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1 Projection of orbital measures

We note Hn(R) = Sym(n,R), Hn(C) = Herm(n,C). For a matrix X ∈
Hn(F) (F = R ou C), the classical spectral theorem says that the eigenvalues
λ1, . . . , λn are real and the corresponding eigenvectors are orthogonal. Note
Λ(n) the map Hn(F) onto (Rn)+,

(Rn)+ := {t ∈ Rn | t1 ≤ t2 ≤ · · · ≤ tn},

which, to a matrix X, associate the sequence of the eigenvalues in the in-
creasing order:

Λ(n)(X) = (λ1, . . . , λn).

Note Un(F) = O(n), the orthogonal group, if F = R, and Un(F) = U(n), the
unitary group, if F = C. The group Un(F) acts on the space Hn(F) by the
transformations X 7→ uXu∗ (u ∈ Un(F)). Note OA the orbit of the diagonal
matrix A = diag(a1, . . . , an) (ai ∈ R, a1 ≤ · · · ≤ an) :

OA = {uAu∗ | u ∈ Un(F)}.

From the spectral theorem it follows that

OA =
{
X ∈ Hn(F) | spectrum(X) = {a1, . . . , an}

}
.

The orbit OA carries a natural probability measure: the orbital measure µA,
image of the normalized Haar measure α of the compact group Un(F) under
the map

Un(F)→ Hn(F), u 7→ uAu∗.

For a continuous function f defined on Hn(F),∫
Hn(F)

f(X)µA(dX) =

∫
Un(F)

f(uAu∗)α(du).

Note pk the projection of Hn(F) onto Hk(F) which maps a matrix X ∈
Hn(F) to the matrix Y = pk(X) ∈ Hk(F) of the k first rows and the k first

columns of X. We will study the image µ
(k)
A of the orbital measure µA under

the projection pk.
Let µ be a measure onHn(F) which is invariant under Un(F). The integral

of a function f is written as follows∫
Hn(F)

f(X)µ(dX) =

∫
(Rn)+

(∫
Un(F)

f(udiag(t1, . . . , tn)u∗)α(du)
)
ν(dt),

2



where ν is a measure on (Rn)+, called the radial part of µ. If µ is a probability
measure on Hn(F) which is Un(F)-invariant, its radial part ν is also the joint
distribution of the eigenvalues for a random matrix whose distribution is µ.
We will note ν

(k)
A the radial part of µ

(k)
A .

Assume now F = C. We will start with the simplest case k = 1, and will
see that the projection µ

(1)
A involves spline functions (Okounkov, 1996).

If k = n − 1 this question is related to an interlacing property of the
eigenvalues. The measure ν

(n−1)
A is given by a formula due to Baryshnikov

(2001).
We will study the general case, 1 ≤ k ≤ n − 1, by using the Fourier

transform. The radial part ν
(k)
A has a density which can be written as a de-

terminant of spline functions. This is the Olshanski’s determinantal formula
(2013).

In last two Sections, we consider the projection onto the subspace Dn of
diagonal matrices. Horn’s Theorem describes the image of the orbit OA: it
is the convex hull of points σ(a), with σ ∈ Sn, the symmetric group. The
image of the orbital measure is given as a special case of Heckman’s formula.

2 Projection of the orbital measure µA and

Peano measure

We assume in this section that F = C. We consider the projection MA :=
µ

(1)
A = ν

(1)
A of the orbital measure µA on H1(C) = RE11 ' R: if f is a

continuous function on R,∫
R
f(t)MA(dt) =

∫
U(n)

f
(
(uAu∗)11

)
αn(du).

One establishes easily

(uAu∗)11 = a1|u11|2 + · · ·+ an|u1n|2.

Proposition 2.1. Consider the map

Φ : U(n)→ S = S(Cn),

the unit sphere in Cn, which maps the matrix u ∈ U(n) to the first row:

u 7→ (u11, . . . , u1n).
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The image under Φ of the Haar measure α is the normalized uniform measure
σ on S.

Proof. The image under Φ of the Haar measure α is a measure on S which
is U(n)-invariant.

Note ∆n the simplex defined by

∆n = {τ = (τ1, . . . , τn+1) ∈ Rn+1 | τi ≥ 0, τ1 + · · ·+ τn+1 = 1},

and let βn be the normalized uniform measure on ∆n, i.e. the restriction to
∆n of the Lebesgue measure on the hyperplane with equation τ1+· · ·+τn+1 =
1, normalized in such a way that the total measure is equal to 1. Note also
Dn the closed set of Rn defined by

Dn = {τ = (τ1, . . . , τn) ∈ Rn | τi ≥ 0, τ1 + · · ·+ τn ≤ 1}.

This is the projection of ∆n on the horizontal hyperplane with equation
τn+1 = 0. The volume of Dn is equal to

vol(n)(Dn) =
1

n!
.

The integral of a function f defined on ∆n with respect to the measure βn
can be given as an integral on Dn as follows:∫

∆n

f(τ)βn(dτ) = n!

∫
Dn

f(τ1, . . . , τn, 1− τ1 − · · · − τn)dτ1 . . . dτn.

Proposition 2.2. Consider the map

Ψ : S(Cn)→ ∆n−1, u = (u1, . . . , un) 7→ τ = (|u1|2, . . . , |un|2).

The image under Ψ of the measure σ is equal to the measure β = βn−1 : if f
is a continuous function on ∆n−1,∫

S(Cn)

f(|u1|2, . . . , |un|2)σ(du) =

∫
∆n−1

f(τ1, . . . , τn)β(dτ).
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Proof.
Observe first that, if F is a function defined on (R+)n which is integrable

with respect to the Lebesgue measure,∫
(R+)n

F (x1, . . . , xn)dx1 . . . dxn

=
1

(n− 1)!

∫ ∞
0

(∫
∆n−1

F (ρτ1, . . . , ρτn)β(dτ)
)
ρn−1dρ.

Let f be a function defined on ∆n−1, integrable with respect to the measure
β, and let f0 be a function defined on R+ integrable with respect to the
measure ρn−1dρ. We associate to the functions f and f0 the function F1

defined on (R+)n by puting

F1(x) = f0(ρ)f(τ1, . . . , τn), if x = (ρτ1, . . . , ρτn), τ = (τ1, . . . , τn) ∈ ∆n−1

Then ∫
(R+)n

F1(x1, . . . , xn)dx1 . . . dxn

=
1

(n− 1)!

∫ ∞
0

f0(ρ)ρn−1dρi

∫
∆n−1

f(τ1, . . . , τn)β(dτ).

We consider also the function F2 defined on Cn by puting

F2(z) = f0(r2)f(|u1|2, . . . , |un|2),

if z = (ru1, . . . , run), u = (u1, . . . , un) ∈ S. Then, on one hand, since
F2(z) = F1(|z1|2, . . . , |zn|2),∫

Cn
F2(z)m(dz) = (2π)n

∫
(R+)n

F1(r2
1, . . . , r

2
n)r1dr1 . . . rndrn

= πn
∫

(R+)n
F (t1, . . . , tn)dt1 . . . dtn

=
πn

(n− 1)!

∫ ∞
0

f0(ρ)ρn−1dρ

∫
∆n−1

f(τ1, . . . , τn)β(dτ),

where m denotes the Lebesgue measure on Cn ' R2n. And, on the other
hand,∫

Cn
F2(z)m(dz)
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= 2
πn

(n− 1)!

∫ ∞
0

f0(r2)r2n−1dr

∫
S

f(|u1|2, . . . , |un|2)σ(du)

=
πn

(n− 1)!

∫ ∞
0

f0(ρ)ρn−1dρ

∫
S

f(|u1|2, . . . , |un|2)σ(du).

By comparing these equalities one gets the statement

To a point a = (a1, . . . , an) ∈ Rn one associates the measureMn(a1, . . . , an; dt)
on R, image of the measure β by the map

Θ : ∆n−1 → R, τ 7→ a1τ1 + · · ·+ anτn.

That is, if f is a continuous function on R,∫
R
f(t)Mn(a1, . . . , an; dt) =

∫
∆n−1

f(a1τ1 + · · ·+ anτn)β(dτ).

Mn(a1, . . . , an; dt) is a probability measure on R with support [min ai,max ai].
We call it Peano measure. For n = 2,∫

R
f(t)M2(a1, a2; dt) =

∫ 1

0

f
(
a1τ + (1− τ)a2

)
dτ =

1

a2 − a1

∫ a2

a1

f(t)dt.

Theorem 2.3. (Okounkov) The projection MA(dt) on the line RE11 of the
orbital measure µA is equal to the Peano measure Mn(a1, . . . , an; dt),

MA(dt) = Mn(a1, . . . , an; dt).

Proof. The map
U(n)→ R, u 7→ (uAu∗)11

can be factorized as follows

U(n)
Φ−→ S(Cn)

Ψ−→ ∆n−1
Θ−→ R

u 7→ ξ = (u11, . . . , u1n) 7→ τ = (|ξ1|2, . . . , |ξn|2) 7→ t = a1τ1 + · · ·+ anτn.

By Proposition 2.1,∫
R
f(t)MA(dt) =

∫
S(Cn)

f(a1|u1|2 + · · ·+ an|un|2)σ(du).

6



and, by Proposition 2.2 and the definition of the Peano measure,∫
S(Cn)

f(a1|u1|2 + · · ·+ an|un|2)σ(du)

=

∫
∆n−1

f(a1τ1 + · · ·+ anτn)β(dτ) =

∫
R
f(t)Mn(a1, . . . , an; dt).

3 Divided differences, Peano measures and

spline functions

Let f be a function defined on R. If the real numbers ai are distinct, the
divided differences of f are defined as follows

f [a1, a2] =
f(a2)− f(a1)

a2 − a1

,

f [a1, a2, . . . , an] =
f [a2, . . . , an]− f [a1, . . . , an−1]

an − a1

.

If f is of class Cn−1 the divided differences f [a1, . . . , ak] (k ≤ n) are defined
for every numbers ai, distinct or not, by going to the limit. In particular, if
a1 = a2 = · · · = ak = a, then

f [a, . . . , a] =
1

(k − 1)!
f (k−1)(a).

Assume the numbers a1, . . . , an to be distinct. Let p be the interpolation
polynomial of the function f with respect to the points a1, . . . , an : p is the
polynomial of degree ≤ n − 1 such that p(ai) = f(ai) (i = 1, . . . , n). Recall
the following Newton formula: the interpolation polynomial p can be written

p(t) =
n∑
k=1

f [a1, . . . , ak](t− a1) · · · (t− ak−1).

Let c0, . . . , cn−1 be the coeficients of the interpolation polynomial:

p(t) = c0 + · · ·+ cn−1t
n−1.
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By the Newton formula cn−1 = f [a1, . . . , an]. Les coefficients ck are solutions
of the system

c0 + c1a1 + · · ·+ cn−1a
n−1
1 = f(a1),

...
c0 + c1an + · · ·+ cn−1a

n−1
n = f(an).

From Cramer’s formulas one gets:

Proposition 3.1. The divided differences admit the following determinantal
representation:

f [a1, . . . , an] =
1

Vn(a1, . . . , an)

∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1
a1 a2 . . . an
...

...
...

an−2
1 an−2

2 . . . an−2
n

f(a1) f(a2) . . . f(an)

∣∣∣∣∣∣∣∣∣∣∣
where Vn is the Vandermonde polynomial in n variables,

Vn(a1, . . . , an) =

∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1
a1 a2 . . . an
...

...
...

an−2
1 an−2

2 . . . an−2
n

an−1
1 an−1

2 . . . an−1
n

∣∣∣∣∣∣∣∣∣∣∣
=

∏
1≤i<j≤n

(aj − ai).

It follows that

f [a1, . . . , an] =
n∑
i=1

γif(ai),

where

γi = γi(a1, . . . , an) =
1∏

j 6=i(ai − aj)
.

Next Theorem expresses the relation between divided differences and
Peano measures.

Theorem 3.2. (Hermite-Genocchi) If f is a function of class Cn−1 on R,
then

f [a1, . . . , an] =
1

(n− 1)!

∫
R

f (n−1)(t)Mn(a1, . . . , an; dt).
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Proof.
The proof uses a recursion. For n = 2, if f is a function of class C1,∫ 1

0

f ′
(
a1τ + a2(1− τ)

)
dτ =

1

a1 − a2

[
f
(
(a1 − a2)τ + a2

)]1

0

=
1

a1 − a2

(
f(a1)− f(a2)

)
= f [a1, a2].

Assume that the relation holds for n, and let us prove it for n+ 1. If f is of
class Cn, by a partial integration one gets

1

n!

∫
∆n

f (n)(a1τ1 + · · ·+ an+1τn+1)βn(dτ)

=

∫
Dn

f (n)
(
a1τ1 + · · ·+ anτn + an+1(1− τ1 − · · · − τn)

)
dτ1 . . . dτn

=

∫
Dn

f (n)
(
(a1 − an+1)τ1 + · · ·+ (an − an+1)τn + an+1

)
dτ1 . . . dτn

=

∫
Dn−1

(∫ 1−τ2−···−τn

0

f (n)
(
(a1 − an+1)τ1 + (a2 − an+1)τ2 + · · ·

+(an − an+1)τn + an+1

)
dτ1

)
dτ2 . . . dτn.

The integral with respect to τ1 gives

1

a1 − an+1

(
f (n−1)

(
(a1 − an+1

)
(1− τ2 − · · · − τn)

+(a2 − an+1)τ2 + · · ·+ (an − an+1)τn + an+1

)
−f (n−1)

(
(a2 − an+1)τ2 + · · ·+ (an − an+1)τn + an+1

))
=

1

a1 − an+1

(
f (n−1)

(
a1(1− τ2 − · · · − τn) + a2τ2 + · · ·+ anτn

)
−f (n−1)

(
a2τ2 + · · ·+ anτn + an+1(1− τ2 − · · · − τn)

))
We get finally

1

n!

∫
∆n

f (n)(a1τ1 + · · ·+ an+1τn+1)βn(dτ) =
1

an+1 − a1

×( 1

(n− 1)!

∫
∆n−1

f (n−1)(a2τ2 + · · ·+ anτn + an+1τn+1)βn−1(dτ)
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− 1

(n− 1)!

∫
∆n−1

f (n−1)(a1τ1 + · · ·+ anτn)βn−1(dτ)
)

=
1

an+1 − a1

(
f [a2, . . . , an+1]− f [a1, . . . , an]

)
= f [a1, . . . , an+1].

Taking f(t) = ezt one gets the Fourier-Laplace transform of the Peano
measure:

M̂n(a1, . . . , an; z) =

∫
R

eztMn(a1, . . . , an; dt)

=
(n− 1)!

Vn(a1, . . . , an)

1

zn−1

∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1
a1 a2 . . . an
...

...
...

an−2
1 an−2

2 . . . an−2
n

ea1z ea2z . . . eanz

∣∣∣∣∣∣∣∣∣∣∣
.

Corollary 3.3. In the distribution sense, if the numbers ai are distinct,

1

(n− 1)!

(
− d

dt

)n−1

Mn(a1, . . . , an; dt) =
n∑
i=1

γiδai .

Hence, if the numbers ai are distinct, and if n ≥ 2, the Peano mea-
sure Mn(a1, . . . , an; dt) is absolutely continuous with respect to the Lebesgue
measure,

Mn(a1, . . . , an; dt) = Mn(a1, . . . , an; t)dt.

Corollary 3.4. Assume a1 < · · · < an. The Peano function admits the
following representation

Mn(a1, . . . , an; t) = (−1)n−1(n− 1)
n∑
i=1

γi(t− ai)n−2
+ .

Proof. Consider the function

E(t) =
1

(n− 2)!
tn−2
+ .
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In the distribution sense ( d
dt

)n−1

E = δ0,

and this can be written E ∗ δ(n−1)
0 = δ0. We get from Corollary 8.4

E ∗
(
δ

(n−1)
0 ∗Mn

)
= (−1)n−1(n− 1)!

n∑
i=1

γiE ∗ δai .

since the support of Mn is compact, the convolution product is associative
in that case. The left handside is equal to

(E ∗ δ(n−1)
0 ) ∗Mn = Mn.

therefore

Mn(a1, . . . , an; dt = (−1)n−1(n− 1)
n∑
i=1

(t− ai)n−1
+ .

If the numbers ai are distinct, the function Mn(a1, . . . , an; t) is of class
Cn−3, and, if a1 < a2 < · · · < an, the restriction of the functionMn(a1, . . . , an; t)
to each of the intervals ]ai, ai+1[ is a polynomial of degree ≤ n − 2. These
properties express that Mn(a1, . . . , an; t) is a spline function of degree n− 2
whose knots are the numbers a1, . . . , an.

Proposition 3.5. Assume the numbers ai to be distinct, a1 < · · · < an. The
function f(t) = Mn(a1, . . . , an; t) is characterized by the following properties :

(1) supp(f) = [a1, an],
(2) The restriction of f to each of the intervals [ai, ai+1[ (i = 1, . . . n− 1)

is a polynomial of degree ≤ n− 2.
(3) If n ≥ 3, then f is of class C(n−3).
(4) ∫

R
f(t)dt = 1.

Proof.
Note En(a1, . . . , an) the space of functions on R satisfying (1) et (2). Its

dimension is given by

dim En(a1, . . . , an) = (n− 1)2.

11



Consider the n(n− 2) linear forms on En(a1, . . . , an)

Lij(f) = f (j)(ai+)− f (j)(ai−) (i = 1, . . . , n, j = 0, . . . , n− 3).

The linear forms Lij are linearly independant. They express Condition (3).
By the rank theorem the functions in En(a1, . . . , an) satisfying Condition (3)
form a vector subspace of dimension 1. In fact

(n− 1)2 − n(n− 2) = 1.

Hence these functions are proportinnal toMn(a1, . . . , an; t). ThereforeMn(a1, . . . , an; t)
is the unique function satisfying Conditions (1), (2), (3), (4).

a1 a2 a3 a4

Figure 1. Graph of M4(a1, a2, a3, a4) (a1 = −4, a2 = 0, a3 = 3, a4 = 4).

The Peano measure possesses a remarkable geometric meaning: LetA1, A2, . . . An
be the n vertices of a simplex Q in Rn−1. The simplex Q is the set of convex
combinations of the points A1, . . . , An:

Q =
{
x =

n∑
i=1

tiAi | ti ≥ 0,
n∑
i=1

ti = 1
}
.

Let a1, . . . , an denote the abscisses of the projections of A1, . . . , An on the
first coordinate axis.

Proposition 3.6. Let Qt be the intersection of the simplex Q by the hyper-
plane with equation x1 = t. We assume that the volume vol(n−1)(Q) equals
1. If the numbers a1, . . . , an are distinct, then

vol(n−2)(Qt) = Mn(a1, . . . , an; t).
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Proof. If f is a continuous function on R, then∫
Q

f(x1)dx1 . . . dxn−1 =

∫
R

f(t)vol(n−2)(Qt)dt.

Define the map

Φ : ∆n−1 → Q, t 7→ x =
n∑
i=1

tiAi.

The image under Φ of the measure β is the restriction to Q of the Lebesgue
measure on Rn−1. Hence∫

Q

f(x1)dx1 . . . dxn−1 =

∫
∆n−1

f(t1a1 + t2a2 + · · ·+ tnan)β(dt).

Since the relation holds for every function f on R, it follows that

voln−2(Qt) = Mn(a1, . . . , an; t).

A1

A2

A3

A4

a1 a2

a3
a4

t

Figure 2. Projection of a simplex.
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4 Interlacing property of the eigenvalues

Let p = pn−1 be the projection of Hn(F) onto Hn−1(F) which maps a matrix
X ∈ Hn(F) to the matrix Y = p(X) ∈ Hn−1(F) of the n − 1 first rows and
n− 1 first columns of X.

Theorem 4.1. The sequence µ1 ≤ · · · ≤ µn−1 of the eigenvalues of Y = p(X)
interlaces the sequence of the eigenvalues λ1 ≤ · · · ≤ λn of X:

λ1 ≤ µ1 ≤ λ2 ≤ · · · ≤ µn−1 ≤ λn.

This interlacing relation will be denoted: µ � λ.

Proof. Assume the eigenvalues λ1, . . . , λn to be distinct: λ1 < · · · < λn.
Let vi be a unit eigenvector associated to the eigenvalue λi : Xvi = λivi,
‖vi‖ = 1. Assume also that, for every i, vi 6∈ Hn−1(F), i.e. (vi|en) 6= 0. We
will evaluate in two ways the rationnal function

f(z) =
(
(zIn −X)−1en|en) (z ∈ C).

On one hand, by the Cramer’s formulas,

f(z) =
det(n−1)(zIn−1 − Y )

det(n)(zIn −X)
=

∏n−1
j=1 (z − µj)∏n
i=1(z − λi)

.

The eigenvalues λi of X are the poles of f and the eigenvalues µj of Y are
the zeros of f . On the other hand, by using the spectral decomposition of
X,

f(z) =
n∑
i=1

wi
z − λi

, with wi = |(vi|en)|2.

In fact, for v ∈ Fn,

Xv =
n∑
i=1

λi(v|vi)vi, (zIn −X)−1v =
n∑
i=1

1

z − λi
(v|vi)vi.

Hence

f(z) =

∏n−1
j=1 (z − µj)∏n
i=1(z − λi)

=
n∑
i=1

wi
z − λi

.
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The function f is decreasing from +∞ to −∞ on each of the intervals
]λi, λi+1[ (i = 1, . . . , n − 1). Therefore each of these intervals contains one
and only one zero of f , i.e.

λ1 < µ1 < λ2 < · · · < µn−1 < λn.

Figure 3. Graph of the rational function f(z).

Note that the residue wi at the pole λi is given by

wi =

∏n−1
j=1 (λi − µj)∏
j 6=i(λi − λj)

.

Note also that

wi > 0,
n∑
i=1

wi = 1.

To complete the proof one should consider the case of non distinct eigenvalues
λ1, . . . , λn , and the case where some eigenvectors vi belong to Hn−1(F).

We can state a more precise theorem:
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Theorem 4.2.

Λ(n−1)
(
p(OA)

)
= {µ ∈ (Rn−1)+ | µ � a}.

Proof. By Theorem 4.1,

Λ(n−1)
(
p(OA)

)
⊂ {µ ∈ (Rn−1)+ | µ � a}.

Assume the eigenvalues a1, . . . , an to be distinct. Let µ1, . . . , µn−1 such that

a1 < µ1 < a2 < · · · < µn−1 < an.

We will show that there exists a matrix X ∈ OA such that µ1, . . . , µn−1 are
the eigenvalues of Y = p(X).

Put

wi =

∏n−1
j=1 (ai − µj)∏
j 6=i(ai − aj)

.

We will show that ∏n−1
j=1 (z − µj)∏n
i=1(z − ai)

=
n∑
i=1

wi
z − ai

,

i.e. that, for every z ∈ C,

n−1∏
j=1

(z − µj) =
n∑
i=1

(
wi
∏
j 6=i

(z − aj)
)
.

This equality for two polynomials of degree n−1 is satisfied for the n numbers
z = a1, . . . , z = an, therefore for every z.

Comparing the highest degree terms of both handsides one gets

n∑
i=1

wi = 1.

Furthermore, from the interlacing property of the sequence µ1, . . . , µn−1, one
deduces that the numbers wi are > 0.

For each i one fixes ξi ∈ F such that |ξi|2 = wi. The vector ξ = (ξ1, . . . , ξn)
belongs to the unit sphere of Fn. Therefore there exists u ∈ Un(F) such that
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u∗en = ξ. One puts X = uAu∗. We saw in the proof of Theorem 4.1 that
the eigenvalues µ0

1, . . . , µ
0
n−1 of the projection Y = p(X) satisfy∏n−1
j=1 (z − µ0

j)∏n
i=1(z − ai)

=
n∑
i=1

wi
z − ai

,

hence µ0
j = µj (j = 1, . . . , n− 1).

5 Baryshnikov’s formula

We will determinate the joint distribution of the eigenvalues µ1, . . . , µn−1 of
Y = p(uAu∗), i.e. the image of the Haar measure α under the map

U(n)→ (Rn−1)+, u 7→ Λ(n−1)
(
p(uAu∗)

)
.

We will factorize this map as follows:

Un(F)
Φ−→ S(Fn)

Ψ−→ ∆n−1
Θ−→ {t ∈ (Rn−1)+ | t � a},

u 7→ ξ = uen 7→ wi = |(uen|en)|2 7→ (µ1, . . . , µn−1).

Consider the map

Φ : (µ1, . . . , µn−1) 7→ (w1, . . . , wn),

defined by

wi =

∏n−1
j=1 (ai − µj)∏
j 6=i(ai − aj)

.

Proposition 5.1. Let ω be the differential form of degree n− 1,

ω = dw1 ∧ dw2 ∧ · · · ∧ dwn−1.

Its image under Φ∗ is given by

Φ∗ω =
Vn−1(µ1; . . . , µn−1)

Vn(a1, . . . , an)
dµ1 ∧ dµ2 ∧ · · · ∧ dµn−1,

where Vn is the Vandermonde polynomial in n variables,

Vn(z1, . . . , zn) =
∏

1≤i<j≤n

(zj − zi).

17



Proof. Let us compute the differential of Φ :

∂wi
∂µj

= −
∏n−1

k=1(ai − µk)∏
k 6=i(ai − ak)

1

ai − µj
,

and its Jacobian determinant:

det
(
∂wi
∂µj

)
1≤i,j≤n−1

= (−1)n−1
∏n−1

i=1

(Qn−1
k=1 (ai−µk)Q
k 6=i(ai−ak)

)
det
(

1
ai−µj

)
1≤i,j≤n−1

.

We use now the following Cauchy’s formula

det
( 1

ai − µj

)
1≤i,j≤n−1

= Vn−1(a1, . . . , an−1)Vn−1(µ1, . . . , µn−1)
n−1∏
i,l=1

1

ai − µj
.

One gets finally

det
(∂wi
∂µj

)
1≤i,j≤n

= (−1)n−1 1∏n−1
i=1

∏n
k=1,k 6=i(ai − ak)

×

×Vn−1(a1, . . . , an−1)Vn−1(µ1, . . . , µn−1)

= ±Vn−1(µ1, . . . , µn−1)

Vn(a1, . . . , an)
.

Theorem 5.2. Assume F = C. The joint distribution of the eigenvalues
µ1, . . . , µn−1 is the probability measure ν

(n−1)
A with support

{µ ∈ Rn−1 | a1 ≤ µ1 ≤ a2 ≤ · · · ≤ µn−1 ≤ an},

and density

(n− 1)!
Vn−1(µ1, . . . , µn−1)

Vn(a1, . . . , an)
.
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This can be written, for a function f defined on (Rn−1)+,∫
(Rn−1)+

f(t)ν
(n−1)
A (dt)

=
(n− 1)!

Vn(a1, . . . , an)

∫ a2

a1

dt1

∫ a3

a2

dt2 . . .

∫ an

an−1

dtn−1Vn−1(t)f(t).

Proof. The map Φ : U(n)→ S(Cn) maps the Haar measure α to the uniform
measure σ (Proposition 2.1). The map Ψ : S(Cn)→ ∆n−1, maps the uniform
measure σ to the measure β (Proposition 2.2). The measure β can be defined
by the differential form

(n− 1)!dw1 ∧ . . . ∧ dwn−1.

By Proposition 5.1, the measure β is transformed into the one given in the
statement.

6 The Fourier-Laplace transform of orbital

measures

The Fourier-Laplace transform of a bounded measure µ on Hn(F) is defined
by, if Z ∈ iHn(F),

µ̂(Z) =

∫
Hn(F)

etr (ZX)µ(dX).

If the support of µ is compact, then this transform is defined for Z in the
complexified space Hn(F): Sym(n,C) if F = R, M(n,C) if F = C.

The Fourier-Laplace transform of the orbital measure µA is given by

µ̂A(Z) =

∫
OA
etr (ZX)µA(dX) =

∫
Un(F)

etr (ZuAu∗)α(du).

If Z = diag(z1, . . . , zn), one can write

µ̂A(Z) = En(z; a),

where En is an analytic function on Cn×Cn, biinvariant under the group Sn

of permutations.
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Let µ be a measure on Hn(F) which is Un(F)-invariant. The integral of a
function f defined on Hn(F) can be written∫

Hn(F)

f(X)µ(dX) =

∫
(Rn)+

(∫
Un(F)

f(udiag(t1, . . . , tn)u∗)α(du)
)
ν(dt),

where ν is a measure on (Rn)+, called the radial part of µ. The Fourier-
Laplace transform µ is given by, if Z = diag(z1, . . . , zn),

µ̂(Z) =

∫
(Rn)+

En(z; t)ν(dt).

If µ is a probability measure on Hn(F) which is Un(F)-invariant, its radial
part ν is also the joint distribution of the eigenvalues for a random matrix
X distributed according to the law µ.

Theorem 6.1. (Harish-Chandra-Itzykson-Zuber) We assume that F =
C. If Z = diag(z1, . . . , zn),

µ̂A(Z) = δn!
1

Vn(a)Vn(z)
det(eziaj)1≤i,j≤n,

où
δn = (n− 1, n− 2, . . . , 1, 0), δn! = (n− 1)!(n− 2)! . . . 2!.

In other words

En(z, a) = δn!
1

Vn(a)Vn(z)
det
(
eziaj

)
1≤i,j≤n.

This formula is well defined if the numbers ai are distinct, and the numbers
zj as well.

Proof.
a) We prove first a recursion formula for En(z, a), valid for F = R or C.

Let Y denote the projection of X on Hn−1(F). We can write

tr(ZX) = tr(Z ′X) + zn(tr(A)− tr(Y )).

In the integral which defines E(z, a), the integrant

etr(ZX) = ezntr(A)e−zntrY etr(Z′Y ),
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where Z ′ = diag(z1, . . . , zn−1) only depends on the projection Y . Therefore

En(z, a) = ezntrA

∫
Hn−1(F)

e−zntrY etr(Z′Y )µ
(n−1)
A (dY ).

By using the integral formula (*) we get

En(z, a) = ezntrA

∫
(Rn−1)+

(∫
Un−1(F)

etr(Z′vTv∗)αn−1(dv)
)
ν

(n−1)
A (dt),

where T = diag(t1, . . . , tn−1). Hence we have established the following recur-
sion formula

En(z, a) = ezntrA

∫
(Rn−1)+

En−1(z′, t)e−zn(t1+···+tn−1)ν
(n−1)
A (dt).

b) We assume now F = C, and prove the Harish-Chandra-Itzykson-Zuber
formula recursively on n. For n = 1 there is nothing to prove. Assume that
the formula holds for n− 1. Then, by Baryshnikov’s formula

En(z, a) =
δn−1

Vn−1(z′)Vn(a)
ezn(a1+···+an)

∫ a2

a1

dt1

∫ a3

a2

dt2 . . .

∫ an

an−1

det
(
e(zj−zn)ti

)
1≤i,j≤n−1

.

Let us compute this integral∫ a2

a1

dt1

∫ a3

a2

dt2 . . .

∫ an

an−1

det
(
e(zj−zn)ti

)
1≤i,j≤n−1

= det
(∫ ai+1

ai

ezj−zn)tidti

)
1≤i,j≤n−1

=
1∏n−1

i=1 (zi − zn)
det
(
ezj−zn)ai+1 − e(zj−zn)ai

)
1≤i,j≤n−1

.

It remains to check the identity

D := det
(
ezjai

)
1≤i,j≤n = ezn(a1+···+an) det

(
eai(zi−zn) − eai+1(zj−zn)

)
1≤i,j≤n−1

.

One writes

D = ezn(a1+···+an)

∣∣∣∣∣∣∣∣∣
ea1(z1−zn) ea1(z2−zn) . . . ea1(zn−1−zn) 1
ea2(z1−zn) ea2(z2−zn) . . . ea2(zn−1−zn) 1

...
...

...
...

ean(z1−zn) ean(z2−zn) . . . ean(zn−1−zn) 1

∣∣∣∣∣∣∣∣∣ .
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One substracts the second row from the first, the third from the second, and
so on. One gets finally the identity.

By using this formula we will determine the projection µ
(k)
A on Hk(C) of

the orbital measure µA, observing the following: Let µ be a bounded measure
on Hn(C), and µ(k) the projection of µ on Hk(C). The Fourier-Laplace
transform of µ(k) is equal to the restriction to Hk(C) of the Fourier-Laplace
transform of µ. But a difficult appears: for k ≤ n− 2, the Harish-Chandra-
Itzykson-Zuber formula is not defined for Z ∈ Hk(C). We will obtain the

Fourier-Laplace transform of µ
(k)
A by going to the limit.

7 Fourier-Laplace transform of the projection

of an orbital measure

Consider functions of n variables defined by determinantal formulas of the
following type:

F (z1, . . . , zn) =
1

Vn(z)
det
(
fi(zj)

)
1≤i,j≤n,

where f1, . . . , fn are n analytic functions of one variable defined in a neigh-
borhood of 0, and Vn is the Vandermonde polynomial:

Vn(z) =
∏

1≤i<j≤n

(zi − zj).

We saw in preceding Section that the Fourier-Laplace transform of an orbital
integral is of this type (Theorem 6.1). The formula defines F if the numbers
zj are distinct, and F extends as an analytic function in a neighborhood of
0 in Cn. We will establish an explicit formula for the restriction of F to the
subspace zn = 0, . . . , zk+1 = 0.

Theorem 7.1. For 0 ≤ k ≤ n− 1,

F (z1, . . . , zk, 0, . . . , 0) = 1
1!2!...(n−k−1)!
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1
Vk(z1,...,zk)(z1...zk)n−k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f1(z1) . . . fn(z1)
...

...
f1(zk) . . . fn(zk)

f
(n−k−1)
1 (0) . . . f

(n−k−1)
n (0)

...
...

f ′1(0) . . . f ′n(0)
f1(0) . . . fn(0)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Proof. We will prove this formula by a backwards recursion on k, starting
from k = n. Assume that the formula holds for k. We will establish it for
k− 1. Since the value of a determinant does not change if one adds to a row
a linear combination of the other rows, we can replace the entries of the k-th
row by

fj(zk)−
(
fj(0) + zkf

′
j(0) +

1

2
z2
kf j(0) + · · ·+ 1

(n− k − 1)!
zn−k−1
k f

(n−k−1)
j (0)

)
.

Observing that

limzk→0
1

zn−kk

(
fj(zk)−

(
fj(0) + zkf

′
j(0) + 1

2
z2
kf j(0) + · · ·

+ 1
(n−k−1)!

zn−k−1
k f

(n−k−1)
j (0)

))
= 1

(n−k)!
f

(n−k)
j (0),

we obtain

F (z1, . . . , zk−1, 0, . . . , 0) = 1
1!2!...(n−k)!

1
Vk−1(z1,...,zk−1)n−k+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f1(z1) . . . fn(z1)
...

...
f1(zk−1) . . . fn(zk−1)

f
(n−k)
1 (0) . . . f

(n−k)
n (0)

...
...

f ′1(0) . . . f ′n(0)
f1(0) . . . fn(0)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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In particular, for k = 1 we get:

F (z1, 0, . . . , 0) =
1

1!2! . . . (n− 2)!

1

zn−1
1

∣∣∣∣∣∣∣∣∣∣∣

f1(z1) . . . fn(z1)

f
(n−2)
1 (0) . . . f

(n−2)
n (0)

...
...

f ′1(0) . . . f ′n(0)
f1(0) . . . fn(0)

∣∣∣∣∣∣∣∣∣∣∣
For k = 0 we get:

F (0, . . . , 0) =
1

1!2! . . . (n− 1)!

∣∣∣∣∣∣∣∣∣
f

(n−1)
1 (0) . . . f

(n−1)
n (0)

...
...

f ′1(0) . . . f ′n(0)
f1(0) . . . fn(0)

∣∣∣∣∣∣∣∣∣
If we specialize the formula of Theorem 7.1 to the case:

fj(zi) = eajzi ,

then, if Z = diag(z1, . . . , zn),

µ̂A(Z) = δn!
1

Vn(a)
F (z1, . . . , zn),

and we get by restriction the Fourier-Laplace transform of the projection
µ

(k)
A .

Theorem 7.2. Assume the numbers aj to be distinct, and the numbers
z1, . . . , zk to be distinct and non zero (0 ≤ k ≤ n− 1).

µ̂
(k)
A (z) = (n− k)! . . . (n− 1)!

1
Vn(a)Vk(z1,...,zk)(z1...zk)n−k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ea1z1 . . . eanz1
...

...
ea1zk . . . eanzk

an−k−1
1 . . . an−k−1

n
...

...
a1 . . . an
1 . . . 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.
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In particular, for k = 1, z = diag(z1, 0, . . . , 0), we recover the formula of
Proposition 3.1.

µ̂
(1)
A (z) = (n− 1)!

1

Vn(a)

1

zn−1
1

∣∣∣∣∣∣∣∣∣∣∣

ea1z1 . . . eanz1

an−2
1 . . . an−2

n
...

...
a1 . . . an
1 . . . 1

∣∣∣∣∣∣∣∣∣∣∣
.

8 Olshanski’s determinantal formula

Recall the following determinantal formula for the divided differences:

f [a1, . . . , an] =
1

Vn(a1, . . . , an)

∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1
a1 a2 . . . an
...

...
...

an−2
1 an−2

2 . . . an−2
n

f(a1) f(a2) . . . f(an)

∣∣∣∣∣∣∣∣∣∣∣
This formula can be generalized:

Proposition 8.1. Let f1, . . . , fk be functions defined on R.∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1
a1 a2 . . . an
...

...
...

an−k−1
1 an−k−1

2 . . . an−k−1
n

f1(a1) f1(a2) . . . f1(an)
...

...
...

fk(a1) fk(a2) . . . fk(an)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=
(∏

0<j−i≤n−k(aj − ai)
)

det
(
fi[aj, . . . , aj+n−k]

)
1≤i,j≤k.

Put ϕk(t) = tk. Observe that, for bi ∈ R,

ϕk[b1, . . . , bk+1] = 1, ϕk[b1, . . . , b`] = 0 for ` > k + 1.
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Let D denote the left handside. It can be written

D =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ϕ0(a1) ϕ0(a2) . . . ϕ0(an)
ϕ1(a1) ϕ1(a2) . . . ϕ1(an)

...
...

...
ϕn−k−1(a1) ϕn−k−1(a2) . . . ϕn−k−1(an)
f1(a1) f1(a2) . . . f1(an)

...
...

...
fk(a1) fk(a2) . . . fk(an)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
One substracts the first column from the second one, the second one from
the third one, and so on:

Cn ← Cn − Cn−1, Cn−1 ← Cn−1 − Cn−2, . . . , C2 ← C2 − C1.

Then we get

D = (a2 − a1)(a3 − a2) . . . (an − an−1)×∣∣∣∣∣∣∣∣∣∣∣∣∣

ϕ1[a1, a2] ϕ1[a2, a3] . . . ϕ1[an−1, an]
...

...
...

ϕn−k−1[a1, a2] ϕn−k−1[a2, a3] . . . ϕn−k−1[an−1, an]
f1[a1, a2] f1[a2, a3] . . . f1[an−1, an]

...
...

...
fk[a1, a2] fk[a2, a3] . . . fk[an−1, an]

∣∣∣∣∣∣∣∣∣∣∣∣∣
Then we repeat the process:

D =
(
(a2 − a1) . . . (an − an−1)

)(
(a3 − a1) . . . (an − an−2)

)
×∣∣∣∣∣∣∣∣∣∣∣∣∣

ϕ2[a1, a2, a3] . . . ϕ2[an−2, an−1, an]
...

...
ϕn−k−1[a1, a2, a3] . . . ϕn−k−1[an−2, an−1, an]
f1[a1, a2, a3] . . . f1[an−2, an−1, an]

...
...

fk[a1, a2, a3] . . . fk[an−2, an−1, an]

∣∣∣∣∣∣∣∣∣∣∣∣∣
After n− k steps we get the formula of Proposition 8.1.
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By the Hermite-Genocchi formula,

det
(
fi[aj, . . . , aj+n−k]

)
1≤i,j≤k

=
( 1

(n− k)!

)k
det
(∫

R
f

(n−k)
i (t)Mn−k+1(aj, . . . , aj+n−k; t)dt

)
1≤i,j≤k

.

We use now the integral Cauchy-Binet formula: Let u1, . . . , uk be continuous
functions on R, v1, . . . , vk continuous functions on R with compact support,
then ∫

Rk
det
(
uj(ti)

)
1≤i,j≤k det

(
vj(ti)

)
1≤i,j≤kdt1 . . . dtk

= k! det
(∫

R
ui(t)vj(t)dt

)
1≤i,j≤k

.

Taking ui(t) = f
(n−k)
i (t) et vj(t) = Mn−k+1(aj, . . . , aj+n−k; t), we get

det
(
fi[aj, . . . , aj+n−k]

)
1≤i,j≤k

=
( 1

(n− k)!

)k 1

k!

∫
R

det
(
f

(n−k)
j (ti) det

(
Mn−k+1(aj, . . . , aj+n−k; t)

)
dt1 . . . dtk.

We specialize this formula to the functions fi(t) = ezit, and obtain, pour
Z = diag(z1, . . . , zk),
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µ̂
(k)
A (Z) =

C(n, k)∏
j−i≥n−k+1(aj − ai)

∫
(Rk)+

Ek(z1, . . . , zk; t)

det
(
Mn−k+1(aj, . . . , aj+n−k; ti)

)
1≤i,j≤kVk(t)dt1 . . . dtk,

with

C(n, k) =
k−1∏
i=1

(
n− k + i

i

)
.

Olshanski’s determinantal formula follows:

Theorem 8.2. The radial part ν
(k)
A of the projection µ

(k)
A on the subspace

Hk(C) of the orbital measure µA is given by

ν
(k)
A (dt) =

C(n, k)∏
j−i≥n−k+1(aj − ai)

×

× det
(
Mn−k+1(aj, . . . , aj+n−k; ti)

)
1≤i,j≤kVk(t)dt1 . . . dtn.

Special cases

a) k = 1. In this case C(n, k) = 1, and

ν
(1)
A (dt) = Mn(a1, . . . , an)dt.

b) k = n− 1. In this case C(n, k) = (n− 1)!, and∏
j−i≥2

(aj − ai) =
Vn(a)∏

j−i=1(aj − ai)
.

Since a1 < a2 < · · · < an, the determinant

det
(
M2(aj, aj+1; ti)

)
1≤i,j≤n−1

vanishes unless t � a, and then is equal to

M2(a1, a2; t1)M2(a2, a3; t2) . . .M2(an−1, an; tn).
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Since, for a < b,

M2(a, b; t) =
1

b− a
1a≤t≤b,

one gets

ν
(n−1)
A (dt) =

1

Vn(a)
Vn−1(t)1t�adt1 . . . dtn−1,

and one recovers Baryshnikov’s formula.

One can check that Olshanski’s formula defines a probability measure by
evualating directly the integral

Z(a) =

∫
(Rk)+

det
(
Mn−k+1(aj, . . . , aj+n−k; ti)Vk(t)dt1 . . . dtk.

By the Cauchy-Binet formula,

Z(a) = det
(∫

R
Mn−k+1(aj, . . . , aj+n−k; t)t

i−1dt
)
.

The moments of the Peano measures are known:∫
R
Mn(a1, . . . , an; t)tmdt =

m!(n− 1)!

(m+ n− 1)!
hm(a1, . . . , an),

where hm is the complete symmetric function of degree m. Hence

Z(a) = det
( (i− 1)!(n− k)!

(n− k + i− 1)!
hi−1(aj, . . . , aj+n−k)

)
.

By using the relation

hm(a2, . . . , an)− hm(a1, . . . , an−1) = (a1 − an)hm−1(a1, . . . , an),

which follows from the generating formula:

∞∑
m=0

hm(a1, . . . , an)zm =
n∏
i=1

1

1− aiz
,

one gets

det
(
hi−1(aj, . . . , aj+n−k)

)
=

∏
j−i≥n−k+1

(aj − ai).

Finally

Z(a) =
1

C(n, k)

∏
j−i≥n−k+1

(aj − ai).
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9 A branching theorem

Let G be a compact group and π a representation of G on a finite dimensional
vector space V . Recall that the character χπ is the function defined on G by

χπ(g) = trπ(g).

It is a central function which can be decomposed in the basis {χλ} (λ ∈ Ĝ)
of the characters of the equivalence classes of irreducible representations of
G:

χπ(g) =
∑
λ∈Ĝ

mλχλ(g).

The sum is finite and the coefficientsmλ are integers≥ 0, called multiplicities.
This equality is equivalent to the relation

π =
⊕
λ∈Ĝ

mλπλ.

If the numbers mλ are equal to 0 or 1, one says that the decomposition is
multiplicity free (see exercice 1).

Consider the restriction πλ
∣∣
H

of an irreducible represetnation πλ of G to
a closed subgroup H of G. The character of this restriction is equal to the re-
striction to H of the character χλ of πλ. In general the representation πλ

∣∣
H

is
not irreducible, and decomposes in a finite sum of irreducible representations
π

(H)
µ of H (µ ∈ Ĥ) :

πλ
∣∣
H

=
⊕
µ∈Ĥ

m(λ, µ)π(H)
µ ,

which involves multiplicities m(λ, µ). Such a relation is called branching
rule. In order to determine the multiplicities m(λ, µ) one method consists
in decomposing the restriction to H of the character χλ in the basis of the
characters χ

(H)
µ of the irreducible characters of H : for h ∈ H,

χλ(h) =
∑
µ∈Ĥ

m(λ, µ)χ(H)
µ (h).

We will apply this method in the case ofG = U(n) andH = U(n−1). The

character of the representation π
(n)
λ of the group U(n) with highest weight λ
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can be expressed by the Schur function sλ: if t is a unitary diagonal matrix,
t = diag(t1, . . . , tn) ∈ T ' (C∗)n, then

χ
(n)
λ (t) = sλ(t).

Recall the definition of the Schur function sλ(t) associated to the signature

λ = (λ1, . . . , λn), λ1, . . . , λn ∈ Z, λ1 ≥ · · · ≥ λn. One writes s
(n)
λ (t) if one

wants to specify the numbers of variables, t = (t1, . . . , tn) ∈ (C∗)n :

s
(n)
λ (t) =

1

Vn(t)

∣∣∣∣∣∣∣∣∣
tλ1+n−1
1 tλ2+n−2

1 . . . tλn1

tλ1+n−1
2 tλ2+n−2

2 . . . tλn2
...

...
...

tλ1+n−1
n tλ2+n−2

n . . . tλnn

∣∣∣∣∣∣∣∣∣ ,
where Vn(t) is the Vandermonde polynomial

Vn(t) =
∏

1≤i<j≤n

(ti − tj).

For fixed tn = 1, one gets a function of n− 1 variables s
(n)
λ (t1, . . . , tn−1, 1)

which can be written as a linear combination of the Schur functions s
(n−1)
µ (t1, . . . , tn−1)

(µ = (µ1, . . . , µn−1)).

Proposition 9.1.

s
(n)
λ (t1, . . . , tn−1, 1) =

∑
µ�λ

s(n−1)
µ (t1, . . . , tn−1),

où µ � λ signifie que µ entrelace λ :

λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ λ3 ≥ · · · ≥ λn−1 ≥ µn−1 ≥ λn.

Proof.
We will use the formula: for p, q ∈ Z, p ≥ q,

tp+1 − tq

t− 1
= tq + tq+1 + · · ·+ tp =

∑
p≥r≥q

tr. (∗)

Observe that

Vn(t1, . . . , tn−1, 1) = Vn−1(t1, . . . , tn−1)
n−1∏
i=1

(ti − 1).
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in order to evaluate the determinant∣∣∣∣∣∣∣∣∣∣∣

tλ1+n−1
1 tλ2+n−2

1 . . . tλn1

tλ1+n−1
2 tλ2+n−2

2 . . . tλn2
...

...
...

tλ1+n−1
n−1 tλ2+n−2

n−1 . . . tλnn−1

1 1 . . . 1

∣∣∣∣∣∣∣∣∣∣∣
one substracts the second column from the first one, then the third one from
the second one, and so on. One gets

sλ(t1, . . . , tn−1, 1) =
1

Vn−1(t)
det(Aij)1≤i,j≤n−1,

where

Aij =
t
λj+n−j
i − tλj+1+n−j+1

i

ti − 1
.

We apply now formula (*) :

Aij =
∑

λj≥µ≥λj+1

tµ+n−1−j
i .

The formula of Proposition 9.1 follows.

Let π
(n)
λ denotes the irreducible representation of the unitary group U(n)

with highest weight λ.
From Proposition 9.1 one deduces the following branching rule.

Theorem 9.2. (Branching rule) The restriction of the representation π
(n)
λ

to the subgroup U(n− 1) decomposes multiplicity free. The irreducible repre-

sentations π
(n−1)
µ of U(n− 1) which occur in this decomposition are those for

which µ interlaces λ:

π
(n)
λ

∣∣
U(n−1)

=
⊕
µ�λ

π(n−1)
µ .

The branching rule for the restriction of π
(n)
λ to the subgroup U(k) (1 ≤

k ≤ n− 2) is less simple ;

π
(n)
λ

∣∣
U(k)

⊕
µ∈Û(k)

m(λ, µ)π(k)
µ ,

32



where m(λ, µ) is the number of sequences

ν(n−1) ∈ Zn−1, ν(n−2) ∈ Zn−2, . . . , ν(k+1) ∈ Zk+1,

such that
µ � ν(k+1) � · · · � ν(n−1) � λ.

10 Horn’s theorem

In this section we consider the projection q of the space Hn(F) on the sub-
space Dn ' Rn of real diagonal matrices

q : Hn(F)→ Rn, X 7→ (x1, . . . , xn), xi = Xii.

For an orbit OA of a diagonal matrix A = diag(a1, . . . , an) under the action of
the unitary group Un(F), we will see that the projection q(OA) is equal to the
convex hull of the points σ(a), where σ(a) is the transform of a = (a1, . . . , an)
under the permutation σ ∈ Sn: σ(a) = (aσ(1), . . . , aσ(n)). This the Horn’s
convexity theorem:

q(OA) = C(a) := Conv
(
{σ(a) | σ ∈ Sn}

)
.

The image of the orbital measure µA is suppported by C(a), and the
density of the projection NA = q(µA) with respect to the Lebesgue measure
of the hyperplane

x1 + · · ·xn = a1 + · · ·+ an

is a piecewise polynomial function. This measure has been described by
Heckman in a more general setting.

Theorem 10.1. (Horn’s convexity Theorem) For a diagonal matrix A =
diag(a1, . . . , an),

q(OA) = C(a).

Proof.
We will sketch the main steps in the proof.
a) Theorem of Birkhoff
A real n × n matrix S is said to be doubly stochastic if, for all i and j,

Sij ≥ 0, and
n∑
k=1

Sik = 1,
n∑
k=1

Skj = 1.
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Example 1
2

1
2

0
1
2

0 1
2

0 1
2

1
2

 .

The set of doubly stochastic matrices is convex and compact.
The permutation matrix Pσ associated to the permutation σ is given by

(Pσx)i = xσ(i).

The matrix Pσ is doubly stochastic.
Example For σ = (2, 3, 1),

Pσ =

0 0 1
1 0 0
0 1 0

 .

Theorem 10.2. (Birkhoff) The extremal points of the set of doubly stochas-
tic matrices are the permutation matrices.

b) We show first that q(OA) ⊂ C(a). Let X ∈ OA: X = uAu∗ with
u ∈ Un(F). Then

Xii =
n∑
j=1

|uij|2aj.

The matrix S with S = |uij|2 is doubly stochastic. By Birkhoff’s Theorem it
is a convex combination of permutation matrices:

S =
∑
σ∈Sn

cσPσ, with cσ ≥ 0,
∑
σ∈Sn

cσ = 1.

Therefore
q(X) =

∑
σ∈Sn

cσPσa =
∑
σ∈Sn

cσσ(a) ∈ C(a).

Hence q(OA) ⊂ C(a).

c) We show now that C(a) ⊂ q(OA). Let b ∈ C(a). We have to show
that there is a matrix u ∈ Un(F) such that q(uAu∗) = b. Horn shows that, if
b ∈ C(a), then there is an orthogonal matrix u such that b = Sa, where S is
the doubly stochastic matrix given by Sij = u2

ij. Therefore b = q(uAu∗).
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11 Heckman’s measure

Let NA denote the projection of the orbital measure µA on the space Dn of
diagonal matrices: NA = q(µA). As we observed at the end of Section 6 in

an another case, the Fourier-Laplace transform N̂A of NA is the resriction to
Dn ' Rn of the Fourier-Laplace µ̂A of µA. By the Harish-Chandra-Itzykson-
Zuber formula (Theorem 6.1), for z = (z1, . . . , zn) ∈ Cn:

N̂A(z) = δn!
1

Vn(a)Vn(z)
det(eziaj)1≤i,j≤n.

This can be written

Vn(z)N̂A(z) =
δn!

Vn(a)

∑
σ∈Sn

ε(σ) exp
( n∑
i=1

ziaσ(i)

)
.

This means an equality between two Fourier-Laplace transforms, and implies
the following differential equation:

Vn

(
− ∂

∂x

)
NA =

δn!

Vn(a)

∑
σ∈Sn

ε(σ)δσ(a),

where σ(a) = (aσ(1), . . . , aσ(n)). For solving this equation we will use an ele-
mentary solution of the differential operator Vn( ∂

∂x
). Define the distribution

En:

〈En, ϕ〉 =

∫
R
n(n−1)

2

ϕ
(∑
i<j

tij(ei − ej)
)
dtij.

Proposition 11.1. The distribution En is an elementary solution of the
differential operator Vn( ∂

∂x
):

Vn

( ∂
∂x

)
En = δ0.

Its support is the following cone

supp(En) = {x ∈ Rn | x1 ≥ · · · ≥ xn, x1 + · · ·+ xn = 0}.

The distribution En is absolutely continuous with respect to the Lebesgue
measure of the hyperplane x1 + · · ·+xn = 0. The cone supp(En) decomposes
into a finite union of cones, and the restriction of the density to each of these
cones is a polynomial homogeneous of degree 1

2
(n− 1)(n− 2).
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Proof.
The differential operator Vn( ∂

∂x
) is a product of degree one differential

operators:

Vn

( ∂
∂x

)
=
∏
i<j

( ∂

∂xi
− ∂

∂xj

)
.

An elementary solution of ∂
∂xi
− ∂

∂xj
is the following Heaviside distribution

Yij defined by

〈Yij, ϕ〉 =

∫ ∞
0

ϕ
(
t(ei − ej)

)
dt.

Hence the convolution product

En =
∗∏
i<j

Yij

is an elementary solution of Vn( ∂
∂x

).

Define ϕ̌(x) = ϕ(−x), and Ěn by 〈Ěn, ϕ〉 = 〈En, ϕ̌〉. Let F and G be
distributions on Rn. Assume the support of F to be compact. LetD = P

(
∂
∂x

)
be a diffirential operator with constant coefficients. Then

DF ∗G = F ∗DG = D(F ∗G).

Therefore:

Ěn ∗ Vn
(
− ∂

∂x

)
NA = Vn

( ∂
∂x

)
Ěn ∗NA = NA.

Therefore

NA =
δn

Vn(a)

∑
σ∈Sn

ε(σ)Ěn ∗ δσ(a).

The measure NA is supported by the hyperplane

x1 + · · ·+ xn = a1 + · · ·+ an.

In fact supp(NA) = q(OA) = C(a).

Theorem 11.2. The measure NA has a density with respect to the Lebesgue
measure of the hyperplane

x1 + · · ·+ xn = a1 + · · ·+ an,

and the density is piecewise polynomial.
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Example, n=2

〈E2, ϕ〉 =

∫ ∞
0

ϕ
(
t(e1 − e2)

)
dt.

S2 = {Id, τ}, τ : (x1, x2) 7→ (x2, x1).

〈NA, ϕ〉 =
1

a1 − a2

(∫ ∞
0

ϕ
(
a− t1(e1−e2)

)
dt1−

∫ ∞
0

ϕ
(
τ(a)− t2(e1−e2)

)
dt2

)
.

〈NA, ϕ〉 =

∫ 1

0

ϕ
(
(1− t)a+ tτ(a)

)
dt.
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Example, n=3
α = e1 − e2, β = e2 − e3, γ = e1 − e3, note that γ = α + β.

〈E3, ϕ〉 =

∫
(R+)3

ϕ(uα + vβ + wγ)dudvdw

=

∫
(R+)3

ϕ
(
(u+ w)α + (v + w)β

)
dudvdw.

=

∫
{0≤w≤s,0≤w≤t}

f(sα + tβ)dsdtdw

=

∫
(R+)2

inf(s, t)f(sα + tβ)dsdt.

Hence the suppport of E3 is the angle defined by the rays generated by α
and β, with density, if x = sα + tβ, f(s, t) = inf(s, t).

The support of the measure NA is the convex hull of the six points σ(a)
(σ ∈ S3). the density of NA is linear in the three trapezes, and in the three
triangles, and constant in the middle triangle.
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Exercises

1. Let π be a finite dimensional representation of a compact group G on
a complex vector space V , and consider its decomposition as direct sum of
irreducible representations

π =
⊕
λ∈Ĝ

mλπλ.

a) Show that the commutant in End(V) of π(G),

π(G)′ = {A ∈ End(V) | ∀g ∈ G, Aπ(g) = π(g)A},

is equal to

π(G)′ =
⊕
λ∈Ĝ

End(Cmλ).

b) Recall that the decomposition is said to be multiplicity free if the
multiplicities mλ are equal to 0 or 1. Show that the commutant π(G)′ is
commutative if and only if the representation π decomposes multiplicity free.

2. The momentsM(m)
n (a1, . . . , an) of the Peano measureMn(a1, . . . , an; dt)

are defined by

M(m)
n (a1, . . . , an) :=

∫
R

tmMn(a1, . . . , an; dt).

Establish the relation

M(m)
n (a1, . . . , an)t =

m!(n− 1)!

(m+ n− 1)!
hm(a1, . . . , an),

where hm denotes the complete symmetric function.

3. Establish the following relation

Mn(a1, . . . , an; t)

=
n− 1

an − a1

∫ t

−∞

(
Mn−1(a1, . . . , an−1; s)−Mn−1(a2, . . . , an; s)

)
ds.

4. Originally the Peano measure Mn(a1, . . . , an; dt) has been introduced
in order to express as an integral the error commited when one replace a
function by its interpolation polynomial.
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a) Let a1, . . . , an be n distinct real numbers, and let f be a function
defined on an interval containing the numbers a1, . . . , an. Let p be the inter-
polation polynomial of f with respect to the numbers a1, . . . , an : p is the
polynomial of degree ≤ n − 1 such that p(ai) = f(ai) (i = 1, . . . , n). Show
that

f(x) = p(x) + (x− a1)(x− a2) . . . (x− an)f [x, a1, . . . , an].

b) Assume the function f to be of class Cn. Show that

f(x) = p(x)
+ 1
n!

(x− a1)(x− a2) . . . (x− an)
∫

R f
(n)(t)Mn+1(x, a1, . . . , an; t)dt.

5. Define

Ẽn(z, x) =
1

Vn(z)
det
(
ezixj

)
1≤i,j≤n =

1

δn!
Vn(x)En(z, x).

Show that

Ẽn(z, x) =

∫
y�x
Ẽn−1(z′, y)e(〈x〉−〈y〉)zndy1 . . . yn−1,

where z′ = (z1, . . . , zn−1), et 〈x〉 = x1 + · · ·+ xn.

6. Let s
(n)
λ (t1, . . . , tn) be the Schur function. Show that its Laurent

expansion with respect to tn is given by

s
(n)
λ (t1, . . . , tn−1, tn) =

∑
µ�λ

s(n−1)
µ (t1, . . . , tn−1)t〈µ〉−〈λ〉n ,

où
〈λ〉 = λ1 + · · ·+ λn.

One will observe the analogy of this formula with the one of the preceding
exercise.
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Notes and references

The measure Mn(a1, . . . , an; dt) has been called Peano measure (or Peano
kernel) refering to the following theorem due to Peano : a continuous linear
form L on the space Cn+1([a, b]) which vanishes on the subspace Pn of the
polynomials of degree ≤ n admits the following representation :

L(f) =

∫ b

a

f (n+1)(t)K(t)dt,

where

K(t) =
1

n!
Lx
[
(x− t)n+

]
.

(See [Peano,1913], and also [Davis,1963], Section 3.7, [Phillips,2000], Chapter
4.) Observe that a difficulty appear since the function x 7→ (x − t)n+ is not
of class Cn+1. In the present case the linear form L is defined by

L(f) = f [a1, a2, . . . , an],

where a1, . . . , an are n real numbers.

Theorem 2.3, due to Okounkov, is noticed in [Olshanski-Vershik,1996] :
Proposition 8.2, p.172.

Hermite-Genocchi formula (Theorem 3.2) has been established by Her-
mite et Genocchi independantly in 1878 for which they gave two different
proofs.

The oldest reference I know for the intertwining theorem (Theorem 4.1)
is a paper by Cauchy : Sur l’équation à l’aide de laquelle on détermine les
inégalités séculaires des planètes (1829).

The intertwining theorem is also called Theorem of Rayleigh refering to
the book by Rayleigh The Theory of Sound (1877), (new edition by Dover in
1945).

The Harish-Chandra-Itzykson-Zuber formula has been established by Itzyk-
son and Zuber using a method involving the heat equation on the space
of Hermitian matrices and a formula for the radial part of the Laplacian
[Itzykson-Zuber,1980]. It turns out that the Harish-Chandra-Itzykson-Zuber
formula is nothing but a special case of a formula established by Harish-
Chandra related to the action of a compact Lie group on its Lie algebra.
[Harish-Chandra,1957].
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