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Abstract Consider the Heisenberg Lie algebra with basis X, Y, Z, such that
[X,Y] = Z. Then the symmetrization o(X*Y*) can be written as a poly-
nomial in o(XY) and Z, and this polynomial is identified as a Meixner-
Pollaczek polynomial. This is an observation by Bender, Mead and Pinsky,
a proof of which has been given by Koornwinder. We extend this result in
the framework of Gelfand pairs associated with the Heisenberg group. This
extension involves multivariable Meixner-Pollaczek polynomials.
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The starting point of this paper is an identity in the Heisenberg algebra
which has been observed by Bender, Mead and Pinsky ([1986], 1987]), and
revisited by Koornwinder who gave an alternative proof. Let X,Y, Z gener-
ate the three dimensional Heisenberg Lie algebra, with [X,Y] = Z. Then
the symmetrization of X*¥Y* can be written as a polynomial in the sym-
metrization of XY, and this polynomial is a Meixner-Pollaczek polynomial.
We rephrase this question in the framework of the spherical analysis for a
Gelfand pair. If (G, K) is a Gelfand pair with a Lie group G, the algebra
D(G/K) of G-invariant differential operators on the quotinet space G/K is
commutative. The spherical Fourier transform maps this algebra onto an
algebra of continuous functions on the Gelfand spectrum ¥ of the commu-
tative Banach algebra L'(K\G/K) of K-biinvariant integrable functions on
G. For D € D(G/K), the corresponding function is denoted by D. Hence an
identity in the algebra D(G/K) is equivalent to an identity for the functions
D. We consider Gelfand pairs associated to the Heisenberg groups. The
unitary group K = U(p) acts on the Heisenberg group H = C? x R. Let
G = K x H be the semi-direct product. Then (G, K) is a Gelfand pair. The
functions Z\k, corresponding to a family £, of invariant differential operators
on the Heisenberg group, involve Meixner-Pollaczek polynomials, and give
rise to identities in the algebra D(H)% of differential operators on H which
are left invariant by H and by the action of K. We extend this analysis
to some Gelfand pairs associated to the Heisenberg group which have been
considered by Benson, Jenkins, and Ratcliff [1992]. The Heisenberg group H
is taken as H = W x R, with W = M(n, p, C). The group K = U(n) x U(p)
acts on W and (G, K) is a Gelfand pair, with G = K x H. We determine
the functions D for families of differential operators on D(H)X. These func-
tions D involve multivariate Meixner-Pollaczek polynomials which have been
introduced in [Faraut-Wakayama,2012]. The proofs use spherical Taylor ex-
pansions, and the connection between multivariate Laguerre polynomials and
multivariate Meixner-Pollaczek polynomials. In the last section, the Heisen-
berg group is taken as W x R, where W is a simple complex Jordan algebra,
and K = Str(W) N U(W), where Str(W) is the structure group of W, and
U(W) the unitary group.



1 Gelfand pairs

Let G be a locally compact group, and K a compact subgroup, and let
L'(K\G/K) denote the convolution algebra of K-invariant integrable func-
tions on G. One says that (G, K) is a Gelfand pair if the algebra L'(K\G/K)
is commutative. From now on we assume that it is the case. A spherical func-
tion is a continuous function ¢ on G, K-biinvariant, with ¢(e) = 1, and

/K p(rky)a(dk) = o(x)p(y),

where « is the normalized Haar measure on K. The characters y of the
commutative Banach algebra L'(K\G/K) are of the form

Mﬁ:[yuw@mwm

where ¢ is a bounded spherical function (m is a Haar measure on the unimod-
ular group ). Hence the Gelfand spectrum 3 of the commutative Banach
algebra L'(K'\G/K) can be identified with the set of bounded spherical func-
tions. We denote by ¢(o;x) the spherical function associated to o € 3. The
spherical Fourier transform of f € L'(K\G/K) is the function f defined on
> by

ﬂ@sz@@ﬂ@MM)

Assume now that G is a Lie group, and denote by D(G/K) the algebra
of G-invariant differential operators on G/K. This algebra is commutative.
A spherical function is C* and eigenfunction of every D € D(G/K):

Dy(0;x) = D(0)p(0;2),
where lA)(a) is a continuous function on . The map

D— D, DG/K)—C(%),

is an algebra morphism. Moreover the Gelfand topology of ¥ is the initial
topology associated to the functions o — D(o) (D € D(G/K)) ([Ferrari-
Rufino,2007]).

We address the following questions:
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- Given a differential operator D € D(G/K), determine the function D.
- Construct a linear basis (D,),eom of D(G/K), and, for each p, a K-
invariant analytic function b, in a neighborhood of 0 = eK € G/K such
that
D,b,(0) = 6,,.

- Establish a mean value formula: for an analytic function f on G/K,
defined in a neighborhood of o,

| fakpatdn) = (0@
K peEM
Observe that it is enough to prove, for a K-invariant analytic function f,

that
Fw) = (Duf)(0)bu(y)-

pEM

In particular, for f(z) = ¢(0;x), one gets a generalized Taylor expansion for
the spherical functions

plo5x) =Y Dy(o)bu().

nEM

Basic example
Take G =R, K = {0}. Then ¥ =R, and
o(o; 1) = €"7".

We can take, with 99t = N,

d\H xh
D, = <%> , bulz) = J
Then the mean value formula is nothing but the Taylor formula

fa+) = (o)) @2

_‘7
p=0 e

and the Taylor formula for the spherical functions is the power expansion of
the exponential:



Historical example

Here G = SO(n) x R™, the motion group, K = SO(n); then G/K ~ R".
The spectrum X can be identified to the half-line, ¥ = [0, 0o[. The spherical
functions are given by

(o) = / U 3(du) (o> 0,2 € R”),
S(R™)

where (3 is the normalized uniform measure on the unit sphere S(R™). (The
function ¢(o;x) can be written in terms of Bessel functions.) The algebra
D(G/K) is generated by the Laplace operator A, and A(o) = —o2. We can
take, with 91 = N,
Dy, = A", by = ¢yl
with
cp=2"" L1

2
m

Then the mean value formula can be written

[ s kepaldn) = 3 e A @yl

In [Courant-Hilbert,1937], §3, Section 4, one finds the equivalent formula
|t s =3 e o
S(R™) =0

The generalized Taylor expansion of the spherical functions

[e.9]

p(oiz) = cu(—1) o™ |z,

pu=0

is nothing but the power series expansion of the Bessel functions.

2 Gelfand pairs associated with the Heisen-
berg group

Let W be a complex Euclidean vector space. The set H = W x R, equipped
with the product

(z,8)(2,t) = (z + 2/, t + ' + Im('|2)),
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is the Heisenberg group of dimension 2N + 1 (N = dim¢ W). Relative to

coordinates z1, ..., zy with respect to a fixed orthogonal basis in W, consider
the first order left-invariant differential operators on H:
0 0 1_0 — 0 1 0
T=—, Zi=—+—"2— Ji=———2z:— (j=1,...,N).
o Lo et YT g U b N)

Recall the notation

0 0 0 0 19) 0
55 =36 15) 5 (o )

These operators form a basis of the Lie algebra b of H. They satisfy
[Zj7 Zj] =T,

and other brackets vanish.

Let K be a closed subgroup of the unitary group U(W) of W, and G be
the semi-direct product G = K x H. The pair (G, K) is a Gelfand pair if and
only if the group K acts multiplicity free on the space P(WW) of holomorphic
polynomials on W. This result has been proven by Carcano [1987] (see also
[Benson-Ratcliff-Ratcliff-Worku,2004], [Wolf,2007]). We assume that this
condition holds. Hence the Banach algebra L'(H)¥ of K-invariant integrable
functions on H is isomorphic to L'(K\G/K), hence commutative.

The Fock space F(W) is the space of holomorphic functions 1) on W such
that

61 = = [ [P mds) < o0

(m denotes the Euclidean measure on W). The reproducing kernel of F (W)
is
K(z,w) = "),
The Fock space decomposes multiplicity free under K:
-~ @
meM
Let K,, denotes the reproducing kernel of H,,,. Then

eZlv) — ZIC zZ,w)

meM
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The algebra D(H)X of differential operators on H which are invariant
with respect to the left action of H and the action of K is isomorphic to
the algebra D(G/K), hence commutative. To the polynomial K,,(z, w) one
associates the invariant differential operators D,, and £,, in D(H)X. Let K
be the polynomial in the 2N variables z, ..., 2n, 21, ..., Zy such that

Kz, 2) = Kn(z, 2).
The operator D,, is defined by
Dm = Iém(Zl, ceey ZN, Zl, N ZN)

The operators Z; are applied first, then the operators Z;.
The operator L,, is defined by symmetrization from the K-invariant (non
holomorphic) polynomial IC,,(z, z): for a smooth function f on H,

(L)) = K 50 (2 Gt TnC]2)

The eigenvalues 15;1(0) and Z:n(a) have gotten general formulas in terms
of generalized binomial coefficients by Benson and Ratcliff [1998]. In the
sequel we will consider some special cases and give explicit formulas for these
eigenvalues in terms of classical polynomials.

For i = (m,f) € M = M x N, define D, = £, 7¢. Then the operators

D,, form a linear basis of the vector space D(H)*. Define

1 1,
bu(z,t) = dimHmlCm(z,z)Et :
Proposition 2.1.
Db, = 0,

This follows from
LI, = 5k7mdimHk (k, m & M)

Theorem 2.2. If [ is a K-invariant analytic function on H in a neighbor-
hood of 0, then

flz,t) = Z(Duf)(070)bu<z7t)

neEM

= 3 G g TN O.0Kn )

meM (=0




This implies the following mean value formula: for an analytic function
fon H,

/f(z—i—k-w,8+t+hn(k-w[z))a(dk:)
- Z(D,uf)(Z?S)bu(w?t)

neM

= Z Zdnn?‘[ gl T f(2, 8) Ko (w, w)t".

meM £=0

Corollary 2.3. As a special case one obtains the following expansion for the
spherical functions:

o(o;z,t) = e Z dlmH (O)Cn(z, 2).

(Observe that ¢(c;0,t) is an exponential, = e**!, where \ \ depends on 0. )
This formula will give a way for evaluating the elgenvalues Em( ).

The Bergmann representation my is defined on the Fock space Fy(W)
(A € R*) of the holomorphic functions ¢» on W such that

13 = (5" [ 1etope Pt mae) < oo

For A > 0,
(malz, 1)) () = e =3I =) 4 ).

For A < 0, let m\(2,t) = m_x(Z, —t). Because of this simple relation we
may assume that A > 0, and will do most of the time in the sequel. The
representation 7y is irreducible. If f € L'(H)%, then the operator m(f)
commutes with the action of K on F)(W). By Schur’s Lemma the subspace
H., is an eigenspace of my(f):

()Y = FOm)y (& € Hp),

and the eigenvalue can be written

f()\,m):/Hf(z,t)gp()\,m;z,t)m(dz)dt.
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The functions ¢(A, m;z,t) are the bounded spherical functions of the first
kind (A € R*, m € M).

The bounded spherical functions of the second kind are associated to the
one-dimensional representations 7,, of H:

Nw(z, 1) = eZmE) (e W).

They are given by

ga(w;z,t):/ e?Imlkw) o (dk).
K

The Gelfand spectrum X can be described as the union ¥ = ¥; U Y.
The part ¥ corresponds to the bounded spherical functions of the first kind,
parametrized by the pairs (A, m), with A € R*, m € M, and the part ¥, to
the bounded spherical functions of the second kind, parametrized by K\W,
the set of K-orbits in W.

Recall that

r_2 g 0 1.0 5 0 1.0

=1,...,N).
at? ) ) )

TR A I EA TR

For the derived representations one obtains

dry(T) = i), dmy(Z;) = a%’ dn\(Z;) = —XG,
J —_—
dnw(T) =0, dnu(Z;) = @,  dnw(Z;) = —w;.
From the definition of D, (p € M) it follows that

Ko(-ne, 2

dWA(DP) ) ag)’

dnw(Dp> = Iép(_uh w).

The subspace H,, is an eigenspace of the operator dmy(D,):

dm(Dy) = Dy(\m)t (1 € Hy),

This will give a way for evaluating i)\p.



3 The case W =C?, K =U(p)

We consider the Heisenberg group H = C? x R, with the action of K = U(p).
Then (G, K) with G = U(p) x C? is a Gelfand pair. It has been first observed
by Kordnyi [1980] (see also [Faraut-1984]). In this case M ~ N, H,, is the
space of homogeneous polynomials of degree m, and

(P)m

1
Kn(z,w) = %(z|w)m, dimH,, = o

Furthermore

p 92 m
Lonf(z,t) = ;,(Z ) Sz G ()|

j=1 9G;9¢;
Form =1
P92 i/ 0 d\ 0 , 07
b= — 02;0%; T3 (Z]&z] J@‘ )& _H | o2

Up to a factor L; is the sublaplacian Ay: £, = iAo- The operator £; can
be obtained by symmetrization:

j=1
The algebra D(H)* is generated by the two operators T' and L.

The spectrum of the Gelfand pair (G, K) is the union ¥ = 3; U¥,, where
Y., is parametrized by the set of pairs (A,m), with A € R*, m € N, and

¥y =~ [0, 00[. The bounded spherical functions of the first kind are expressed
in terms of the ordinary Laguerre polynomials LY for o = (A, m) € ¥,

LV (IN]1211%)
L% V(0)

. 1 2
90<)‘7 m;z, t) = elAte 2|)\H|Z”

This function admits the following expansion

m

g 2112 1 1
go()\,m;z,t) 2 =3l Z(_l)kmg‘)\‘k[m]kuzu%

k=0
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We recall the Pochhammer symbols:
=2 —1)...(x—k+1), (2)h=xz(@+1)---(x+k—-1).

The bounded spherical functions of the second kind are expressed in terms
of the Bessel functions: for 0 = 7 € 3,

(15 2,1) = jn1(2V72]),

-V

where j,(r) = I(v + 1)(%)
expansion
- 1
o(T; 2, 1) Z —)— ™ 2|1?*.
=0

Proposition 3.1. The eigenvalues of the differential operator Dy are given,
for (\,m) € 31, A >0, by

J,(r). These functions admits the following

(—1)F
N e

Di(A,m) =

and, for (1) € X, by

k!
Proof.
We saw that 5
dmA(Dy) = Ki(=A¢, 8_4)'
Since

Ki(z, w) — (Z Z]wj> ;

this means that m(Dy) is the differential operator with symbol

—1)* k' o
7(¢.€) = (Z oe) = > e
where
a=(a1,...,00), ; €N, al =gl o, (=G0
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The operator my(Dy,) is given explicitely as follows

m(Dy) = (_]:!) Y B oDy,

Let us apply this operator to the polynomial ¥ (¢) = ¢(J* which belongs to

H,n:
m(DH(Q) = NG () = S M mlw©)

k!

9
)

Therefore

Die(A\,m) = %)\k[m]k.

In case of the one-dimensional representation 7,

ﬂm% — ﬂﬂﬂ

It follows that the expansion of the spherical functions can be written

m

ol 2,t) = eirt =3 All2II Z _Dk(0)||2||2k-
=0 (D)

Corollary 3.2. For every D in D(H)X there is a polynomial Fp in two
variables such that, for (A\,m) € 31, A > 0,

~

D(\,m) = Fp(\, Am),

and, for (1) € L,
D(t) = Fp(0,7).
The map D — Fp, D(H)® — Pol(C?) is an algebra isomorphism.

In particular, for D = Dy,

Fp, (u,v) = (=1 v —u)...(v—(k—1)u).

Let us embed ¥ into R? by the map
(A,;m) € Xy = (A, Am), (1) € By = (0,7).
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Then, according to [Ferrari-Rufino,2007], the Gelfand topology of ¥ is in-
duced by the topology of R?. This means in particular that, for D € D(H)*

lim D(\, m) = D(r),
as A — 0, \m — 7.

We will evaluate the eigenvalues Z:n(cr) in terms of the Meixner-Pollaczek

polynomials. We introduce the one variable polynomials q,(:)(s) as defined
by the generating formula:

Sl = 0w
The relation to the classical Meixner-Pollaczek polynomials is as folllows

00 = (=P (% 5).

Observe that
qéy)(s) =1, q%y)(s) = —2s.

These polynomias admit the following hypergeometric representation

(y)m V' - I/)m ]kl k
m! 2F1(—m,s+§, oml (V)k 1{5'2

m

g5 (s) =

One checks that

1
q%)( ) = %(_2)’”5” + lower order terms.

For v = 1, the polynomials qk (z)\) are orthogonal with respect to the

weight
1

coshm\’

More generally, for v > 0, the polynomials ql(:)(i)\) are orthogonal with re-
spect to the weight

rEx+3)["
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Theorem 3.3. The eigenvalues of the differential operator Ly are given, for
(A,m) € X1, A >0, by

—~ 1
Le(rm) = (5IA) g (m + 5).

and, for (1) € ¥4, by

k
-
) = (-1
It follows that L = Qx(T, L1) with
t\k 1
Qu(t,s) = (3) q,?)(_;s),

For p = 1 this result has been established by Koornwinder [1988]. The
proof we give below is different.

Since .
QI(:)(S) = g(—Q)ksk + lower order terms,
one checks that . N
lim Lx(\,m) = L(7),
as A — 0, A\m — 7.
Proof.

We start from a generating formula for the polynomials q,il’) related to
the confluent hypergeometric function

= (a)k 1
Fileyyiz) =)
k=0 (7 o
This generating formula can be written:
1F1(S+ Uy 2u qu — k.

l/

(see for instance [Andrews-Askey-Roy,1999], p.349). For o = —m, the hy-
pergeometric series terminates and reduces to a Laguerre polynomial:

LiY(z) = (V):anl( m,v;z) Z e k?
m! !

m (v)
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and, for for s + 5 = —m (m € N), one gets

o0

_uL(

— (V)k

Hence the bounded spherical function of the first kind can be written

o0

, 1 1
o miz,0) = e 37 gl (m o+ ) (AR

k=0

On the other hand, by Corollary 2.3,

[e.e]

1/\
o\, m;z,t) = Z—) R\, m)|| 2],

Therefore

Levm) = (5 LA (m+3).

From the expansion

(ri2,t) = (~1 kll [
k=0
it follows that
Li(T) = (1) o

0

In Section 6 we will consider a multivariate analogue of the case we have
seen in this section. For that we will introduce in Sections 4 and 5 certain

multivariate functions associated to symmetric cones.

4 Symmetric cones and spherical expansions

We consider an irreducible symmetric cone 2 in a simple Euclidean Jordan

algebra V', with rank n, multipllicity d, and dimension

N:n+gn(n—1).

Let L be the identity component in the group G(€2) of linear automorphisms
of 2, and Ky C L the isotropy subgroup of the unit element e € V. Then
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(L, Ky) is a Gelfand pair. The spherical function g, for s € C", is defined
on ) by

pulz) = /K Awplk - 2)(dR),

where Ag is the power function, p = (p1,...,pn), p; = f—f(2j —n —1). The
algebra D(Q2) of L-invariant differential operators on €2 is commutative, the
spherical function ¢y is an eigenfunction of every D € D(Q):

Dys = 7D(5>9057

and yp is a symmetric polynomial function in n variables. (See [Faraut-
Kordnyi,1994].) The Gelfand spectrum 3 can be seen as a closed subset of
C" /G, and D(s) can be identified to vp(s). The space P(V) of polynomial
functions on V' decomposes multiplicity free under L as

:@Pmu

where Py, is a subspace of finite dimension d,,, irreducible under L. The
parameter m is a partition: m = (my,...,m,), m; € N, my > ... >
m, > 0. The subspace PXo of Kj-invariant polynomial functions is one-
dimensional, generated by the spherical polynomial ®,,, normalized by the
condition ®p,(e) = 1. The polynomials ®,, form a basis of the space P(V )0
of Ky-invariant polynomials. Let D™ be the invariant differential operator
determined by the condition

D™ f(e) = (P () ) ().

Then the operators D™ form a linear basis of D(2). The generalized Pochham-
mer symbol («),, is defined by

Ha— (j—1) d)mj.

Jj=1

A Ky-invariant function f, analytic in a neighborhood of 0, admits a spherical
Taylor expansion:

1) = Yty (P52 ) Ol
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For D = D™, we will write ypm(s) = Ym(s). The function 7, can be
seen as a multivariate analogue of the Pochhammer symbol [s],,. In fact, for
n=1(seC, meN),

Observe that
Ym(, ..., a) = (@ — p)m-

With this notation we can write a multivariate binomial formula.

Proposition 4.1. (i) For z € D, the unit ball in Vi centered at 0, relatively
to the spectral norm,

psle+2) = Z dmﬁvm(s)ém(z).

m n

The convergence s uniform on compact sets in D.
(ii) Fors € C", and r, 0 < r < 1, there is a constant A(s,r) > 0 such
that, for every m,
()
m

[T (8)] < A(s, )=

plm| -
Proof.
(i) Observe first that
a m
@m(%)ws(e + Z)‘z:O = D™ps(€e) = Ym(s).

We will see that the function ¢g has a holomorphic continuation to e + D.
By Theorem XII.3.1 in [Faraut-Koranyi, 1994], it will follow that the Taylor
expansion of pg(e + z) converges uniformly on compact sets in D. From
the integral representation of the spherical functions g, it follows that these
functions admit a holomorphic continuation to the tube Q + V. Let us
prove the inclusion e + D C Q + V. To prove this it suffices to show that
e+DNV C Q. In fact, to see that, consider the conjugation z +— z of
Ve =V + 4V with respect to the Euclidean real form V. For z € D, we will
show that e + (2 + z) € Q. Since D is invariant under this conjugation and
convex, £(z+ z) € DN V. Moreover

DAV =(e—Q)N(—e+9Q),
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therefore
e+DNV =0QnN(2e—Q)
(ii) Let
F(2) =) i P (2)

be the spherical Taylor expansion of a Kjy-invariant analytic function in D.
Then the coefficients ay, are given, for 0 < r < 1, by

1 -
m = _I/ f(rk-e)®Pm(k - e)a(dk),
rim J g
where K = Str(V¢) N U(V), hence satisfy the following Cauchy inequality:
for 0 <r <1,

1
|am| < Im]| sup ’f(?”k ’ 6)’7
T ke

It follows that, for s € C", and r, 0 < r < 1, there is a constant A(s,r) such
that
(%) m

rlml -

[Ym(8)] < A(s, 7)

For s = m — p, ¥m-,(2) = Pm(2), and the binomial formula can be
written in that case

Pmle+z) = Z <r11{a> P (2).
kCm
In fact the generalized binomial coefficient

(IE) = dk(%)kvk(m - p)

n
vanishes if k ¢ m.
In the case of the cone Q2 of n x n Hermitian matrices of positive type,

Q CV =Herm(n,C),ie. d=2,the spherical polynomials can be expressed
in terms of the Schur functions suy,:

. Sm(ai,...,an
D, (dlag(al, . ,an)) = (51 0 )

18



The spherical expansion of the exponential of the trace can be written

trz 1
e = Z me(ZU)7

where h(m) is the product of the hook-lengths of the partition m, and xm,
is the character of the representation of GL(n,C) with highest weight m.
Equivalently

1
ay+-+an __
e = Em —h( >sm(a1,...,an)

(see [Macdonald, 1995], p.66). Furthermore

dm = (Sm(ln))Q, therefore h(in) = 881()11:)

The binomial formula for the Schur functions is written as

Sm(1+ay,...,14+a, 1,
( sen(17) ): stk(m)sk(al,...,an),

kCm

where s (m) is a the shifted Schur function ([Okounkov-Olshanski, 1997]. The
following relations follow

(V) = ek, swm—p) = 5

5 A generating formula for multivariate Meixner-
Pollaczek polynomials

The multivariate Meixner-Pollaczek polynomials Qg;)(s) can be defined by
the generating formula

> Q) (8) B () = Ae — u?)”

v

5905((6 —w)(e + w)’l)

([Faraut-Wakayama,2012]). The polynomial QY (s) admits the following
"hypergeometric representation”

—_

ok,

QEI’;)(S) o (V>m Z dkak(m_p)'Yk(_s_ %)

(Wi (V) (%)
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The polynomials Q% (i\) are orthogonal with respect to the measure M, (d\)
on R"™ given by

M,(dA) = [T |TGx + 5 — g(n ~ 1’

5 m(d\),

|e(@N)[?

J=1

where m is the Lebesgue measure, and ¢ is the Harish-Chandra c-function of
the symmetric cone €:

= Cp H B Ska
i<k
(B is the Euler beta function). One can see that
1

()

We consider a multivariate analogue of the confluent hypergeometric func-
tions 1F1I

QYW (s) = (—=2)™®, (s) + lower order terms.

S V] 33 de’}/k ﬂ) @k(—x),
n/k

forseC",v>%(n—1),z€ V.
Proposition 5.1. The series converges for every x € V.

Proof.
This follows from the Cauchy inequalities: part (ii) in Proposition 4.1,

and the fact that, for v > g(n — 1), and every R > 0,

1
—— R
Ek dx (V)kR < o0. i

For s = p—m, m a partition, the function F'(p — m, v;x) is essentially a
multivariate Laguerre polynomial:

L (z) = (1) —m,v;r

(x) ((]X))m F(p ) 1
v d 'Vk m= p q)k —X).
I L TR
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Theorem 5.2. The multivariate Meizner-Pollaczek polynomials Qg’) admit
the following generating formula

e U (s + %; v;2u) = ;(—1)k|dkﬁ l({y)(s)q)k(u).

v

Fors = p—m — 2, one obtains

m I
G_truL](ﬂZ_l)(2U> _ (V) de_ ( )(m + z _ ,O)CI)k(U)

Lemma 5.3. (Bingham identity)
1
" O (2) = Y diym(k — p) 75 Puc().
kDm (Z)k

This formula, which has been established by Bingham [1974] in case of
V = Sym(n,R), generalizes the formula

We will give a different proof.

Proof.
The symbol op(z,€) of a differential operator D is defined by the relation

DO — 5 (, £)e).

If D is invariant, D € D(Q2), then its symbol is invariant in the following
sense: for g € G,

UD(gxa 5) = O'D<x7 g*g)

For x = £ = e, one gets
UD(geu 6) = UD<€7 g*€)7
and taking g selfadjoint, it follows that, for = € Q, op(x,e) = op(e,x), and

De"* = op(z,e)e
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For D = D™,
op(x,e) =op(e,x) = Py (),
and
Dmetrx — (I)m(l,>6trm'

On the other hand
1
Dmetrx — Dm<deN—(I)k(ZU))
k | (F)m
- deN—quDk(x)
- de ﬂ m(k — p)Pi(2).

k
Furthermore we know that ’ym(k —p) =0if m ¢ k. We obtain finally

1
" Om(r) = > dim(k — p) ). (). 0

kOm

In case of the cone Q of n x n Hermitian matrices of positive type, €2 C
V = Herm(n,C), i.e. d =2, we get the following Schur expansion

e ttang (a) = ka;n ﬁs*m(k)sk(a).

Proof of Theorem 5.2
By using the Bingham identity (Lemma 5.3) we get

—tru ryk ) 1 —tru
e "M F(s + ;v 2u) Zd 1/) 2=ty (—u)

ko (T
_ de7k< -3 ﬂl 2“"<Zd7kj— EL)@(_U))
_ Zd (de% )):k(J p) (ﬂl) 2|k|>q)j(_u)

= Z(— >J'dj@@§”><s>@j<u>.

J
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6 The case W = M(n,p;C), K =U(n) x U(p)

The group K = U(n) x U(p) acts on the space W = M (n,p;C) (n < p) of
n X p matrices by the transformations

2 uzv* (weU(n), veU(p)).

Its action on the space P (W) of holomorphic polynomials on W is multiplicity
free and the parameter set M is the set of partitions m of lenghts ¢(m) < n:
m = (my,...,m,) with m; € N, m; > ---m, > 0. The subspace Hy, C
P(W) corresponding to the partition m is generated by the polynomials

Ap(uzv) (uweU(n),v e U(p)),

where

with
Ag(2) = det((2ij)1<i<j<k),

the principal minor of order k (k < n). The character yp, of the representa-
tion of U(n) with highest weight m can be expressed in terms of the Schur
functions sp,:

Xm(diag(tl, . ,tn)) = Sm(t1,. .. tn),
and ym, extends as a polynomial on M (n,C) of degree |m|. The reproducing
kernel ICy, of the subspace Hy, is given by

Km(z,w) = LXm(zw*).

h(m)

The Heisenberg group H of dimension 2np 4+ 1 is seen as H = W x R,
and the group K = U(n) x U(p) acts on H. With G = K x W, (G, K)
is a Gelfand pair, and its Gelfand spectrum can be described as the union
¥ = ¥ UX,, where ¥ is the set of pairs (A, m) with A € R*, m is a partition
with /(m) < n, and

ZQZ{TERn|TIZ"'ZTnZO}.

The bounded spherical functions of the first kind are expressed in terms of
multivariate Laguerre polynomials associated to the Jordan algebra Herm(n, C):

piMt = 31l L&V (|A]z27)

oA, m;z,t) =
( ) L& (0)
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This function admits the following expansion

(A, m; 2, 1)
1 1

_ oMo Z (— 1) —— —— s (m) yic (227).

2 () ()

The bounded spherical functions of the second kind are given by
()0(7_’ Z) _ / eQiRetr (uzv*w*)ﬁn(dU,)ﬂp(dv),
(n)xU(p)

where 7 = (71,...,7), and 7y > -+ > 7, > 0 are the eigenvalues of ww*.
This function admits the following expansion

T z,t) = — |k|LLs T zz*
90( ) 7t) zk:( 1) (n)k (p)k k( )Xk( )

(See [Faraut,2010a))

We will give formulas for the eigenvalues 1/);(0) and Z;(a) of the operators
Dy and Ly we have introduced in Section 3 associated to a partition k.

Theorem 6.1.

(~1)X

_ 1)k _
Di(), )_( 1 MKl sx(m), Dy(r) = )

h(k)

Sk<7').

Proof.
From the definition of the operator Dy, one obtains

k| -
dﬂ')\(Dk) ( (IZ) |k|Sk(1n)Dk,

where D¥ is a differential operator whose restriction to the subspace Wy =
M(n;C) C W = M(n, p; C) is equal to the operator D¥ introduced in Section
4. For ¢ € Hp, -

dﬂ')\(Dk)@/J = Dk()\, m)¢

Choosing ¥(¢) = ®m (o), where (q is the projection of ¢ on Wy, we get
D¥4p = y(m — p).
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Since sk(1™) y(m — p) = sg(m), we obtain

B m) = A
kA, 1) = ]’L(k) Sk
Furthermore
Y Y
dny (Dy) = Kx(—w,w) = —)Xk ww*) = (=1) S(T [

Corollary 6.2. For every D € D(H)X there is a polynomial Fp in n + 1
variables w, vy, ..., v,, symmetric in the variables vy, ..., v,, such that

D(A,m) = Fp(MA(my — )., Almy — pa)).
The map D — Fp, D(H)X — P(C) @ P(C™)®" is an algebra isomorphism.
Let us embed the Gelfand spectrum Y into R"™! by the map
(Am) € Xy — (A Amy, ..., my), (1) € X1 (0,71,...,7).

As in Section 3, according to [Ferrari-Rufino,2007], the Gelfand topology of
¥ is induced by the topology of R™*!. This implies in particular that

lim Dy (A, m) = Dy(7),
as A — 0, Am; — 7;. In fact

sp(m) = sx(m) + lower order terms.

Recall that the differential operator £, € D(H)¥X has been defined by

Lo = /cm((% a%)f(z + ¢t +m (¢]2)) | .
Theorem 6.3.
Lvm) = d(G) QP m+2 ).
Blr) = ()M aaadn)



Proof.
By Corollary 2.3, the spherical functions admit the following expansion:

p(0;2,t) MtzdlmHkLk< 0)Kk(2, 2),

where the summation is over all partitions k with (k) < n. By using the
formulas

dimt = s(1")s07) = R
Raleiw) = den’) = S ),

we get

ploi2,t) = € 3" Ei(o)Bi(z2).

On the other hand, by Theorem 5.2, with s = p —m — £, v = p, we obtain
for o = (\,m) € ¥,

1
©(A, m; z,t) Z’\tZd —Q —p) (E\A])lk‘(ﬁk(zz*).
Therefore,
Lenm) = de () QP (m + £ ).

For o = (1) € s,

T Z = — ‘k|iis r zz*
SO( ) 7t> Z( 1) (n)k (p)k k( )Xk( )

= ; —1)lk L 1 s(r zz"
Therefore N .
Eulr) = (=1 g au(o) 0
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7 W is a simple complex Jordan algebra

For a simple complex Jordan algebra W we consider the Heisenberg group
H =W xR. Let D be the bounded symmetric domain in W, which is the unit
ball with respect to the spectral norm, and K = Str(W)NU(W). The group
K acts multiplicity free on the space P(W) of holomorphic polynomials on
W. Let n be the rank and d the multiplicity.

|4 K d rank
Sym(n,C)  U(n) 1 n
M (n,C) Un)xU(n) 2 n
Skew(2n,C) U(2n) 4 n
Herm(3,0)c Eg x T 8 3
C* SO() x T (-2 2
Let V be a Euclidean real form of W, and ¢y, ..., ¢, a Jordan frame in

V. An element z € W can be written

z:kZajcj (a; R, k€ K).
j=1

We will denote by r; = rj(z) the numbers a? assume to satisfy r;y > -+ >
rn >0, and put r =r(z) =ric; + -+ TpCye

The Fock space decomposes multiplicity free into the subspaces Py, (m
is a partition). The dimension of Py, is denoted by dy,. The reproducing
kernel K™ of Py, is determined by the conditions

K™(gz,w) = K™(z,g"w) (g€ L),
K™(z,e) = dm7w

(See [Faraut-Koranyi, 1994], Section XI.3.)

We consider in this section the Gelfand pair (G, K'), where G = K x H.
The bounded spherical functions of the first kind are given by, for A > 0, and
m is a partition

2 L (—=Ar(2))
L% (0)

. 1
ezAte—§A||z\

oA\, m;z,t) =

27



with v = % This spherical function admits the following expansion

P\ m; 2, 1) = eMe2 7 e () MAK (m — p) Dy (x(2)).

< ((),)

The bounded spherical functions of the second kind are given by the expan-
sion

otz =3 ﬁ(l)kwﬂ@(r(z)),

where 7 = 11 + -+ TCp, 1 > -+ > T, > 0. As in the case considered
in Section 6, the Gelfand spectrum is a union ¥ = ¥; U Xy. The part ¥,
is parametrized by pairs (A\,m), with A € R*, and m is a partition with
¢/(m) < n, and Xy by points 7 € R*, 71 > --- > 7, > 0. (See [Dib,1990],
[Faraut,2010b]).

Theorem 7.1. (i) The eigenvalues of the differential operator Dy associated
to the partition k are given, for (\,m) € X1, A >0, by

dic

A (DMAM(m — p),

Di(\,m) = —
n/k

and, for T € ¥a, by
dx

(%)

(ii) The eigenvalues of the operator Ly are given, for (A\,m) € X1, A > 0, by

Di(7) = (—1) Py (7).

N

- 1
Ek(/\, m) = dk(g)\)
with v = %, and, for T € X5, by

dh
(%)

The proofs are similar to the ones which are given in Section 6.

Li(r) = (—1) Py (7).
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