (which is a purely combinatorial statement and is not clear a priori).

Note that for type A
(2)
2n , some formulas were known [OSS] when ν

(a)
k = 0 for k ≥ 2, a ∈

C∗.

9. Branching rules

Now we enter the second part of the present paper : from the general results of
the first part we get as an application explicit formulas (several of them had been
conjectured by different authors).

First we get the proof of the branching rules conjectured in [HKOTT] for the subal-

gebras of finite type Ũq(g
σ),U q(g

σ) ⊂ Uq(Lgσ).

We use the notations of Section 2 for Ũq(g
σ),U q(g

σ), and for λ ∈ P+, we denote

by V (λ) (resp. V (λ)) the simple Ũq(g
σ)-module (resp. Uq(g

σ)-module) of highest

weight λ. See Section 2.6 for the type of Ũq(g
σ) and Uq(g

σ). For type ĝσ 6= A
(2)
2n ,

as Uq(g
σ) ≃ Uq(g

σ), we do not write the branching rules twice. The branching rules
correspond to the decomposition obtained in [NS] for conjectural crystals of Kirillov-
Reshetikhin modules.

9.1. Fundamental representations. Let us start with fundamental representations.
For these representations, the branching rules were obtained in [HN] (in several cases

it was already known, see the references in [HN]), except for the node 3 of E
(2)
6 . These

branching rules will also be obtained from explicit formulas of twisted q-characters in
section 11. The two methods are very different (and the result match).

Let us give these branching rules as this is the starting point for the proof of Theorem
9.2 (we also give the dimension Di of the fundamental representation Vi(a)) :

Theorem 9.1. We have the following branching rules for fundamental representations
:
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Type A
(2)
2n and 0 ≤ i ≤ n − 1 :

resσ(Vi(a)) = V (Λn−i) ⊕ V (Λn−i−1) ⊕ · · · ⊕ V (Λ1) ⊕ V (0) , Di =

(

2n + 1
n − i

)

.

resσ(Vi(a)) = V (Λi) , Di =

(

2n + 1
n − i

)

.

Type A
(2)
2n−1 and 1 ≤ i ≤ n :

resσ(Vi(a)) = V (Λi) ⊕ V (Λi−2) ⊕ · · · ⊕ V (δi,0[2]Λ0) , Di =

(

2n
i

)

.

Type D
(2)
n+1 and 1 ≤ i ≤ n − 1 :

resσ(Vi(a)) = V (Λi) ⊕ V (Λi−1) ⊕ · · · ⊕ V (Λ1) ⊕ V (0),

Di =

(

2n + 1
i

)

+
∑

k≥1

(

2n + 2
i − 2k + 1

)

,

resσ(Vn(a)) = V (Λn) , Dn = 2n.

Type D
(3)
4 :

resσ(V1(a)) = V (Λ1) ⊕ V (0) , D1 = 8,

resσ(V2(a)) = V (λ2) ⊕ V (λ1)
⊕2 ⊕ V (0) , D2 = 29,

Type E
(2)
6 :

resσ(V1(a)) = V (Λ1) ⊕ V (0) , D1 = 27,

resσ(V2(a)) = V (Λ2) ⊕ V (Λ4) ⊕ V (Λ1)
⊕2 ⊕ V (0) , D2 = 378,

resσ(V4(a)) = V (Λ4) ⊕ V (Λ1) ⊕ V (0) , D4 = 79.

For the remaining fundamental representation in type E
(2)
6 , we have D3 = 3732 (see

section 11) and it should be possible to check with a computer from the result of Section
11 that the following conjectural formula of [HKOTT] is satisfied :

resσ(V3(a)) = V (Λ3)⊕V (Λ1 +Λ4)⊕V (2Λ1)⊕V (Λ2)
⊕3⊕V (Λ4)

⊕3⊕V (Λ1)
⊕4⊕V (0)⊕2.

9.2. Kirillov-Reshetikhin modules. For Kirillov-Reshetikhin modules, conjectural
branching rules are given in [HKOTT]. It is proved [HKOTT, Theorem 6.2] that these
formulas satisfy the twisted Q-system. As we have proved the twisted Q-system and
that the formulas match for k = 0 (trivial) and k = 1 (Theorem 9.1), we get by induction
on k ≥ 0 the following :

Theorem 9.2. For a ∈ C∗, k ≥ 0, we have the following branching rules :

Type A
(2)
2n . For 0 ≤ i ≤ n − 1 :

resσ(W
(i)
k,a) =

⊕

m1≥0,··· ,mn−i≥0 and m1+···+mn−i≤k

V (m1Λ1 + m2Λ2 + · · · + mn−iΛn−i).

Type A
(2)
2n . For 1 ≤ i ≤ n − 1 :

resσ(W
(i)
k,a) =

⊕

mn−1≥0,··· ,mi≥0 and mn−1+···+mi≤k and mj=kδi,j [2]

V (mn−1Λn−1 + · · ·+miΛi),
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and resσ(W
(0)
k,a) is equal to

⊕

m0≥0,··· ,mn−1≥0 and m0+···+mn−1≤k and mj=kδi,0[2]

V (m1Λ1 + · · · + mn−1Λn−1 + 2m0Λ0).

Type A
(2)
2n−1. For 1 ≤ i ≤ n and j ∈ {0, 1} such that i = j mod [2] :

resσ(W
(i)
k,a) =

⊕

mj≥0,··· ,mi≥0 and mj+···+mi=k

V (mjΛj + mj+2Λj+2 + · · · + miΛi).

Type D
(2)
n+1. For 1 ≤ i ≤ n − 1 :

resσ(W
(i)
k,a) =

⊕

m1≥0,··· ,mi≥0 and m1+···+mi≤k

V (m1Λ1 + m2Λ2 + · · · + miΛi).

resσ(W
(i)
k,a) = V (kΛn).

Type D
(3)
4 .

resσ(W
(1)
k,a ) =

⊕

m=0···k

V (mΛ1),

and resσ(W
(2)
k,a) is equal to :

⊕

m1+m2≤k and m1,m2≥0

(m1 + 1)min(1 + m2, 1 + k − m1 − m2)V (m1Λ1 + m2Λ2).

10. Explicit formulas for Kirillov-Reshetikhin modules

In this section we prove explicit formulas for the twisted q-characters of Kirillov-

Reshetikhin in types A
(2)
2n , A

(2)
2n−1, D

(3)
4 , D

(2)
4 . Several of them had been conjectured in

various papers.
Remark : The formulas are given in terms of tableaux. It should be possible to

directly compare them with the solutions of the twisted T -system given in [T] in terms
of determinant as this is done in [NN1, NN2] for untwisted cases.

10.1. Twisted q-characters of Kirillov-Reshetikhin modules in type A
(2)
n (n ≥

2). The following formulas appeared as combinatorial solutions of the twisted T -system
in [KS1]. Here we prove that they are the twisted q-characters of Kirillov-Reshetikhin
modules. In particular we get a new proof of the combinatorial statement that they
satisfy the twisted T -system.

As for Kirillov-Reshetikhin modules in the untwisted case A(1) explicit formulas are

known (see [Che, FM2, NT]), by using Theorem 8.1 we get the formulas for types A
(2)
2n−1

and types A
(2)
2n :
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10.1.1. Type A
(2)
2n−1 (n ≥ 2). For a ∈ C∗ and 1 ≤ i ≤ 2n, let

i a =











































Z1,a if i = 1,

Z−1
i−1,aqiZi,aqi−1 if 2 ≤ i ≤ n − 1,

Z−1
n−1,aqnZn,a2q2n−2 if i = n,

Z−1
n,a2q2n+2Zn−1,−aqn if i = n + 1,

Z−1
2n−i+1,−aqiZ2n−i,−aqi−1 if n + 2 ≤ i ≤ 2n − 1,

Z−1
1,−aq2n if i = 2n.

For 1 ≤ i0 ≤ n, let Tab(i0, k) be the set of tableaux (Ti,j)1≤i≤i0,1≤j≤k with coefficients
in {1, · · · , 2n} satisfying the two conditions :

• Ti,j ≤ Ti,j+1 for any 1 ≤ i ≤ i0 and 1 ≤ j ≤ k − 1,
• Ti,j < Ti+1,j for any 1 ≤ i ≤ i0 − 1 and 1 ≤ j ≤ k.

For such a tableaux T ∈ Tab(i0, k) and a ∈ C∗ we set

mT,a =
∏

1≤i≤i0,1≤j≤k

Ti,j
aq2(j−i)

.

Proposition 10.1. For a ∈ C∗ and 1 ≤ i0 ≤ n − 1, we have :

χσ
q (W

(i0)
k,a ) =

∑

T∈Tab(i0,k)

mT,aqi0−1.

Let b ∈ C∗ such that b2 = a. Then we have :

χσ
q (W

(n)
k,a ) =

∑

T∈Tab(i0,k)

mT,bqn−1 .

10.1.2. Type A
(2)
2n . For a ∈ C∗ and 1 ≤ i ≤ 2n + 1, let

i a =































Zn−1,a if i = 1,

Z−1
n−i+1,aqiZn−i,aqi−1 if 2 ≤ i ≤ n,

Z−1
0,aqn+1Z0,−aqn if i = n + 1,

Z−1
i−n−2,−aqiZi−n−1,−aqi−1 if n + 2 ≤ i ≤ 2n,

Z−1
n−1,−aq2n+1 if i = 2n + 1.

For 0 ≤ i0 ≤ n − 1, let Tab′(i0, k) be the set of tableaux (Ti,j)1≤i≤n−i0,1≤j≤k with
coefficients in {1, · · · , 2n + 1} satisfying the conditions :

• Ti,j ≤ Ti,j+1 for any 1 ≤ i ≤ n − i0 and 1 ≤ j ≤ k − 1,
• Ti,j < Ti+1,j for any 1 ≤ i ≤ n − i0 − 1 and 1 ≤ j ≤ k.

For such a tableaux T ∈ Tab′(i0, k) and a ∈ C∗ we set

mT,a =
∏

1≤i≤n−i0,1≤j≤k

Ti,j
aq2(j−i)

.
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Proposition 10.2. For a ∈ C∗, 0 ≤ i0 ≤ n − 1, we have :

χσ
q (W

(i0)
k,a ) =

∑

T∈Tab′(i0,k)

mT,aqn−i0−1 .

10.2. Twisted q-characters of Kirillov-Reshetikhin modules in type D
(3)
4 and

conjecture of [KS1].

10.2.1. The formulas. The following formulas appeared in [KS1] as combinatorial con-
jectural solutions of the twisted T -system. In particular we prove the conjecture that
they are solution of the twisted T -system.

For a ∈ C∗, let

1 a = Z1,a,

2 a = Z−1
1,aq2Z2,a3q3 ,

3 a = Z−1
2,a3q9Z1,aq2jZ1,aq2j2,

4 a = Z1,aq2jZ
−1
1,aq4j2,

4 a = Z1,aq2j2Z−1
1,aq4j

,

3 a = Z−1
1,aq4j

Z−1
1,aq4j2Z2,a3q9 ,

2 a = Z1,aq4Z−1
2,a3q15 ,

1 a = Z−1
1,aq6 .

Let B = {1, 2, 3, 4, 4, 3, 2, 1}. We give the ordering ≺ on the set B by

1 ≺ 2 ≺ 3 ≺
4
4
≺ 3 ≺ 2 ≺ 1.

Let Tab(1, k) be the set of tableaux (Tj)1≤j≤k with coefficients in B satisfying Tj �
Tj+1 for any 1 ≤ j ≤ k − 1.

For such a tableaux and a ∈ C∗ we set

m
(1)
T,a =

∏

1≤j≤k

Tj
aq2(j−1)

.

Theorem 10.3. For a ∈ C∗, k ≥ 1 we have :

χσ
q (W

(1)
k,a) =

∑

T∈Tab(1,k)

m
(1)
T,a.

This result will be proved in section 10.2.3.
Let Tab(2, k) be the set of tableaux (Ti,j)1≤i≤2,1≤j≤k with coefficients in B satisfying

the following conditions :

• (θ1) (Ti,1, · · · , Ti,k) ∈ Tab(1, k) for i = 1, 2,
• (θ2) T1,j � T2,j for any 1 ≤ j ≤ k,

• (θ3)

(

T1,j T1,j+1 · · · T1,j′

T2,j T2,j+1 · · · T2,j′

)

6=

(

3 3 · · · 3 4
4 3 · · · 3 3

)

for any 1 ≤ j < j′ ≤ k,
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• (θ4)

(

T1,j T1,j+1 · · · T1,j′

T2,j T2,j+1 · · · T2,j′

)

6=

(

3 3 · · · 3 4
4 3 · · · 3 3

)

for any 1 ≤ j < j′ ≤ k.

The explanation for conditions (θ3) and (θ4) will be given in Section 10.2.4.

Lemma 10.4. Under the conditions (θ1) and (θ2), the conditions (θ3) and (θ4) are
respectively equivalent to the conditions :

(θ3’)

(

T1,j T1,j′

T2,j T2,j′

)

6=

(

3 4
4 3

)

for any 1 ≤ j < j′ ≤ k,

(θ4’)

(

T1,j T1,j′

T2,j T2,j′

)

6=

(

3 4
4 3

)

for any 1 ≤ j < j′ ≤ k.

The conditions (θ3’) and (θ4’) were originally used in [KS1] instead of (θ3) and (θ4).

Proof: It is clear that (θ3’)⇒(θ3) and (θ3’)⇒(θ3). Suppose that (θ3) is satisfied and
suppose that there are 1 ≤ j < j′ ≤ k such that

(

T1,j T1,j′

T2,j T2,j′

)

=

(

3 4
4 3

)

.

We can suppose that j′− j is minimal for this property. By (θ3) we have j′− j ≥ 2. We
have 3 � T1,j+1 � 4. If T1,j+1 = 4, we have T2,j+1 = 3. If T1,j+1 = 3 we have T2,j+1 6= 4
and so T2,j+1 = 3. So T2,j+1 = · · · = T2,j′ = 3. In the same way T1,j′−1 = · · · = T1,j = 3.
Contradiction by (θ3).

We get (θ4)⇒(θ4)’ in an analog way. �

For such a tableaux and a ∈ C∗ we set

m
(2)
T,a =

∏

1≤i≤2,1≤j≤k

Ti,j
aq2(j−i)

.

Theorem 10.5. For a ∈ C∗, k ≥ 1 we have :

χσ
q (W

(2)
k,a) =

∑

T∈Tab(2,k)

m
(2)
T,bq,

where b ∈ C∗ satisfies b3 = a.

This result will be proved in section 10.2.4.

10.2.2. Notations. For i ∈ B, we denote by succ(i) (resp. prec(i)) the set of minimal
(resp. maximal) elements of {j ∈ B|j ≻ i} (resp. {j ∈ B|j ≺ i}).

Definition 10.6. The affine degree of a monomial m is

d(m) = max{zi,a(m)|i ∈ Iσ, a ∈ C∗, ui,a(m) ≥ 0}.

A monomial is said to be thin if it has affine degree 1.
The affine degree of a Uσ

q (ĝ)-module V is the maximal affine degree of the monomials
occurring in χσ

q (V ). A Uσ
q (ĝ)-module V is said to be thin if it has affine degree 1.

The notion of affine degree will be used in the following proofs and will be inves-
tigated more systematically in another paper in relation to some other problems for
representations of quantum affine algebras in the continuation of [H7].
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For m a monomial we denote

(m)± =
∏

{(i,a)∈I×C|±zi,a(m)≥0}

Z
zi,a(m)
i,a .

For m,m′ monomials, we say that (m)+ is partly canceled by (m′)− if there is (i, a)
such that zi,a(m) > 0 and zi,a(m

′) < 0.

10.2.3. Proof of Theorem 10.3.

Lemma 10.7. Let T ∈ Tab(1, k) and a ∈ C∗. Let 1 ≤ j 6= j′ ≤ k, α = Tj and β = Tj′.

Then ( α aq2(j−1))− is not partly canceled by ( β
aq2(j′−1)

)+.

Proof: Indeed we would have β ≺ α or (α, β) ∈ {(3, 3), (2, 2)}. In the first case j′ < j,
contradiction. If (α, β) = (2, 2), then j′ > j and

(aq2(j′−1))q4 = (aq2(j−1))q2 ⇒ j′ + 1 = j,

contradiction. If (α, β) = (3, 3), then j′ > j and

(aq2(j′−1))3q9 = (aq2(j−1))3q9 ⇒ j′ = j,

contradiction. �

Lemma 10.8. For T ∈ Tab(1, k) and a ∈ C∗, the monomial m
(1)
T,a is thin.

Proof: Indeed let 1 ≤ j < j′ ≤ k, α = Tj and β = Tj′ . We suppose that

( α aq2(j−1))
+ = ( β

aq2(j′−1)
)+ 6= 1.

We have α = β or (α, β) ∈ {(1, 2), (2, 3), (3, 4), (3, 4)}. If α = β, we have j = j′,
contradiction. Otherwise as j < j′ and α ≺ β, the power r of q for the term with positive
exponent Zl,aqr occurring for β is strictly larger than the one for α, contradiction.

( α aq2(j′−1))
+ is necessarily strictly larger than in ( β

aq2(j−1)
)+, contradiction. �

Let us complete the proof of Theorem 10.3 :

Proof: From Lemma 10.7 there is a unique dominant monomial in the formula and it
corresponds to (1, 1, · · · , 1) ∈ Tab(1, k). So it suffices to prove that the formula is in
Im(χσ

q ).

Note that is also follows from Lemma 10.7 that the map T 7→ m
(i)
T,a is injective.

Let 1 ≤ i ≤ 2. We want to give a decomposition as in Proposition 3.15 for J =
{i}. From Proposition 3.19 and Lemma 10.8, the Li(M) that should appear in this
decomposition are thin. It suffices to prove that the set Tab(1, k) is in bijection with a

disjoint union of sets M(Li(M)) via T 7→ m
(1)
T,a.

We define a partial ordering on Tab(1, k) : for T, T ′ ∈ Tab(1, k), we denote

T � T ′ if and only if (Tj � T ′
j for any 1 ≤ j ≤ k).

Consider the set

M1 = {T ∈ Tab(1, k)|∀1 ≤ j ≤ k, Tj ∈ {1, 3, 2}}.

Then by Lemma 10.7, M1 is in bijection with the set of 1-dominant monomials occurring
in the formula.
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Let T ∈ M1 and T̃ ∈ Tab(1, k) obtained from T by replacing 1 (resp. 3, 2) by 2
(resp. 3, 1). Let

M1(T ) = {T ′ ∈ Tab(1, k)|T � T ′ � T̃}.

Consider the decomposition mT = m1m3m2 where m1 (resp. m3, m2) is obtained from
mT by using only the boxes of values 1 (resp. 3, 2). From Proposition 3.19 we have

L1(mT ) = L1(m1)L1(m3)L1(m2),

and L1(mT ) is thin. So M1(T ) is in bijection with the set of monomials of L1(mT ). In
particular if T 6= T ′ ∈ M1 then M1(T ) and M1(T

′) are disjoint.
Moreover (M1(T ))T∈M1 is a partition of Tab(1, k). Indeed for T ∈ Tab(1, k) let j1

minimal such that Tj1 � 3 and j2 minimal such that Tj2 � 2. Consider T ′ defined by

T ′
j =











1 if j < j1,

3 if j1 ≤ j < j2,

2 if j ≥ j2.

Then T ′ ∈ M1 and T is in M1(T
′).

Consider the set

M2 = {T ∈ Tab(1, k)|∀1 ≤ j ≤ k, Tj ∈ {1, 2, 4, 4, 3, 1}}.

Then by Lemma 10.7 M2 is in bijection with the set of 2-dominant monomials occurring
in the formula.

Let T ∈ M2 and T̃ ∈ Tab(1, k) obtained from T by replacing 2 (resp. 3) by 3 (resp.
2). Let

M2(T ) = {T ′ ∈ Tab(1, k)|T � T ′ � T̃}.

Consider the decomposition

mT = m1m2m4m4m3m1

where m1 (resp. m2, m4, m4, m3, m1) is obtained from mT by using only the boxes of
values 1 (resp. 2, 4, 4, 3, 1). From Proposition 3.19 we have

L2(mT ) = m1m4m4m1L2(m2)L2(m3)

and L2(mT ) is thin. So M2(T ) is in bijection with the set of monomials of L2(mT ). In
particular if T 6= T ′ ∈ M2 then M2(T ) and M2(T

′) are disjoint.
Moreover (M2(T ))T∈M2 is a partition of Tab(1, k). Indeed let T ∈ Tab(1, k). We

suppose that 4 does not occur in T (we can treat in a similar way the case when 4 does
not occur in T ). Then we wan construct T ′ ∈ M2 such that T ∈ M2(T

′), by analogy
to the case of M1, by using (1, 2, 4, 3, 1) instead of (1, 3, 2). �

10.2.4. Proof of Theorem 10.5.

Lemma 10.9. Let T ∈ Tab(2, k) and a ∈ C∗. Let 1 ≤ i, i′ ≤ 2, 1 ≤ j, j′ ≤ k, α = Ti,j

and β = Ti′,j′. If ( α aq2(j−i))− is partly canceled by ( β
aq2(j′−i′)

)+, then one of the

following condition is satisfied :

• i = 2, i′ = 1, j′ = j and (α ∈ Succ(β) or (α, β) = (3, 3)).
• i = 2, i′ = 1, j′ = j + 1 and (α, β) = (2, 2).
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• i = 2, i′ = 1, j′ = j + 2 and (α, β) = (1, 1).
• i = 1, i′ = 2, j = j′ and (α, β) = (2, 2).
• i = 1, j = 2, j = j′ − 1 and (α, β) = (3, 3).

Proof: First from Lemma 10.7, we have necessarily i 6= i′.
We have α 6= β. Moreover

(α ≺ β ⇔ (j − i) ≥ (j′ − i′)) and (β ≺ α ⇔ (j − i) < (j′ − i′)).

Suppose that i = 2 and i′ = 1.
If j′ < j, we have β ≺ α. As (j − i) ≥ (j′ − i′), contradiction.
If j′ ≥ j, (j′ − i′) ≥ (j − i) + 1, so β ≺ α.
Suppose that i = 1 and i′ = 2.
If j < j′, we have α ≺ β and (j − i) ≤ (j′ − i′). So j − i = j′ − i′ and (α, β) = (3, 3).

In particular j = j′ − 1.
If j ≥ j′, we have (j − i) ≥ (j′ − i′) + 1. So α ≺ β. �

Lemma 10.10. Let T ∈ Tab(2, k), α = Ti,j and β = Ti′,j′ where 1 ≤ i ≤ i′ ≤ 2 and
1 ≤ j, j′ ≤ k. Suppose that

( α aq2(j−i))
+ = ( β

aq2(j′−i′)
)+ 6= 1,

and denote by M this monomial. Then i = 1 and i′ = 2 and one of the following
conditions is satisfied :

• (j = j′ and (α, β) = (2, 3)).
• (j − j′ = 1 and (α, β) = (1, 2)).
• (j′ − j = 1 and α = 3 and β ∈ {4, 4}).

In the first case M is 2-dominant, and in the last two cases M is 1-dominant.

Proof: By Lemma 10.8, we have i 6= i′. So i = 1 and i′ = 2. We have α = β or

{α, β} ∈ {{1, 2}, {2, 3}, {3, 4}, {3, 4}}.

If α = β, we have j + 1 = j′, contradiction as T1,j ≺ T2,j+1.
If (α, β) = (1, 2), we have 2(j − 1) = 2(j′ − 2) + 4 and j′ = j − 1.
If (α, β) = (2, 1), we have 2(j − 1) + 4 = 2(j′ − 2) and j′ = j + 3, contradiction, as

T1,j ≺ T2,j′ .
If (α, β) = (2, 3), we have 6(j − 1) + 3 = 6(j′ − 2) + 9 and j = j′.
If (α, β) = (3, 2), we have 6(j − 1) + 9 = 6(j′ − 2) + j′ and j′ = j + 3, contradiction

as T1,j � T2,j′ .
If (α, β) = (3, 4), we have j − 1 = j′ − 2 and j′ = j + 1.
If (α, β) = (4, 3), we have j−1 = j′−2 and j′ = j +1, contradiction as T1,j ≺ T2,j+1.
The cases (α, β) = (3, 4) and (α, β) = (4, 3) are treated in an analog way. �

We define a partial ordering on Tab(2, k) :

Definition 10.11. For T, T ′ ∈ Tab(2, k), we denote

T � T ′ if and only if (∀1 ≤ j ≤ k, T1,j � T ′
1,j and T2,j � T ′

2,j).
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Lemma 10.12. Consider the elements of Tab(2, k):

T =

(

3 3 · · · 3
4 4 · · · 4

)

, T̃ =

(

4 4 · · · 4
3 3 · · · 3

)

, Tr =

(

3 3 · · · 3
3 3 · · · 3

)

.

Then we have :
∑

{T ′∈Tab(2,k)|T�T ′�T̃}

mT ′ = L1(mT ) + mTr = L1(mT ) + L1(mTr).

We have the same result with

T =

(

3 3 · · · 3
4 4 · · · 4

)

, T̃ =

(

4 4 · · · 4
3 3 · · · 3

)

, Tr =

(

3 3 · · · 3
3 3 · · · 3

)

,

and

T =

(

1 1 · · · 1
2 2 · · · 2

)

, T̃ =

(

2 2 · · · 2
1 1 · · · 1

)

, Tr =

(

2 2 · · · 2
2 2 · · · 2

)

.

Proof: We study the first case (the two other cases are analog). The monomials (mT )(1)

is of the form m
(1)
b,k+1m

(1)
bq2,k−1

where b ∈ C∗. From Proposition 3.19 (2), the unique

monomial of the form mT ′ where T � T ′ � T̃ that does not occur in L1(mT ) is the
dominant monomial

mT A−1
1,bq2k−1A

−1
1,bq2k−3 · · ·A

−1
1,bq3 = mT ′ .

�

Remark : Consider the tableaux t =

(

3 3 · · · 3 4
4 3 · · · 3 3

)

which is not in Tab(2, k) by

condition (θ3). We have
(

3 3 · · · 3
4 4 · · · 4

)

� t �

(

4 4 · · · 4
3 3 · · · 3

)

.

Lemma 10.12 gives an explanation for the condition (θ3) : the tableaux t does not
correspond to a monomial in L1(mT ) or L1(mTr). We have an analog remark for the
condition (θ4). As 3 is the unique element of B satisfying |succ(3)| ≥ 2, this kind of
situation can only appear for the first two tableaux T considered in Lemma 10.12. That
is why no other condition than (θ3) and (θ4) are required in the definition of Tab(2, k).

As for Lemma 10.12, we have (but here 2-dominant monomials are involved instead
of 1-dominant monomials) :

Lemma 10.13. Consider the elements of Tab(2, k):

T =

(

1 2 · · · 2 2
3 3 · · · 3 1

)

, T̃ =

(

1 3 · · · 3 3
2 2 · · · 2 1

)

, Tr =

(

1 2 · · · 2 2
2 2 · · · 2 1

)

.

Then we have :
∑

{T ′∈Tab(2,k)|T�T ′�T̃}

mT ′ = L2(mT ) + mTr = L2(mT ) + L2(mTr).

We have the same result with

T =

(

2 2 · · · 2 4
4 3 · · · 3 3

)

, T̃ =

(

3 3 · · · 3 4
4 2 · · · 2 2

)

, Tr =

(

3 3 · · · 3 4
4 3 · · · 3 3

)

,
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and

T =

(

2 2 · · · 2 4
4 3 · · · 3 3

)

, T̃ =

(

3 3 · · · 3 4
4 2 · · · 2 2

)

, Tr =

(

3 3 · · · 3 4
4 3 · · · 3 3

)

.

We also have the following result which is a little bit different than Lemma 10.13
because of conditions (θ3) and (θ4) :

Lemma 10.14. Consider the elements of Tab(2, k):

T =

(

2 2 · · · 2 4
4 3 · · · 3 3

)

, T̃ =

(

3 3 · · · 3 4
4 2 · · · 2 2

)

.

Then we have :
∑

{T ′∈Tab(2,k)|T�T ′�T̃}

mT ′ = L2(mT ).

We have the same result with

T =

(

2 2 · · · 2 4
4 3 · · · 3 3

)

, T̃ =

(

3 3 · · · 3 4
4 2 · · · 2 2

)

.

Let us complete the proof of Theorem 10.5 :

Proof: Suppose that there is a dominant monomial m
(2)
T where

T 6=

(

1 1 · · · 1
1 1 · · · 1

)

∈ Tab(2, k).

We have necessarily α = T2,k 6= 1. Suppose that ( α aq2(k−2))
− is partly canceled

by ( β
aq2(j′−i′)

)+ (let n1 such that the canceled variable is of the form Zl,(aωsqn1 )dl ).

By Lemma 10.9, j′ = k, i′ = 2. Suppose that ( β
aq2(k−1)

)− is partly canceled by

( γ
aq2(j′′−2)

)+ (let n1 such that the canceled variable is of the form Z
l′,(aωs′ qn2 )d

l′
).

By Lemma 10.9, j′′ ≤ j and β ≺ γ. But we have n2 > n1. So Z
l′,(aωs′qn2 )d

l′
ap-

pears in ( γ
aq2(j′′−2)

). As γ � α, we have an element Z
l′′,(aωs′′ qn3 )d

l′′
which appears in

( α aq2(k−2))− with n3 > n1, contradiction.

So there is a unique dominant monomial in the formula.

From Lemma 10.10, the monomials m
(2)
T have the maximal affine degree equal to 2

(as one (i, j) can only be involved in one of the relations described in Lemma 10.10).
Let 1 ≤ i ≤ 2. We want to give a decomposition as in Proposition 3.15 for J = {i}.

For k = 1 the result is clear from the study of fundamental representations (see section
11.2). We suppose that k ≥ 2. From Proposition 3.19, the Li(M) that should appear
in this decomposition have affine degree at most equal to 2 and several dominant i-
dominant monomials may appear inside.

Consider the set M1 of tableaux T ∈ Tab(2, k) satisfying

• for any 1 ≤ j ≤ k,

(T1,j , T2,j) ∈ {(1, 2), (1, 3), (1, 2), (3, 2), (3, 4), (3, 4), (3, 3), (2, 1), (2, 2)},

• (3, 3) and (3, 4) do not appear simultaneously,
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• (3, 3) and (3, 4) do not appear simultaneously,
• (2, 2) and (1, 2) do not appear simultaneously.

Remark 10.15. Note that the T ∈ M1 define 1-dominant monomials mT , but there
are other elements of Tab(2, k) with the same property. In fact we can obtain all the
others in the following way. Let us start with T ∈ M1 such that the columns (3, 4) or
(3, 4) or (1, 2) appear several times. Then we replace some (3, 4), some (3, 4), some
(1, 2) respectively by (3, 3), (3, 3), (2, 2) but in each case not all of them. The T ′ that
we get by this process are all elements of Tab(2, k) −M1 corresponding to 1-dominant
monomials.

Let T ∈ M1 and T̃ ∈ Tab(2, k) obtained from T by replacing (1, 3) (resp. (1, 2),
(3, 2), (3, 4), (3, 4), (2, 2)) by (2, 3) (resp. (2, 1), (3, 1), (4, 3), (4, 3), (2, 2)).

Let M1(T ) be the set of tableaux T ′ ∈ Tab(1, k) satisfying

• T � T ′ � T̃ ,
• if (3, 4) appears in T , then

(T ′
1,l, T

′
2,l) 6= (3, 3) where j = Min{1 ≤ l ≤ k|(T1,l, T2,l) = (3, 4)},

• if (3, 4) appears in T , then

(T ′
1,j , T

′
2,j) 6= (3, 3) where j = Min{1 ≤ l ≤ k|(T1,l, T2,l) = (3, 4)},

• if (1, 2) appears in T , then

(T ′
1,j , T

′
2,j) 6= (2, 2) where j = Min{1 ≤ l ≤ k|(T1,l, T2,l) = (1, 2)}.

In particular if T 6= T ′ ∈ M1 then M1(T ) and M1(T
′) are disjoint.

Let T ∈ M1 and let us prove that

L1(mT ) =
∑

T ′∈M1(T )

mT ′ .

This can be done as for the proof of Theorem 10.3, except that by Lemma 10.10 mT

might be not thin. By Lemma 10.10 this can happen when one of the columns (3, 4),
(3, 4) or (1, 2) appears several times. These situations can be reduced to the cases
studied in Lemma 10.12. In each case the monomial mTr is precisely excluded of M1(T )
by the definition of M1(T ), but is in M1 (the other monomials excluded from M1 are
in M1(T ), see Remark 10.15).

Moreover (M1(T ))T∈M1 is a partition of Tab(1, k). Indeed for T ∈ Tab(1, k) by
analogy to the proof of Theorem 10.3, it is easy to construct T ′ ∈ M1 such that
T ∈ M1(T

′). Here we use the partial ordering on B×B instead of the partial ordering
on B used in the proof of Theorem 10.3 :

((i, j) � (i′, j′)) ⇔ (i � i′ and j � j′).

Consider the set M2 of tableaux T ∈ Tab(2, k) satisfying for any 1 ≤ j ≤ k :

• T1,j 6= 2,
• if T2,j = 3 then T1,j = 2,
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• if T2,j = 2 and T1,j 6= 3, then there are 1 ≤ j1 ≤ j < j2 ≤ k such that
(

T1,j1 T1,j1+1 · · · T1,j2

T2,j1 T2,j1+1 · · · T2,j2

)

=

(

1 2 · · · 2 2
2 2 · · · 2 1

)

,

• if T1,j = 3, then there are 1 ≤ j1 ≤ j < j2 ≤ k such that
(

T1,j1 T1,j1+1 · · · T1,j2

T2,j1 T2,j1+1 · · · T2,j2

)

=

(

3 3 · · · 3 α
β 3 · · · 3 3

)

,

where (α, β) = (4, 4) or (α, β) = (4, 4).

Remark 10.16. Note that the T ∈ M2 define 2-dominant monomials mT , but there are
other elements of Tab(2, k) with the same property. In fact we can obtain all the others
in the following way. Let us start with T ∈ M2 such that the columns (2, 3) and (2, 1)
(resp. and (α, 3) where α ∈ {4, 4}) appear simultaneously. Then we replace some (2, 3)
by (2, 2) (resp. by (3, 3)) such that the T ′ that we get is in Tab(2, k). By this process
we get all elements T ′ ∈ Tab(2, k) −M2 corresponding to 2-dominant monomials.

Let T ∈ M2 and T̃ ∈ Tab(2, k) obtained from T by the following process :

• if T2,j = 3 and T1,j−1 6= 3, we replace this 3 by 2,
• if T2,j = 2, we replace this 2 by 3,
• if T1,j = 3 and T2,j 6= 2, we replace this 3 by 2,
• if T1,j = 2 and T2,j 6= 3 and T2,j−1 6= 2, we replace this 2 by 3.

Let T ∈ M2. Then we define M2(T ) as the set of T ′ ∈ Tab(2, k) satisfying :

• T � T ′ � T̃ ,
• if (1, 3) and (2, 3) and (2, 1) appear simultaneously in T , for j such that
(

T1,j T1,j+1

T2,j T2,j+1

)

=

(

1 2
3 3

)

, we have (T ′
1,j+1 = 2 ⇒ T ′

2,j 6= 2),

• if (2, α) and (2, 3) and (β, 3) appear simultaneously in T where α, β ∈ {4, 4},

for j such that

(

T1,j T1,j+1

T2,j T2,j+1

)

=

(

2 2
α 3

)

, we have (T ′
2,j+1 = 3 ⇒ T ′

1,j 6= 3).

Note that by (θ3) and (θ4), the last condition is automatic in the cases α = β.
Then we can prove as above by using Lemma 10.10, Lemma 10.13, Lemma 10.14 and

Remark 10.16 that for T ∈ M2 we have

L2(mT ) =
∑

T ′∈M2(T )

mT ′ ,

and that (M2(T ))T∈M2 is a partition of Tab(2, k). �

For recent results on conjectural crystals (pseudo basis) for i = 1 in type D
(3)
4 see

[KMOY].

Corollary 10.17. W
(1)
k,a is thin and W

(2)
k,a has affine degree 2.

Proof: From the study of fundamental representations, the affine degree of W
(2)
k,a is at

least equal to 2. As the monomials m
(2)
T have the maximal affine degree equal to 2 (see

the proof of Theorem 10.5), the affine degree of W
(2)
k,a is 2. �
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10.3. Relation to untwisted type D
(1)
4 . Our result for twisted type D

(3)
4 is coherent

with explicit formulas conjectured [NN1, NN2] for q-characters of Kirillov-Reshetikhin

modules in untwisted types D
(1)
4 . As it is proved in [KNS2] that these explicit formulas

solve the T -system, these formulas were first proved in [N5] as a direct consequence of
the proof of the T -system for simply-laced cases.

Here we explain the connection to the results of the present paper. The strategy of

our proof for type D
(3)
4 is different as we do not use the T -system but we use directly

the special property. Additional formulas conjectured in [NN1, NN2] for type D will
be proved in a separate publication by using the results of [H7] and this strategy. For

type D
(1)
4 the special property of Kirillov-Reshetikhin modules was proved by Nakajima

[N4, N5], and so to prove the explicit formulas for D
(1)
4 we could also have directly

rewritten the proof of Section 10.2 in this context.

Let us consider the untwisted quantum affine algebra of type D
(1)
4 .

For a ∈ C∗, let

1 u,a = Y1,a,

2 u,a = Y −1
1,aq2Y2,aq,

3 u,a = Y −1
2,aq3Y4,aq2Y3,aq2,

4 u,a = Y4,aq2Y −1
3,aq4 ,

4 u,a = Y3,aq2Y −1
4,aq4 ,

3 u,a = Y −1
4,aq4Y

−1
3,aq4Y2,aq3,

2 u,a = Y1,aq4Y −1
2,aq5 ,

1 u,a = Y −1
1,aq6 .

We define Tab(1, k) and Tab(2, k) as in the previous section.
For T ∈ Tab(1, k) and a ∈ C∗ we set

m
(1)
u,T,a =

∏

1≤j≤k

Tj
u,aq2(j−1)

.

For T ∈ Tab(2, k) and a ∈ C∗ we set

m
(2)
u,T,a =

∏

1≤i≤2,1≤j≤k

Ti,j
u,aq2(j−i)

.

As a consequence of the results in [KNS2, NN1, N5] :

Theorem 10.18. For a ∈ C∗, k ≥ 1 we have :

χq(W
(1)
k,a) =

∑

T∈Tab(1,k)

m
(1)
u,T,a and χq(W

(2)
k,a) =

∑

T∈Tab(2,k)

m
(2)
u,T,aq.

Theorem 8.1, Theorem 10.3 and Theorem 10.5 also imply this result.

Note that χq(W
(3)
k,a ) and χq(W

(4)
k,a) are obtained in an analog way by permuting the

numbering of the nodes (2, 3, 4).
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Corollary 10.19. W
(1)
k,a , W

(3)
k,a , W

(4)
k,a are thin and W

(2)
k,a has affine degree 2.

To check that we get the explicit formulas of [NN2], we see we have the same condition
to define the set of tableaux. Indeed the condition of [NN2] are :

• Ti,j � Ti,j+1 or {Ti,j, Ti,j+1} = {4, 4} for 1 ≤ i ≤ 2, 1 ≤ j ≤ k − 1,
• T1,j � T2,j for 1 ≤ j ≤ k,
• T does not have any odd II-region.

The last condition is interpreted in [NN2] in terms of tableaux :

The one row Example 5.10 of [NN2] gives the result for χq(W
(1)
k,a) : the extra condition

is equivalent to (Tj , Tj+1) /∈ {(4, 4), (4, 4)} for 1 ≤ j ≤ k − 1.

The two row Example 5.12 of [NN2] (see also [SS]) gives the result for χq(W
(2)
k,a) : the

extra condition is equivalent to conditions (θ3’), (θ4’).

10.4. Type D
(2)
4 . Let us consider the twisted quantum affine algebra of type D

(2)
4 .

For a ∈ C∗, let b ∈ C∗ such that b2 = 1 and :

1 t,a = Z1,a,

2 t,a = Z−1
1,aq4Z2,aq2 ,

3 t,a = Z−1
2,aq6Z3,bq2Z3,−bq2 ,

4 t,a = Z3,bq2Z−1
3,−bq4 ,

4 t,a = Z3,−bq2Z−1
3,bq4 ,

3 t,a = Z−1
3,bq4Z

−1
3,−bq4Z2,aq6 ,

2 t,a = Z1,aq8Z−1
2,aq10 ,

1 t,a = Z−1
1,aq12 .

We define Tab(1, k) and Tab(2, k) as in the previous section.
For T ∈ Tab(1, k) and a ∈ C∗ we set

m
(1)
t,T,a =

∏

1≤j≤k

Tj
t,aq2(j−1)

.

For T ∈ Tab(2, k) and a ∈ C∗ we set

m
(2)
t,T,a =

∏

1≤i≤2,1≤j≤k

Ti,j
t,aq2(j−i)

.

As a consequence of Theorem 8.1 and Theorem 10.18 we get :

Theorem 10.20. For a ∈ C∗, k ≥ 1 we have :

χσ
q (W

(1)
k,a) =

∑

T∈Tab(1,k)

m
(1)
t,T,a and χσ

q (W
(2)
k,a) =

∑

T∈Tab(2,k)

m
(2)
t,T,a.
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For a ∈ C∗, let :

1 s,a = Z3,a,

2 s,a = Z−1
3,aq2Z2,a2q2 ,

3 s,a = Z−1
2,a2q6Z1,a2q4Z3,−aq2 ,

4 s,a = Z1,a2q4Z−1
3,−aq4 ,

4 s,a = Z3,−aq2Z−1
1,a2q8 ,

3 s,a = Z−1
3,−aq4Z

−1
1,a2q8Z2,a2q6,

2 s,a = Z3,aq4Z−1
2,a2q10 ,

1 s,a = Z−1
3,aq6 .

For T ∈ Tab(1, k) and a ∈ C∗ we set

m
(3)
s,T,a =

∏

1≤j≤k

Tj
s,aq2(j−1)

.

As a consequence of Theorem 8.1 and Theorem 10.18 we get :

Theorem 10.21. For a ∈ C∗, k ≥ 1 we have :

χσ
q (W

(3)
k,a) =

∑

T∈Tab(1,k)

m
(1)
t,T,a.

Corollary 10.22. W
(1)
k,a , W

(3)
k,a are thin and W

(2)
k,a has affine degree 2.

11. Twisted q-characters of fundamental representations

In this section we get explicit formulas for the twisted q-character of fundamental
representations of twisted quantum affine algebras (that it to say the first term in the
inductive twisted T -system).

For type A
(2)
2n (n ≥ 1) and type A

(2)
2n−1 (n ≥ 3) : see section 10.1.

11.1. Type D
(2)
n+1 (n ≥ 2). The q-characters of fundamental representations for un-

twisted quantum affine algebras of type D are known (see the formulas in [KS2]).
First suppose that i0 ≤ n − 1.
Let B = {1, . . . , n + 1, n + 1, . . . , 1}. We give the ordering ≺ on the set B by

1 ≺ 2 ≺ · · · ≺ n ≺
n + 1
n + 1

≺ n ≺ · · · ≺ 2 ≺ 1.
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For a ∈ C∗ and b ∈ C∗ such that b2 = a. Let

i a =































































Z1,a if i = 1,

Z−1
i−1,aq2iZi,aq2(i−1) if 2 ≤ i ≤ n − 1,

Z−1
n−1,aq2nZn,bqn−1Zn,−bqn−1 if i = n,

Z−1
n,bqn+1Zn,−bqn−1 if i = n + 1,

Z−1
n,−bqn+1Zn,bqn−1 if i = n + 1,

Zn−1,aq2nZ−1
n,bqn+1Z

−1
n,−bqn+1 if i = n,

Zj−1,aq4n−2jZ−1
j,aq4n+2−2j if i = j and 2 ≤ j ≤ n − 1,

Z−1
1,aq4n if i = 1.

For 1 ≤ i0 ≤ n−1, let TabD(i0) be the set of tableaux T = (Ti)1≤i≤i0 with coefficients
in B such that for 1 ≤ i ≤ i0 − 1, Ti � Ti+1.

For such a tableaux T ∈ TabD(i0) and a ∈ C∗ we set

mT,a =
∏

1≤i≤i0

Ti aq2−2i .

Proposition 11.1. For 1 ≤ i0 ≤ n − 1 and a ∈ C∗ we have :

χσ
q (Vi0,a) =

∑

T∈Tab′(i0,k)

mT,aqi0−1 .

Following [N3, KKS] we define for a ∈ C∗ the half size box as

i a =























Z1,a2q−2 if i = 1,

Z−1
i−1,a2q2i−2Zi,a2q2i−4 if 2 ≤ i ≤ n − 1,

Z−1
n−1,a2q2n−4 if i = n,

Zn,aqn if i = n + 1,

i a =











1 if 1 ≤ i ≤ n − 1,

Z−1
n,−aqn+2Z

−1
n,aqn+2 if i = n,

Zn,−aqn if i = n + 1.

Let Bsp be the set of tableaux T = (i1, . . . , in+1) satisfying

• ia ∈ B, i1 ≺ i2 ≺ · · · ≺ in+1,
• i and i do not appear simultaneously,
• if ip = n, then n + 1 − p is even,
• if ip = n + 1, then n − p is odd.

For such a tableaux T ∈ Bsp, we define the monomial mT by

mT =

n+1
∏

p=1

ip
aqn+2−2p

.
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Proposition 11.2. For a ∈ C∗ we have

χσ
q (Vn,a) =

∑

T∈Bsp

mT,a.

11.2. Type D
(3)
4 . In the following we will use the notation ipa = Zp

i,a for i ∈ Iσ, a ∈ C∗,
p ∈ Z.

We give χσ
q (V1,a) and χσ

q (V2,a) by drawing a graph as in [FR] : there is an arrow
m1 →i m2 is m1 and m2 satisfy m1 = Ai,bm2 for one b ∈ C∗, and τi(m1), τi(m2) are in

the q-character of a certain simple Ûi-module. Note for untwisted type D
(1)
4 a similar

graph is given [N2].
The result corresponds to the conjectural formulas in [R].

Z1,a

1
��

Z−1
1,aq2Z2,a3q3

2
��

Z−1
2,a3q9Z1,aq2jZ1,aq2j2

1
vvlllllllllllll

1

((RRRRRRRRRRRRR

Z1,aq2jZ
−1
1,aq4j2

1

((RRRRRRRRRRRRR

Z−1
1,aq4j

Z1,aq2j2

1
vvlllllllllllll

Z−1
1,aq4j

Z−1
1,aq4j2Z2,a3q9

2
��

Z1,aq4Z−1
2,a3q15

1
��

Z−1
1,aq6

Figure 3. Type D
(3)
4 : the graph of χσ

q (V1,a)

Let b ∈ C∗ such that b3 = a. Let c = bj and d = bj2. The graph of χσ
q (V1,a) is given

in Figure 11.2 (see also the construction in [KMOY]). The graph of χσ
q (V2,a) is given in

Figure 11.2.



74 DAVID HERNANDEZ

2a

2−1
aq61bq1cq1dq

1bq1
−1
dq31cq 1−1

bq31dq1cq 1bq1dq1
−1
cq3

1−1
bq32aq61−1

dq31cq 1bq2aq61−1
dq31

−1
cq3 1−1

bq32aq61dq1
−1
cq3

2−1
aq121cq1cq3 1bq1bq32−1

aq12 1−1
bq32

2
aq61

−1
dq31

−1
cq3 2−1

aq121dq1dq3

1cq1
−1
cq5 1bq1

−1
bq5 2 × 2aq62−1

aq12 1dq1
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2aq121−1
cq31
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Figure 4. Type D
(3)
4 : χσ

q (V2,a)
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11.3. Type E
(2)
6 . Explicit formulas for fundamental representations of untwisted quan-

tum affine algebras of type E
(1)
6 were obtained with a computer program by Nakajima,

and by Hernandez-Schedler. For recent results in this direction see [N7]. Nakajima’s
program is available online :

http://www.math.kyoto-u.ac.jp/~nakajima/Qchar/Qchar.html

The result for type E
(1)
6 from Hernandez-Schedler’s program is available online :

http://www.math.uvsq.fr/~hernandez/e6.pdf
With the results of this file and by using Theorem 8.1, we get the twisted q-characters

of fundamental representations in type E
(2)
6 . The result corresponds to the conjectural

formulas in [R].
In the present paper we list the result for the twisted q-character of V1,a, V2,a and V4,a.
V3,a is of dimension 3732 and χσ

q (V3,a) has 2925 distinct monomials. So by lack of space,
χσ

q (V3,a) is given online on the webpage :
http://www.math.uvsq.fr/~hernandez/e6twisted.pdf.

Let us give χσ
q (V1,a), χσ

q (V2,a) and χσ
q (V4,a) :

χσ
q (V1,a) : there are 27 distinct monomials and the dimension of V1,a is 27 (all mono-

mials have multiplicity 1):

1a +2aq1
−1
aq2 +3a2q42−1

aq3 +3−1
a2q84a2q62−aq3 +4−1

a2q102−aq3 +4a2q62−1
−aq51−aq4 +3a2q84−1

a2q102−1
−aq51−aq4

+4a2q61−1
−aq6 +3−1

a2q122aq51−aq4 +3a2q94−1
a2q101−1

−aq6 +2−1
aq71aq61−aq4 +3−1

a2q122aq52−aq51−1
−aq6 +1−1

aq81−aq4

+ 2−1
aq72−aq51aq61−1

−aq6 + 2aq52−1
−aq7 + 2−aq51−1

aq81−1
−aq6 + 3a2q122−1

aq72−1
−aq71aq6 + 3a2q122−1

−aq71
−1
aq8

+ 3−1
a2q164a2q141aq6 + 3−1

a2q164a2q142aq71−1
aq8 + 4−1

a2q181aq6 + 4−1
a2q182aq71−1

aq8 + 4a2q142−1
aq9 + 3a2q164−1

a2q182−1
aq9

+ 3−1
a2q202−aq9 + 2−1

−aq111−aq10 + 1−1
−aq12 .

χσ
q (V4,a) : there are 78 distinct monomials and the dimension of V4,a is 79 (only one

monomial has multiplicity 2 : 3aq103−1
aq14) :

4a + 3aq24−1
aq4 + 3−1

aq62bq22−bq2 + 2−1
bq42−bq21bq3 + 2bq22−1

−bq41−bq3 + 3aq62−1
bq42−1

−bq41bq31−bq3 + 2−bq21−1
bq5

+ 2bq21−1
−bq5 + 3−1

aq104aq81bq31−bq3 + 3aq62−1
−bq41−1

bq51−bq3 + 3aq62−1
bq41bq31−1

−bq5 + 4−1
aq121bq31−bq3

+ 3−1
aq104aq82bq41−1

bq51−bq3 + 3−1
aq104aq82−bq41bq31−1

−bq5 + 3aq61−1
bq51−1

−bq5 + 4−1
aq122bq41−1

bq51−bq3

+ 4−1
aq122−bq41bq31−1

−bq5 + 4aq82−1
bq61−bq3 + 3−1

aq104aq82bq42−bq41−1
bq51−1

−bq5 + 4aq82−1
−bq61bq3

+ 3aq104−1
aq122−1

bq61−bq3 + 4−1
aq122bq42−bq41−1

bq51−1
−bq5 + 3aq104−1

aq122−1
−bq61bq3 + 4aq82−1

bq62−bq41−1
−bq5

+ 4aq82bq42−1
−bq61−1

bq5 + 3−1
aq142−bq61−bq3 + 3aq104−1

aq122−1
bq62−bq41−1

−bq5 + 3aq104−1
aq122bq42−1

−bq61−1
bq5

+ 3−1
aq142bq61bq3 + 3aq104aq82−1

bq62−1
−bq6 + 2−1

−bq81−bq31−bq7 + 3−1
aq142−bq42−bq61−1

−bq5 + 32aq104−1
aq122−1

bq62−1
−bq6

+ 3−1
aq142bq42bq61−1

bq5 + 2−1
bq81bq31bq7 + 3−1

aq144aq84aq12 + 1−bq31−1
−bq9 + 2−bq42−1

−bq81−1
−bq51−bq7 + 23aq103−1

aq14

+2bq42−1
bq81−1

bq51bq7 +1bq31−1
bq9 +4aq84−1

aq16 +2−bq41−1
−bq51−1

−bq9 +3aq102−1
−bq62−1

−bq81−bq7 +3−2
aq144aq122bq62−bq6

+ 3aq102−1
bq62−1

bq81bq7 + 2bq41−1
bq51−1

bq9 + 3aq104−1
aq124−1

aq16 + 3aq102−1
−bq61−1

−bq9 + 3−1
aq144aq122bq62−1

−bq81−bq7

+ 3−1
aq144−1

aq162bq62−bq6 + 3−1
aq144aq122−1

bq82−bq61bq7 + 3aq102−1
bq61−1

bq9 + 3−1
aq144aq122bq61−1

−bq9

+ 4−1
aq162bq62−1

−bq81−bq7 + 4aq122−1
bq82−1

−bq81bq71−bq7 + 4−1
aq162−1

bq82−bq61bq7 + 3−1
aq144aq122−bq61−1

bq9

+ 4−1
aq162bq61−1

−bq9 + 4aq122−1
bq81bq71−1

−bq9 + 3aq144−1
aq162−1

bq82−1
−bq81bq71−bq7 + 4aq122−1

−bq81−1
bq91−bq7

+4−1
aq162−bq61−1

bq9 +3aq144−1
aq162−1

bq81bq71−1
−bq9 +4aq121−1

bq91−1
−bq9 +3−1

aq181bq71−bq7 +3aq144−1
aq162−1

−bq81−1
bq91−bq7

+3−1
aq182−bq81bq71−1

−bq9 +3aq144−1
aq161−1

bq91−1
−bq9 +3−1

aq182bq81−1
bq91−bq7 +2−1

−bq101bq7 +3−1
aq182bq82−bq81−1

bq91−1
−bq9

+ 2−1
bq101−bq7 + 2bq82−1

−bq101−1
bq9 + 2−1

bq102−bq81−1
−bq9 + 3aq182−1

bq102−1
−bq10 + 3−1

aq224aq20 + 4−1
aq24

χσ
q (V2,a) : there are 351 distinct monomials and the dimension of V2,a is 378 :
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2a + 3a2q22−1
aq21aq + 3−1

a2q64a2q42−aq21aq + 3a2q21−1
aq3 + 4−1

a2q82−aq21aq + 4a2q42−1
−aq41aq1−aq3

+ 3−1
a2q64a2q42aq22−aq21−1

aq3 + 3a2q64−1
a2q82

−1
−aq41aq1−aq3 + 4−1

a2q82aq22−aq21−1
aq3 + 4a2q42aq22−1

−aq41−1
aq31−aq3

+ 4a2q41aq1
−1
−aq5 + 4a2q42−1

aq42−aq2 + 3−1
a2q102aq41aq1−aq3 + 3a2q64−1

a2q82aq22−1
−aq41−1

aq31−aq3

+ 3a2q64−1
a2q81aq1

−1
−aq5 + 3a2q64−1

a2q82−1
aq42−aq2 + 3a2q64a2q42−1

aq42
−1
−aq41−aq3 + 4a2q42aq21−1

aq31
−1
−aq5

+ 2−1
aq61aq1aq51−aq3 + 3−1

a2q102aq22aq41−1
aq31−aq3 + 3−1

a2q102aq42−aq41aq1
−1
−aq5 + 32

a2q64−1
a2q82

−1
aq42−1

−aq41−aq3

+ 3a2q64−1
a2q82aq21−1

aq31−1
−aq5 + 3−1

a2q102−aq22−aq4 + 3−1
a2q104a2q44a2q81−aq3 + 3a2q64a2q42−1

aq41−1
−aq5

+ 1aq1
−1
aq71−aq3 + 2aq22−1

aq61
−1
aq31aq51−aq3 + 2−1

aq62−aq41aq1aq51−1
−aq5 + 23a2q63−1

a2q101−aq3

+ 3−1
a2q102aq22aq42−aq41−1

aq31−1
−aq5 + 2aq42−1

−aq61aq + 32
a2q64−1

a2q82
−1
aq41−1

−aq5 + 2−aq22−1
−aq61−aq5

+ 4a2q44−1
a2q121−aq3 + 3−1

a2q104a2q44a2q82−aq41−1
−aq5 + 2aq21−1

aq31−1
aq71−aq3 + 3a2q62−1

aq42
−1
aq61aq51−aq3

+3−2
a2q104a2q82aq42−aq41−aq3 +3a2q62−1

−aq42−1
−aq61−aq31−aq5 +3a2q64−1

a2q84−1
a2q121−aq3 +2−aq41aq1

−1
aq71−1

−aq5

+ 2aq22−1
aq62−aq41−1

aq31aq51−1
−aq5 + 3a2q102−1

aq62−1
−aq61aq1aq5 + 23a2q63−1

a2q102−aq41−1
−aq5 + 2aq22aq42−1

−aq61−1
aq3

+ 2−aq21−1
−aq7 + 4a2q44−1

a2q122−aq41−1
−aq5 + 4a2q44a2q82−1

−aq6 + 2aq22−aq41−1
aq31−1

aq71
−1
−aq5

+ 3a2q62−1
aq42−1

aq62−aq41aq51−1
−aq5 + 3−2

a2q104a2q82aq422
−aq41−1

−aq5 + 3a2q64−1
a2q84−1

a2q122−aq41−1
−aq5

+ 3a2q62−1
aq41−1

aq71−aq3 + 3−1
a2q104a2q82−1

aq62−aq41aq51−aq3 + 3−1
a2q104−1

a2q122aq42−aq41−aq3 + 23a2q62−1
−aq6

+ 3−1
a2q104a2q82aq42−1

−aq61−aq31−aq5 + 3a2q62−1
−aq41−aq31−1

−aq7 + 3a2q102−1
−aq61aq1

−1
aq7

+ 3a2q102aq22−1
aq62−1

−aq61−1
aq31aq5 + 3−1

a2q144a2q121aq1aq5 + 3a2q104a2q44−1
a2q122−1

−aq6 + 3a2q61−1
−aq51−1

−aq7

+ 3a2q102aq22−1
−aq61−1

aq31−1
aq7 + 3a2q63a2q102−1

aq42−1
aq62−1

−aq61aq5 + 3a2q63a2q104−1
a2q84−1

a2q122−1
−aq6

+ 3a2q62−1
aq42−aq41−1

aq71−1
−aq5 + 3−1

a2q104a2q82−1
aq622

−aq41aq51−1
−aq5 + 3−1

a2q104−1
a2q122aq422

−aq41−1
−aq5

+ 23−1
a2q104a2q82aq42−aq42−1

−aq6 + 3−1
a2q104a2q82−aq41−1

aq71−aq3 + 4−1
a2q122−1

aq62−aq41aq51−aq3

+ 4a2q82−1
aq62−1

−aq61aq51−aq31−aq5 + 4−1
a2q122aq42−1

−aq61−aq31−aq5 + 3−1
a2q104a2q82aq41−aq31−1

−aq7

+ 3−1
a2q144a2q122aq61aq1

−1
aq7 + 3−1

a2q144a2q122aq21−1
aq31aq5 + 4−1

a2q161aq1aq5 + 3−1
a2q144a2q42aq6

+ 4a2q82aq42−2
−aq61−aq5 + 3−1

a2q104a2q82aq42−aq41−1
−aq51

−1
−aq7 + 3−1

a2q144a2q122aq22aq61−1
aq31−1

aq7

+ 3a2q63a2q102−1
aq42

−1
−aq61−1

aq7 + 3a2q63−1
a2q144a2q122−1

aq41aq5 + 24a2q82−1
aq62−aq42−1

−aq61aq5

+3a2q63−1
a2q144−1

a2q82aq6 +24−1
a2q122aq42−aq42−1

−aq6 +3−1
a2q104a2q822

−aq41
−1
aq71−1

−aq5 +4−1
a2q122−1

aq622
−aq41aq51−1

−aq5

+ 4−1
a2q122−aq41−1

aq71−aq3 + 4a2q82−1
−aq61−1

aq71−aq31−aq5 + 3a2q104−1
a2q122−1

aq62
−1
−aq61aq51−aq31−aq5

+ 4a2q82−1
aq61aq51−aq31−1

−aq7 + 4−1
a2q122aq41−aq31−1

−aq7 + 4−1
a2q162aq61aq1

−1
aq7 + 4a2q122−1

aq81aq

+ 4−1
a2q162aq21−1

aq31aq5 + 4a2q42−1
aq81aq7 + 3−1

a2q103−1
a2q144a2q84a2q122−aq41aq5 + 3−1

a2q103−1
a2q142aq42aq62−aq4

+ 3a2q104a2q82−1
aq62

−2
−aq61aq51−aq5 + 3a2q104−1

a2q122aq42−2
−aq61−aq5 + 4a2q82−1

aq62−aq41aq51−1
−aq51−1

−aq7

+ 4−1
a2q122aq42−aq41−1

−aq51−1
−aq7 + 4−1

a2q162aq22aq61−1
aq31−1

aq7 + 4a2q82aq42−1
−aq61−1

−aq7 + 4a2q122aq22−1
aq81−1

aq3

+ 3a2q63−1
a2q144a2q122−1

aq42aq61−1
aq7 + 24a2q82−aq42−1

−aq61
−1
aq7 + 3a2q64−1

a2q162−1
aq41aq5

+ 23a2q104−1
a2q122−1

aq62−aq42−1
−aq61aq5 + 3a2q64−1

a2q82−1
aq81aq7 + 4−1

a2q1222
−aq41−1

aq71−1
−aq5

+ 3a2q104−1
a2q122−1

−aq61−1
aq71−aq31−aq5 + 4a2q81−1

aq71−aq31−1
−aq7 + 3−1

a2q141aq51−aq31−aq5

+ 3a2q104−1
a2q122−1

aq61aq51−aq31−1
−aq7 + 3a2q144−1

a2q162−1
aq81aq + 4a2q41−1

aq9 + 3a2q64a2q122−1
aq42−1

aq8

+ 3−1
a2q103−1

a2q144a2q84a2q122aq62−aq41−1
aq7 + 3a2q104a2q82−2

−aq61
−1
aq71−aq5 + 32

a2q104−1
a2q122−1

aq62−2
−aq61aq51−aq5

+ 4a2q82−aq41−1
aq71−1

−aq51
−1
−aq7 + 3a2q104−1

a2q122−1
aq62−aq41aq51−1

−aq51−1
−aq7 + 3−1

a2q104a2q84−1
a2q162−aq41aq5

+ 23−1
a2q142−aq41aq5 + 3−1

a2q144a2q84a2q122−1
−aq61aq51−aq5 + 3−1

a2q102aq42−1
aq82−aq41aq7

+ 3−1
a2q142aq42aq62−1

−aq61−aq5 + 3a2q104a2q82−1
aq62−1

−aq61aq51−1
−aq7 + 3a2q104−1

a2q122aq42−1
−aq61

−1
−aq7

+ 3a2q144−1
a2q162aq22−1

aq81
−1
aq3 + 3a2q64−1

a2q162−1
aq42aq61−1

aq7 + 23a2q104−1
a2q122−aq42−1

−aq61−1
aq7 + 3a2q64−1

a2q81−1
aq9

+3−1
a2q142aq61−1

aq71−aq31−aq5 +3a2q104−1
a2q121−1

aq71−aq31−1
−aq7 +3−1

a2q142−aq61aq51−aq31−1
−aq7 +3−1

a2q182−aq81aq

+ 4−1
a2q124−1

a2q162−aq41aq5 + 2−1
aq62−1

aq82−aq41aq51aq7 + 3a2q63a2q144−1
a2q162−1

aq42−1
aq8

+ 32
a2q104−1

a2q122−2
−aq61−1

aq71−aq5 + 3a2q104−1
a2q122−aq41−1

aq71
−1
−aq51−1

−aq7 + 3−1
a2q142−aq42−aq61aq51−1

−aq51
−1
−aq7

+ 3−1
a2q104a2q84a2q122−1

aq82−aq4 + 3−1
a2q104a2q84−1

a2q162aq62−aq41−1
aq7 + 23−1

a2q142aq62−aq41−1
aq7

+ 3−1
a2q144a2q84a2q122aq62−1

−aq61−1
aq71−aq5 + 3a2q104a2q82−1

−aq61
−1
aq71−1

−aq7 + 23a2q103−1
a2q142−1

−aq61aq51−aq5

+ 32
a2q104−1

a2q122−1
aq62−1

−aq61aq51−1
−aq7 + 4a2q84−1

a2q162−1
−aq61aq51−aq5 + 3−1

a2q144a2q84a2q121aq51−1
−aq7
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+ 2aq42−1
aq82−1

−aq61aq71−aq5 + 3−1
a2q102aq42−aq41−1

aq9 + 3−1
a2q142aq42aq61−1

−aq7 + 3−1
a2q182aq22−aq81−1

aq3

+ 2−1
aq81−aq31−aq5 + 3−1

a2q142aq62−aq61−1
aq71−aq31−1

−aq7 + 2−1
−aq81aq51−aq3 + 2−1

−aq101aq1−aq9

+ 4−1
a2q124−1

a2q162aq62−aq41−1
aq7 + 3−2

a2q144a2q122aq61aq51−aq5 + 3a2q104−1
a2q124−1

a2q162−1
−aq61aq51−aq5

+ 3a2q102−1
aq62−1

aq82−1
−aq61aq51aq71−aq5 + 3−1

a2q142aq62−aq42−aq61−1
aq71

−1
−aq51−1

−aq7 + 2−1
aq62−aq41aq51−1

aq9

+ 22−1
aq82−aq4 + 3a2q63−1

a2q182−1
aq42−aq8 + 3−1

a2q103a2q144a2q84−1
a2q162−1

aq82−aq4

+ 23a2q103−1
a2q142aq62−1

−aq61−1
aq71−aq5 + 32

a2q104−1
a2q122−1

−aq61−1
aq71−1

−aq7 + 2−aq42−1
−aq81aq51−1

−aq5

+ 23a2q103−1
a2q141aq51−1

−aq7 + 4a2q84a2q122−1
aq82−1

−aq61−aq5 + 4a2q84−1
a2q162aq62−1

−aq61−1
aq71−aq5

+ 3−1
a2q144a2q84a2q122aq61−1

aq71−1
−aq7 + 4a2q84−1

a2q161aq51−1
−aq7 + 2aq42−1

−aq61−1
aq91−aq5 + 2aq42−1

aq81aq71−1
−aq7

+ 2aq22−1
−aq101−1

aq31−aq9 + 2−1
aq82−aq61−aq31−1

−aq7 + 2aq62−1
−aq81−1

aq71−aq3 + 1aq1
−1
−aq11 + 2−aq41−1

aq71−1
aq9

+ 3−1
a2q103−1

a2q184a2q82−aq42−aq8 + 3−2
a2q144a2q1222

aq61−1
aq71−aq5 + 3a2q102−1

−aq62−1
−aq81aq5

+3a2q144−1
a2q124−1

a2q162−1
aq82−aq4 +3a2q104−1

a2q124−1
a2q162aq62−1

−aq61−1
aq71−aq5 +3−2

a2q144a2q122aq62−aq61aq51−1
−aq7

+ 3a2q104−1
a2q124−1

a2q161aq51−1
−aq7 + 3a2q102−1

aq62−1
aq81aq51aq71−1

−aq7 + 2−1
aq82−aq42−aq61−1

−aq51−1
−aq7

+ 3−1
a2q144−1

a2q162aq61aq51−aq5 + 3−1
a2q144a2q122−1

aq81aq51aq71−aq5 + 3a2q102−1
aq62−1

−aq61aq51−1
aq91−aq5

+ 23a2q102−1
aq82−1

−aq61−aq5 + 2aq62−aq42−1
−aq81

−1
aq71−1

−aq5 + 23a2q103−1
a2q142aq61−1

aq71−1
−aq7

+ 3a2q62−1
aq42−1

−aq101−aq9 + 3a2q144a2q84−1
a2q162−1

aq82
−1
−aq61−aq5 + 4a2q84a2q122−1

aq81−1
−aq7

+ 4a2q84−1
a2q162aq61−1

aq71−1
−aq7 + 2aq41−1

aq91
−1
−aq7 + 2aq21−1

aq31−1
−aq11 + 3a2q142−1

aq82−1
−aq81−aq3

+ 3a2q102−1
−aq61−1

aq71−1
aq91−aq5 + 3a2q102aq62−1

−aq62
−1
−aq81−1

aq7 + 3−2
a2q144a2q1222

aq62−aq61−1
aq71−1

−aq7

+ 3a2q103a2q144−1
a2q124−1

a2q162−1
aq82−1

−aq61−aq5 + 3a2q104−1
a2q124−1

a2q162aq61−1
aq71−1

−aq7 + 3−1
a2q184−1

a2q122−aq42−aq8

+ 3−1
a2q104a2q82−aq42−1

−aq101−aq9 + 3−1
a2q184a2q82−1

−aq62−aq81−aq5 + 3−1
a2q144−1

a2q1622
aq61

−1
aq71−aq5

+ 23−1
a2q144a2q122aq62−1

aq81−aq5 + 3−1
a2q144a2q122aq62−1

−aq81aq5 + 3−1
a2q144−1

a2q162aq62−aq61aq51−1
−aq7

+ 3−1
a2q144a2q122−1

aq82−aq61aq51aq71−1
−aq7 + 3a2q102−1

aq61aq51−1
aq91

−1
−aq7 + 23a2q102−1

aq81−1
−aq7

+ 3a2q142−1
aq82−aq42−1

−aq81−1
−aq5 + 4−1

a2q162−1
aq81aq51aq71−aq5 + 3−1

a2q144a2q121aq51−1
aq91−aq5 + 3a2q62−1

aq41
−1
−aq11

+ 3a2q144a2q84−1
a2q162−1

aq81
−1
−aq7 + 3−1

a2q184a2q161−aq3 + 4a2q82−1
−aq62

−1
−aq101−aq51−aq9 + 4a2q122−2

aq81aq71−aq5

+ 3a2q101−1
aq71−1

aq91−1
−aq7 + 3a2q103a2q142−1

aq82
−1
−aq62−1

−aq8 + 3−1
a2q144a2q122aq61−1

aq71−1
aq91−aq5

+ 3a2q103a2q144−1
a2q124−1

a2q162−1
aq81−1

−aq7 + 3−1
a2q144a2q1222

aq62−1
−aq81−1

aq7 + 3−1
a2q144−1

a2q1622
aq62−aq61−1

aq71
−1
−aq7

+ 23−1
a2q144a2q122aq62−1

aq82−aq61−1
−aq7 + 3a2q103−1

a2q184−1
a2q122−1

−aq62−aq81−aq5 + 24−1
a2q162aq62−1

aq81−aq5

+ 4−1
a2q122−aq42−1

−aq101−aq9 + 3−1
a2q104a2q82−aq41−1

−aq11 + 3−1
a2q184a2q82−aq81−1

−aq7 + 4−1
a2q162aq62−1

−aq81aq5

+ 4a2q122−1
aq82−1

−aq81aq51aq7 + 4−1
a2q162−1

aq82−aq61aq51aq71−1
−aq7 + 3−1

a2q144a2q122−aq61aq51−1
aq91−1

−aq7

+ 3−1
a2q184a2q162−aq41−1

−aq5 + 4−1
a2q161aq51−1

aq91−aq5 + 4−1
a2q201−aq3 + 4a2q122−2

aq82−aq61aq71−1
−aq7

+ 3−1
a2q143−1

a2q182aq62−aq81−aq5 + 3a2q104−1
a2q122−1

−aq62−1
−aq101−aq51−aq9 + 3a2q144−1

a2q162−2
aq81aq71−aq5

+ 3−1
a2q144a2q122aq62−aq61−1

aq71−1
aq91−1

−aq7 + 4−1
a2q162aq61−1

aq71−1
aq91−aq5 + 4a2q82−1

−aq61−aq51−1
−aq11

+ 4a2q82−1
−aq101−1

−aq71−aq9 + 4a2q122−1
aq81−1

aq91−aq5 + 3a2q103−1
a2q184a2q162−1

−aq6 + 24a2q122aq62−1
aq82−1

−aq8

+3a2q103−1
a2q184−1

a2q122−aq81−1
−aq7 +24−1

a2q162aq62−1
aq82−aq61−1

−aq7 +4−1
a2q1622

aq62−1
−aq81

−1
aq7 +4−1

a2q122−aq41−1
−aq11

+ 3a2q144−1
a2q162−1

aq82
−1
−aq81aq51aq7 + 4a2q122−1

−aq81aq51−1
aq9 + 4−1

a2q162−aq61aq51−1
aq91−1

−aq7 + 4−1
a2q202−aq41−1

−aq5

+ 4a2q81−1
−aq71−1

−aq11 + 3−1
a2q143−1

a2q184a2q124a2q162aq6 + 3−1
a2q143−1

a2q182aq62−aq62−aq81−1
−aq7

+ 3a2q144a2q122−2
aq82−1

−aq81aq7 + 3a2q144−1
a2q162−2

aq82−aq61aq71−1
−aq7 + 4a2q122aq62−1

−aq81−1
aq71−1

aq9

+ 4−1
a2q162aq62−aq61−1

aq71−1
aq91−1

−aq7 + 4a2q122−1
aq82−aq61−1

aq91−1
−aq7 + 3−1

a2q182−1
aq82−aq81aq71−aq5

+ 3−1
a2q142aq62−1

−aq101−aq51−aq9 + 3a2q104−1
a2q122−1

−aq61−aq51−1
−aq11 + 3a2q104−1

a2q122−1
−aq101−1

−aq71−aq9

+ 3a2q144−1
a2q162−1

aq81−1
aq91−aq5 + 3a2q104−1

a2q202−1
−aq6 + 23a2q144−1

a2q162aq62−1
aq82

−1
−aq8 + 3−1

a2q181aq51aq7

+ 3a2q144−1
a2q162−1

−aq81aq51−1
aq9 + 3a2q104−1

a2q121−1
−aq71−1

−aq11 + 32
a2q144−1

a2q162−2
aq82−1

−aq81aq7

+ 3a2q144−1
a2q162aq62−1

−aq81
−1
aq71−1

aq9 + 3−1
a2q144a2q124−1

a2q202aq6 + 23−1
a2q182aq6 + 3−1

a2q184a2q124a2q162−1
aq81aq7

+ 3−1
a2q182−1

aq82−aq62−aq81aq71−1
−aq7 + 3−1

a2q142aq62−aq62−1
−aq101−1

−aq71−aq9 + 3a2q144a2q122−1
aq82−1

−aq81−1
aq9

+ 3a2q144−1
a2q162−1

aq82−aq61−1
aq91−1

−aq7 + 2−1
aq82−1

−aq101aq71−aq51−aq9 + 3−1
a2q182−aq81−1

aq91−aq5

+ 3−1
a2q142aq61−aq51−1

−aq11 + 3−1
a2q182aq81aq51−1

aq9 + 4−1
a2q164−1

a2q202aq6 + 2aq62−1
−aq82−1

−aq101−aq9
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+ 3−1
a2q142aq62−aq61−1

−aq71−1
−aq11 + 3−1

a2q182aq62aq81−1
aq71

−1
aq9 + 23a2q143−1

a2q182−1
aq81aq7

+ 32
a2q144−1

a2q162−1
aq82−1

−aq81
−1
aq9 + 4a2q124−1

a2q202−1
aq81aq7 + 3−1

a2q184a2q124a2q161−1
aq9

+ 2−1
aq82−aq62−1

−aq101aq71−1
−aq71−aq9 + 3−1

a2q182−aq62−aq81−1
aq91

−1
−aq7 + 2−1

−aq101−1
aq91−aq51−aq9

+ 2−1
aq81aq71−aq51−1

−aq11 + 2−1
aq101aq5 + 3−2

a2q184a2q162−aq81aq7 + 3a2q144−1
a2q164−1

a2q202−1
aq81aq7

+ 3a2q142−1
aq82−1

−aq82−1
−aq101aq71−aq9 + 2−1

aq82−aq61aq71−1
−aq71

−1
−aq11 + 2aq62−1

−aq81−1
−aq11 + 2aq62−1

aq101−1
aq7

+23a2q143−1
a2q181−1

aq9 +4a2q124−1
a2q201−1

aq9 +2−aq62−1
−aq101−1

aq91−1
−aq71−aq9 +1−1

aq91−aq51−1
−aq11 +3a2q142−1

aq82
−1
aq10

+ 3−2
a2q184a2q162aq82−aq81−1

aq9 + 3a2q144−1
a2q164−1

a2q201−1
aq9 + 3a2q142−1

−aq82−1
−aq101−1

aq91−aq9

+ 2−aq61−1
aq91−1

−aq71
−1
−aq11 + 3−1

a2q184−1
a2q202−aq81aq7 + 3−1

a2q184a2q162−1
−aq101aq71−aq9

+ 3a2q142−1
aq82−1

−aq81aq71−1
−aq11 + 3−1

a2q184a2q162−1
aq102−aq8 + 3−1

a2q184−1
a2q202aq82−aq81−1

aq9

+ 3−1
a2q184a2q162aq82−1

−aq101−1
aq91−aq9 + 3a2q142−1

−aq81
−1
aq91−1

−aq11 + 4−1
a2q202−1

−aq101aq71−aq9

+ 3−1
a2q184a2q161aq71−1

−aq11 + 4−1
a2q202−1

aq102−aq8 + 4a2q162−1
aq102−1

−aq101−aq9 + 4−1
a2q202aq82−1

−aq101−1
aq91−aq9

+ 3−1
a2q184a2q162aq81−1

aq91
−1
−aq11 + 4−1

a2q201aq71−1
−aq11 + 3a2q184−1

a2q202−1
aq102−1

−aq101−aq9 + 4a2q162−1
aq101−1

−aq11

+ 4−1
a2q202aq81−1

aq91−1
−aq11 + 3−1

a2q221−aq9 + 3a2q184−1
a2q202−1

aq101−1
−aq11 + 3−1

a2q222−aq101−1
−aq11 + 2−1

−aq12 .
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