INVARIANT DIFFERENTIAL OPERATORS ON THE HEISENBERG GROUP AND MEIXNER-POLLACZEK POLYNOMIALS

Jacques Faraut \& Masato Wakayama

Abstract

Consider the Heisenberg Lie algebra with basis X, Y, Z, such that $[X, Y]=Z$. Then the symmetrization $\sigma\left(X^{k} Y^{k}\right)$ can be written as a polynomial in $\sigma(X Y)$ and Z, and this polynomial is identified as a MeixnerPollaczek polynomial. This is an observation by Bender, Mead and Pinsky, a proof of which has been given by Koornwinder. We extend this result in the framework of Gelfand pairs associated with the Heisenberg group. This extension involves multivariable Meixner-Pollaczek polynomials.

2010 Mathematics Subject Classification: Primary 32M15, Secondary 33C45, 43A90.

Keywords and phrases: Heisenberg group, Gelfand pair, spherical function, Laguerre polynomial, Meixner-Pollaczek polynomial.

Contents

Introduction

1. Gelfand pairs
2. Gelfand pairs associated with the Heisenberg group
3. The case $W=\mathbb{C}^{p}, K=U(p)$
4. Symmetric cones and spherical expansions
5. A generating formula for multivariate Meixner-Pollaczek polynomials
6. The case $W=M(n, p ; \mathbb{C}), K=U(n) \times U(p)$
7. W is a simple complex Jordan algebra

The starting point of this paper is an identity in the Heisenberg algebra which has been observed by Bender, Mead and Pinsky ([1986], 1987]), and revisited by Koornwinder who gave an alternative proof. Let X, Y, Z generate the three dimensional Heisenberg Lie algebra, with $[X, Y]=Z$. Then the symmetrization of $X^{k} Y^{k}$ can be written as a polynomial in the symmetrization of $X Y$, and this polynomial is a Meixner-Pollaczek polynomial. We rephrase this question in the framework of the spherical analysis for a Gelfand pair. If (G, K) is a Gelfand pair with a Lie group G, the algebra $\mathbb{D}(G / K)$ of G-invariant differential operators on the quotinet space G / K is commutative. The spherical Fourier transform maps this algebra onto an algebra of continuous functions on the Gelfand spectrum Σ of the commutative Banach algebra $L^{1}(K \backslash G / K)$ of K-biinvariant integrable functions on G. For $D \in \mathbb{D}(G / K)$, the corresponding function is denoted by \hat{D}. Hence an identity in the algebra $\mathbb{D}(G / K)$ is equivalent to an identity for the functions \hat{D}. We consider Gelfand pairs associated to the Heisenberg groups. The unitary group $K=U(p)$ acts on the Heisenberg group $H=\mathbb{C}^{p} \times \mathbb{R}$. Let $G=K \ltimes H$ be the semi-direct product. Then (G, K) is a Gelfand pair. The functions $\widehat{\mathcal{L}_{k}}$, corresponding to a family \mathcal{L}_{k} of invariant differential operators on the Heisenberg group, involve Meixner-Pollaczek polynomials, and give rise to identities in the algebra $\mathbb{D}(H)^{K}$ of differential operators on H which are left invariant by H and by the action of K. We extend this analysis to some Gelfand pairs associated to the Heisenberg group which have been considered by Benson, Jenkins, and Ratcliff [1992]. The Heisenberg group H is taken as $H=W \times \mathbb{R}$, with $W=M(n, p, \mathbb{C})$. The group $K=U(n) \times U(p)$ acts on W and (G, K) is a Gelfand pair, with $G=K \ltimes H$. We determine the functions \hat{D} for families of differential operators on $D(H)^{K}$. These functions \hat{D} involve multivariate Meixner-Pollaczek polynomials which have been introduced in [Faraut-Wakayama,2012]. The proofs use spherical Taylor expansions, and the connection between multivariate Laguerre polynomials and multivariate Meixner-Pollaczek polynomials. In the last section, the Heisenberg group is taken as $W \times \mathbb{R}$, where W is a simple complex Jordan algebra, and $K=\operatorname{Str}(W) \cap U(W)$, where $\operatorname{Str}(W)$ is the structure group of W, and $U(W)$ the unitary group.

1 Gelfand pairs

Let G be a locally compact group, and K a compact subgroup, and let $L^{1}(K \backslash G / K)$ denote the convolution algebra of K-invariant integrable functions on G. One says that (G, K) is a Gelfand pair if the algebra $L^{1}(K \backslash G / K)$ is commutative. From now on we assume that it is the case. A spherical function is a continuous function φ on G, K-biinvariant, with $\varphi(e)=1$, and

$$
\int_{K} \varphi(x k y) \alpha(d k)=\varphi(x) \varphi(y)
$$

where α is the normalized Haar measure on K. The characters χ of the commutative Banach algebra $L^{1}(K \backslash G / K)$ are of the form

$$
\chi(f)=\int_{G} f(x) \varphi(x) m(d x)
$$

where φ is a bounded spherical function (m is a Haar measure on the unimodular group G). Hence the Gelfand spectrum Σ of the commutative Banach algebra $L^{1}(K \backslash G / K)$ can be identified with the set of bounded spherical functions. We denote by $\varphi(\sigma ; x)$ the spherical function associated to $\sigma \in \Sigma$. The spherical Fourier transform of $f \in L^{1}(K \backslash G / K)$ is the function \hat{f} defined on Σ by

$$
\hat{f}(\sigma)=\int_{G} \varphi(\sigma ; x) f(x) m(d x)
$$

Assume now that G is a Lie group, and denote by $\mathbb{D}(G / K)$ the algebra of G-invariant differential operators on G / K. This algebra is commutative. A spherical function is \mathcal{C}^{∞} and eigenfunction of every $D \in \mathbb{D}(G / K)$:

$$
D \varphi(\sigma ; x)=\hat{D}(\sigma) \varphi(\sigma ; x)
$$

where $\hat{D}(\sigma)$ is a continuous function on Σ. The map

$$
D \mapsto \hat{D}, \quad \mathbb{D}(G / K) \rightarrow \mathcal{C}(\Sigma)
$$

is an algebra morphism. Moreover the Gelfand topology of Σ is the initial topology associated to the functions $\sigma \mapsto \hat{D}(\sigma)(D \in \mathbb{D}(G / K))$ ([FerrariRufino,2007]).

We address the following questions:

- Given a differential operator $D \in \mathbb{D}(G / K)$, determine the function \hat{D}.
- Construct a linear basis $\left(D_{\mu}\right)_{\mu \in \mathfrak{M}}$ of $\mathbb{D}(G / K)$, and, for each μ, a K invariant analytic function b_{μ} in a neighborhood of $o=e K \in G / K$ such that

$$
D_{\mu} b_{\nu}(o)=\delta_{\mu \nu} .
$$

- Establish a mean value formula: for an analytic function f on G / K, defined in a neighborhood of o,

$$
\int_{K} f(x k y) \alpha(d k)=\sum_{\mu \in \mathfrak{M}}\left(D_{\mu} f\right)(x) b_{\mu}(y) .
$$

Observe that it is enough to prove, for a K-invariant analytic function f, that

$$
f(y)=\sum_{\mu \in \mathfrak{M}}\left(D_{\mu} f\right)(o) b_{\mu}(y) .
$$

In particular, for $f(x)=\varphi(\sigma ; x)$, one gets a generalized Taylor expansion for the spherical functions

$$
\varphi(\sigma ; x)=\sum_{\mu \in \mathfrak{M}} \widehat{D_{\mu}}(\sigma) b_{\mu}(x) .
$$

Basic example

Take $G=\mathbb{R}, K=\{0\}$. Then $\Sigma=\mathbb{R}$, and

$$
\varphi(\sigma ; x)=e^{i \sigma x}
$$

We can take, with $\mathfrak{M}=\mathbb{N}$,

$$
D_{\mu}=\left(\frac{d}{d x}\right)^{\mu}, \quad b_{\mu}(x)=\frac{x^{\mu}}{\mu!} .
$$

Then the mean value formula is nothing but the Taylor formula

$$
f(x+y)=\sum_{\mu=0}^{\infty}\left(\left(\frac{d}{d x}\right)^{\mu} f\right)(x) \frac{y^{\mu}}{\mu!},
$$

and the Taylor formula for the spherical functions is the power expansion of the exponential:

$$
e^{i \sigma x}=\sum_{\mu=0}^{\infty}(i \sigma)^{\mu} \frac{x^{\mu}}{\mu!} .
$$

Historical example

Here $G=S O(n) \ltimes \mathbb{R}^{n}$, the motion group, $K=S O(n)$; then $G / K \simeq \mathbb{R}^{n}$. The spectrum Σ can be identified to the half-line, $\Sigma=[0, \infty[$. The spherical functions are given by

$$
\varphi(\sigma ; x)=\int_{S\left(\mathbb{R}^{n}\right)} e^{i \sigma(u \mid x)} \beta(d u) \quad\left(\sigma \geq 0, x \in \mathbb{R}^{n}\right)
$$

where β is the normalized uniform measure on the unit sphere $S\left(\mathbb{R}^{n}\right)$. (The function $\varphi(\sigma ; x)$ can be written in terms of Bessel functions.) The algebra $\mathbb{D}(G / K)$ is generated by the Laplace operator Δ, and $\hat{\Delta}(\sigma)=-\sigma^{2}$. We can take, with $\mathfrak{M}=\mathbb{N}$,

$$
D_{\mu}=\Delta^{\mu}, b_{\mu}=c_{\mu}\|x\|^{2 \mu}
$$

with

$$
c_{\mu}=2^{-2 \mu} \frac{1}{\left(\frac{n}{2}\right)_{\mu}} \frac{1}{\mu!} .
$$

Then the mean value formula can be written

$$
\int_{K} f(x+k \cdot y) \alpha(d k)=\sum_{\mu}^{\infty} c_{\mu}\left(\Delta^{\mu} f\right)(x)\|y\|^{2 \mu}
$$

In [Courant-Hilbert,1937], §3, Section 4, one finds the equivalent formula

$$
\int_{S\left(\mathbb{R}^{n}\right)} f(x+r u) \beta(d u)=\sum_{\mu=0}^{\infty} c_{\mu}\left(\Delta^{\mu} f\right)(x) r^{2 \mu} .
$$

The generalized Taylor expansion of the spherical functions

$$
\varphi(\sigma ; x)=\sum_{\mu=0}^{\infty} c_{\mu}(-1)^{\mu} \sigma^{2 \mu}\|x\|^{2 \mu}
$$

is nothing but the power series expansion of the Bessel functions.

2 Gelfand pairs associated with the Heisenberg group

Let W be a complex Euclidean vector space. The set $H=W \times \mathbb{R}$, equipped with the product

$$
(z, t)\left(z^{\prime}, t\right)=\left(z+z^{\prime}, t+t^{\prime}+\operatorname{Im}\left(z^{\prime} \mid z\right)\right)
$$

is the Heisenberg group of dimension $2 N+1\left(N=\operatorname{dim}_{\mathbb{C}} W\right)$. Relative to coordinates z_{1}, \ldots, z_{N} with respect to a fixed orthogonal basis in W, consider the first order left-invariant differential operators on H :

$$
T=\frac{\partial}{\partial t}, \quad Z_{j}=\frac{\partial}{\partial z_{j}}+\frac{1}{2 i} \bar{z}_{j} \frac{\partial}{\partial t} \quad \bar{Z}_{j}=\frac{\partial}{\partial \bar{z}_{j}}-\frac{1}{2 i} z_{j} \frac{\partial}{\partial t} \quad(j=1, \ldots, N) .
$$

Recall the notation

$$
\frac{\partial}{\partial z_{j}}=\frac{1}{2}\left(\frac{\partial}{\partial x_{j}}-i \frac{\partial}{\partial y_{j}}\right), \quad \frac{\partial}{\partial \bar{z}_{j}}=\frac{1}{2}\left(\frac{\partial}{\partial x_{j}}+i \frac{\partial}{\partial y_{j}}\right) .
$$

These operators form a basis of the Lie algebra \mathfrak{h} of H. They satisfy

$$
\left[Z_{j}, \bar{Z}_{j}\right]=i T
$$

and other brackets vanish.
Let K be a closed subgroup of the unitary group $U(W)$ of W, and G be the semi-direct product $G=K \ltimes H$. The pair (G, K) is a Gelfand pair if and only if the group K acts multiplicity free on the space $\mathcal{P}(W)$ of holomorphic polynomials on W. This result has been proven by Carcano [1987] (see also [Benson-Ratcliff-Ratcliff-Worku,2004], [Wolf,2007]). We assume that this condition holds. Hence the Banach algebra $L^{1}(H)^{K}$ of K-invariant integrable functions on H is isomorphic to $L^{1}(K \backslash G / K)$, hence commutative.

The Fock space $\mathcal{F}(W)$ is the space of holomorphic functions ψ on W such that

$$
\|\psi\|^{2}=\frac{1}{\pi^{N}} \int_{W}|\psi(z)|^{2} e^{-\|z\|^{2}} m(d z)<\infty
$$

(m denotes the Euclidean measure on W). The reproducing kernel of $\mathcal{F}(W)$ is

$$
\mathcal{K}(z, w)=e^{(z \mid w)}
$$

The Fock space decomposes multiplicity free under K :

$$
\mathcal{F}(W)=\widehat{\bigoplus_{m \in \mathcal{M}}} \mathcal{H}_{m}
$$

Let \mathcal{K}_{m} denotes the reproducing kernel of \mathcal{H}_{m}. Then

$$
e^{(z \mid w)}=\sum_{m \in \mathcal{M}} \mathcal{K}_{m}(z, w) .
$$

The algebra $\mathbb{D}(H)^{K}$ of differential operators on H which are invariant with respect to the left action of H and the action of K is isomorphic to the algebra $\mathbb{D}(G / K)$, hence commutative. To the polynomial $\mathcal{K}_{m}(z, w)$ one associates the invariant differential operators \mathcal{D}_{m} and \mathcal{L}_{m} in $\mathbb{D}(H)^{K}$. Let $\tilde{\mathcal{K}}_{m}$ be the polynomial in the $2 N$ variables $z_{1}, \ldots, z_{N}, \bar{z}_{1}, \ldots, \bar{z}_{N}$ such that

$$
\mathcal{K}_{m}(z, z)=\tilde{\mathcal{K}}_{m}(z, \bar{z})
$$

The operator \mathcal{D}_{m} is defined by

$$
\mathcal{D}_{m}=\tilde{\mathcal{K}}_{m}\left(\bar{Z}_{1}, \ldots, \bar{Z}_{N} ; Z_{1}, \ldots Z_{N}\right)
$$

The operators Z_{j} are applied first, then the operators \bar{Z}_{j}.
The operator \mathcal{L}_{m} is defined by symmetrization from the K-invariant (non holomorphic) polynomial $\mathcal{K}_{m}(z, z)$: for a smooth function f on H,

$$
\left(\mathcal{L}_{m} f\right)(z, t)=\left.\mathcal{K}_{m}\left(\frac{\partial}{\partial \zeta}, \frac{\partial}{\partial \zeta}\right) f(z+\zeta, t+\operatorname{Im}(\zeta \mid z))\right|_{\zeta=0}
$$

The eigenvalues $\widehat{\mathcal{D}_{m}}(\sigma)$ and $\widehat{\mathcal{L}_{m}}(\sigma)$ have gotten general formulas in terms of generalized binomial coefficients by Benson and Ratcliff [1998]. In the sequel we will consider some special cases and give explicit formulas for these eigenvalues in terms of classical polynomials.

For $\mu=(m, \ell) \in \mathfrak{M}=\mathcal{M} \times \mathbb{N}$, define $D_{\mu}=\mathcal{L}_{m} T^{\ell}$. Then the operators D_{μ} form a linear basis of the vector space $\mathbb{D}(H)^{K}$. Define

$$
b_{\mu}(z, t)=\frac{1}{\operatorname{dim} \mathcal{H}_{m}} \mathcal{K}_{m}(z, z) \frac{1}{\ell!} t^{\ell}
$$

Proposition 2.1.

$$
D_{\mu} b_{\nu}=\delta_{\mu \nu} .
$$

This follows from

$$
\mathcal{L}_{k} \mathcal{K}_{m}=\delta_{k, m} \operatorname{dim} \mathcal{H}_{k} \quad(k, m \in \mathcal{M}) .
$$

Theorem 2.2. If f is a K-invariant analytic function on H in a neighborhood of 0 , then

$$
\begin{aligned}
f(z, t) & =\sum_{\mu \in \mathfrak{M}}\left(D_{\mu} f\right)(0,0) b_{\mu}(z, t) \\
& =\sum_{m \in \mathcal{M}} \sum_{\ell=0}^{\infty} \frac{1}{\operatorname{dim} \mathcal{H}_{m}} \frac{1}{\ell!}\left(\mathcal{L}_{m} T^{\ell} f\right)(0,0) \mathcal{K}_{m}(z, z) t^{\ell} .
\end{aligned}
$$

This implies the following mean value formula: for an analytic function f on H,

$$
\begin{aligned}
& \int_{K} f(z+k \cdot w, s+t+\operatorname{Im}(k \cdot w \mid z)) \alpha(d k) \\
= & \sum_{\mu \in \mathcal{M}}\left(D_{\mu} f\right)(z, s) b_{\mu}(w, t) \\
= & \sum_{m \in \mathcal{M}} \sum_{\ell=0}^{\infty} \frac{1}{\operatorname{dim} \mathcal{H}_{m}} \frac{1}{\ell!}\left(\mathcal{L}_{m} T^{\ell}\right) f(z, s) \mathcal{K}_{m}(w, w) t^{\ell} .
\end{aligned}
$$

Corollary 2.3. As a special case one obtains the following expansion for the spherical functions:

$$
\varphi(\sigma ; z, t)=e^{i \lambda t} \sum_{m \in \mathcal{M}} \frac{1}{\operatorname{dim} \mathcal{H}_{m}} \widehat{\mathcal{L}_{m}}(\sigma) \mathcal{K}_{m}(z, z) .
$$

(Observe that $\varphi(\sigma ; 0, t)$ is an exponential, $=e^{i \lambda t}$, where λ depends on σ.) This formula will give a way for evaluating the eigenvalues $\widehat{\mathcal{L}_{m}}(\sigma)$.

The Bergmann representation π_{λ} is defined on the Fock space $\mathcal{F}_{\lambda}(W)$ $\left(\lambda \in \mathbb{R}^{*}\right)$ of the holomorphic functions ψ on W such that

$$
\|\psi\|_{\lambda}^{2}=\left(\frac{|\lambda|}{\pi}\right)^{N} \int_{W}|\psi(\zeta)|^{2} e^{-\mid \lambda\| \| \zeta \|^{2}} m(d \zeta)<\infty .
$$

For $\lambda>0$,

$$
\left(\pi_{\lambda}(z, t) \psi\right)(\zeta)=e^{\lambda\left(i t-\frac{1}{2}\|z\|^{2}-(\zeta \mid z)\right)} \psi(\zeta+z)
$$

For $\lambda<0$, let $\pi_{\lambda}(z, t)=\pi_{-\lambda}(\bar{z},-t)$. Because of this simple relation we may assume that $\lambda>0$, and will do most of the time in the sequel. The representation π_{λ} is irreducible. If $f \in L^{1}(H)^{K}$, then the operator $\pi_{\lambda}(f)$ commutes with the action of K on $\mathcal{F}_{\lambda}(W)$. By Schur's Lemma the subspace \mathcal{H}_{m} is an eigenspace of $\pi_{\lambda}(f)$:

$$
\pi_{\lambda}(f) \psi=\hat{f}(\lambda, m) \psi \quad\left(\psi \in \mathcal{H}_{m}\right)
$$

and the eigenvalue can be written

$$
\hat{f}(\lambda, m)=\int_{H} f(z, t) \varphi(\lambda, m ; z, t) m(d z) d t
$$

The functions $\varphi(\lambda, m ; z, t)$ are the bounded spherical functions of the first kind $\left(\lambda \in \mathbb{R}^{*}, m \in \mathcal{M}\right)$.

The bounded spherical functions of the second kind are associated to the one-dimensional representations η_{w} of H :

$$
\eta_{w}(z, t)=e^{2 i \operatorname{Im}(z \mid w)} \quad(w \in W) .
$$

They are given by

$$
\varphi(\dot{w} ; z, t)=\int_{K} e^{2 i \operatorname{Im}(z \mid k \cdot w)} \alpha(d k) .
$$

The Gelfand spectrum Σ can be described as the union $\Sigma=\Sigma_{1} \cup \Sigma_{2}$. The part Σ_{1} corresponds to the bounded spherical functions of the first kind, parametrized by the pairs (λ, m), with $\lambda \in \mathbb{R}^{*}, m \in \mathcal{M}$, and the part Σ_{2} to the bounded spherical functions of the second kind, parametrized by $K \backslash W$, the set of K-orbits in W.

Recall that

$$
T=\frac{\partial}{\partial t}, \quad Z_{j}=\frac{\partial}{\partial z_{j}}+\frac{1}{2 i} \bar{z}_{j} \frac{\partial}{\partial t}, \quad \bar{Z}_{j}=\frac{\partial}{\partial \bar{z}_{j}}-\frac{1}{2 i} z_{j} \frac{\partial}{\partial t} \quad(j=1, \ldots, N) .
$$

For the derived representations one obtains

$$
\begin{array}{r}
d \pi_{\lambda}(T)=i \lambda, \quad d \pi_{\lambda}\left(Z_{j}\right)=\frac{\partial}{\partial \zeta_{j}}, \quad d \pi_{\lambda}\left(\bar{Z}_{j}\right)=-\lambda \zeta_{j} \\
d \eta_{w}(T)=0, \quad d \eta_{w}\left(Z_{j}\right)=\bar{w}_{j}, \quad d \eta_{w}\left(\bar{Z}_{j}\right)=-w_{j} .
\end{array}
$$

From the definition of $\mathcal{D}_{p}(p \in \mathcal{M})$ it follows that

$$
d \pi_{\lambda}\left(\mathcal{D}_{p}\right)=\tilde{\mathcal{K}}_{p}\left(-\lambda \zeta, \frac{\partial}{\partial \zeta}\right), \quad d \eta_{w}\left(\mathcal{D}_{p}\right)=\tilde{\mathcal{K}}_{p}(-w, \bar{w})
$$

The subspace \mathcal{H}_{m} is an eigenspace of the operator $d \pi_{\lambda}\left(\mathcal{D}_{p}\right)$:

$$
d \pi_{\lambda}\left(\mathcal{D}_{p}\right) \psi=\widehat{\mathcal{D}_{p}}(\lambda, m) \psi \quad\left(\psi \in \mathcal{H}_{m}\right)
$$

This will give a way for evaluating $\widehat{\mathcal{D}_{p}}$.

$3 \quad$ The case $W=\mathbb{C}^{p}, K=U(p)$

We consider the Heisenberg group $H=\mathbb{C}^{p} \times \mathbb{R}$, with the action of $K=U(p)$. Then (G, K) with $G=U(p) \times \mathbb{C}^{p}$ is a Gelfand pair. It has been first observed by Korányi [1980] (see also [Faraut-1984]). In this case $\mathcal{M} \simeq \mathbb{N}, \mathcal{H}_{m}$ is the space of homogeneous polynomials of degree m, and

$$
\mathcal{K}_{m}(z, w)=\frac{1}{m!}(z \mid w)^{m}, \quad \operatorname{dim} \mathcal{H}_{m}=\frac{(p)_{m}}{m!} .
$$

Furthermore

$$
\mathcal{L}_{m} f(z, t)=\left.\frac{1}{m!}\left(\sum_{j=1}^{p} \frac{\partial^{2}}{\partial \zeta_{j} \partial \bar{\zeta}_{j}}\right)^{m} f(z+\zeta, t+\operatorname{Im}(\zeta \mid z))\right|_{\zeta=0} .
$$

For $m=1$,

$$
\mathcal{L}_{1}=\sum_{j=1}^{p} \frac{\partial^{2}}{\partial z_{j} \partial \bar{z}_{j}}+\frac{i}{2}\left(z_{j} \frac{\partial}{\partial z_{j}}-\bar{z}_{j} \frac{\partial}{\partial \bar{z}_{j}}\right) \frac{\partial}{\partial t}+\frac{1}{4}\|z\|^{2} \frac{\partial^{2}}{\partial t^{2}} .
$$

Up to a factor \mathcal{L}_{1} is the sublaplacian $\Delta_{0}: \mathcal{L}_{1}=\frac{1}{4} \Delta_{0}$. The operator \mathcal{L}_{1} can be obtained by symmetrization:

$$
\mathcal{L}_{1}=\frac{1}{2} \sum_{j=1}^{n}\left(Z_{j} \bar{Z}_{j}+\bar{Z}_{j} Z_{j}\right) .
$$

The algebra $\mathbb{D}(H)^{K}$ is generated by the two operators T and \mathcal{L}_{1}.
The spectrum of the Gelfand pair (G, K) is the union $\Sigma=\Sigma_{1} \cup \Sigma_{2}$, where Σ_{1} is parametrized by the set of pairs (λ, m), with $\lambda \in \mathbb{R}^{*}, m \in \mathbb{N}$, and $\Sigma_{2} \simeq[0, \infty[$. The bounded spherical functions of the first kind are expressed in terms of the ordinary Laguerre polynomials $L_{m}^{(\nu)}$: for $\sigma=(\lambda, m) \in \Sigma_{1}$,

$$
\varphi(\lambda, m ; z, t)=e^{i \lambda t} e^{-\frac{1}{2}|\lambda|\|z\|^{2}} \frac{\frac{L_{m}^{(p-1)}\left(|\lambda|\|z\|^{2}\right)}{L_{m}^{(p-1)}(0)} .}{.}
$$

This function admits the following expansion

$$
\varphi(\lambda, m ; z, t)=e^{i \lambda t} e^{\left.-\frac{1}{2} \right\rvert\, \lambda\|z\|^{2}} \sum_{k=0}^{m}(-1)^{k} \frac{1}{(p)_{k}} \frac{1}{k!}|\lambda|^{k}[m]_{k}\|z\|^{2 k} .
$$

We recall the Pochhammer symbols:

$$
[x]_{k}=x(x-1) \ldots(x-k+1), \quad(x)_{k}=x(x+1) \cdots(x+k-1) .
$$

The bounded spherical functions of the second kind are expressed in terms of the Bessel functions: for $\sigma=\tau \in \Sigma_{2}$,

$$
\varphi(\tau ; z, t)=j_{n-1}(2 \sqrt{\tau}\|z\|)
$$

where $j_{\nu}(r)=\Gamma(\nu+1)\left(\frac{r}{2}\right)^{-\nu} J_{\nu}(r)$. These functions admits the following expansion

$$
\varphi(\tau ; z, t)=\sum_{k=0}^{\infty}(-1)^{k} \frac{1}{(p)_{k}} \frac{1}{k!} \tau^{k}\|z\|^{2 k}
$$

Proposition 3.1. The eigenvalues of the differential operator \mathcal{D}_{k} are given, for $(\lambda, m) \in \Sigma_{1}, \lambda>0$, by

$$
\widehat{\mathcal{D}_{k}}(\lambda, m)=\frac{(-1)^{k}}{k!} \lambda^{k}[m]_{k},
$$

and, for $(\tau) \in \Sigma_{2}$, by

$$
\widehat{\mathcal{D}_{k}}(\tau)=\frac{(-1)^{k}}{k!} \tau^{k}
$$

Proof.
We saw that

$$
d \pi_{\lambda}\left(\mathcal{D}_{k}\right)=\tilde{\mathcal{K}}_{k}\left(-\lambda \zeta, \frac{\partial}{\partial \zeta}\right)
$$

Since

$$
\tilde{\mathcal{K}}_{k}(z, w)=\frac{1}{k!}\left(\sum_{j=1}^{p} z_{j} w_{j}\right)^{k},
$$

this means that $\pi_{\lambda}\left(\mathcal{D}_{k}\right)$ is the differential operator with symbol

$$
\sigma(\zeta, \xi)=\frac{(-1)^{k}}{k!} \lambda^{k}\left(\sum_{j=1}^{p} \zeta_{j} \xi_{j}\right)^{k}=\frac{(-1)^{k}}{k!} \lambda^{k} \sum_{|\alpha|=p} \frac{k!}{\alpha!} \zeta^{\alpha} \xi^{\alpha},
$$

where

$$
\alpha=\left(\alpha_{1}, \ldots, \alpha_{p}\right), \alpha_{j} \in \mathbb{N}, \alpha!=\alpha_{1}!\ldots \alpha_{p}!, \zeta^{\alpha}=\zeta_{1}^{\alpha_{1}} \ldots \zeta_{p}^{\alpha_{p}}
$$

The operator $\pi_{\lambda}\left(\mathcal{D}_{k}\right)$ is given explicitely as follows

$$
\pi_{\lambda}\left(\mathcal{D}_{k}\right)=\frac{(-1)^{k}}{k!} \lambda^{k} \sum_{|\alpha|=p} \frac{k!}{\alpha!} \zeta^{\alpha}\left(\frac{\partial}{\partial \zeta}\right)^{\alpha} .
$$

Let us apply this operator to the polynomial $\psi(\zeta)=\zeta_{1}^{m}$ which belongs to \mathcal{H}_{m} :

$$
\pi_{\lambda}\left(\mathcal{D}_{k}\right) \psi(\zeta)=\frac{(-1)^{k}}{k!} \lambda^{k} \zeta_{1}^{k}\left(\frac{\partial}{\partial \zeta_{1}}\right)^{k} \zeta_{1}^{m}=\frac{(-1)^{k}}{k!} \lambda^{k}[m]_{k} \psi(\zeta) .
$$

Therefore

$$
\widehat{\mathcal{D}_{k}}(\lambda, m)=\frac{(-1)^{k}}{k!} \lambda^{k}[m]_{k} .
$$

In case of the one-dimensional representation η_{w},

$$
\eta_{w}\left(\mathcal{D}_{k}\right)=\frac{(-1)^{k}}{k!}|w|^{2 k}=\frac{(-1)^{k}}{k!} \tau^{k}
$$

It follows that the expansion of the spherical functions can be written

$$
\varphi(\sigma ; z, t)=e^{i \lambda t} e^{-\frac{1}{2} \lambda\|z\|^{2}} \sum_{k=0}^{m} \frac{1}{(p)_{k}} \widehat{\mathcal{D}_{k}}(\sigma)\|z\|^{2 k} .
$$

Corollary 3.2. For every D in $\mathbb{D}(H)^{K}$ there is a polynomial F_{D} in two variables such that, for $(\lambda, m) \in \Sigma_{1}, \lambda>0$,

$$
\widehat{D}(\lambda, m)=F_{D}(\lambda, \lambda m)
$$

and, for $(\tau) \in \Sigma_{2}$,

$$
\widehat{D}(\tau)=F_{D}(0, \tau)
$$

The map $D \mapsto F_{D}, \mathbb{D}(H)^{K} \rightarrow \operatorname{Pol}\left(\mathbb{C}^{2}\right)$ is an algebra isomorphism.
In particular, for $D=\mathcal{D}_{k}$,

$$
F_{\mathcal{D}_{k}}(u, v)=\frac{(-1)^{k}}{k!} v(v-u) \ldots(v-(k-1) u) .
$$

Let us embed Σ into \mathbb{R}^{2} by the map

$$
(\lambda, m) \in \Sigma_{1} \mapsto(\lambda, \lambda m),(\tau) \in \Sigma_{2} \mapsto(0, \tau)
$$

Then, according to [Ferrari-Rufino,2007], the Gelfand topology of Σ is induced by the topology of \mathbb{R}^{2}. This means in particular that, for $D \in \mathbb{D}(H)^{K}$,

$$
\lim \widehat{D}(\lambda, m)=\widehat{D}(\tau)
$$

as $\lambda \rightarrow 0, \lambda m \rightarrow \tau$.
We will evaluate the eigenvalues $\widehat{\mathcal{L}_{m}}(\sigma)$ in terms of the Meixner-Pollaczek polynomials. We introduce the one variable polynomials $q_{k}^{(\nu)}(s)$ as defined by the generating formula:

$$
\sum_{k=0}^{\infty} q_{k}^{(\nu)}(s) w^{k}=(1-w)^{s-\frac{\nu}{2}}(1+w)^{-s-\frac{\nu}{2}}
$$

The relation to the classical Meixner-Pollaczek polynomials is as folllows

$$
q_{k}^{(\nu)}(i \lambda)=(-i)^{k} P_{k}^{\frac{\nu}{2}}\left(\lambda ; \frac{\pi}{2}\right)
$$

Observe that

$$
q_{0}^{(\nu)}(s)=1, \quad q_{1}^{(\nu)}(s)=-2 s
$$

These polynomias admit the following hypergeometric representation

$$
q_{m}^{(\nu)}(s)=\frac{(\nu)_{m}}{m!}{ }_{2} F_{1}\left(-m, s+\frac{\nu}{2} ; \nu ; 2\right)=\frac{(\nu)_{m}}{m!} \sum_{k=0}^{m} \frac{[m]_{k}\left[-s-\frac{\nu}{2}\right]_{k}}{(\nu)_{k}} \frac{1}{k!} 2^{k} .
$$

One checks that

$$
q_{m}^{(\nu)}(s)=\frac{1}{m!}(-2)^{m} s^{m}+\text { lower order terms }
$$

For $\nu=1$, the polynomials $q_{k}^{(1)}(i \lambda)$ are orthogonal with respect to the weight

$$
\frac{1}{\cosh \pi \lambda}
$$

More generally, for $\nu>0$, the polynomials $q_{k}^{(\nu)}(i \lambda)$ are orthogonal with respect to the weight

$$
\left|\Gamma\left(i \lambda+\frac{\nu}{2}\right)\right|^{2}
$$

Theorem 3.3. The eigenvalues of the differential operator \mathcal{L}_{k} are given, for $(\lambda, m) \in \Sigma_{1}, \lambda>0$, by

$$
\widehat{\mathcal{L}_{k}}(\lambda, m)=\left(\frac{1}{2}|\lambda|\right)^{k} q_{k}^{(p)}\left(m+\frac{p}{2}\right),
$$

and, for $(\tau) \in \Sigma_{1}$, by

$$
\widehat{\mathcal{L}_{k}}(\tau)=(-1)^{k} \frac{\tau^{k}}{k!}
$$

It follows that $\mathcal{L}_{k}=Q_{k}\left(T, \mathcal{L}_{1}\right)$ with

$$
Q_{k}(t, s)=\left(\frac{t}{2}\right)^{k} q_{k}^{(p)}\left(-\frac{1}{t} s\right)
$$

For $p=1$ this result has been established by Koornwinder [1988]. The proof we give below is different.

Since

$$
q_{k}^{(\nu)}(s)=\frac{1}{k!}(-2)^{k} s^{k}+\text { lower order terms }
$$

one checks that

$$
\lim \widehat{\mathcal{L}_{k}}(\lambda, m)=\widehat{\mathcal{L}_{k}}(\tau)
$$

as $\lambda \rightarrow 0, \lambda m \rightarrow \tau$.
Proof.
We start from a generating formula for the polynomials $q_{k}^{(\nu)}$ related to the confluent hypergeometric function

$$
{ }_{1} F_{1}(\alpha, \gamma ; z)=\sum_{k=0}^{\infty} \frac{(\alpha)_{k}}{(\gamma)_{k}} \frac{1}{k!} z^{k} .
$$

This generating formula can be written:

$$
e_{1}^{-u} F_{1}\left(s+\frac{\nu}{2} ; \nu ; 2 u\right)=\sum_{k=0}^{\infty} q_{k}^{(\nu)}(-s) \frac{1}{(\nu)_{k}} u^{k} .
$$

(see for instance [Andrews-Askey-Roy,1999], p.349). For $\alpha=-m$, the hypergeometric series terminates and reduces to a Laguerre polynomial:

$$
L_{m}^{(\nu-1)}(z)=\frac{(\nu)_{m}}{m!}{ }_{1} F_{1}(-m, \nu ; z)=\frac{(\nu)_{m}}{m!} \sum_{k=0}^{m}(-1)^{k} \frac{[m]_{k}}{(\nu)_{k}} \frac{1}{k!} z^{k}
$$

and, for for $s+\frac{\nu}{2}=-m(m \in \mathbb{N})$, one gets

$$
e^{-u} L_{m}^{(\nu-1)}(2 u)=\frac{(\nu)_{m}}{m!} \sum_{k=0}^{\infty} q_{k}^{(\nu)}\left(m+\frac{\nu}{2}\right) \frac{1}{(\nu)_{k}} u^{k} .
$$

Hence the bounded spherical function of the first kind can be written

$$
\varphi(\lambda, m ; z, t)=e^{i \lambda t} \sum_{k=0}^{\infty} \frac{1}{(p)_{k}} q_{k}^{(p)}\left(m+\frac{p}{2}\right)\left(\frac{1}{2}|\lambda|\|z\|^{2}\right)^{k} .
$$

On the other hand, by Corollary 2.3,

$$
\varphi(\lambda, m ; z, t)=e^{i \lambda t} \sum_{k=0}^{\infty} \frac{1}{(p)_{k}} \widehat{\mathcal{L}_{k}}(\lambda, m)\|z\|^{2 k} .
$$

Therefore

$$
\widehat{\mathcal{L}_{k}}(\lambda, m)=\left(\frac{1}{2}|\lambda|\right)^{k} q_{k}^{(p)}\left(m+\frac{p}{2}\right) .
$$

From the expansion

$$
\varphi(\tau ; z, t)=\sum_{k=0}^{\infty}(-1)^{k} \frac{1}{(p)_{k}} \frac{1}{k!} \tau^{k}\|z\|^{2 k}
$$

it follows that

$$
\widehat{\mathcal{L}_{k}}(\tau)=(-1)^{k} \frac{\tau^{k}}{k!}
$$

In Section 6 we will consider a multivariate analogue of the case we have seen in this section. For that we will introduce in Sections 4 and 5 certain multivariate functions associated to symmetric cones.

4 Symmetric cones and spherical expansions

We consider an irreducible symmetric cone Ω in a simple Euclidean Jordan algebra V, with rank n, multipllicity d, and dimension

$$
N=n+\frac{d}{2} n(n-1) .
$$

Let L be the identity component in the group $G(\Omega)$ of linear automorphisms of Ω, and $K_{0} \subset L$ the isotropy subgroup of the unit element $e \in V$. Then
$\left(L, K_{0}\right)$ is a Gelfand pair. The spherical function $\varphi_{\mathbf{s}}$, for $\mathbf{s} \in \mathbb{C}^{n}$, is defined on Ω by

$$
\varphi_{\mathbf{s}}(x)=\int_{K_{0}} \Delta_{\mathbf{s}+\rho}(k \cdot x) \alpha(d k),
$$

where $\Delta_{\mathbf{s}}$ is the power function, $\rho=\left(\rho_{1}, \ldots, \rho_{n}\right), \rho_{j}=\frac{d}{4}(2 j-n-1)$. The algebra $\mathbb{D}(\Omega)$ of L-invariant differential operators on Ω is commutative, the spherical function φ_{s} is an eigenfunction of every $D \in \mathbb{D}(\Omega)$:

$$
D \varphi_{\mathbf{s}}=\gamma_{D}(\mathbf{s}) \varphi_{\mathbf{s}}
$$

and γ_{D} is a symmetric polynomial function in n variables. (See [FarautKorányi,1994].) The Gelfand spectrum Σ can be seen as a closed subset of $\mathbb{C}^{n} / \mathfrak{S}_{n}$, and $\hat{D}(\mathbf{s})$ can be identified to $\gamma_{D}(\mathbf{s})$. The space $\mathcal{P}(V)$ of polynomial functions on V decomposes multiplicity free under L as

$$
\mathcal{P}(V)=\bigoplus_{\mathbf{m}} \mathcal{P}_{\mathbf{m}}
$$

where $\mathcal{P}_{\mathbf{m}}$ is a subspace of finite dimension $d_{\mathbf{m}}$, irreducible under L. The parameter \mathbf{m} is a partition: $\mathbf{m}=\left(m_{1}, \ldots, m_{n}\right), m_{j} \in \mathbb{N}, m_{1} \geq \cdots \geq$ $m_{n} \geq 0$. The subspace $\mathcal{P}_{\mathbf{m}}^{K_{0}}$ of K_{0}-invariant polynomial functions is onedimensional, generated by the spherical polynomial $\Phi_{\mathbf{m}}$, normalized by the condition $\Phi_{\mathbf{m}}(e)=1$. The polynomials $\Phi_{\mathbf{m}}$ form a basis of the space $\mathcal{P}(V)^{K_{0}}$ of K_{0}-invariant polynomials. Let $D^{\mathbf{m}}$ be the invariant differential operator determined by the condition

$$
D^{\mathbf{m}} f(e)=\left(\Phi_{\mathbf{m}}\left(\frac{\partial}{\partial x}\right) f\right)(e) .
$$

Then the operators $D^{\mathbf{m}}$ form a linear basis of $\mathbb{D}(\Omega)$. The generalized Pochhammer symbol $(\alpha)_{\mathbf{m}}$ is defined by

$$
(\alpha)_{\mathbf{m}}=\prod_{j=1}^{n}\left(\alpha-(j-1) \frac{d}{2}\right)_{m_{j}} .
$$

A K_{0}-invariant function f, analytic in a neighborhood of 0 , admits a spherical Taylor expansion:

$$
f(x)=\sum_{\mathbf{m}} d_{\mathbf{m}} \frac{1}{\left(\frac{N}{n}\right)_{\mathbf{m}}}\left(\Phi_{\mathbf{m}}\left(\frac{\partial}{\partial x}\right) f\right)(0) \Phi_{\mathbf{m}}(x) .
$$

For $D=D^{\mathbf{m}}$, we will write $\gamma_{D^{\mathbf{m}}}(\mathbf{s})=\gamma_{\mathbf{m}}(\mathbf{s})$. The function $\gamma_{\mathbf{m}}$ can be seen as a multivariate analogue of the Pochhammer symbol $[s]_{m}$. In fact, for $n=1(s \in \mathbb{C}, m \in \mathbb{N})$,

$$
\gamma_{m}(s)=[s]_{m}=(-1)^{m}(s)_{m} .
$$

Observe that

$$
\gamma_{\mathbf{m}}(\alpha, \ldots, \alpha)=(\alpha-\rho)_{\mathbf{m}} .
$$

With this notation we can write a multivariate binomial formula.
Proposition 4.1. (i) For $z \in \mathcal{D}$, the unit ball in $V_{\mathbb{C}}$ centered at 0 , relatively to the spectral norm,

$$
\varphi_{\mathbf{s}}(e+z)=\sum_{\mathbf{m}} d_{\mathbf{m}} \frac{1}{\left(\frac{N}{n}\right)_{\mathbf{m}}} \gamma_{\mathbf{m}}(\mathbf{s}) \Phi_{\mathbf{m}}(z) .
$$

The convergence is uniform on compact sets in \mathcal{D}.
(ii) For $\mathbf{s} \in \mathbb{C}^{n}$, and $r, 0<r<1$, there is a constant $A(\mathbf{s}, r)>0$ such that, for every \mathbf{m},

$$
\left|\gamma_{\mathbf{m}}(\mathbf{s})\right| \leq A(\mathbf{s}, r) \frac{\left(\frac{N}{n}\right)_{\mathbf{m}}}{r^{|\mathbf{m}|}}
$$

Proof.
(i) Observe first that

$$
\left.\Phi_{\mathbf{m}}\left(\frac{\partial}{\partial x}\right) \varphi_{\mathbf{s}}(e+z)\right|_{z=0}=D^{\mathbf{m}} \varphi_{\mathbf{s}}(e)=\gamma_{\mathbf{m}}(\mathbf{s}) .
$$

We will see that the function φ_{s} has a holomorphic continuation to $e+\mathcal{D}$. By Theorem XII.3.1 in [Faraut-Korányi,1994], it will follow that the Taylor expansion of $\varphi_{\mathbf{s}}(e+z)$ converges uniformly on compact sets in \mathcal{D}. From the integral representation of the spherical functions $\varphi_{\mathbf{s}}$, it follows that these functions admit a holomorphic continuation to the tube $\Omega+i V$. Let us prove the inclusion $e+\mathcal{D} \subset \Omega+i V$. To prove this it suffices to show that $e+\mathcal{D} \cap V \subset \Omega$. In fact, to see that, consider the conjugation $z \mapsto \bar{z}$ of $V_{\mathbb{C}}=V+i V$ with respect to the Euclidean real form V. For $z \in \mathcal{D}$, we will show that $e+\frac{1}{2}(z+\bar{z}) \in \Omega$. Since \mathcal{D} is invariant under this conjugation and convex, $\frac{1}{2}(z+\bar{z}) \in \mathcal{D} \cap V$. Moreover

$$
\mathcal{D} \cap V=(e-\Omega) \cap(-e+\Omega),
$$

therefore

$$
e+\mathcal{D} \cap V=\Omega \cap(2 e-\Omega) \subset \Omega
$$

(ii) Let

$$
f(z)=\sum_{\mathbf{m}} d_{\mathbf{m}} a_{\mathbf{m}} \Phi_{\mathbf{m}}(z)
$$

be the spherical Taylor expansion of a K_{0}-invariant analytic function in \mathcal{D}. Then the coefficients a_{m} are given, for $0<r<1$, by

$$
a_{\mathbf{m}}=\frac{1}{r^{|\mathbf{m}|}} \int_{K} f(r k \cdot e) \overline{\Phi_{\mathbf{m}}(k \cdot e)} \alpha(d k),
$$

where $K=\operatorname{Str}\left(V_{\mathbb{C}}\right) \cap U\left(V_{\mathbb{C}}\right)$, hence satisfy the following Cauchy inequality: for $0<r<1$,

$$
\left|a_{\mathbf{m}}\right| \leq \frac{1}{r^{|\mathbf{m}|}} \sup _{k \in K}|f(r k \cdot e)|
$$

It follows that, for $\mathbf{s} \in \mathbb{C}^{n}$, and $r, 0<r<1$, there is a constant $A(\mathbf{s}, r)$ such that

$$
\left|\gamma_{\mathbf{m}}(\mathbf{s})\right| \leq A(\mathbf{s}, r) \frac{\left(\frac{N}{n}\right)_{\mathbf{m}}}{r^{|\mathbf{m}|}}
$$

For $\mathbf{s}=\mathbf{m}-\rho, \varphi_{\mathbf{m}-\rho}(z)=\Phi_{\mathbf{m}}(z)$, and the binomial formula can be written in that case

$$
\Phi_{\mathbf{m}}(e+z)=\sum_{\mathbf{k} \subset \mathbf{m}}\binom{\mathbf{m}}{\mathbf{k}} \Phi_{\mathbf{k}}(z) .
$$

In fact the generalized binomial coefficient

$$
\binom{\mathbf{m}}{\mathbf{k}}=d_{\mathbf{k}} \frac{1}{\left(\frac{N}{n}\right)_{\mathbf{k}}} \gamma_{\mathbf{k}}(\mathbf{m}-\rho)
$$

vanishes if $\mathbf{k} \not \subset \mathbf{m}$.
In the case of the cone Ω of $n \times n$ Hermitian matrices of positive type, $\Omega \subset V=\operatorname{Herm}(n, \mathbb{C})$, i.e. $d=2$, the spherical polynomials can be expressed in terms of the Schur functions $s_{\mathbf{m}}$:

$$
\Phi_{\mathbf{m}}\left(\operatorname{diag}\left(a_{1}, \ldots, a_{n}\right)\right)=\frac{s_{\mathbf{m}}\left(a_{1}, \ldots, a_{n}\right)}{s_{\mathbf{m}}\left(1^{n}\right)}
$$

The spherical expansion of the exponential of the trace can be written

$$
e^{\operatorname{tr} x}=\sum_{\mathbf{m}} \frac{1}{h(\mathbf{m})} \chi_{\mathbf{m}}(x),
$$

where $h(\mathbf{m})$ is the product of the hook-lengths of the partition \mathbf{m}, and $\chi_{\mathbf{m}}$ is the character of the representation of $G L(n, \mathbb{C})$ with highest weight \mathbf{m}. Equivalently

$$
e^{a_{1}+\cdots+a_{n}}=\sum_{\mathbf{m}} \frac{1}{h(\mathbf{m})} s_{\mathbf{m}}\left(a_{1}, \ldots, a_{n}\right)
$$

(see [Macdonald, 1995], p.66). Furthermore

$$
d_{\mathbf{m}}=\left(s_{\mathbf{m}}\left(1^{n}\right)\right)^{2}, \text { therefore } \frac{1}{h(\mathbf{m})}=\frac{s_{\mathbf{m}}\left(1^{n}\right)}{(n)_{\mathbf{m}}}
$$

The binomial formula for the Schur functions is written as

$$
\frac{s_{\mathbf{m}}\left(1+a_{1}, \ldots, 1+a_{n}\right)}{s_{\mathbf{m}}\left(1^{n}\right)}=\sum_{\mathbf{k} \subset \mathbf{m}} \frac{1}{(n)_{\mathbf{k}}} s_{\mathbf{k}}^{*}(\mathbf{m}) s_{\mathbf{k}}\left(a_{1}, \ldots, a_{n}\right),
$$

where $s_{\mathbf{k}}^{*}(\mathbf{m})$ is a the shifted Schur function ([Okounkov-Olshanski,1997]. The following relations follow

$$
\binom{\mathbf{m}}{\mathbf{k}}=\frac{1}{h(\mathbf{k})} s_{\mathbf{k}}^{*}(\mathbf{m}), \quad \gamma_{\mathbf{k}}(\mathbf{m}-\rho)=\frac{s_{\mathbf{k}}^{*}(\mathbf{m})}{s_{\mathbf{k}}\left(1^{n}\right)}
$$

5 A generating formula for multivariate MeixnerPollaczek polynomials

The multivariate Meixner-Pollaczek polynomials $Q_{\mathbf{m}}^{(\nu)}(\mathbf{s})$ can be defined by the generating formula

$$
\sum_{\mathbf{m}} d_{\mathbf{m}} Q_{\mathbf{m}}^{(\nu)}(\mathbf{s}) \Phi_{\mathbf{m}}(w)=\Delta\left(e-w^{2}\right)^{-\frac{\nu}{2}} \varphi_{\mathbf{s}}\left((e-w)(e+w)^{-1}\right)
$$

([Faraut-Wakayama,2012]). The polynomial $Q_{\mathbf{m}}^{(\nu)}(\mathbf{s})$ admits the following "hypergeometric representation"

$$
Q_{\mathbf{m}}^{(\nu)}(\mathbf{s})=\frac{(\nu)_{\mathbf{m}}}{\left(\frac{N}{n}\right)_{\mathbf{m}}} \sum_{\mathbf{k} \subset \mathbf{m}} d_{\mathbf{k}} \frac{\gamma_{\mathbf{k}}(\mathbf{m}-\rho) \gamma_{\mathbf{k}}\left(-\mathbf{s}-\frac{\nu}{2}\right)}{(\nu)_{\mathbf{k}}} \frac{1}{\left(\frac{N}{n}\right)_{\mathbf{k}}} 2^{|\mathbf{k}|}
$$

The polynomials $Q_{\mathbf{m}}^{(\nu)}(i \lambda)$ are orthogonal with respect to the measure $M_{\nu}(d \lambda)$ on \mathbb{R}^{n} given by

$$
M_{\nu}(d \lambda)=\prod_{j=1}^{n} \left\lvert\, \Gamma\left(i \lambda_{j}+\frac{\nu}{2}-\left.\frac{d}{4}(n-1)\right|^{2} \frac{1}{|c(i \lambda)|^{2}} m(d \lambda)\right.\right.
$$

where m is the Lebesgue measure, and c is the Harish-Chandra c-function of the symmetric cone Ω :

$$
c(\mathbf{s})=c_{0} \prod_{j<k} B\left(s_{j}-s_{k}, \frac{d}{2}\right)
$$

(B is the Euler beta function). One can see that

$$
Q_{\mathbf{m}}^{(\nu)}(\mathbf{s})=\frac{1}{\left(\frac{N}{n}\right)_{\mathbf{m}}}(-2)^{|\mathbf{m}|} \Phi_{\mathbf{m}}(\mathbf{s})+\text { lower order terms }
$$

We consider a multivariate analogue of the confluent hypergeometric functions ${ }_{1} F_{1}$:

$$
F(\mathbf{s}, \nu ; x)=\sum_{\mathbf{k}} d_{\mathbf{k}} \frac{\gamma_{\mathbf{k}}(-\mathbf{s})}{(\nu)_{\mathbf{k}}} \frac{1}{\left(\frac{N}{n}\right)_{\mathbf{k}}} \Phi_{\mathbf{k}}(-x)
$$

for $\mathbf{s} \in \mathbb{C}^{n}, \nu>\frac{d}{2}(n-1), x \in V_{\mathbb{C}}$.
Proposition 5.1. The series converges for every $x \in V_{\mathbb{C}}$.
Proof.
This follows from the Cauchy inequalities: part (ii) in Proposition 4.1, and the fact that, for $\nu>\frac{d}{2}(n-1)$, and every $R>0$,

$$
\sum_{\mathbf{k}} d_{\mathbf{k}} \frac{1}{(\nu)_{\mathbf{k}}} R^{|\mathbf{k}|}<\infty
$$

For $\mathbf{s}=\rho-\mathbf{m}, \mathbf{m}$ a partition, the function $F(\rho-\mathbf{m}, \nu ; x)$ is essentially a multivariate Laguerre polynomial:

$$
\begin{aligned}
L_{\mathbf{m}}^{(\nu-1)}(x) & =\frac{(\nu)_{\mathbf{m}}}{\left(\frac{N}{n}\right)_{\mathbf{m}}} F(\rho-\mathbf{m}, \nu ; x) \\
& =\frac{(\nu)_{\mathbf{m}}}{\left(\frac{N}{n}\right)_{\mathbf{m}}} \sum_{\mathbf{k} \subset \mathbf{m}} d_{\mathbf{k}} \frac{\gamma_{\mathbf{k}}(\mathbf{m}-\rho)}{(\nu)_{\mathbf{k}}} \frac{1}{\left(\frac{N}{n}\right)_{\mathbf{k}}} \Phi_{\mathbf{k}}(-x)
\end{aligned}
$$

Theorem 5.2. The multivariate Meixner-Pollaczek polynomials $Q_{\mathbf{k}}^{(\nu)}$ admit the following generating formula

$$
e^{-\operatorname{tr} u} F\left(\mathbf{s}+\frac{\nu}{2} ; \nu ; 2 u\right)=\sum_{\mathbf{k}}(-1)^{|\mathbf{k}|} d_{\mathbf{k}} \frac{1}{(\nu)_{\mathbf{k}}} Q_{\mathbf{k}}^{(\nu)}(\mathbf{s}) \Phi_{\mathbf{k}}(u) .
$$

For $\mathbf{s}=\rho-\mathbf{m}-\frac{\nu}{2}$, one obtains

$$
e^{-\operatorname{tr} u} L_{\mathbf{m}}^{(\nu-1)}(2 u)=\frac{(\nu)_{\mathbf{m}}}{\left(\frac{N}{n}\right)_{\mathbf{m}}} \sum_{\mathbf{k}} d_{\mathbf{k}} \frac{1}{(\nu)_{\mathbf{k}}} Q_{\mathbf{k}}^{(\nu)}\left(\mathbf{m}+\frac{\nu}{2}-\rho\right) \Phi_{\mathbf{k}}(u) .
$$

Lemma 5.3. (Bingham identity)

$$
e^{\operatorname{tr} x} \Phi_{\mathbf{m}}(x)=\sum_{\mathbf{k} \supset \mathbf{m}} d_{\mathbf{k}} \gamma_{\mathbf{m}}(\mathbf{k}-\rho) \frac{1}{\left(\frac{N}{n}\right)_{\mathbf{k}}} \Phi_{\mathbf{k}}(x)
$$

This formula, which has been established by Bingham [1974] in case of $V=\operatorname{Sym}(n, \mathbb{R})$, generalizes the formula

$$
e^{x} x^{m}=\sum_{k=m}^{\infty}[k]_{m} \frac{1}{k!} x^{k} .
$$

We will give a different proof.
Proof.
The symbol $\sigma_{D}(x, \xi)$ of a differential operator D is defined by the relation

$$
D e^{(x \mid \xi)}=\sigma_{D}(x, \xi) e^{(x \mid \xi)}
$$

If D is invariant, $D \in \mathbb{D}(\Omega)$, then its symbol is invariant in the following sense: for $g \in G$,

$$
\sigma_{D}(g x, \xi)=\sigma_{D}\left(x, g^{*} \xi\right)
$$

For $x=\xi=e$, one gets

$$
\sigma_{D}(g e, e)=\sigma_{D}\left(e, g^{*} e\right)
$$

and taking g selfadjoint, it follows that, for $x \in \Omega, \sigma_{D}(x, e)=\sigma_{D}(e, x)$, and

$$
D e^{\operatorname{tr} x}=\sigma_{D}(x, e) e^{\operatorname{tr} x}
$$

For $D=D^{\mathrm{m}}$,

$$
\sigma_{D}(x, e)=\sigma_{D}(e, x)=\Phi_{\mathbf{m}}(x)
$$

and

$$
D^{\mathbf{m}} e^{\operatorname{tr} x}=\Phi_{\mathbf{m}}(x) e^{\operatorname{tr} x}
$$

On the other hand

$$
\begin{aligned}
D^{\mathbf{m}} e^{\operatorname{tr} x} & =D^{\mathbf{m}}\left(\sum_{\mathbf{k}} d_{\mathbf{k}} \frac{1}{\left(\frac{N}{n}\right)_{\mathbf{m}}} \Phi_{\mathbf{k}}(x)\right) \\
& =\sum_{\mathbf{k}} d_{\mathbf{k}} \frac{1}{\left(\frac{N}{n}\right)_{\mathbf{k}}} D^{\mathbf{m}} \Phi_{\mathbf{k}}(x) \\
& =\sum_{\mathbf{k}} d_{\mathbf{k}} \frac{1}{\left(\frac{N}{n}\right)_{\mathbf{k}}} \gamma_{\mathbf{m}}(\mathbf{k}-\rho) \Phi_{\mathbf{k}}(x) .
\end{aligned}
$$

Furthermore we know that $\gamma_{\mathbf{m}}(\mathbf{k}-\rho)=0$ if $\mathbf{m} \not \subset \mathbf{k}$. We obtain finally

$$
e^{\operatorname{tr} x} \Phi_{\mathbf{m}}(x)=\sum_{\mathbf{k} \supset \mathbf{m}} d_{\mathbf{k}} \gamma_{\mathbf{m}}(\mathbf{k}-\rho) \frac{1}{\left(\frac{N}{n}\right)_{\mathbf{k}}} \Phi_{\mathbf{k}}(x)
$$

In case of the cone Ω of $n \times n$ Hermitian matrices of positive type, $\Omega \subset$ $V=\operatorname{Herm}(n, \mathbb{C})$, i.e. $d=2$, we get the following Schur expansion

$$
e^{a_{1}+\cdots+a_{n}} s_{\mathbf{m}}(a)=\sum_{\mathbf{k} \supset \mathbf{m}} \frac{1}{h(\mathbf{k})} s_{\mathbf{m}}^{*}(\mathbf{k}) s_{\mathbf{k}}(a)
$$

Proof of Theorem 5.2
By using the Bingham identity (Lemma 5.3) we get

$$
\begin{aligned}
& e^{-\operatorname{tr} u} F\left(\mathbf{s}+\frac{\nu}{2} ; \nu ; 2 u\right)=\sum_{\mathbf{k}} d_{\mathbf{k}} \frac{\gamma_{\mathbf{k}}\left(-\mathbf{s}-\frac{\nu}{2}\right)}{(\nu)_{\mathbf{k}}} \frac{1}{\left(\frac{N}{n}\right)_{\mathbf{k}}} 2^{|\mathbf{k}|} e^{-\operatorname{tr} u} \Phi_{\mathbf{k}}(-u) \\
= & \sum_{\mathbf{k}} d_{\mathbf{k}} \frac{\gamma_{\mathbf{k}}\left(-\mathbf{s}-\frac{\nu}{2}\right)}{(\nu)_{\mathbf{k}}} \frac{1}{\left(\frac{N}{n}\right)_{\mathbf{k}}} 2^{|\mathbf{k}|}\left(\sum_{\mathbf{j} \supset \mathbf{k}} d_{\mathbf{j}} \gamma_{\mathbf{k}}(\mathbf{j}-\rho) \frac{1}{\left(\frac{N}{n}\right)_{\mathbf{j}}} \Phi_{\mathbf{j}}(-u)\right) \\
= & \sum_{\mathbf{j}} d_{\mathbf{j}} \frac{1}{\left(\frac{N}{n}\right)_{\mathbf{j}}}\left(\sum_{\mathbf{k} \subset \mathbf{j}} d_{\mathbf{k}} \frac{\gamma_{\mathbf{k}}\left(-\mathbf{s}-\frac{\nu}{2}\right) \gamma_{\mathbf{k}}(\mathbf{j}-\rho)}{(\nu)_{\mathbf{k}}} \frac{1}{\left(\frac{N}{n}\right)_{\mathbf{k}}} 2^{|\mathbf{k}|}\right) \Phi_{\mathbf{j}}(-u) \\
= & \sum_{\mathbf{j}}(-1)^{|\mathbf{j}|} d_{\mathbf{j}} \frac{1}{(\nu)_{\mathbf{j}}} Q_{\mathbf{j}}^{(\nu)}(\mathbf{s}) \Phi_{\mathbf{j}}(u) .
\end{aligned}
$$

6 The case $W=M(n, p ; \mathbb{C}), K=U(n) \times U(p)$

The group $K=U(n) \times U(p)$ acts on the space $W=M(n, p ; \mathbb{C})(n \leq p)$ of $n \times p$ matrices by the transformations

$$
z \mapsto u z v^{*} \quad(u \in U(n), v \in U(p))
$$

Its action on the space $\mathcal{P}(W)$ of holomorphic polynomials on W is multiplicity free and the parameter set \mathcal{M} is the set of partitions \mathbf{m} of lenghts $\ell(\mathbf{m}) \leq n$: $\mathbf{m}=\left(m_{1}, \ldots, m_{n}\right)$ with $m_{i} \in \mathbb{N}, m_{1} \geq \cdots m_{n} \geq 0$. The subspace $\mathcal{H}_{\mathbf{m}} \subset$ $\mathcal{P}(W)$ corresponding to the partition \mathbf{m} is generated by the polynomials

$$
\Delta_{\mathbf{m}}(u z v) \quad(u \in U(n), v \in U(p))
$$

where

$$
\Delta_{\mathrm{m}}(z)=\Delta_{1}(z)^{m_{1}-m_{2}} \ldots \Delta_{n}(z)^{m_{n}}
$$

with

$$
\Delta_{k}(z)=\operatorname{det}\left(\left(z_{i j}\right)_{1 \leq i \leq j \leq k}\right)
$$

the principal minor of order $k(k \leq n)$. The character $\chi_{\mathbf{m}}$ of the representation of $U(n)$ with highest weight \mathbf{m} can be expressed in terms of the Schur functions $s_{\mathbf{m}}$:

$$
\chi_{\mathbf{m}}\left(\operatorname{diag}\left(t_{1}, \ldots, t_{n}\right)\right)=s_{\mathbf{m}}\left(t_{1}, \ldots, t_{n}\right)
$$

and $\chi_{\mathbf{m}}$ extends as a polynomial on $M(n, \mathbb{C})$ of degree $|\mathbf{m}|$. The reproducing kernel \mathcal{K}_{m} of the subspace \mathcal{H}_{m} is given by

$$
\mathcal{K}_{\mathbf{m}}(z, w)=\frac{1}{h(\mathbf{m})} \chi_{\mathbf{m}}\left(z w^{*}\right)
$$

The Heisenberg group H of dimension $2 n p+1$ is seen as $H=W \times \mathbb{R}$, and the group $K=U(n) \times U(p)$ acts on H. With $G=K \ltimes W,(G, K)$ is a Gelfand pair, and its Gelfand spectrum can be described as the union $\Sigma=\Sigma_{1} \cup \Sigma_{2}$, where Σ_{1} is the set of pairs (λ, \mathbf{m}) with $\lambda \in \mathbb{R}^{*}, \mathbf{m}$ is a partition with $\ell(\mathbf{m}) \leq n$, and

$$
\Sigma_{2}=\left\{\tau \in \mathbb{R}^{n} \mid \tau_{1} \geq \cdots \geq \tau_{n} \geq 0\right\}
$$

The bounded spherical functions of the first kind are expressed in terms of multivariate Laguerre polynomials associated to the Jordan algebra $\operatorname{Herm}(n, \mathbb{C})$:

$$
\varphi(\lambda, \mathbf{m} ; z, t)=e^{i \lambda t} e^{\left.-\frac{1}{2} \right\rvert\, \lambda\|z\|^{2}} \frac{L_{\mathbf{m}}^{(p-1)}\left(|\lambda| z z^{*}\right)}{L_{\mathbf{m}}^{(p-1)}(0)}
$$

This function admits the following expansion

$$
\begin{aligned}
& \varphi(\lambda, \mathbf{m} ; z, t) \\
& =e^{i \lambda t} e^{-\frac{1}{2}|\lambda|\|z\|^{2}} \sum_{\mathbf{k} \subset \mathbf{m}}(-1)^{|\mathbf{k}|}|\lambda|^{|\mathbf{k}|} \frac{1}{(n)_{\mathbf{k}}} \frac{1}{(p)_{\mathbf{k}}} s_{\mathbf{k}}^{*}(\mathbf{m}) \chi_{\mathbf{k}}\left(z z^{*}\right)
\end{aligned}
$$

The bounded spherical functions of the second kind are given by

$$
\varphi(\tau ; z)=\int_{U(n) \times U(p)} e^{2 i \operatorname{Retr}\left(u z v^{*} w^{*}\right)} \beta_{n}(d u) \beta_{p}(d v),
$$

where $\tau=\left(\tau_{1}, \ldots, \tau_{n}\right)$, and $\tau_{1} \geq \cdots \geq \tau_{n} \geq 0$ are the eigenvalues of $w w^{*}$. This function admits the following expansion

$$
\varphi(\tau ; z, t)=\sum_{\mathbf{k}}(-1)^{|\mathbf{k}|} \frac{1}{(n)_{\mathbf{k}}} \frac{1}{(p)_{\mathbf{k}}} s_{\mathbf{k}}(\tau) \chi_{\mathbf{k}}\left(z z^{*}\right)
$$

(See [Faraut, 2010a])
We will give formulas for the eigenvalues $\widehat{\mathcal{D}_{\mathbf{k}}}(\sigma)$ and $\widehat{\mathcal{L}_{\mathbf{k}}}(\sigma)$ of the operators $\mathcal{D}_{\mathbf{k}}$ and $\mathcal{L}_{\mathbf{k}}$ we have introduced in Section 3 associated to a partition \mathbf{k}.

Theorem 6.1.

$$
\widehat{\mathcal{D}_{\mathbf{k}}}(\lambda, \mathbf{m})=\frac{(-1)^{|\mathbf{k}|}}{h(\mathbf{k})} \lambda^{|\mathbf{k}|} s_{\mathbf{k}}^{*}(\mathbf{m}), \quad \widehat{\mathcal{D}_{\mathbf{k}}}(\tau)=\frac{(-1)^{|\mathbf{k}|}}{h(\mathbf{k})} s_{\mathbf{k}}(\tau) .
$$

Proof.
From the definition of the operator $\mathcal{D}_{\mathbf{k}}$, one obtains

$$
d \pi_{\lambda}\left(\mathcal{D}_{\mathbf{k}}\right)=\frac{(-1)^{|\mathbf{k}|}}{h(\mathbf{k})} \lambda^{|\mathbf{k}|} s_{\mathbf{k}}\left(1^{n}\right) \tilde{D}^{\mathbf{k}}
$$

where $\tilde{D}^{\mathbf{k}}$ is a differential operator whose restriction to the subspace $W_{0}=$ $M(n ; \mathbb{C}) \subset W=M(n, p ; \mathbb{C})$ is equal to the operator $D^{\mathbf{k}}$ introduced in Section 4. For $\psi \in \mathcal{H}_{\mathrm{m}}$,

$$
d \pi_{\lambda}\left(\mathcal{D}_{\mathbf{k}}\right) \psi=\widehat{\mathcal{D}_{\mathbf{k}}}(\lambda, \mathbf{m}) \psi .
$$

Choosing $\psi(\zeta)=\Phi_{\mathbf{m}}\left(\zeta_{0}\right)$, where ζ_{0} is the projection of ζ on W_{0}, we get

$$
\tilde{D}^{\mathbf{k}} \psi=\gamma_{\mathbf{k}}(\mathbf{m}-\rho) \psi
$$

Since $s_{\mathbf{k}}\left(1^{n}\right) \gamma_{\mathbf{k}}(\mathbf{m}-\rho)=s_{\mathbf{k}}^{*}(\mathbf{m})$, we obtain

$$
\widehat{\mathcal{D}_{\mathbf{k}}}(\lambda, \mathbf{m})=\frac{(-1)^{|\mathbf{k}|}}{h(\mathbf{k})} \lambda^{|\mathbf{k}|} s_{\mathbf{k}}^{*}(\mathbf{m}) .
$$

Furthermore

$$
d \eta_{w}\left(\mathcal{D}_{\mathbf{k}}\right)=\mathcal{K}_{\mathbf{k}}(-w, w)=\frac{(-1)^{|\mathbf{k}|}}{h(\mathbf{k})} \chi_{\mathbf{k}}\left(w w^{*}\right)=\frac{(-1)^{|\mathbf{k}|}}{h(\mathbf{k})} s_{\mathbf{k}}(\tau) .
$$

Corollary 6.2. For every $D \in \mathbb{D}(H)^{K}$ there is a polynomial F_{D} in $n+1$ variables u, v_{1}, \ldots, v_{n}, symmetric in the variables v_{1}, \ldots, v_{n}, such that

$$
\widehat{\mathcal{D}}(\lambda, \mathbf{m})=F_{D}\left(\lambda, \lambda\left(m_{1}-\rho_{1}\right), \ldots, \lambda\left(m_{n}-\rho_{n}\right)\right) .
$$

The map $D \mapsto F_{D}, \mathbb{D}(H)^{K} \rightarrow \mathcal{P}(\mathbb{C}) \otimes \mathcal{P}\left(\mathbb{C}^{n}\right)^{\mathfrak{G}_{n}}$ is an algebra isomorphism.
Let us embed the Gelfand spectrum Σ into \mathbb{R}^{n+1} by the map

$$
(\lambda, \mathbf{m}) \in \Sigma_{1} \mapsto\left(\lambda, \lambda m_{1}, \ldots, \lambda m_{n}\right), \quad(\tau) \in \Sigma_{1} \mapsto\left(0, \tau_{1}, \ldots, \tau_{n}\right) .
$$

As in Section 3, according to [Ferrari-Rufino,2007], the Gelfand topology of Σ is induced by the topology of \mathbb{R}^{n+1}. This implies in particular that

$$
\lim \widehat{\mathcal{D}_{\mathbf{k}}}(\lambda, \mathbf{m})=\widehat{\mathcal{D}_{\mathbf{k}}}(\tau)
$$

as $\lambda \rightarrow 0, \lambda m_{j} \rightarrow \tau_{j}$. In fact

$$
s_{\mathbf{k}}^{*}(\mathbf{m})=s_{\mathbf{k}}(\mathbf{m})+\text { lower order terms } .
$$

Recall that the differential operator $\mathcal{L}_{\mathrm{m}} \in \mathbb{D}(H)^{K}$ has been defined by

$$
\mathcal{L}_{\mathbf{m}}=\left.\mathcal{K}_{\mathbf{m}}\left(\frac{\partial}{\partial \zeta}, \frac{\partial}{\partial \zeta}\right) f(z+\zeta, t+\operatorname{Im}(\zeta \mid z))\right|_{\zeta=0}
$$

Theorem 6.3.

$$
\begin{aligned}
\widehat{\mathcal{L}_{\mathbf{k}}}(\lambda, \mathbf{m}) & =d_{\mathbf{k}}\left(\frac{1}{2}|\lambda|\right)^{|\mathbf{k}|} Q_{\mathbf{k}}^{(p)}\left(\mathbf{m}+\frac{p}{2}-\rho\right) . \\
\widehat{\mathcal{L}_{\mathbf{k}}}(\tau) & =(-1)^{|\mathbf{k}|} \frac{1}{h(\mathbf{k})} s_{\mathbf{k}}(\tau)
\end{aligned}
$$

Proof.

By Corollary 2.3, the spherical functions admit the following expansion:

$$
\varphi(\sigma ; z, t)=e^{i \lambda t} \sum_{\mathbf{k}} \frac{1}{\operatorname{dim} \mathcal{H}_{\mathbf{k}}} \widehat{L_{\mathbf{k}}}(\sigma) \mathcal{K}_{\mathbf{k}}(z, z)
$$

where the summation is over all partitions \mathbf{k} with $\ell(\mathbf{k}) \leq n$. By using the formulas

$$
\begin{aligned}
\operatorname{dim} \mathcal{H}_{\mathbf{k}} & =s_{\mathbf{k}}\left(1^{n}\right) s_{\mathbf{k}}\left(1^{p}\right)=\frac{(n)_{\mathbf{k}}}{h(\mathbf{k})} \frac{(p)_{\mathbf{k}}}{h(\mathbf{k})} \\
\mathcal{K}_{\mathbf{k}}(z, w) & =\frac{1}{h(\mathbf{k})} \chi_{\mathbf{k}}\left(z w^{*}\right)=\frac{s_{\mathbf{k}}\left(1^{n}\right)}{h(\mathbf{k})} \Phi_{\mathbf{k}}\left(z w^{*}\right)
\end{aligned}
$$

we get

$$
\varphi(\sigma ; z, t)=e^{i \lambda t} \sum_{\mathbf{k}} \frac{1}{(p)_{\mathbf{k}}} \widehat{\mathcal{L}_{\mathbf{k}}}(\sigma) \Phi_{\mathbf{k}}\left(z z^{*}\right) .
$$

On the other hand, by Theorem 5.2 , with $\mathbf{s}=\rho-\mathbf{m}-\frac{p}{2}, \nu=p$, we obtain for $\sigma=(\lambda, \mathbf{m}) \in \Sigma_{1}$,

$$
\varphi(\lambda, \mathbf{m} ; z, t)=e^{i \lambda t} \sum_{\mathbf{k}} d_{\mathbf{k}} \frac{1}{(p)_{\mathbf{k}}} Q_{\mathbf{k}}^{(p)}\left(\mathbf{m}+\frac{p}{2}-\rho\right)\left(\frac{1}{2}|\lambda|\right)^{|\mathbf{k}|} \Phi_{\mathbf{k}}\left(z z^{*}\right) .
$$

Therefore,

$$
\widehat{\mathcal{L}_{\mathbf{k}}}(\lambda, \mathbf{m})=d_{\mathbf{k}}\left(\frac{1}{2}|\lambda|\right)^{|\mathbf{k}|} Q_{\mathbf{k}}^{(p)}\left(\mathbf{m}+\frac{p}{2}-\rho\right)
$$

For $\sigma=(\tau) \in \Sigma_{2}$,

$$
\begin{aligned}
\varphi(\tau ; z, t) & =\sum_{\mathbf{k}}(-1)^{|\mathbf{k}|} \frac{1}{(n)_{\mathbf{k}}} \frac{1}{(p)_{\mathbf{k}}} s_{\mathbf{k}}(r) \chi_{\mathbf{k}}\left(z z^{*}\right) \\
& =\sum_{\mathbf{k}}(-1)^{|\mathbf{k}|} \frac{1}{(p)_{\mathbf{k}}} \frac{1}{h(\mathbf{k})} s_{\mathbf{k}}(r) \Phi_{\mathbf{k}}\left(z z^{*}\right)
\end{aligned}
$$

Therefore

$$
\widehat{\mathcal{L}_{\mathbf{k}}}(\tau)=(-1)^{|\mu|} \frac{1}{h(\mathbf{k})} s_{\mathbf{k}}(\tau)
$$

$7 \quad W$ is a simple complex Jordan algebra

For a simple complex Jordan algebra W we consider the Heisenberg group $H=W \times \mathbb{R}$. Let \mathcal{D} be the bounded symmetric domain in W, which is the unit ball with respect to the spectral norm, and $K=\operatorname{Str}(W) \cap U(W)$. The group K acts multiplicity free on the space $\mathcal{P}(W)$ of holomorphic polynomials on W. Let n be the rank and d the multiplicity.

W	K	d	rank
$\operatorname{Sym}(n, \mathbb{C})$	$U(n)$	1	n
$M(n, \mathbb{C})$	$U(n) \times U(n)$	2	n
$\operatorname{Skew}(2 n, \mathbb{C})$	$U(2 n)$	4	n
$\operatorname{Herm}(3, \mathbb{O})_{\mathbb{C}}$	$E_{6} \times \mathbb{T}$	8	3
\mathbb{C}^{ℓ}	$S O(\ell) \times \mathbb{T}$	$\ell-2$	2

Let V be a Euclidean real form of W, and c_{1}, \ldots, c_{n} a Jordan frame in V. An element $z \in W$ can be written

$$
z=k \sum_{j=1}^{n} a_{j} c_{j} \quad\left(a_{j} \in \mathbb{R}, k \in K\right) .
$$

We will denote by $r_{j}=r_{j}(z)$ the numbers a_{j}^{2} assume to satisfy $r_{1} \geq \cdots \geq$ $r_{n} \geq 0$, and put $\mathbf{r}=\mathbf{r}(z)=r_{1} c_{1}+\cdots+r_{n} c_{n}$.

The Fock space decomposes multiplicity free into the subspaces $\mathcal{P}_{\mathbf{m}}$ (\mathbf{m} is a partition). The dimension of $\mathcal{P}_{\mathbf{m}}$ is denoted by $d_{\mathbf{m}}$. The reproducing kernel K^{m} of \mathcal{P}_{m} is determined by the conditions

$$
\begin{aligned}
K^{\mathbf{m}}(g z, w) & =K^{\mathbf{m}}\left(z, g^{*} w\right) \quad(g \in L), \\
K^{\mathbf{m}}(z, e) & =d_{\mathbf{m}} \frac{1}{\left(\frac{N}{n}\right)_{\mathbf{m}}} \Phi_{\mathbf{m}}(z) .
\end{aligned}
$$

(See [Faraut-Korányi,1994], Section XI.3.)
We consider in this section the Gelfand pair (G, K), where $G=K \ltimes H$. The bounded spherical functions of the first kind are given by, for $\lambda>0$, and \mathbf{m} is a partition

$$
\varphi(\lambda, \mathbf{m} ; z, t)=e^{i \lambda t} e^{-\frac{1}{2} \lambda\|z\|^{2}} \frac{L_{\mathbf{m}}^{(\nu-1)}(-\lambda \mathbf{r}(z))}{L_{\mathbf{m}}^{(\nu-1)}(0)},
$$

with $\nu=\frac{N}{n}$. This spherical function admits the following expansion

$$
\varphi(\lambda, \mathbf{m} ; z, t)=e^{i \lambda t} e^{-\frac{1}{2}\|z\|^{2}} \sum_{\mathbf{k}} \frac{d_{\mathbf{k}}}{\left(\left(\frac{N}{n}\right)_{\mathbf{k}}\right)^{2}}(-1)^{|\mathbf{k}|} \lambda^{|\mathbf{k}|} \gamma_{\mathbf{k}}(\mathbf{m}-\rho) \Phi_{\mathbf{k}}(\mathbf{r}(z)) .
$$

The bounded spherical functions of the second kind are given by the expansion

$$
\varphi(\tau ; z, t)=\sum_{\mathbf{k}} \frac{d_{\mathbf{k}}}{\left(\left(\frac{N}{n}\right)_{\mathbf{k}}\right)^{2}}(-1)^{|\mathbf{k}|} \Phi_{\mathbf{k}}(\tau) \Phi(\mathbf{r}(z))
$$

where $\tau=\tau_{1} c_{1}+\cdots+\tau_{n} c_{n}, \tau_{1} \geq \cdots \geq \tau_{n} \geq 0$. As in the case considered in Section 6, the Gelfand spectrum is a union $\Sigma=\Sigma_{1} \cup \Sigma_{2}$. The part Σ_{1} is parametrized by pairs (λ, \mathbf{m}), with $\lambda \in \mathbb{R}^{*}$, and \mathbf{m} is a partition with $\ell(\mathbf{m}) \leq n$, and Σ_{2} by points $\tau \in \mathbb{R}^{n}, \tau_{1} \geq \cdots \geq \tau_{n} \geq 0$. (See [Dib,1990], [Faraut,2010b]).

Theorem 7.1. (i) The eigenvalues of the differential operator $\mathcal{D}_{\mathbf{k}}$ associated to the partition \mathbf{k} are given, for $(\lambda, \mathbf{m}) \in \Sigma_{1}, \lambda>0$, by

$$
\widehat{\mathcal{D}_{\mathbf{k}}}(\lambda, \mathbf{m})=\frac{d_{\mathbf{k}}}{\left(\frac{N}{n}\right)_{\mathbf{k}}}(-1)^{|\mathbf{k}|} \lambda^{|\mathbf{k}|} \gamma_{\mathbf{k}}(\mathbf{m}-\rho)
$$

and, for $\tau \in \Sigma_{2}$, by

$$
\widehat{\mathcal{D}_{\mathbf{k}}}(\tau)=\frac{d_{\mathbf{k}}}{\left(\frac{N}{n}\right)_{\mathbf{k}}}(-1)^{|\mathbf{k}|} \Phi_{\mathbf{k}}(\tau)
$$

(ii) The eigenvalues of the operator $\mathcal{L}_{\mathbf{k}}$ are given, for $(\lambda, \mathbf{m}) \in \Sigma_{1}, \lambda>0$, by

$$
\widehat{\mathcal{L}_{\mathbf{k}}}(\lambda, \mathbf{m})=d_{\mathbf{k}}\left(\frac{1}{2} \lambda\right)^{|\mathbf{k}|} Q_{\mathbf{k}}^{\nu}\left(\mathbf{m}+\frac{N}{2 n}-\rho\right),
$$

with $\nu=\frac{N}{n}$, and, for $\tau \in \Sigma_{2}$, by

$$
\widehat{\mathcal{L}_{\mathbf{k}}}(\tau)=\frac{d_{\mathbf{k}}}{\left(\frac{N}{n}\right)_{\mathbf{k}}}(-1)^{|\mathbf{k}|} \Phi_{\mathbf{k}}(\tau)
$$

The proofs are similar to the ones which are given in Section 6.

Andrews, G. E., R. Askey, \& R. Roy (1999). Special functions. Cambridge.
Bender C. M., L. R. Lead, \& S. S. Pinsky (1986). Resolution of the operatorordering problem by the method of finite elements, Phys. Rev. Lett., 56, 2445-2448.
Bender, C. M., L. R. Mead, \& S. S. Pinsky (1987). Continuous Hahn polynomials and the Heisenberg algebra, J. Math. Phys., 28, 509-613.
Benson C., J. Jenkins \& G. Ratcliff (1992). Bounded K-spherical functions on Heisenberg groups, J. Funct. Anal., 105, 409-443.
Benson C., J. Jenkins, G. ratcliff \& T. Worku (1996). Spectra for Gelfand pairs associated with the Heisenberg group, Colloquium Math., 71, 305328.

Benson, C. \& G. Ratcliff (1998). Combinatorics and spherical functions on the Heisenberg group, Representation theory, 2, 79-105.
Bingham, C. (1974). An identity involving partitional generalized binomial coefficients, J. Multivariate Anal., 4, 210-233.
Carcano, G. (1987). A commutativity condition for algebras of invariant functions, Boll. Un. Mat. Ital., 7, 1091-1105.
Courant, R. \& D. Hilbert (1937). Math ???. Springer.
Dib, H. (1990). Fonctions de Bessel sur une algèbre de Jordan, J. Math. Pures Appl., 69, 403-448.
Faraut, J. (1987). Analyse harmonique et fonctions spéciales, in Deux cours d'analyse harmonique. Birkhäuser.
Faraut, J. (2010a). Asymptotic spherical analysis on the Heisenberg, Colloquium Math., 118, 233-258.
Faraut, J. (2010b). Olshanski spherical pairs related to the Heisenberg group. Preprint.
Faraut, J. \& A. Korányi (1994). Analysis on symmetric cones. Oxford University Press.
Faraut, J.\& M. Wakayama (2012). Hermitian symmetric spaces of tube type and multivariate Meixner-Pollaczek polynomials. Preprint.
Ferrari-Rufino, F. (2007). The topology of the spectrum for Gelfand pairs on Lie groups, Boll. Un. Mat. Ital., 10, 569-579.
Koornwinder, T. H. (1988). Meixner-Pollaczek polynomials and the Heisenberg algebra, J. Math. Phys., 30, 767-769.
Korányi, A. (1980). Some applications of Gelfand pairs in classical analysis, in Harmonic Analysis and Group Representations. Liguori, Napoli, 333348.

Macdonald, I. G. (1995). Symmetric functions and Hall polynomials. Oxford University Press.
Okounkov, A. \& G. Olshanski (1997). Shifted Jack polynomials, binomial formula, and applications, Math. Res. Letters, 4, 69-78.
Wolf, J. A. (2007). Harmonic Analysis on Commutative Spaces. Amer. Math. Soc..

Jacques Faraut
Institut de Mathématiques de Jussieu, Université Pierre et Marie Curie 4 place Jussieu, case 247, 75252 Paris cedex 05, France
faraut@math.jussieu.fr
Masato Wakayama
Institute of Mathematics for Industry, Kyushu University
Motooka, Nishi-ku, Fukuoka 819-0395, Japan
wakayama@imi.kyushu-u.ac.jp

