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The starting point of this paper is an identity in the Heisenberg algebra
which has been observed by Bender, Mead and Pinsky ([1986], 1987]), and
revisited by Koornwinder who gave an alternative proof. Let X, Y, Z gener-
ate the three dimensional Heisenberg Lie algebra, with [X, Y ] = Z. Then
the symmetrization of XkY k can be written as a polynomial in the sym-
metrization of XY , and this polynomial is a Meixner-Pollaczek polynomial.
We rephrase this question in the framework of the spherical analysis for a
Gelfand pair. If (G,K) is a Gelfand pair with a Lie group G, the algebra
D(G/K) of G-invariant differential operators on the quotinet space G/K is
commutative. The spherical Fourier transform maps this algebra onto an
algebra of continuous functions on the Gelfand spectrum Σ of the commu-
tative Banach algebra L1(K\G/K) of K-biinvariant integrable functions on
G. For D ∈ D(G/K), the corresponding function is denoted by D̂. Hence an
identity in the algebra D(G/K) is equivalent to an identity for the functions
D̂. We consider Gelfand pairs associated to the Heisenberg groups. The
unitary group K = U(p) acts on the Heisenberg group H = Cp × R. Let
G = K nH be the semi-direct product. Then (G,K) is a Gelfand pair. The

functions L̂k, corresponding to a family Lk of invariant differential operators
on the Heisenberg group, involve Meixner-Pollaczek polynomials, and give
rise to identities in the algebra D(H)K of differential operators on H which
are left invariant by H and by the action of K. We extend this analysis
to some Gelfand pairs associated to the Heisenberg group which have been
considered by Benson, Jenkins, and Ratcliff [1992]. The Heisenberg group H
is taken as H = W ×R, with W = M(n, p,C). The group K = U(n)×U(p)
acts on W and (G,K) is a Gelfand pair, with G = K n H. We determine
the functions D̂ for families of differential operators on D(H)K . These func-
tions D̂ involve multivariate Meixner-Pollaczek polynomials which have been
introduced in [Faraut-Wakayama,2012]. The proofs use spherical Taylor ex-
pansions, and the connection between multivariate Laguerre polynomials and
multivariate Meixner-Pollaczek polynomials. In the last section, the Heisen-
berg group is taken as W ×R, where W is a simple complex Jordan algebra,
and K = Str(W ) ∩ U(W ), where Str(W ) is the structure group of W , and
U(W ) the unitary group.
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1 Gelfand pairs

Let G be a locally compact group, and K a compact subgroup, and let
L1(K\G/K) denote the convolution algebra of K-invariant integrable func-
tions on G. One says that (G,K) is a Gelfand pair if the algebra L1(K\G/K)
is commutative. From now on we assume that it is the case. A spherical func-
tion is a continuous function ϕ on G, K-biinvariant, with ϕ(e) = 1, and∫

K

ϕ(xky)α(dk) = ϕ(x)ϕ(y),

where α is the normalized Haar measure on K. The characters χ of the
commutative Banach algebra L1(K\G/K) are of the form

χ(f) =

∫
G

f(x)ϕ(x)m(dx),

where ϕ is a bounded spherical function (m is a Haar measure on the unimod-
ular group G). Hence the Gelfand spectrum Σ of the commutative Banach
algebra L1(K\G/K) can be identified with the set of bounded spherical func-
tions. We denote by ϕ(σ;x) the spherical function associated to σ ∈ Σ. The
spherical Fourier transform of f ∈ L1(K\G/K) is the function f̂ defined on
Σ by

f̂(σ) =

∫
G

ϕ(σ;x)f(x)m(dx).

Assume now that G is a Lie group, and denote by D(G/K) the algebra
of G-invariant differential operators on G/K. This algebra is commutative.
A spherical function is C∞ and eigenfunction of every D ∈ D(G/K):

Dϕ(σ;x) = D̂(σ)ϕ(σ;x),

where D̂(σ) is a continuous function on Σ. The map

D 7→ D̂, D(G/K) → C(Σ),

is an algebra morphism. Moreover the Gelfand topology of Σ is the initial
topology associated to the functions σ 7→ D̂(σ) (D ∈ D(G/K)) ([Ferrari-
Rufino,2007]).

We address the following questions:
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- Given a differential operator D ∈ D(G/K), determine the function D̂.
- Construct a linear basis (Dµ)µ∈M of D(G/K), and, for each µ, a K-

invariant analytic function bµ in a neighborhood of o = eK ∈ G/K such
that

Dµbν(o) = δµν .

- Establish a mean value formula: for an analytic function f on G/K,
defined in a neighborhood of o,∫

K

f(xky)α(dk) =
∑
µ∈M

(Dµf)(x)bµ(y).

Observe that it is enough to prove, for a K-invariant analytic function f ,
that

f(y) =
∑
µ∈M

(Dµf)(o)bµ(y).

In particular, for f(x) = ϕ(σ;x), one gets a generalized Taylor expansion for
the spherical functions

ϕ(σ;x) =
∑
µ∈M

D̂µ(σ)bµ(x).

Basic example

Take G = R, K = {0}. Then Σ = R, and

ϕ(σ;x) = eiσx.

We can take, with M = N,

Dµ =
( d

dx

)µ

, bµ(x) =
xµ

µ!
.

Then the mean value formula is nothing but the Taylor formula

f(x+ y) =
∞∑

µ=0

(( d
dx

)µ
f
)
(x)

yµ

µ!
,

and the Taylor formula for the spherical functions is the power expansion of
the exponential:

eiσx =
∞∑

µ=0

(iσ)µx
µ

µ!
.
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Historical example

Here G = SO(n) n Rn, the motion group, K = SO(n); then G/K ' Rn.
The spectrum Σ can be identified to the half-line, Σ = [0,∞[. The spherical
functions are given by

ϕ(σ;x) =

∫
S(Rn)

eiσ(u|x)β(du) (σ ≥ 0, x ∈ Rn),

where β is the normalized uniform measure on the unit sphere S(Rn). (The
function ϕ(σ;x) can be written in terms of Bessel functions.) The algebra
D(G/K) is generated by the Laplace operator ∆, and ∆̂(σ) = −σ2. We can
take, with M = N,

Dµ = ∆µ, bµ = cµ‖x‖2µ,

with

cµ = 2−2µ 1(
n
2

)
µ

1

µ!
.

Then the mean value formula can be written∫
K

f(x+ k · y)α(dk) =
∞∑
µ

cµ(∆µf)(x)‖y‖2µ.

In [Courant-Hilbert,1937], §3, Section 4, one finds the equivalent formula∫
S(Rn)

f(x+ ru)β(du) =
∞∑

µ=0

cµ(∆µf)(x)r2µ.

The generalized Taylor expansion of the spherical functions

ϕ(σ;x) =
∞∑

µ=0

cµ(−1)µσ2µ‖x‖2µ,

is nothing but the power series expansion of the Bessel functions.

2 Gelfand pairs associated with the Heisen-

berg group

Let W be a complex Euclidean vector space. The set H = W ×R, equipped
with the product

(z, t)(z′, t) =
(
z + z′, t+ t′ + Im(z′|z)

)
,
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is the Heisenberg group of dimension 2N + 1 (N = dimCW ). Relative to
coordinates z1, . . . , zN with respect to a fixed orthogonal basis in W , consider
the first order left-invariant differential operators on H:

T =
∂

∂t
, Zj =

∂

∂zj

+
1

2i
zj
∂

∂t
Zj =

∂

∂zj

− 1

2i
zj
∂

∂t
(j = 1, . . . , N).

Recall the notation

∂

∂zj

=
1

2

( ∂

∂xj

− i
∂

∂yj

)
,

∂

∂zj

=
1

2

( ∂

∂xj

+ i
∂

∂yj

)
.

These operators form a basis of the Lie algebra h of H. They satisfy

[Zj, Zj] = iT,

and other brackets vanish.
Let K be a closed subgroup of the unitary group U(W ) of W , and G be

the semi-direct product G = KnH. The pair (G,K) is a Gelfand pair if and
only if the group K acts multiplicity free on the space P(W ) of holomorphic
polynomials on W . This result has been proven by Carcano [1987] (see also
[Benson-Ratcliff-Ratcliff-Worku,2004], [Wolf,2007]). We assume that this
condition holds. Hence the Banach algebra L1(H)K of K-invariant integrable
functions on H is isomorphic to L1(K\G/K), hence commutative.

The Fock space F(W ) is the space of holomorphic functions ψ on W such
that

‖ψ‖2 =
1

πN

∫
W

|ψ(z)|2e−‖z‖2m(dz) <∞

(m denotes the Euclidean measure on W ). The reproducing kernel of F(W )
is

K(z, w) = e(z|w).

The Fock space decomposes multiplicity free under K:

F(W ) =
⊕̂
m∈M

Hm.

Let Km denotes the reproducing kernel of Hm. Then

e(z|w) =
∑

m∈M

Km(z, w).
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The algebra D(H)K of differential operators on H which are invariant
with respect to the left action of H and the action of K is isomorphic to
the algebra D(G/K), hence commutative. To the polynomial Km(z, w) one
associates the invariant differential operators Dm and Lm in D(H)K . Let K̃m

be the polynomial in the 2N variables z1, . . . , zN , z̄1, . . . , z̄N such that

Km(z, z) = K̃m(z, z̄).

The operator Dm is defined by

Dm = K̃m(Z̄1, . . . , Z̄N ;Z1, . . . ZN).

The operators Zj are applied first, then the operators Z̄j.
The operator Lm is defined by symmetrization from the K-invariant (non

holomorphic) polynomial Km(z, z): for a smooth function f on H,

(Lmf)(z, t) = Km

( ∂
∂ζ
,
∂

∂ζ
)f

(
z + ζ, t+ Im(ζ|z)

)∣∣
ζ=0

.

The eigenvalues D̂m(σ) and L̂m(σ) have gotten general formulas in terms
of generalized binomial coefficients by Benson and Ratcliff [1998]. In the
sequel we will consider some special cases and give explicit formulas for these
eigenvalues in terms of classical polynomials.

For µ = (m, `) ∈ M = M× N, define Dµ = LmT
`. Then the operators

Dµ form a linear basis of the vector space D(H)K . Define

bµ(z, t) =
1

dimHm

Km(z, z)
1

`!
t`.

Proposition 2.1.
Dµbν = δµν .

This follows from

LkKm = δk,mdimHk (k,m ∈M).

Theorem 2.2. If f is a K-invariant analytic function on H in a neighbor-
hood of 0, then

f(z, t) =
∑
µ∈M

(Dµf)(0, 0)bµ(z, t)

=
∑

m∈M

∞∑
`=0

1

dimHm

1

`!
(LmT

`f)(0, 0)Km(z, z)t`.
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This implies the following mean value formula: for an analytic function
f on H, ∫

K

f
(
z + k · w, s+ t+ Im(k · w|z)

)
α(dk)

=
∑
µ∈M

(Dµf)(z, s)bµ(w, t)

=
∑

m∈M

∞∑
`=0

1

dimHm

1

`!
(LmT

`)f(z, s)Km(w,w)t`.

Corollary 2.3. As a special case one obtains the following expansion for the
spherical functions:

ϕ(σ; z, t) = eiλt
∑

m∈M

1

dimHm

L̂m(σ)Km(z, z).

(Observe that ϕ(σ; 0, t) is an exponential, = eiλt, where λ depends on σ.)

This formula will give a way for evaluating the eigenvalues L̂m(σ).

The Bergmann representation πλ is defined on the Fock space Fλ(W )
(λ ∈ R∗) of the holomorphic functions ψ on W such that

‖ψ‖2
λ =

( |λ|
π

)N
∫

W

|ψ(ζ)|2e−|λ|‖ζ‖2m(dζ) <∞.

For λ > 0, (
πλ(z, t)ψ

)
(ζ) = eλ

(
it− 1

2
‖z‖2−(ζ|z)

)
ψ(ζ + z).

For λ < 0, let πλ(z, t) = π−λ(z̄,−t). Because of this simple relation we
may assume that λ > 0, and will do most of the time in the sequel. The
representation πλ is irreducible. If f ∈ L1(H)K , then the operator πλ(f)
commutes with the action of K on Fλ(W ). By Schur’s Lemma the subspace
Hm is an eigenspace of πλ(f):

πλ(f)ψ = f̂(λ,m)ψ (ψ ∈ Hm),

and the eigenvalue can be written

f̂(λ,m) =

∫
H

f(z, t)ϕ(λ,m; z, t)m(dz)dt.

8



The functions ϕ(λ,m; z, t) are the bounded spherical functions of the first
kind (λ ∈ R∗, m ∈M).

The bounded spherical functions of the second kind are associated to the
one-dimensional representations ηw of H:

ηw(z, t) = e2iIm(z|w) (w ∈ W ).

They are given by

ϕ(ẇ; z, t) =

∫
K

e2iIm(z|k·w)α(dk).

The Gelfand spectrum Σ can be described as the union Σ = Σ1 ∪ Σ2.
The part Σ1 corresponds to the bounded spherical functions of the first kind,
parametrized by the pairs (λ,m), with λ ∈ R∗, m ∈ M, and the part Σ2 to
the bounded spherical functions of the second kind, parametrized by K\W ,
the set of K-orbits in W .

Recall that

T =
∂

∂t
, Zj =

∂

∂zj

+
1

2i
zj
∂

∂t
, Zj =

∂

∂zj

− 1

2i
zj
∂

∂t
(j = 1, . . . , N).

For the derived representations one obtains

dπλ(T ) = iλ, dπλ(Zj) =
∂

∂ζj
, dπλ(Zj) = −λζj,

dηw(T ) = 0, dηw(Zj) = w̄j, dηw(Zj) = −wj.

From the definition of Dp (p ∈M) it follows that

dπλ(Dp) = K̃p

(
−λζ, ∂

∂ζ

)
, dηw(Dp) = K̃p(−w, w̄).

The subspace Hm is an eigenspace of the operator dπλ(Dp):

dπλ(Dp)ψ = D̂p(λ,m)ψ (ψ ∈ Hm).

This will give a way for evaluating D̂p.
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3 The case W = Cp, K = U(p)

We consider the Heisenberg group H = Cp×R, with the action of K = U(p).
Then (G,K) with G = U(p)×Cp is a Gelfand pair. It has been first observed
by Korányi [1980] (see also [Faraut-1984]). In this case M ' N, Hm is the
space of homogeneous polynomials of degree m, and

Km(z, w) =
1

m!
(z|w)m, dimHm =

(p)m

m!
.

Furthermore

Lmf(z, t) =
1

m!

( p∑
j=1

∂2

∂ζj∂ζj

)m

f
(
z + ζ, t+ Im (ζ|z)

)∣∣
ζ=0

.

For m = 1,

L1 =

p∑
j=1

∂2

∂zj∂zj

+
i

2

(
zj

∂

∂zj

− zj
∂

∂zj

) ∂
∂t

+
1

4
‖z‖2 ∂

2

∂t2
.

Up to a factor L1 is the sublaplacian ∆0: L1 = 1
4
∆0. The operator L1 can

be obtained by symmetrization:

L1 =
1

2

n∑
j=1

(ZjZj + ZjZj).

The algebra D(H)K is generated by the two operators T and L1.

The spectrum of the Gelfand pair (G,K) is the union Σ = Σ1∪Σ2, where
Σ1 is parametrized by the set of pairs (λ,m), with λ ∈ R∗, m ∈ N, and
Σ2 ' [0,∞[. The bounded spherical functions of the first kind are expressed

in terms of the ordinary Laguerre polynomials L
(ν)
m : for σ = (λ,m) ∈ Σ1,

ϕ(λ,m; z, t) = eiλte−
1
2
|λ|‖z‖2L

(p−1)
m (|λ|‖z‖2)

L
(p−1)
m (0)

.

This function admits the following expansion

ϕ(λ,m; z, t) = eiλte−
1
2
|λ|‖z‖2

m∑
k=0

(−1)k 1

(p)k

1

k!
|λ|k[m]k‖z‖2k.
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We recall the Pochhammer symbols:

[x]k = x(x− 1) . . . (x− k + 1), (x)k = x(x+ 1) · · · (x+ k − 1).

The bounded spherical functions of the second kind are expressed in terms
of the Bessel functions: for σ = τ ∈ Σ2,

ϕ(τ ; z, t) = jn−1(2
√
τ‖z‖),

where jν(r) = Γ(ν + 1)
(

r
2

)−ν
Jν(r). These functions admits the following

expansion

ϕ(τ ; z, t) =
∞∑

k=0

(−1)k 1

(p)k

1

k!
τ k‖z‖2k.

Proposition 3.1. The eigenvalues of the differential operator Dk are given,
for (λ,m) ∈ Σ1, λ > 0, by

D̂k(λ,m) =
(−1)k

k!
λk[m]k,

and, for (τ) ∈ Σ2, by

D̂k(τ) =
(−1)k

k!
τ k.

Proof.
We saw that

dπλ(Dk) = K̃k

(
−λζ, ∂

∂ζ

)
.

Since

K̃k(z, w) =
1

k!

( p∑
j=1

zjwj

)k

,

this means that πλ(Dk) is the differential operator with symbol

σ(ζ, ξ) =
(−1)k

k!
λk

( p∑
j=1

ζjξj

)k

=
(−1)k

k!
λk

∑
|α|=p

k!

α!
ζαξα,

where

α = (α1, . . . , αp), αj ∈ N, α! = α1! . . . αp!, ζ
α = ζα1

1 . . . ζαp
p .
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The operator πλ(Dk) is given explicitely as follows

πλ(Dk) =
(−1)k

k!
λk

∑
|α|=p

k!

α!
ζα

( ∂
∂ζ

)α
.

Let us apply this operator to the polynomial ψ(ζ) = ζm
1 which belongs to

Hm:

πλ(Dk)ψ(ζ) =
(−1)k

k!
λkζk

1

( ∂

∂ζ1

)k
ζm
1 =

(−1)k

k!
λk[m]kψ(ζ).

Therefore

D̂k(λ,m) =
(−1)k

k!
λk[m]k.

In case of the one-dimensional representation ηw,

ηw(Dk) =
(−1)k

k!
|w|2k =

(−1)k

k!
τ k.

It follows that the expansion of the spherical functions can be written

ϕ(σ; z, t) = eiλte−
1
2
λ‖z‖2

m∑
k=0

1

(p)k

D̂k(σ)‖z‖2k.

Corollary 3.2. For every D in D(H)K there is a polynomial FD in two
variables such that, for (λ,m) ∈ Σ1, λ > 0,

D̂(λ,m) = FD(λ, λm),

and, for (τ) ∈ Σ2,

D̂(τ) = FD(0, τ).

The map D 7→ FD, D(H)K → Pol(C2) is an algebra isomorphism.

In particular, for D = Dk,

FDk
(u, v) =

(−1)k

k!
v(v − u) . . . (v − (k − 1)u).

Let us embed Σ into R2 by the map

(λ,m) ∈ Σ1 7→ (λ, λm), (τ) ∈ Σ2 7→ (0, τ).
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Then, according to [Ferrari-Rufino,2007], the Gelfand topology of Σ is in-
duced by the topology of R2. This means in particular that, for D ∈ D(H)K ,

lim D̂(λ,m) = D̂(τ),

as λ→ 0, λm→ τ .

We will evaluate the eigenvalues L̂m(σ) in terms of the Meixner-Pollaczek

polynomials. We introduce the one variable polynomials q
(ν)
k (s) as defined

by the generating formula:

∞∑
k=0

q
(ν)
k (s)wk = (1− w)s− ν

2 (1 + w)−s− ν
2 .

The relation to the classical Meixner-Pollaczek polynomials is as folllows

q
(ν)
k (iλ) = (−i)kP

ν
2

k

(
λ;
π

2

)
.

Observe that
q
(ν)
0 (s) = 1, q

(ν)
1 (s) = −2s.

These polynomias admit the following hypergeometric representation

q(ν)
m (s) =

(ν)m

m!
2F1

(
−m, s+

ν

2
; ν; 2

)
=

(ν)m

m!

m∑
k=0

[m]k[−s− ν
2
]k

(ν)k

1

k!
2k.

One checks that

q(ν)
m (s) =

1

m!
(−2)msm + lower order terms.

For ν = 1, the polynomials q
(1)
k (iλ) are orthogonal with respect to the

weight
1

cosh πλ
.

More generally, for ν > 0, the polynomials q
(ν)
k (iλ) are orthogonal with re-

spect to the weight ∣∣Γ(
iλ+

ν

2

)∣∣2.
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Theorem 3.3. The eigenvalues of the differential operator Lk are given, for
(λ,m) ∈ Σ1, λ > 0, by

L̂k(λ,m) =
(1

2
|λ|

)k
q
(p)
k

(
m+

p

2

)
,

and, for (τ) ∈ Σ1, by

L̂k(τ) = (−1)k τ
k

k!
.

It follows that Lk = Qk(T,L1) with

Qk(t, s) =
( t
2

)k
q
(p)
k

(
−1

t
s
)
.

For p = 1 this result has been established by Koornwinder [1988]. The
proof we give below is different.

Since

q
(ν)
k (s) =

1

k!
(−2)ksk + lower order terms,

one checks that
lim L̂k(λ,m) = L̂k(τ),

as λ→ 0, λm→ τ .

Proof.
We start from a generating formula for the polynomials q

(ν)
k related to

the confluent hypergeometric function

1F1(α, γ; z) =
∞∑

k=0

(α)k

(γ)k

1

k!
zk.

This generating formula can be written:

e−u
1F1

(
s+

ν

2
; ν; 2u

)
=

∞∑
k=0

q
(ν)
k (−s) 1

(ν)k

uk.

(see for instance [Andrews-Askey-Roy,1999], p.349). For α = −m, the hy-
pergeometric series terminates and reduces to a Laguerre polynomial:

L(ν−1)
m (z) =

(ν)m

m!
1F1(−m, ν; z) =

(ν)m

m!

m∑
k=0

(−1)k [m]k
(ν)k

1

k!
zk,
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and, for for s+ ν
2

= −m (m ∈ N), one gets

e−uL(ν−1)
m (2u) =

(ν)m

m!

∞∑
k=0

q
(ν)
k

(
m+

ν

2

) 1

(ν)k

uk.

Hence the bounded spherical function of the first kind can be written

ϕ(λ,m; z, t) = eiλt

∞∑
k=0

1

(p)k

q
(p)
k

(
m+

p

2

)(1

2
|λ|‖z‖2

)k
.

On the other hand, by Corollary 2.3,

ϕ(λ,m; z, t) = eiλt

∞∑
k=0

1

(p)k

L̂k(λ,m)‖z‖2k.

Therefore

L̂k(λ,m) =
(1

2
|λ|

)k
q
(p)
k

(
m+

p

2

)
.

From the expansion

ϕ(τ ; z, t) =
∞∑

k=0

(−1)k 1

(p)k

1

k!
τ k‖z‖2k,

it follows that

L̂k(τ) = (−1)k τ
k

k!
.

In Section 6 we will consider a multivariate analogue of the case we have
seen in this section. For that we will introduce in Sections 4 and 5 certain
multivariate functions associated to symmetric cones.

4 Symmetric cones and spherical expansions

We consider an irreducible symmetric cone Ω in a simple Euclidean Jordan
algebra V , with rank n, multipllicity d, and dimension

N = n+
d

2
n(n− 1).

Let L be the identity component in the group G(Ω) of linear automorphisms
of Ω, and K0 ⊂ L the isotropy subgroup of the unit element e ∈ V . Then
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(L,K0) is a Gelfand pair. The spherical function ϕs, for s ∈ Cn, is defined
on Ω by

ϕs(x) =

∫
K0

∆s+ρ(k · x)α(dk),

where ∆s is the power function, ρ = (ρ1, . . . , ρn), ρj = d
4
(2j − n − 1). The

algebra D(Ω) of L-invariant differential operators on Ω is commutative, the
spherical function ϕs is an eigenfunction of every D ∈ D(Ω):

Dϕs = γD(s)ϕs,

and γD is a symmetric polynomial function in n variables. (See [Faraut-
Korányi,1994].) The Gelfand spectrum Σ can be seen as a closed subset of
Cn/Sn, and D̂(s) can be identified to γD(s). The space P(V ) of polynomial
functions on V decomposes multiplicity free under L as

P(V ) =
⊕
m

Pm,

where Pm is a subspace of finite dimension dm, irreducible under L. The
parameter m is a partition: m = (m1, . . . ,mn), mj ∈ N, m1 ≥ · · · ≥
mn ≥ 0. The subspace PK0

m of K0-invariant polynomial functions is one-
dimensional, generated by the spherical polynomial Φm, normalized by the
condition Φm(e) = 1. The polynomials Φm form a basis of the space P(V )K0

of K0-invariant polynomials. Let Dm be the invariant differential operator
determined by the condition

Dmf(e) =
(
Φm

( ∂
∂x

)
f
)
(e).

Then the operatorsDm form a linear basis of D(Ω). The generalized Pochham-
mer symbol (α)m is defined by

(α)m =
n∏

j=1

(
α− (j − 1)

d

2

)
mj
.

AK0-invariant function f , analytic in a neighborhood of 0, admits a spherical
Taylor expansion:

f(x) =
∑
m

dm
1(

N
n

)
m

(
Φm

( ∂
∂x

)
f
)
(0)Φm(x).
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For D = Dm, we will write γDm(s) = γm(s). The function γm can be
seen as a multivariate analogue of the Pochhammer symbol [s]m. In fact, for
n = 1 (s ∈ C, m ∈ N),

γm(s) = [s]m = (−1)m(s)m.

Observe that
γm(α, . . . , α) = (α− ρ)m.

With this notation we can write a multivariate binomial formula.

Proposition 4.1. (i) For z ∈ D, the unit ball in VC centered at 0, relatively
to the spectral norm,

ϕs(e+ z) =
∑
m

dm
1(

N
n

)
m

γm(s)Φm(z).

The convergence is uniform on compact sets in D.
(ii) For s ∈ Cn, and r, 0 < r < 1, there is a constant A(s, r) > 0 such

that, for every m,

|γm(s)| ≤ A(s, r)

(
N
n

)
m

r|m| .

Proof.
(i) Observe first that

Φm

( ∂
∂x

)
ϕs(e+ z)

∣∣
z=0

= Dmϕs(e) = γm(s).

We will see that the function ϕs has a holomorphic continuation to e + D.
By Theorem XII.3.1 in [Faraut-Korányi,1994], it will follow that the Taylor
expansion of ϕs(e + z) converges uniformly on compact sets in D. From
the integral representation of the spherical functions ϕs, it follows that these
functions admit a holomorphic continuation to the tube Ω + iV . Let us
prove the inclusion e + D ⊂ Ω + iV . To prove this it suffices to show that
e + D ∩ V ⊂ Ω. In fact, to see that, consider the conjugation z 7→ z̄ of
VC = V + iV with respect to the Euclidean real form V . For z ∈ D, we will
show that e+ 1

2
(z + z̄) ∈ Ω. Since D is invariant under this conjugation and

convex, 1
2
(z + z̄) ∈ D ∩ V . Moreover

D ∩ V = (e− Ω) ∩ (−e+ Ω),
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therefore
e+D ∩ V = Ω ∩ (2e− Ω) ⊂ Ω.

(ii) Let

f(z) =
∑
m

dmamΦm(z)

be the spherical Taylor expansion of a K0-invariant analytic function in D.
Then the coefficients am are given, for 0 < r < 1, by

am =
1

r|m|

∫
K

f(rk · e)Φm(k · e)α(dk),

where K = Str(VC) ∩ U(VC), hence satisfy the following Cauchy inequality:
for 0 < r < 1,

|am| ≤
1

r|m| sup
k∈K

|f(rk · e)|,

It follows that, for s ∈ Cn, and r, 0 < r < 1, there is a constant A(s, r) such
that

|γm(s)| ≤ A(s, r)

(
N
n

)
m

r|m| .

For s = m − ρ, ϕm−ρ(z) = Φm(z), and the binomial formula can be
written in that case

Φm(e+ z) =
∑
k⊂m

(
m

k

)
Φk(z).

In fact the generalized binomial coefficient(
m

k

)
= dk

1(
N
n

)
k

γk(m− ρ)

vanishes if k 6⊂ m.

In the case of the cone Ω of n × n Hermitian matrices of positive type,
Ω ⊂ V = Herm(n,C), i.e. d = 2, the spherical polynomials can be expressed
in terms of the Schur functions sm:

Φm

(
diag(a1, . . . , an)

)
=
sm(a1, . . . , an)

sm(1n)
.
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The spherical expansion of the exponential of the trace can be written

etr x =
∑
m

1

h(m)
χm(x),

where h(m) is the product of the hook-lengths of the partition m, and χm

is the character of the representation of GL(n,C) with highest weight m.
Equivalently

ea1+···+an =
∑
m

1

h(m)
sm(a1, . . . , an)

(see [Macdonald, 1995], p.66). Furthermore

dm =
(
sm(1n)

)2
, therefore

1

h(m)
=
sm(1n)

(n)m
.

The binomial formula for the Schur functions is written as

sm(1 + a1, . . . , 1 + an)

sm(1n)
=

∑
k⊂m

1

(n)k
s∗k(m)sk(a1, . . . , an),

where s∗k(m) is a the shifted Schur function ([Okounkov-Olshanski,1997]. The
following relations follow(

m

k

)
=

1

h(k)
s∗k(m), γk(m− ρ) =

s∗k(m)

sk(1n)
.

5 A generating formula for multivariate Meixner-

Pollaczek polynomials

The multivariate Meixner-Pollaczek polynomials Q
(ν)
m (s) can be defined by

the generating formula∑
m

dmQ
(ν)
m (s)Φm(w) = ∆(e− w2)−

ν
2ϕs

(
(e− w)(e+ w)−1

)
([Faraut-Wakayama,2012]). The polynomial Q

(ν)
m (s) admits the following

”hypergeometric representation”

Q(ν)
m (s) =

(ν)m(
N
n

)
m

∑
k⊂m

dk

γk(m− ρ)γk

(
−s− ν

2

)
(ν)k

1(
N
n

)
k

2|k|.
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The polynomials Q
(ν)
m (iλ) are orthogonal with respect to the measure Mν(dλ)

on Rn given by

Mν(dλ) =
n∏

j=1

∣∣Γ(iλj +
ν

2
− d

4
(n− 1)

∣∣2 1

|c(iλ)|2
m(dλ),

where m is the Lebesgue measure, and c is the Harish-Chandra c-function of
the symmetric cone Ω:

c(s) = c0
∏
j<k

B
(
sj − sk,

d

2

)
(B is the Euler beta function). One can see that

Q(ν)
m (s) =

1(
N
n

)
m

(−2)|m|Φm(s) + lower order terms.

We consider a multivariate analogue of the confluent hypergeometric func-
tions 1F1:

F (s, ν;x) =
∑
k

dk
γk(−s)

(ν)k

1(
N
n

)
k

Φk(−x),

for s ∈ Cn, ν > d
2
(n− 1), x ∈ VC.

Proposition 5.1. The series converges for every x ∈ VC.

Proof.
This follows from the Cauchy inequalities: part (ii) in Proposition 4.1,

and the fact that, for ν > d
2
(n− 1), and every R > 0,∑
k

dk
1

(ν)k
R|k| <∞.

For s = ρ−m, m a partition, the function F (ρ−m, ν;x) is essentially a
multivariate Laguerre polynomial:

L(ν−1)
m (x) =

(ν)m(
N
n

)
m

F (ρ−m, ν;x)

=
(ν)m(
N
n

)
m

∑
k⊂m

dk
γk(m− ρ)

(ν)k

1(
N
n

)
k

Φk(−x).
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Theorem 5.2. The multivariate Meixner-Pollaczek polynomials Q
(ν)
k admit

the following generating formula

e−tr uF
(
s +

ν

2
; ν; 2u

)
=

∑
k

(−1)|k|dk
1

(ν)k
Q

(ν)
k (s)Φk(u).

For s = ρ−m− ν
2
, one obtains

e−tr uL(ν−1)
m (2u) =

(ν)m(
N
n

)
m

∑
k

dk
1

(ν)k
Q

(ν)
k (m +

ν

2
− ρ

)
Φk(u).

Lemma 5.3. (Bingham identity)

etr xΦm(x) =
∑
k⊃m

dkγm(k− ρ)
1(

N
n

)
k

Φk(x).

This formula, which has been established by Bingham [1974] in case of
V = Sym(n,R), generalizes the formula

exxm =
∞∑

k=m

[k]m
1

k!
xk.

We will give a different proof.

Proof.
The symbol σD(x, ξ) of a differential operator D is defined by the relation

De(x|ξ) = σD(x, ξ)e(x|ξ).

If D is invariant, D ∈ D(Ω), then its symbol is invariant in the following
sense: for g ∈ G,

σD(gx, ξ) = σD(x, g∗ξ).

For x = ξ = e, one gets

σD(ge, e) = σD(e, g∗e),

and taking g selfadjoint, it follows that, for x ∈ Ω, σD(x, e) = σD(e, x), and

Detr x = σD(x, e)etr x.
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For D = Dm,
σD(x, e) = σD(e, x) = Φm(x),

and
Dmetr x = Φm(x)etr x.

On the other hand

Dmetr x = Dm
(∑

k

dk
1(

N
n

)
m

Φk(x)
)

=
∑
k

dk
1(

N
n

)
k

DmΦk(x)

=
∑
k

dk
1(

N
n

)
k

γm(k− ρ)Φk(x).

Furthermore we know that γm(k− ρ) = 0 if m 6⊂ k. We obtain finally

etr xΦm(x) =
∑
k⊃m

dkγm(k− ρ)
1(

N
n

)
k

Φk(x).

In case of the cone Ω of n × n Hermitian matrices of positive type, Ω ⊂
V = Herm(n,C), i.e. d = 2, we get the following Schur expansion

ea1+···+ansm(a) =
∑
k⊃m

1

h(k)
s∗m(k)sk(a).

Proof of Theorem 5.2

By using the Bingham identity (Lemma 5.3) we get

e−tr uF
(
s +

ν

2
; ν; 2u

)
=

∑
k

dk

γk

(
−s− ν

2

)
(ν)k

1(
N
n

)
k

2|k|e−tr uΦk(−u)

=
∑
k

dk

γk

(
−s− ν

2

)
(ν)k

1(
N
n

)
k

2|k|
(∑

j⊃k

djγk(j− ρ)
1(
N
n

)
j

Φj(−u)
)

=
∑

j

dj
1(
N
n

)
j

(∑
k⊂j

dk

γk

(
−s− ν

2

)
γk(j− ρ)

(ν)k

1(
N
n

)
k

2|k|
)
Φj(−u)

=
∑

j

(−1)|j|dj
1

(ν)j
Q

(ν)
j (s)Φj(u).
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6 The case W = M(n, p; C), K = U(n)× U(p)

The group K = U(n) × U(p) acts on the space W = M(n, p; C) (n ≤ p) of
n× p matrices by the transformations

z 7→ uzv∗
(
u ∈ U(n), v ∈ U(p)

)
.

Its action on the space P(W ) of holomorphic polynomials onW is multiplicity
free and the parameter set M is the set of partitions m of lenghts `(m) ≤ n:
m = (m1, . . . ,mn) with mi ∈ N, m1 ≥ · · ·mn ≥ 0. The subspace Hm ⊂
P(W ) corresponding to the partition m is generated by the polynomials

∆m(uzv) (u ∈ U(n), v ∈ U(p)),

where
∆m(z) = ∆1(z)

m1−m2 . . .∆n(z)mn ,

with
∆k(z) = det

(
(zij)1≤i≤j≤k

)
,

the principal minor of order k (k ≤ n). The character χm of the representa-
tion of U(n) with highest weight m can be expressed in terms of the Schur
functions sm:

χm

(
diag(t1, . . . , tn)

)
= sm(t1, . . . , tn),

and χm extends as a polynomial on M(n,C) of degree |m|. The reproducing
kernel Km of the subspace Hm is given by

Km(z, w) =
1

h(m)
χm(zw∗).

The Heisenberg group H of dimension 2np + 1 is seen as H = W × R,
and the group K = U(n) × U(p) acts on H. With G = K n W , (G,K)
is a Gelfand pair, and its Gelfand spectrum can be described as the union
Σ = Σ1∪Σ2, where Σ1 is the set of pairs (λ,m) with λ ∈ R∗, m is a partition
with `(m) ≤ n, and

Σ2 = {τ ∈ Rn | τ1 ≥ · · · ≥ τn ≥ 0}.

The bounded spherical functions of the first kind are expressed in terms of
multivariate Laguerre polynomials associated to the Jordan algebraHerm(n,C):

ϕ(λ,m; z, t) = eiλte−
1
2
|λ|‖z‖2L

(p−1)
m (|λ|zz∗)
L

(p−1)
m (0)

.
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This function admits the following expansion

ϕ(λ,m; z, t)

= eiλte−
1
2
|λ|‖z‖2

∑
k⊂m

(−1)|k||λ||k| 1

(n)k

1

(p)k
s∗k(m)χk(zz

∗).

The bounded spherical functions of the second kind are given by

ϕ(τ ; z) =

∫
U(n)×U(p)

e2iRe tr (uzv∗w∗)βn(du)βp(dv),

where τ = (τ1, . . . , τn), and τ1 ≥ · · · ≥ τn ≥ 0 are the eigenvalues of ww∗.
This function admits the following expansion

ϕ(τ ; z, t) =
∑
k

(−1)|k|
1

(n)k

1

(p)k
sk(τ)χk(zz

∗).

(See [Faraut,2010a])

We will give formulas for the eigenvalues D̂k(σ) and L̂k(σ) of the operators
Dk and Lk we have introduced in Section 3 associated to a partition k.

Theorem 6.1.

D̂k(λ,m) =
(−1)|k|

h(k)
λ|k|s∗k(m), D̂k(τ) =

(−1)|k|

h(k)
sk(τ).

Proof.
From the definition of the operator Dk, one obtains

dπλ(Dk) =
(−1)|k|

h(k)
λ|k|sk(1

n)D̃k,

where D̃k is a differential operator whose restriction to the subspace W0 =
M(n; C) ⊂ W = M(n, p; C) is equal to the operator Dk introduced in Section
4. For ψ ∈ Hm,

dπλ(Dk)ψ = D̂k(λ,m)ψ.

Choosing ψ(ζ) = Φm(ζ0), where ζ0 is the projection of ζ on W0, we get

D̃kψ = γk(m− ρ)ψ.
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Since sk(1
n) γk(m− ρ) = s∗k(m), we obtain

D̂k(λ,m) =
(−1)|k|

h(k)
λ|k|s∗k(m).

Furthermore

dηw(Dk) = Kk(−w,w) =
(−1)|k|

h(k)
χk(ww

∗) =
(−1)|k|

h(k)
sk(τ).

Corollary 6.2. For every D ∈ D(H)K there is a polynomial FD in n + 1
variables u, v1, . . . , vn, symmetric in the variables v1, . . . , vn, such that

D̂(λ,m) = FD

(
λ, λ(m1 − ρ1), . . . , λ(mn − ρn)

)
.

The map D 7→ FD, D(H)K → P(C)⊗ P(Cn)Sn is an algebra isomorphism.

Let us embed the Gelfand spectrum Σ into Rn+1 by the map

(λ,m) ∈ Σ1 7→ (λ, λm1, . . . , λmn), (τ) ∈ Σ1 7→ (0, τ1, . . . , τn).

As in Section 3, according to [Ferrari-Rufino,2007], the Gelfand topology of
Σ is induced by the topology of Rn+1. This implies in particular that

lim D̂k(λ,m) = D̂k(τ),

as λ→ 0, λmj → τj. In fact

s∗k(m) = sk(m) + lower order terms.

Recall that the differential operator Lm ∈ D(H)K has been defined by

Lm = Km

( ∂

∂ζ
,
∂

∂ζ

)
f(z + ζ, t+ Im (ζ|z)

)∣∣
ζ=0

.

Theorem 6.3.

L̂k(λ,m) = dk

(1

2
|λ|

)|k|
Q

(p)
k

(
m +

p

2
− ρ

)
.

L̂k(τ) = (−1)|k|
1

h(k)
sk(τ).

25



Proof.
By Corollary 2.3, the spherical functions admit the following expansion:

ϕ(σ; z, t) = eiλt
∑
k

1

dimHk

L̂k(σ)Kk(z, z),

where the summation is over all partitions k with `(k) ≤ n. By using the
formulas

dimHk = sk(1
n)sk(1

p) =
(n)k
h(k)

(p)k
h(k)

,

Kk(z, w) =
1

h(k)
χk(zw

∗) =
sk(1

n)

h(k)
Φk(zw

∗),

we get

ϕ(σ; z, t) = eiλt
∑
k

1

(p)k
L̂k(σ)Φk(zz

∗).

On the other hand, by Theorem 5.2, with s = ρ −m − p
2
, ν = p, we obtain

for σ = (λ,m) ∈ Σ1,

ϕ(λ,m; z, t) = eiλt
∑
k

dk
1

(p)k
Q

(p)
k

(
m +

p

2
− ρ

)(1

2
|λ|

)|k|
Φk(zz

∗).

Therefore,

L̂k(λ,m) = dk

(1

2
|λ|

)|k|
Q

(p)
k

(
m +

p

2
− ρ

)
.

For σ = (τ) ∈ Σ2,

ϕ(τ ; z, t) =
∑
k

(−1)|k|
1

(n)k

1

(p)k
sk(r)χk(zz

∗)

=
∑
k

(−1)|k|
1

(p)k

1

h(k)
sk(r)Φk(zz

∗).

Therefore

L̂k(τ) = (−1)|µ|
1

h(k)
sk(τ).
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7 W is a simple complex Jordan algebra

For a simple complex Jordan algebra W we consider the Heisenberg group
H = W×R. LetD be the bounded symmetric domain inW , which is the unit
ball with respect to the spectral norm, and K = Str(W )∩U(W ). The group
K acts multiplicity free on the space P(W ) of holomorphic polynomials on
W . Let n be the rank and d the multiplicity.

W K d rank
Sym(n,C) U(n) 1 n
M(n,C) U(n)× U(n) 2 n
Skew(2n,C) U(2n) 4 n
Herm(3,O)C E6 × T 8 3
C` SO(`) × T `− 2 2

Let V be a Euclidean real form of W , and c1, . . . , cn a Jordan frame in
V . An element z ∈ W can be written

z = k
n∑

j=1

ajcj (aj ∈ R, k ∈ K).

We will denote by rj = rj(z) the numbers a2
j assume to satisfy r1 ≥ · · · ≥

rn ≥ 0, and put r = r(z) = r1c1 + · · ·+ rncn.
The Fock space decomposes multiplicity free into the subspaces Pm (m

is a partition). The dimension of Pm is denoted by dm. The reproducing
kernel Km of Pm is determined by the conditions

Km(gz, w) = Km(z, g∗w) (g ∈ L),

Km(z, e) = dm
1(

N
n

)
m

Φm(z).

(See [Faraut-Korányi,1994], Section XI.3.)
We consider in this section the Gelfand pair (G,K), where G = K nH.

The bounded spherical functions of the first kind are given by, for λ > 0, and
m is a partition

ϕ(λ,m; z, t) = eiλte−
1
2
λ‖z‖2L

(ν−1)
m

(
−λr(z)

)
L

(ν−1)
m (0)

,
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with ν = N
n
. This spherical function admits the following expansion

ϕ(λ,m; z, t) = eiλte−
1
2
‖z‖2

∑
k

dk((
N
n

)
k

)2 (−1)|k|λ|k|γk(m− ρ)Φk

(
r(z)

)
.

The bounded spherical functions of the second kind are given by the expan-
sion

ϕ(τ ; z, t) =
∑
k

dk((
N
n

)
k

)2 (−1)|k|Φk(τ)Φ
(
r(z)

)
,

where τ = τ1c1 + · · · + τncn, τ1 ≥ · · · ≥ τn ≥ 0. As in the case considered
in Section 6, the Gelfand spectrum is a union Σ = Σ1 ∪ Σ2. The part Σ1

is parametrized by pairs (λ,m), with λ ∈ R∗, and m is a partition with
`(m) ≤ n, and Σ2 by points τ ∈ Rn, τ1 ≥ · · · ≥ τn ≥ 0. (See [Dib,1990],
[Faraut,2010b]).

Theorem 7.1. (i) The eigenvalues of the differential operator Dk associated
to the partition k are given, for (λ,m) ∈ Σ1, λ > 0, by

D̂k(λ,m) =
dk(
N
n

)
k

(−1)|k|λ|k|γk(m− ρ),

and, for τ ∈ Σ2, by

D̂k(τ) =
dk(
N
n

)
k

(−1)|k|Φk(τ).

(ii) The eigenvalues of the operator Lk are given, for (λ,m) ∈ Σ1, λ > 0, by

L̂k(λ,m) = dk

(1

2
λ
)|k|

Qν
k

(
m +

N

2n
− ρ

)
,

with ν = N
n
, and, for τ ∈ Σ2, by

L̂k(τ) =
dk(
N
n

)
k

(−1)|k|Φk(τ).

The proofs are similar to the ones which are given in Section 6.
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