Advanced Training in Mathematical Schools,

 Harmonic Analysis 2017Indian Institute of Sciences, Bangalore

ORBITAL MEASURES AND SPLINE FUNCTIONS

Jacques Faraut

1. Projection of orbital measures
2. Projection of the orbital measure μ_{A} and Peano measure
3. Divided differences, Peano measure and spline functions
4. Interlacing property of the eigenvalues
5. Baryshnikov's formula
6. Fourier-Laplace transform of orbital measures
7. Fourier-Laplace transform of the projection of an orbital measure
8. Olshanski's determinantal formula
9. A branching theorem
10. Horn's theorem
11. Heckman's measure

1 Projection of orbital measures

We note $\mathcal{H}_{n}(\mathbb{R})=\operatorname{Sym}(n, \mathbb{R}), \mathcal{H}_{n}(\mathbb{C})=\operatorname{Herm}(n, \mathbb{C})$. For a matrix $X \in$ $\mathcal{H}_{n}(\mathbb{F})(\mathbb{F}=\mathbb{R}$ ou $\mathbb{C})$, the classical spectral theorem says that the eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ are real and the corresponding eigenvectors are orthogonal. Note $\Lambda^{(n)}$ the map $\mathcal{H}_{n}(\mathbb{F})$ onto $\left(\mathbb{R}^{n}\right)_{+}$,

$$
\left(\mathbb{R}^{n}\right)_{+}:=\left\{t \in \mathbb{R}^{n} \mid t_{1} \leq t_{2} \leq \cdots \leq t_{n}\right\}
$$

which, to a matrix X, associate the sequence of the eigenvalues in the increasing order:

$$
\Lambda^{(n)}(X)=\left(\lambda_{1}, \ldots, \lambda_{n}\right)
$$

Note $U_{n}(\mathbb{F})=O(n)$, the orthogonal group, if $\mathbb{F}=\mathbb{R}$, and $U_{n}(\mathbb{F})=U(n)$, the unitary group, if $\mathbb{F}=\mathbb{C}$. The group $U_{n}(\mathbb{F})$ acts on the space $\mathcal{H}_{n}(\mathbb{F})$ by the transformations $X \mapsto u X u^{*}\left(u \in U_{n}(\mathbb{F})\right)$. Note \mathcal{O}_{A} the orbit of the diagonal matrix $A=\operatorname{diag}\left(a_{1}, \ldots, a_{n}\right)\left(a_{i} \in \mathbb{R}, a_{1} \leq \cdots \leq a_{n}\right)$:

$$
\mathcal{O}_{A}=\left\{u A u^{*} \mid u \in U_{n}(\mathbb{F})\right\} .
$$

From the spectral theorem it follows that

$$
\mathcal{O}_{A}=\left\{X \in \mathcal{H}_{n}(\mathbb{F}) \mid \operatorname{spectrum}(X)=\left\{a_{1}, \ldots, a_{n}\right\}\right\} .
$$

The orbit \mathcal{O}_{A} carries a natural probability measure: the orbital measure μ_{A}, image of the normalized Haar measure α of the compact group $U_{n}(\mathbb{F})$ under the map

$$
U_{n}(\mathbb{F}) \rightarrow \mathcal{H}_{n}(\mathbb{F}), \quad u \mapsto u A u^{*}
$$

For a continuous function f defined on $\mathcal{H}_{n}(\mathbb{F})$,

$$
\int_{\mathcal{H}_{n}(\mathbb{F})} f(X) \mu_{A}(d X)=\int_{U_{n}(\mathbb{F})} f\left(u A u^{*}\right) \alpha(d u)
$$

Note p_{k} the projection of $\mathcal{H}_{n}(\mathbb{F})$ onto $\mathcal{H}_{k}(\mathbb{F})$ which maps a matrix $X \in$ $\mathcal{H}_{n}(\mathbb{F})$ to the matrix $Y=p_{k}(X) \in \mathcal{H}_{k}(\mathbb{F})$ of the k first rows and the k first columns of X. We will study the image $\mu_{A}^{(k)}$ of the orbital measure μ_{A} under the projection p_{k}.

Let μ be a measure on $\mathcal{H}_{n}(\mathbb{F})$ which is invariant under $U_{n}(\mathbb{F})$. The integral of a function f is written as follows

$$
\int_{\mathcal{H}_{n}(\mathbb{F})} f(X) \mu(d X)=\int_{\left(\mathbb{R}^{n}\right)_{+}}\left(\int_{U_{n}(\mathbb{F})} f\left(u \operatorname{diag}\left(t_{1}, \ldots, t_{n}\right) u^{*}\right) \alpha(d u)\right) \nu(d t),
$$

where ν is a measure on $\left(\mathbb{R}^{n}\right)_{+}$, called the radial part of μ. If μ is a probability measure on $\mathcal{H}_{n}(\mathbb{F})$ which is $U_{n}(\mathbb{F})$-invariant, its radial part ν is also the joint distribution of the eigenvalues for a random matrix whose distribution is μ. We will note $\nu_{A}^{(k)}$ the radial part of $\mu_{A}^{(k)}$.

Assume now $\mathbb{F}=\mathbb{C}$. We will start with the simplest case $k=1$, and will see that the projection $\mu_{A}^{(1)}$ involves spline functions (Okounkov, 1996).

If $k=n-1$ this question is related to an interlacing property of the eigenvalues. The measure $\nu_{A}^{(n-1)}$ is given by a formula due to Baryshnikov (2001).

We will study the general case, $1 \leq k \leq n-1$, by using the Fourier transform. The radial part $\nu_{A}^{(k)}$ has a density which can be written as a determinant of spline functions. This is the Olshanski's determinantal formula (2013).

In last two Sections, we consider the projection onto the subspace \mathcal{D}_{n} of diagonal matrices. Horn's Theorem describes the image of the orbit \mathcal{O}_{A} : it is the convex hull of points $\sigma(a)$, with $\sigma \in \mathfrak{S}_{n}$, the symmetric group. The image of the orbital measure is given as a special case of Heckman's formula.

2 Projection of the orbital measure μ_{A} and Peano measure

We assume in this section that $\mathbb{F}=\mathbb{C}$. We consider the projection $M_{A}:=$ $\mu_{A}^{(1)}=\nu_{A}^{(1)}$ of the orbital measure μ_{A} on $\mathcal{H}_{1}(\mathbb{C})=\mathbb{R} E_{11} \simeq \mathbb{R}$: if f is a continuous function on \mathbb{R},

$$
\int_{\mathbb{R}} f(t) M_{A}(d t)=\int_{U(n)} f\left(\left(u A u^{*}\right)_{11}\right) \alpha_{n}(d u)
$$

One establishes easily

$$
\left(u A u^{*}\right)_{11}=a_{1}\left|u_{11}\right|^{2}+\cdots+a_{n}\left|u_{1 n}\right|^{2} .
$$

Proposition 2.1. Consider the map

$$
\Phi: U(n) \rightarrow S=S\left(\mathbb{C}^{n}\right)
$$

the unit sphere in \mathbb{C}^{n}, which maps the matrix $u \in U(n)$ to the first row:

$$
u \mapsto\left(u_{11}, \ldots, u_{1 n}\right)
$$

The image under Φ of the Haar measure α is the normalized uniform measure σ on S.

Proof. The image under Φ of the Haar measure α is a measure on S which is $U(n)$-invariant.

Note Δ_{n} the simplex defined by

$$
\Delta_{n}=\left\{\tau=\left(\tau_{1}, \ldots, \tau_{n+1}\right) \in \mathbb{R}^{n+1} \mid \tau_{i} \geq 0, \tau_{1}+\cdots+\tau_{n+1}=1\right\}
$$

and let β_{n} be the normalized uniform measure on Δ_{n}, i.e. the restriction to Δ_{n} of the Lebesgue measure on the hyperplane with equation $\tau_{1}+\cdots+\tau_{n+1}=$ 1 , normalized in such a way that the total measure is equal to 1 . Note also D_{n} the closed set of \mathbb{R}^{n} defined by

$$
D_{n}=\left\{\tau=\left(\tau_{1}, \ldots, \tau_{n}\right) \in \mathbb{R}^{n} \mid \tau_{i} \geq 0, \tau_{1}+\cdots+\tau_{n} \leq 1\right\}
$$

This is the projection of Δ_{n} on the horizontal hyperplane with equation $\tau_{n+1}=0$. The volume of D_{n} is equal to

$$
\operatorname{vol}^{(n)}\left(D_{n}\right)=\frac{1}{n!}
$$

The integral of a function f defined on Δ_{n} with respect to the measure β_{n} can be given as an integral on D_{n} as follows:

$$
\int_{\Delta_{n}} f(\tau) \beta_{n}(d \tau)=n!\int_{D_{n}} f\left(\tau_{1}, \ldots, \tau_{n}, 1-\tau_{1}-\cdots-\tau_{n}\right) d \tau_{1} \ldots d \tau_{n}
$$

Proposition 2.2. Consider the map

$$
\Psi: S\left(\mathbb{C}^{n}\right) \rightarrow \Delta_{n-1}, \quad u=\left(u_{1}, \ldots, u_{n}\right) \mapsto \tau=\left(\left|u_{1}\right|^{2}, \ldots,\left|u_{n}\right|^{2}\right) .
$$

The image under Ψ of the measure σ is equal to the measure $\beta=\beta_{n-1}$: if f is a continuous function on Δ_{n-1},

$$
\int_{S\left(\mathbb{C}^{n}\right)} f\left(\left|u_{1}\right|^{2}, \ldots,\left|u_{n}\right|^{2}\right) \sigma(d u)=\int_{\Delta_{n-1}} f\left(\tau_{1}, \ldots, \tau_{n}\right) \beta(d \tau) .
$$

Proof.

Observe first that, if F is a function defined on $\left(\mathbb{R}_{+}\right)^{n}$ which is integrable with respect to the Lebesgue measure,

$$
\begin{array}{rl}
\int_{\left(\mathbb{R}_{+}\right)^{n}} & F\left(x_{1}, \ldots, x_{n}\right) d x_{1} \ldots d x_{n} \\
& =\frac{1}{(n-1)!} \int_{0}^{\infty}\left(\int_{\Delta_{n-1}} F\left(\rho \tau_{1}, \ldots, \rho \tau_{n}\right) \beta(d \tau)\right) \rho^{n-1} d \rho
\end{array}
$$

Let f be a function defined on Δ_{n-1}, integrable with respect to the measure β, and let f_{0} be a function defined on \mathbb{R}_{+}integrable with respect to the measure $\rho^{n-1} d \rho$. We associate to the functions f and f_{0} the function F_{1} defined on $\left(\mathbb{R}_{+}\right)^{n}$ by puting

$$
F_{1}(x)=f_{0}(\rho) f\left(\tau_{1}, \ldots, \tau_{n}\right), \text { if } x=\left(\rho \tau_{1}, \ldots, \rho \tau_{n}\right), \tau=\left(\tau_{1}, \ldots, \tau_{n}\right) \in \Delta_{n-1}
$$

Then

$$
\begin{aligned}
\int_{\left(\mathbb{R}_{+}\right)^{n}} & F_{1}\left(x_{1}, \ldots, x_{n}\right) d x_{1} \ldots d x_{n} \\
= & \frac{1}{(n-1)!} \int_{0}^{\infty} f_{0}(\rho) \rho^{n-1} d \rho_{i} \int_{\Delta_{n-1}} f\left(\tau_{1}, \ldots, \tau_{n}\right) \beta(d \tau)
\end{aligned}
$$

We consider also the function F_{2} defined on \mathbb{C}^{n} by puting

$$
F_{2}(z)=f_{0}\left(r^{2}\right) f\left(\left|u_{1}\right|^{2}, \ldots,\left|u_{n}\right|^{2}\right)
$$

if $z=\left(r u_{1}, \ldots, r u_{n}\right), u=\left(u_{1}, \ldots, u_{n}\right) \in S$. Then, on one hand, since $F_{2}(z)=F_{1}\left(\left|z_{1}\right|^{2}, \ldots,\left|z_{n}\right|^{2}\right)$,

$$
\begin{aligned}
\int_{\mathbb{C}^{n}} F_{2}(z) m(d z) & =(2 \pi)^{n} \int_{\left(\mathbb{R}_{+}\right)^{n}} F_{1}\left(r_{1}^{2}, \ldots, r_{n}^{2}\right) r_{1} d r_{1} \ldots r_{n} d r_{n} \\
& =\pi^{n} \int_{\left(\mathbb{R}_{+}\right)^{n}} F\left(t_{1}, \ldots, t_{n}\right) d t_{1} \ldots d t_{n} \\
& =\frac{\pi^{n}}{(n-1)!} \int_{0}^{\infty} f_{0}(\rho) \rho^{n-1} d \rho \int_{\Delta_{n-1}} f\left(\tau_{1}, \ldots, \tau_{n}\right) \beta(d \tau)
\end{aligned}
$$

where m denotes the Lebesgue measure on $\mathbb{C}^{n} \simeq \mathbb{R}^{2 n}$. And, on the other hand,

$$
\int_{\mathbb{C}^{n}} F_{2}(z) m(d z)
$$

$$
\begin{aligned}
& =\quad 2 \frac{\pi^{n}}{(n-1)!} \int_{0}^{\infty} f_{0}\left(r^{2}\right) r^{2 n-1} d r \int_{S} f\left(\left|u_{1}\right|^{2}, \ldots,\left|u_{n}\right|^{2}\right) \sigma(d u) \\
& =\quad \frac{\pi^{n}}{(n-1)!} \int_{0}^{\infty} f_{0}(\rho) \rho^{n-1} d \rho \int_{S} f\left(\left|u_{1}\right|^{2}, \ldots,\left|u_{n}\right|^{2}\right) \sigma(d u) .
\end{aligned}
$$

By comparing these equalities one gets the statement

To a point $a=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{R}^{n}$ one associates the measure $M_{n}\left(a_{1}, \ldots, a_{n} ; d t\right)$ on \mathbb{R}, image of the measure β by the map

$$
\Theta: \Delta_{n-1} \rightarrow \mathbb{R}, \tau \mapsto a_{1} \tau_{1}+\cdots+a_{n} \tau_{n}
$$

That is, if f is a continuous function on \mathbb{R},

$$
\int_{\mathbb{R}} f(t) M_{n}\left(a_{1}, \ldots, a_{n} ; d t\right)=\int_{\Delta_{n-1}} f\left(a_{1} \tau_{1}+\cdots+a_{n} \tau_{n}\right) \beta(d \tau)
$$

$M_{n}\left(a_{1}, \ldots, a_{n} ; d t\right)$ is a probability measure on \mathbb{R} with support $\left[\min a_{i}, \max a_{i}\right]$. We call it Peano measure. For $n=2$,

$$
\int_{\mathbb{R}} f(t) M_{2}\left(a_{1}, a_{2} ; d t\right)=\int_{0}^{1} f\left(a_{1} \tau+(1-\tau) a_{2}\right) d \tau=\frac{1}{a_{2}-a_{1}} \int_{a_{1}}^{a_{2}} f(t) d t
$$

Theorem 2.3. (Okounkov) The projection $M_{A}(d t)$ on the line $\mathbb{R} E_{11}$ of the orbital measure μ_{A} is equal to the Peano measure $M_{n}\left(a_{1}, \ldots, a_{n} ; d t\right)$,

$$
M_{A}(d t)=M_{n}\left(a_{1}, \ldots, a_{n} ; d t\right)
$$

Proof. The map

$$
U(n) \rightarrow \mathbb{R}, u \mapsto\left(u A u^{*}\right)_{11}
$$

can be factorized as follows

$$
\begin{gathered}
U(n) \xrightarrow{\Phi} S\left(\mathbb{C}^{n}\right) \xrightarrow{\Psi} \Delta_{n-1} \xrightarrow{\Theta} \mathbb{R} \\
u \mapsto \xi=\left(u_{11}, \ldots, u_{1 n}\right) \mapsto \tau=\left(\left|\xi_{1}\right|^{2}, \ldots,\left|\xi_{n}\right|^{2}\right) \mapsto t=a_{1} \tau_{1}+\cdots+a_{n} \tau_{n} .
\end{gathered}
$$

By Proposition 2.1,

$$
\int_{\mathbb{R}} f(t) M_{A}(d t)=\int_{S\left(\mathbb{C}^{n}\right)} f\left(a_{1}\left|u_{1}\right|^{2}+\cdots+a_{n}\left|u_{n}\right|^{2}\right) \sigma(d u)
$$

and, by Proposition 2.2 and the definition of the Peano measure,

$$
\begin{aligned}
& \int_{S\left(\mathbb{C}^{n}\right)} f\left(a_{1}\left|u_{1}\right|^{2}+\cdots+a_{n}\left|u_{n}\right|^{2}\right) \sigma(d u) \\
& =\int_{\Delta_{n-1}} f\left(a_{1} \tau_{1}+\cdots+a_{n} \tau_{n}\right) \beta(d \tau)=\int_{\mathbb{R}} f(t) M_{n}\left(a_{1}, \ldots, a_{n} ; d t\right) .
\end{aligned}
$$

3 Divided differences, Peano measures and spline functions

Let f be a function defined on \mathbb{R}. If the real numbers a_{i} are distinct, the divided differences of f are defined as follows

$$
\begin{aligned}
f\left[a_{1}, a_{2}\right] & =\frac{f\left(a_{2}\right)-f\left(a_{1}\right)}{a_{2}-a_{1}}, \\
f\left[a_{1}, a_{2}, \ldots, a_{n}\right] & =\frac{f\left[a_{2}, \ldots, a_{n}\right]-f\left[a_{1}, \ldots, a_{n-1}\right]}{a_{n}-a_{1}} .
\end{aligned}
$$

If f is of class \mathcal{C}^{n-1} the divided differences $f\left[a_{1}, \ldots, a_{k}\right](k \leq n)$ are defined for every numbers a_{i}, distinct or not, by going to the limit. In particular, if $a_{1}=a_{2}=\cdots=a_{k}=a$, then

$$
f[a, \ldots, a]=\frac{1}{(k-1)!} f^{(k-1)}(a)
$$

Assume the numbers a_{1}, \ldots, a_{n} to be distinct. Let p be the interpolation polynomial of the function f with respect to the points $a_{1}, \ldots, a_{n}: p$ is the polynomial of degree $\leq n-1$ such that $p\left(a_{i}\right)=f\left(a_{i}\right)(i=1, \ldots, n)$. Recall the following Newton formula: the interpolation polynomial p can be written

$$
p(t)=\sum_{k=1}^{n} f\left[a_{1}, \ldots, a_{k}\right]\left(t-a_{1}\right) \cdots\left(t-a_{k-1}\right)
$$

Let c_{0}, \ldots, c_{n-1} be the coeficients of the interpolation polynomial:

$$
p(t)=c_{0}+\cdots+c_{n-1} t^{n-1}
$$

By the Newton formula $c_{n-1}=f\left[a_{1}, \ldots, a_{n}\right]$. Les coefficients c_{k} are solutions of the system

$$
\begin{aligned}
c_{0}+c_{1} a_{1}+\cdots+c_{n-1} a_{1}^{n-1} & =f\left(a_{1}\right), \\
\vdots & \\
c_{0}+c_{1} a_{n}+\cdots+c_{n-1} a_{n}^{n-1} & =f\left(a_{n}\right) .
\end{aligned}
$$

From Cramer's formulas one gets:
Proposition 3.1. The divided differences admit the following determinantal representation:

$$
f\left[a_{1}, \ldots, a_{n}\right]=\frac{1}{V_{n}\left(a_{1}, \ldots, a_{n}\right)}\left|\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
a_{1} & a_{2} & \ldots & a_{n} \\
\vdots & \vdots & & \vdots \\
a_{1}^{n-2} & a_{2}^{n-2} & \ldots & a_{n}^{n-2} \\
f\left(a_{1}\right) & f\left(a_{2}\right) & \ldots & f\left(a_{n}\right)
\end{array}\right|
$$

where V_{n} is the Vandermonde polynomial in n variables,

$$
V_{n}\left(a_{1}, \ldots, a_{n}\right)=\left|\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
a_{1} & a_{2} & \ldots & a_{n} \\
\vdots & \vdots & & \vdots \\
a_{1}^{n-2} & a_{2}^{n-2} & \ldots & a_{n}^{n-2} \\
a_{1}^{n-1} & a_{2}^{n-1} & \ldots & a_{n}^{n-1}
\end{array}\right|=\prod_{1 \leq i<j \leq n}\left(a_{j}-a_{i}\right)
$$

It follows that

$$
f\left[a_{1}, \ldots, a_{n}\right]=\sum_{i=1}^{n} \gamma_{i} f\left(a_{i}\right)
$$

where

$$
\gamma_{i}=\gamma_{i}\left(a_{1}, \ldots, a_{n}\right)=\frac{1}{\prod_{j \neq i}\left(a_{i}-a_{j}\right)}
$$

Next Theorem expresses the relation between divided differences and Peano measures.

Theorem 3.2. (Hermite-Genocchi) If f is a function of class \mathcal{C}^{n-1} on \mathbb{R}, then

$$
f\left[a_{1}, \ldots, a_{n}\right]=\frac{1}{(n-1)!} \int_{\mathfrak{R}} f^{(n-1)}(t) M_{n}\left(a_{1}, \ldots, a_{n} ; d t\right)
$$

Proof.
The proof uses a recursion. For $n=2$, if f is a function of class \mathcal{C}^{1},

$$
\begin{aligned}
\int_{0}^{1} f^{\prime}\left(a_{1} \tau+a_{2}(1-\tau)\right) d \tau & =\frac{1}{a_{1}-a_{2}}\left[f\left(\left(a_{1}-a_{2}\right) \tau+a_{2}\right)\right]_{0}^{1} \\
& =\frac{1}{a_{1}-a_{2}}\left(f\left(a_{1}\right)-f\left(a_{2}\right)\right)=f\left[a_{1}, a_{2}\right]
\end{aligned}
$$

Assume that the relation holds for n, and let us prove it for $n+1$. If f is of class \mathcal{C}^{n}, by a partial integration one gets

$$
\begin{aligned}
& \frac{1}{n!} \int_{\Delta_{n}} f^{(n)}\left(a_{1} \tau_{1}+\cdots+a_{n+1} \tau_{n+1}\right) \beta_{n}(d \tau) \\
= & \int_{D_{n}} f^{(n)}\left(a_{1} \tau_{1}+\cdots+a_{n} \tau_{n}+a_{n+1}\left(1-\tau_{1}-\cdots-\tau_{n}\right)\right) d \tau_{1} \ldots d \tau_{n} \\
= & \int_{D_{n}} f^{(n)}\left(\left(a_{1}-a_{n+1}\right) \tau_{1}+\cdots+\left(a_{n}-a_{n+1}\right) \tau_{n}+a_{n+1}\right) d \tau_{1} \ldots d \tau_{n} \\
= & \int_{D_{n-1}}\left(\int _ { 0 } ^ { 1 - \tau _ { 2 } - \cdots - \tau _ { n } } f ^ { (n) } \left(\left(a_{1}-a_{n+1}\right) \tau_{1}+\left(a_{2}-a_{n+1}\right) \tau 2+\cdots\right.\right. \\
& \left.\left.\quad\left(a_{n}-a_{n+1}\right) \tau_{n}+a_{n+1}\right) d \tau_{1}\right) d \tau_{2} \ldots d \tau_{n} .
\end{aligned}
$$

The integral with respect to τ_{1} gives

$$
\begin{aligned}
& \quad \frac{1}{a_{1}-a_{n+1}}\left(f ^ { (n - 1) } \left(\left(a_{1}-a_{n+1}\right)\left(1-\tau_{2}-\cdots-\tau_{n}\right)\right.\right. \\
& \left.+\left(a_{2}-a_{n+1}\right) \tau_{2}+\cdots+\left(a_{n}-a_{n+1}\right) \tau_{n}+a_{n+1}\right) \\
& \left.\quad-f^{(n-1)}\left(\left(a_{2}-a_{n+1}\right) \tau_{2}+\cdots+\left(a_{n}-a_{n+1}\right) \tau_{n}+a_{n+1}\right)\right) \\
& =\frac{1}{a_{1}-a_{n+1}}\left(f^{(n-1)}\left(a_{1}\left(1-\tau_{2}-\cdots-\tau_{n}\right)+a_{2} \tau_{2}+\cdots+a_{n} \tau_{n}\right)\right. \\
& \left.\quad-f^{(n-1)}\left(a_{2} \tau_{2}+\cdots+a_{n} \tau_{n}+a_{n+1}\left(1-\tau_{2}-\cdots-\tau_{n}\right)\right)\right)
\end{aligned}
$$

We get finally

$$
\begin{aligned}
& \frac{1}{n!} \int_{\Delta_{n}} f^{(n)}\left(a_{1} \tau_{1}+\cdots+a_{n+1} \tau_{n+1}\right) \beta_{n}(d \tau)=\frac{1}{a_{n+1}-a_{1}} \times \\
& \left(\frac{1}{(n-1)!} \int_{\Delta_{n-1}} f^{(n-1)}\left(a_{2} \tau_{2}+\cdots+a_{n} \tau_{n}+a_{n+1} \tau_{n+1}\right) \beta_{n-1}(d \tau)\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.-\frac{1}{(n-1)!} \int_{\Delta_{n-1}} f^{(n-1)}\left(a_{1} \tau_{1}+\cdots+a_{n} \tau_{n}\right) \beta_{n-1}(d \tau)\right) \\
= & \frac{1}{a_{n+1}-a_{1}}\left(f\left[a_{2}, \ldots, a_{n+1}\right]-f\left[a_{1}, \ldots, a_{n}\right]\right)=f\left[a_{1}, \ldots, a_{n+1}\right] .
\end{aligned}
$$

Taking $f(t)=e^{z t}$ one gets the Fourier-Laplace transform of the Peano measure:

$$
\begin{aligned}
\widehat{M}_{n}\left(a_{1}, \ldots, a_{n} ; z\right) & =\int_{\mathfrak{R}} e^{z t} M_{n}\left(a_{1}, \ldots, a_{n} ; d t\right) \\
& =\frac{(n-1)!}{V_{n}\left(a_{1}, \ldots, a_{n}\right)} \frac{1}{z^{n-1}}\left|\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
a_{1} & a_{2} & \ldots & a_{n} \\
\vdots & \vdots & & \vdots \\
a_{1}^{n-2} & a_{2}^{n-2} & \ldots & a_{n}^{n-2} \\
e^{a_{1} z} & e^{a_{2} z} & \ldots & e^{a_{n} z}
\end{array}\right| .
\end{aligned}
$$

Corollary 3.3. In the distribution sense, if the numbers a_{i} are distinct,

$$
\frac{1}{(n-1)!}\left(-\frac{d}{d t}\right)^{n-1} M_{n}\left(a_{1}, \ldots, a_{n} ; d t\right)=\sum_{i=1}^{n} \gamma_{i} \delta_{a_{i}}
$$

Hence, if the numbers a_{i} are distinct, and if $n \geq 2$, the Peano measure $M_{n}\left(a_{1}, \ldots, a_{n} ; d t\right)$ is absolutely continuous with respect to the Lebesgue measure,

$$
M_{n}\left(a_{1}, \ldots, a_{n} ; d t\right)=M_{n}\left(a_{1}, \ldots, a_{n} ; t\right) d t
$$

Corollary 3.4. Assume $a_{1}<\cdots<a_{n}$. The Peano function admits the following representation

$$
M_{n}\left(a_{1}, \ldots, a_{n} ; t\right)=(-1)^{n-1}(n-1) \sum_{i=1}^{n} \gamma_{i}\left(t-a_{i}\right)_{+}^{n-2}
$$

Proof. Consider the function

$$
E(t)=\frac{1}{(n-2)!} t_{+}^{n-2}
$$

In the distribution sense

$$
\left(\frac{d}{d t}\right)^{n-1} E=\delta_{0}
$$

and this can be written $E * \delta_{0}^{(n-1)}=\delta_{0}$. We get from Corollary 8.4

$$
E *\left(\delta_{0}^{(n-1)} * M_{n}\right)=(-1)^{n-1}(n-1)!\sum_{i=1}^{n} \gamma_{i} E * \delta_{a_{i}}
$$

since the support of M_{n} is compact, the convolution product is associative in that case. The left handside is equal to

$$
\left(E * \delta_{0}^{(n-1)}\right) * M_{n}=M_{n} .
$$

therefore

$$
M_{n}\left(a_{1}, \ldots, a_{n} ; d t=(-1)^{n-1}(n-1) \sum_{i=1}^{n}\left(t-a_{i}\right)_{+}^{n-1}\right.
$$

If the numbers a_{i} are distinct, the function $M_{n}\left(a_{1}, \ldots, a_{n} ; t\right)$ is of class \mathcal{C}^{n-3}, and, if $a_{1}<a_{2}<\cdots<a_{n}$, the restriction of the function $M_{n}\left(a_{1}, \ldots, a_{n} ; t\right)$ to each of the intervals $] a_{i}, a_{i+1}[$ is a polynomial of degree $\leq n-2$. These properties express that $M_{n}\left(a_{1}, \ldots, a_{n} ; t\right)$ is a spline function of degree $n-2$ whose knots are the numbers a_{1}, \ldots, a_{n}.

Proposition 3.5. Assume the numbers a_{i} to be distinct, $a_{1}<\cdots<a_{n}$. The function $f(t)=M_{n}\left(a_{1}, \ldots, a_{n} ; t\right)$ is characterized by the following properties :
(1) $\operatorname{supp}(f)=\left[a_{1}, a_{n}\right]$,
(2) The restriction of f to each of the intervals $\left[a_{i}, a_{i+1}[(i=1, \ldots n-1)\right.$ is a polynomial of degree $\leq n-2$.
(3) If $n \geq 3$, then f is of class $\mathcal{C}^{(n-3)}$.
(4)

$$
\int_{\mathbb{R}} f(t) d t=1
$$

Proof.
Note $\mathcal{E}_{n}\left(a_{1}, \ldots, a_{n}\right)$ the space of functions on \mathbb{R} satisfying (1) et (2). Its dimension is given by

$$
\operatorname{dim} \mathcal{E}_{n}\left(a_{1}, \ldots, a_{n}\right)=(n-1)^{2}
$$

Consider the $n(n-2)$ linear forms on $\mathcal{E}_{n}\left(a_{1}, \ldots, a_{n}\right)$

$$
L_{i j}(f)=f^{(j)}\left(a_{i}+\right)-f^{(j)}\left(a_{i}-\right) \quad(i=1, \ldots, n, j=0, \ldots, n-3) .
$$

The linear forms $L_{i j}$ are linearly independant. They express Condition (3). By the rank theorem the functions in $\mathcal{E}_{n}\left(a_{1}, \ldots, a_{n}\right)$ satisfying Condition (3) form a vector subspace of dimension 1. In fact

$$
(n-1)^{2}-n(n-2)=1
$$

Hence these functions are proportinnal to $M_{n}\left(a_{1}, \ldots, a_{n} ; t\right)$. Therefore $M_{n}\left(a_{1}, \ldots, a_{n} ; t\right)$ is the unique function satisfying Conditions (1), (2), (3), (4).

Figure 1. Graph of $M_{4}\left(a_{1}, a_{2}, a_{3}, a_{4}\right)\left(a_{1}=-4, a_{2}=0, a_{3}=3, a_{4}=4\right)$.

The Peano measure possesses a remarkable geometric meaning: Let $A_{1}, A_{2}, \ldots A_{n}$ be the n vertices of a simplex Q in \mathbb{R}^{n-1}. The simplex Q is the set of convex combinations of the points A_{1}, \ldots, A_{n} :

$$
Q=\left\{x=\sum_{i=1}^{n} t_{i} A_{i} \mid t_{i} \geq 0, \sum_{i=1}^{n} t_{i}=1\right\}
$$

Let a_{1}, \ldots, a_{n} denote the abscisses of the projections of A_{1}, \ldots, A_{n} on the first coordinate axis.

Proposition 3.6. Let Q_{t} be the intersection of the simplex Q by the hyperplane with equation $x_{1}=t$. We assume that the volume $\operatorname{vol}^{(n-1)}(Q)$ equals 1. If the numbers a_{1}, \ldots, a_{n} are distinct, then

$$
\operatorname{vol}^{(n-2)}\left(Q_{t}\right)=M_{n}\left(a_{1}, \ldots, a_{n} ; t\right)
$$

Proof. If f is a continuous function on \mathbb{R}, then

$$
\int_{Q} f\left(x_{1}\right) d x_{1} \ldots d x_{n-1}=\int_{\mathfrak{R}} f(t) \operatorname{vol}^{(n-2)}\left(Q_{t}\right) d t
$$

Define the map

$$
\Phi: \Delta_{n-1} \rightarrow Q, \quad t \mapsto x=\sum_{i=1}^{n} t_{i} A_{i}
$$

The image under Φ of the measure β is the restriction to Q of the Lebesgue measure on \mathbb{R}^{n-1}. Hence

$$
\int_{Q} f\left(x_{1}\right) d x_{1} \ldots d x_{n-1}=\int_{\Delta_{n-1}} f\left(t_{1} a_{1}+t_{2} a_{2}+\cdots+t_{n} a_{n}\right) \beta(d t)
$$

Since the relation holds for every function f on \mathbb{R}, it follows that

$$
\operatorname{vol}^{n-2}\left(Q_{t}\right)=M_{n}\left(a_{1}, \ldots, a_{n} ; t\right)
$$

Figure 2. Projection of a simplex.

4 Interlacing property of the eigenvalues

Let $p=p_{n-1}$ be the projection of $\mathcal{H}_{n}(\mathbb{F})$ onto $\mathcal{H}_{n-1}(\mathbb{F})$ which maps a matrix $X \in \mathcal{H}_{n}(\mathbb{F})$ to the matrix $Y=p(X) \in \mathcal{H}_{n-1}(\mathbb{F})$ of the $n-1$ first rows and $n-1$ first columns of X.

Theorem 4.1. The sequence $\mu_{1} \leq \cdots \leq \mu_{n-1}$ of the eigenvalues of $Y=p(X)$ interlaces the sequence of the eigenvalues $\lambda_{1} \leq \cdots \leq \lambda_{n}$ of X :

$$
\lambda_{1} \leq \mu_{1} \leq \lambda_{2} \leq \cdots \leq \mu_{n-1} \leq \lambda_{n}
$$

This interlacing relation will be denoted: $\mu \preceq \lambda$.
Proof. Assume the eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ to be distinct: $\lambda_{1}<\cdots<\lambda_{n}$. Let v_{i} be a unit eigenvector associated to the eigenvalue $\lambda_{i}: X v_{i}=\lambda_{i} v_{i}$, $\left\|v_{i}\right\|=1$. Assume also that, for every $i, v_{i} \notin \mathcal{H}_{n-1}(\mathbb{F})$, i.e. $\left(v_{i} \mid e_{n}\right) \neq 0$. We will evaluate in two ways the rationnal function

$$
f(z)=\left(\left(z I_{n}-X\right)^{-1} e_{n} \mid e_{n}\right) \quad(z \in \mathbb{C})
$$

On one hand, by the Cramer's formulas,

$$
f(z)=\frac{\operatorname{det}^{(n-1)}\left(z I_{n-1}-Y\right)}{\operatorname{det}^{(n)}\left(z I_{n}-X\right)}=\frac{\prod_{j=1}^{n-1}\left(z-\mu_{j}\right)}{\prod_{i=1}^{n}\left(z-\lambda_{i}\right)}
$$

The eigenvalues λ_{i} of X are the poles of f and the eigenvalues μ_{j} of Y are the zeros of f. On the other hand, by using the spectral decomposition of X,

$$
f(z)=\sum_{i=1}^{n} \frac{w_{i}}{z-\lambda_{i}}, \quad \text { with } \quad w_{i}=\left|\left(v_{i} \mid e_{n}\right)\right|^{2}
$$

In fact, for $v \in \mathbb{F}^{n}$,

$$
X v=\sum_{i=1}^{n} \lambda_{i}\left(v \mid v_{i}\right) v_{i}, \quad\left(z I_{n}-X\right)^{-1} v=\sum_{i=1}^{n} \frac{1}{z-\lambda_{i}}\left(v \mid v_{i}\right) v_{i} .
$$

Hence

$$
f(z)=\frac{\prod_{j=1}^{n-1}\left(z-\mu_{j}\right)}{\prod_{i=1}^{n}\left(z-\lambda_{i}\right)}=\sum_{i=1}^{n} \frac{w_{i}}{z-\lambda_{i}}
$$

The function f is decreasing from $+\infty$ to $-\infty$ on each of the intervals $] \lambda_{i}, \lambda_{i+1}[(i=1, \ldots, n-1)$. Therefore each of these intervals contains one and only one zero of f, i.e.

$$
\lambda_{1}<\mu_{1}<\lambda_{2}<\cdots<\mu_{n-1}<\lambda_{n}
$$

Figure 3. Graph of the rational function $f(z)$.
Note that the residue w_{i} at the pole λ_{i} is given by

$$
w_{i}=\frac{\prod_{j=1}^{n-1}\left(\lambda_{i}-\mu_{j}\right)}{\prod_{j \neq i}\left(\lambda_{i}-\lambda_{j}\right)}
$$

Note also that

$$
w_{i}>0, \quad \sum_{i=1}^{n} w_{i}=1
$$

To complete the proof one should consider the case of non distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$, and the case where some eigenvectors v_{i} belong to $\mathcal{H}_{n-1}(\mathbb{F})$.

We can state a more precise theorem:

Theorem 4.2.

$$
\Lambda^{(n-1)}\left(p\left(\mathcal{O}_{A}\right)\right)=\left\{\mu \in\left(\mathbb{R}^{n-1}\right)_{+} \mid \mu \preceq a\right\} .
$$

Proof. By Theorem 4.1,

$$
\Lambda^{(n-1)}\left(p\left(\mathcal{O}_{A}\right)\right) \subset\left\{\mu \in\left(\mathbb{R}^{n-1}\right)_{+} \mid \mu \preceq a\right\} .
$$

Assume the eigenvalues a_{1}, \ldots, a_{n} to be distinct. Let $\mu_{1}, \ldots, \mu_{n-1}$ such that

$$
a_{1}<\mu_{1}<a_{2}<\cdots<\mu_{n-1}<a_{n}
$$

We will show that there exists a matrix $X \in \mathcal{O}_{A}$ such that $\mu_{1}, \ldots, \mu_{n-1}$ are the eigenvalues of $Y=p(X)$.

Put

$$
w_{i}=\frac{\prod_{j=1}^{n-1}\left(a_{i}-\mu_{j}\right)}{\prod_{j \neq i}\left(a_{i}-a_{j}\right)}
$$

We will show that

$$
\frac{\prod_{j=1}^{n-1}\left(z-\mu_{j}\right)}{\prod_{i=1}^{n}\left(z-a_{i}\right)}=\sum_{i=1}^{n} \frac{w_{i}}{z-a_{i}}
$$

i.e. that, for every $z \in \mathfrak{C}$,

$$
\prod_{j=1}^{n-1}\left(z-\mu_{j}\right)=\sum_{i=1}^{n}\left(w_{i} \prod_{j \neq i}\left(z-a_{j}\right)\right)
$$

This equality for two polynomials of degree $n-1$ is satisfied for the n numbers $z=a_{1}, \ldots, z=a_{n}$, therefore for every z.

Comparing the highest degree terms of both handsides one gets

$$
\sum_{i=1}^{n} w_{i}=1
$$

Furthermore, from the interlacing property of the sequence $\mu_{1}, \ldots, \mu_{n-1}$, one deduces that the numbers w_{i} are >0.

For each i one fixes $\xi_{i} \in \mathbb{F}$ such that $\left|\xi_{i}\right|^{2}=w_{i}$. The vector $\xi=\left(\xi_{1}, \ldots, \xi_{n}\right)$ belongs to the unit sphere of \mathbb{F}^{n}. Therefore there exists $u \in U_{n}(\mathbb{F})$ such that
$u^{*} e_{n}=\xi$. One puts $X=u A u^{*}$. We saw in the proof of Theorem 4.1 that the eigenvalues $\mu_{1}^{0}, \ldots, \mu_{n-1}^{0}$ of the projection $Y=p(X)$ satisfy

$$
\frac{\prod_{j=1}^{n-1}\left(z-\mu_{j}^{0}\right)}{\prod_{i=1}^{n}\left(z-a_{i}\right)}=\sum_{i=1}^{n} \frac{w_{i}}{z-a_{i}}
$$

hence $\mu_{j}^{0}=\mu_{j}(j=1, \ldots, n-1)$.

5 Baryshnikov's formula

We will determinate the joint distribution of the eigenvalues $\mu_{1}, \ldots, \mu_{n-1}$ of $Y=p\left(u A u^{*}\right)$, i.e. the image of the Haar measure α under the map

$$
U(n) \rightarrow\left(\mathbb{R}^{n-1}\right)_{+}, \quad u \mapsto \Lambda^{(n-1)}\left(p\left(u A u^{*}\right)\right) .
$$

We will factorize this map as follows:

$$
\begin{array}{r}
U_{n}(\mathbb{F}) \xrightarrow{\Phi} \quad S\left(\mathbb{F}^{n}\right) \xrightarrow{\Psi} \Delta_{n-1} \xrightarrow{\Theta}\left\{t \in\left(\mathbb{R}^{n-1}\right)_{+} \mid t \preceq a\right\}, \\
u \mapsto \quad \xi=u e_{n} \mapsto w_{i}=\left|\left(u e_{n} \mid e_{n}\right)\right|^{2} \mapsto\left(\mu_{1}, \ldots, \mu_{n-1}\right) .
\end{array}
$$

Consider the map

$$
\Phi:\left(\mu_{1}, \ldots, \mu_{n-1}\right) \mapsto\left(w_{1}, \ldots, w_{n}\right)
$$

defined by

$$
w_{i}=\frac{\prod_{j=1}^{n-1}\left(a_{i}-\mu_{j}\right)}{\prod_{j \neq i}\left(a_{i}-a_{j}\right)}
$$

Proposition 5.1. Let ω be the differential form of degree $n-1$,

$$
\omega=d w_{1} \wedge d w_{2} \wedge \cdots \wedge d w_{n-1} .
$$

Its image under Φ^{*} is given by

$$
\Phi^{*} \omega=\frac{V_{n-1}\left(\mu_{1} ; \ldots, \mu_{n-1}\right)}{V_{n}\left(a_{1}, \ldots, a_{n}\right)} d \mu_{1} \wedge d \mu_{2} \wedge \cdots \wedge d \mu_{n-1}
$$

where V_{n} is the Vandermonde polynomial in n variables,

$$
V_{n}\left(z_{1}, \ldots, z_{n}\right)=\prod_{1 \leq i<j \leq n}\left(z_{j}-z_{i}\right) .
$$

Proof. Let us compute the differential of Φ :

$$
\frac{\partial w_{i}}{\partial \mu_{j}}=-\frac{\prod_{k=1}^{n-1}\left(a_{i}-\mu_{k}\right)}{\prod_{k \neq i}\left(a_{i}-a_{k}\right)} \frac{1}{a_{i}-\mu_{j}},
$$

and its Jacobian determinant:

$$
\begin{gathered}
\operatorname{det}\left(\frac{\partial w_{i}}{\partial \mu_{j}}\right)_{1 \leq i, j \leq n-1} \\
=(-1)^{n-1} \prod_{i=1}^{n-1}\left(\frac{\prod_{k=1}^{n-1}\left(a_{i}-\mu_{k}\right)}{\prod_{k \neq i}\left(a_{i}-a_{k}\right)}\right) \operatorname{det}\left(\frac{1}{a_{i}-\mu_{j}}\right)_{1 \leq i, j \leq n-1} .
\end{gathered}
$$

We use now the following Cauchy's formula

$$
\begin{aligned}
& \operatorname{det}\left(\frac{1}{a_{i}-\mu_{j}}\right)_{1 \leq i, j \leq n-1} \\
= & V_{n-1}\left(a_{1}, \ldots, a_{n-1}\right) V_{n-1}\left(\mu_{1}, \ldots, \mu_{n-1}\right) \prod_{i, l=1}^{n-1} \frac{1}{a_{i}-\mu_{j}} .
\end{aligned}
$$

One gets finally

$$
\begin{aligned}
& \operatorname{det}\left(\frac{\partial w_{i}}{\partial \mu_{j}}\right)_{1 \leq i, j \leq n}=(-1)^{n-1} \frac{1}{\prod_{i=1}^{n-1} \prod_{k=1, k \neq i}^{n}\left(a_{i}-a_{k}\right)} \times \\
& \times V_{n-1}\left(a_{1}, \ldots, a_{n-1}\right) V_{n-1}\left(\mu_{1}, \ldots, \mu_{n-1}\right) \\
& = \pm \frac{V_{n-1}\left(\mu_{1}, \ldots, \mu_{n-1}\right)}{V_{n}\left(a_{1}, \ldots, a_{n}\right)}
\end{aligned}
$$

Theorem 5.2. Assume $\mathbb{F}=\mathbb{C}$. The joint distribution of the eigenvalues $\mu_{1}, \ldots, \mu_{n-1}$ is the probability measure $\nu_{A}^{(n-1)}$ with support

$$
\left\{\mu \in \mathbb{R}^{n-1} \mid a_{1} \leq \mu_{1} \leq a_{2} \leq \cdots \leq \mu_{n-1} \leq a_{n}\right\}
$$

and density

$$
(n-1)!\frac{V_{n-1}\left(\mu_{1}, \ldots, \mu_{n-1}\right)}{V_{n}\left(a_{1}, \ldots, a_{n}\right)} .
$$

This can be written, for a function f defined on $\left(\mathbb{R}^{n-1}\right)_{+}$,

$$
\begin{aligned}
& \int_{\left(\mathbb{R}^{n-1}\right)_{+}} f(t) \nu_{A}^{(n-1)}(d t) \\
= & \frac{(n-1)!}{V_{n}\left(a_{1}, \ldots, a_{n}\right)} \int_{a_{1}}^{a_{2}} d t_{1} \int_{a_{2}}^{a_{3}} d t_{2} \ldots \int_{a_{n-1}}^{a_{n}} d t_{n-1} V_{n-1}(t) f(t) .
\end{aligned}
$$

Proof. The map $\Phi: U(n) \rightarrow S\left(\mathbb{C}^{n}\right)$ maps the Haar measure α to the uniform measure σ (Proposition 2.1). The map $\Psi: S\left(\mathbb{C}^{n}\right) \rightarrow \Delta_{n-1}$, maps the uniform measure σ to the measure β (Proposition 2.2). The measure β can be defined by the differential form

$$
(n-1)!d w_{1} \wedge \ldots \wedge d w_{n-1}
$$

By Proposition 5.1, the measure β is transformed into the one given in the statement.

6 The Fourier-Laplace transform of orbital measures

The Fourier-Laplace transform of a bounded measure μ on $\mathcal{H}_{n}(\mathbb{F})$ is defined by, if $Z \in i \mathcal{H}_{n}(\mathbb{F})$,

$$
\hat{\mu}(Z)=\int_{\mathcal{H}_{n}(\mathbb{F})} e^{\operatorname{tr}(Z X)} \mu(d X) .
$$

If the support of μ is compact, then this transform is defined for Z in the complexified space $\mathcal{H}_{n}(\mathbb{F}): \operatorname{Sym}(n, \mathbb{C})$ if $\mathbb{F}=\mathbb{R}, M(n, \mathbb{C})$ if $\mathbb{F}=\mathbb{C}$.

The Fourier-Laplace transform of the orbital measure μ_{A} is given by

$$
\widehat{\mu_{A}}(Z)=\int_{\mathcal{O}_{A}} e^{\operatorname{tr}(Z X)} \mu_{A}(d X)=\int_{U_{n}(\mathbb{F})} e^{\operatorname{tr}\left(Z u A u^{*}\right)} \alpha(d u) .
$$

If $Z=\operatorname{diag}\left(z_{1}, \ldots, z_{n}\right)$, one can write

$$
\widehat{\mu_{A}}(Z)=\mathcal{E}_{n}(z ; a),
$$

where \mathcal{E}_{n} is an analytic function on $\mathbb{C}^{n} \times \mathbb{C}^{n}$, biinvariant under the group \mathfrak{S}_{n} of permutations.

Let μ be a measure on $\mathcal{H}_{n}(\mathbb{F})$ which is $U_{n}(\mathbb{F})$-invariant. The integral of a function f defined on $\mathcal{H}_{n}(\mathbb{F})$ can be written

$$
\int_{\mathcal{H}_{n}(\mathbb{F})} f(X) \mu(d X)=\int_{\left(\mathbb{R}^{n}\right)+}\left(\int_{U_{n}(\mathbb{F})} f\left(u \operatorname{diag}\left(t_{1}, \ldots, t_{n}\right) u^{*}\right) \alpha(d u)\right) \nu(d t)
$$

where ν is a measure on $\left(\mathbb{R}^{n}\right)_{+}$, called the radial part of μ. The FourierLaplace transform μ is given by, if $Z=\operatorname{diag}\left(z_{1}, \ldots, z_{n}\right)$,

$$
\hat{\mu}(Z)=\int_{\left(\mathbb{R}^{n}\right)_{+}} \mathcal{E}_{n}(z ; t) \nu(d t)
$$

If μ is a probability measure on $\mathcal{H}_{n}(\mathbb{F})$ which is $U_{n}(\mathbb{F})$-invariant, its radial part ν is also the joint distribution of the eigenvalues for a random matrix X distributed according to the law μ.

Theorem 6.1. (Harish-Chandra-Itzykson-Zuber) We assume that $\mathbb{F}=$ C. If $Z=\operatorname{diag}\left(z_{1}, \ldots, z_{n}\right)$,

$$
\widehat{\mu_{A}}(Z)=\delta_{n}!\frac{1}{V_{n}(a) V_{n}(z)} \operatorname{det}\left(e^{z_{i} a_{j}}\right)_{1 \leq i, j \leq n}
$$

où

$$
\delta_{n}=(n-1, n-2, \ldots, 1,0), \quad \delta_{n}!=(n-1)!(n-2)!\ldots 2!.
$$

In other words

$$
\mathcal{E}_{n}(z, a)=\delta_{n}!\frac{1}{V_{n}(a) V_{n}(z)} \operatorname{det}\left(e^{z_{i} a_{j}}\right)_{1 \leq i, j \leq n} .
$$

This formula is well defined if the numbers a_{i} are distinct, and the numbers z_{j} as well.

Proof.
a) We prove first a recursion formula for $\mathcal{E}_{n}(z, a)$, valid for $\mathbb{F}=\mathbb{R}$ or \mathbb{C}. Let Y denote the projection of X on $\mathcal{H}_{n-1}(\mathbb{F})$. We can write

$$
\operatorname{tr}(Z X)=\operatorname{tr}\left(Z^{\prime} X\right)+z_{n}(\operatorname{tr}(A)-\operatorname{tr}(Y))
$$

In the integral which defines $\mathcal{E}(z, a)$, the integrant

$$
e^{\operatorname{tr}(Z X)}=e^{z_{n} \operatorname{tr}(A)} e^{-z_{n} \operatorname{tr} Y} e^{\operatorname{tr}\left(Z^{\prime} Y\right)},
$$

where $Z^{\prime}=\operatorname{diag}\left(z_{1}, \ldots, z_{n-1}\right)$ only depends on the projection Y. Therefore

$$
\mathcal{E}_{n}(z, a)=e^{z_{n} \operatorname{tr} A} \int_{\mathcal{H}_{n-1}(\mathbb{F})} e^{-z_{n} \operatorname{tr} Y} e^{\operatorname{tr}\left(Z^{\prime} Y\right)} \mu_{A}^{(n-1)}(d Y)
$$

By using the integral formula $\left({ }^{*}\right)$ we get

$$
\mathcal{E}_{n}(z, a)=e^{z_{n} \operatorname{tr} A} \int_{\left(\mathbb{R}^{n-1}\right)_{+}}\left(\int_{U_{n-1}(\mathbb{F})} e^{\operatorname{tr}\left(Z^{\prime} v T v^{*}\right)} \alpha_{n-1}(d v)\right) \nu_{A}^{(n-1)}(d t)
$$

where $T=\operatorname{diag}\left(t_{1}, \ldots, t_{n-1}\right)$. Hence we have established the following recursion formula

$$
\mathcal{E}_{n}(z, a)=e^{z_{n} \operatorname{tr} A} \int_{\left(\mathbb{R}^{n-1}\right)_{+}} \mathcal{E}_{n-1}\left(z^{\prime}, t\right) e^{-z_{n}\left(t_{1}+\cdots+t_{n-1}\right)} \nu_{A}^{(n-1)}(d t)
$$

b) We assume now $\mathbb{F}=\mathbb{C}$, and prove the Harish-Chandra-Itzykson-Zuber formula recursively on n. For $n=1$ there is nothing to prove. Assume that the formula holds for $n-1$. Then, by Baryshnikov's formula
$\mathcal{E}_{n}(z, a)=\frac{\delta_{n-1}}{V_{n-1}\left(z^{\prime}\right) V_{n}(a)} e^{z_{n}\left(a_{1}+\cdots+a_{n}\right)} \int_{a_{1}}^{a_{2}} d t_{1} \int_{a_{2}}^{a_{3}} d t_{2} \ldots \int_{a_{n-1}}^{a_{n}} \operatorname{det}\left(e^{\left(z_{j}-z_{n}\right) t_{i}}\right)_{1 \leq i, j \leq n-1}$.
Let us compute this integral

$$
\begin{aligned}
& \int_{a_{1}}^{a_{2}} d t_{1} \int_{a_{2}}^{a_{3}} d t_{2} \ldots \int_{a_{n-1}}^{a_{n}} \operatorname{det}\left(e^{\left(z_{j}-z_{n}\right) t_{i}}\right)_{1 \leq i, j \leq n-1} \\
& =\operatorname{det}\left(\int_{a_{i}}^{a_{i+1}} e^{\left.z_{j}-z_{n}\right) t_{i}} d t_{i}\right)_{1 \leq i, j \leq n-1} \\
& =\frac{1}{\prod_{i=1}^{n-1}\left(z_{i}-z_{n}\right)} \operatorname{det}\left(e^{\left.z_{j}-z_{n}\right) a_{i+1}}-e^{\left(z_{j}-z_{n}\right) a_{i}}\right)_{1 \leq i, j \leq n-1} .
\end{aligned}
$$

It remains to check the identity

$$
D:=\operatorname{det}\left(e^{z_{j} a_{i}}\right)_{1 \leq i, j \leq n}=e^{z_{n}\left(a_{1}+\cdots+a_{n}\right)} \operatorname{det}\left(e^{a_{i}\left(z_{i}-z_{n}\right)}-e^{a_{i+1}\left(z_{j}-z_{n}\right)}\right)_{1 \leq i, j \leq n-1} .
$$

One writes

$$
D=e^{z_{n}\left(a_{1}+\cdots+a_{n}\right)}\left|\begin{array}{ccccc}
e^{a_{1}\left(z_{1}-z_{n}\right)} & e^{a_{1}\left(z_{2}-z_{n}\right)} & \ldots & e^{a_{1}\left(z_{n-1}-z_{n}\right)} & 1 \\
e^{a_{2}\left(z_{1}-z_{n}\right)} & e^{a_{2}\left(z_{2}-z_{n}\right)} & \ldots & e^{a_{2}\left(z_{n-1}-z_{n}\right)} & 1 \\
\vdots & \vdots & & \vdots & \vdots \\
e^{a_{n}\left(z_{1}-z_{n}\right)} & e^{a_{n}\left(z_{2}-z_{n}\right)} & \ldots & e^{a_{n}\left(z_{n-1}-z_{n}\right)} & 1
\end{array}\right|
$$

One substracts the second row from the first, the third from the second, and so on. One gets finally the identity.

By using this formula we will determine the projection $\mu_{A}^{(k)}$ on $\mathcal{H}_{k}(\mathbb{C})$ of the orbital measure μ_{A}, observing the following: Let μ be a bounded measure on $\mathcal{H}_{n}(\mathbb{C})$, and $\mu^{(k)}$ the projection of μ on $\mathcal{H}_{k}(\mathbb{C})$. The Fourier-Laplace transform of $\mu^{(k)}$ is equal to the restriction to $\mathcal{H}_{k}(\mathbb{C})$ of the Fourier-Laplace transform of μ. But a difficult appears: for $k \leq n-2$, the Harish-Chandra-Itzykson-Zuber formula is not defined for $Z \in \mathcal{H}_{k}(\mathbb{C})$. We will obtain the Fourier-Laplace transform of $\mu_{A}^{(k)}$ by going to the limit.

7 Fourier-Laplace transform of the projection of an orbital measure

Consider functions of n variables defined by determinantal formulas of the following type:

$$
F\left(z_{1}, \ldots, z_{n}\right)=\frac{1}{V_{n}(z)} \operatorname{det}\left(f_{i}\left(z_{j}\right)\right)_{1 \leq i, j \leq n}
$$

where f_{1}, \ldots, f_{n} are n analytic functions of one variable defined in a neighborhood of 0 , and V_{n} is the Vandermonde polynomial:

$$
V_{n}(z)=\prod_{1 \leq i<j \leq n}\left(z_{i}-z_{j}\right)
$$

We saw in preceding Section that the Fourier-Laplace transform of an orbital integral is of this type (Theorem 6.1). The formula defines F if the numbers z_{j} are distinct, and F extends as an analytic function in a neighborhood of 0 in \mathbb{C}^{n}. We will establish an explicit formula for the restriction of F to the subspace $z_{n}=0, \ldots, z_{k+1}=0$.

Theorem 7.1. For $0 \leq k \leq n-1$,

$$
F\left(z_{1}, \ldots, z_{k}, 0, \ldots, 0\right)=\frac{1}{1!2!\ldots(n-k-1)!}
$$

$$
\frac{V_{k}\left(z_{1}, \ldots, z_{k}\right)\left(z_{1} \ldots z_{k}\right)^{n-k}}{V_{1}}\left|\begin{array}{ccc}
f_{1}\left(z_{1}\right) & \ldots & f_{n}\left(z_{1}\right) \\
\vdots & & \vdots \\
f_{1}\left(z_{k}\right) & \ldots & f_{n}\left(z_{k}\right) \\
f_{1}^{(n-k-1)}(0) & \ldots & f_{n}^{(n-k-1)}(0) \\
\vdots & & \vdots \\
f_{1}^{\prime}(0) & \ldots & f_{n}^{\prime}(0) \\
f_{1}(0) & \cdots & f_{n}(0)
\end{array}\right|
$$

Proof. We will prove this formula by a backwards recursion on k, starting from $k=n$. Assume that the formula holds for k. We will establish it for $k-1$. Since the value of a determinant does not change if one adds to a row a linear combination of the other rows, we can replace the entries of the k-th row by
$f_{j}\left(z_{k}\right)-\left(f_{j}(0)+z_{k} f_{j}^{\prime}(0)+\frac{1}{2} z_{k}^{2} f_{j}(0)+\cdots+\frac{1}{(n-k-1)!} z_{k}^{n-k-1} f_{j}^{(n-k-1)}(0)\right)$.
Observing that

$$
\begin{aligned}
& \lim _{z_{k} \rightarrow 0} \frac{1}{z_{k}^{n-k}}\left(f_{j}\left(z_{k}\right)-\left(f_{j}(0)+z_{k} f_{j}^{\prime}(0)+\frac{1}{2} z_{k}^{2} f_{j}(0)+\cdots\right.\right. \\
& \left.\left.\quad+\frac{1}{(n-k-1)!} z_{k}^{n-k-1} f_{j}^{(n-k-1)}(0)\right)\right)=\frac{1}{(n-k)!} f_{j}^{(n-k)}(0)
\end{aligned}
$$

we obtain

$$
\begin{aligned}
& F\left(z_{1}, \ldots, z_{k-1}, 0, \ldots, 0\right)=\frac{1}{1!2!\ldots(n-k)!} \\
& \frac{1}{V_{k-1}\left(z_{1}, \ldots, z_{k-1}\right)^{n-k+1}}\left|\begin{array}{ccc}
f_{1}\left(z_{1}\right) & \ldots & f_{n}\left(z_{1}\right) \\
\vdots & & \vdots \\
f_{1}\left(z_{k-1}\right) & \ldots & f_{n}\left(z_{k-1}\right) \\
f_{1}^{(n-k)}(0) & \ldots & f_{n}^{(n-k)}(0) \\
\vdots & & \vdots \\
f_{1}^{\prime}(0) & \ldots & f_{n}^{\prime}(0) \\
f_{1}(0) & \ldots & f_{n}(0)
\end{array}\right|
\end{aligned}
$$

In particular, for $k=1$ we get:

$$
F\left(z_{1}, 0, \ldots, 0\right)=\frac{1}{1!2!\ldots(n-2)!} \frac{1}{z_{1}^{n-1}}\left|\begin{array}{ccc}
f_{1}\left(z_{1}\right) & \ldots & f_{n}\left(z_{1}\right) \\
f_{1}^{(n-2)}(0) & \ldots & f_{n}^{(n-2)}(0) \\
\vdots & & \vdots \\
f_{1}^{\prime}(0) & \ldots & f_{n}^{\prime}(0) \\
f_{1}(0) & \ldots & f_{n}(0)
\end{array}\right|
$$

For $k=0$ we get:

$$
F(0, \ldots, 0)=\frac{1}{1!2!\ldots(n-1)!}\left|\begin{array}{ccc}
f_{1}^{(n-1)}(0) & \ldots & f_{n}^{(n-1)}(0) \\
\vdots & & \vdots \\
f_{1}^{\prime}(0) & \ldots & f_{n}^{\prime}(0) \\
f_{1}(0) & \ldots & f_{n}(0)
\end{array}\right|
$$

If we specialize the formula of Theorem 7.1 to the case:

$$
f_{j}\left(z_{i}\right)=e^{a_{j} z_{i}}
$$

then, if $Z=\operatorname{diag}\left(z_{1}, \ldots, z_{n}\right)$,

$$
\widehat{\mu_{A}}(Z)=\delta_{n}!\frac{1}{V_{n}(a)} F\left(z_{1}, \ldots, z_{n}\right)
$$

and we get by restriction the Fourier-Laplace transform of the projection $\mu_{A}^{(k)}$.

Theorem 7.2. Assume the numbers a_{j} to be distinct, and the numbers z_{1}, \ldots, z_{k} to be distinct and non zero ($0 \leq k \leq n-1$).

$$
\begin{gathered}
\widehat{\mu_{A}^{(k)}}(z)=(n-k)!\ldots(n-1)! \\
\frac{V_{n}(a) V_{k}\left(z_{1}, \ldots, z_{k}\right)\left(z_{1} \ldots z_{k}\right)^{n-k}}{}\left|\begin{array}{ccc}
e^{a_{1} z_{1}} & \ldots & e^{a_{n} z_{1}} \\
\vdots & & \vdots \\
e^{a_{1} z_{k}} & \ldots & e^{a_{n} z_{k}} \\
a_{1}^{n-k-1} & \ldots & a_{n}^{n-k-1} \\
\vdots & & \vdots \\
a_{1} & \ldots & a_{n} \\
1 & \ldots & 1
\end{array}\right| .
\end{gathered}
$$

In particular, for $k=1, z=\operatorname{diag}\left(z_{1}, 0, \ldots, 0\right)$, we recover the formula of Proposition 3.1.

$$
\widehat{\mu_{A}^{(1)}}(z)=(n-1)!\frac{1}{V_{n}(a)} \frac{1}{z_{1}^{n-1}}\left|\begin{array}{ccc}
e^{a_{1} z_{1}} & \ldots & e^{a_{n} z_{1}} \\
a_{1}^{n-2} & \ldots & a_{n}^{n-2} \\
\vdots & & \vdots \\
a_{1} & \ldots & a_{n} \\
1 & \ldots & 1
\end{array}\right|
$$

8 Olshanski's determinantal formula

Recall the following determinantal formula for the divided differences:

$$
f\left[a_{1}, \ldots, a_{n}\right]=\frac{1}{V_{n}\left(a_{1}, \ldots, a_{n}\right)}\left|\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
a_{1} & a_{2} & \ldots & a_{n} \\
\vdots & \vdots & & \vdots \\
a_{1}^{n-2} & a_{2}^{n-2} & \ldots & a_{n}^{n-2} \\
f\left(a_{1}\right) & f\left(a_{2}\right) & \ldots & f\left(a_{n}\right)
\end{array}\right|
$$

This formula can be generalized:
Proposition 8.1. Let f_{1}, \ldots, f_{k} be functions defined on \mathbb{R}.

$$
\begin{aligned}
& \quad\left|\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
a_{1} & a_{2} & \ldots & a_{n} \\
\vdots & \vdots & & \vdots \\
a_{1}^{n-k-1} & a_{2}^{n-k-1} & \ldots & a_{n}^{n-k-1} \\
f_{1}\left(a_{1}\right) & f_{1}\left(a_{2}\right) & \ldots & f_{1}\left(a_{n}\right) \\
\vdots & \vdots & & \vdots \\
f_{k}\left(a_{1}\right) & f_{k}\left(a_{2}\right) & \ldots & f_{k}\left(a_{n}\right)
\end{array}\right| \\
& =\left(\prod_{0<j-i \leq n-k}\left(a_{j}-a_{i}\right)\right) \operatorname{det}\left(f_{i}\left[a_{j}, \ldots, a_{j+n-k}\right]\right)_{1 \leq i, j \leq k} .
\end{aligned}
$$

Put $\varphi_{k}(t)=t^{k}$. Observe that, for $b_{i} \in \mathbb{R}$,

$$
\varphi_{k}\left[b_{1}, \ldots, b_{k+1}\right]=1, \quad \varphi_{k}\left[b_{1}, \ldots, b_{\ell}\right]=0 \text { for } \ell>k+1
$$

Let D denote the left handside. It can be written

$$
D=\left|\begin{array}{cccc}
\varphi_{0}\left(a_{1}\right) & \varphi_{0}\left(a_{2}\right) & \ldots & \varphi_{0}\left(a_{n}\right) \\
\varphi_{1}\left(a_{1}\right) & \varphi_{1}\left(a_{2}\right) & \ldots & \varphi_{1}\left(a_{n}\right) \\
\vdots & \vdots & & \vdots \\
\varphi_{n-k-1}\left(a_{1}\right) & \varphi_{n-k-1}\left(a_{2}\right) & \ldots & \varphi_{n-k-1}\left(a_{n}\right) \\
f_{1}\left(a_{1}\right) & f_{1}\left(a_{2}\right) & \ldots & f_{1}\left(a_{n}\right) \\
\vdots & \vdots & & \vdots \\
f_{k}\left(a_{1}\right) & f_{k}\left(a_{2}\right) & \ldots & f_{k}\left(a_{n}\right)
\end{array}\right|
$$

One substracts the first column from the second one, the second one from the third one, and so on:

$$
C_{n} \leftarrow C_{n}-C_{n-1}, C_{n-1} \leftarrow C_{n-1}-C_{n-2}, \ldots, C_{2} \leftarrow C_{2}-C_{1} .
$$

Then we get

$$
\begin{gathered}
D=\left(a_{2}-a_{1}\right)\left(a_{3}-a_{2}\right) \ldots\left(a_{n}-a_{n-1}\right) \times \\
\left|\begin{array}{cccc}
\varphi_{1}\left[a_{1}, a_{2}\right] & \varphi_{1}\left[a_{2}, a_{3}\right] & \ldots & \varphi_{1}\left[a_{n-1}, a_{n}\right] \\
\vdots & \vdots & & \vdots \\
\varphi_{n-k-1}\left[a_{1}, a_{2}\right] & \varphi_{n-k-1}\left[a_{2}, a_{3}\right] & \ldots & \varphi_{n-k-1}\left[a_{n-1}, a_{n}\right] \\
f_{1}\left[a_{1}, a_{2}\right] & f_{1}\left[a_{2}, a_{3}\right] & \ldots & f_{1}\left[a_{n-1}, a_{n}\right] \\
\vdots & \vdots & & \vdots \\
f_{k}\left[a_{1}, a_{2}\right] & f_{k}\left[a_{2}, a_{3}\right] & \ldots & f_{k}\left[a_{n-1}, a_{n}\right]
\end{array}\right|
\end{gathered}
$$

Then we repeat the process:

$$
\begin{gathered}
D=\left(\left(a_{2}-a_{1}\right) \ldots\left(a_{n}-a_{n-1}\right)\right)\left(\left(a_{3}-a_{1}\right) \ldots\left(a_{n}-a_{n-2}\right)\right) \times \\
\left|\begin{array}{ccc}
\varphi_{2}\left[a_{1}, a_{2}, a_{3}\right] & \ldots & \varphi_{2}\left[a_{n-2}, a_{n-1}, a_{n}\right] \\
\vdots & & \vdots \\
\varphi_{n-k-1}\left[a_{1}, a_{2}, a_{3}\right] & \ldots & \varphi_{n-k-1}\left[a_{n-2}, a_{n-1}, a_{n}\right] \\
f_{1}\left[a_{1}, a_{2}, a_{3}\right] & \ldots & f_{1}\left[a_{n-2}, a_{n-1}, a_{n}\right] \\
\vdots & & \vdots \\
f_{k}\left[a_{1}, a_{2}, a_{3}\right] & \ldots & f_{k}\left[a_{n-2}, a_{n-1}, a_{n}\right]
\end{array}\right|
\end{gathered}
$$

After $n-k$ steps we get the formula of Proposition 8.1.

By the Hermite-Genocchi formula,

$$
\begin{aligned}
& \operatorname{det}\left(f_{i}\left[a_{j}, \ldots, a_{j+n-k}\right]\right)_{1 \leq i, j \leq k} \\
& =\left(\frac{1}{(n-k)!}\right)^{k} \operatorname{det}\left(\int_{\mathbb{R}} f_{i}^{(n-k)}(t) M_{n-k+1}\left(a_{j}, \ldots, a_{j+n-k} ; t\right) d t\right)_{1 \leq i, j \leq k}
\end{aligned}
$$

We use now the integral Cauchy-Binet formula: Let u_{1}, \ldots, u_{k} be continuous functions on $\mathbb{R}, v_{1}, \ldots, v_{k}$ continuous functions on \mathbb{R} with compact support, then

$$
\begin{aligned}
& \int_{\mathbb{R}^{k}} \operatorname{det}\left(u_{j}\left(t_{i}\right)\right)_{1 \leq i, j \leq k} \operatorname{det}\left(v_{j}\left(t_{i}\right)\right)_{1 \leq i, j \leq k} d t_{1} \ldots d t_{k} \\
& =k!\operatorname{det}\left(\int_{\mathbb{R}} u_{i}(t) v_{j}(t) d t\right)_{1 \leq i, j \leq k}
\end{aligned}
$$

Taking $u_{i}(t)=f_{i}^{(n-k)}(t)$ et $v_{j}(t)=M_{n-k+1}\left(a_{j}, \ldots, a_{j+n-k} ; t\right)$, we get

$$
\begin{aligned}
& \operatorname{det}\left(f_{i}\left[a_{j}, \ldots, a_{j+n-k}\right]\right)_{1 \leq i, j \leq k} \\
& =\left(\frac{1}{(n-k)!}\right)^{k} \frac{1}{k!} \int_{\mathbb{R}} \operatorname{det}\left(f_{j}^{(n-k)}\left(t_{i}\right) \operatorname{det}\left(M_{n-k+1}\left(a_{j}, \ldots, a_{j+n-k} ; t\right)\right) d t_{1} \ldots d t_{k} .\right.
\end{aligned}
$$

We specialize this formula to the functions $f_{i}(t)=e^{z_{i} t}$, and obtain, pour $Z=\operatorname{diag}\left(z_{1}, \ldots, z_{k}\right)$,

$$
\begin{aligned}
& \widehat{\mu_{A}^{(k)}}(Z)= \frac{C(n, k)}{\prod_{j-i \geq n-k+1}\left(a_{j}-a_{i}\right)} \int_{\left(\mathfrak{R}^{k}\right)_{+}} \mathcal{E}_{k}\left(z_{1}, \ldots, z_{k} ; t\right) \\
& \operatorname{det}\left(M_{n-k+1}\left(a_{j}, \ldots, a_{j+n-k} ; t_{i}\right)\right)_{1 \leq i, j \leq k} V_{k}(t) d t_{1} \ldots d t_{k},
\end{aligned}
$$

with

$$
C(n, k)=\prod_{i=1}^{k-1}\binom{n-k+i}{i}
$$

Olshanski's determinantal formula follows:
Theorem 8.2. The radial part $\nu_{A}^{(k)}$ of the projection $\mu_{A}^{(k)}$ on the subspace $\mathcal{H}_{k}(\mathbb{C})$ of the orbital measure μ_{A} is given by

$$
\begin{aligned}
& \nu_{A}^{(k)}(d t)=\frac{C(n, k)}{\prod_{j-i \geq n-k+1}\left(a_{j}-a_{i}\right)} \times \\
& \times \operatorname{det}\left(M_{n-k+1}\left(a_{j}, \ldots, a_{j+n-k} ; t_{i}\right)\right)_{1 \leq i, j \leq k} V_{k}(t) d t_{1} \ldots d t_{n} .
\end{aligned}
$$

Special cases
a) $k=1$. In this case $C(n, k)=1$, and

$$
\nu_{A}^{(1)}(d t)=M_{n}\left(a_{1}, \ldots, a_{n}\right) d t
$$

b) $k=n-1$. In this case $C(n, k)=(n-1)$!, and

$$
\prod_{j-i \geq 2}\left(a_{j}-a_{i}\right)=\frac{V_{n}(a)}{\prod_{j-i=1}\left(a_{j}-a_{i}\right)} .
$$

Since $a_{1}<a_{2}<\cdots<a_{n}$, the determinant

$$
\operatorname{det}\left(M_{2}\left(a_{j}, a_{j+1} ; t_{i}\right)\right)_{1 \leq i, j \leq n-1}
$$

vanishes unless $t \preceq a$, and then is equal to

$$
M_{2}\left(a_{1}, a_{2} ; t_{1}\right) M_{2}\left(a_{2}, a_{3} ; t_{2}\right) \ldots M_{2}\left(a_{n-1}, a_{n} ; t_{n}\right)
$$

Since, for $a<b$,

$$
M_{2}(a, b ; t)=\frac{1}{b-a} 1_{a \leq t \leq b}
$$

one gets

$$
\nu_{A}^{(n-1)}(d t)=\frac{1}{V_{n}(a)} V_{n-1}(t) 1_{t \preceq a} d t_{1} \ldots d t_{n-1}
$$

and one recovers Baryshnikov's formula.
One can check that Olshanski's formula defines a probability measure by evualating directly the integral

$$
Z(a)=\int_{\left(\mathbb{R}^{k}\right)_{+}} \operatorname{det}\left(M_{n-k+1}\left(a_{j}, \ldots, a_{j+n-k} ; t_{i}\right) V_{k}(t) d t_{1} \ldots d t_{k}\right.
$$

By the Cauchy-Binet formula,

$$
Z(a)=\operatorname{det}\left(\int_{\mathbb{R}} M_{n-k+1}\left(a_{j}, \ldots, a_{j+n-k} ; t\right) t^{i-1} d t\right)
$$

The moments of the Peano measures are known:

$$
\int_{\mathbb{R}} M_{n}\left(a_{1}, \ldots, a_{n} ; t\right) t^{m} d t=\frac{m!(n-1)!}{(m+n-1)!} h_{m}\left(a_{1}, \ldots, a_{n}\right),
$$

where h_{m} is the complete symmetric function of degree m. Hence

$$
Z(a)=\operatorname{det}\left(\frac{(i-1)!(n-k)!}{(n-k+i-1)!} h_{i-1}\left(a_{j}, \ldots, a_{j+n-k}\right)\right) .
$$

By using the relation

$$
h_{m}\left(a_{2}, \ldots, a_{n}\right)-h_{m}\left(a_{1}, \ldots, a_{n-1}\right)=\left(a_{1}-a_{n}\right) h_{m-1}\left(a_{1}, \ldots, a_{n}\right)
$$

which follows from the generating formula:

$$
\sum_{m=0}^{\infty} h_{m}\left(a_{1}, \ldots, a_{n}\right) z^{m}=\prod_{i=1}^{n} \frac{1}{1-a_{i} z}
$$

one gets

$$
\operatorname{det}\left(h_{i-1}\left(a_{j}, \ldots, a_{j+n-k}\right)\right)=\prod_{j-i \geq n-k+1}\left(a_{j}-a_{i}\right)
$$

Finally

$$
Z(a)=\frac{1}{C(n, k)} \prod_{j-i \geq n-k+1}\left(a_{j}-a_{i}\right)
$$

9 A branching theorem

Let G be a compact group and π a representation of G on a finite dimensional vector space \mathcal{V}. Recall that the character χ_{π} is the function defined on G by

$$
\chi_{\pi}(g)=\operatorname{tr} \pi(g)
$$

It is a central function which can be decomposed in the basis $\left\{\chi_{\lambda}\right\}(\lambda \in \hat{G})$ of the characters of the equivalence classes of irreducible representations of G :

$$
\chi_{\pi}(g)=\sum_{\lambda \in \hat{G}} m_{\lambda} \chi_{\lambda}(g)
$$

The sum is finite and the coefficients m_{λ} are integers ≥ 0, called multiplicities. This equality is equivalent to the relation

$$
\pi=\bigoplus_{\lambda \in \hat{G}} m_{\lambda} \pi_{\lambda}
$$

If the numbers m_{λ} are equal to 0 or 1 , one says that the decomposition is multiplicity free (see exercice 1).

Consider the restriction $\left.\pi_{\lambda}\right|_{H}$ of an irreducible represetnation π_{λ} of G to a closed subgroup H of G. The character of this restriction is equal to the restriction to H of the character χ_{λ} of π_{λ}. In general the representation $\left.\pi_{\lambda}\right|_{H}$ is not irreducible, and decomposes in a finite sum of irreducible representations $\pi_{\mu}^{(H)}$ of $H(\mu \in \hat{H})$:

$$
\left.\pi_{\lambda}\right|_{H}=\bigoplus_{\mu \in \hat{H}} m(\lambda, \mu) \pi_{\mu}^{(H)},
$$

which involves multiplicities $m(\lambda, \mu)$. Such a relation is called branching rule. In order to determine the multiplicities $m(\lambda, \mu)$ one method consists in decomposing the restriction to H of the character χ_{λ} in the basis of the characters $\chi_{\mu}^{(H)}$ of the irreducible characters of $H:$ for $h \in H$,

$$
\chi_{\lambda}(h)=\sum_{\mu \in \hat{H}} m(\lambda, \mu) \chi_{\mu}^{(H)}(h) .
$$

We will apply this method in the case of $G=U(n)$ and $H=U(n-1)$. The character of the representation $\pi_{\lambda}^{(n)}$ of the group $U(n)$ with highest weight λ
can be expressed by the Schur function s_{λ} : if t is a unitary diagonal matrix, $t=\operatorname{diag}\left(t_{1}, \ldots, t_{n}\right) \in T \simeq\left(\mathbb{C}^{*}\right)^{n}$, then

$$
\chi_{\lambda}^{(n)}(t)=s_{\lambda}(t)
$$

Recall the definition of the Schur function $s_{\lambda}(t)$ associated to the signature $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right), \lambda_{1}, \ldots, \lambda_{n} \in \mathbb{Z}, \lambda_{1} \geq \cdots \geq \lambda_{n}$. One writes $s_{\lambda}^{(n)}(t)$ if one wants to specify the numbers of variables, $t=\left(t_{1}, \ldots, t_{n}\right) \in\left(\mathbb{C}^{*}\right)^{n}$:

$$
s_{\lambda}^{(n)}(t)=\frac{1}{V_{n}(t)}\left|\begin{array}{cccc}
t_{1}^{\lambda_{1}+n-1} & t_{1}^{\lambda_{2}+n-2} & \ldots & t_{1}^{\lambda_{n}} \\
t_{2}^{\lambda_{1}+n-1} & t_{2}^{\lambda_{2}+n-2} & \ldots & t_{2}^{\lambda_{n}} \\
\vdots & \vdots & & \vdots \\
t_{n}^{\lambda_{1}+n-1} & t_{n}^{\lambda_{2}+n-2} & \ldots & t_{n}^{\lambda_{n}}
\end{array}\right|
$$

where $V_{n}(t)$ is the Vandermonde polynomial

$$
V_{n}(t)=\prod_{1 \leq i<j \leq n}\left(t_{i}-t_{j}\right) .
$$

For fixed $t_{n}=1$, one gets a function of $n-1$ variables $s_{\lambda}^{(n)}\left(t_{1}, \ldots, t_{n-1}, 1\right)$ which can be written as a linear combination of the Schur functions $s_{\mu}^{(n-1)}\left(t_{1}, \ldots, t_{n-1}\right)$ $\left(\mu=\left(\mu_{1}, \ldots, \mu_{n-1}\right)\right)$.

Proposition 9.1.

$$
s_{\lambda}^{(n)}\left(t_{1}, \ldots, t_{n-1}, 1\right)=\sum_{\mu \preceq \lambda} s_{\mu}^{(n-1)}\left(t_{1}, \ldots, t_{n-1}\right),
$$

où $\mu \preceq \lambda$ signifie que μ entrelace λ :

$$
\lambda_{1} \geq \mu_{1} \geq \lambda_{2} \geq \mu_{2} \geq \lambda_{3} \geq \cdots \geq \lambda_{n-1} \geq \mu_{n-1} \geq \lambda_{n}
$$

Proof.
We will use the formula: for $p, q \in \mathbb{Z}, p \geq q$,

$$
\begin{equation*}
\frac{t^{p+1}-t^{q}}{t-1}=t^{q}+t^{q+1}+\cdots+t^{p}=\sum_{p \geq r \geq q} t^{r} \tag{*}
\end{equation*}
$$

Observe that

$$
V_{n}\left(t_{1}, \ldots, t_{n-1}, 1\right)=V_{n-1}\left(t_{1}, \ldots, t_{n-1}\right) \prod_{i=1}^{n-1}\left(t_{i}-1\right)
$$

in order to evaluate the determinant

$$
\left|\begin{array}{cccc}
t_{1}^{\lambda_{1}+n-1} & t_{1}^{\lambda_{2}+n-2} & \ldots & t_{1}^{\lambda_{n}} \\
t_{2}^{\lambda_{1}+n-1} & t_{2}^{\lambda_{2}+n-2} & \ldots & t_{2}^{\lambda_{n}} \\
\vdots & \vdots & & \vdots \\
t_{n-1}^{\lambda_{1}+n-1} & t_{n-1}^{\lambda_{2}+n-2} & \ldots & t_{n-1}^{\lambda_{n}} \\
1 & 1 & \ldots & 1
\end{array}\right|
$$

one substracts the second column from the first one, then the third one from the second one, and so on. One gets

$$
s_{\lambda}\left(t_{1}, \ldots, t_{n-1}, 1\right)=\frac{1}{V_{n-1}(t)} \operatorname{det}\left(A_{i j}\right)_{1 \leq i, j \leq n-1}
$$

where

$$
A_{i j}=\frac{t_{i}^{\lambda_{j}+n-j}-t_{i}^{\lambda_{j+1}+n-j+1}}{t_{i}-1}
$$

We apply now formula (*):

$$
A_{i j}=\sum_{\lambda_{j} \geq \mu \geq \lambda_{j+1}} t_{i}^{\mu+n-1-j}
$$

The formula of Proposition 9.1 follows.

Let $\pi_{\lambda}^{(n)}$ denotes the irreducible representation of the unitary group $U(n)$ with highest weight λ.

From Proposition 9.1 one deduces the following branching rule.
Theorem 9.2. (Branching rule) The restriction of the representation $\pi_{\lambda}^{(n)}$ to the subgroup $U(n-1)$ decomposes multiplicity free. The irreducible representations $\pi_{\mu}^{(n-1)}$ of $U(n-1)$ which occur in this decomposition are those for which μ interlaces λ :

$$
\left.\pi_{\lambda}^{(n)}\right|_{U(n-1)}=\bigoplus_{\mu \preceq \lambda} \pi_{\mu}^{(n-1)}
$$

The branching rule for the restriction of $\pi_{\lambda}^{(n)}$ to the subgroup $U(k)(1 \leq$ $k \leq n-2)$ is less simple ;

$$
\left.\pi_{\lambda}^{(n)}\right|_{U(k)} \bigoplus_{\mu \in \widehat{U(k)}} m(\lambda, \mu) \pi_{\mu}^{(k)}
$$

where $m(\lambda, \mu)$ is the number of sequences

$$
\nu^{(n-1)} \in \mathbb{Z}^{n-1}, \nu^{(n-2)} \in \mathbb{Z}^{n-2}, \ldots, \nu^{(k+1)} \in \mathbb{Z}^{k+1}
$$

such that

$$
\mu \preceq \nu^{(k+1)} \preceq \cdots \preceq \nu^{(n-1)} \preceq \lambda .
$$

10 Horn's theorem

In this section we consider the projection q of the space $\mathcal{H}_{n}(\mathbb{F})$ on the subspace $\mathcal{D}_{n} \simeq \mathbb{R}^{n}$ of real diagonal matrices

$$
q: \mathcal{H}_{n}(\mathbb{F}) \rightarrow \mathbb{R}^{n}, \quad X \mapsto\left(x_{1}, \ldots, x_{n}\right), x_{i}=X_{i i}
$$

For an orbit \mathcal{O}_{A} of a diagonal matrix $A=\operatorname{diag}\left(a_{1}, \ldots, a_{n}\right)$ under the action of the unitary group $U_{n}(\mathbb{F})$, we will see that the projection $q\left(\mathcal{O}_{A}\right)$ is equal to the convex hull of the points $\sigma(a)$, where $\sigma(a)$ is the transform of $a=\left(a_{1}, \ldots, a_{n}\right)$ under the permutation $\sigma \in \mathfrak{S}_{n}: \sigma(a)=\left(a_{\sigma(1)}, \ldots, a_{\sigma(n)}\right)$. This the Horn's convexity theorem:

$$
q\left(\mathcal{O}_{A}\right)=C(a):=\operatorname{Conv}\left(\left\{\sigma(a) \mid \sigma \in \mathfrak{S}_{n}\right\}\right)
$$

The image of the orbital measure μ_{A} is suppported by $C(a)$, and the density of the projection $N_{A}=q\left(\mu_{A}\right)$ with respect to the Lebesgue measure of the hyperplane

$$
x_{1}+\cdots x_{n}=a_{1}+\cdots+a_{n}
$$

is a piecewise polynomial function. This measure has been described by Heckman in a more general setting.

Theorem 10.1. (Horn's convexity Theorem) For a diagonal matrix $A=$ $\operatorname{diag}\left(a_{1}, \ldots, a_{n}\right)$,

$$
q\left(\mathcal{O}_{A}\right)=C(a)
$$

Proof.
We will sketch the main steps in the proof.
a) Theorem of Birkhoff

A real $n \times n$ matrix S is said to be doubly stochastic if, for all i and j, $S_{i j} \geq 0$, and

$$
\sum_{k=1}^{n} S_{i k}=1, \quad \sum_{k=1}^{n} S_{k j}=1
$$

Example

$$
\left(\begin{array}{ccc}
\frac{1}{2} & \frac{1}{2} & 0 \\
\frac{1}{2} & 0 & \frac{1}{2} \\
0 & \frac{1}{2} & \frac{1}{2}
\end{array}\right) .
$$

The set of doubly stochastic matrices is convex and compact.
The permutation matrix P_{σ} associated to the permutation σ is given by

$$
\left(P_{\sigma} x\right)_{i}=x_{\sigma(i)} .
$$

The matrix P_{σ} is doubly stochastic.
Example For $\sigma=(2,3,1)$,

$$
P_{\sigma}=\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

Theorem 10.2. (Birkhoff) The extremal points of the set of doubly stochastic matrices are the permutation matrices.
b) We show first that $q\left(\mathcal{O}_{A}\right) \subset C(a)$. Let $X \in \mathcal{O}_{A}: X=u A u^{*}$ with $u \in U_{n}(\mathbb{F})$. Then

$$
X_{i i}=\sum_{j=1}^{n}\left|u_{i j}\right|^{2} a_{j}
$$

The matrix S with $S=\left|u_{i j}\right|^{2}$ is doubly stochastic. By Birkhoff's Theorem it is a convex combination of permutation matrices:

$$
S=\sum_{\sigma \in \mathfrak{S}_{n}} c_{\sigma} P_{\sigma}, \quad \text { with } c_{\sigma} \geq 0, \sum_{\sigma \in \mathfrak{S}_{n}} c_{\sigma}=1
$$

Therefore

$$
q(X)=\sum_{\sigma \in \mathfrak{S}_{n}} c_{\sigma} P_{\sigma} a=\sum_{\sigma \in \mathfrak{S}_{n}} c_{\sigma} \sigma(a) \in C(a)
$$

Hence $q\left(\mathcal{O}_{A}\right) \subset C(a)$.
c) We show now that $C(a) \subset q\left(\mathcal{O}_{A}\right)$. Let $b \in C(a)$. We have to show that there is a matrix $u \in U_{n}(\mathbb{F})$ such that $q\left(u A u^{*}\right)=b$. Horn shows that, if $b \in C(a)$, then there is an orthogonal matrix u such that $b=S a$, where S is the doubly stochastic matrix given by $S_{i j}=u_{i j}^{2}$. Therefore $b=q\left(u A u^{*}\right)$.

11 Heckman's measure

Let N_{A} denote the projection of the orbital measure μ_{A} on the space \mathcal{D}_{n} of diagonal matrices: $N_{A}=q\left(\mu_{A}\right)$. As we observed at the end of Section 6 in an another case, the Fourier-Laplace transform $\widehat{N_{A}}$ of N_{A} is the resriction to $\mathcal{D}_{n} \simeq \mathbb{R}^{n}$ of the Fourier-Laplace $\widehat{\mu_{A}}$ of μ_{A}. By the Harish-Chandra-ItzyksonZuber formula (Theorem 6.1), for $z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}$:

$$
\widehat{N_{A}}(z)=\delta_{n}!\frac{1}{V_{n}(a) V_{n}(z)} \operatorname{det}\left(e^{z_{i} a_{j}}\right)_{1 \leq i, j \leq n}
$$

This can be written

$$
V_{n}(z) \widehat{N_{A}}(z)=\frac{\delta_{n}!}{V_{n}(a)} \sum_{\sigma \in \mathfrak{S}_{n}} \varepsilon(\sigma) \exp \left(\sum_{i=1}^{n} z_{i} a_{\sigma(i)}\right)
$$

This means an equality between two Fourier-Laplace transforms, and implies the following differential equation:

$$
V_{n}\left(-\frac{\partial}{\partial x}\right) N_{A}=\frac{\delta_{n}!}{V_{n}(a)} \sum_{\sigma \in \mathfrak{S}_{n}} \varepsilon(\sigma) \delta_{\sigma(a)}
$$

where $\sigma(a)=\left(a_{\sigma(1)}, \ldots, a_{\sigma(n)}\right)$. For solving this equation we will use an elementary solution of the differential operator $V_{n}\left(\frac{\partial}{\partial x}\right)$. Define the distribution E_{n} :

$$
\left\langle E_{n}, \varphi\right\rangle=\int_{\mathbb{R}^{\frac{n(n-1)}{2}}} \varphi\left(\sum_{i<j} t_{i j}\left(e_{i}-e_{j}\right)\right) d t_{i j}
$$

Proposition 11.1. The distribution E_{n} is an elementary solution of the differential operator $V_{n}\left(\frac{\partial}{\partial x}\right)$:

$$
V_{n}\left(\frac{\partial}{\partial x}\right) E_{n}=\delta_{0}
$$

Its support is the following cone

$$
\operatorname{supp}\left(E_{n}\right)=\left\{x \in \mathbb{R}^{n} \mid x_{1} \geq \cdots \geq x_{n}, x_{1}+\cdots+x_{n}=0\right\}
$$

The distribution E_{n} is absolutely continuous with respect to the Lebesgue measure of the hyperplane $x_{1}+\cdots+x_{n}=0$. The cone $\operatorname{supp}\left(E_{n}\right)$ decomposes into a finite union of cones, and the restriction of the density to each of these cones is a polynomial homogeneous of degree $\frac{1}{2}(n-1)(n-2)$.

Proof.

The differential operator $V_{n}\left(\frac{\partial}{\partial x}\right)$ is a product of degree one differential operators:

$$
V_{n}\left(\frac{\partial}{\partial x}\right)=\prod_{i<j}\left(\frac{\partial}{\partial x_{i}}-\frac{\partial}{\partial x_{j}}\right) .
$$

An elementary solution of $\frac{\partial}{\partial x_{i}}-\frac{\partial}{\partial x_{j}}$ is the following Heaviside distribution $Y_{i j}$ defined by

$$
\left\langle Y_{i j}, \varphi\right\rangle=\int_{0}^{\infty} \varphi\left(t\left(e_{i}-e_{j}\right)\right) d t
$$

Hence the convolution product

$$
E_{n}=\prod_{i<j}^{*} Y_{i j}
$$

is an elementary solution of $V_{n}\left(\frac{\partial}{\partial x}\right)$.

Define $\check{\varphi}(x)=\varphi(-x)$, and \check{E}_{n} by $\left\langle\check{E}_{n}, \varphi\right\rangle=\left\langle E_{n}, \check{\varphi}\right\rangle$. Let F and G be distributions on \mathbb{R}^{n}. Assume the support of F to be compact. Let $D=P\left(\frac{\partial}{\partial x}\right)$ be a diffirential operator with constant coefficients. Then

$$
D F * G=F * D G=D(F * G)
$$

Therefore:

$$
\check{E}_{n} * V_{n}\left(-\frac{\partial}{\partial x}\right) N_{A}=V_{n}\left(\frac{\partial}{\partial x}\right) \check{E}_{n} * N_{A}=N_{A}
$$

Therefore

$$
N_{A}=\frac{\delta_{n}}{V_{n}(a)} \sum_{\sigma \in \mathfrak{S}_{n}} \varepsilon(\sigma) \check{E}_{n} * \delta_{\sigma(a)}
$$

The measure N_{A} is supported by the hyperplane

$$
x_{1}+\cdots+x_{n}=a_{1}+\cdots+a_{n} .
$$

In fact $\operatorname{supp}\left(N_{A}\right)=q\left(\mathcal{O}_{A}\right)=C(a)$.
Theorem 11.2. The measure N_{A} has a density with respect to the Lebesgue measure of the hyperplane

$$
x_{1}+\cdots+x_{n}=a_{1}+\cdots+a_{n},
$$

and the density is piecewise polynomial.

Example, $n=2$

$$
\begin{gathered}
\left\langle E_{2}, \varphi\right\rangle=\int_{0}^{\infty} \varphi\left(t\left(e_{1}-e_{2}\right)\right) d t \\
\mathfrak{S}_{2}=\{I d, \tau\}, \tau:\left(x_{1}, x_{2}\right) \mapsto\left(x_{2}, x_{1}\right) . \\
\left\langle N_{A}, \varphi\right\rangle=\frac{1}{a_{1}-a_{2}}\left(\int_{0}^{\infty} \varphi\left(a-t_{1}\left(e_{1}-e_{2}\right)\right) d t_{1}-\int_{0}^{\infty} \varphi\left(\tau(a)-t_{2}\left(e_{1}-e_{2}\right)\right) d t_{2}\right) . \\
\left\langle N_{A}, \varphi\right\rangle=\int_{0}^{1} \varphi((1-t) a+t \tau(a)) d t .
\end{gathered}
$$

Example, $n=3$
$\alpha=e_{1}-e_{2}, \beta=e_{2}-e_{3}, \gamma=e_{1}-e_{3}$, note that $\gamma=\alpha+\beta$.

$$
\begin{aligned}
\left\langle E_{3}, \varphi\right\rangle & =\int_{\left(\mathbb{R}_{+}\right)^{3}} \varphi(u \alpha+v \beta+w \gamma) d u d v d w \\
& =\int_{\left(\mathbb{R}_{+}\right)^{3}} \varphi((u+w) \alpha+(v+w) \beta) d u d v d w \\
& =\int_{\{0 \leq w \leq s, 0 \leq w \leq t\}} f(s \alpha+t \beta) d s d t d w \\
& =\int_{(\mathbb{R}+)^{2}} \inf (s, t) f(s \alpha+t \beta) d s d t
\end{aligned}
$$

Hence the suppport of E_{3} is the angle defined by the rays generated by α and β, with density, if $x=s \alpha+t \beta, f(s, t)=\inf (s, t)$.

The support of the measure N_{A} is the convex hull of the six points $\sigma(a)$ $\left(\sigma \in \mathfrak{S}_{3}\right)$. the density of N_{A} is linear in the three trapezes, and in the three triangles, and constant in the middle triangle.

Exercises

1. Let π be a finite dimensional representation of a compact group G on a complex vector space \mathcal{V}, and consider its decomposition as direct sum of irreducible representations

$$
\pi=\bigoplus_{\lambda \in \hat{G}} m_{\lambda} \pi_{\lambda}
$$

a) Show that the commutant in $\operatorname{End}(\mathcal{V})$ of $\pi(G)$,

$$
\pi(G)^{\prime}=\{A \in \operatorname{End}(\mathcal{V}) \mid \forall g \in G, A \pi(g)=\pi(g) A\}
$$

is equal to

$$
\pi(G)^{\prime}=\bigoplus_{\lambda \in \hat{G}} \operatorname{End}\left(\mathbb{C}^{m_{\lambda}}\right)
$$

b) Recall that the decomposition is said to be multiplicity free if the multiplicities m_{λ} are equal to 0 or 1 . Show that the commutant $\pi(G)^{\prime}$ is commutative if and only if the representation π decomposes multiplicity free.
2. The moments $\mathcal{M}_{n}^{(m)}\left(a_{1}, \ldots, a_{n}\right)$ of the Peano measure $M_{n}\left(a_{1}, \ldots, a_{n} ; d t\right)$ are defined by

$$
\mathcal{M}_{n}^{(m)}\left(a_{1}, \ldots, a_{n}\right):=\int_{\mathfrak{R}} t^{m} M_{n}\left(a_{1}, \ldots, a_{n} ; d t\right)
$$

Establish the relation

$$
\mathcal{M}_{n}^{(m)}\left(a_{1}, \ldots, a_{n}\right) t=\frac{m!(n-1)!}{(m+n-1)!} h_{m}\left(a_{1}, \ldots, a_{n}\right)
$$

where h_{m} denotes the complete symmetric function.
3. Establish the following relation

$$
\begin{aligned}
& M_{n}\left(a_{1}, \ldots, a_{n} ; t\right) \\
& =\frac{n-1}{a_{n}-a_{1}} \int_{-\infty}^{t}\left(M_{n-1}\left(a_{1}, \ldots, a_{n-1} ; s\right)-M_{n-1}\left(a_{2}, \ldots, a_{n} ; s\right)\right) d s .
\end{aligned}
$$

4. Originally the Peano measure $M_{n}\left(a_{1}, \ldots, a_{n} ; d t\right)$ has been introduced in order to express as an integral the error commited when one replace a function by its interpolation polynomial.
a) Let a_{1}, \ldots, a_{n} be n distinct real numbers, and let f be a function defined on an interval containing the numbers a_{1}, \ldots, a_{n}. Let p be the interpolation polynomial of f with respect to the numbers $a_{1}, \ldots, a_{n}: p$ is the polynomial of degree $\leq n-1$ such that $p\left(a_{i}\right)=f\left(a_{i}\right)(i=1, \ldots, n)$. Show that

$$
f(x)=p(x)+\left(x-a_{1}\right)\left(x-a_{2}\right) \ldots\left(x-a_{n}\right) f\left[x, a_{1}, \ldots, a_{n}\right] .
$$

b) Assume the function f to be of class \mathcal{C}^{n}. Show that

$$
\begin{gathered}
f(x)=p(x) \\
+\frac{1}{n!}\left(x-a_{1}\right)\left(x-a_{2}\right) \ldots\left(x-a_{n}\right) \int_{\mathbb{R}} f^{(n)}(t) M_{n+1}\left(x, a_{1}, \ldots, a_{n} ; t\right) d t .
\end{gathered}
$$

5. Define

$$
\tilde{\mathcal{E}}_{n}(z, x)=\frac{1}{V_{n}(z)} \operatorname{det}\left(e^{z_{i} x_{j}}\right)_{1 \leq i, j \leq n}=\frac{1}{\delta_{n}!} V_{n}(x) \mathcal{E}_{n}(z, x) .
$$

Show that

$$
\tilde{\mathcal{E}}_{n}(z, x)=\int_{y \preceq x} \tilde{\mathcal{E}}_{n-1}\left(z^{\prime}, y\right) e^{(\langle x\rangle-\langle y\rangle) z_{n}} d y_{1} \ldots y_{n-1}
$$

where $z^{\prime}=\left(z_{1}, \ldots, z_{n-1}\right)$, et $\langle x\rangle=x_{1}+\cdots+x_{n}$.
6. Let $s_{\lambda}^{(n)}\left(t_{1}, \ldots, t_{n}\right)$ be the Schur function. Show that its Laurent expansion with respect to t_{n} is given by

$$
s_{\lambda}^{(n)}\left(t_{1}, \ldots, t_{n-1}, t_{n}\right)=\sum_{\mu \preceq \lambda} s_{\mu}^{(n-1)}\left(t_{1}, \ldots, t_{n-1}\right) t_{n}^{\langle\mu\rangle-\langle\lambda\rangle},
$$

où

$$
\langle\lambda\rangle=\lambda_{1}+\cdots+\lambda_{n} .
$$

One will observe the analogy of this formula with the one of the preceding exercise.

Notes and references

The measure $M_{n}\left(a_{1}, \ldots, a_{n} ; d t\right)$ has been called Peano measure (or Peano kernel) refering to the following theorem due to Peano : a continuous linear form L on the space $\mathcal{C}^{n+1}([a, b])$ which vanishes on the subspace \mathcal{P}_{n} of the polynomials of degree $\leq n$ admits the following representation :

$$
L(f)=\int_{a}^{b} f^{(n+1)}(t) K(t) d t
$$

where

$$
K(t)=\frac{1}{n!} L_{x}\left[(x-t)_{+}^{n}\right] .
$$

(See [Peano,1913], and also [Davis,1963], Section 3.7, [Phillips,2000], Chapter 4.) Observe that a difficulty appear since the function $x \mapsto(x-t)_{+}^{n}$ is not of class \mathcal{C}^{n+1}. In the present case the linear form L is defined by

$$
L(f)=f\left[a_{1}, a_{2}, \ldots, a_{n}\right],
$$

where a_{1}, \ldots, a_{n} are n real numbers.
Theorem 2.3, due to Okounkov, is noticed in [Olshanski-Vershik,1996] : Proposition 8.2, p. 172.

Hermite-Genocchi formula (Theorem 3.2) has been established by Hermite et Genocchi independantly in 1878 for which they gave two different proofs.

The oldest reference I know for the intertwining theorem (Theorem 4.1) is a paper by Cauchy : Sur l'équation à l'aide de laquelle on détermine les inégalités séculaires des planètes (1829).

The intertwining theorem is also called Theorem of Rayleigh refering to the book by Rayleigh The Theory of Sound (1877), (new edition by Dover in 1945).

The Harish-Chandra-Itzykson-Zuber formula has been established by Itzykson and Zuber using a method involving the heat equation on the space of Hermitian matrices and a formula for the radial part of the Laplacian [Itzykson-Zuber,1980]. It turns out that the Harish-Chandra-Itzykson-Zuber formula is nothing but a special case of a formula established by HarishChandra related to the action of a compact Lie group on its Lie algebra. [Harish-Chandra,1957].

Baryshnikov, Yu. (2001). GUEs and queues, Probab. Theory Relat. Fields, 119, 256-274.
Bathia, B. (1997). Matrix analysis. Springer.
Berezin, F. A. \& I. M. Gelfand (1962). Some remarks on spherical functions on symmetric Riemannian manifolds, Amer. Math. Soc. Transl., Series 2, 21, 193-238.
de Boor, C. (2005). Divided differences, Surveys in Approximation Theory, 1, 46-69.
Cauchy, A. L. (1829). Sur l'équation à l'aide de laquelle on détermine les inǵgalités séculaires des planètes. Oeuvres complètes, série 2, tome 9, 174-195.
Curry, H. B. \& I. J. Schoenberg (1966). On Pólya frequency functions IV: The fundamental spline functions and their limits, J. Analyse Mathématique, 17, 71-107.
Duflo, M., G. Heckman \& M. Vergne (1984). Projection d'orbites, formule de Kirillov et formule de Blattner, Mémoires de la S. M. F., 2e série, 15, 65-128.
Davis, P. J. (1963). Interpolation and approximation. Blaisdell Publishing Company.
Defosseux, M. (2010). Orbit measures, random matrix theory and interlaced determinantal processes, Ann. Inst. H. Poincaré, Probabilités et Statistiques, 46, 209-249.
Faraut, J. (2005). Noyau de Peano et intégrales orbitales, Global J. of Pure and Applied Math., 1, 306-320.
Faraut, J. (2015). Rayleigh theorem, projection of orbital measures, and spline functions, Advances in Pure and Applied Mathematics, 4, 261283.

Genocchi, A. (1878). Relation entre la différencee et la dérivée d'un même ordre quelconque, Archiv Math. Phys. (I), 49, 342-345.
Harish-chandra (1957). Differential operators on a semisimple Lie algebra, Amer. J. Math., 79, 87-120.
Heckman, G. (1982). Projections of orbits and asymptotic behavior of multiplicities for compact connected Lie groups, Invent. math., 67, 333-356.
Hermite, Сh. (1878). J. Reine angew. Math., Formule d'interpolation de Lagrange, 84, 70-79.
Horn, A. (1954). Stochastic matrices and the diagonal of a rotation matrix, Amer. J. Math, 76, 620-630.

Itzykson, C., J.-B. Zuber (1980). The planar approximation II, J. Math. Physics, 21, 411-421.
Olshanski, G. (2013). Projections of orbital measures, Gelfand-Tsetlin polytopes, and splines, Journal of Lie Theory, 23, 1011-1022.
Olshanski, G. \& Vershik, A. (1996). Ergodic unitarily invariant measures on the space of infinite Hermitian matrices, Amer. Math. Soc. Transl., 175, 137-175.
Peano, G. (1913). Resto nelle formulae di quadratura expresso cun un integrale definitivo, Atti della Reale Academia dei Lincei, Rendiconti, 22, 562-569.
Phillips, G. M. (2000). Interpolation and approximation by polynomials. Springer.
Rayleigh (1945). The Theory of Sound. Dover.

