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Abstract. This is an attempt to present in a unified way results about
asymptotics of spherical functions for large dimensions. We consider three
cases: multivariate Bessel functions associated to the space of Hermitian
matrices, characters of the unitary group, and multivariate Laguerre
polynomials associated to the Heisenberg group.
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Introduction

By asymptotic spherical analysis we mean the study of asymptotics for
spherical functions of Gelfand pairs (G,K) as the Lie group G has large
dimension. We will consider the general setting of an Olshanski spherical
pair, i.e. an inductive limit (G,K) of an increasing sequence of Gelfand
pairs

(
G(n),K(n)

)
,

G =
∞⋃

n=1

G(n), K =
∞⋃

n=1

K(n),

and study the asymptotics of a sequence (ϕn) of spherical functions for(
G(n),K(n)

)
, and identify the limit of such a sequence as a spherical

function for the Olshanski spherical pair (G,K). We will consider the
following three types.

1. Let V (n) be an increasing sequence of real vector spaces, and,
for each n, a compact group K(n) acting linearly on V (n). Then(
G(n),K(n)

)
, where G(n) is the generalized motion group K(n) n V (n),

is a Gelfand pair, and the associated spherical functions are generalized
Bessel functions. The case of V (n) = Herm(n,C), the space of n × n
Hermitian matrices, and K(n) = U(n), the unitary group, has been
considered by Olshanski and Vershik.

2. If G(n)/K(n) is a compact symmetric space, then the corresponding
spherical functions can be written in terms of multivariate orthogonal
polynomials associated to root systems. The unitary group U(n) is
a special case: G(n) = U(n) × U(n) and K(n) ' U(n). Then the
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corresponding spherical functions are normalized Schur functions. In
this case the asymptotics have been determined by Kerov and Vershik.
For the general case of an inductive limit of compact symmetric spaces,
asymptotics have been obtained by Okounkov and Olshanski.

3. Let V (n) be an increasing sequence of complex Euclidean vector
spaces, and, for each n, K(n) is a compact group acting unitarily on
V (n). Then K(n) is a group of automorphisms of the Heisenberg group
H(n) = V (n) × R. If K(n) acts multiplicity free on the space of
polynomials on V (n), then

(
G(n),K(n)

)
, with G(n) = K(n) nH(n), is a

Gelfand pair. In some cases, the asymptotics of the associated spherical
functions have been determined.

In the first case the results are due to Olshanski and Vershik. In the
second case they are due to Kerov and Vershik. In fact we will present a
method of proof due to Okounkov and Olshanski. The results in the third
case are due to the author.

This survey has been presented on the occasion of the VIIth Workshop
on Lie Theory and Applications, held at the Facultad de Matemática,
Astronomia y Fisica, Universitas Nacional de Córdoba. The author wish
to thank the organizers for the invitation, especially Professors Carina
Boyallian and Linda Saal.

1. Gelfand pairs and Olshanski spherical pairs

1.1 Spherical functions for a Gelfand pair. Let us first recall what
is a spherical function for a Gelfand pair. A pair (G,K), where G is a
locally compact group, and K a compact subgroup, is said to be a Gelfand
pair if the convolution algebra L1(K\G/K) of K-biinvariant integrable
functions on G is commutative. Fix now a Gelfand pair (G,K). A
spherical function is a continuous function ϕ on G which is K-biinvariant,
with ϕ(e) = 1, and satisfies the functional equation∫

K

ϕ(xky)α(dk) = ϕ(x)ϕ(y) (x, y ∈ G),

where α is the normalized Haar measure on the compact group K. The
characters χ of the commutative Banach algebra L1(K\G/K) are of the
form

χ(f) =
∫

G

f(x)ϕ(x)m(dx),

where ϕ is a bounded spherical function (m is a Haar measure on the
group G, which is unimodular since (G,K) is a Gelfand pair).
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Let P(K\G/K) denote the cone of K-biinvariant continuous functions
on G of positive type. To a function ϕ ∈ P(K\G/K) one associates by
the Gelfand-Naimark-Segal construction a unitary representation (π,H)
with a cyclic K-invariant vector u ∈ H such that

ϕ(x) =
(
u|π(x)u

)
.

The triple (π,H, u) is unique up to equivalence. Let P1(K\G/K) denote
the convex set of the functions ϕ ∈ P(K\G/K) with ϕ(e) = 1. For a
function ϕ ∈ P1(K\G/K), the following properties are equivalent:

(1) ϕ is spherical,
(2) ϕ is extremal in P1(K\G/K),
(3) the representation (π,H) associated to ϕ via the Gelfand-Naimark-

Segal construction is irreducible.
If these properties hold, then dimHK = 1, and the representation (π,H)

is said to be spherical, i.e. unitary, irreducible with dimHK = 1. For the
spherical dual Ω of the Gelfand pair (G,K), we can give three equivalent
definitions:

(1) Ω is the set of spherical functions of positive type,
(2) Ω is the set of extremal points in the convex set P1(K\G/K),
(3) Ω is the set of equivalence classes of spherical representations.
On the spherical dual Ω one considers the topology of uniform conver-

gence on compact sets of the corresponding spherical functions.

1.2 Spherical functions for an Olshanski spherical pair. Con-
sider now an increasing sequence of Gelfand pairs

(
G(n),K(n)

)
:

G(n) ⊂ G(n+ 1), K(n) ⊂ K(n+ 1), K(n) = G(n) ∩K(n+ 1),

and define

G =
∞⋃

n=1

G(n), K =
∞⋃

n=1

K(n).

We say that (G,K) is an Olshanski spherical pair. This general setting has
been introduced and developped by Olshanski [1990]. A spherical function
for the Olshanski spherical pair (G,K) is a continuous function ϕ on G,
ϕ(e) = 1, which is K-biinvariant and satisfies

lim
n→∞

∫
K(n)

ϕ(xky)αn(dk) = ϕ(x)ϕ(y) (x, y ∈ G),

where αn is the normalized Haar measure on K(n). As in the case of a
Gelfand pair, if ϕ is a spherical function of positive type, there exists
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a spherical representation (π,H) of G (i.e. irreducible, unitary, with
dimHK = 1) such that

ϕ(x) =
(
u|π(x)u

)
,

with u ∈ HK , ‖u‖ = 1. The previous equivalences (1), (2) and (3) hold
for the spherical functions of positive type, and for the spherical dual Ω
in case of a Olshanski spherical pair. Furthermore the spherical dual Ω is
equipped with a topology.

We will consider the following question. Let Ωn be the spherical dual
for the Gelfand pair

(
G(n),K(n)

)
, and let us write a spherical function of

positive type for
(
G(n),K(n)

)
as ϕn(λ;x) (λ ∈ Ωn, x ∈ G(n)). Further

let Ω denote the spherical dual for the Olshanski spherical pair (G,K),
and write a spherical function of positive type for (G,K) as ϕ(ω;x). For
which sequences (λ(n)), with λ(n) ∈ Ωn, does it exist ω ∈ Ω such that

lim
n→∞

ϕn(λ(n);x) = ϕ(ω;x) (x ∈ G) ?

In the cases we will consider there is, for each n, a map Tn : Ωn → Ω such
that, if

lim
n→∞

Tn(λ(n)) = ω

for the topology of Ω, then

lim
n→∞

ϕn(λ(n);x) = ϕ(ω;x).

It is said that (λ(n)) is a Vershik-Kerov sequence.

2. Generalized motion groups

2.1 Gelfand pair associated to a generalized motion group. Let
V be a finite dimensional real Euclidean vector space, and K a closed
subgroup of the orthogonal group O(V ). Define the generalized motion
group G = K n V with the product

(k1, x1)(k2, x2) = (k1k2, x1 + k1 · x2) (k1, k2 ∈ K, x1, x2 ∈ V ).

A K-biinvariant function on G can be seen as a K-invariant function on V ,
and, as convolution algebras, L1(K\G/K) ' L1(V )K . Therefore (G,K)
is a Gelfand pair, and the functional equation for the spherical functions
can be written in this case as∫

K

ϕ(x+ k · y)α(dk) = ϕ(x)ϕ(y).
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The spherical functions of positive type are Fourier transforms ofK-orbital
measures:

ϕ(λ;x) =
∫

K

ei(k·λ|x)α(dk) (λ ∈ V ).

They are generalized Bessel functions. Hence the spherical dual Ω for the
Gelfand pair (G,K) is the set of K-orbits : Ω ' K\V/K.

Example

For V = Rn, K = O(n), the K-orbits are spheres centered at 0. The
spherical functions are ordinary Bessel functions of the norm ‖x‖, and the
spherical dual Ω can be identified with [0,∞[.

2.2 The Gelfand pair
(
U(n) nHerm(n,C), U(n)

)
. We will consider

the case where V (n) = Herm(n,C), the space of n×n Hermitian matrices,
with the inner product (x|y) = tr(xy), and K(n) = U(n), the unitary
group, with the usual action on Herm(n,C):

k · x = kxk∗.

By the classical spectral theorem, every Hermitian matrix is diagonalizable
in an orthonormal basis, and the eigenvalues are real. Hence each K-orbit
meets a real diagonal matrix. The spherical dual Ωn can be identified with
Rn/Sn, where Sn is the symmetric group acting on Rn by permuting the
coordinates.

The spherical functions of positive type for the Gelfand pair(
G(n),K(n)

)
are the following Fourier integrals:

ϕn(λ;x) =
∫

U(n)

ei tr(xuλu∗)α(du),

where λ = diag(λ1, . . . , λn) with λi ∈ R.
The Itzykson-Zuber integral

I(x, y) =
∫

U(n)

etr(xuyu∗)α(du)

can be evaluated:

I(x, y) = δ!
1

V (x)V (y)
det(exjyk)1≤j,k≤n,

for x = diag(x1, . . . , xn), y = diag(y1, . . . , yn). We use the following
notation:

V (x) =
∏
j<k

(xj − xk)
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is the Vandermonde polynomial, δ = (n− 1, . . . , 1, 0), and for a signature
m = (m1, . . . ,mn), m1 ≥ m2 ≥ · · · ≥ mn ≥ 0,

m! = m1! . . .mn!

Hence
ϕn(λ;x) = δ!

1
V (λ)V (ix)

det(eiλjxk)1≤j,k≤n.

2.3 The Olshanski spherical pair
(
U(∞) n Herm(∞,C), U(∞)

)
.

The following Olshanski spherical pair (G,K),

G =
∞⋃

n=1

G(n), K =
∞⋃

n=1

K(n),

is the topic of [Pickrell,1991], and [Olshanski-Vershik,1996]. In this case

G = U(∞) nHerm(∞,C), K = U(∞),

with the notation

Herm(∞,C) =
∞⋃

n=1

Herm(n,C), U(∞) =
∞⋃

n=1

U(n).

A spherical function ϕ for the Olshanski spherical pair (G,K) can be seen
as a U(∞)-invariant function on Herm(∞,C), with ϕ(0) = 1, such that

lim
n→∞

∫
U(n)

ϕ(x+ uxu∗)αn(du) = ϕ(x)ϕ(y),

where αn is the normalized Haar measure of U(n).

A Pólya function is a continuous function Φ on R with Φ(0) = 1, such
that the function ϕ, defined on Herm(∞,C) by

ϕ(x) = det Φ(x),

is of positive type. The notation Φ(x) is defined via the functional calculus.
In particular, for a diagonal matrix,

ϕ
(
diag(x1, . . . , xn, 0, . . .)

)
= Φ(x1) . . .Φ(xn).

Observe that the function ϕ is K-invariant.
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Theorem 2.1 ([Pickrell,1991]). — The Pólya functions are the
following ones

Φ(z) = eiβze−
1
2 γz2

∞∏
k=1

e−iαkz

1− iαkz
,

with

β ∈ R, γ ≥ 0, αk ∈ R,
∞∑

k=1

α2
k <∞.

Since the spherical functions are of the form ϕ(x) = det Φ(x), with a
complex valued continuous function Φ defined on R, one obtains:

Corollary 2.2 ([Pickrell, 1991]). — The spherical functions of
positive type for the Olshanski spherical pair(

U(∞) nHerm(∞,C), U(∞)
)

are precisely the functions

ϕ(x) = det Φ(x),

where Φ is a Pólya function.
Theorem 2.1 is related to results by Schoenberg. A measurable function

f on R is said to be totally positive if,

det
(
f(si − tj)

)
≥ 0,

for s1 < · · · < sn, t1 < · · · < tn. A Pólya function, with

γ +
∞∑

k=1

α2
k > 0,

is the Fourier transform of an integrable totally positive function f on R
with ∫ ∞

−∞
f(t)dt = 1.

([Schoenberg, 1951], see also [Faraut,2006].)

The name Pólya function comes from the following: Pólya proved that
an entire function Ψ with Ψ(0) = 1 which is a uniform limit of polynomials
with only real zeros is of the form

Ψ(z) = e−βze−
1
2 z2

∞∏
k=1

eαkz(1− αkz),
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with α(αk), β, and γ as before ([Pólya,1913]), so that

Φ(λ) =
1

Ψ(iλ)

is a Pólya function.
Hence the spherical dual Ω can be identified with the set of triples

ω = (α, β, γ), with

β ∈ R, γ ≥ 0, αk ∈ R,
∞∑

k=1

α2
k <∞.

(One identifies two triples ω = (α, β, γ) and ω′ = (α′, β, γ) if the sets {αk}
and {α′k} are the same. We will write

Φ(ω; z) = eiβze−
1
2 γz2

∞∏
k=1

e−iαkz

1− iαkz
(z ∈ R),

ϕ(ω;x) = det Φ(ω;x)
(
x ∈ Herm(∞,C)

)
.

For a continuous function f on R we define the function Lf on Ω by

Lf (ω) = γf(0) +
∞∑

k=1

α2
kf(αk),

and we consider on Ω the initial topology associated to the functions Lf ,
and the function ω 7→ β. Then, for z fixed, the function ω 7→ Φ(ω; z) is
continuous on Ω.

2.4 Asymptotics for the spherical functions. We will state in
this section the main result of the chapter, and describe in next sections
the steps in the proof. For each n let Tn be the following map from the
spherical dual Ωn ' Rn of the Gelfand pair

(
G(n),K(n)

)
into the spherical

dual Ω of the Olshanski spherical pair (G,K):

Tn : λ = (λ1, . . . , λn) 7→ ω = (α, β, γ),

with

αk =
λk

n
if 1 ≤ k ≤ n, αk = 0 if k > n, β =

λ1 + · · ·+ λn

n
, γ = 0.

Theorem 2.3 (Olshanski-Vershik). — Consider a sequence (λ(n))
with λ(n) ∈ Ωn.
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(i) Assume that, for the topology of Ω,

lim
n→∞

Tn(λ(n)) = ω.

Then, for x ∈ Herm(∞,C),

lim
n→∞

ϕn(λ(n), x) = det Φ(ω;x),

uniformly on compact sets.
(ii) Conversely, assume that

lim
n→∞

ϕn(λ(n);x) = ϕ(x),

uniformly on compact sets. Then the sequence Tn(λ(n)) converges,

lim
n→∞

Tn(λ(n)) = ω,

and ϕ(x) = det Φ(ω;x).
[Olshanski-Vershik,1996].

Hence we have in this case a description of the Vershik-Kerov sequences
(λ(n)): the sequence (λ(n)) is a Vershik-Kerov sequence if and only if the
sequence Tn(λ(n)) converges for the topology of Ω.

2.5 Schur expansions. For a signature m = (m1, . . . ,mn), mi ∈ Z,
m1 ≥ m2 ≥ · · · ≥ mn, one defines the rational function on (C∗)n

Am(z) =

∣∣∣∣∣∣∣∣
zm1
1 zm2

1 . . . zmn
1

zm1
2 zm2

2 . . . zmn
2

...
...

...
zm1
n zm2

n . . . zmn
n

∣∣∣∣∣∣∣∣ .
In particular, for m = δ = (n − 1, . . . , 1, 0), Aδ(z) is the Vandermonde
polynomial

Aδ(z) = V (z) =
∏
j<k

(zj − zk).

The Schur function sm is defined by

sm(z) =
Am+δ(z)
V (z)

.

9



This is a symmetric rational function on (C∗)n. For a positive signature
m = (m1, . . . ,mn), m1 ≥ · · · ≥ mn ≥ 0, sm is a symmetric polynomial,
homogeneous of degree |m| = m1 + · · ·+mn.

Proposition 2.4 (Hua’s formula). — Consider n power series

fi(w) =
∞∑

m=0

c(i)m wm (w ∈ C, i = 1, . . . , n),

which are convergent for |w| < r for some r > 0. Define the function F
on Cn by

F (z) = F (z1, . . . , zn) =
det

(
fi(zj)

)
1≤i,j≤n

V (z)
(|zj | < r).

Then F admits the following Schur expansion

F (z) =
∑

m1≥···≥mn≥0

amsm(z),

with
am = det(c(i)mj+n−j)1≤i,j≤n.

([Hua,1963], Chapter II.)

Proof.
In fact

det
(
fi(zj)

)
1≤i,j≤n

=
∑

σ∈Sn

ε(σ)
n∏

i=1

( ∞∑
m=0

c(i)m zm
σ(i)

)
.

By permuting the product and the sum we obtain

=
∞∑

m1,...,mn=0

c(1)m1
. . . c(n)

mn

∑
σ∈Sn

ε(σ)
n∏

i=1

zmi

σ(i)

=
∞∑

m1,...,mn=0

c(1)m1
. . . c(n)

mn
det(zmi

j )1≤i,j≤n.

Since det(zmi
j ) = 0 unless the mi are all distinct, this sum is equal to

=
∑

m1>···>mn≥0

∑
τ∈Sn

c(1)mτ(1)
. . . c(n)

mτ(n)
det(zmτ(i)

j )1≤i,j≤n

=
∑

m1>···>mn≥0

∑
τ∈Sn

ε(τ)c(1)mτ(1)
. . . c(n)

mτ(n)
det(zmi

j )1≤i,j≤n

=
∑

m1>···>mn≥0

det(c(i)mj
)1≤i,j≤n det(zmi

j )1≤i,j≤n.
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Finally, with mj = kj + n− j, we obtain

det
(
fi(zj)

)
1≤i,j≤n

=
∑

k1≥···≥kn≥0

det(c(i)kj+n−j)1≤i,j≤nAk+δ(z),

which is the formula of the proposition.

By applying Hua’s formula with

fi(w) = exiw =
∞∑

m=0

xm
i

m!
wm,

one obtains a Schur expansion for the Itzykson-Zuber integral

I(x, y) =
∫

U(n)

etr(xuyu∗)α(du)
(
x, y ∈ Herm(n,C)

)
.

Recall that, for x = diag(x1, . . . , xn), y = diag(y1, . . . , yn),

I(x, y) = δ!
1

V (x)V (y)
det(exjyk)1≤j,k≤n.

Then, taking

c(i)m =
xm

i

m!
,

one obtains

det(c(i)mj+n−j)1≤i,j≤n =
1

(m + δ)!
Am+δ(x) =

1
(m + δ)!

V (x)sm(x),

and
I(x, y) =

∑
m1≥···≥mn≥0

δ!
(m + δ)!

sm(x)sm(y).

Therefore:

Proposition 2.5. — The spherical functions of positive type for
the Gelfand pair

(
G(n),K(n)

)
admit the following Schur expansions: for

x = diag(x1, . . . , xn, 0, . . .),

ϕn(λ;x) =
∑

m1≥···≥mn≥0

δ!
(m + δ)!

sm(λ)sm(ix).

For writing down the power series expansion of the Pólya function
Φ(ω; z), one introduces an algebra morphism from the algebra Λ of
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symmetric functions into the algebra C(Ω) of continuous functions on Ω,
f 7→ f̃ . Since the Newton power sums pm,

pm(ξ) = ξm
1 + · · ·+ ξm

n + · · · ,

generate the algebra Λ, this morphism is determined by the data of the
images p̃m. By definition this morphism is such that, for ω = (α, β, γ),

p̃1(ω) = β, p̃2(ω) = γ +
∞∑

k=1

α2
k,

and, for m ≥ 3,

p̃m(ω) =
∞∑

k=1

αm
k .

Theorem 2.6. — (i) The Pólya function Φ(ω, z) admits the following
power series expansion

Φ(ω; z) =
∞∑

m=0

h̃m(ω)(iz)m.

(ii) For x = diag(x1, . . . , xn, 0, . . .),

det Φ(ω, x) =
∑

m1≥···≥mn≥0

s̃m(ω)sm(ix).

Proof. The complete symmetric function hm is defined by

hm(ξ) =
∑
|α|=m

ξα (ξα = ξα1
1 . . . ξαn

n ).

For the signature [m] = (m, 0, . . .), s[m](ξ) = hm(ξ). Recall the generating
function for the complete symmetric functions hm:

H(ξ; z) =
∞∑

m=0

hm(ξ)zm =
∏
j

1
1− ξjz

(z ∈ C).

Taking the logarithmic derivatives one obtains, for z small enough,

d

dz
logH(ξ; z) = − d

dz

∑
j

log(1− ξjz) =
∑

j

ξj
1− ξjz

=
∞∑

m=0

pm+1(ξ)zm,
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and also

exp
( ∞∑

m=1

1
m
pm(ξ)zm

)
=

∞∑
m=0

hm(ξ)zm.

For a sequence (am) (m ≥ 1) of complex numbers, let us consider the
following expansions

exp
( ∞∑

m=1

1
m
amz

m
)

= 1 +
∞∑

m=1

Amz
m.

The coefficient Am is a polynomial in the coefficients a1, . . . , am:

Am = Qm(a1, . . . , am).

In particular

A1 = a1, A2 =
1
2
(a2

1 + a2),

and, for all ξ,
hm(ξ) = Qm

(
p1(ξ), . . . , pm(ξ)

)
.

Recall the product formula for the Pólya function:

Φ(ω; z) = eiβze−
1
2 γz2

∞∏
k=1

e−iαkz

1− iαkz
.

Let us take its logarithmic derivative:

d

dz
log Φ(ω; z) = iβ + i

(
γ + p2(α)

)
iz + i

∞∑
m=2

pm+1(α)(iz)m

= i
∞∑

m=0

p̃m+1(ω)(iz)m.

The Pólya function admits a power expansion near 0:

Φ(ω; z) = 1 +
∞∑

m=1

qm(ω)(iz)m.

We have to show that qm(ω) = h̃m(ω). The following identity holds

Φ(ω; z) = 1 +
∞∑

m=1

qm(ω)(iz)m = exp
( ∞∑

m=1

1
m
p̃m(ω)(iz)m

)
.
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Therefore
qm(ω) = Qm

(
p̃1(ω), . . . , p̃m(ω)

)
.

Since the map f 7→ f̃ is an algebra morphism,

qm = ˜Qm(p1, . . . , pm) = h̃m.

2.6 Proof of Theorem 2.3, part (i). In this proof one applies the
following result of classical harmonic analysis:

Proposition 2.7. — Let ψn be a sequence of C∞-functions on Rd of
positive type with ψn(0) = 1, and ψ an analytic function on a neighborhood
of 0. Assume that, for every α = (α1, . . . , αd) ∈ Nd,

lim
n→∞

∂αψn(0) = ∂αψ(0).

Then ψ has an analytic extension to Rd, and ψn converges to ψ uniformly
on compact subsets of Rd.
(Proposition 3.11 in [Faraut,2008].)

Consider a sequence (λ(n)) with λ(n) ∈ Ωn ' Rn. Assume that, for the
topology of Ω,

lim
n→∞

Tn(λ(n)
n ) = ω.

We will show that the Taylor coefficients at 0 of the function ϕn(λ(n);x)
(x ∈ Herm(k,C)) converge to the ones of the function det Φ(ω;x). In fact
we will prove

Proposition 2.8. — Consider a sequence (λ(n)) with λ(n) ∈ Ωn '
Rn. Assume that, for the topology of Ω,

lim
n→∞

Tn(λ(n)) = ω.

Then, for every symmetric function f ∈ Λ, homogeneous of degree m,

lim
n→∞

1
nm

f(λ(n)) = f̃(ω).
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Proof.
It is enough to prove the result in case of f = pm, since the Newton

power sums generate the algebra Λ of symmetric functions.
For m = 1,

p1(λ(n)) = λ
(n)
1 + · · ·+ λ(n)

n , p̃1(ω) = β.

By assumption,

lim
n→∞

1
n
p1(λ(n)) = β = p̃1(ω).

For m = 2,

p2(λ(n)) = (λ(n))2 + · · ·+ (λ(n)
n )2, p̃2(ω) = γ +

∞∑
k=1

α2
k.

The assumption means that, for every continuous function ϕ on R,

lim
n→∞

n∑
j=1

(λ(n)
j

n

)2

ϕ
(λ(n)

j

n

)
= γϕ(0) +

∞∑
k=1

α2
kϕ(αk).

Taking ϕ ≡ 1 one obtains

lim
n→∞

n∑
j=1

(λ(n)
j

n

)2

= γ +
∞∑

k=1

α2
k, or lim

n→∞

1
n2
p2(λ(n)) = p̃2(ω).

For m ≥ 3, take ϕ(s) = sn−2 (observe that ϕ(0) = 0).

Proof of Theorem 2.3, part (i)
Recall Proposition 2.5: for x = diag(x1, . . . , xk, 0, . . .),

ϕn(λ(n);x) =
∑

m1≥···≥mk≥0

δ!
(m + δ)!

sm(λ(n))sm(ix).

For m = (m1, . . . ,mk) fixed,

δ!
(m + δ)!

∼ 1
n|m| (n→∞),

where |m| = m1 + · · ·+mk. Hence, by Proposition 2.8,

lim
n→∞

δ!
(m + δ)!

sm(λ(n)) = s̃m(ω).
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We apply Proposition 2.7 with

ψn(x) = ϕn(λ(n);x) =
∑

m1≥···≥mk≥0

δ!
(m + δ)!

sm(λ(n))sm(ix),

and
ψ(x) = det Φ(ω;x) =

∑
m1≥···≥mk≥0

s̃m(ω)sm(ix).

This finishes the proof of (i).

2.7 Proof of Theorem 2.3, part (ii). We assume that

lim
n→∞

ϕn(λ(n);x) = ϕ(x),

uniformly on compact sets in Herm(∞; C). We will show that (λ(n)) is a
Vershik-Kerov sequence, i.e. the sequence Tn(λ(n)) converges in Ω. The
function ψn defined on R by

ψn(τ) = ϕn(λ(n);x) with x = diag(τ, 0, . . .),

i.e. the restriction of x 7→ ϕ(λ(n);x) to Herm(1,C) ' R, being a function
of positive type, is the Fourier transform of a probability measure µn on
R, by Bochner’s theorem:

ψn(τ) =
∫

R
eitτµn(dt).

Furthermore
lim

n→∞
ψn(τ) = ψ(τ),

uniformly on compacts sets in R, where

ψ(τ) = ϕ
(
diag(τ, 0, . . .)

)
.

The function ψ is the Fourier transform of a probability measure µ, which
is the weak limit of the sequence (µn) (limit for the tight topology), by
Lévy-Cramér’s theorem.

From the Schur expansion of ϕn(λ;x) one obtains the power expansion
of ψn:

ψn(τ) =
∞∑

k=0

(n− 1)!
(k + n− 1)!

hk(λ(n))(iτ)k,
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and therefore the moments of µn:

Mk(µn) = k!
(n− 1)!

(k + n− 1)!
hk(λ(n)).

Lemma 2.9. — Let M be a set of probability measures on R, relatively
compact for the weak topology (tight topology). Assume that, for every
µ ∈M,

M4(µ) =
∫

R
x4µ(dx) <∞,

and that there is a constant A > 0 such that, for every µ ∈M,

M4(µ) ≤ A
(
M2(µ)

)2
.

Then there is a constant C > 0 such that, for every µ ∈M,

M2(µ) ≤ C.

([Okounkov-Olshanski,1998c], Lemma 5.2.)

Proof.
Since M is relatively compact, for 0 < ε < 1

A , there is R > 0 such that,
for every µ ∈M,

µ
(
{|x| > R}

)
≤ ε.

By the Schwarz inequality,(∫
|x|>R

x2µ(dx)
)2

≤ εM4(µ) ≤ εA
(
M2(µ)

)2
.

Therefore

M2(µ) ≤ R2 +
∫
|x|>R

|x|2µ(dx) ≤ R2 +
√
εA M2(µ),

or

M2(µ) ≤ R2

1−
√
εA

.

We continue the proof of Theorem 2.3, part (ii). Let us compute the
moments of µn of order 2 and 4:

M2(µn) = 2
1

n(n+ 1)
h2(λ(n)),

M4(µn) = 24
1

n(n+ 1)(n+ 2)(n+ 3)
h4(λ(n)).
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Since there is a constant A0 > 0 such that

h4(x) ≤ A0h2(x)2,

there is a constant A > 0 such that

M4(µn) ≤ A
(
M2(µn)

)2
.

By Lemma 2.8 there is a constant C > 0 such that

M2(µn) ≤ C.

It follows that there is a constant R > 0 such that, if Tn(λ(n)) = ωn, then

|ωn| ≤ R.

For ω = (α, β, γ), we use the notation

|ω| =

√√√√ ∞∑
k=1

α2
k + β2 + γ.

In fact

|ωn|2 =
2
n2
h2(λ(n)) =

n(n+ 1)
n2

M2(µn),

by the identity
2h2(ξ) = p1(ξ)2 + p2(ξ).

Since the set ΩR = {ω ∈ Ω | |ω| ≤ R} is compact for the topology of Ω, it
follows that there is a subsequence ωnj

which converges in Ω to ω0. Then,
by the part (i), ϕ(x) = ϕ(ω0;x). Hence all converging subsequences have
the same limit, and therefore the sequence ωn itself converges.

3. Infinite dimensional unitary group

3.1 Gelfand pair associated to a compact group. Let U be a
compact group, and define G = U × U , K = {(u, u) ∈ G | u ∈ U}. The
convolution algebra L1(K\G/K) of K-biinvariant integrable functions F
on G can be identified to the convolution algebra L1

central(U) of central
integrable functions f on U . The identification is given by F (u, v) =
f(uv−1). Hence (G,K) is a Gelfand pair, since the algebra L1

central(U) is

18



commutative. A spherical function can be seen as a central continuous
function on U which satisfies the following functional equation∫

U

ϕ(xuyu−1)α(du) = ϕ(x)ϕ(y) (x, y ∈ U).

Let Û be the set of equivalence classes of irreducible representations of U .
For each λ ∈ Û , let πλ be a representation of U in the class λ on a vector
space Hλ. Let χλ denotes its character:

χλ(x) = tr
(
πλ(x)

)
(x ∈ U).

Then dλ = χλ(e) is the dimension of Hλ. The character χλ satisfies the
following functional equation:∫

U

χλ(xuyu−1)α(du) =
1
dλ
χλ(x)χλ(y) (x, y ∈ U).

Hence

ϕ(λ;x) =
χλ(x)
χλ(e)

is a spherical function. One shows that all spherical functions are obtained
in that way. Therefore the spherical dual of the Gelfand pair (G,K) is
identified to Û .

3.2 The unitary group U(n). We consider the case where U is the
unitary group U(n). For n = 1,

U(1) = T = {t ∈ C | |t| = 1}.

The subgroup of diagonal matrices in U(n) is identified with Tn.
We recall the Weyl’s character formula and dimension formula. The

unitary dual Û(n) is parametrized by signatures:

λ = (λ1, . . . , λn) ∈ Zn, λ1 ≥ · · · ≥ λn.

The corresponding character χλ agrees with the Schur function sλ on Tn:

χλ

(
diag(t1, . . . , tn)

)
= sλ(t) =

det(tλj+n−j
i )1≤i,j≤n

V (t)
,

and the dimension of the representation is given by

dλ = sλ(1, . . . , 1) =
V (λ+ δ)
V (δ)

.
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Recall that δ = (n− 1, . . . , 1, 0), and V is the Vandermonde polynomial.
The spherical dual Ωn of the Gelfand pair

(
U(n) × U(n), U(n)

)
is

identified to the set of signatures λ = (λ1, . . . , λn) of length ≤ n. The
corresponding spherical function is the normalized character:

ϕn(λ;u) =
χλ(u)
χλ(e)

.

Its restriction to the subgroup Tn of diagonal matrices is given by

ϕn

(
λ; diag(t1, . . . , tn)

)
=
sλ(t1, . . . , tn)
sλ(1, . . . , 1)

.

3.3 The infinite dimensional unitary group, Voiculescu
functions. We consider now the increasing sequence of Gelfand pairs

G(n) = U(n)× U(n), K(n) = {(u, u) | u ∈ U(n)} ' U(n),

and the inductive limit, the Olshanski spherical pair (G,K):

G =
∞⋃

n=1

G(n) = U(∞)× U(∞),

K =
∞⋃

n=1

K(n) = {(u, u) | u ∈ U(∞)} ' U(∞).

A spherical function for the pair (G,K) can be seen as a continuous central
function ϕ on U(∞) such that, for x, y ∈ U(∞),

lim
n→∞

∫
U(n)

ϕ(xuyu∗)αn(du) = ϕ(x)ϕ(y).

Let us first state a basic result by Voiculescu. Consider a power series

Φ(z) =
∞∑

m=0

cmz
m,

with

cm ≥ 0,
∞∑

m=0

cm = 1.

The series converges for |z| ≤ 1, and Φ is a continous function of positive
type on

U(1) = {t ∈ C | |t| = 1},
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with Φ(1) = 1. We say that Φ is a Voiculescu function if the function ϕ
defined on U(∞) by ϕ(u) = det Φ(u) is of positive type.

Theorem 3.1. — The Voiculescu functions are the following ones

Φ(z) = eγ(z−1)
∞∏

k=1

1 + βk(z − 1)
1− αk(z − 1)

,

with αk ≥ 0, 0 ≤ βk ≤ 1, γ ≥ 0,

∞∑
k=1

αk <∞,
∞∑

k=1

βk <∞.

([Voiculescu,1976], Proposition 1.)

Theorem 3.2. — The spherical functions of positive type for the
Olshanski spherical pair (G,K) with G = U(∞)× U(∞), K = U(∞) are
precisely the functions

ϕ(u) = det Φ+(u) det Φ−(u−1),

where Φ+ and Φ− are Voiculescu functions.
([Voiculescu,1976], [Boyer,1983].)

Let Ω0 denote the set of parameters ω = (α, β, γ) with

α = (αk), αk ≥ 0, β = (βk), 0 ≤ βk ≤ 1, γ ≥ 0,
∞∑

k=1

αk <∞,

∞∑
k=1

βk <∞.

The Voiculescu function with parameter ω = (α, β, γ) will be written
Φ(ω; z). We will consider on Ω0 the initial topology with respect to the
functions Lf ,

Lf (ω) = γf(0) +
∞∑

k=1

αkf(αk) +
∞∑

k=1

βkf(−βk),

where f is a continuous function on R. Hence the spherical dual can be
identified to the set Ω = Ω0 × Ω0 of pairs ω = (ω+, ω−).

Let λ be a positive signature, λ = (λ1, . . . , λn) (λ1 ≥ · · · ≥ λn ≥ 0).
The number λi is the number of boxes in the i-th row of the Young
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diagram of λ. The conjugate signature λ′ = (λ′1, λ
′
2, . . .) is associated

to the transpose diagram. The Frobenius parameters a = (a1, a2, . . .) and
b = (b1, b2, . . .) of a positive signature λ are defined by

ai = λi − i if λi > i, ai = 0 otherwise,
bj = λ′j − j + 1 if λ′j > j − 1, bj = 0 otherwise.

For instance, if λ = (6, 4, 4, 2, 1), then λ′ = (5, 4, 3, 1, 1) and

a = (5, 2, 1, 0, . . .), b = (5, 3, 1, 0, . . .).

We define a map from the set Ω+
n of positive signature of length ≤ n into

Ω0 by:
Tn : λ 7→ ω = (α, β, γ),

with

αk =
ak

n
, βk =

bk
n
, γ = 0.

Theorem 3.3. — Consider a sequence (λ(n)) of positive signatures
with λ(n) ∈ Ω+

n . Assume that, for the topology of Ω0,

lim
n→∞

Tn(λ(n)) = ω.

Then, for x ∈ U(∞),

lim
n→∞

ϕn(λ(n);x) = det Φ(ω;x),

uniformly on compact sets.
(See [Okounkov-Olshanski,1998c].)

For the general case, to a signature λ = (λ1, . . . , λn), one associates two
positive signatures λ+, λ−. If

λ1 ≥ · · ·λp ≥ 0 ≥ λp+1 ≥ · · · ≥ λn,

then
λ+ = (λ1, . . . , λp), λ− = (−λn, . . . ,−λp+1).

The map Tn from Ωn into Ω = Ω0 × Ω0 is given by

Tn(λ) =
(
Tn(λ+), Tn(λ−)

)
.
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Theorem 3.4. — Let (λ(n)) be a sequence of signatures with λ(n) ∈
Ωn. Assume that

lim
n→∞

Tn(λ(n)) = ω = (ω+, ω−).

then
lim

n→∞
ϕn(λ(n);x) = det Φ(ω+;x) detΦ(ω−;x−1),

uniformly on compact sets.
([Vershik-Kerov,1982], see also [Okounkov-Olshanski,1998c].)

3.4 Power expansions and Schur expansions. In this section we
will describe the main ingredients in the proof of Theorems 3.3 and 3.4.
The binomial formula for Schur functions generalizes the classical binomial
formula,

(1 + w)λ =
∞∑

m=0

1
m!

[λ]mwm,

where
[a]m = a(a− 1) . . . (a−m+ 1).

Proposition 3.5 (Binomial formula for Schur functions).

sλ(1 + z1, . . . , 1 + zn)
sλ(1, . . . , 1)

=
∑

m1≥···≥mn≥0

δ!
(m + δ)!

s∗m(λ)sm(z),

where s∗m is the shifted Schur function

s∗m(λ) =
det

(
[λi + δi]mj+δj

)
det

(
[λi + δi]δj

) .

Proof. This is obtained as an application of Hua’s formula (Proposition
2.4) with

fi(w) = (1 + w)λi+δi =
∞∑

m=0

[λi + δi]m
m!

wm.

A function f defined on the set of signatures is said to be shifted
symmetric if

f(. . . , λi, λi+1, . . .) = f(. . . , λi+1 − 1, λi + 1, . . .).
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The algebra of the shifted symmetric functions is denoted by Λ∗. (See
[Okounkov-Olshanski,1998a] and [1998b].)

To write down the power series expansion of the Voiculescu functions,
one introduces a morphism from the algebra of symmetric functions Λ into
the space C(Ω0) of continuous functions on Ω0, f 7→ f̃ , such that

p̃1(ω) =
∞∑

k=1

αk +
∞∑

k=1

βk + γ,

p̃m(ω) =
∞∑

k=1

αm
k + (−1)m−1

∞∑
k=1

βm
k (m ≥ 2).

Following the same method as in the proof of Theorem 2.6, one establishes
the following expansions:

Proposition 3.6.

Φ(ω; 1 + z) =
∞∑

m=0

h̃m(ω)zm,

n∏
j=1

Φ(ω; 1 + zj) =
∑

m1≥···≥mn≥0

s̃m(ω)sm(z).

Finally, there is an analogue of Proposition 2.8:

Proposition 3.7. — Consider a sequence (λ(n)) with λ(n) ∈ Ω+
n .

Assume that, for the topology of Ω0,

lim
n→∞

Tn(λ(n)) = ω.

Then, for every shifted symmetric function f∗ ∈ Λ∗,

lim
n→∞

f∗(λ(n)) = f̃(ω),

where m = deg f∗, and f̃ ∈ C(Ω0) is the image of f ∈ Λ, which is the
homogeneous part of degree m of f∗.

In the outline of the proof of Theorem 3.4 we gave above, we have
followed [Okounkov-Olshanski,1998c] where the authors study the asymp-
totics of the Jack polynomials as the number of variables goes to infinity.
The case of the unitary group corresponds to the value θ = 2 of the pa-
rameter. For the values θ = 1, 2 and 4, the Jack polynomials are related to
the spherical functions of compact symmetric spaces with root system of
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type A. The asymptotics of the multivariable Jacobi polynomials in case
of a root system of type BC is considered in [Okounkov-Olshanski,2006].

4. Spherical analysis

on the infinite dimensional Heisenberg group

4.1 Gelfand pair associated to the Heisenberg group. For a
finite dimensional complex Euclidean vector space V , we consider the
Heisenberg group H = V × R with the product

(z, t)(z′, t′) =
(
z + z′, t+ t′ + Im (z′|z)

)
.

The unitary group U(V ) acts on H by automorphisms: u ·(z, t) = (u ·z, t).
For a closed subgroup K ⊂ U(V ), we consider the semi-direct product
G = K nH. A K-biinvariant function on G can be seen as a K-invariant
function on H, and as convolution algebras, L1(K\G/K) ' L1(H)K .

Theorem 4.1. — (G,K) is a Gelfand pair if and only if K acts
multiplicity free on the space P(V ) of polynomials on V .
[Carcano,1987]

Assume that P(V ) decomposes multiplicity free under the K-action:

P(V ) =
⊕

α

Pα.

The subspaces Pα depending on the parameter α are irreducible for the
K-action. A K-invariant function ϕ on H, with ϕ(0, 0) = 1, will be said
to be spherical if∫

K

ϕ
(
z + k · z′, t+ t′ + Im (k · z′|z)

)
α(dk) = ϕ(z, t)ϕ(z′, t′).

These Gelfand pairs have been studied by Benson, Jenkins and
Ratcliff in a series of papers: [Benson-Jenkins-Ratcliff,1992], [Benson-
Ratcliff,1996,1998]. See also [Wolf,2007], Chapter 13.

Spherical functions of positive type and first kind

The Fock space Fλ(V ) (λ > 0) is the space of holomorphic functions ψ
on V such that

‖ψ‖2λ =
(λ
π

)dimV
∫

V

|ψ(ζ)|2e−λ‖ζ‖2m(dζ) <∞.
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The Bargmann representation Tλ of the Heisenberg group H on the Fock
space is given by

(
Tλ(z, t)ψ

)
(ζ) = eλ(it− 1

2 ‖z‖
2−(ζ|z))ψ(ζ + z).

The group K acts on the Fock space Fλ(V ):(
π(k)f

)
(ζ) = f(k−1ζ),

and the Fock space decomposes multiplicity free under the action of K:

Fλ(V ) =
⊕̂

α

Pα.

If f ∈ L1(H)K , then Tλ(f) commutes to the K-action. Hence, for
every α, the subspace Pα is an eigenspace of Tλ(f) by Schur’s lemma. for
ψ ∈ Pα, (

Tλ(f)ψ
)
(ζ) = f̂(λ, α)ψ(ζ).

The character f 7→ f̂(λ, α) of L1(H)K is associated to a spherical function
ϕ(λ, α; z, t):

f̂(λ, α) =
∫

H

f(z, t)ϕ(λ, α; z, t)m(dz)dt.

The spherical functions ϕ(λ, α; z, t) are of positive type. They are said to
be of first kind.

Spherical functions of positive type and second kind

These spherical functions are related to one dimensional unitary repre-
sentations of H:

ηw(z, t) = e2iIm(z|w) (w ∈ V ).

The spherical functions of positive type and second kind are given by

ψ(w; z) =
∫

K

e2iIm(z|k·w)α(dk),

with parameter w ∈ V/K.

The spherical dual decomposes as Ω = Ω1 ∪ Ω2, where Ω1 is the set of
spherical functions of positive type and first kind, and Ω2 the set of the
ones of second kind. See [Benson-Jenkins-Ratcliff,1992], where it is also
proved that every bounded spherical function is of positive type.
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4.2 The Gelfand pair
(
K n (V × R),K

)
with V = M(n,C),

K = U(n) × U(n). We consider the special case V = M(n,C), with
K = U(n)×U(n) acting on V = M(n,C) by k·z = uzv∗ (k = (u, v) ∈ K =
U(n) × U(n)). The space of polynomials P(V ) decomposes multiplicity
free as

P(V ) =
⊕
m

Pm.

the parameter m is a partition of length ≤ n, m = (m1, . . . ,mn), mj ∈ Z,
m1 ≥ · · · ≥ mn, and the subspace Pm is generated by the power function

∆m(z) = ∆1(z)m1−m2∆2(z)m2−m3 . . .∆n(z)mn ,

where ∆1(z),∆2(z), . . .∆n(z) are the principal minors of the matrix z.
The spherical functions of positive type and first kind will be written

ϕ(λ,m; z, t), where λ ∈ R∗, and m is a partition. The first part Ω1 of the
spherical dual can be seen as the set of pairs (λ,m).

Theorem 4.2. — The spherical function ϕ(m, λ; z, t) admits the
following expansion:

ϕ(λ,m; z, t)

= eiλte−
1
2 λ‖z‖2

∑
k⊂m

( 1
(n)k

)2

λ|k|s∗k(m)χk(−zz∗),

where s∗k is a shifted Schur function, and χk is the character of the
irreducible representation of U(n) with highest weight k, which extends
to the space V = M(n,C).

Recall the usual Pochhammer symbol

(α)k = α(α+ 1) . . . (α+ k − 1) (α ∈ C),

and the generalized Pochhammer symbol, for a positive signature k =
(k1, . . . , kn),

(α)k =
n∏

i=1

(α− i+ 1)ki .

Recall also that the Schur function is given by:

sm(t1, . . . , tn) =
det(tmj+δj

i )
V (t1, . . . , tn)

(δ = (n− 1, . . . , 1, 0)), and that

χm

(
diag(t1, . . . , tn)

)
= sm(t1, . . . , tn).
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The shifted Schur functions occur in the binomial formula for the Schur
functions (see Proposition 3.5):

sm(1 + z1, . . . , 1 + zn)
sm(1, . . . , 1)

=
∑
k⊂m

δ!
(k + δ)!

s∗k(m)sk(z).

The polynomial

Lm(t1, . . . , tn) =
∑
k⊂m

(−1)|k|
( 1

(n)k

)2

s∗k(m)sk(t)

is a multivariate Laguerre polynomial.

The set of orbits V/K can be parametrized by the set of vectors
ρ = (ρ1, . . . , ρn) where ρ1 ≥ · · · ≥ ρn ≥ 0 are the eigenvalues of ww∗

for w ∈ V = M(n,C). The corresponding spherical funcion is given by

ψ(ρ; z) =
∫

U(n)×U(n)

e2iRe tr(uzv∗w)βn(du)βn(dv),

Hence the second part Ω2 can be seen as the set of the ρ = (ρ1, . . . , ρn),
with ρ1 ≥ · · · ≥ ρn ≥ 0.

It is shown that

ψ(ρ; z) =
∑
k

( 1
(n)k

)2

sk(ρ)χk(−zz∗).

The function

ψ(ρ1, . . . , ρn; t1, . . . , tn) =
∑
k

(−1)|k|
( 1

(n)k

)2

sk(ρ)sk(t)

is a multivariate Besssel function.
As λ→ 0 and |λ|mj → ρj ,

limϕ(λ,m; z, t) = ψ(ρ; z).

In fact the topology of the spherical dual Ω = Ω1 ∪Ω2 is given as follows:
the map Ω → Rn+1 defined by

(λ,m) 7→ (λ, |λ|m1, . . . , |λ|mn),
ρ 7→ (0, ρ1, . . . , ρn),

is a homeomorphism on its image.
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4.3 Increasing sequence of Gelfand pairs. We consider the
following sequences of groups:

H(n) =M(n,C)× R,
K(n) =U(n)× U(n),
G(n) =K(n) nH(n).

The spherical dual Ωn of
(
G(n),K(n)

)
decomposes as:

Ωn = Ω1
n ∪ Ω2

n,

with
Ω1

n = {(λ,m) | λ ∈ R∗, m is a partition, `(m) ≤ n},
Ω2

n = {ρ ∈ Rn | ρ1 ≥ · · · ≥ ρn ≥ 0}.
Let us write an expansion valid for spherical functions of both kinds

ϕn(σ; z, t) = eiλte−
1
2 λ‖z‖2

∑
k

( 1
(n)k

)2

ak(σ)χk(−zz∗).

For σ = (λ,m) ∈ Ω1
n, then

ak(σ) = |λ||k|s∗k(m),

if k ⊂ m, and ak(m) = 0 otherwise. For σ = ρ ∈ Ω2
n, then λ is taken to

be 0, and
ak(σ) = sk(ρ).

Observe that the function ak is continuous on the spherical dual Ωn.
We consider the Olshanski spherical pair (G,K) with

G =
∞⋃

n=1

G(n), K =
∞⋃

n=1

K(n).

The spherical dual Ω, for the Olshanski spherical pair (G,K), is the set
of triples ω = (λ, α, γ),

λ ∈ R, α = (αj), αj ≥ 0,
∞∑

j=1

αj <∞, γ ≥ 1
2 |λ|.

One defines a topology on Ω, similarly as in Sections 2 and 3. For a
continuous function f on R, we define the functions Lf on Ω by

Lf (ω) = γf(0) +
∞∑

k=1

αkf(αk).
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The topology is the initial topology with respect to the functions Lf , and
the function ω 7→ λ.

Define the following Pólya type function

Φ(α, γ;x) = e−γx
∞∏

j=1

1
1 + αjx

.

The spherical function of positive type with parameter ω = (λ, α, γ), is
given by

ϕ(ω; z, t) = eiλt detΦ(α, γ; zz∗).

One defines the map Tn : Ωn → Ω, σ 7→ ω = (λ, α, γ) as follows:
If σ = (λ,m) ∈ Ω1

n, then

αj =
1
n2
|λ|mj (1 ≤ j ≤ n), αj = 0 (j > n), γ = 0.

If σ = ρ ∈ Ω2
n, then λ = 0, and

αj =
1
n2
ρj (1 ≤ j ≤ n), αj = 0 (j > n), γ = 0.

Theorem 4.3. — Let (σ(n)) be a sequence with σ(n) ∈ Ωn. Then

lim
n→∞

ϕn(σ(n); z, t) = ϕ(ω; z, t)

if and only if
lim

n→∞
Tn(σ(n)) = ω

for the topology of Ω.
One can find the proof of this theorem in [Faraut,2010a], where we

consider the Heisenberg group H = V × R with the action of K, for
V = M(n, p; C) and K = U(n)× U(p). In [Faraut,2010b] we consider the
cases

V = Sym(n,C), K = U(n),
V = M(n,C), K = U(n)× U(n),

V = Skew(2n,C), K ' U(2n).

30



References

C. Benson, J. Jenkins, G. Ratcliff (1992). Bounded K-spherical
functions on Heisenberg groups, J. Funct. Anal., 105, 409–443.

C. Benson, G. Ratcliff (1996). A classification of multiplicity free
actions, J. Algebra, 181, 152–186.

C. Benson, G. Ratcliff (1998). Combinatorics and spherical functions
on the Heisenberg group, Representation Theory, 2, 79–105.

R.P. Boyer (1983). Infinite traces of AF -algebras and characters of
U(∞), J. Operator Theory, 9, 205–236.

G. Carcano (1987). A commutativity condition for algebras of invariant
functions, Boll. Un. Mat. Ital., 7, 1091–1105.

J. Faraut (2006). Infinite dimensional harmonic analysis and probabil-
ity. in Probability measures on groups: recent directions and trends,
(eds. S.G. Dani and P. Graczyk), Tata Inst. Fund. Res., 179–254.

J. Faraut (2008). Infinite Dimensional Spherical Analysis. COE Lecture
Note Vol. 10, Kyushu University.

J. Faraut (2010a). Asymptotic spherical analysis on the Heisenberg
group, Colloquium Math, 118, 233–258.

J. Faraut (2010b). Olshanski spherical pairs related to the Heisenberg
group. Submitted.

L.K. Hua (1963). Harmonic analysis of functions of several variables in
the classical domains. American Mathematical Society.

I.G. Macdonald (1995). Symmetric functions and Hall polynomials.
Oxford Science Publications.

A. Okounkov and G. Olshanski (1998a). Shifted Schur functions, St.
Petersburg Math. J., 9, 239–300.

A. Okounkov and G. Olshanski (1998b). Shifted Schur functions II.
in Kirillov’s Seminar on Representation Theory (ed. G. Olshanski),
Amer. Math. Soc. Translations 181 (2), 245–271.

A. Okounkov and G. Olshanski (1998c). Asymptotics of Jack poly-
nomials as the number of variables goes to infinity, Internat. Math.
Res. Notices, 13, 641–682.

A. Okounkov and G. Olshanski (2006). Limits of BC-type orthogonal
polynomials as the number of variables goes to infinity, Contemporary
Mathematics, 417, 281–318.

31



G. Olshanski (1990). Unitary representations of infinite dimensional
pairs (G,K) and the formalism of R. Howe. in Representations of Lie
groups and related topics (eds. A.M. Vershik, D.P. Zhelobenko), Adv.
Stud. Contemp. Math. 7, Gordon and Breach.

G. Olshanski and A. Vershik (1996). Ergodic unitarily invariant
measures on the space of infinite Hermitian matrices, Amer. Math.
Soc. Transl. (2), 175, 137–175.

D. Pickrell (1991). Makey analysis of infinite classical motion groups,
Pacific J. Math., 150, 139–166.
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