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Chapter I

GELFAND PAIRS

I.1 Gelfand pairs. — Let G be a locally compact group, K a
compact subgroup, and let Cc(K\G/K) denote the space of K-biinvariant
continuous functions with compact support. It is a convution algebra.
The pair (G,K) is said to be a Gelfand pair if the convolution algebra
Cc(K\G/K) is commutative.

Examples

a) Let V be a finite dimensional real vector space: V ' Rn, and K a
compact subgroup of GL(V ). Put G = K n V . Then (G,K) is a Gelfand
pair. In fact, as convolutions algebras, Cc(K\G/K) ' Cc(K\V ), the space
of K-invariant continuous functions on V with compact support.

b) Let U be a compact group, and put

G = U × U, K = {(x, x) | x ∈ U} ' U.

Then (G,K) is a Gelfand pair. In fact, as convolution algebras,
C(K\G/K) ' Ccentral(U), the space of central functions on U .

c) Let G be a locally compact group, K a compact subgroup. Assume
that there is a continuous involutive automorphism θ such that

∀x ∈ G, x−1 ∈ Kθ(x)K.

Then (G,K) is a Gelfand pair. For instance, if (G,K) is a Riemannian
symmetric pair: G is a connected Lie group, K a compact group, and
there is a continuous involutive automorphism θ such that

(Gθ)0 ⊂ K ⊂ Gθ,
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where Gθ denote the subgroup of G consisting of θ-fixed elements, and
(Gθ)0 the identity component of Gθ. In fact G admits a Cartan decom-
position: G = KAK, where A is a Cartan subgroup whose elements a
satisty θ(a) = a−1.

I.2 Spherical functions. — Assume that (G,K) is a Gelfand pair.
A spherical functions is a continuous function ϕ on G, K-biinvariant, with
ϕ(e) = 1, which satisfies the following functional equation∫

K

ϕ(xky)α(dk) = ϕ(x)ϕ(y),

where α denotes the normalized Haar measure on K.

Proposition I.1. — Let ϕ be a continuous function on G, K-
biinvariant, with ϕ(e) = 1. Then ϕ is a spherical function if and only
if the linear functional

χ(f) =
∫
G

f(x)ϕ(x)m(dx),

where m is a Haar measure of G, is a character of the convolution algebra
Cc(K\G/K).

One shows that, if (G,K) is a gelfand pair, then G is unimodular.

Proof. For a function f ∈ Cc(G), we put

f \(x) =
∫
K×K

f(k1xk2)α(dk1)α(dk2),

and

Φ(f) =
∫
G

f(x)ϕ(x)m(dx).

For two functions f and g in Cc(G),

Φ(f \ ∗ g\)− Φ(f \)Φ(g\)

=
∫
G×G

(
ϕ(xy)− ϕ(x)ϕ(y)

)
f \(x)g\(y)m(dx)m(dy)

=
∫
G×G

(∫
K

ϕ(xky)α(dk)− ϕ(x)ϕ(y)
)
f(x)g(y)m(dx)m(dy).

The proposition follows from these equalities.
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The characters of the commutative Banach algebra L1(K\G/K) are of
the form

χ(f) =
∫
G

f(x)ϕ(x)m(dx),

where ϕ is a bounded spherical function.

Examples

a) G = K n V , where V is a finite dimensional real vector space. A
K-biinvariant function on G can be seen as a K-invariant function on V .
Then the functional equation for the spherical functions becomes:∫

K

ϕ(x+ k · y)α(dk) = ϕ(x)ϕ(y).

The bounded spherical functions are Fourier transforms of orbital mea-
sures. For a in V ∗, the function ϕ, defined on V by

ϕ(x) =
∫
K

ei〈x,k·a〉α(dk),

is spherical, and every bounded spherical function is obtained in that way.

b) U is a compact group,

G = U × U, K = {(x, x) | x ∈ U}.

A K-biinvariant function on G can be seen as a central function on U .
Then the functional equation for the spherical functions becomes∫

U

ϕ(xuyu−1)α(du) = ϕ(x)ϕ(y),

where α is the normalized Haar measure on U .
Let Û be the set of equivalence classes of irreducible representations of

U . For λ ∈ Û , let (πλ,Hλ) be a representation of U in the class λ. It
character is the function χλ defined on U by

χλ(u) = tr
(
πλ(u)

)
.

Then χλ(e) = dλ := dimHλ. It satisfies the following functional equation∫
U

χλ(xuyu−1)α(du) =
1
dλ
χλ(x)χλ(y).
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Hence, the normalized character

varphi(λ;u) =
1
dλ
χλ(u),

is a spherical function. One can show that all spherical functions are
obtained in that way.

I.3 Gelfand-Naimark-Segal construction. — A function ϕ defined
on a group G is said to be of positive type if

N∑
i,j=1

ϕ(x−1
i xj)cicj ≥ 0,

for x1, . . . , xN ∈ G, c1, · · · , cN ∈ C. A function of positive type satisfies
the Hermitian symmetry:

ϕ(x−1) = ϕ(x),

Furthermore
|ϕ(x)| ≤ ϕ(e).

If π is a unitary representation of G on a Hilbert space H, for u ∈ H, the
function

ϕ(x) =
(
u|π(x)u

)
is of positive type. In fact

N∑
i,j=1

ϕ(x−1
i xj)cicj =

N∑
i,j=1

(
π(xi)u|π(xj)u

)
cicj = ‖

N∑
i=1

ciπ(xi)u‖2 ≥ 0.

Every function of positive type can be written in that way. This is the
Gelfand-Naimark-Segal construction we will describe below.

If G is a topological group, we will always assume a unitary represen-
tation (π,H) of G to be continuous: for every v ∈ H, the map

x 7→ π(x)v, G→ H,

is continuous.
A vector u ∈ H is said to be cyclic if the subspace of H generated by

the vectors π(x)u for x ∈ G is dense in H.
In this section G will be a topological group, and K a closed subgroup.

Proposition I.2 (Gelfand-Naimark-Segal construction). —
a) Let ϕ be a continuous function on G of positive type, K-biinvariant.
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Then there exists a unitary representation (π,H) of G with a cyclic K-
invariant vector u such that

ϕ(x) =
(
u|π(x)u).

b) The triple (π,H, u) is unique up to isomorphism. Precisely, if
(π′,H′, u′) is another triple with

ϕ(x) =
(
u′|π′(x)u′

)
,

u′ cyclic and K-invariant, then there is a unitary isomorphism

A : H → H′,

such that
Aπ(x) = π′(x)A, Au = u′.

Proof.
Let Hϕ

0 be the space of functions on G of the form

f(x) =
N∑
i=1

ciϕ(g−1
i x),

with g1, . . . , gN ∈ G, c1, . . . , cN ∈ C. Clearly, Hφ
0 is the subspace of

C(G/K), the space of right K-invariant continuous functions on G.
The norm of such a function f is defined by

‖f‖2 =
N∑

i,j=1

ϕ(g−1
i gj)cicj .

Since ϕ is of positive type, this number is ≥ 0. Writing

f = µ ∗ ϕ, with µ =
N∑
i=1

ciδgi
,

we obtain
‖f‖2 =

∫
G

(µ ∗ φ)(x)µ(dx).

By the Schwarz inequality, with ν =
∑N
i=1 diδgi

,

∣∣∣∣∫
G

f(x)ν(dx)
∣∣∣∣2 =

∣∣∣∣∣∣
N∑

i,j=1

ϕ(g−1
i gj)cidj

∣∣∣∣∣∣
2

≤
N∑

i,j=1

ϕ(g−1
i gj)cicj ·

N∑
i,j=1

ϕ(g−1
i gj)didj ,
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Therefore, if ‖f‖2 = 0, then f ≡ 0. Observe that in general the
representation

f(x) =
N∑
i=1

ciϕ(g−1
i x)

of a function f is not unique. The above inequality shows that ‖f‖2 only
depends on f , and not on the chosen representation. Hence ‖f‖ is indeed
a norm on Hϕ

0 , and Hϕ
0 is a preHilbert space, with the inner product, for

f(x) =
N∑
i=1

ciϕ(g−1
i x), f ′(x) =

N ′∑
j=1

c′jϕ
(
(g′j)

−1x
)
,

defined by

(f |f ′) =
N∑
i=1

N ′∑
j=1

ϕ(g−1
i g′j)cic′j .

Define the representation πϕ of G on Hϕ
0 by the left action

(πϕ(g)f)(x) = f(g−1x), f ∈ Hϕ
0 , g, x ∈ G.

Then πϕ is unitary. In fact, if

f(x) =
N∑
i=1

ciϕ(g−1
i x),

then

(πϕ(g)f)(x) =
N∑
i=1

ciφ((ggi)−1x),

and hence

‖πφ(g)f‖2 =
N∑

i,j=1

ϕ((ggi)−1(ggj))cicj

=
N∑

i,j=1

ϕ(g−1
i gj)cicj = ‖f‖2.

Let Hϕ be the Hilbert completion of Hϕ
0 . Since, for f ∈ Hϕ, |f(x)| ≤

‖f‖ (by letting ν = δx), the Hilbert spaceHϕ can be realized as a subspace
of Cb(G/K), the space of bounded continuous functions in C(G/K). By
definition of Hϕ

0 , the vector φ ∈ Hϕ is cyclic, K-invariant, and satisfies

ϕ(g) = (ϕ|πϕ(g)ϕ).
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Let (πϕ,Hϕ, uϕ) be the triple obtained via the Gelfand-Naimark-Segal
construction, and (π,H, u) be a triple with a K-invariant and cyclic unit
vector u in H such that

ϕ(g) = (u|π(g)u).

Let us define the map A : Hϕ → H, for

f(x) =
N∑
i=1

ciϕ(g−1
i x).

by

Af =
N∑
i=1

ciπ(gi)u.

Then

‖Af‖2H =
N∑

i,j=1

cicj
(
π(gi)u|π(gj)u

)
=

N∑
i,j=1

cicjϕ(g−1
i gj) = ‖f‖2,

Since u is cyclic, the range of A: A(Hϕ) is dense in H. It follows that A
extends as an isometric isomorphism from Hϕ onto H. Furthermore

Aπϕ(g) = π(g)A, Auϕ = u.

We will need below the following irreducibility criterium. If (π,H) is a
unitary representation of G, we will denote by HK the subspace of K-fixed
vectors in H:

HK = {u ∈ H | π(k)u = u, (k ∈ K)}.

Proposition I.3. — Let (π,H) be a unitary representation of G with
a cyclic K-invariant vector u. If dimHK = 1, then the representation π
is irreducible.
Proof. Let Y be a closed invariant subspace in H, and P the orthogonal
projection onto Y. The vector v = Pu is K-invariant, hence v = λu, with
λ ∈ C. If λ = 0, then v = 0, and u is orthogonal to Y. Since Y is invariant,
then, for all x ∈ G, π(x)u is orthogonal to Y. It follows that Y = {0},
since u is cyclic. If λ 6= 0, then Y = H since u is cyclic.
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I.4 Extremality and irreducibility. — As in the previous section
G is a topological group, and K a closed subgroup. Let P(K\G/K)
denote the convex cone of continuous functions of positive type on G,
K-biinvariant, and P1(K\G/K) be the convex set of functions ϕ ∈
P(K\G/K) with ϕ(e) = 1.

Proposition I.4. — For ϕ ∈ P1(K\G/K), let (π,H) be the uni-
tary representation obtained by the Gelfand-Naimark-Segal construction
(Proposition I.2). The following properties are equivalent.

(i) ϕ is extremal in the convex set P1(K\G/K).
(ii) The unitary representation (π,H) is irreducible.

Proof.
(i) ⇒ (ii). Assume ϕ extremal and let u ∈ H be a K-invariant cyclic

unit vector. Suppose that H decomposes as the sum H = H1 ⊕ H2 of
two orthogonal closed invariant subspaces. The vector u decomposes as
u = u′1 + u′2, (u′i ∈ Hi). Put α = ‖u′1‖2. Then 0 ≤ α ≤ 1 since

1 = ‖u‖2 = ‖u′1‖2 + ‖u′2‖2.

If either α = 0 or α = 1, then we have either u′1 = u or u′2 = u. Since
u is cyclic, either H = H1 or H = H2, which means that H is irreducible.

Assume now that 0 < α < 1, and put

u1 =
u′1√
α
, u2 =

u′2√
1− α

,

ϕ1(g) = (u1|π(g)u1), ϕ2(g) = (u2|π(g)u2).

Then ϕ = αϕ1 + (1−α)ϕ2. Since ϕ is extremal, ϕ = ϕ1 = ϕ2. Observing
that (

ui|π(g)ui
)

=
(
ui|π(g)u

)
(i = 1, 2),

we get (
u1|π(g)u

)
=

(
u2|π(g)u

)
,

and, since u is cyclic, u1 = u2: a contradiction. We have proven that π is
irreducible.

(ii) ⇒ (i). Assume π irreducible and that ϕ is expressed as ϕ =
αϕ1 + (1 − α)ϕ2 for some ϕ1, ϕ2 ∈ P1(K\G/K), and 0 < α < 1. For
f ∈ H0, expressed as

f(x) =
N∑
i=1

ciϕ(g−1
i x),
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put

H(f) = α
N∑

i,j=1

ϕ1(g−1
j gi)cicj .

This defines an invariant Hermitian form on H0. Furthermore, since

α
N∑

i,j=1

ϕ1(g−1
i gj)cicj ≤

N∑
i,j=1

ϕ(g−1
i gj)cicj ,

we get
0 ≤ H(f) ≤ ‖f‖2,

hence H extends as a continuous invariant Hermitian form on H. This
form can be written H(f) = (Af |f), where A is a selfadjoint operator
on H, 0 ≤ A ≤ I, which commutes with the representation π: Aπ(g) =
π(g)A. By Schur’s Lemma, A = λI, with 0 ≤ λ ≤ 1. It follows that
αϕ1 = λϕ. Since ϕ(e) = ϕ1(e) = 1, we get λ = α, and ϕ1 = ϕ. This
means that ϕ is extremal.

I.5 Spherical functions and irreducibility. — We assume in this
section that (G,K) is a Gelfand pair.

Proposition I.5. — If the unitary representation (π,H) is irre-
ducible, then

dimHK ≤ 1.

Proof. Let P be the orthogonal projection onto HK . Observe that, for
v ∈ H,

Pv =
∫
K

π(k)vα(dk)

(α is the normalized Haar measure of K), or P = π(α).
Since (G,K) is a Gelfand pair, the algebra L1(K\G/K) is commutative,

and the algebra M b(K\G/K) of bounded K-biinvariant measures on G is
commutative as well. In particular, for x, y ∈ G,

α ∗ δx ∗ α ∗ δy ∗ α = α ∗ δy ∗ α ∗ δx ∗ α,

and, since P = π(α),

Pπ(x)Pπ(y)P = Pπ(y)Pπ(x)P.

Let A denote the closed algebra (for the operator norm) generated the
the operators Pπ(x)P , for x ∈ G. By the equality above, the algebra A
is commutative. The space HK is invariant under A. Since an irreducible
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representation of a commutative Banach algebra is commutative, it is
sufficient to prove that HK is irreducible under A.

Assume that HK = H1 ⊕ H2, where H1 and H2 are two A-invariant
orthogonal subspaces of HK . Let u1 ∈ H1 (u1 6= 0). For any u2 ∈ H2

and x ∈ G,
(
Pπ(x)Pu1|u2

)
= 0. Since Pu1 = u1, Pu2 = u2, this means

that
(
π(x)u1|u2

)
= 0. We use now the fact that the representation π is

irreducible, and hence that any non zero vector is cyclic. In particular u1

is cyclic. This implies u2 = 0, and H2 = {0}.
Proposition I.6. — For ϕ ∈ P1(K\G/K) the following properties

are equivalent:
(i) The function ϕ is spherical.
(ii) The unitary representation (π,H) associated to ϕ via the Gelfand-

Naimark-Segal construction is irreducible.
Proof. Recall that ϕ(x) =

(
u | π(x)u

)
, where u is a cyclic vector in HK ,

and ‖u‖ = 1 since ϕ(e) = 1.
(i) ⇒ (ii). Assume the function ϕ to be spherical: for x, y ∈ G,∫

K

(
u|π(xky)u

)
α(dk) = ϕ(x)ϕ(y).

This can be written(
π(x−1)u|Pπ(y)u

)
= ϕ(y)

(
π(x−1)u|u

)
,

or, since u is cyclic,
Pπ(y)u = ϕ(y)u.

It follows that HK = Cu, and, by Proposition I.3 that the representation
(π,H) is irreducible.

(ii) ⇒ (i). Assume the representation (π,H) to be irreducible. By
Proposition I.5, dimHK = 1, hence HK = Cu, and, for v ∈ H,

Pv = (v|u)u.

Therefore, for y ∈ G,(
v|Pπ(y)Pu

)
= (v|u)

(
u|π(y)u

)
= ϕ(y)(v|u),

and, since u is cyclic,
Pπ(y)Pu = ϕ(y)u.

Taking the inner product of both sides with π(x−1)u, one obtains(
u|π(x)Pπ(y)u

)
= ϕ(x)ϕ(y),
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or ∫
K

ϕ(xky)α(dk) = ϕ(x)ϕ(y).

I.6 Multiplicity free representations. — Let (π,H) be a unitary
representation of a compact group U . It decomposes as

π =
⊕
λ∈Û

mλπλ,

H '
⊕
λ∈Û

Hmλ

λ .

The numbers mλ ∈ N are the multiplicities. Let A denote the commutant
of the representation:

A = {A ∈ L(H) | ∀x ∈ G, Aπ(x) = π(x)A}.

Then
A '

⊕
λ∈Û

M(mλ,C).

Since, form ≥ 2, the algebraM(m,C) is not commutative, the commutant
A is a commutative algebra if and only if, for all λ ∈ Û , mλ = 0 or 1. In
such a case, one says that the representation π is multiplicity free.

In the general case, this property is taken as a definition: one says
that a representation π is multiplicity free if the commutant A of π is
commmutative.

Theorem I.7. — Assume that (G,K) is a Gelfand pair. Let (π,H)
be a unitary representation of G, with a cyclic K-invariant vector. Then
the representation (π,H) is multiplicity free.
Proof.

Let u be a unit cyclic K-invariant vector.
a) We define first a conjugation onHK . One starts from the observation

that, for f ∈ L1(K\G/K),

‖π(f)u‖ = ‖π(f∗)u‖,

with
f∗(x) = f(x−1).

In fact, since π(f) and π(f∗) commute,

‖π(f)u‖2 =
(
π(f∗)π(f)u|u

)
=

(
π(f)π(f∗)u|u

)
= ‖π(f∗)u‖2.
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Since the set {π(f)u | f ∈ L1(K\G/K)} is dense in HK , the map

π(f)u 7→ π(f∗)u)

extends as an antilinear isometry v 7→ v̄ of HK . This map is characterized
by

∀f ∈ L1(K\G/K),
(
v̄|π(f∗)u

)
=

(
π(f)u|v

)
.

In fact, for v = π(h)u, v̄ = π(h∗)u,(
π(h∗)u|π(f∗)u

)
=

(
π(f)π(h∗)u|u

)
=

(
π(h∗)π(f)u|u

)
=

(
π(f)u|π(h)v

)
.

b) Let A be a bounded operator on HK , commuting with the operators
π(f), for f ∈ L1(K\G/K). Let us show that

Au = A∗u.

In fact(
A∗u|π(f∗)u

)
=

(
π(f)A∗u|u

)
=

(
A∗π(f)u|u

)
=

(
π(f)u|Au

)
.

It follows that, if
Au = lim

n→∞
π(fn)u,

for a sequence fn ∈ L1(K\G/K), then

A∗u = lim
n→∞

π(f∗n)u.

c) Let A0 denote the commutant of the representation of L1(K\G/K)
on HK :

A0 = {A ∈ L(HK) | ∀f ∈ L1(K\G/K), Aπ(f) = π(f)A}.

The algebra A0 is selfadjoint. We will prove that A0 is commutative. Let
A,B ∈ A0. Observe that, for f, h ∈ L1(K\G/K),(

ABπ(f)u|π(h)u
)

=
(
Bπ(f)u|A∗π(h)u

)
.

Therefore, to prove the commutativity of A0 amounts to showing:(
π(f)Bu|π(h)A∗u

)
=

(
π(f)Au|π(h)B∗u

)
.

There are sequences {φp} and {ψq} in L1(K\G/K) such that

Au = lim
p→∞

π(φp)u,

Bu = lim
q→∞

π(ψq)u,
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and, by b),
A∗u = lim

p→∞
π(φp)u,

B∗u = lim
q→∞

π(ψq)u.cr

Hence it is enough to prove that, for f, h, φ, ψ ∈ L1(K\G/K),(
π(f)π(ψ)u|π(h)π(φ∗)u

)
=

(
π(f)π(φ)u|π(h)π(ψ∗)u

)
,

which can be checked.
d) If A commutes with the representation π ofG, then A commutes with

the orthogonal projection P = π(α) onto HK , and hence A(HK) ⊂ HK .
Let us consider the map

A 7→ A0, A → A0,

where A0 is the restriction of A to HK . This is an algebra morphism. It
is injective. In fact, if Au = 0, then, for all x ∈ G,

Aπ(x)u = π(x)Au = 0,

and this implies that A = 0 since u is cyclic. This proves that A is
commutative.

Proposition I.8. — Let G be a locally compact group, and K a
compact subgroup. If the quasiregular representation of G on L2(G/K) is
multiplicity free, then (G,K) is a Gelfand pair.
Proof.

To f ∈ L1(K\G/K), one associates the bounded orpertor R(f) on
L2(G/K) by

R(f)h = h ∗ f.

The operator R(f) commutes withs the quasiregular representation of
G on L2(G/K): R(f) belongs to the commutant A of the quasiregular
representation, and the map f 7→ R(f) is an injective algebra morphism.
Therefore L1(K\G/K) is commutative: (G,K) is a Gelfand pair.

Conclusion

Let (G,K) be a Gelfand pair. For a function ϕ ∈ P(K\G/K), we have
seen that the following three properties are equivalent:

- ϕ is spherical,
- ϕ is extremal in the convex set P1(K\G/K),
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- the representation associated to ϕ by the Gelfand-Naimark-Segal
construction is irreducible. (One says that ϕ is pure.)

An irreducible representation (π,H) of G with dimHK = 1 is said to be
spherical, and the set Ω of equivalence classes of spherical representations
will be called the spherical dual of the Gelfand pair (G,K). Equivalently

- Ω is the set of spherical functions of positive type,
- Ω is the set of extremal points in the convex set P1(K\G/K).

In numerous cases a set of parameters for Ω is known. That is why we
will write ϕ(ω;x) for a spherical function of positive type, with x ∈ G,
ω ∈ Ω, thought of as a parameter.

Basic questions in harmonic analysis for a Gelfand pair (G,K) are:
- Determine the spherical dual Ω of (G,K).
- For a spherical function of positive type ϕ describe a realization (π,H)

of the spherical representation associated to ϕ.
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Chapter II

BOCHNER-GODEMENT THEOREM

Theorem II.1 (Bochner-Godement). — Let (G,K) be a Gelfand
pair, and Ω its spherical dual. For ϕ ∈ P(K\G/K), there exists a unique
bounded positive measure on Ω such that

ϕ(x) =
∫

Ω

ϕ(ω;x)µ(dω).

We will give a proof of this theorem by using integral representation
theory. The idea to use integral representation theory for proving Bochner
Theorem can be found in a paper of Cartan and Godement:

H. Cartan, R. Godement (1947). Théorie de la dualité et analyse
harmonique dans les groupes abéliens localement compacts, Ann. Sci.
E.N.S., 64, 79–99.

This method is used by van Dijk for Bochner-Godement Theorem:

G. van Dijk (1969). Spherical functions on the p-adic group PGL(2),
Indagationes Math., 31, 213–241.

I.1 Basic theorems about integral representation theory. — Let
Q be a convex subset in a locally convex toppological vector space V . A
point p ∈ Q is said to be extremal when the folowing holds: if

p = αp1 + (1− α)p2,

with p1, p2 ∈ Q, 0 < α < 1, then p = p1 = p2. Let E(Q) denote the set of
extremal points in Q.

Theorem II.2 (Krein-Milman,1940). — Assume Q compact. Then
Q is the convex hull of E(Q): the finite convex combinations of extremal
points are dense in Q.

It follows that, if furthermore E(Q) is closed (hence compact), then, for
every p ∈ Q, there is a probability measure µ on E(Q) such that

p =
∫
E(Q)

qµ(dq).

The point p is said to be the barycentre of the measure µ. It means that,
for every continuous linear form ` on V ,

`(p) =
∫
E(Q)

`(q)µ(dq).
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Theorem II.3 (Choquet, 1960). — If Q is compact and metrizable,
then E(Q) is a Gδ (countable intersection of open sets), hence a Borel
set. Every p ∈ Q is the barycentre of a probability measure µ which is
concentrated on E(Q).

This means that µ is a probability measure on Q such that
µ
(
Q \ E(Q)

)
= 0.

Theorem II.4 (Choquet-Meyer, 1963). — The measure µ is
unique if and only if Q is a simplex.

Define
Q̃ = {(p, 1) | p ∈ Q} ⊂ V ×R,

and let Γ be the convex cone generated by Q̃. Then Q is a simplex ifand
only if the ordered set Γ is a lattice, i.e., for any pair p, q ∈ Γ, there is a
least upper bound p ∨ q.

II.2 Proof of Bochner-Godement Theorem. — We apply the
theorems of Section 1 to the convex set

Q = P≤1(K\G/K) = {ϕ ∈ P(K\G/K) | ϕ(e) ≤ 1}.

We will assume that G is separable. It follows that L1(G) is separable.
By Propositions I.4 and I.6,

E(Q) = Ω ∪ {0}.

1) We will consider on Q a topology for which Q is compact and
metrizable. We will consider Q as a subset of the unit ball in L∞(G),
and see that it is closed for the ∗-weak topology σ(L∞, L1), and hence
compact since, for that topology, the unit ball in L∞(G) is compact.

To a function ϕ ∈ P(K\G/K), we associate the continuous linear form
Φ on L1(G) given by

Φ(f) =
∫
G

f(x)ϕ(x−1)m(dx).

Then

Φ(f∗ ∗ f) =
∫
G×G

ϕ(x−1y)f(x)f(y)m(dx)m(dy) ≥ 0.

We will say that a linear form L on L1(G) is positive if

∀f ∈ L1(G), L(f∗ ∗ f) ≥ 0.
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Theorem II.5 (Gelfand-Raikov). — Let L be a continuous positive
linear form on L1(G), and K-biinvariant:

∀f ∈ L1(G), L(f) = L(f \).

Then there is a function ϕ ∈ P(K\G/K) such that

L(f) =
∫
f(x)ϕ(x−1)m(dx).

Furthermore
‖L‖ = ϕ(e).

Proof.
Let B be the positive sesquibilinear form defined on L1(G) by

B(f, g) = L(g∗ ∗ f).

By the Schwarz inequality,

|B(f, g)|2 ≤ B(f, f)B(g, g),

and furthermore
B(f, f) ≤ ‖L‖‖f‖21.

We get a preHilbert structure on the quotient L1(G)/N , with

N = {f ∈ L1(G) | B(f, f) = 0},

and, by completion, a Hilbert space H. We get also a unitary representa-
tion by letting (

π(x)f
)
(y) = f(x−1y).

For every neighborhood of the identy e of G, let hU be a positive
continuous function with integral equal to one, and with support in U .
The system {hU} is an identity approximation:

∀f ∈ L1(G), lim
U
hU ∗ f = lim

U
f ∗ hU = f,

where U is filter of the neiborhoods of e. By the Schwarz inequality

|L(h∗U ∗ f)|2 ≤ B(f, f)B(hU , hU ),

and, since
B(hU , hU ) ≤ ‖L‖‖hU‖21 = ‖L‖,
lim
U
L(h∗U ∗ f) = L(f),
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it follows that
|L(f)|2 ≤ ‖L‖B(f, f).

By Riesz representation Theorem, there exists u ∈ H such that

L(f) = (ḟ |u),

where ḟ is the image of f by the map L1(G) → L1(G)/N ⊂ H. The
vector u is unique and K-invariant. From the equalities

ġ|ḟ) = B(g, f) = L(f∗ ∗ g) =
(
π(f∗)ġ|u

)
=

(
ġ|π(f)u

)
,

it follows that π(f)u = ḟ , and this shows that the vector u is cyclic. The
function ϕ defined on G by

ϕ(x) =
(
u|π(x)u

)
is continous, K-biinvariant, of positive type, and

L(f) =
(
π(f)u|u

)
=

∫
G

f(x)ϕ(x−1)m(dx).

Since |ϕ(x)| ≤ ϕ(e),
|L(f)| ≤ ϕ(e)‖f‖1.

Furthermore
lim
U
L(hU ) = ϕ(e),

therefore : |L‖ = ϕ(e).

Corollary II.6. — The set P≤1(K\G/K), seen as a part of L∞(G),
topological dual of L1(G), is compact for the ∗-weak topology σ(L∞, L1).
Proof. Since the unit ball of L∞(G) is compact for the ∗-weak topology, it
amounts to showing that P≤1(K\G/K) is closed. Let {ϕn} be a sequence
in P≤1(K\G/K) such that, for every f ∈ L1(G), the limit

L(f) = lim
n→∞

∫
G

f(x)ϕn(x−1)m(dx)

exists. Then L is a positive continuous linear form on L1(G) with ‖L‖ ≤ 1,
and, by Theorem II.5, there is a function ϕ ∈ P(K\G/K) such that, for
f ∈ L1(G),

L(f) =
∫
G

f(x)ϕ(x−1)m(dx).

This means that ϕn converges to ϕ for the ∗-weak topology.
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Since L1(G) is separable, the closed unit ball in L∞(G) is metrizable
for the ∗-weak topology. Hence P≤1(K\G/K) is metrizable.

2) For the uniqueness we will give two proofs. The first one is very
simple. The second one, which is more elaborated, has the advantage to
rely the uniqueness to the multiplicity freedom, and will be used in a more
general setting.

We define first the spherical Fourier transform of a function f ∈
L1(K\G/K). It is the function f̂ defined on Ω by

f̂(ω) =
∫
G

f(x)ϕ(ω;x−1)m(dx).

As the classical Fourier transformation does, the spherical Fourier trans-
formation carries the convolution product onto the ordinary one: for
f, g ∈ L1(K\G/K),

f̂ ∗ g(ω) = f̂(ω)ĝ(ω).

Observe also that
f ∗ ϕω = f̂(ω)ϕω,

with ϕω(x) = ϕ(ω;x).

a) 1st proof. We show that, if the measure µ exists, it is unique.
For f ∈ L1(K\G/K), by Fubini theorem∫

G

f(x)ϕ(x−1)m(dx) =
∫

Ω

f̂(ω)µ(ω).

Uniqueness follows since the space {f̂ | f ∈ L1(K\G/K)} is dense in
C0(Ω) by Stone-Weierstrass Theorem.

b) 2nd proof. By Theorem II.3 it amounts to showing that the cone
P(K\G/K) is a lattice.

Let G be a topological group, and K a closed subgroup. For ϕ ∈
P(K\G/K), define the face

Pϕ(K\G/K) = {ψ ∈ P(K\G/K) | ∃λ > 0, ψ � λϕ}.

(ψ � λϕ means that λϕ− ψ is of positive type.)

Theorem II.7. — The face Pϕ(K\G/K) is a lattice if and only if the
representation associated to ϕ by the Gelfand-Naimark-Segal construction
is multiplicity free.
Proof.

We will give only one way of the proof. We will prove that, if the
representation (π,H) is multiplicity free, then the face Pϕ(K\G/K) is a
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lattice. One observes first that the face Pϕ(K\G/K) is linearly isomorphic
to the cone

A+ = {A ∈ A | ∀v ∈ H, (Av|v) ≥ 0}.

See the second part of the proof of Proposition I.4.
The algebra A is a commutative C∗- algebra, hence isomorphic to the

space C(S) of continuous functions on the spectrum S of A, which is
compact: A ' C(S). Furthermore the cone A+ is linearly isomorphic to
the cone C(S)+ of positive functions in C(S), and C(S)+ is a lattice.

II.4 Plancherel-Godement Theorem. — By the Bochner-Godement
theorem, for ϕ ∈ P(K\G/K), there is a unique measure µϕ on the spher-
ical dual Ω such that

ϕ(x) =
∫

Ω

ϕ(ω;x)µϕ(dω).

For f ∈ L1(K\G/K),

f ∗ ϕ(x) =
∫

Ω

f̂(ω)ϕ(ω;x)µϕ(dω).

Hence, if ϕ,ψ ∈ P(K\G/K) ∩ L1(G), then

ϕ̂(ω)µψ(dω) = ψ̂(ω)µϕ(dω).

It follows that there is a measure σ on Ω such that, for ϕ ∈ P(K\G/K)∩
L1(G),

µϕ(dω) = ϕ̂(ω)σ(dω).

The measure σ is called the Plancherel measure.

Theorem II.8 (Plancherel-Godement). — (i) If f ∈ P(K\G/K)
is integrable, then f̂ is integrable with respect to the Plancherel measure
σ, and

f(x) =
∫

Ω

f̂(ω)ϕ(ω;x)σ(dω).

(ii) If f ∈ L1 ∩L2(K\G/K), then f̂ is square integrable with respect to
the Plancherel measure σ, and∫

G

|f(x)|2m(dx) =
∫

Ω

|f̂(ω)|2σ(dω).

(iii) The spherical Fourier transformation, as a map from L1 ∩
L2(K\G/K) into L2(Ω, σ), extends as an isometric isomorphism from
L2(K\G/K) onto L2(Ω, σ).
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Proof.
Statement (i) follows directly from the definition of the Plancherel

measure σ.
For f ∈ L1 ∩ L2(K\G/K), put h = f ∗ f∗:

h(x) =
∫
G

f(xy)f(y)m(dy),

h(e) =
∫
G

|f(y)|2m(dy).
.

The function h is continuous, of positive type, and ĥ(ω) = |f̂(ω)|2. By (i),
with x = e,

h(e) =
∫

Ω

|f̂(ω)|2σ(dω).

This gives (ii).
For (iii) it is sufficient to prove that the space

{f̂ | f ∈ L1 ∩ L2(K\G/K)}

is dense in L2(Ω, σ). Let F be a continuous function on Ω with compact
support. Since the space {f̂ |∈ L1(K\G/K)} is dense in C0(Ω), there
exists a continuous function g on G, with compact support and K-
biinvariant such that ĝ(ω) > 0 on the support of F , and a continuous
function F ′ on Ω with compact support such that

∀ω ∈ Ω, F (ω) = ĝ(ω)F ′(ω).

For ε > 0, there exists a continuous function h on G, with compact support
and K-biinvariant, such that for all ω ∈ Ω

|F ′(ω)− ĥ(ω)| < ε,

and

|F (ω)− ĝ ∗ h(ω)| = |F (ω)− ĝ(ω)ĥ(ω)| = |ĝ(ω)| |F ′(ω)− ĥ(ω)| ≤ ε|ĝ(ω)|.

Therefore ∫
Ω

|F (ω)− ĝ ∗ h(ω)|2σ(dω) ≤ ε2
∫

Ω

|ĝ(ω)|2σ(dω).

Corollary II.9 (Inversion formula). — If, for f ∈ Cc(K\G/K),∫
ω

|f̂(ω)|σ(dω) <∞,
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then, for x ∈ G,

f(x) =
∫

Ω

f̂(ω)ϕ(ω;x)σ(dω).

Proof.
For h ∈ Cc(K\G/K), by Theorem II.8,

f ∗ h(x) =
∫

Ω

f̂(ω)ĥ(ω)ϕ(ω;x)σ(dω).

If (hV ) is the approximation of the identity we considered in the proof of
Theorem II.5,

lim
V
f ∗ hV (x) = f(x).

Furthermore
|ĥV (ω)| ≤ 1, lim

V
ĥV (ω) = 1.

Therefore, by the dominated convergence theorem,

lim
V

∫
Ω

f̂(ω)ĥV (ω)ϕ(ω;x)σ(dω) =
∫

Ω

f̂(ω)ϕ(ω;x)σ(dω).

II.5 Decomposition of representations into irreducible ones.
In this section (G,K) is a Gelfand pair. We will describe the decompo-
sition of a unitary representation (π,H) with a K-invariant cyclic vector.
as a direct integral of spherical representations.

Let u be a K-invariant cyclic vector, and define:

ϕ(x) =
(
u|π(x)u

)
.

Tthe function ϕ belongs tp P(K\G/K). By Theorem II.1 ϕ admits an
integral representation:

ϕ(x) =
∫

Ω

ϕ(ω;x)µ(dω),

where µ is a bounded positive measure on the spherical dual Ω.

Theorem II.10. — The unitary representation (π,H) associated to
ϕ by the Gelfand-Naimark-Segal construction decomposes as

π =
∫ ⊕

Ω

πωµ(dω),

H =
∫ ⊕

Ω

Hωµ(dω).
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One can say that µ is the spectral measure of the representation (π,H).

Proof. We will denote by ‖ · ‖ the norm in H, and ‖ · ‖ω the norm in Hω.
For f ∈ L1(G), f ∗ ϕ belongs to H, and

‖f ∗ ϕ‖2 =
∫
G

ϕ(xy)f(x)f(y)m(dx)m(dy).

Similarly, f ∗ ϕω ∈ Hω (with ϕω(x) = ϕ(ω;x)), and

‖f ∗ ϕω‖ω =
∫
G

ϕ(ω;xy)f(x)f(y)m(dx)m(dy).

By using Fubini Theorem, we obtain

‖f ∗ ϕ‖2 =
∫

Ω

‖f ∗ ϕω‖2ωµ(dω).

It follows that the map T0

f ∗ ϕ 7→
∫

Ω

f ∗ ϕωµ(dω),

L1(G) ∗ ϕ→
∫ ⊕

Ω

Hωµ(dω),

extends as an isometry T

H →
∫ ⊕

Ω

Hωµ(dω).

It remains to show that the isometry T is surjective, or that the image
of the map T0 is dense. Let (ξω) be a vector field such that, for every
f ∈ L1(G), ∫

Ω

(
f ∗ ϕω|ξω

)
µ(dω) = 0.

Replace f by f ∗ h with h ∈ L1(K\G/K). Then

f ∗ h ∗ ϕω = ĥ(ω)f ∗ ϕω,

hence ∫
Ω

ĥ(ω)
(
f ∗ ϕω|ξω

)
µ(dω) = 0.
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By the density of the space {ĥ | h ∈ L1(K\/K)} in C0(Ω), it follows that(
f ∗ ϕω|ξω

)
= 0 µ a.e..

Since ϕω is cyclic inHω, and that L1(G) is separable, it follows that ξω = 0
µ a.e.

One proves also that an operator A in the commutant of the represen-
tation (π,H) is diagonal: if ξ = (ξω) is a vector field, then Aξ = (ψ(ω)ξω),
with ψ ∈ L∞(Ω, µ): A ' L∞(Ω, µ).

A basic question in harmonic analysis for Gelfand pairs is, given a
representation (π,H) with a K-invariant cyclic vector, to determine the
spectral measure µ on the spherical dual Ω.

II.5 Example. — Let V = Herm(n,F) (H = R,C or H), K = U(n,F)
acting on V by the transformations x 7→ kxk∗, and G = K n V . The
spherical dual Ω is the set of K-orbits in V : Ω = K\V . By the
classical spectral theorem, every x ∈ V has real eigenvalues, and can
be diagonalized in an orthonormal basis. It follows that K\V can be
parametrized by real diagonal matrices

Ω ' Sn\Rn.

If a is a real diagonal matrix, the corresponding spherical function is the
Fourier transform of the normalized invariant orbital measure supported
by the orbit kak∗:

ϕ(a;x) =
∫
K

ei tr(xkak
∗)α(dk),

where α is the normalized Haar measure on K. It is a generalized Bessel
function.

Let M be a K-invariant bounded positive measure on V , and H =
L2(V,M). The group G acts on H by, if g−1.y = kyk∗ + v,

π(g)f(y) = ei tr(yv)f(kyk∗) (k ∈ K, v ∈ V ).

We obtain a unitary representation. The vector f0 ≡ 1 is K-invariant and
cyclic. The associated spherical function ϕ is given by

ϕ(g) =
(
f0|π(g)f0) =

∫
V

etr(xv)M(dy).

It only depends on v: ϕ(g) = ϕ(v), and is the Fourier transform of M .
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In the present case the Bochner-Godement theorem says that there is
a bounded positive measure µ on Ω ' Sn\Rn such that

ϕ(x) =
∫

Rn

ϕ(a;x)µ(da).

In particular, consider the case

M(dy) = q(y)m(dy),

where q is a K-invariant positive integrable function on v. Then q(kak∗) =
Q(a), where Q is a symmetric function on Rn. By the Weil integration
formula

µ(da) =
1
Zn

Q(a)|V (a)|βda1 . . . dan,

where V is the Vandermonde polynomial

V (a) =
∏
i<j

(aj − ai),

β = dimRF = 1, 2 or 4, and

Zn =
∫

Rn

Q(a)|V (a)|βda1 . . . dan.

The formula for ϕ can also be written as a desintegration of the measure
M . Let Ma be the orbital measure associated to the diagonal measure a:∫

V

f(y)Ma(dy) =
∫
K

f(kak∗)α(dk).

Then ∫
V

f(y)M(dy) =
∫

Rn

(∫
V

f(y)Ma(dy)
)
µ(da),

Define Ha = L2(V,Ma). The unitary representation of G on Ha is
irreducible. It is the spherical representation associated to a ∈ Ω. In
fact by the Gelfand-Naimark-Segal construction, the representation πa
associated to ϕ(a; ·) is realized on F

(
L2(V,Ma)

)
, and the one associated

to ϕ on F
(
L2(V,M)

)
. By Theorem II.7,

H =
∫ ⊕

Rn

Ha µ(da).
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Chapter III

OLSHANSKI SPHERICAL PAIRS

III.1. Definitions. — Let (G(n),K(n))n≥1 be an increasing sequence
of Gelfand pairs: G(n) is a closed subgroup of G(n+1), K(n) of K(n+1),
and K(n) = G(n) ∩K(n+ 1). Define

G =
∞⋃
n=1

G(n), K =
∞⋃
n=1

K(n).

We consider on G the inductive limit topology. Then K is a closed
subgroup of G. But in general G is not locally compact, and K is not
compact. We say that the pair (G,K) is an Olshanski spherical pair.

Let us give a simple example of such a sequence (G(n),K(n)).

Example
Let K(n) = O(n) be the orthogonal group and let G(n) = O(n) n Rn

the motion group. The product in G(n) is given by:

(g1, ξ1) · (g2, ξ2) = (g1g2, ξ1 + g1ξ2),

(g1, g2 ∈ O(n), ξ1, ξ2 ∈ Rn). Then

K = O(∞) =
∞⋃
n=1

O(n),

the infinite dimensional orthogonal group. An element k = (kij)i,j≥1 in
O(∞) satisfies kij = δij for i and j large enough. Define R(∞) by

R(∞) =
∞⋃
n=1

Rn.

A vector ξ ∈ R(∞) is a sequence ξ = (ξ1, ξ2, . . .) of real numbers with
ξi = 0 for i large enough.

The group O(∞) naturally acts on R(∞), and G = O(∞) n R(∞).

Let (G,K) be an Olshanski spherical pair, inductive limit of an increas-
ing sequence of Gelfand pairs

(
G(n),K(n)

)
. A K-biinvariant continuous

function ϕ on G is said to be spherical if, for x, y ∈ G,

lim
n→∞

∫
K(n)

ϕ(xky)αn(dk) = ϕ(x)ϕ(y),
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where αn is the normalized Haar measure on the compact group K(n).

III.2 Spherical functions and irreducibility. — Let G be a
topological group, and (K(n))n≥1 an increasing sequence of compact
subgroups of G. Put K =

⋃∞
n=1K(n). For a unitary representation (π,H)

of G, the orthogonal projection Pn onto the spaceHK(n) of K(n)-invariant
vectors is given by

Pnv =
∫
K(n)

π(k)vαn(dk) (v ∈ H),

where αn is the normalized Haar measure of K(n). The sequence of the
subspaces HK(n) is decreasing, and the projections Pn strongly converge
to the projection P onto

HK =
∞⋂
n=1

HK(n).

It follows that, if Y ⊂ H is an invariant closed subspace, then P (Y) ⊂ Y.

Proposition III.1. — Let (π,H) be a unitary representation of
G with a K-invariant cyclic vector u ∈ H. If dimHK = 1, then π is
irreducible.
Proof.

Let Y be a closed G-invariant subspace of H. We will show that either
Y = {0} or Y = H. If P (Y) = {0}, then Y is orthogonal to u ∈ HK .
Since u is cyclic, it follows that Y = {0}. If P (Y) 6= {0}, then HK ⊂ Y,
and Y = H since u ∈ HK is cyclic. Thus, we have proven that the
representation π is irreducible.

We assume now that (G,K) is an Olshanski spherical pair, inductive
limit of an increasing sequence

(
G(n),K(n)

)
of Gelfand pairs.

Proposition III.2. — Let (G,K) be an Olshanski spherical pair.
For any irreducible unitary representation (π,H) of G,

dimHK ≤ 1.

Proof
Assume HK 6= {0}. Since

(
G(n),K(n)

)
is a Gelfand pair, the con-

volution algebra L1
(
K(n)\G(n)/K(n)

)
is commutative, and the algebra

M b
(
K(n)\G(n)/K(n)

)
of K-biinvariant bounded measures is commuta-

tive as well. In particular, for x, y ∈ G(n),

αn ∗ δx ∗ αn ∗ δy ∗ αn = αn ∗ δy ∗ αn ∗ δx ∗ αn,
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and, since Pn = π(αn),

Pnπ(x)Pnπ(y)Pn = Pnπ(y)Pnπ(x)Pn.

Observing that Pn+1 = PnPn+1 = Pn+1Pn, we obtain, for m,m′ ≥ 0,

Pn+mπ(x)Pπ(y)Pn+m′ = Pn+mπ(y)Pπ(x)Pn+m′ .

As m,m′ →∞, and then n→∞, we obtain

Pπ(x)Pπ(y)P = Pπ(y)Pπ(x)P,

since Pn strongly converges to P .
Let A be the closed algebra (for the operator norm) generated by

the operators Pπ(x)P , for x ∈ G. As proven above, the algebra A is
commutative. The space HK is invariant under A. Since an irreducible
representation of a commutative Banach algebra is one dimensional, it is
sufficient to prove that HK is irreducible under A.

Assume that HK = H1 ⊕ H2, where H1 and H2 are two A-invariant
orthogonal subspaces of HK . Let u1 ∈ H1 (u1 6= 0). For any u2 ∈ H2

and x ∈ G,
(
Pπ(x)Pu1|u2

)
= 0. Since Pu1 = u1, Pu2 = u2, this means

that (π(x)u1|u2) = 0. We use now the fact that the representation π is
irreducible, and hence that any non zero vector is cyclic, in particular u1

is cyclic. This implies u2 = 0, and H2 = {0}.

Theorem III.3. — Let (G,K) be an Olshanski spherical pair. For
ϕ ∈ P1(K\G/K), the following properties are equivalent:

(i) ϕ is spherical.
(ii) The representation (π,H) associated to ϕ by the Gelfand-Naimark-

Segal construction is irreducible.
Proof.

Recall that ϕ(g) =
(
u|π(g)u

)
, where u is a cyclic unit vector in HK .

(ii) ⇒ (i). Assume the representation (π,H) irreducible. By Proposi-
tion III.2 we know that dimHK = 1. Therefore the orthogonal projection
P onto HK can be written

Pv = (v|u)u.

For y ∈ G, and any v ∈ H,(
v|Pπ(y)Pu

)
=

(
Pv|π(y)u

)
= (v|u)

(
u|π(y)u

)
= ϕ(y)(v|u).
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Therefore Pπ(y)Pu = φ(y)u. Hence, for x ∈ G,

Pπ(x)Pπ(y)Pu = ϕ(y)Pπ(x)Pu = ϕ(x)ϕ(y)u,

and (
u|π(x)Pπ(y)u

)
= ϕ(x)ϕ(y).

Since the projections Pn strongly converge to P , we get

ϕ(x)ϕ(y) = lim
n→∞

(
u|π(x)Pnπ(y)u

)
= lim
n→∞

∫
K(n)

(u|π(xky)u)αn(dk)

= lim
n→∞

∫
K(n)

ϕ(xky)αn(dk),

which means that ϕ is spherical.

(i) ⇒ (ii). Assume ϕ spherical. We will show that, for g ∈ G,
Pπ(g)u = ϕ(g)u. If this holds, then the subspace HK is one dimensional:
HK = Cu. Therefore, by Proposition III.1, the representation π is
irreducible. By assumption, for x, y ∈ G,

ϕ(x)ϕ(y) = lim
n→∞

∫
K(n)

ϕ(xky)αn(dk)

= lim
n→∞

(
u|π(x)Pnπ(y)u

)
=

(
u|π(x)Pπ(y)u

)
.

This can be written as(
π(x−1)u|Pπ(y)u

)
= ϕ(y)

(
π(x−1)u|u

)
.

Since u is cyclic, we obtain Pπ(y)u = ϕ(y)u.

III.3 Examples. — Let us give two simple examples of Olshanski
spherical pairs.

Example 1
We come back to the example of Section 1.2. Let G(n) = O(n) n Rn

and K(n) = O(n). Then G = O(∞) n R(∞) and K = O(∞). For
an element x = (g, ξ) ∈ G, we denote by ‖x‖ the radius of ξ: ‖x‖ =
‖ξ‖ =

√
ξ21 + ξ22 + · · · for ξ = (ξ1, ξ2, . . . , 0, 0, . . .) ∈ R(∞). Let ϕ be a K-

biinvariant function of G. Then, for any g1, g2, g ∈ O(∞) and ξ ∈ R(∞),

ϕ(g, ξ) = ϕ((g1, 0) · (g, ξ) · (g2, 0)) = ϕ(g1gg2, g1ξ).
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Therefore φ(g, ξ) only depends on the radius ‖ξ‖, i.e., there exists a
function Φ on R≥0 such that

ϕ(x) = Φ(‖x‖2).

Assume φ spherical:

lim
n→∞

∫
K(n)

ϕ(xky)αn(dk) = ϕ(x)ϕ(y), x, y ∈ G.

By classical harmonic analysis,∫
K(n)

ϕ(xky)αn(dk) = cn

∫ π

0

Φ(a2 + b2 + 2abcosθ) sinn−1 θdθ.

where a = ‖x‖ and b = ‖y‖. Note that the constant cn is given by

cn =
Γ
(
n+1

2

)
√
πΓ

(
n
2

) .
One shows easily that, if f is a continuous function on [0, π],

lim
n→∞

cn

∫ π

0

f(θ) sinn−1 θdθ = f
(π
2

)
.

Therefore we obtain the following functional equation

Φ(a2 + b2) = Φ(a2)Φ(b2).

This equation implies that Φ(a) = e−λa for some λ ∈ C. Hence the
spherical functions φ for the Olshanski spherical pair (G,K) are given by

φ(x) = e−λ‖x‖
2
, λ ∈ C.

Furthermore ϕ is of positive type if and only if λ ≥ 0. Thus, the spherical
dual Ω can be identifed with [0,∞[. Observe that a spherical function,
which is essentially a function on R(∞), extends as a continuous function
on

`2(N) =

(ξ1, ξ2, . . .)
∣∣∣ ξk ∈ R,

∑
k≥1

ξ2k <∞

 .

Example 2
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Let G(n) = O(n + 1) and K(n) = O(n). Here K(n) is seen as a
subgroup of G(n) as follows:

O(n) 3 u 7→
(
u 0
0 1

)
∈ O(n+ 1).

Let {e0, e1, . . . , en+1} be the canonical basis of Rn+1. A K-biinvariant
continuous function ϕ on G can be written as

ϕ(g) = Φ((ge0|e0)),

where Φ is a continuous function on [−1, 1]. We get∫
K(n)

ϕ(xky)αn(dk) = cn

∫ π

0

Φ(cos a cos b+ sin a sin b cos θ) sinn−1 θdθ

where cos a = (xe0|e0) and cos b = (ye0|e0) (cn is the same constant as in
Example 1). If ϕ is spherical, then

Φ(cos a cos b) = Φ(cos a)Φ(cos b).

Finally, the spherical functions ϕ of the spherical pair (G,K) are the
following:

ϕ(g) = (ge0|e0)m, (m ∈ N).

They are of positive type Thus the spherical dual Ω can be identified with
N.

III.4 Harmonic analysis on Olshanski spherical pairs, more or
less recent results. — Given an Olshanski spherical apir (G,K), one
of the first tasks is to determine the spherical dual Ω.

For
G = U(∞) nHerm(∞,C), K = U(∞),

the spherical dual has been determined by Pickrell, Olshanski and Vershik.
It is remarkable that the problem is related to the classical notion of total
positivity.

D. Pickrel (1991). Mackey analysis of infinite classical motion groups,
Pacific J. Math., 150, 139–166.

G. Olshanski, A. Vershik (1996). Ergodic unitarily invariant measures
on the space of infinite Hermitian matrices, in Comtemporary Mathe-
matical Physics (eds. R.L. Dobroshin, R.A. Minlos, M.A. Shubin, A.M.
Vershik), Amer. Math. Soc. Translations, 175, 137–175.
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For the infinite symmetric group,

G = U(∞)× U(∞), K = U(∞),

the spherical dual has been determined by Voiculescu, completed by Boyer,
Kerov and Vershik. In that case also, the problem is related to total
positivity.

D. Voiculescu (1976). Représentations factorielles de type II1 de U(∞),
J. Math. Pures Appl., 55, 1–20.

A. Vershik, S. Kerov (1982). Characters and factor representations of
the infinite unitary group, Soviet Math. Dokl., 26, 570–574.

R.P. Boyer (1983). Infinite traces of AF-algebras and characters of
U(∞), J. Operator Theory, 9, 205-236.

For
G = S∞ ×S∞, K = S∞,

see

E. Thoma (1964). Die unzerlegbaren, positiv-definiten Klassenfunktionen
der abzählbaar unendlichen, symmetrischen Gruppe, Math. Z., 85,
40–61.

A. Vershik, S. Kerov (1981). Asymptotic theory of characters of a
symmetric group, Funct. Anal. Appl., 15, 246–255.

S. Kerov (2003). Asymptotic Representation Theory of the Symmetric
Group and its Applications in Analysis. Translations of Mathematical
Monographs, A.M.S..

See also

T. Hirai, E. Hirai (2005). Positive definite class functions on a
topological group and characters of factor representations, J. Math.
Kyoto Univ., 45, 355–379.

T. Hirai, E. Hirai (2005). Characters of wreath products of finite groups
with the infinite symmetric group, J. Math. Kyoto Univ., 45, 547–597.

A natural question arises: is it possible to obtain the spherical functions
for the Olshanski spherical pair (G,K) as limits of spherical functions of(
G(n),K(n)

)
? So far I know, there is no general answer. Important

special cases have been investigated by Olshanski and Vershik, by Okunkov
and Olshanski. We will present their results in next talks.

G. Olshanski, A. Vershik (1996). Ergodic unitarily invariant measures
on the space of infinite Hermitian matrices, in Comtemporary Mathe-
matical Physics (eds. R.L. Dobroshin, R.A. Minlos, M.A. Shubin, A.M.
Vershik), Amer. Math. Soc. Translations, 175, 137–175.
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A. Okunkov, G. Olshanski (1998). Asymptotics of Jack polynomials as
the number of variables goes to infinity, Internat. Math. Res. Notices,
13, 641–682.

A. Okunkov, G. Olshanski (2006). Limits of BC-type orthogonal
polynomials as the number of variables goes to infinity, Contemporary
Mathematics, 417, 281–318.

See also

Bouali, M. (2007). Application des théorèmes de Minlos et Poincaré à
l’étude asymptotique d’une intégrale orbitale, Ann. Fac. Sci. Toulouse,
Math (6), 16, 49-70.

Consider now, for an Olshanski spherical pair (G,K), a unitary rep-
resentation (π,H) with a cyclic K-invariant vector. The problem is to
determine the spectrral measure µ. This problem has been investigated
by Borodin and Olshanski.

In the case of

G = U(∞) nHerm(∞,C), K = U(∞),

such a representation can be realized in the space L2(H∞,M), where M
is a bounded positive measure on the space H∞ of infinite dimensional
Hermitian matrices. Borodin and Olshanski solved the problem in the
case of the Hua-Pickrell measure. It amounts to describing a probability
measure on the space of point configurations on the real line.

Their work is closely related to Random Matrix Theory, where one uses
the analysis of orthogonal polynomials.

A. Borodin, G. Olshanski (2001). Infinite random matrices and
ergodic measures, Comm. Math. Phys., 223, 87–123.

In the case of

G = U(∞)× U(∞), K = U(∞),

Borodin and Olshanski consider isometric linear maps

L2
(
G(n)/K(n)

)
→ L2

(
G(n+ 1)/K(n+ 1)

)
,

and the inductive limit

H = L2(G/K) = lim
→
L2

(
G(n)/K(n)

)
.

Here also their work is related to the methods used in Random Matrix
Theory.
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G. Olshanski (2003). The problem of harmonic analysis on the infinite-
dimensional unitary group, J. Funct. Anal., 205, 464–524.

A. Borodin, G. Olshanski (2005). Harmonic analysis on the infinite-
dimensional unitary group and determinantal point processes, Annals
of Math., 161, 1319–1422.

A different construction of L2(G/K) as an inductive limit has been
investigated by J.W. Wolf for inductive limits of compact Gelfand pairs.

Wolf, J.A. (2007). Infinite dimensional multiplicity free spaces I: Limits
of compact commutative spaces. To appear.

An analogue of the Bochner-Godement theorem has been established
in several special cases:

- by Thoma, for the infinite symmetric group S∞,
- by Voiculescu, for U(∞),
- by Olshanski, for the space Herm(∞,C).

Recently such a theorem has been established by Rabaoui in the case of a
general Olshanski spherical pair.

Rabaoui, M. (2008). A Bochner type theorem for inductive limits of
Gelfand pairs, Ann. Inst. Fourier, 58, –.

Finally, I mention three introductory papers:
J. Faraut (2006). Infinite dimensional harmonic analysis and probability,

in Probability measures on groups: recent directions and trends, (eds.
S.G. Dani and P. Graczyk), Tata Institute of Fundamental Research,
Narosa,New Dehli, –, 179–254.

J. Faraut (2008). Infinite dimensional spherical analysis. COE Lecture
notes, Kyushu University.

J. Faraut (2008). Asymptotics of spherical functions for large rank, an
introduction. Preprint.
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