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In this course we present the relations which exist between

- The logarithmic potential theory,
- The asymptotic distribution of the zeros of classical orthogonal

polynomials,
- The asymptotic distribution of the eigenvalues of random matrices.

Stieltjes considers a finite system of n electric charges moving freely on
a line and submitted to an external field. He observes that the minimum
of the electrostatistic energy of the system is attained at the points whose
coordinates are zeros of certain classical orthogonal polynomials of degree
n. This is the electrostatic model for orthogonal polynomials.

In order to study the asymptotic distribution of the zeros of a classical
orthogonal polynomial pn of degree n as n →∞, one uses a basic result in
logarithmic potential theory about the energy and equilibrium measures.

This result is also used in random matrix theory. This is the log gas
model of Dyson. In particular, using logarithmic potential theory, one
obtains a proof of Wigner Theorem about the convergence of the statistical
distribution of the eigenvalues to the semicircle law in case of the Gaussian
Orthogonal Ensemble, and the Gaussian Unitary Ensemble.

We will also consider the question: What is the probability for a
symmetric matrix to be positive definite ? We will present recent results
by Dean and Majumdar whose proof also uses the logarithmic potential
theory.

We thank the organizers of the Hammamet CIMPA school for inviting
us to present this topic: Piotr Graczyk, Abdelhamid Hassairi, and Gérard
Letac. We are very grateful to Marouane Rabaoui who realized the
histograms and graphics which illustrate clearly the main results presented
in these notes. We also thank the referee for his careful reading of the
manuscript.
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Chapter I

ELECTROSTATIC MODEL OF STIELTJES
FOR

ORTHOGONAL POLYNOMIALS

I.1. Orthogonal polynomials. — Let µ be a positive measure on
R. We assume that the support of µ is infinite (µ is not a finite linear
combination of Dirac measures), and that, for any k ≥ 0,∫

R
|t|kµ(dt) < ∞.

On the space P of polynomials in one variable with real coefficients we
consider the inner product

(p | q) =
∫

R
p(t)q(t)µ(dt),

which makes P into a preHilbert space. From the system (tm) (m ∈ N)
the Schmidt orthogonalization produces a sequence (pm) of orthogonal
polynomials: pm is a polynomial of degree m and∫

R
pm(t)pn(t)µ(dt) = 0 if m 6= n.

Hermite polynomials

In this example µ is the Gaussian measure

µ(dt) = e−t2dt.

The Hermite polynomial Hm is defined by

Hm(t) = (−1)met2
( d

dt

)m

e−t2 = 2mtm + · · ·

By m integrations by parts one gets, for any polynomial p,∫
R

Hm(t)p(t)e−t2dt =
∫

R
p(m)(t)e−t2dt.
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Hence, if deg p < m, then (Hn | p) = 0, and the polynomials Hm are
orthogonal with respect to µ. Furthermore, taking p = Hm, one gets

‖Hm‖2 =
∫

R
Hm(t)2e−t2dt = 2mm!

∫
R

e−t2dt = 2mm!
√

π.

Tchebychev polynomials of first kind

The arcsinus law is the probability measure µ defined on R by∫
R

f(t)µ(dt) =
1
π

∫ 1

−1

f(t)
dt√

1− t2
=

1
π

∫ π

0

f(cos θ)dθ.

The Tchebychev polynomial Tm is defined by

Tm(cos θ) = cos mθ.

Tm is a polynomial of degree m,

Tm(t) = 2m−1tm + · · ·

The polynomials Tm are orthogonal with respect µ:

(Tm | Tn) =
1
π

∫ π

0

cos mθ cos nθ dθ = 0 if m 6= n,

and

‖Tm‖2 =
1
π

∫ 1

−1

Tm(t)2
dt√

1− t2
=

1
π

∫ π

0

cos2 mθ dθ =
{

1 if m = 0,
1
2 if m ≥ 1.

Let (pm) be a sequence of orthogonal polynomials with respect to a
measure µ, and let [a, b] be the smallest closed interval which contains the
support of µ (−∞ ≤ a < b ≤ ∞).

Proposition I.1.1. — The zeros of pn are real, simple, and belong
to ]a, b[.
Proof.

Let x1, . . . , xr be the zeros of pn which are of odd order and belong to
]a, b[. We will show that r = n. We can write

pn(t) = (t− x1) . . . (t− xr)q(t).
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The polynomial q is of degree n− r and its sign does not change on ]a, b[.
If r < n, ∫

R
(t− x1) . . . (t− xr)pn(t)µ(dt) = 0,

or ∫
R
(t− x1)2 . . . (t− xr)2q(t)µ(dt) = 0,

a contradiction.

The classical orthogonal polynomials are solutions of a second order
differential equation. We will use this fact when studying the statistics of
the zeros of these polynomials.

Hermite polynomials

The Hermite polynomials Hn are orthogonal with respect to the mea-
sure µ given by ∫

R
f(t)µ(dt) =

∫ ∞

−∞
f(t)e−t2dt.

The Hermite polynomial Hn is a solution of the differential equation

y′′ − 2ty′ + 2ny = 0.

Jacobi polynomials

The Jacobi polynomials P
(α,β)
n are orthogonal with respect to the

measure µ given by∫
R

f(t)µ(dt) =
∫ 1

−1

f(t)(1− t)α(1 + t)βdt.

One assumes α, β > −1. The Jacobi polynomial P
(α,β)
n is a solution of the

differential equation

(1− t2)y′′ −
(
(α + β + 2)t + α− β

)
y′ + n(n + α + β + 1)y = 0.

Laguerre polynomials

The Laguerre polynomials L
(α)
n are orthogonal with respect to the

measure µ given by ∫
R

f(t)µ(dt) =
∫ ∞

0

f(t)e−ttαdt.
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One assumes α > −1. The Laguerre polynomial L
(α)
n is a solution of the

differential equation

ty′′ + (α + 1− t)y′ + ny = 0.

I.2 Statistics of the zeros of orthogonal polynomials. — Let (pn)
be a sequence of orthogonal polynomials with respect to a measure µ. Let
x

(n)
1 , . . . , x

(n)
n denote the zeros of pn. In order to study the asymptotics of

the zeros, we consider the probability measure Mn on R defined by

Mn =
1
n

n∑
k=1

δ
x
(n)
k

.

In other words ∫
R

f(t)Mn(dt) =
1
n

n∑
k=1

f(x(n)
k ).

Here is the question: Does the measure Mn converge as n →∞ ? We will
present some results about this question.

Zeros of the Tchebychev polynomials Tn

Recall that the Tchebychev polynomial Tn is defined by

Tn(cos θ) = cos nθ.

The polynomials Tn are orthogonal with respect to the arcsinus law whose
support is [−1, 1]. Hence, by Proposition I.1.1, the zeros of Tn belong to
]− 1, 1[. If x = cos θ is a zero of Tn, then cos nθ = 0. Therefore

x
(n)
k = cos(2k − 1)

π

2n
(k = 1, . . . , n).

Hence ∫
R

f(t)Mn(dt) =
1
n

n∑
k=1

f
(
cos(2k − 1)

π

2n

)
.

This sum can be seen as a Riemann sum. If f is continuous on [−1, 1],

lim
n→∞

∫
R

f(t)Mn(dt) =
1
π

lim
n→∞

n∑
k=1

f
(
cos(2k − 1)

π

2n

)π

n

=
1
π

∫ π

0

f(cos θ)dθ =
1
π

∫ 1

−1

f(t)
dt√

1− t2
.
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In the general case, for instance in case of the Hermite polynomials,
the proof is not as simple, because in general there is no explicit formula
for the zeros. In Hermite polynomial’s case we will see that the measure
Mn converges after rescaling. If x

(n)
1 , . . . , x

(n)
n are the zeros of the Hermite

polynomial Hn, then, for any bounded continuous function f on R,

lim
n→∞

1
n

n∑
k=1

f
( 1√

n
x

(n)
k

)
=

1
π

∫ √
2

−
√

2

f(t)
√

2− t2dt.

The limit is the so-called semi-circle law of radius
√

2.

I.3 Electrostatistic model of Stieltjes. — Let us consider n
particules on the line with positions x1, . . . , xn and charges e1, . . . , en.
We assume that they can freely move and an external field acts on them.
The total energy of the system is given by

En(x1, . . . , xn) = β
∑
i<j

log
1

|xi − xj |
eiej +

n∑
i=1

eiQ(xi),

where Q is the potential of the external field. An equilibrium position of
the system is a point x = (x1, . . . , xn) which minimizes the energy.

We will assume β = 2, e1 = · · · = en = 1. Then

En(x1, . . . , xn) = 2
∑
i<j

log
1

|xi − xj |
+

n∑
i=1

Q(xi).

Observe that

exp
(
−E(x1, . . . , xn)

)
= e−

∑n

i=1
Q(xi)

∏
i<j

(xi − xj)2.

We assume that Q is defined and continuous on ]a, b[, with −∞ ≤
a < b ≤ ∞, goes to +∞ at the boundary points a and b, and, if ]a, b[ is
unbounded,

lim
|t|→∞

(
Q(t)− log(t2 + 1)

)
= ∞.

Hence the energy En(x1, . . . , xn) is defined for xi ∈]a, b[, with values in
]−∞,∞], bounded from below, and lower semi-continuous. Furthermore
the energy goes to infinity at the boundary of the polycube ]a, b[n.

Examples of potentials

- ]a, b[=]−∞,∞[, Q(t) = t2. w(t) = e−Q(t) = e−t2 is a Gaussian weight.
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- ]a, b[=]− 1, 1[,

Q(t) = α log
1

1− t
+ β log

1
1 + t

(α, β > 0).

w(t) = e−Q(t) = (1− t)α(1 + t)β is a Jacobi weight.
- ]a, b[=]0,∞[,

Q(t) = t + α log
1
t

(α > 0).

w(t) = e−Q(t) = e−ttα is a Laguerre weight.

Proposition I.3.1. — There is at least one point x∗ = (x∗1, . . . , x
∗
n)

in ]a, b[n which minimizes the energy:

En(x∗) = inf
x∈]a,b[n

En(x).

For such a point x∗i 6= x∗j , if i 6= j.
Proof.

This follows from the fact that En is lower semi-continuous and goes
to +∞ at the boundary of ]a, b[n.

The minimum of the energy will be denoted by E∗
n:

E∗
n = En(x∗) = inf

x∈]a,b[n
En(x).

If the function Q is of class C1, the energy is of class C1 on

{x ∈]a, b[n| xi 6= xj if i 6= j}.

Then the point x∗ is a critical point for the energy:

∂En

∂xj
(x∗) = 0 (j = 1, . . . , n).

Let us compute the partial derivatives of the function En:

∂En

∂xj
= −2

∑
i 6=j

1
xj − xi

+ Q′(xj).

Hence x = (x1, . . . , xn) is a critical point for En if

Q′(xj)− 2
∑
i 6=j

1
xj − xi

= 0 (j = 1, . . . , n).
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We will use the following lemma whose proof is left to the reader.

Lemma I.3.2. — Let f be a function of class C2 on ]a, b[, and t0 ∈]a, b[.
Assume f(t0) = 0, f ′(t0) 6= 0. Then

lim
t→t0

(f ′(t)
f(t)

− 1
t− t0

)
=

f ′′(t0)
2f ′(t0)

.

To a point x ∈ Rn we associate the polynomial

p(t) = px(t) = (t− x1)(t− x2) . . . (t− xn).

Let us compute the logarithmic derivative of p:

p′(t)
p(t)

=
n∑

i=1

1
t− xi

,

and
p′(t)
p(t)

− 1
t− xj

=
∑
i 6=j

1
t− xi

.

Hence

lim
t→xj

(p′(t)
p(t)

− 1
t− xj

)
=

∑
i 6=j

1
xj − xi

,

and, by Lemma I.3.2,

lim
t→xj

(p′(t)
p(t)

− 1
t− xj

)
=

p′′(xj)
2p′(xj)

.

Therefore
∂En

∂xj
= Q′(xj)−

p′′(xj)
p′(xj)

,

and x = (x1, . . . , xn), with xi 6= xj (i 6= j), is a critical point for En if

p′′x(xj)−Q′(xj)p′x(xj) = 0 (j = 1, . . . , n).

Theorem I.3.3. — Assume that

Q′(t) =
A(t)
B(t)

,

where A,B are polynomials, deg A ≤ 1, deg B ≤ 2. Then x = (x1, . . . , xn)
is a critical point for En if and only if the polynomial

p(t) = px(t) = (t− x1) . . . (t− xn)
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is a solution of the differential equation

B(t)p′′(t)−A(t)p′(t) + Cp(t) = 0.

The constant C is determined by looking at the coefficient of tn.

Proof.
We have seen that x = (x1, . . . , xn), with xi 6= xj (i 6= j), is a critical

point for En if and only if

p′′x(t)−Q(xj)p′x(xj) = 0 (j = 1, . . . , n)

or
B(xj)p′′x(xj)−A(xj)p′x(xj) = 0 (j = 1, . . . , n).

The left handside is a polynomial of degree ≤ n, vanishing at x1, . . . , xn.
Therefore it is proportional to px.

The following corollaries are due to Stieltjes.
a) For Q(t) = t2, Q′(t) = 2t, we get the following differential equation

y′′ − 2ty′ + 2ny = 0.

The only polynomial solution (up to a constant factor) is the Hermite
polynomial Hn.

Corollary I.3.4. — The minimum of the energy is attained at the
n! points whose coordinates are the zeros of the Hermite polynomial Hn.

b) For

Q(t) = α log
1

1− t
+ β log

1
1 + t

, Q′(t) = α
1

1− t
− β

1
1 + t

,

we get the following differential equation

(1− t2)y′′ −
(
(α + β)t + α− β

)
y′ + n(n + α + β − 1)y = 0.

The only polynomial solution (up to a constant factor) is the Jacobi
polynomial P

(α−1,β−1)
n .

Corollary I.3.5. — The minimum of the energy is attained at the n!
points whose coordinates are the zeros of the Jacobi polynomial P

(α−1,β−1)
n .

c) For

Q(t) = t + α log
1
t
, Q′(t) = 1− α

1
t
,
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we get the differential equation

ty′′ + (α− t)y′ + ny = 0.

The only polynomial solution (up a constant factor) is the Laguerre
polynomial L

(α−1)
n .

Corollary I.3.6. — The minimum of the energy is attained at the n!
points whose coordinates are the zeros of the Laguerre polynomial L

(α−1)
n .

Recall that the discriminant of a polynomial p of degree n with leading
coefficient equal to one:

p(t) = tn + an−1t
n−1 + · · ·+ a0 (an = 1),

is the scalar D(p) defined by

D(p) =
∏
i<j

(xi − xj)2,

where x1, . . . , xn are the zeros of p. Hence

exp(−E∗
n) = exp

(
−

n∑
i=1

Q(x(n)
i )

)
D(pn),

where pn is the polynomial Hn in case (a): Q(t) = t2, or P
(α−1,β−1)
n in case

(b), or L
(α−1)
n in case (c), divided by the coefficient of tn. The discriminant

D(pn) can be evaluated, see [Szegö,1975] p.142. Let us consider the case
of the Hermite polynomials, and put

Dn =
∏
i<j

(x(n)
i − x

(n)
j )2, D1 = 1,

where x
(n)
1 , . . . , x

(n)
n are the zeros of Hn.

Proposition I.3.7.

Dn = 2
n(n−1)

2

n∏
k=2

kk.

Proof.
One observes that

p′n(x(n)
i ) =

∏
j 6=i

(x(n)
i − x

(n)
j ),
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therefore

Dn = (−1)
n(n−1)

2

n∏
i=1

p′n(x(n)
i ).

From the relation H ′
n(t) = 2nHn−1(t) it follows that p′n(t) = npn−1(t).

Hence

Dn = (−1)
n(n−1)

2 nn
n∏

i=1

pn−1(x
(n)
i ).

Define

∆n =
n∏

i=1

pn−1(x
(n)
i ), ∆0 = 1.

For n ≥ 1,

∆n =
n∏

i=1

n−1∏
j=1

(x(n)
i − x

(n−1)
j ) =

n−1∏
j=1

pn(x(n−1)
j ).

We will establlish a relation between ∆n and ∆n−1. For that we will use
the three terms relation

Hn(t) = 2tHn−1(t)− 2(n− 1)Hn−2(t),

which gives

pn(t) = tpn−1(t)−
n− 1

2
pn−2(t).

It follows that
pn(x(n−1)

j ) = −n− 1
2

pn−2(x
(n−1)
j ),

therefore

∆n =
(
−n− 1

2

)n−1 n−1∏
j=1

pn−2(x
(n−1)
j ) =

(
−n− 1

2

)n−1

∆n−1,

and

Dn = 2−
n(n−1)

2

n∏
k=2

kk.

Corollary I.3.8.

exp(−E∗
n) = (2e)−

n(n−1)
2

n∏
k=2

kk.
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Proof.
The expansion of the Hermite polynomial is given by

Hn(x) = n!
[ n
2 ]∑

k=0

(−1)k (2x)n−2k

k!(n− 2)!

2n
(
xn − n(n− 1)

4
xn−2 + · · ·

)
.

By using the classical relations between the coefficients and the zeros of a
polynomial we obtain

n∑
i=1

x
(n)
i = 0,

∑
i<j

x
(n)
i x

(n)
j = −n(n− 1)

4
,

and
n∑

i=1

(
x

(n)
i

)2 =
( n∑

i=1

x
(n)
i

)2

− 2
∑
i<j

x
(n)
i x

(n)
j =

n(n− 1)
2

.

Since

exp(−E∗
n) = exp

(
−

n∑
i=1

(x(n)
i )2

)
Dn,

and we get the formula from Proposition I.3.7.
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Chapter II

LOGARITHMIC POTENTIAL, ENERGY
AND

EQUILIBRIUM MEASURE

1. Logarithmic potential. — The logarithmic potential of a positive
measure µ on R is the function Uµ defined by

Uµ(x) =
∫

R
log

1
|x− t|

µ(dt).

It is well defined, with values in ]−∞,∞] if the support of µ is compact,
or, more generally, if ∫

R
log(1 + |t|)µ(dt) < ∞.

Observe that
lim

|x|→∞

(
Uµ(x) + µ(R) log |x|

)
= 0.

The Cauchy transform Gµ of a bounded measure µ on R is the function
defined on C \ supp(µ) by

Gµ(z) =
∫

R

1
z − t

µ(dt).

The Cauchy transform is holomorphic.
Assume that supp(µ) ⊂]−∞, a], and∫

R
log(1 + |t|)µ(dt) < ∞.

Then the function
F (z) =

∫
R

log(z − t)µ(dt)

is defined and holomorphic in C\] −∞, a]. Furthermore F ′(z) = Gµ(z),
and

Uµ(x) = −Re F (x) (x > a),
Uµ(x) = − lim

ε→0
Re F (x + iε) (x ∈ R).

In the distribution sense,

d

dx
Uµ(x) = −Re Gµ(x).

14



We will use some properties of the boundary value distribution of a
holomorphic function. Let f be holomorphic in C \ R. It is said to be of
moderate growth near R if, for every compact set K ⊂ R, there are ε > 0
N > 0, and C > 0 such that

|f(x + iy)| ≤ C

|y|N
(x ∈ K, 0 < |y| ≤ ε).

Then, the formula, with ϕ ∈ D(R),

〈T, ϕ〉 = lim
ε→0,ε>0

∫
R

ϕ(t)
(
f(t + iε)− f(t− iε)

)
dt,

defines a distribution T on R. It is denoted T = [f ], and called the
difference of boundary values of f . One shows that the function f extends
as a holomorphic function in C \ supp([f ]). In particular, if [f ] = 0, then
f extends as a holomorphic function in C.

For α ∈ C, the distribution Yα is defined, for Re α > 0, by

〈Yα, ϕ〉 =
1

Γ(α)

∫ ∞

0

ϕ(t)tα−1dt.

The distribution Yα, as a function of α, admits an analytic continuation
for α ∈ C. In particular Y0 = δ0, the Dirac measure at 0.

For α ∈ C, we defines the holomorphic function zα in C\] −∞, 0] as
follows: if z = reiθ, with r > 0, −π < θ < π, then

zα = rαeiαθ.

The function f is of moderate growth near R, and

〈[zα], ϕ〉 = −2iπ
1

Γ(−α)
〈Yα+1, ϕ̌〉,

where ϕ̌(t) = ϕ(−t). In particular

[
1
z
] = −2iπδ0.

Proposition II.1.1. — Let µ be a bounded positive measure on R.
(i) The Cauchy transform Gµ of µ is holomorphic in C \ supp(µ), of

moderate growth near R, and

[Gµ] = −2iπµ.
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(ii) Assume that the support of µ is compact. Let F be holomorphic in
C \ R, of moderate growth near R, such that

[F ] = −2iπµ.

Then F is holomorphic in C \ supp(µ). If further

lim
|z|→∞

F (z) = 0,

then F = Gµ.
Proof.

(i) follows from

[
1
z
] = −2iπδ0.

(ii) The function f = Gµ − F satisfies

[f ] = [Gµ]− [F ] = 0,

hence f extends as a holomorphic function in C. From

|Gµ(z)| ≤ µ(R)
1
|z|

,

we obtain
lim

|z|→∞
f(z) = 0.

By Liouville’s theorem, if follows that f ≡ 0.

For a < b, the function

f(z) =
√

(z − a)(z − b)

is first defined as
√

z − a
√

z − b in C\] − ∞, b]. For x > b, f(x) =√
(x− a)(x− b), the usual square root of a positive number. For x < a,

lim
ε→0,ε>0

f(x± iε) = e±iπ
√

(a− x)(b− x) = −
√

(x− a)(x− b).

Therefore f extends as a holomorphic function on C\ [a, b]. Observe that,
for a ≤ x ≤ b,

lim
ε→0,ε>0

f(x± iε) = e±i π
2
√

(x− a)(b− x) = ±i
√

(x− a)(b− x).
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It follows that
[f ] = 2i

√
(t− a)(b− t)χ(t),

where χ is the indicator function of [a, b]. The function f admits, for
|z| > max(|a|, |b|), a Laurent expansion:

f(z) = z

√
1− a

z

√
1− b

z
= z − a + b

2
− (a− b)2

8
1
z

+ · · ·

Example 1

Let µ be the arcsinus law:∫
R

f(t)µ(dt) =
1
π

∫ 1

−1

f(t)
dt√

1− t2
.

Proposition II.1.2. — (i) The Cauchy transform of the arcsinus
law µ is defined on C \ [−1, 1].

Gµ(z) :=
1
π

∫ 1

−1

1
z − t

dt√
1− t2

=
1√

z2 − 1
.

(ii) The logarithmic potential of the arcsinus law µ is given by

Uµ(x) = log 2, if − 1 ≤ x ≤ 1,

= log 2− log
∣∣|x|+ √

x2 − 1
∣∣, if |x| ≥ 1.

Proof.
(i) The function

F (z) =
1√

z2 − 1

is defined and holomorphic on C \ [−1, 1], and satisfies

[F ] = −2i
1√

1− t2
χ(t),

where χ is the indicator function of [−1, 1]. Therefore

[F ] = −2iπµ.

Furthermore
lim

|z|→∞
F (z) = 0.
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Hence F = Gµ by Proposition II.1.1.
(ii)

d

dx
Uµ(x) = −Re Gµ(x) = 0 if − 1 < x < 1,

= − 1√
1− x2

if x > 1.

It follows that

Uµ(x) = C, if − 1 ≤ x ≤ 1,

= C −
∫ x

1

dt√
t2 − 1

, if x > 1.

Observe that Uµ(−x) = Uµ(x). The integral can be computed:∫ x

1

dt√
1− t2

= log(x +
√

x2 − 1).

From the relation
lim

|x|→∞

(
Uµ(x) + log |x|) = 0,

one gets C = log 2.

Example 2

Let µ be the semi-circle law:∫
R

f(t)µ(dt) =
2
π

∫ 1

−1

f(t)
√

1− t2dt.

Proposition II.1.3. — (i) The Cauchy transform of the semi-circle
law is defined on C \ [−1, 1].

Gµ(z) :=
2
π

∫ 1

−1

1
z − t

√
1− t2 dt = 2(z −

√
z2 − 1).

(ii) The logarithmic potential of the semi-circle law is an even function.
It is given by

Uµ(x) = −x2 + C, if − 1 ≤ x ≤ 1,

= −x2 + C + 2
∫ x

1

√
t2 − 1 dt, if x > 1,

18



with C = log 2 + 1
2 .

Proof.
(i) The function f(z) =

√
z2 − 1 defined on C \ [−1, 1] satisfies

[f ] = 2i
√

1− t2χ(t) = iπµ,

where χ is the indicator function of [−1, 1], and

lim
|z|→∞

(
f(z)− z

)
= 0.

By Proposition II.1.1 It follows that

Gµ(z) = 2(z −
√

z2 − 1).

(ii)

d

dx
Uµ(x) = −Re Gµ(x) = −2x if − 1 ≤ x ≤ 1,

= −2x + 2
√

x2 − 1 if x > 1.

Therefore

Uµ(x) = −x2 + C if − 1 ≤ x ≤ 1,

= −x2 + C + 2
∫ x

1

√
t2 − 1dt if x > 1.

Lemma II.1.4.∫ x

1

√
t2 − 1 dt =

1
2
x2 − 1

2
log x− 1

4
− 1

2
log 2 + o(1).

Proof. The integral can be computed∫ x

1

√
t2 − 1dt =

1
2
x
√

x2 − 1− 1
2

log(x +
√

x2 − 1).

From the relation

lim
x→∞

(
Uµ(x) + log x) = 0,

it follows, by Lemma II.1.4, that C = 1
2 + log 2.
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Example 3

For c ≥ 1, consider the Marchenko-Pastur law∫
R

f(t)µ(dt) =
1
2π

∫ b

a

f(t)
√

(t− a)(b− t)
dt

t
,

where a = (
√

c− 1)2, b = (
√

c + 1)2.

Proposition II.1.5. — (i) The Cauchy transform of the measure µ
is defined in C \ [a, b].

Gµ(z) : =
1
2π

∫ b

a

1
z − t

√
(t− a)(b− t)

dt

t

=
z − (c− 1)−

√
(z − a)(z − b)

2z
.

(ii) The logarithmic potential of the measure µ is given on [0,∞[ by

Uµ(x)

= −1
2

(
x + (c− 1) log

1
x

)
+ C +

1
2

∫ a

x

√
(a− t)(b− t)

dt

t
if 0 < x ≤ a,

= −1
2

(
x + (c− 1) log

1
x

)
+ C if a ≤ x ≤ b,

= −1
2

(
x + (c− 1) log

1
x

)
+ C +

1
2

∫ x

b

√
(t− a)(t− b)

dt

t
if x ≥ b.

with C = 1
2 (c + 1− c log c).

Proof.
(i) The function

f(z) =

√
(z − a)(z − b)

z

is holomorphic in C \ ([a, b]∪ {0}), with a simple pole at z = 0 and residu
−
√

ab. Therefore

[f ] = 2i

√
(t− a)(b− t)

t
χ(t) + 2iπ

√
abδ0

= iπµ + 2iπ(c− 1)δ0,

where χ is the indicator function of [a, b]. Furthermore

lim
|z|→∞

(
f(z)− 1

)
= 0.
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By Proposition II.1.1, it follows that

Gµ(z) =
z − (c− 1)−

√
(z − a)(z − b)

2z
.

(ii) The proof is as in Examples 1 and 2, except the computation of the
constant C which is not as simple.

Example 4
For −1 < a < b < 1 consider the probability measure µ defined by∫

R
f(t)µ(dt) =

1
A

∫ b

a

f(t)

√
(t− a)(b− t)

1− t2
dt,

with

A =
∫ b

a

√
(t− a)(b− t)

1− t2
dt.

Define α, β by√
(1− a)(1− b) =

2α

1 + α + β
,

√
(1 + a)(1 + b) =

2β

1 + α + β
.

Proposition II.1.6. — (i)

A =
π

1 + α + β
.

(ii) The Cauchy transform of µ is given, for z ∈ C \ [a, b], by

Gµ(z) =
1 + α + β

π

∫ b

a

1
z − t

√
(t− a)(b− t)

1− t2
dt

= (1 + α + β)

√
(z − a)(z − b)

z2 − 1
− α

z − 1
− β

z + 1
.

(iii) The logarithmic potential of µ is given, for x ∈]− 1, 1[, by

Uµ(x) = α log(1− x) + β log(1 + x) + C

+ (1 + α + β)
∫ a

x

√
(a− t)(b− t)

1− t2
dt, if − 1 < x ≤ a,

= α log(1− x) + β(1 + x) + C, if a ≤ x ≤ b,

= α log(1− x) + β log(1 + x) + C

+ (1 + α + β)
∫ x

b

√
(t− a)(t− b)

1− t2
dt, if b ≤ x < 1.
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Proof.
Define, for z ∈ C \ ([a, b] ∪ {−1, 1}),

f(z) =

√
(z − a)(z − b)

z2 − 1
.

The function f is holomorphic with poles in ±1, and

Res(f, 1) =
1
2

√
(1− a)(1− b) =

α

1 + α + β
,

Res(f,−1) =
1
2

√
(1 + a)(1 + b) =

β

1 + α + β
.

Hence the function

f1(z) = f(z)− α

1 + α + β

1
z − 1

− β

1 + α + β

1
z + 1

is holomorphic in C \ [a, b], and

[f1] = −2iAµ,

f1(z) ∼ 1
1 + α + β

1
z

(|z| → ∞).

Therefore
Gµ(z) =

π

A
f1(z), A =

π

1 + α + β
.

This proves (i). Part (ii) is proved as previously.

2. Energy, equilibrium measure. — Let us first recall some basic
facts about the tight topology. Let M1(Σ) be the set of probability
measures on the closed set Σ ⊂ R. We consider the tight topology. For this
topology a sequence (µn) converges to a measure µ if, for every continuous
bounded function f on Σ,

lim
n→∞

∫
Σ

f(x)µn(dx) =
∫

Σ

f(x)µ(dx).

This topology is metrizable. If Σ is bounded, then M1(Σ) is compact.

Prokhorov Criterium A subset M ⊂ M1(Σ) is relatively compact if
and only if, for every ε > 0, there is a compact K ⊂ Σ such that, for every
µ ∈ M ,

µ(Σ \K) ≤ ε.
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This criterium has the following useful consequence.
Let M ⊂ M1(Σ). Assume that there is a function h on Σ with

lim
|x|→∞

h(x) = ∞,

and a constant C > 0 such that, for every µ ∈ M ,∫
Σ

h(x)µ(dx) ≤ C.

Then M is relatively compact.

We return now to the logarithmic potential theory.
Let Σ be a closed interval (Σ = R, [a,∞[, ] −∞, b] or [a, b]), and Q a

function defined on Σ with values on ]−∞,∞], continuous on int(Σ). If
Σ is unbounded, it is assumed that

lim
|x|→∞

(
Q(x)− log(x2 + 1)

)
= ∞.

Some simple examples
- Σ = R, Q(x) = x2.
- Σ = [−1, 1], Q(x) = 0,
- Σ = [0,∞[, Q(x) = x.

If µ is a probability measure supported by Σ, the energy E(µ) of µ is
defined by

E(µ) =
∫

Σ×Σ

log
1

|x− y|
µ(dx)µ(dy) +

∫
Σ

Q(x)µ(dx)

=
∫

Σ

Uµ(x)µ(dx) +
∫

Σ

Q(x)µ(dx).

Put
k(x, y) = log

1
|x− y|

+
1
2
Q(x) +

1
2
Q(y).

From the inequality

|x− y| ≤
√

x2 + 1
√

y2 + 1,

it follows that

k(x, y) ≥
(
Q(x)− log(x2 + 1)

)
+

(
Q(y)− log(y2 + 1)

)
≥ m,
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with
m = inf

x∈Σ

(
Q(x)− log(x2 + 1)

)
.

Since we can write

E(µ) =
∫

Σ×Σ

k(x, y)µ(dx)µ(dy),

we obtain
m ≤ E(µ) ≤ ∞.

Proposition II.2.1. — If (µn) is a sequence of probability measures
supported by Σ which converges to a measure µ for the tight topology, then

E(µ) ≤ lim inf
n→∞

E(µn).

This means that the map

M1(Σ) →]−∞,∞]

is lower semi-continuous.

Proof.
The cut kernel

k`(x, y) = inf
(
k(x, y), `

)
at the level ` > 0 is continuous and bounded, and k`(x, y) ≤ k(x, y). For
each n ∫

Σ2
k`(x, y)µn(dx)µn(dy) ≤ E(µn).

Since µn ⊗ µn → µ⊗ µ,

lim
n→∞

∫
Σ2

k`(x, y)µn(dx)µn(dy) =
∫

Σ2
k`(x, y)µ(dx)µ(dy).

Then take the lim inf:∫
Σ2

k`(x, y)µ(dx)µ(dy) ≤ lim inf
n→∞

E(µn),

and, as ` →∞, by the monotone convergence theorem,

E(µ) =
∫

Σ2
k(x, y)µ(dx)µ(dx) ≤ lim inf

n→∞
E(µn).
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Proposition II.2.2. — Let µ be a signed measure on R with compact
support and zero integral. Then∫

R2
log

1
|x− y|

µ(dx)µ(dy) =
∫ ∞

0

|µ̂(t)|2

t
dt,

where µ̂ is the Fourier transform of µ:

µ̂(t) =
∫

R
eitxµ(dx).

Proof.
(a) For ε > 0, define

Fε(x) =
∫ ∞

0

e−εt 1− cos tx

t
dt.

Since
F ′

ε(x) =
∫ ∞

0

e−εt sin txdt =
x

ε2 + x2
,

we obtain
Fε(x) =

1
2

log(ε2 + x2) + C.

Observing that Fε(0) = 0, we get

C = −1
2

log ε2 = − log ε.

Finally
Fε(x) = log

√
ε2 + x2 − log ε.

(b) Let µ be a Radon measure on R with compact support and zero
integral. Then

µ̂(0) = 0, µ̂(−t) = µ̂(t),

and ∫
R2

log
((

(x− y)2 + ε2
) 1

2 µ(dx)µ(dy) = −
∫ ∞

0

e−εt |µ̂(t)|2

t
dt.

Decomposing µ as the difference of two positive measures: µ = µ+ − µ−,
we obtain∫

R2

((
(x− y)2 + ε2

)− 1
2
)(

µ+(dx)µ+(dy) + µ−(dx)µ−(dy)
)

=
∫

R2
log

((
(x− y)2 + ε2

)− 1
2
)(

µ+(dx)µ−(dy) + µ−(dx)µ+(dy)
)

+
∫ ∞

0

e−εt |µ̂(t)|2

t
dt.
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We apply to each integral the monotone convergence theorem as ε → 0.
Observe that

log
((

(x− y)2 + ε2
)− 1

2
)
↗ log

1
|x− y|

,

and is bounded from below on the support of µ by

A = log
1
R

, with R = sup
x,y∈supp(µ)

√
(x− y)2 + 1.

Finally ∫
R2

log
1

|x− y|
(
µ+(dx)µ+(dy) + µ−(dx)µ−(dy)

)
=

∫
R2

log
1

|x− y|
(
µ+(dx)µ−(dy) + µ−(dx)µ+(dy)

)
+

∫ ∞

0

|µ̂(t)|2

t
dt.

We have seen that E(µ) is bounded from below : E(µ) ≥ m. We define

E∗ = inf{E(µ) | µ ∈ M1(Σ)}.

Then E∗ ≥ m. If µ(dx) = f(x)dx, where f is a continuous function with
compact support ⊂ int(Σ), the potential Uµ is a continuous function, and
E(µ) < ∞. Therefore

m ≤ E∗ < ∞.

Theorem II.2.3. — There is a unique measure µ∗ ∈ M1(Σ) such
that

E(µ∗) = E∗.

The support of µ∗ is compact.
This measure µ∗ is called the equilibrium measure.

Proof.
a) Existence
By Proposition II.2.1, for C > E∗, the set

MC = {µ ∈ M1(Σ) | E(µ) ≤ C}

is closed. If Σ is bounded, then M1(Σ) is compact, hence MC is compact.
If Σ is unbounded we will use Prokhorov Criterium for proving that MC

is compact. We have seen that

k(x, y) ≥ 1
2
h(x) +

1
2
h(y).
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Therefore ∫
Σ

h(x)µ(dx) ≤ E(µ),

and, if µ ∈ MC , ∫
Σ

h(x)µ(dx) ≤ C.

The function µ 7→ E(µ) is lower semi-continuous on the compact MC ,
therefore attains its infimum: there exists µ ∈ MC such that E(µ) = E∗.

b) Let µ ∈ M1(Σ) such that E(µ) = E∗. We will see that the support
of µ is compact. Let A be a Borel set, and χ its characteristic function.
Put

µt =
1 + tχ

1 + tµ(A)
µ.

For −1 < t < 1, µt ∈ M1(Σ), and

E(µt) =
∫

Σ2
k(x, y)

(
1 + tχ(x)

)(
1 + tχ(y)

)(
1 + tµ(A)

)2 µ(dx)µ(dy).

Since µ0 = µ, the minimum of E(µt) is attained at t = 0, hence

d

dt

∣∣
t=0

E(µt) = 0.

Let us compute this derivative

d

dt

∣∣
t=0

E(µt) =
∫

Σ2
k(x, y)

(
χ(x) + χ(y)

)
µ(dx)µ(dy)

− 2µ(A)
∫

Σ2
k(x, y)µ(dx)µ(dy).

By using the inequality

k(x, y) ≥ 1
2
h(x) +

1
2
h(y),

we obtain

2µ(A)E(µ) ≥
∫

A

h(x)µ(dx) + µ(A)
∫

Σ

h(x)µ(dx),

or ∫
A

(
h(x) +

∫
R

h(x)µ(dx)− 2E(µ)
)
µ(dy) ≤ 0.
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Since lim|x|→∞ h(x) = ∞, there exists α > 0 such that, if |y| > α,

h(y) +
∫

R
h(x)µ(dx)− 2E(µ) > 0.

Take A = R \ [−α, α], then µ(A) = 0. Hence the support of µ is contained
in [−α, α], therefore compact.

c) Uniqueness
We will see that the function µ 7→ E(µ), defined on the set M1

c(Σ)
of probability measures supported by Σ with compact support, is strictly
convex. In fact, for µ0, µ1 ∈ M1

c(Σ), (µ0 6= µ1), put

µt = (1− t)µ0 + tµ1.

Then
E(µt) = at2 + bt + c,

with
a =

∫
Σ2

log
1

|x− y|
ν(dx)ν(dy) (ν = µ1 − µ2),

b =
∫

Σ

(
Uµ(x) + Q(x)

)
ν(dx),

c = I(µ0).

By Proposition II.2.2, a is > 0, therefore the function t 7→ E(µt) is strictly
convex: for 0 < t < 1,

E(µt) < (1− t)E(µ0) + tE(µ1).

This implies uniqueness.

It can be useful to observe the action of a linear transformation:

Lemma II.2.4. — Let the transformation h(s) = as + b map Σ onto
Σ′. If Q is defined on Σ′, then Q ◦ h is defined on Σ. If µ is a probability
measure µ on Σ, then ν = h(µ) is the probability measure on Σ′ defined
by ∫

Σ′
f(t)ν(dt) =

∫
Σ

f
(
h(s)

)
µ(ds).

Then
E(Σ′,Q)

(
h(µ)

)
= E(Σ,Q◦h)(µ)− log |a|.

3. Determination of the equilibrium measure via a variational
problem. — The following statement, which is not the best possible, will
be useful for the examples we have in mind.
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Proposition II.3.1. — Let µ ∈ M1(Σ) with compact support.
Assume that the potentiel Uµ of µ is continuous and that there is a
constant C such that

(i) Uµ(x) + 1
2Q(x) ≥ C on Σ,

(ii) Uµ(x)+ 1
2Q(x) = C on supp(µ). Then µ is the equilibrium measure:

µ = µ∗.
The constant C is called the (modified) Robin constant. Observe that

E∗ = C +
1
2

∫
Σ

Q(x)µ∗(dx).

Proof.
For two measures µ and ν we can write

E(µ+ν) = E(µ)+2
∫

Σ

(
Uµ(x)+

1
2
Q(x)

)
ν(dx)+

∫
Σ2

log
1

|x− y|
ν(dx)ν(dy).

Writing µ∗ = µ + (µ∗ − µ), we obtain

E(µ∗) = E(µ) + 2
∫

Σ

(
Uµ(x) +

1
2
Q(x)

)
(µ∗ − µ)(dx)

+
∫

Σ2
log

1
|x− y|

(µ∗ − µ)(dx)(µ∗ − µ)(dy).

By the hypothesis, ∫
Σ

(
Uµ(x) +

1
2
Q(x)

)
µ∗(dx) ≥ C,∫

Σ

(
Uµ(x) +

1
2
Q(x)

)
µ(dx) = C.

By Proposition II.2.2,∫
Σ2

log
1

|x− y|
(µ∗ − µ)(dx)(µ∗ − µ)(dx) ≥ 0.

Therefore E(µ∗) ≥ E(µ), which implies that µ = µ∗.

Examples

The weight corresponding to the potential Q is defined as

w(x) = e−Q(x).
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1) Legendre weight

Σ = [−1, 1], Q(x) = 0, w(x) = 1.

Let µ be the arcsinus law. We saw in Section 1 that Uµ(x) = log 2 on
[−1, 1]. Therefore µ is the equilibrium measure, µ = µ∗, and E∗ = C =
log 2.

2) Gaussian weight

Σ = R, Q(x) = x2, w(x) = e−x2
.

The equilibrium measure is the semi-circular law µ of radius
√

2:

∫
R

f(t)µ(dt) =
1
π

∫ √
2

−
√

2

f(t)
√

2− t2dt.

In fact

Uµ(x) +
1
2
x2 ≥ C (x ∈ R),

Uµ(x) +
1
2
x2 = C (x ∈ [−

√
2,
√

2]),

with C = 1
2 + 1

2 log 2, and

E∗ = C +
1
2

∫
R

Q(t)µ(dt) =
3
4

+
1
2

log 2.

3) Laguerre weight

Σ = [0,∞[, Q(x) = x + α log
1
x

, w(x) = e−xxα,

with α ≥ 0. The equilibrium measure µ is the Marchenko-Pastur law with
c = 1 + α: ∫

R
f(x)µ(dx) =

1
2π

∫ ∞

0

f(x)
√

(x− a)(b− x)
dx

x
,

with
a = (

√
α + 1− 1)2, b = (

√
α + 1 + 1)2.
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4) Jacobi weight

Σ = [−1, 1],

Q(x) = p log
1

1− x
+ q log

1
1− x

,

w(x) = (1− x)p(1 + x)q.

.

The equilibrium measure is given by∫
R

f(x)µ∗(dx) =
1
π

(1 + α + β)
∫ b

a

f(x)

√
(x− a)(b− x)

1− x2
dx,

with α = p
2 , β = q

2 . Recall that a and b are determined by

√
(1− a)(1− b) =

2α

1 + α + β
,

√
(1 + a)(1 + b) =

2β

1 + α + β
.

5) Freud weight

Σ = R, Q(x) = c|x|α, w(x) = e−c|x|α ,

with c > 0, α > 0. The equilibrium measure is a Ullman distribution.
There is a choice of c = cα such that∫

R
f(x)µ∗(dx) =

∫ 1

−1

f(x)hα(x)dx,

with

hα(x) =
α

π

∫ 1

|x|

tα−1

√
t2 − x2

dt.

For α = 2, this is the semi-circle law:

h2(x) =
2
π

√
1− x2.

See [Saff-Totik,1997], Chapter IV, Theorem 5.1.

We have seen how to check that a probabillity measure µ is the
equilibrium measure.

Data : Σ a closed interval, and Q a continuous function on the interior
of Σ such that

lim
|t|→∞

(
Q(t)− log(1 + t2)

)
= ∞.
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Steps
(1) Determine the Cauchy transform of µ:

Gµ(z) =
∫

Σ

1
z − t

µ(dt).

In several examples we have used the residue theorem.

(2) Determine the logarithmic potential of µ:

Uµ(x) =
∫

Σ

log
1

|x− t|
µ(dt),

by using the relation

d

dx
Uµ(x) = −Re Gµ(x).

Hence the logarithmic potential is determined up to a constant.

(3) Check that there is a constant C such that

Uµ(x) +
1
2
Q(x) ≥ C for x ∈ Σ,

Uµ(x) +
1
2
Q(x) = C for x ∈ supp(µ).

If it holds, then we know that µ is the equilibrium measure: µ = µ∗.

(4) Determine the constant C by using

lim
|x|→∞

(
Uµ(x) + log x

)
= 0.

Then the equilibrium energy is

E∗ = E(µ) = C +
1
2

∫
Σ

Q(x)µ(dx).

We end this section with the Pastur Formula.

Proposition II.3.2. — Let Σ = R, and Q a polynomial of even
degree 2k (k ≥ 1), convex. Then the equilibrium µ∗ is given by∫

R
f(x)µ∗(dx) =

1
π

∫ b

a

f(x)q(x)
√

(x− a)(b− x)dx,
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where q is the polynomial of degree 2k − 2 given by

q(x) =
1
2π

∫ b

a

Q′(x)−Q′(t)
x− t

dt√
(t− a)(b− t)

.

The numbers a and b are determined by the conditons∫ b

a

Q′(t)√
(t− a)(b− t)

dt = 0,
∫ b

a

tQ′(t)√
(t− a)(b− t)

dt = 2π.

As a special case we obtain Example 2 of this section: Q(x) = x2. Then

Q′(z)−Q′(t)
z − t

= 2.

Hence

q(z) =
1
π

∫ b

a

dt√
(t− a)(b− t)

= 1.

The numbers a and b are determined by∫ b

a

2t√
t− a)(b− t)

dt = 0,

∫ b

a

2t2√
(t− a)(b− t)

dt = 2π.

The first equation gives a + b = 0, and the second a2 = b2 = 2. Therefore
µ∗ is the semi-circle law of radius

√
2.

Proof.
Consider a measure µ of the form

µ(dt) = u(t)dt,

where u is a continuous function with support [a, b], and let G be its
Cauchy transform: for z ∈ C \ [a, b],

G(z) :=
∫ b

a

u(t)
z − t

dt.

By Proposition II.3.1, if µ is the equilibrium measure, then, for a ≤ x ≤ b,

Re G(x) = −1
2
Q′(x).
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Define

G̃(z) =
G(z)√

(z − a)(z − b)
.

The function G̃ is holomorphic for z ∈ C \ [a, b], and

[G̃] = −i
Q′(t)√

(t− a)(b− t)
χ(t),

where χ is the indicator function of [a, b]. By using Liouville’s theorem as
in the proof of Proposition II.1.1, we obtain

G̃(z) =
1
2π

∫ b

a

1
z − t

Q′(t)√
(t− a)(b− t)

dt.

This can be written

G̃(z) =
1
2π

∫ b

a

Q′(t)−Q′(z)
z − t

dt√
(t− a)(b− t)

dt

+ Q′(z)
1
2π

∫ b

a

1
z − t

dt√
(t− a)(b− t)

.

By Proposition II.1.2,

1
π

∫ b

a

1
z − t

dt√
(t− a)(b− t)

=
1√

(z − a)(z − b)
.

Hence

G̃(z) = −q(z)
√

(z − a)(z − b) +
Q′(z)

2
√

(z − a)((z − b)
,

or
G(z) = −q(z)

√
(z − a)(z − b) +

1
2
Q′(z).

This implies, by the relation [G] = −2iπµ (Proposition II.1.1), that

u(t) = q(t)
√

(t− a)(b− t)χ(t).

Let us consider the Laurent expansion of G̃(z):

G̃(z) =
a0

z
+

a1

z2
+ · · ·
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Then

G(z) = G̃(z)
√

(z − a)(z − b)

=
(a0

z
+

a1

z2
+ · · ·

)(
z − a + b

2
− (a− b)2

8
1
z

+ · · ·
)

= a0 +
(
a1 − a0

a + b

2

)1
z

+ · · ·

Since limz→∞ zG(z) = 1, we get

a0 =
1
2π

∫ b

a

Q′(t)√
(t− a)(b− t)

dt = 0,

a1 =
1
2π

∫ b

a

tQ′t)√
(t− a)(b− t)

dt = 1.

By the way we used previously we get

d

dx
Uµ(x) +

1
2
Q′(x) = −q(x)

√
(a− x)(b− x), if x < a,

= 0, if a ≤ x ≤ b,

= q(x)
√

(x− a)(x− b), if x > b.

Therefore there is a constant C such that

Uµ(x) +
1
2
Q′(x) = C, if a ≤ x ≤ b,

≥ C everywhere.

By Proposition II.3.1 this shows that µ is actually the equilibrium measure.
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Chapter III

STATISTICS OF THE ZEROS
OF

CLASSICAL ORTHOGONAL POLYNOMIALS

1. Statistic of the zeros of Jacobi polynomials. — We have
considered in Chapter I the energy

En(x1, . . . , xn) =
∑
i 6=j

log
1

|xi − xj |
+

n∑
i=1

Q(xi),

on Σ = [−1, 1], with

Q(t) = (α + 1) log
1

1− t
+ (β + 1) log

1
1 + t

.

The function Q corresponds to the Jacobi weight:

e−Q(t) = (1 + t)α+1(1− t)β+1.

We saw that the coordinates of the point x∗ = (x∗1, . . . , x
∗
n) which

minimizes the energy are the zeros of the Jacobi polynomial P
(α,β)
n

(Corollary I.3.5). The minimum E∗
n of the energy,

E∗
n = En(x∗1, . . . , x

∗
n) = inf

x∈Σn
En(x1, . . . , xn)

is such that

exp(−E∗
n) = exp

(
−

n∑
i=1

Q(x∗i )
)
D(P (α,β)

n ),

where D(P ) denotes the discriminant of the polynomial P .
Let x

(n)
1 , . . . , x

(n)
n denote the zeros of P

(α,β)
n and define the probability

measure on [−1, 1]

Mn =
1
n

n∑
i=1

δ
x
(n)
i

.

We have considered in Chapter II the energy of a probability measure
µ ∈ M1(Σ):

E(µ) =
∫

Σ2
log

1
|s− t|

µ(ds)µ(dt).
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The equilibrium measure is the arcsinus law, and the minimum of the
energy

E∗ = inf
µ∈M1(Σ)

E(µ)

is equal to log 2.

Theorem III.1.1. — The measure Mn converges to the arcsinus law
for the tight topolygy. This means that, for a continuous function f on
[−1, 1],

lim
n→∞

1
n

n∑
i=1

f(x(n)
i ) =

1
π

∫ 1

−1

f(t)
dt√

1− t2
.

Furthermore
lim

n→∞

1
n2

E∗
n = E∗ (= log 2).

Proof.
We saw in Chapter II, Section 3, that the equilibrium measure µ∗, which

realizes the minimum E∗ of the energy

E(µ) =
∫

[−1,1]2
log

1
|s− t|

µ(ds)µ(dt),

is the arcsinus law. Define

wn =
1

n(n− 1)
inf

x∈[−1,1]n
En(x).

For µ ∈M1([−1, 1]),∫
[−1,1]n

En(x1, . . . , xn)µ(dx1) . . . µ(dxn)

= n(n− 1)E(µ) + n

∫
[−1,1]

Q(t)µ(dt),

and, for µ = µ∗, we get

wn ≤ E∗ +
1

n− 1

∫
[−1,1]

Q(t)µ∗(dt),

and
lim sup

n→∞
wn ≤ E∗.

Consider, for ` > 0, the cut kernel

k`(s, t) = inf
(
log

1
|s− t|

, `
)
,
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and the corresponding energy of a measure

E`(µ) =
∫

[−1,1]2
k`(s, t)µ(ds)µ(dt).

Then

E`(Mn) =
1
n2

n∑
i,j=1

k`(x(n)
i , x

(n)
j )

≤ 1
n2

∑
i 6=j

log
1

|x(n)
i − x

(n)
j |

+
`

n

≤ 1
n2

(
En(x(n))−

n∑
i=1

Q(x(n)
i )

)
+

`

n

≤ n− 1
n

wn −
γ

n
+

`

n
,

where
γ = inf

−1<t<1
Q(t) ≥ −(α + β + 2) log 2.

Since M1([−1, 1]) is compact for the tight topology, there is a converging
subsequence:

lim
j→∞

Mnj
= µ0.

We obtain
E`(µ0) ≤ lim inf

j→∞
wnj

,

and, as ` →∞, by the monotone convergence theorem,

E(µ0) ≤ lim inf
j→∞

wnj .

Thefore
E∗ ≤ E(µ0) ≤ lim inf

j→∞
wnj

≤ lim sup
j→∞

wnj
≤ E∗.

Hence E(µ0) = E∗. This implies that µ0 = µ∗. We have proved that µ∗ is
the only possible limit for a subsequence of the sequence (Mn). It follows
that the sequence (Mn) itself converges:

lim
n→∞

Mn = µ∗.

Furthermore
lim

n→∞
wn = E∗.
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2. Statistics of the zeros of Hermite polynomials. — Now we
consider the case Σ = R, Q(t) = t2 then the energy is given by

En(x) =
∑
i 6=j

log
1

|xi − xj |
+

n∑
i=1

Q(xj).

By Corollary I.3.4 the minimum of the energy is attained at the n! points
whose coordinates are the zeros x

(n)
1 , . . . , x

(n)
n of the Hermite polynomial

Hn. Define the probability measure Mn on R by

Mn =
1
n

n∑
i=1

δ
x
(n)
i

.

Consider first the two first moments of Mn. The expansion of the Hermite
polynomial is given by

Hn(x) = n!
[ n
2 ]∑

k=0

(−1)k (2x)n−2k

k!(n− 2)!

= 2n
(
xn − n(n− 1)

4
xn−2 + · · ·

)
.

By using the classical relations between the coefficients and the zeros of a
polynomial we obtain

n∑
i=1

x
(n)
i = 0,

∑
i<j

x
(n)
i xj(n) = −n(n− 1)

4
,

and
n∑

i=1

(
x

(n)
i

)2 =
( n∑

i=1

x
(n)
i

)2

− 2
∑
i<j

x
(n)
i x

(n)
j =

n(n− 1)
2

.

Therefore

m1 =
∫

R
tMn(dt) =

1
n

n∑
i=1

x
(n)
i = 0,

m2 =
∫

R
t2Mn(dt) =

1
n

n∑
i=1

(
x

(n)
i

)2 =
n− 1

2
.
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This suggests that Mn does not converge and that a rescaling is necessary
for getting a convergence. Put

M̃n =
1
n

n∑
i=1

δ
α

(n)
i

, α
(n)
i =

1√
n

x
(n)
i .

Similarly we rescale the energy En: define

Ẽn(x) =
∑
i 6=j

log
1

|xi − xj |
+

n∑
i=1

Q(
√

nxi)

=
∑
i 6=j

log
1

|xi − xj |
+ n

n∑
i=1

Q(xi).

The minimum Ẽ∗
n of Ẽn(x) is attained at the n! points whose coordinates

are the numbers α
(n)
i .

For a measure µ ∈ M1(R), we consider the energy

E(µ) =
∫

R2
log

1
|s− t|

µ(ds)µ(dt) +
∫

R
Q(t)µ(dt).

We saw in Chapter II, Section 3 that the equilibrium measure µ∗ which
realizes the minimum E∗ of the energy is the semi-circle law of radius

√
2,

and
E∗ = inf

µ∈M1(R)
E(µ) =

3
4

+
1
2

log 2.

Theorem III.2.1. — The measure M̃n converges to the semi-circle
law with radius

√
2 for the tight topology. This means that, for every

bounded continuous function f on R,

lim
n→∞

1
n

n∑
i=1

f
( 1√

n
x

(n)
i

)
=

1
π

∫ √
2

−
√

2

f(t)
√

2− t2dt.

Furthermore
lim

n→∞

1
n2

Ẽ∗
n = E∗ =

3
4

+
1
2

log 2.

Proof.
As in Section 1 define

wn =
1

n(n− 1)
inf

x∈Rn
Ẽn(x).
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For µ ∈ M1(R),∫
Rn

Ẽn(x1, . . . , xn)µ(dx1) . . . µ(dxn) = n(n− 1)E(µ) + n

∫
R

Q(t)µ(dt).

For µ = µ∗, we get

wn ≤ E∗ +
1

n− 1

∫
R

Q(t)µ∗(dt),

and
lim sup

n→∞
wn ≤ E∗.

Recall the notation

k(s, t) = log
1

|s− t|
+

1
2
Q(s) +

1
2
Q(t),

and that
k(s, t) ≥ 1

2
h(s) +

1
2
h(t),

with h(t) = Q(t)− log(1 + t2). Observe that

∑
i 6=j

k(xi, xj) =
∑
i 6=j

log
1

|xi − xj |
+ (n− 1)

n∑
i=1

Q(xi).

Hence, since Q(t) ≥ 0,

Ẽn(x) =
∑
i 6=j

k(xi, xj) +
n∑

i=1

Q(xi)

≥ 1
2

∑
i 6=j

(
h(xi) + h(xj)

)
= (n− 1)

n∑
i=1

h(xi).

It follows that

Ẽn

(
α

(n)
1 , . . . , α(n)

n

)
≥ n(n− 1)

∫
R

h(t)M̃n(dt),

Hence ∫
R

h(t)M̃n(dt) ≤ wn ≤ E∗ +
1

n− 1

∫
R

Q(t)µ∗(dt).
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Since the right handside is bounded, by Prokhorov criterium this proves
that the sequence (M̃n) is relatively compact for the tight topology.
Therefore there is a converging subsequence:

lim
j→∞

M̃nj
= µ0.

Consider, for ` > 0, the cut kernel

k`(s, t) = inf
(
k(s, t), `),

and define
E`(µ) =

∫
R2

k`(s, t)µ(ds)µ(dt).

Observing that Q(t) ≥ 0, we get

E`(M̃n) ≤ n− 1
n

wn +
`

n
.

As j →∞ we get
E`(µ0) ≤ lim inf

j→∞
wnj ,

and, by the monotone convergence theorem,

lim
`→∞

E`(µ0) = E(µ0).

Therefore

E∗ ≤ E(µ0) ≤ lim inf
j→∞

wnj
≤ lim sup

j→∞
wnj

≤ E∗.

The proof finishes as the one of Theorem III.1.1.

Remark
One establishes easily that

Ẽ∗
n = E∗

n +
n(n− 1)

2
log n.

Hence, by Theorem III.2.1,

1
n2

E∗
n = −1

2
log n +

(3
4

+
1
2

log 2
)

+ o(1).
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This can also be obtained directly from the result we saw in Chapter I
(Corollary I.3.8):

E∗
n =

n(n− 1)
2

(log 2 + 1)−
n∑

k=2

k log k.

Lemma III.2.2.

lim
n→∞

( n∑
k=1

k log k − 1
2

log n
)

= −1
4
.

Proof.
In fact, by an elementary property of the Riemann integral of a

continuous function,

∫ 1

0

x log xdx = lim
n→∞

1
n

n∑
k=1

k

n
log

k

n
,

and ∫ 1

0

x log xdx = −1
4
.

It follows that

1
n2

E∗
n +

1
2

log n =
1
2

+
1
2

log 2 +
1
2

log n−
n∑

k=2

k log k + o(1)

=
1
2

+
1
2

log 2 +
1
4

+ o(1) =
3
4

+
1
2

log 2 + o(1).

3. Statistics of the zeros of Laguerre polynomials. — Let
x

(n)
1 , . . . , x

(n)
n be the zeros of the Laguerre polynomial L

(α−1)
n (α > 0).

Define on Rn
+ the energy

En(x1, · · · , xn) =
∑
i 6=j

log
1

|xi − xj |
+

n∑
i=1

Q(xi),

with
Q(t) = t + α log

1
t
.
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The minimum of the energy En is attained at the n! points whose
coordinates are the zeros x

(n)
1 , . . . , x

(n)
n of the Laguerre polynomial L

(α−1)
n .

Define the probability measure

Mn =
1
n

n∑
i=1

δ
x
(n)
i

.

As we did for the Hermite polynomials, we compute the two first moments
of the measure Mn:

m1 =
∫

R+
tMn(dt) ∼ n, m2 =

∫
R+

t2M(dt) ∼ cn2.

This suggests that we should rescale Mn: define

M̃n =
1
n

n∑
i=1

δ
α

(n)
i

, with α
(n)
i =

1
n

x
(n)
i ,

and

Ẽn(x1, . . . , xn) =
∑
i 6=j

log
1

|xi − xj |
+

n∑
i=1

Q(nxi).

The minimum Ẽn

∗
of Ẽn is attained to the n! points whose coordinates

are the numbers α
(n)
i . As in previous sections define

wn =
1

n(n− 1)
Ẽn

∗
.

Theorem III.3.1. — The measure M̃n converges to the Marchenko-
Pastur law with c = 1 for the tight topology. This means that, for every
bounded continuous function f on R+,

lim
n→∞

n∑
i=1

f
( 1
n

x
(n)
i

)
=

1
2π

∫ 4

0

f(t)

√
4− t

t
dt.

Proof. We define the energy of a probability measure µ ∈M1(R+) as

E0(µ) =
∫

R2
+

log
1

|s− t|
µ(ds)µ(dt) +

∫
R+

Q0(t)µ(dt),

with Q0(t) = t. We saw in Chapter II that the equilibrium measure is the
Marchenko-Pastur, with c = 1.
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For µ ∈M1(R+),∫
Rn

+

Ẽn(x1, . . . , xn)µ(dx1) . . . µ(dxn)

= n(n− 1)
∫

R2
+

log
1

|s− t|
µ(ds)µ(dt) + n

∫
R+

Q(nt)µ(dt).

Since
Q(nt) = nt + α log

1
t
− α log n,

we get ∫
Rn

+

Ẽn(x1, . . . , xn)µ(dx1) . . . µ(dxn)

= n(n− 1)E0(µ) + n

∫
R+

Q(t)µ(dt)− αn log n.

It follows that
wn ≤ E∗

0 +
1

n− 1

∫
R+

Q(t)µ(dt), (3.1)

and lim supn→∞ wn ≤ E∗
0 . With the notation

k0(s, t) = log
1

|s− t|
+

1
2
Q0(s) +

1
2
Q0(t),

h0(t) = Q0(t)− log(1 + t2),

we get

Ẽn(x1, . . . , xn) =
∑
i 6=j

k0(xi, xj) +
n∑

i=1

Q(xi)− αn log n

≥ 1
2

∑
i 6=j

(
h(xi) + h(xj)

)
− αn log n.

Therefore

Ẽn(α(n)
1 , . . . , α(n)

n ) ≥ n(n− 1)
∫

R+

h0(t)M̃n(dt)− αn log n,

and∫
R+

h0(t)M̃n(dt) ≤ wn + α
log n

n− 1
≤ E∗

0 +
1

n− 1

∫
R+

Q(t)µ∗(dt) + α
log n

n− 1
,

45



by using (3.1). Since the right hand side is bounded, by Prokhorov
Criterium this proves that the sequence (M̃n) is relatively compact. The
proof finishes as the ones of Theorems III.1.1 and III.2.1.

Remark
The Laguerre polynomials L

− 1
2

n and L
1
2
n are related to Hermite polyno-

mials:
H2n(x) = (−1)n22nn! L

− 1
2

n (x2),

H2n+1(x) = (−1)n22n+1n! xL
1
2
n (x2).

Hence, if x
(2n)
i is a zero of H2n, then y

(n)
i =

(
x

(2n)
i

)2 is a zero of L
− 1

2
n , and

if x
(2n+1)
i is a zero of H2n+1, then y

(n)
i =

(
x

(2n)
i

)2 is a zero of L
1
2
n . This is

reflected by the following facts:
- The scaling is in

√
n in the case of the asymptotics of the zeros of

Hermite polynomials, and is in n in case of the asymptotics of the zeros
of Laguerre polynomials.

- The image of the semi-circle law with radius
√

2 by the map x 7→ y =
2x2 is the Marchenko-Pastur with parameter c = 1.

4. Weighted transfinite diameter, Fekete points. — As in
Chapter II, Σ is a closed interval, and Q is a function defined on Σ with
values on ]−∞,∞], continuous on int(Σ). If Σ is unbounded, it is assumed
that

lim
|x|→∞

(
Q(x)− log(x2 + 1)

)
= ∞.

Consider, for x = (x1, . . . , xn) ∈ Σn the weighted geometric mean

MQ
n (x) =

(∏
i<j

(xi − xj)2e−Q(xi)e−Q(xj)
) 1

n(n−1)
,

and its supremum
δQ
n = sup

x∈Σn

MQ
n (x).

We will show that the limit

δQ = lim
n→∞

δQ
n

exists and that
δQ = exp(−E∗).

It is called the weighted transfinite diameter of Σ (the transfinite diameter
if Q = 0).
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With the notation

Kn(x) =
∑
i 6=j

log
1

|xi − xj ]
+ (n− 1)

n∑
i=1

Q(xi),

we can write
MQ

n (x) = exp
(
− 1

n(n− 1)
Kn(x)

)
.

Recall the notation: for t, s ∈ Σ,

k(s, t) = log
1

|s− t|
+

1
2
Q(s) +

1
2
Q(t).

and
k(s, t) ≥ m.

The function Kn can be written

Kn(x) =
∑
i 6=j

k(xi, xj).

Hence
Kn(x) ≥ n(n− 1)m.

If µ is a probability measure supported by Σ, then∫
Σn

Kn(x)µ(dx1) . . . µ(dxn) =
∑
i 6=j

∫
Σ2

k(xi, xj)µ(dxi)µ(dxj)

= n(n− 1)E(µ).

In particular, for µ = µ∗, the equilibrium measure,∫
Σn

Kn(x)µ∗(dx1) . . . µ∗(dxn) = n(n− 1)E∗.

Define
κn =

1
n(n− 1)

inf
x∈Σn

Kn(x).

We have seen that m ≤ κn ≤ E∗. The statement

lim
n→∞

δQ
n = exp(−E∗)

is equivalent to the following

lim
n→∞

κn = E∗.
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An n-Fekete point is a point x = (x1, . . . , xn) ∈ Σn such that

Kn(x) = n(n− 1)κn.

For each n consider a n-Fekete point x(n) and the probability measure λn

on R

λn =
1
n

n∑
i=1

δ
x
(n)
i

.

Theorem III.4.1.
(i) limn→∞ κn = E∗,
(ii) The measure λn converges to the equilibrium measure µ∗ for the

tight topology.
The proof is similar to the one of Theorem III.2.1.
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Chapter IV

STATISTICAL EIGENVALUE DISTRIBUTION
FOR

RANDOM MATRICES

1. Statistical eigenvalue distribution. — Let Hn = Herm(n, C)
be the space of n× n Hermitian matrices with coefficients in R, C, or H.
On Hn one considers the probability

Pn(dx) =
1

Cn
exp

(
−γ tr(x2)

)
mn(dx),

with γ > 0, and mn is the Euclidean measure on Hn associated to the
inner product (x|y) = tr(xy). Cn is a normalization constant

Cn =
∫

Hn

exp
(
−γ tr(x2)

)
mn(dx) =

(√
π

γ

)N

,

where

N = dimR Hn = n +
β

2
n(n− 1), β = dimR F = 1, 2, or 4.

The probability Pn is invariant under the action of the unitary group
Un = U(n, F) of unitary matrices with entries in F.

If F = R, then U(n, F) = O(n) the orthogonal group, and the
probability space (Hn, Pn) is called the Gaussian Orthogonal Ensemble
(GOE).

If F = C, then U(n, C) = U(n) the usual unitary group, and (Hn, Pn)
is called the Gaussian Unitary Ensemble (GUE).

If F = H, then U(n, H) ' Sp(n), the compact symplectic group, and
(Hn, Pn) is called the Gaussian Symplectic Ensemble.

One is interested in the distribution of the eigenvalues of a random
matrix x ∈ Hn for large n.

The empirical eigenvalue distribution of a matrix x ∈ Hn is the
probability measure µ

(x)
n on R defined by

µ(x)
n =

1
n

n∑
k=1

δ
λ

(x)
k

,
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where λ
(x)
1 , . . . , λ

(x)
n are the eigenvalues of x. Observe that, for B ⊂ R,

µ(x)
n (B) =

1
n

#{eigenvalues of x in B}.

The statistical eigenvalue distribution is the probability measure on R
defined by

µn(B) = En

(
µ(x)

n (B)
)
.

We can write, if χB denotes the characteristic function of the set B,

µ(x)
n (B) =

1
n

( n∑
k=1

χB(λ(x)
k )

)
=

1
n

tr
(
χB(x)

)
,

with the notation of the functional calculus. Hence

µn(B) =
1
n

∫
Hn

trχB(x)Pn(dx),

and, if f is a bounded measurable function on R,∫
R

f(t)µn(dt) =
1
n

∫
Hn

tr
(
f(x)

)
Pn(dx).

The first moment of the statistical eigenvalue distribution vanishes:

m1(µn) =
1
n

∫
Hn

tr(x)Pn(dx) = 0.

Let us compute its second moment:

m2(µn) =
1
n

∫
Hn

tr(x2)Pn(dx).

We use the formula

Cn(γ) =
∫

Hn

exp
(
−γ tr(x2)

)
Pn(dx) =

(√
π

γ

)N

,

where N = dimR Hn. Hence

m2(µn) = − 1
n

d

dγ
log Cn(γ)

∣∣
γ=1

=
N

n
= 1 + β

n− 1
2

.

This suggests that µn does not converge, and that a rescaling is necessary.
In fact:
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Theorem IV.1.1 (Wigner). — After rescaling, the statistical
eigenvalue distribution µn converges to the semi-circle law: for every
bounded continuous function f on R,

lim
n→∞

∫
R

f
( t√

n

)
µn(dt) =

2
πr2

∫ r

−r

f(u)
√

r2 − u2du,

with r =
√

β
γ .

2. Weyl integration formula. — By the classical spectral theorem,
every matrix x ∈ Hn can be diagonalized in an orthonormal basis, and
the eigenvalues are real. In other words the map

Un ×Dn → Hn, (u, a) 7→ uau∗,

is surjective, where Dn is the space of real diagonal matrices, Dn ' Rn.

Proposition IV.2.1. — If the function f is integrable on Hn, then∫
Hn

f(x)mn(dx) = cn

∫
Dn

∫
Un

f(uau∗)αn(du)|∆(a)|βda1 . . . dan,

where a = (a1, . . . , an), ∆ is the Vandermonde determinant,

∆(a) =
∏
j<k

(ak − aj),

αn is the normalized Haar measure of the compact group Un, cn is a
constant and

β = dimR F = 1, 2, or 4.

If the function f is Un-invariant:

f(uxu∗) = f(x) (u ∈ Un),

then f(x) only depends on the eigenvalues λ1, . . . , λn of x:

f(x) = F (λ1, . . . , λn),

where F is a symmetric function on Rn. In this case the Weyl formula
simplifies∫

Hn

f(x)mn(dx) = cn

∫
Rn

F (a1, . . . , an)|∆(a)|βda1 . . . dan.
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3. The density of the statistical eigenvalue distribution. — Let
Ωn ⊂ Hn be a Un-invariant open set, of the form

Ωn = {x = uau∗ ∈ Hn | u ∈ Un, ai ∈ ω},

where ω = int(Σ) is the interior of a closed interval Σ. Hence Ωn is the
set of matrices x ∈ Hn whose eigenvalues belong to ω. Let Q be a positive
continuous function on ω, such that, for every m ∈ N,∫

ω

e−Q(t)|t|mdt < ∞.

We consider on Ωn the probability measure given by

Pn(dx) =
1

Cn
exp

(
− trQ(x)

)
mn(dx),

where Q(x) is defined via the functional calculus.

Examples

a) The main example will be Σ = R, and Q(t) = γt2. Then Ωn = Hn

and (Hn, Pn) is the Gaussian Orthogonal Ensemble (resp. Gaussian
Unitary Ensemble, Gaussian Symplectic Ensemble).

exp
(
− trQ(x)

)
= exp

(
−γ tr(x2)

)
.

b) For Σ = [0,∞[, Ωn, the cone of positive definite Hermitian matrices,
and

Q(t) = t + α log
1
t
,

we get the Wishart Ensemble, or Laguerre Ensemble (Wishart Orthognal
Ensemble, Wishart Unitary Ensemble, Wishart Symplectic Ensemble),
with

exp
(
− trQ(x)

)
= e− tr x(detx)α.

c) If Σ = [−1, 1], then Ωn is a matrix interval:

Ωn = {x ∈ Hn | ‖x‖op < 1} = {x ∈ Hn | −I < x < I}.

For
Q(t) = p log

1
1− t

+ q log
1

1 + t
,
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we get the Jacobi Ensemble,

exp
(
− trQ(x)

)
=

(
det(I − x)

)p(det(I + x)
)q

.

The probability measure Pn is Un-invariant. By the Weyl integration
formula, if f is Un-invariant,

f(x) = F (λ1, . . . , λn),

we get∫
Hn

f(x)Pn(dx) =
∫

ωn

F (λ1, . . . , λn)qn(λ1, . . . , λn)dλ1 . . . dλn,

with

qn(λ1, . . . , λn) =
1

Zn
e−

∑n

i=1
Q(λn)|∆(λ)|β ,

and

Zn =
∫

ωn

e−
∑n

i=1
Q(λn)|∆(λ)|βdλ1 . . . dλn.

In particular, if

f(x) =
1
n

trϕ(x) =
1
n

n∑
i=1

ϕ(λi),

where ϕ is a measurable function on ω, we get

1
n

∫
Ωn

trϕ(x)Pn(dx) =
1
n

n∑
i=1

∫
ωn

ϕ(λi)qn(λ)dλ1 . . . dλn

=
∫

ωn

ϕ(λ1)qn(λ1, . . . , λn)dλ1 . . . dλn

=
∫

ω

ϕ(t)wn(t)dt,

with

wn(t) =
∫

ωn−1
qn(t, λ2, . . . , λn)dλ2 . . . dλn.

This means that the statistical eigenvalue distribution µn has density wn,

µn(dt) = wn(t)dt.
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a) In the first example Zn is the Mehta integral

Zn =
∫

Rn

e−γ‖x‖2 |∆(x)|βdx1 . . . dxn.

b) In the second example Zn is the Siegel integral

Zn =
∫

[0,∞[n
e−(x1+···+xn)(x1 . . . xn)α|∆(x)|βdx1 . . . dxn.

c) In the third example Zn is the Selberg integral

Zn =
∫

[−1,1]n

n∏
i=1

(1− xi)p(1 + xi)q|∆(x)|βdx1 . . . dxn.

4. Asymptotic of the integral Zn. — Consider the integral

Zn =
∫

Σn

exp
(
−n

n∑
i=1

Q(xi)
)
|∆(x)|βdx1 . . . dxn.

The integrant can be written

exp−n2
(β

2

∑
i 6=j

log
1

|xi − xj |
1
n2

+
n∑

i=1

Q(xi)
1
n

)
.

Define the energy of a probability measure µ on Σ:

E(µ) =
β

2

∫
Σ2

log
1

|s− t|
µ(ds)µ(dt) +

∫
Σ

Q(t)µ(dt).

Heuristically

Zn =
∫

Σn

exp
(
−n2E(µ(x)

n )
)
dx1 . . . dxn,

with

µ(x)
n =

1
n

n∑
i=1

δxi .

Of course this is not correct since E(µ(x)
n ) = ∞.
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The method of proof is inspired from the Laplace method. Let us
present this method in a simple case. Consider the integrals:

Z(λ) =
∫

U

e−λϕ(x)a(x)m(dx),

I(λ; f) =
1

Z(λ)

∫
U

f(x)e−λϕ(x)a(x)m(dx).

U is an open set in Rn, ϕ is a continuous function on U such that

lim
‖x‖→∞

ϕ(x) = ∞,

and ϕ attains its infimum in only one point x0. The function a is a positive,
continuous, and integrable. The function f is continuous and bounded.

Proposition IV.4.1.

(i) lim
λ→∞

1
λ

log Z(λ) = −ϕ(x0).

(ii) lim
λ→∞

I(λ; f) = f(x0).

Proof.
a) For λ > 0,

e−λϕ(x) ≤ e−λϕ(x0),

hence
Z(λ) ≤ e−λϕ(x0)

∫
U

a(x)m(dx),

and
1
λ

log Z(λ) ≤ −ϕ(x0) +
1
λ

log
∫

U

a(x)m(dx).

Therefore
lim sup

λ→∞

1
λ

log Z(λ) ≤ −ϕ(x0).

b) Let α > ϕ(x0). Then

V = {x ∈ U | ϕ(x) < α}

is a non-empty open set, and

Z(λ) ≥ vol(V)e−αλ,

1
λ

log Z(λ) ≥ −α +
1
λ

log vol(V).
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Therefore
lim inf
λ→∞

1
λ

log Z(λ) ≥ −α.

This holds for every α > ϕ(x0). Hence

lim inf
λ→∞

1
λ

log Z(λ) ≥ −ϕ(x0).

c) Let W be a neighborhood of x0 and

β = inf
x∈U\W

ϕ(x).

By hypothesis, β > ϕ(x0). Choose α such that β > α > ϕ(x0). By b)
there is a constant Cα such that

Z(λ) ≥ Cαe−αλ.

Therefore

1
Z(λ)

∫
U\W

e−λϕ(x)a(x)m(dx)

≤ 1
Cα

eαλe−βλ

∫
U\W

a(x)m(dx) = Ce−(β−α)λ.

The rest of the proof of (ii) is standard.

We will follow the lines of the previous proof.

Proposition IV.4.2.

lim
n→∞

1
n2

logZn = −E∗.

Proof.
a) Define, for x ∈ Rn,

Kn(x) =
β

2

∑
i 6=j

log
1

|xi − xj |
+ (n− 1)

n∑
i=1

Q(xi),

and
κn =

1
n(n− 1)

inf
x∈Rn

Kn(x).

We saw that
lim

n→∞
κn = E∗.
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Since Kn(x) ≥ n(n− 1)κn,

Zn ≤ e−n(n−1)κn

(∫
Σ

e−Q(t)dt
)n

,

and
1
n2

logZn ≤ −n− 1
n

κn +
1
n

log
∫

Σ

e−Q(t)dt.

Therefore
lim sup

n→∞

1
n2

logZn ≤ −E∗.

b) For a probability measure µ on Σ,∫
Σn

Kn(x)µ(dx1) . . . µn(dxn) = n(n− 1)E(µ).

Assume that µ(dt) = u(t)dt, where u is a continuous function supported
by U ⊂ Σ, with u(t) > 0 on the open set U . We can write

Zn =
∫

Σn

exp
(
−

(
Kn(x) +

n∑
i=1

Q(xi) +
n∑

i=1

log u(xi)
)) n∏

i=1

u(xi)dxi.

We will apply the following Jensen’s inequality: Let (X, ν) be a probability
space, and Φ a convex function on R. Then, for a real measurable function
f on X,

Φ
(∫

X

f(x)ν(dx)
)
≤

∫
X

Φ
(
f(x)

)
ν(dx).

We take X = Σn, ν(dx) =
∏n

i=1 u(xi)dxi, Φ(x) = exp(x), and

f(x) = −
(
Kn(x) +

n∑
i=1

Q(xi) +
n∑

i=1

log u(xi)
)
.

We get

Zn ≥ exp
(
−n(n− 1)E(µ)

)(∫
Σ

−Q(t)u(t)
)n(∫

Σ

− log u(t)dt
)n

.

It follows that
lim

n→∞

1
n2

logZn ≥ −E(µ).

If the equilibrium measure is of this form, this finishes the proof. If not
one has to prove that, for every ε > 0, there is a probability measure µ of
that form such that E(µ) ≤ E(µ∗) + ε.
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Let us consider the Mehta integral: for β > 0,

In(β) =
∫

Rn

exp
(
−1

2

n∑
i=1

x2
i

) ∏
i<j

|xi − xj |βdx1 . . . dxn.

After rescaling we get

Zn(β) = (
√

2n)
(
n+ β

2 n(n−1)
)
In(β).

Define, for µ ∈ M1(R),

Eβ(µ) : =
β

2

∫
R2

log
1

|s− t|
µ(ds)µ(dt) +

∫
R

t2µ(dt)

=
β

2

(∫
R2

log
1

|s− t|
µ(ds)µ(dt) +

∫
R

(√ 2
β

t
)
µ(dt)

)
.

In section II.3 ( 2) Gaussian weight), we saw, for β = 2, that

E∗
2 =

3
4

+
1
2

log 2,

and, by Lemma II.2.4,

E∗
β =

β

2

(
E∗

2 + log
√

2
β

)
=

3β

8
+

β

4
log

4
β

.

By Proposition IV.4.2,

lim
n→∞

1
n2

logZn(β) = −E∗
β = −

(3β

8
+

β

4
log

4
β

)
.

Since
log In(β) =

1
2
(
n +

β

2
n(n− 1)

)
log 2n + logZn(β),

we get
1
n2

log In(β) =
β

4
log n−

(3β

8
+

β

4
log

2
β

)
+ o(1).

This result can be obtained from the explicit evaluation of the Mehta
integral:

In(β) = (2π)
n
2

n∏
j=1

Γ
(
j β

2 + 1
)

Γ
(

β
2 + 1

) .
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Hence

log In(β) =
n∑

j=1

log Γ
(
j
β

2
+ 1

)
+ n log

√
2π + n log Γ

(β

2
+ 1

)
.

By the Stirling formula,

log Γ(x + 1) = x log x− x + O(log x),

we get

n∑
j=1

γ
(
j
β

2
+1

)
=

β

2

( n∑
j=1

j log j+
n(n− 1)

2
log

β

2

)
− β

2
n(n− 1)

2
+O(n log n).

We saw that (Lemma III.2.2)

1
n2

n∑
j=1

j log j =
1
2

log n− 1
4

+ o(1).

We obtain finally, in agrreement with the previous result,

1
n2

log In(β) =
β

4
log n−

(3β

8
+

β

4
log

2
β

)
+ o(1).

5. Generalized Wigner Theorem. — Define the rescaled statistical
eigenvalue distribution µn:∫

Σ

f(t)µn(dt) = En

( 1
n

n∑
i=1

f(xi)
)
,

where En is the expectation related to the probability measure Pn on Σn

defined by

Pn(dx) =
1
Zn

exp
(
−n

n∑
i=1

Q(xi)
)
|∆(x)|βdx1 . . . dxn.

Theorem IV.5.1. — The measure µn converges to the equilibrium
measure µ∗ for the tight topology:

lim
n→∞

µn = µ∗.
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It means that, for every bounded continuous function f ,

lim
n→∞

∫
Σ

f(t)µn(dt) =
∫

Σ

f(t)µ∗(dt).

The probability Pn concentrates in a neighborhood of the points where
the function

Kn(x) =
∑
i 6=j

log
1

|xi − xj |
+ (n− 1)

n∑
i=1

Q(xi)

attains its infimum:

Lemma IV.5.2. — For η > 0 define

Aη,n = {x ∈ Σn | Kn(x) ≤ (E∗ + η)n2}.

The set Aη,n is compact and

lim
n→∞

Pn(Aη,n) = 1.

Proof.
From the definition of Aη,n it follows that

Pn(Σn \Aη,n) ≤ 1
Zn

e−(E∗+η)n2
(∫

Σ

e−Q(t)dt
)n

.

By Proposition IV.4.1, for every ε > 0 there is N such that, if n ≥ N ,

1
Zn

≤ e(E∗+ε)n2
.

Choose ε < η.

Proof of Theorem IV.5.1 Let f be a bounded continuous function on Σ,
and Fn the function defined on Σn by

Fn(x) =
1
n

n∑
i=1

f(xi).

a) Fix η > 0. The set Aη,n is compact, hence the continuous function
Fn attains its supremum on Aη,n at a point

x(η,n) = (x(η,n)
1 , . . . , x(η,n)

n ) ∈ Aη,n.
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We obtain∫
Σ

f(t)µn(dt) ≤ F (x(η,n))Pn(Aη,n) + ‖f‖∞Pn(Σn \Aη,n)

≤ F (x(η,n)) + ‖f‖∞
(
1− Pn(Aη,n)

)
.

To the point x(η,n) we associate the following probability measure on Σ:

ν(n)
η =

1
n

n∑
i=1

δ
x
(η,n)
i

.

The previous inequality can be written∫
Σ

f(t)µn(dt) ≤
∫

Σ

f(t)ν(n)
η (dt) + ‖f‖∞

(
1− Pn(Aη,n)

)
.

The truncated energy E` of the measure ν
(n)
η satisfies:

E`(ν(n)
η ) ≤ `

n
+ (E∗ + η).

From the inequality

Kn(x) ≥ (n− 1)
n∑

i=1

h(xi),

it follows that ∫
Σ

h(t)ν(n)
η (dt) ≤ n

n− 1
(E∗ + η).

This implies that the sequence ν
(n)
η is relatively compact for the tight

topology. There is a sequence nj going to ∞ such that the subsequence
ν

(nj)
η converges:

lim
j→∞

ν(nj)
η = νη.

We may also assume that

lim
j→∞

∫
Σ

f(t)µnj
(dt) = lim sup

n→∞

∫
Σ

f(t)µn(dt).

The limit measure νη satisfies

E`(νη) ≤ E∗ + η,
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and, as ` →∞,
E(νη) ≤ E∗ + η.

Furthermore
lim sup

n→∞

∫
Σ

f(t)µn(dt) ≤
∫

Σ

f(t)νη(dt).

b) The inequality
E(νη) ≤ E∗ + η

implies that the measure νη converges to the equilibrium measure µ∗ as
η → 0. Therefore

lim sup
n→∞

∫
Σ

f(t)µn(dt) ≤
∫

Σ

f(t)µ∗(dt).

c) Applying the previous result to −f instead of f , one gets

lim inf
n→∞

∫
Σ

f(t)µn(dt) ≥
∫

Σ

f(t)µ∗(dt),

and finally

lim
n→∞

∫
Σ

f(t)µn(dt) =
∫

Σ

f(t)µ∗(dt).

In the special case Σ = R, and Q(t) = t2, we obtain Wigner’s theorem
(Theorem IV.1.1). In fact in this case the equilibrium measure µ∗ is the
semi-circle law of radius r =

√
β:

Corollary IV.5.2. — If Σ = R, and Q(t) = t2, the measure µn

converges to the semi-circle law of radisu r =
√

β: for every bounded
continuous function f on R,

lim
n→∞

∫
R

f(t)µn(dt) =
2

πβ

∫ √
β

−
√

β

f(u)
√

β − u2du.
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Chapter V

THE WISHART UNITARY ENSEMBLE

1. The Wishart unitary ensemble. — Let Ωn be the cone
of positive definite n × n Hermitian matrices in the real vector space
Hn = Herm(n, C). For p > n− 1, the Wishart law W p

n is the probability
measure on Ωn defined by∫

Ωn

f(x)W p
n(dx) =

1
Γn(p)

∫
Ωn

f(x)e− tr x(detx)p−nmn(dx),

for a bounded measurable function f . The function Γn is the gamma
function of the cone Ωn:

Γn(p) =
∫

Ωn

e− tr x(detx)p−nmn(dx).

The probability space (Ωn,W p
n) is called the Wishart unitary ensemble.

In fact the Wishart law W p
n is invariant under the action of the unitary

group U(n) given by the transformations

x 7→ uxu∗
(
u ∈ U(n)

)
.

The gamma function Γn can be computed:

Γn(p) = (2π)
n(n−1)

2

n∏
j=1

Γ(p− j + 1).

The probability space (Ωn,W p
n) can be obtained from the general

construction we introduced in Chapter IV:

Σ = [0,∞[, Q(t) = t + (p− n) log
1
t
, w(t) = e−Q(t) = e−ttp−n.

By the Weyl integration formula,

Zn :=
∫

]0,∞[n
e−(a1+···+an)(a1 . . . an)p−n∆(a)2da1 . . . dan = AnΓn(p).

The Laplace transform of the Wishart law has a simple expression:
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Proposition V.1.1. — For ζ = ξ + iη ∈ Hn + iHn ' Mn(C) with
ξ + I ∈ Ωn,

LW p
n(ζ) :=

∫
Ωn

e− tr(ζx)W p
n(dx) = det(I + ζ)−p.

Proof.
One starts from the formula∫

Ωn

e− tr(x)(detx)p−nmn(dx) = Γn(p),

and changes the variable: one puts x = gx′g∗ with g ∈ GL(n, C). Then

mn(dx) = |det g|2nmn(dx′),

and ∫
Ωn

e− tr(x)(detx)p−nmn(dx)

= |det g|2p

∫
Ωn

e− tr(gx′g∗)(detx′)p−nmn(dx′).

Therefore, for y = g∗g,∫
Ωn

e− tr(x′y)(detx′)p−nmn(dx′) = Γn(p)(det y)−p.

Since, for y ∈ Ωn, there exists g ∈ GL(n, C) such that y = g∗g, the
proposition is proven for Im ζ = η = 0. The two functions ζ 7→ LW p

n(ζ)
and ζ 7→ (I + ζ)−p are holomorphic in the open set

{ζ = ξ + iη | ξ + I ∈ Ωn} = (Ωn − I) + iHn,

and agree for ζ = ξ ∈ Ωn − I, hence agree on (Ωn − I) + iHn.

On the space M(n, p; C) of n× p complex matrices let us denote by G
the Gaussian probability measure

G(dξ) =
1

πnp
e− tr(ξξ∗)m(dξ).

We consider the quadratic map

q : M(n, p; C) → Ωn, ξ 7→ ξξ∗.
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Proposition V.1.2. — If p ≥ n, then the image by the map q of the
Gaussian probability G is the Wishart law W p

n .
This means that, for a function f on Ωn which is integrable with respect

to W p
n , ∫

Ωn

f(x)W p
n(dx) =

∫
M(n,p;C)

f(ξξ∗)G(dξ).

Proof.
The measure µ = q(G) is the measure on Ωn such that, for a function

f on Ωn, measurable and bounded,∫
Ωn

f(x)µ(dx) =
∫

M(n,p;C)

f
(
q(ξ)

)
G(dξ).

Let us compute the Laplace transform of the image µ = q(G). By taking

f(x) = e− tr(xζ),

with ζ = ξ + iη ∈ Hn + iHn, ξ + I ∈ Ωn, we obtain

Lµ(ζ) =
1

πnp

∫
M(n,p;C)

e− tr(ζξξ∗)e− tr(ξξ∗)m(dξ)

=
1

πnp

∫
M(n,p;C)

e− tr
(
(I+ζ)ξξ∗)

)
m(dξ)

= det(I + ζ)p.

By Proposition V.1.1 and the injectivity of the Laplace transform, this
proves the proposition.

If p < n, then the image of G is a well defined probability measure
supported on the boundary ∂Ωn of the cone Ωn. It is singular with respect
to the Euclidean measure mn. We will also denote it by W p

n . In fact it can
be obtained by analytic continuation from W p

n , p > n− 1, with respect to
p. Therefore we obtain a famility of probability measures W p

n for p in the
so called Wallach set

{0, 1, . . . , n− 1}∪]n− 1,∞[.

2. The statistical eigenvalue distribution. — The statiscal
eigenvalue distribution µp

n is defined by∫
[0,∞[

f(t)µp
n(dt) =

1
n

∫
Ωn

tr
(
f(x)

)
W p

n(dx).
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For p > n − 1, this measure is absolutely continuous with respect to the
Lebesque measure:

µp
n(dt) = wp

n(t)dt.

In fact, define

qp
n(a1, . . . , an) =

1
Zp

n
e−(a1+···+an)

n∏
j=1

ap−n
j ∆(a)2,

where

Zp
n =

∫
[0,∞[n

e−(a1+···+an)
n∏

j=1

ap−n
j ∆(a)2da1 . . . dan.

Then
wp

n(t) =
∫

[0,∞[n−1
qp
n(t, a2, . . . , an)da2 . . . dan.

As for the classical Wigner theorem, we will rescale the statiscal eigenvalue
distribution in order to get the convergence. Define µ̃n by:∫

[0,∞[

f(t)µ̃p
n(dt) =

∫
[0,∞[

f
( t

n

)
µp

n(dt).

We obtain∫
[0,∞[

f(t)µ̃p
n(dt)

=
1

Zp
n

∫
[0,∞[n

1
n

( n∑
i=1

f(xi)
)

exp
(
−n

n∑
i=1

Q(xi)
)
∆(x)2dx1 . . . dxn,

with
Q(t) = t +

( p

n
− 1

)
log

1
t
.

To determine the limit of µp
n we will use the results established in Chapter

II about logarithmic potential theory.

3. The Marchenko-Pastur law. — For c > 1 define

Q(t) = t + (c− 1) log
1
t
,

on Σ = [0,∞[, and consider the energy of a probability measure on Σ:

E(µ) =
∫

Σ2
log

1
|s− t|

µ(dt)µ(ds) +
∫

Σ

Q(t)µ(dt).

66



We saw that the infimum E∗ of the energy is attained at a unique measure
µ∗, called the equilibrium measure. We saw also that, if µ is a measure
with the following property: there is a constant C such that

Uµ(x) +
1
2
Q(x) ≥ C (x ∈ Σ),

Uµ(x) +
1
2
Q(x) = C (x ∈ supp(µ),

then µ = µ∗.

For c ≥ 1, the Marchenko-Pastur distribution µc is defined by∫
Σ

f(t)µc(dt) =
1
2π

∫ b

a

f(t)
√

(t− a)(t− b)
dt

t
,

where
a = (

√
c− 1)2, b = (

√
c + 1)2.

By Proposition II.1.5, the Marchenko-Pastur µc is the equilibrium mea-
sure.

4. Convergence to the Marchenk-Pastur distribution. — We
assume that p depends on n: p = p(n).

Theorem V.4.1. — Assume that

lim
n→∞

p(n)
n

= c ≥ 1.

Then, for a bounded continuous function f on Σ,

lim
n→∞

∫
Σ

f
( t

n

)
µp

n(dt) =
∫

Σ

f(t)µc(dt).

This is a consequence of the results we saw in Chapter IV.

In the case of p < n, the matrix x = ξξ∗ has (n − p) zero eigenvalues,
therefore

tr f(x) = f(λ1) + · · ·+ f(λp) + (n− p)f(0).

It follows that the statistical eigenvalue distribution µp
n has an atom in 0:∫

Σ

f(t)µp
n(dt) =

(
1− p

n

)
f(0) +

∫ ∞

0

f(t)wp
n(t)dt.
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For 0 < c < 1, the Marchenko-Pastur distribution µc has an atom at 0 as
well: ∫

Σ

f(t)µc(dt) = (1− c)f(0) +
1
2π

∫ b

a

f(t)
√

(t− a)(t− b)
dt

t
.

The theorem still holds with c > 0 instead of c ≥ 1.
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Chapter VI

WHAT IS THE PROBABILITY

FOR A SYMMETRIC OR A HERMITIAN MATRIX

TO BE POSITIVE DEFINITE ?

The result we will present is part of the paper

D. S. Dean, S. N. Majumdar
Extreme value statistics of eigenvalues of Gaussian random matrices
(2008)

1. The probability for a matrix to be positive definite. — Let
(Hn, Pn) be the Gaussian Orthogonal Ensemble, the Gaussian Unitary
Ensemble, or the Gaussian Symplectic Ensemble.

As before Ωn ⊂ Hn denotes the cone of positive definite Hermitian
matrices. The question is: What can be said about the numbers pn =
Pn(Ωn), the probability for a matrix x ∈ Hn, to be positive definite ?

It is the probability that all the eigenvalues are > 0. If the eigenvalues
were independent, it would be equal to 1

2n . But it is not the case.
The simplest case: n = 2, Hn = Sym(2, R). We use the coordinates

x =
(

x1 + x2 x3

x3 x1 − x2

)
Then tr(x2) = 2(x2

1 + x2
2 + x2

3), and Ω2 is the circular cone

Ω2 = {x = (x1, x2, x2) | x2
1 − x2

2 − x2
3 > 0, x1 > 0}.

The number p2 is the area of the intersection of Ω2 with the unit sphere
S(R3), the area being normalized so that the area of S(R3) is equal to
one. This means that p2 is the normalized solid angle of the cone Ω2. One
computes easily

p2 =
2−

√
2

4
.

Then p2 ' 0.14, much less that 1
4 . On the opposite the probabibility

for a matrix to have signature (1, 1) is
√

2
2 , much more that 0.5. The

interpretation of pn as a solid angle holds in any dimension: pn equals the
area of the intersection of Ωn with the unit sphere S(Hn), the area being
normalized so that the area of S(Hn) is equal to one.
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In his thesis, Kuriki has determined the probability, for a real symmetric
matrix of order ≤ 5, that the eigenvalues are ≥ `. For ` = 0, one gets the
probabilities pn ([Kuriki,1992], p.35):

p3 =
π − 2

√
2

4π
, p4 =

(4−
√

2)π − 8
16π

, p5 =
3π − 8−

√
2

24π
.

In the paper of Dean and Majumdar it is proven:

Theorem VI.1.1.

lim
n→∞

1
n2

log pn = −β
log 3

4
.

Hence pn converges to zero very rapidly: pn is like

e−cn2
, c = β

log 3
4

.

We consider the Gaussian probability

Pn(dx) =
1

Zn
exp

(
−β

2
tr(x2)

)
mn(dx),

where
Cn =

∫
Hn

exp
(
−β

2
tr(x2)

)
mn(dx).

Hence
pn = Pn(Ωn) =

1
Cn

∫
Ωn

exp
(
−β

2
tr(x2)

)
mn(dx).

By using the Weyl integration formula it can also be written, since the
ratio is not affected by the rescaling,

pn =
Z+

n

Zn
,

with
Zn =

∫
Rn

e−n β
2 (a2

1+···+a2
n)|∆(a)|βda1 . . . dan.

Z+
n =

∫
[0,∞[n

e−n β
2 (a2

1+···+a2
n)|∆(a)|βda1 . . . dan.

Consider, for Σ = R, and Q(t) = t2,

E(µ) =
∫

R2
log

1
|s− t|

µ(ds)µ(dt) +
∫

R
Q(t)µ(dt),
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and denote by E∗ the equilibrium energy. In Chapter IV we consider a
slightly different definition:

Ẽ(µ) =
β

2

∫
R2

log
1

|s− t|
µ(ds)µ(dt) +

∫
R

Q(t)µ(dt).

By Lemma II.2.4, the modified equilibrium energy Ẽ∗ is related to E∗ by

Ẽ∗ =
β

2
(
E∗ − 1

2
log

β

2

)
.

Therefore, by Proposition IV.4.1

lim
n→∞

1
n2

logZn = −β

2
(
E∗ − 1

2
log

β

2
)
.

Similarly consider, for Σ = [0,∞[, Q(t) = t2, the energy

E+(µ) =
∫

R2
+

log
1

|s− t|
µ(ds)µ(dt) +

∫
R+

Q(t)µ(dt).

and denote by E∗
+ the equilibrium energy. Then

lim
n→∞

1
n2

logZ+
n = −β

2
(
E∗

+ −
1
2

log
β

2
)
.

Therefore

lim
n→∞

1
n2

log pn = −β

2
(E∗

+ − E∗).

We have seen in Chapter II that

E∗ =
3
4

+
1
2

log 2.

We will see in the next section that

E∗
+ =

3
4

+
1
2

log 2 +
1
2

log 3.

Since

pn =
Zn

Z+
n

,

this proves Theorem VI.1.1.
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2. The Dean-Majumdar distribution. — Recall that, for Σ = R,
and Q(t) = t2, the energy of a probability measure µ is

E(µ) =
∫

R2
log

1
|s− t|

µ(ds)µ(dt) +
∫

R
Q(t)µ(dt).

The equilibrium measure is the semi-circle law of radius
√

2:∫
R

f(t)µ∗(dt) =
1
π

∫ √
2

−
√

2

f(t)
√

2− t2dt,

and the equilibrium energy is

E∗ =
3
4

+
1
2

log 2.

Now we replace R by Σ = [0,∞[, and keep Q(t) = t2. Define the energy
of a probability measure µ on [0,∞[ as

E+(µ) =
∫

R2
+

log
1

|s− t|
µ(ds)µ(dt) +

∫
R+

Q(t)µ(dt).

We will see that the equilibrium measure is then the probability measure
µ defined by ∫

R
f(t)µ(dt) =

1
π

∫ b

0

f(t)
(
t +

b

2
)√b

t
− 1 dt,

with b = 2
3

√
6. This measure is considered in the paper [Dean-

Majumdar,2008].

Theorem VI.2.1. — The Cauchy transform of µ is given, for
z ∈ C \ [0, b], by

Gµ(z) = z −
(
z +

b

2
)√

1− b

z
,

and its logarithmic potential by

Uµ(x) = −1
2
x2 + C, if 0 ≤ x ≤ b,

= −1
2
x2 + C +

∫ x

b

(
t +

b

2
)√

1− b

t
dt, if x ≥ b.

with
C =

1
2

+
1
2

log 2 +
1
2

log 3.
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Proof.
The function

f(z) =
(
z +

b

2
)√

1− b

z

is holomorphic in C\ [0, b], and the difference of its boundary values equals

[f ] = 2i
(
t +

b

2
)√b

t
− 1χ(t),

where χ is the indicator function of [0, b]. Furthermore the Laurent
expansion of f is

f(z) = z − 1
z
− b

3
1
z2
− 1

2
1
z3

+ · · ·

Therefore µ is a probability measure whose Cauchy transform is

Gµ(z) = z −
(
z +

b

2
)√

1− b

z
.

Furthermore the first two moments of µ are

m1(µ) =
b

3
, m2(µ) =

1
2
.

Hence

d

dx
Uµ(x) = −Re Gµ(x) = −x if 0 ≤ x ≤ b,

= −x +
(
x +

b

2
)√

1− b

t
if x ≥ b,

and
Uµ(x) = −1

2
x2 + C, if 0 ≤ x ≤ b,

= −1
2
x2 + C +

∫ x

b

(
t +

b

2
)√

1− b

t
dt, if x ≥ b.

The constant C will be computed by using

lim
x→∞

Uµ(x) + log x = 0.

Let us compute the integral

F (x) =
∫ x

b

(
t +

b

2
)√

1− b

t
dt = F1(x) + F2(x),
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with

F1(x) =
∫ x

b

√
t(t− b)dt, F2(x) =

b

2

∫ x

b

√
1− b

t
dt.

For the first integral we change the variable: t = b
2 (1 + u) and get

F1(x) =
b2

4

∫ 2
b x−1

1

√
u2 − 1du =

2
3
Φ

(2
b
x− 1

)
,

with
Φ(v) =

∫ v

1

√
u2 − 1du.

For the second integral we put t = bu2 and get

F2(x) = b2

∫ √
x
b

1

√
u2 − 1du =

8
3
Φ

(√x

b

)
.

By Lemma II.1.4

Φ(v) =
1
2
v2 − 1

2
log v − 1

4
− 1

2
log 2 + o(1).

Hence

F1(x) =
2
3

(1
2
(2
b
x− 1

)2 − 1
2

log
(2
b
x− 1

)
− 1

4
− 1

2
log 2

)
+ o(1)

=
1
2
x2 − b

2
x− 1

3
log x +

1
6
− 1

6
log 2− 1

6
log 3 + o(1),

and

F2(x) =
8
3

(1
2
(√x

b

)2 − 1
2

log
√

x

b
− 1

4
− 1

2
log 2

)
+ o(1)

=
b

2
x− 2

3
log x− 2

3
− 1

3
log 2− 1

3
log 3 + o(1).

Finally

F (x) = F1(x) + F2(x) =
1
2
x2 − log x−

(1
2

+
1
2

log 2 +
1
2

log 3
)

+ o(1).

It follows that
C =

1
2

+
1
2

log 2 +
1
2

log 3.

Corollary VI.2.2. — For Σ = [0,∞[, Q(t) = t2, the equilibrium
measure is the Dean-Majumdar distribution µ, and the equilibrium energy
is

E∗
+ =

3
4

+
1
2

log 2 +
1
2

log 3.
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Proof.
By Theorem VI.2.1,

Uµ(x) +
1
2
Q(x) ≥ C on [0,∞[,

= C on supp(µ).

By Proposition II.3.1, this implies that µ is the equilibrium measure.
Furthermore

E∗
+ = C +

1
2

∫
Σ

Q(t)µ(dt) = C +
1
2
m2(µ).

We have seen that m2(µ) = 1
2 . Hence

E∗
+ = C +

1
4

=
3
4

+
1
2

log 2 +
1
2

log 3.

Consider on Ωn the Gaussian probability measure

Pn(dx) =
1
pn

exp(− trx2)m(dx),

and let µn be the statistical distribution of the eigenvalues of a matrix in
Ωn. By the generalized Wigner Theorem (Theorem IV.5.1), the statistical
distribution µn of the eigenvalues of a matrix x in Ωn converges, after
scaling, to the Dean-Majumdar distribution.

Corollary VI.2.3. — For a bounded continuous function f on
[0,∞[,

lim
n→∞

∫
R+

f
( t√

n

)
µn(dt) =

∫
R+

f
(√

β

2
u
)
µ(du),

where µ is the Dean-Majumdar distribution.
If x ∈ Hn has p positive eigenvalues and q negative eigenvalues, one

says that x has signature (p, q), or index (p, q). It is natural to study the
distribution of the random variable p(x), and its asymptotic as n → ∞.
See

The index distribution of Gaussian random matrices (2009)
S. N. Majumdar, C. Nadal, University of Paris-Sud (Orsay)
A. Scardicchio, P. Vivo, Abdus Salam International Centre for Theoretical
Physics (Trieste)

Once more this question is solved by using Logarithmic Potential
Theory. It amounts to solving:
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For ` ∈ R, determine the probability measure µ which minimazes the
energy

E(µ) =
∫

R2
log

1
|s− t|

µ(ds)µ(dt) +
∫

R
t2µ(dt),

among the probability measures µ for which

µ([0,∞[) ≤ `.

This is solved by the Lagrange multipliers method.
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Histograms of the zeros of classical orthogonal polynomials.
Let P be a polynomial of degree n with n real zeros x1, . . . , xn. Fix h > 0
and define

kj = #{xi | jh ≤ xi < (j + 1)h}.

To obtain the histogram of the zeros xi with step h, one draws the
colloction of the rectangles

Rj = {(x, y) | jh ≤ x < (j + 1)h, 0 ≤ y ≤ kj}.

For getting the histogram of the zeros of the Legendre polynomial, the
Hermite polynomial Ln, and the Laguerre polynomial, one has to compute
the zeros x

(n)
i . For that one has used the fact that they are eigenvalues of a

tridiagonal symmetric n×n matrix. Let (Pn) be a sequence of orthogonal
polynomials, and consider the normalized polynomials

pn(x) =
1

‖Pn‖
Pn(x).

The polynomials pn satisfy a three terms recursion relation of the form

xpn(x) = αnpn+1(x) + βnpn(x) + αn−1pn−1(x).

Consider the infinite dimensional tridiagonal symmetric matrix

T =


β0 α0

α0 β1 α1

α1 β2 α2

α2 β3 α3

. . . . . . . . .

 ,

and let Tn denote the n× n matrix of the first lines and n first rows of T .
Then the eigenvalues of Tn are the zeros of pn.

a) The Legendre polynomials Pn (special case of the Jacobi polynomials
Pn = P

(0,0)
n ) satisfy the relation

xPn =
n

2n + 1
Pn−1 +

n + 1
2n + 1

Pn+1,

and

‖Pn‖2 =
∫ 1

−1

Pn(x)2dx =
2

2n + 1
.
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Therefore the normalized polynomials pn = 1
‖Pn‖Pn satisfy the relation

xpn =
n√

(2n + 1)(2n− 1)
pn−1(x) +

n + 1√
(2n + 3)(2n + 1)

pn+1(x).

In this case
αn =

n + 1√
(2n + 1)(2n + 3)

, βn = 0.

b) The Hermite polynomials Hn satisfy the relation

xHn(x) = nHn−1(x) +
1
2
Hn+1(x),

and
‖Hn‖2 =

∫ ∞

−∞
Hn(x)2e−x2

dx = 2nn!
√

π.

The normalized polynomials pn = 1
‖Hn‖Hn satisfy

xpn(x) =
√

n

2
pn−1(x) +

√
n + 1

2
pn+1(x).

In this case

αn =

√
n + 1

2
, βn = 0.

c) The Laguerre polynomials Ln (Ln = L
(0)
n ) satisfy the relation

xLn(x) = −nLn−1(x) + (2n + 1)Ln(x)− (n + 1)Ln+1(x),

and they are normalized

‖Ln‖2 =
∫ ∞

0

Ln(x)2e−xdx = 1.

Therefore, in this case,

αn = −(n + 1), βn = 2n + 1.
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Histograms and graphics

The histograms and graphics have been realized by Marouane Rabaoui.

1. Histogram of the zeros of the Legendre polynomial Pn, for n = 2000.

2. Graphic of the density of the arcsinus law.

3. Histogram of the zeros of the Hermite polynomial Hn, for n = 2000.

4. Graphic of the density of the semicircle law.

5. Histogram of the zeros of the Laguerre polynomial Ln, for n = 2000.

6. Graphic of the density of the Marchenko-Pastur law, for c = 1.

7. Histogram of the eigenvalues of a random n × n symmetric matrix,
for n = 4000, relatively to a Gaussian probability.

81


