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Introduction

In these notes we present some new developments in asymptotic harmonic
analysis due to Vershik, Kerov, Okunkov, and Olshanski. The purpose of this
analysis is to study the asymptotics of functions related to harmonic analy-
sis on groups or homogeneous spaces as the dimension goes to infinity. The
subject is not new. In 1938 Schoenberg considered the case of infinite dimen-
sional Euclidean spaces. For instance Schoenberg determined the continuous
functions Φ on [0,∞[ such that, for every n, the function Φ

(√
x2

1 + · · ·+ x2
n

)
is

of positive type on Rn. He considered also a similar problem on spheres and
Krein on hyperbolic spaces. Olshanski developped a general theory of the
inductive limit (G,K) of an increasing sequence (

(
G(n), K(n)

)
of Gelfand

pairs, introducing the notion of spherical function for such a pair ([Olshanski,
1990]). Several results about specific infinite dimensional pairs can be stated
in this general framework. A natural queston arises: is it possible to obtain
the spherical functions for the inductive limit (G,K) as limits of spherical
functions for the Gelfand pair

(
G(n), K(n)

)
? As far I know there is presently

no general answer. In these notes we will present results by Olshanski, Ver-
shik, Kerov, and Okunkov for certain sequences of Riemannian symmetric
spaces as the rank goes to infinity.

In the first chapter we present some basic results about Olshanski spher-
ical pairs, from the paper [Olshanski, 1990]. We review in Chapter 2 ba-
sic properties of Schur functions and Schur expansions, then introduce the
shifted Schur functions, with some of their properties, from the paper [Okunkov-
Olshanski,1998a]. In Chapter 3 we consider the space of infinite dimensional
Hermitian matrices with the action of the infinite dimensional unitary group,
and describe the asymptotics of the orbital integrals. This is mainly a review
of the main results in [Olshanski-Vershik,1996]. Chapter 4 deals with asymp-
totics of the characters of the unitary group U(n). The main result is from
[Vershik-Kerov,1982], but we present the method of proof from [Okunkov-
Olshanski,1998b]. We end by a short review of some results about induc-
tive limits of compact symmetric spaces from the recent paper [Okunkov-
Olshanski,2006]. Further references can be found in [Faraut,2006].

These notes are issued from a series of talks given at the Mathematical
Institute of Kyushu University in September 2007. I was visiting Kyushu
University in the framework of the COE program. I thank warmly Professor
Masato Wakayama for inviting me, and the Mathematical institute of Kyushu
University for its hospitality. I would also like to thank Dr Sho Matsumoto
who prepared these notes.
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Chapter 1

Olshanski spherical pairs

An Olshanski spherical pair is the inductive limit of an increasing sequence
of Gelfand pairs. In this first chapter we present the definition and the main
properties of the spherical functions of an Olshanski spherical pair.

1.1 Gelfand pairs

Let us first recall the definition and the basic properties of Gelfand pairs.
Let G be a locally compact group, and K a compact subgroup. The space
L1(K\G/K) of K-biinvariant integrable functions on G is a convolution alge-
bra. The pair (G,K) is said to be a Gelfand pair if the algebra L1(K\G/K)
is commutative. We consider in the sequel of this section a Gelfand pair
(G,K).

A continuous function ϕ 6≡ 0 on G is said to be spherical if, for x, y ∈ G,∫
K

ϕ(xky)dk = ϕ(x)ϕ(y), for any x, y ∈ G, (1.1)

where dk is the normalized Haar measure on K. A spherical function ϕ is
K-biinvariant, and ϕ(e) = 1.

Let P(K\G/K) be the convex cone of continuous K-biinvariant functions
on G of positive type. Recall that a function ϕ on G is said to be of positive
type if

N∑
i,j=1

ϕ(g−1
i gj)cicj ≥ 0.

for any g1, . . . gN ∈ G and c1, . . . , cN ∈ C. We will denote by P1(K\G/K)
the convex set of functions ϕ in P(K\G/K) with ϕ(e) = 1.
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Theorem 1.1 Let (G,K) be a Gelfand pair and ϕ ∈ P1(K\G/K). Then
the following properties are equivalent:

(i) ϕ is spherical.

(ii) ϕ is an extremal point in the convex set P1(K\G/K), i.e., if ϕ is
expressed as ϕ = αϕ1 +(1−α)ϕ2 with some ϕ1, ϕ2 ∈ P1(K\G/K) and
0 < α < 1, then ϕ = ϕ1 = ϕ2.

(iii) The representation πϕ associated to ϕ by the Gelfand-Naimark-Segal
construction is irreducible.

We will recall in Section 1.3 the Gelfand-Naimark-Segal construction.
Let Ω be the set of spherical functions of positive type. From Theorem

1.1, Ω is the set of extremal points of P1(K\G/K):

Ω = Ext(P1(K\G/K)).

We will see that, for an irreducible unitary representation (π,H),

dimHK = 0 or 1,

where HK denotes the subspace of K-invariant vectors. If dimHK = 1, we
will say that the representation (π,H) is spherical. Hence the set Ω can also
be seen as the set of equivalence classes of spherical representations (π,H)
of G . For that reason we will call Ω the spherical dual of the pair (G,K).

One considers on the set Ω of spherical functions of positive type the
topology of uniform convergence on compact subsets of G. Then it can be
shown that Ω is locally compact.

Theorem 1.2 (Bochner-Godement) For each ϕ ∈ P(K\G/K), there ex-
ists a unique positive bounded measure µ on Ω such that

ϕ(g) =

∫
Ω

ω(g)µ(dω).

(See, for instance, [Faraut,1982].)

1.2 Olshanski spherical pairs

Let (G(n), K(n))n≥1 be a increasing sequence of Gelfand pairs: G(n) is a
closed subgroup of G(n+1), K(n) of K(n+1), and K(n) = G(n)∩K(n+1).
Define

G =
∞⋃

n=1

G(n), K =
∞⋃

n=1

K(n).
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We consider on G the inductive limit topology. Then K is a closed subgroup
of G. But in general G is not locally compact, and K is not compact. We
say that the pair (G,K) is an Olshanski spherical pair.

Let us give a simple example of such a sequence (G(n), K(n)).

Example
Let K(n) = O(n) be the orthogonal group and let G(n) = O(n) n Rn the

motion group. The product in G(n) is given by:

(g1, ξ1) · (g2, ξ2) = (g1g2, ξ1 + g1ξ2),

(g1, g2 ∈ O(n), ξ1, ξ2 ∈ Rn). Then

K = O(∞) =
∞⋃

n=1

O(n),

the infinite dimensional orthogonal group. An element k = (kij)i,j≥1 in O(∞)
satisfies kij = δij for i and j large enough. Define R(∞) by

R(∞) =
∞⋃

n=1

Rn.

A vector ξ ∈ R(∞) is a sequence ξ = (ξ1, ξ2, . . . ) of real numbers with ξi = 0
for i large enough.

The group O(∞) naturally acts on R(∞), and G = O(∞) n R(∞).

Let (G,K) be an Olshanski spherical pair, inductive limit of an increas-
ing sequence of Gelfand pairs

(
G(n), K(n)

)
. A K-biinvariant continuous

function ϕ on G is said to be spherical if, for x, y ∈ G,

lim
n→∞

∫
K(n)

ϕ(xky)αn(dk) = ϕ(x)ϕ(y), (1.2)

where αn is the normalized Haar measure on the compact group K(n).
We will see that Theorem 1.1 holds for an Olshanski spherical pair.

1.3 Gelfand-Naimark-Segal construction

Let G be a topological group, and K a closed subgroup. Consider a unitary
representation (π,H) of G. A vector u ∈ H is said to be cyclic if the subspace
of H generated by the vectors π(g)u for g ∈ G is dense in H.
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Proposition 1.3 (Gelfand-Naimark-Segal construction) For ϕ ∈ P1(K\G/K),
there exists a unitary representation (πϕ,Hϕ) of G, and a K-invariant cyclic
unit vector u such that

ϕ(g) = (u|π(g)u).

Furthermore, the triple (πϕ,Hϕ, u) is unique, up to isomorphism.

Two triples (π1,H1, u1) and (π2,H2, u2) are said to be isomorphic if there
is a isometric isomorphism A : H1 → H2 such that, for g ∈ G,

Aπ1(g) = π2(g)A,

and Au1 = u2.
Proof

Let Hϕ
0 be the space of functions on G of the form

f(x) =
N∑

i=1

ciϕ(g−1
i x),

with g1, . . . , gN ∈ G, c1, . . . , cN ∈ C. Clearly, Hϕ
0 is the subspace of C(G/K),

the space of right K-invariant continuous functions on G.
The norm of such a function f is defined by

‖f‖2 =
N∑

i,j=1

ϕ(g−1
i gj)cicj.

Since ϕ is of positive type, this number is ≥ 0. Writing

f = µ ∗ ϕ, with µ =
N∑

i=1

ciδgi
,

we obtain

‖f‖2 =

∫
G

(µ ∗ ϕ)(x)µ(dx).

By the Schwarz inequality, with ν =
∑N

i=1 diδgi
,∣∣∣∣∫

G

f(x)ν(dx)

∣∣∣∣2 =

∣∣∣∣∣
N∑

i,j=1

ϕ(g−1
i gj)cidj

∣∣∣∣∣
2

(1.3)

≤
N∑

i,j=1

ϕ(g−1
i gj)cicj ·

N∑
i,j=1

ϕ(g−1
i gj)didj,
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Therefore, if ‖f‖2 = 0, then f ≡ 0. Observe that in general the representa-
tion

f(x) =
N∑

i=1

ciϕ(g−1
i x)

of a function f is not unique. The above inequality shows that ‖f‖2 only
depends on f , and not on the chosen representation. Hence ‖f‖ is indeed a
norm on Hϕ

0 , and Hϕ
0 is a preHilbert space, with the inner product, for

f(x) =
N∑

i=1

ciϕ(g−1
i x), f ′(x) =

N ′∑
j=1

c′jϕ
(
(g′j)

−1x
)
,

defined by

(f |f ′) =
N∑

i=1

N ′∑
j=1

ϕ(g−1
i g′j)cic

′
j.

Define the representation πϕ of G on Hϕ
0 by the left action

(πϕ(g)f)(x) = f(g−1x), f ∈ Hϕ
0 , g, x ∈ G.

Then πϕ is unitary. In fact, if

f(x) =
N∑

i=1

ciϕ(g−1
i x),

then

(πϕ(g)f)(x) =
N∑

i=1

ciϕ((ggi)
−1x),

and hence

‖πϕ(g)f‖2 =
N∑

i,j=1

ϕ((ggi)
−1(ggj))cicj

=
N∑

i,j=1

ϕ(g−1
i gj)cicj = ‖f‖2.

Let Hϕ be the Hilbert completion of Hϕ
0 . Since, for f ∈ Hϕ, |f(x)| ≤ ‖f‖

(by letting ν = δx in (1.3)), the Hilbert spaceHϕ can be realized as a subspace
of Cb(G/K), the space of bounded functions in C(G/K). By definition of Hϕ

0 ,
the vector ϕ ∈ Hϕ is cyclic, K-invariant, and satisfies

ϕ(g) = (ϕ|πϕ(g)ϕ).
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Let (πϕ,Hϕ, uϕ) be the triple obtained via the Gelfand-Naimark-Segal
construction, and (π,H, u) be a triple with a K-invariant and cyclic unit
vector u in H such that

ϕ(g) = (u|π(g)u).

Let us define the map A : Hϕ → H, by

Af =
N∑

i=1

ciπ(gi)u,

if

f(x) =
N∑

i=1

ciϕ(g−1
i x).

Then

‖Af‖2H =
N∑

i,j=1

cicj
(
π(gi)u|π(gj)u

)
=

N∑
i,j=1

cicjϕ(g−1
i gj) = ‖f‖2,

Since u is cyclic, the range of A: A(Hϕ) is dense in H. It follows that A
extends as an isometric isomorphism from Hϕ onto H. Furthermore

Aπϕ(g) = π(g)A, Auϕ = u.

1.4 Extremal functions in P1(K\G/K) and ir-

reducibility

As in the previous section, G is a topological group and K a closed subgroup.

Proposition 1.4 For ϕ ∈ P1(K\G/K), let (π,H) be the unitary represen-
tation obtained by the Gelfand-Naimark-Segal construction (Proposition 1.3).
The following properties are equivalent.

(i) ϕ is extremal in the convex set P1(K\G/K).

(ii) The unitary representation (πϕ,Hϕ) is irreducible.
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Proof
(i) ⇒ (ii). Assume ϕ extremal and let u ∈ H be a K-invariant cyclic

unit vector. Suppose that H decomposes as the sum H = H1 ⊕ H2 of two
orthogonal closed invariant subspaces. The vector u decomposes as u =
u′1 + u′2, (u′i ∈ Hi). Put α = ‖u′1‖2. Then 0 ≤ α ≤ 1 since

1 = ‖u‖2 = ‖u′1‖2 + ‖u′2‖2.

If either α = 0 or α = 1, then we have either u′1 = u or u′2 = u. Since u
is cyclic, either H = H1 or H = H2, which means that H is irreducible.

Assume now that 0 < α < 1, and put

u1 =
u′1√
α
, u2 =

u′2√
1− α

,

ϕ1(g) = (u1|π(g)u1), ϕ2(g) = (u2|πϕ(g)u2).

Then ϕ = αϕ1 + (1 − α)ϕ2. Since ϕ is extremal, ϕ = ϕ1 = ϕ2. Observing
that (

ui|π(g)ui

)
=
(
ui|π(g)u

)
(i = 1, 2),

we get (
u1|π(g)u

)
=
(
u2|π(g)u

)
,

and, since u is cyclic, u1 = u2: a contradiction. We have proven that π is
irreducible.

(ii) ⇒ (i). Assume π irreducible and that ϕ is expressed as ϕ = αϕ1 +
(1 − α)ϕ2 for some ϕ1, ϕ2 ∈ P1(K\G/K), and 0 < α < 1. For f ∈ H0,
expressed as

f(x) =
N∑

i=1

ciϕ(g−1
i x),

put

H(f) = α
N∑

i,j=1

ϕ1(g
−1
j gi)cicj.

This defines an invariant Hermitian form on H0. Furthermore, since

α
N∑

i,j=1

ϕ1(g
−1
i gj)cicj ≤

N∑
i,j=1

ϕ(g−1
i gj)cicj,

we get
0 ≤ H(f) ≤ ‖f‖2,
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hence H extends as a continuous invariant Hermitian form on H. This form
can be written H(f) = (Af |f), where A is a selfadjoint operator on H,
0 ≤ A ≤ I, which commutes with the representation π: Aπ(g) = π(g)A. By
Schur’s Lemma, A = λI, with 0 ≤ λ ≤ 1. It follows that αϕ1 = λϕ. Since
ϕ(e) = ϕ1(e) = 1, we get λ = α, and ϕ1 = ϕ. This means that ϕ is extremal.

1.5 Spherical functions and irreducibility

Let G be a topological group, and (K(n))n≥1 an increasing sequence of com-
pact subgroups of G. Put K =

⋃∞
n=1K(n). For a unitary representation

(π,H) of G, the orthogonal projection Pn onto the space HK(n) of K(n)-
invariant vectors is given by

Pnv =

∫
K(n)

π(k)vαn(dk) (v ∈ H),

where αn is the normalized Haar measure of K(n). The sequence of the
subspaces HK(n) is decreasing, and the projections Pn strongly converge to
the projection P onto

HK =
∞⋂

n=1

HK(n).

It follows that, if Y ⊂ H is an invariant closed subspace, then P (Y) ⊂ Y .

Proposition 1.5 Let (π,H) be a unitary representation of G with a K-
invariant cyclic vector u ∈ H. If dimHK = 1, then π is irreducible.

Proof
Let Y be a closed G-invariant subspace of H. We will show that either

Y = {0} or Y = H. If P (Y) = {0}, then Y is orthogonal to u ∈ HK . Since u
is cyclic, it follows that Y = {0}. If P (Y) 6= {0}, then HK ⊂ Y , and Y = H
since u ∈ HK is cyclic. Thus, we have proven that the representation π is
irreducible.

We assume now that (G,K) is an Olshanski spherical pair, inductive limit
of an increasing sequence

(
G(n), K(n)

)
of Gelfand pairs.

Proposition 1.6 Let (G,K) be an Olshanski spherical pair. For any irre-
ducible unitary representation (π,H) of G,

dimHK ≤ 1.
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Proof
AssumeHK 6= {0}. Since

(
G(n), K(n)

)
is a Gelfand pair, the convolution

algebra L1
(
K(n)\G(n)/K(n)

)
is commutative, and the algebraM b

(
K(n)\G(n)/K(n)

)
of K-biinvariant bounded measures is commutative as well. In particular, for
x, y ∈ G(n),

αn ∗ δx ∗ αn ∗ δy ∗ αn = αn ∗ δy ∗ αn ∗ δx ∗ αn,

and, since Pn = π(αn),

Pnπ(x)Pnπ(y)Pn = Pnπ(y)Pnπ(x)Pn.

Observing that Pn+1 = PnPn+1 = Pn+1Pn, we obtain, for m,m′ ≥ 0,

Pn+mπ(x)Pπ(y)Pn+m′ = Pn+mπ(y)Pπ(x)Pn+m′ .

As m,m′ →∞, and then n→∞, we obtain

Pπ(x)Pπ(y)P = Pπ(y)Pπ(x)P,

since Pn strongly converges to P .
Let A be the closed algebra (for the operator norm) generated by the op-

erators Pπ(x)P , for x ∈ G. As proven above, the algebra A is commutative.
The space HK is invariant under A. Since an irreducible representation of a
commutative Banach algebra is one dimensional, it is sufficient to prove that
HK is irreducible under A.

Assume that HK = H1 ⊕ H2, where H1 and H2 are two A-invariant
orthogonal subspaces of HK . Let u1 ∈ H1 (u1 6= 0). For any u2 ∈ H2 and
x ∈ G,

(
Pπ(x)Pu1|u2

)
= 0. Since Pu1 = u1, Pu2 = u2, this means that

(π(x)u1|u2) = 0. We use now the fact that the representation π is irreducible,
and hence that any non zero vector is cyclic, in particular u1 is cyclic. This
implies u2 = 0, and H2 = {0}.

Proposition 1.7 Let (G,K) be an Olshanski spherical pair. For ϕ ∈ P1(K\G/K),
the following properties are equivalent:

(i) ϕ is spherical.

(ii) The representation (π,H) associated to ϕ by the Gelfand-Naimark-
Segal construction is irreducible.
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Proof
Recall that ϕ(g) =

(
u|π(g)u

)
, where u is a cyclic unit vector in HK .

(ii) ⇒ (i). Assume the representation (π,H) irreducible. By Proposition
1.6 we know that dimHK = 1. Therefore the orthogonal projection P onto
HK can be written

Pv = (v|u)u.
For y ∈ G, and any v ∈ H,(

v|Pπ(y)Pu
)

=
(
Pv|π(y)u

)
= (v|u)

(
u|π(y)u

)
= ϕ(y)(v|u).

Therefore Pπ(y)Pu = ϕ(y)u. Hence, for x ∈ G,

Pπ(x)Pπ(y)Pu = ϕ(y)Pπ(x)Pu = ϕ(x)ϕ(y)u,

and (
u|π(x)Pπ(y)u

)
= ϕ(x)ϕ(y).

Since the projections Pn strongly converge to P , we get

ϕ(x)ϕ(y) = lim
n→∞

(
u|π(x)Pnπ(y)u

)
= lim

n→∞

∫
K(n)

(u|π(xky)u)αn(dk)

= lim
n→∞

∫
K(n)

ϕ(xky)αn(dk),

which means that ϕ is spherical.

(i) ⇒ (ii). Assume ϕ spherical. We will show that, for g ∈ G, Pπ(g)u =
ϕ(g)u. If this holds, then the subspace HK is one dimensional: HK =
Cu. Therefore, by Proposition 1.5, the representation π is irreducible. By
assumption, for x, y ∈ G,

ϕ(x)ϕ(y) = lim
n→∞

∫
K(n)

ϕ(xky)αn(dk)

= lim
n→∞

(
u|π(x)Pnπ(y)u

)
=
(
u|π(x)Pπ(y)u

)
.

This can be written as(
π(x−1)u|Pπ(y)u

)
= ϕ(y)

(
π(x−1)u|u

)
.

Since u is cyclic, we obtain Pπ(y)u = ϕ(y)u.

Let us mention that the Bochner-Godement theorem (Theorem 1.2) has
been recently extended to Olshanski spherical pairs ([Rabaoui,2008]).
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1.6 Examples

We end this chapter by giving two simple examples of Olshanski spherical
pairs.

Example 1
We come back to the example of Section 1.2. Let G(n) = O(n) n Rn and

K(n) = O(n). Then G = O(∞)n R(∞) and K = O(∞). For an element x =
(g, ξ) ∈ G, we denote by ‖x‖ the radius of ξ: ‖x‖ = ‖ξ‖ =

√
ξ2
1 + ξ2

2 + · · ·
for ξ = (ξ1, ξ2, . . . , 0, 0, . . . ) ∈ R(∞). Let ϕ be a K-biinvariant function of G.
Then, for any g1, g2, g ∈ O(∞) and ξ ∈ R(∞),

ϕ(g, ξ) = ϕ((g1, 0) · (g, ξ) · (g2, 0)) = ϕ(g1gg2, g1ξ).

Therefore ϕ(g, ξ) only depends on the radius ‖ξ‖, i.e., there exists a function
Φ on R≥0 such that

ϕ(x) = Φ(‖x‖2).
Assume ϕ spherical:

lim
n→∞

∫
K(n)

ϕ(xky)αn(dk) = ϕ(x)ϕ(y), x, y ∈ G. (1.4)

By classical harmonic analysis,∫
K(n)

ϕ(xky)αn(dk) = cn

∫ π

0

Φ(a2 + b2 + 2abcosθ) sinn−1 θdθ.

where a = ‖x‖ and b = ‖y‖. Note that the constant cn is given by

cn =
Γ
(

n+1
2

)
√
πΓ
(

n
2

) .
One shows easily that, if f is a continuous function on [0, π],

lim
n→∞

cn

∫ π

0

f(θ) sinn−1 θdθ = f
(π
2

)
.

Therefore we obtain the following functional equation

Φ(a2 + b2) = Φ(a2)Φ(b2).

This equation implies that Φ(a) = e−λa for some λ ∈ C. Furthermore ϕ is
of positive type if and only if λ ≥ 0. Hence the spherical functions ϕ for the
Olshanski spherical pair (G,K) are given by

ϕ(x) = e−λ‖x‖2 , λ ≥ 0.
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Thus, the spherical dual Ω can be identifed with [0,∞[. Observe that a spher-
ical function, which is essentially a function on R(∞), extends as a continuous
function on

`2(N) =

{
(ξ1, ξ2, . . . )

∣∣∣ ξk ∈ R,
∑
k≥1

ξ2
k <∞

}
.

Example 2
Let G(n) = O(n+1) and K(n) = O(n). Here K(n) is seen as a subgroup

of G(n) as follows:

O(n) 3 u 7→
(
u 0
0 1

)
∈ O(n+ 1).

Let {e0, e1, . . . , en+1} be the canonical basis of Rn+1. A K-biinvariant con-
tinuous function ϕ on G can be written as

ϕ(g) = Φ((ge0|e0)),

where Φ is a continuous function on [−1, 1]. We get∫
K(n)

ϕ(xky)αn(dk) = cn

∫ π

0

Φ(cos a cos b+ sin a sin b cos θ) sinn−1 θdθ

where cos a = (xe0|e0) and cos b = (ye0|e0) (cn is the same constant as in
Example 1). If ϕ is spherical, then

Φ(cos a cos b) = Φ(cos a)Φ(cos b).

Finally, the spherical functions ϕ in P1(K\G/K) are the following:

ϕ(g) = (ge0|e0)m, (m ∈ N).

Thus the spherical dual Ω can be identified with N.
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Chapter 2

Schur functions

In order to study the spherical functions and their asymptotics we will need
expansions involving Schur functions and shifted Schur functions.

2.1 Schur functions and Schur expansions

For a signature λ = (λ1, . . . , λn), i.e.λi ∈ Zn and λ1 ≥ · · · ≥ λn, we define
the rational function Aλ(z) = Aλ(z1, . . . , zn) on (C∗)n by

Aλ(z) =

∣∣∣∣∣∣∣∣∣
zλ1
1 zλ2

1 . . . zλn
1

zλ1
2 zλ2

2 . . . zλn
2

...
...

. . .
...

zλ1
n zλ2

n . . . zλn
n

∣∣∣∣∣∣∣∣∣ .
In particular, for λ = δ := (n − 1, . . . , 1, 0), Aδ(z) is the Vandermonde
polynomial

Aδ(z) = V (z) :=
∏

1≤j<k≤n

(zj − zk).

The Schur function sλ is defined by

sλ(z) =
Aλ+δ(z)

V (z)
.

This is a symmetric rational function defined on (C∗)n, and the Schur func-
tions sλ where λ = (λ1, . . . , λn) run over all signatures of length ≤ n, con-
stitute a basis of the space of symmetric Laurent polynomials in n variables.
For a partition m = (m1, . . . ,mn): m1 ≥ . . . ≥ mn ≥ 0, sm is a symmetric
polynomial.
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Let us mention two special cases:

a) Let m = (1k) := (1, . . . , 1︸ ︷︷ ︸
k

, 0, . . . , 0), where 0 ≤ k ≤ n. Then

s(1k)(z) = ek(z),

the k-th elementary symmetric function

ek(z) :=
∑

1≤j1<···<jk≤n

zj1 . . . zjk
. (2.1)

To see it observe that the generating function of the elementary symmetric
functions ek is given by

E(z; t) :=
n∑

k=0

ek(z)t
k =

n∏
j=1

(1 + tzj).

Let us consider the Vandermonde polynomial in n+1 variables V (t, z1, . . . , zn).
It can be written as

V (t, z1, . . . , zn) =
n∏

i=1

(t− zi)
∏
i<j

(zi − zj)

= V (z1, . . . , zn)
n∑

k=0

(−1)kek(z)t
n−k,

and also as a determinant:

V (t, z1, . . . , zn) =

∣∣∣∣∣∣∣∣∣
tn tn−1 . . . t 1
zn
1 zn−1

1 . . . z1 1
...

...
...

...
zn

n zn−1
n . . . zn 1

∣∣∣∣∣∣∣∣∣
Let us expand this determinant with respect to the first row:

V (t, z1, . . . , zn) =
n∑

k=0

(−1)ktn−kA1k+δ(z).

Therefore
A1k+δ(z) = V (z1, . . . , zn)ek(z),

or
s(1k)(z) = ek(z).

17



b) If m = (m) := (m, 0, . . . , 0), with m ≥ 0, then

s(m)(z) = hm(z),

the m-th complete symmetric function,

hm(z) :=
∑
|α|=m

zα =
∑

α1,...,αn≥0
α1+···+αn=m

zα1
1 · · · zαn

n . (2.2)

To see it, let us show that the generating function of the complete symmetric
functions is given, for |t| small enough, by

H(z, t) :=
∞∑

m=0

hm(z)tm =
n∏

j=1

1

1− tzj

.

In fact ∑
α∈Nn

(tz)α =
∞∑

m=0

(∑
|α|=m

zα
)
tm =

∞∑
m=0

hm(z)tm

=
n∏

j=1

∞∑
αj=0

(tzj)
αj =

n∏
j=1

1

1− tzj

.

Let us now compute the sum of the following power series, for |t| small
enough,

∞∑
m=0

tmA(m)+δ(z) =

∣∣∣∣∣∣∣∣∣
∑∞

m=0 t
mzm+n−1

1 zn−2
1 . . . z1 1∑∞

m=0 t
mzm+n−1

2 zn−2
2 . . . z2 1

...
...

...
...∑∞

m=0 t
mzm+n−1

n zn−2
n . . . zn 1

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣

zn−1
1

1−tz1
zn−2
1 . . . z1 1

zn−1
2

1−tz2
zn−2
2 . . . z2 1

...
...

...
...

zn−1
n

1−tzn
zn−2

n . . . zn 1

∣∣∣∣∣∣∣∣∣∣
.

Since

zk
i + t

zk+1
i

1− tzi

=
tki

1− zti
,

this determinant is equal to∣∣∣∣∣∣∣∣∣∣

zn−1
1

1−tz1

zn−2
1

1−tz1
. . . z1

1−tz1

1
1−tz1

zn−1
2

1−tz2

zn−2
2

1−tz2
. . . z2

1−tz2

1
1−tz2

...
...

...
...

zn−1
z

1−tzn

zn−2
n

1−tzn
. . . zn

1−tzn

1
1−tzn

∣∣∣∣∣∣∣∣∣∣
= V (z)

n∏
j=1

1

1− tzj

= V (z)
∞∑

m=0

tmhm(z).
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Therefore
A(m)+δ(z) = V (z)hm(z),

or
s(m)(z) = hm(z).

Proposition 2.1 (Hua’s formula) Consider n power series

fi(w) =
∞∑

m=0

c(i)mw
m, w ∈ C, i = 1, . . . , n

which are convergent for |w| < r for some r > 0. Define the function F on
Cn by

F (z) = F (z1, . . . , zn) =
det(fi(zj))1≤i,j≤n

V (z)
, |zj| < r.

Then F admits the following Schur expansion

F (z) =
∑

m=(m1,...,mn)
m1≥···≥mn≥0

amsm(z)

with
am = det(c

(i)
mj+n−j)1≤i,j≤n.

([Hua,1963], Chapter II.)
Proof

In fact,

det(fi(zj))1≤i,j≤n =
∑

σ∈Sn

ε(σ)
n∏

i=1

( ∞∑
m=0

c(i)m z
m
σ(i)

)
.

If we permute the product
∏

i and the sum
∑

m, we obtain

=
∞∑

m1,...,mn=0

c(1)
m1
· · · c(n)

mn

∑
σ∈Sn

ε(σ)
n∏

i=1

zmi

σ(i) =
∞∑

m1,...,mn=0

c(1)m1
· · · c(n)

mn
det(zmi

j )1≤i,j≤n.

Since det(zmi
j ) = 0 unless the mi are all distinct, this sum is equal to

=
∑

m1>···>mn≥0

∑
τ∈Sn

c(1)mτ(1)
· · · c(n)

mτ(n)
det(z

mτ(i)

j )1≤i,j≤n

=
∑

m1>···>mn≥0

∑
τ∈Sn

ε(τ)c(1)mτ(1)
· · · c(n)

mτ(n)
det(zmi

j )1≤i,j≤n

=
∑

m1>···>mn≥0

det(c(i)mj
)1≤i,j≤n det(zmi

j )1≤i,j≤n.
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Finally, with mj = kj + n− j, we obtain

det(fi(zj))1≤i,j≤n =
∑

k1≥···≥kn≥0

det(c
(i)
kj+n−j)1≤i,j≤nA(k1,k2,...,kn)+δ(z),

which is the claim of the proposition.

Looking at the value at z = 0, since

c(i)m =
1

m!
f

(m)
i (0) =

1

m!

dm

dwm
fi(w)|w=0,

we obtain

lim
z1,...,zn→0

det(fi(zj))1≤i,j≤n

V (z)
=F (0) = a0 = det(c

(i)
n−j)1≤i,j≤n (2.3)

=
1

δ!
det(f

(n−j)
i (0))1≤i,j≤n.

For a partition m = (m1, . . . ,mn) we have used the notation

m! = m1! · · ·mn!

We present some applications of Hua’s formula.

Proposition 2.2 For a signature λ = (λ1, . . . , λn),

sλ(1, . . . , 1) =
V (λ+ δ)

V (δ)
.

Note that V (δ) = δ!. Observe that this formula is nothing but the Weyl
dimension formula in case of the unitary group U(n). In fact the value
sλ(1, . . . , 1) is the dimension dλ of the irreducible representation of U(n)
associated with the highest weight λ.

Proof
Let fi(w) = (1 + w)αi with αi = λi + n− i. We see that

F (0) = lim
z1,...,zn→0

det(fi(zj))1≤i,j≤n

V (z)
= sλ(1, . . . , 1).

Since
f

(n−j)
i (0) = αi(αi − 1) · · · (αi − n+ j − 1),

it follows by (2.3) that

sλ(1, . . . , 1) = F (0) =
1

δ!
det(αi(αi − 1) · · · (αi − n+ j − 1))1≤i,j≤n

=
1

δ!
det(αn−j

i )1≤i,j≤n =
V (λ+ δ)

δ!
.
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Proposition 2.3 For x = (x1, . . . , xn) and y = (y1, . . . , yn),

det(exiyj)1≤i,j≤n

V (x)V (y)
=

∑
m1≥···≥mn≥0

1

(m + δ)!
sm(x)sm(y).

Proof
Apply Hua’s formula (Proposition 2.1) with fi(w) = exiw =

∑∞
m=0

xm
i

m!
wm.

Then

det(c
(i)
mj+n−j)1≤i,j≤n =

1

(m + δ)!
Am+δ(x) =

1

(m + δ)!
V (x)sm(x),

Proposition 2.3 immediately follows.

Proposition 2.4

ez1+···+zn = δ!
∑

m1≥···≥mn≥0

1

(m + δ)!
dmsm(z),

where dm = sm(1, . . . , 1).

As a special case of (2.3) we obtain

lim
y1,...,yn→1

det(exiyj)1≤i,j≤n

V (y)
=

1

δ!
det
( dn−j

dwn−j
exiw

∣∣∣
w=1

)
1≤i,j≤n

(2.4)

=
1

δ!
det(xn−j

i exi)1≤i,j≤n =
1

δ!
ex1+···+xnV (x). (2.5)

Therefore, letting yj → 1, 1 ≤ j ≤ n, in Proposition 2.3, we get the claim.

Proposition 2.5 (Cauchy identity)

n∏
i,j=1

1

1− xiyj

=
∑

m1≥···≥mn≥0

sm(x)sm(y).

Proof
Take

fi(w) =
1

1− xiw
=

∞∑
m=0

xm
i w

m
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in Hua’s formula (Proposition 2.1). Then we obtain the identity

det
( 1

1− xiyj

)
1≤i,j≤n

=
∑

m1≥···≥mn≥0

sm(x)sm(y).

The claim follows from the well-known evaluation for Cauchy’s determinant

det
( 1

1− xiyj

)
1≤i,j≤n

= V (x)V (y)
n∏

i,j=1

1

1− xiyj

.

Proposition 2.6 (Voiculescu’s formula) Consider a Laurent series

f(w) =
∞∑

m=−∞

cmw
m

Then
n∏

j=1

f(zj) =
∑

m∈Zn

m1≥···≥mn

amsm(z)

with am = det(cmi−i+j)1≤i,j≤n.

([Voiculescu,1976], Lemme 2.)

Proof
Let us expand the product,

V (z)f(z1) · · · f(zn) =
∑

σ∈Sn

∑
p1,...,pn∈Z

ε(σ)cp1 · · · cpnt
p1+δσ(1)

1 · · · tpn+δσ(n)

1 ,

where δj = n − j. The number am is the coefficient of the monomial
zm1+δ1
1 · · · zmn+δn

n in this sum. It comes from the terms for which pi + δσ(i) =
mi + δi, or pi = mi − i+ σ(i). Therefore we obtain

am =
∑

σ∈Sn

ε(σ)
n∏

i=1

cmi−i+σ(i) = det(cmi−i+j)1≤i,j≤n.

Proposition 2.7 (Jacobi-Trudi identity) For a partition m (m1 ≥ · · · ≥
mn ≥ 0),

sm(x) = det(hmi−i+j(x))1≤i,j≤n,

where hk is the complete symmetric function (see (2.2)).
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Proof
Take

f(w) =
n∏

i=1

1

1− xiw
=

∞∑
m=0

hm(x)wm

in Proposition 2.6. Then

n∏
j=1

f(zj) =
n∏

i,j=1

1

1− xizj

=
∑

m1≥···≥mn≥0

det(hmi−i+j(x))1≤i,j≤nsm(z). (2.6)

On the other hand, it follows by the Cauchy identity (Proposition 2.5) that

n∏
i,j=1

1

1− xizj

=
∑

m1≥···≥mn≥0

sm(x)sm(z).

Comparing with (2.6), we obtain the Jacobi-Trudi identity.

2.2 Binomial formula for Schur functions, and

shifted Schur functions

The results in this section are from [Okunkov-Olshanski,1998a]. For a parti-
tion m (m1 ≥ · · · ≥ mn ≥ 0), the shifted Schur function s∗m is defined, for a
signature λ = (λ1, . . . , λn), by

s∗m(λ) = s∗m(λ1, . . . , λn) =
det([λi + δi]mj+δj

)1≤i,j≤n

det([λi + δi]δj
)1≤i,j≤n

,

where δj = n− j and [a]m = a(a− 1) · · · (a−m+ 1).

Theorem 2.8 (Binomial formula for Schur functions) For a signature
λ = (λ1, . . . , λn),

sλ(1 + z1, . . . , 1 + zn)

sλ(1, . . . , 1)
=

∑
m1≥···≥mn≥0

δ!

(m + δ)!
s∗m(λ)sm(z). (2.7)

For n = 1 it reduces to the classical binomial formula (λ ∈ C):

(1 + w)λ =
∞∑

m=0

1

m!
[λ]mw

m.

Proof
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We apply Hua’s formula (Proposition 2.1) with

fi(w) = (1 + w)λi+δi =
∞∑

m=0

[λi + δi]m
m!

wm, 1 ≤ i ≤ n.

Then we have

Aλ+δ(1 + z1, . . . , 1 + zn)

V (z)
=

∑
m1≥···≥mn≥0

1

(m + δ)!
det([λi+δi]mj+δj

)1≤i,j≤nsm(z).

Finally, by Proposition 2.2,

sλ(1, . . . , 1) =
V (λ+ δ)

V (δ)
=

det([λi + δi]δj
)1≤i,j≤n

δ!
.

Let us state some properties of the shifted Schur functions.

Stability: for a partition m = (m1, . . . ,mn),

s∗m(λ1, . . . , λn, λn+1)
∣∣
λn+1=0

= s∗m(λ1, . . . , λn).

Therefore we can regard s∗m as a function on R(∞).

Shifted symmetry: an ordinary Schur function is symmetric, i.e., sm(. . . , λi, λi+1, . . . ) =
sm(. . . , λi+1, λi, . . . ), while a shifted Schur function is shifted symmetric, i.e.,

s∗m(. . . , λi, λi+1, . . . ) = s∗m(. . . , λi+1 − 1, λi + 1, . . . ).

Let us mention two important special cases.

a) The shifted elementary symmetric function e∗k:

e∗k(λ) :=
∑

1≤j1<···<jk

(λj1 − k + 1)(λj2 − k + 2) · · ·λjk
.

We will see in next section that e∗k(λ) = s∗
(1k)

(λ).

b) The shifted complete symmetric function h∗m:

h∗m(λ) :=
∑

1≤j1≤···≤jm

(λj1 −m+ 1)(λj2 −m+ 2) · · ·λjm .
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We will prove in next section that h∗m(λ) = s∗(m)(λ). By Theorem 2.8 we
obtain the following power expansion:

sλ(1 + w, 1, . . . , 1)

sλ(1, . . . , 1)
=

∞∑
m=0

(n− 1)!

(m+ n− 1)!
h∗m(λ)wm.

Ordinary Schur functions sm are homogeneous polynomials but shifted
Schur functions s∗m are not homogeneous. Note that

s∗m(λ) = sm(λ) + (terms of degree < |m|),

where |m| = m1 +m2 + · · · .

2.3 Generating function for shifted elemen-

tary symmetric functions

Theorem 2.9 (i) For a signature λ = (λ1, . . . , λn),

s∗(1k)(λ) = e∗k(λ).

(ii) Define the generating function F ∗ for the shifted elementary symmet-
ric functions e∗k by

F ∗(λ; t) =
n∑

k=0

(−1)ke∗k(λ)[t]n−k.

Then

F ∗(λ; t) =
n∏

j=1

(t− λj − n+ j).

Our definition slightly differs from the definition given by Okunkov and
Olshanski. They define

E∗(λ;u) =
n∑

k=0

e∗k(λ)

[u]k
,

and then

E∗
k(λ, u) =

n∏
j=1

u− j + 1 + λj

u− j + 1
.
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In fact the two statements are equivalent: for t = n − 1 − u, by using the
relation

[u]n
[u]k

= (−1)k[t]n−k,

one sees that
F ∗(λ; t) = (−1)n[u]nE

∗(λ;u).

Proof
a) We will first prove (ii) by recursion on n. We will use

[t]k = t[t− 1]k−1,

and the relation

e∗k(λ1, . . . , λn) = e∗k(λ1, . . . , λn−1) + e∗k−1(λ1 + 1, . . . , λn−1 + 1)λn.

Observe that

(t− λ1 − n+ 1)(t− λ2 − n+ 2) . . . (t− λn−1 − 1) = F ∗(λ1, . . . , λn−1; t− 1)

= F ∗(λ1 + 1, . . . , λn−1 + 1; t)

For n = 1 it is trivial. Assume that (ii) holds for n− 1. Then

F ∗(λ1, . . . , λn; t) =

(t− λ1 − n+ 1)(t− λ2 − n+ 2) . . . (t− λn−1 − 1)× (t− λn)

= tF ∗(λ1, . . . , λn−1; t− 1)− λnF
∗(λ1 + 1, . . . , λn−1 + 1; t)

=
n−1∑
k=0

(−1)ke∗k(λ1, . . . , λn−1t[t− 1]n−k−1 −
n−1∑
k=0

(−1)ke∗k(λ1 + 1, . . . , λn−1 + 1)λn[t]n−k−1

=
n−1∑
k=0

(−1)ke∗k(λ1, . . . , λn−1)[t]n−k +
n∑

k=1

(−1)ke∗k−1(λ1 + 1, . . . , λn−1 + 1)λn[t]n−k

= [t]n +
n−1∑
k=1

(
e∗k(λ1, . . . , λn−1) + e∗k−1(λ1 + 1, . . . , λn−1 + 1)λn

)
[t]n−k

+ (−1)ne∗n−1(λ1 + 1, . . . , λn−1 + 1)λn

=
n∑

k=0

(−1)ke∗k(λ1, . . . , λn)[t]n−k.
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b) Consider the following (n+ 1)× (n+ 1) determinant:

D∗(λ; t) =

∣∣∣∣∣∣∣∣∣∣∣

[t]n [t]n−1 . . . [t]1 1
[λ1 + n− 1]n [λ1 + n− 1]n−1 . . . [λ1 + n− 1]1 1
[λ2 + n− 2]n [λ2 + n− 2]n−1 . . . [λ2 + n− 2]1 1

...
...

...
...

[λn]n [λn]n−1 . . . [λn]1 1

∣∣∣∣∣∣∣∣∣∣∣
By using the fact that the value of a determinant does not change when one
adds to a column a combination of the other ones, this determinant reduces
to a Vandermonde determinant, and one obtains

D∗(λ; t) = V (λ+ δ)
n∏

j=1

(t− λj − n+ j)

= V (λ+ δ)F ∗(λ; t).

Therefore, by a),

D∗(λ; t) = V (λ+ δ)
n∑

k=0

(−1)ke∗k(λ)[t]n−k.

On the other hand, by expanding this determinant with respect to the first
row one obtains

D∗(λ, t) = V (λ+ δ)
n∑

k=0

(−1)ks∗(1k)(λ1, . . . , λn)[t]n−k.

This proves (i):
s(1k)(λ) = e∗k(λ).

2.4 Generating function for shifted complete

symmetric functions as a factorial expan-

sion

A factorial expansion is an expansion of the following form

c0 +
c1
z

+
c2

z(z + 1)
+ · · ·+ cm

z(z + 1) . . . (z +m− 1)
+ · · ·

(See [Nörlund,1914].)
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Consider the following Mellin transform

f(z) =

∫ 1

0

ϕ(t)tz−1dt.

Assume that the function ϕ is analytic for |t−1| < 1, and consider its power
expansion at t = 1:

ϕ(t) =
∞∑

m=0

am(t− 1)m.

Assume that
∞∑

m=0

|am|
∫ 1

0

(1− t)mtσ−1dt <∞.

Then, for Re z ≥ σ ,

f(z) =
∞∑

m=0

(−1)mam

∫ 1

0

(1− t)mtz−1dt

=
∞∑

m=0

(−1)mam
m!

z(z + 1) . . . (z +m)
.

This is a factorial expansion with

c0 = 0, cm+1 = (−1)mm!am.

In the special case ϕ(t) = t−α (α ∈ R),

ϕ(t) = (t− 1 + 1)−α =
∞∑

m=0

α(α) . . . (α+m− 1)

m!
(1− t)m,

one obtains the Stirling series (Stirling, 1730)

1

z − α
=

1

z
+

α

z(z + 1)
+ · · ·+ α(α+ 1) . . . (α+m− 1)

z(z + 1) . . . (z +m)
+ · · ·

which converges for Re z > max(α, 0). By putting α = −λ, z = −(u + 1),
one obtains the modified Stirling series

u+ 1

u− λ+ 1
=

∞∑
m=0

[λ]m
[u]m

,

which converges for Reu < min(λ− 1, 0). Recall that

[a]m = a(a− 1) . . . (a−m+ 1).
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Theorem 2.10 (i) For a signature λ = (λ1, . . . , λn),

s∗(m)(λ) = h∗m(λ).

(ii) Define the generating function for the shifted complete symmetric func-
tions h∗m by

H∗(λ;u) =
∞∑

m=0

h∗m(λ)
1

[u]m
.

Then H∗(λ, u) is the following rational function:

H∗(λ;u) =
n∏

j=1

u+ j

u+ j − λj

.

Notice that, for n = 1, (i) means that

h∗m(λ) = [λ]m,

and (ii) is nothing but the evaluation of the modified Stirling series.

Proof
We will first show that

∞∑
m=0

s∗(m)(λ)
1

[u]m
=

n∏
j=1

u+ j

u+ j − λj

,

and then that
s∗(m)(λ) = h∗m(λ).

a) Define

H∗(λ;u) =
∞∑

m=0

s∗(m)(λ)
1

[u]m
.

Recall that

s∗(m)(λ) =
1

V (λ+ δ)

∣∣∣∣∣∣∣∣∣
[λ1 + n− 1]m+n−1 [λ1 + n− 1]n−2 . . . 1
[λ2 + n− 1]m+n−1 [λ2 + n− 1]n−2 . . . 1

...
...

...
[λn]m+n−1 [λn]n−2 . . . 1

∣∣∣∣∣∣∣∣∣
By using the identity

[a]m+n−1 = [a]n−1[a− n+ 1]m,
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and the modified Stirling series we obtain

H∗(λ;u) =
1

V (λ+ δ)

∣∣∣∣∣∣∣∣∣
[λ1 + n− 1]n−1

u+1
u+1−λ1

[λ1 + n− 1]n−2 . . . 1

[λ2 + n− 2]n−1
u+1

u+2−λ2
[λ2 + n− 2]n−2 . . . 1

...
...

...
[λn]n−1

u+1
u+1−λn

[λn]n−2 . . . 1

∣∣∣∣∣∣∣∣∣
Hence u + 1 factors out. Then we add the first column of the determinant
to the second one and the i-th row becomes

[λi + n− i]n−1
1

u+ i− λi

[λi + n− i]n−2
u+ 2

u+ i− λi

[λi + n− i]n−3 . . . 1

Now u+ 2 factors out, and so on. One obtains finally

V (λ+ δ)H∗(λ;u) = (u+ 1)(u+ 2) . . . (u+ n)∣∣∣∣∣∣∣∣∣
[λ1 + n− 1]n−1

1
u+1−λ1

[λ1 + n− 1]n−2
1

u+1−λ1
. . . 1

u+1−λ1

[λ2 + n− 2]n−1
1

u+2−λ2
[λ2 + n− 2]n−2

1
u+2−λ2

. . . 1
u+2−λ2

...
...

...
[λn]n−1

1
u+n−λn

[λn]n−2
1

u+n−λn
. . . 1

u+n−λn

∣∣∣∣∣∣∣∣∣
=

(u+ 1)(u+ 2) . . . (u+ n)

(u+ 1− λ1)(u+ 2− λ2) . . . (u+ n− λn)
V (λ+ δ).

b) We prove now that

s∗(m)(λ) = h∗m(λ),

by recursion with respect to n. For n = 1, this means that

h∗m(λ) = [λ]m.

Assume that the formula holds for m − 1. By a), and by using the Stirling
series, for a signature λ = (λ1, . . . , λn),

H∗(λ, u) =
n∏

i=1

u+ i

u+ i− λi

=
n−1∏
i=1

u+ i

u+ i− λi

∞∑
q=0

[λn]q
[u+ n− 1]q

.

Then, by observing that

(u+ 1)(u+ 2) . . . (u+ n− 1)

[u+ n− 1]q
=

(u− q + 1)(u− q + 2) . . . (u− q + n− 1)

[u]q
,
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we get

H∗(u, λ) =
n−1∏
i=1

u− q + i

u+ i− λi

∞∑
q=0

[λn]q
[u]q

=
n−1∏
i=1

(u− q) + i

(u− q) + i− (λ− q)

∞∑
q=0

[λn]q
[u]q

.

We use now the recursion hypothesis:

H∗(λ;u) =
∞∑

p=0

h∗p(λ1 − q, . . . , λn−1 − q)
[u− q]p

∞∑
q=0

[λn]q
[u]q

=
∞∑

m=0

( ∑
p+q=m

h∗p(λ1 − q, . . . , λn−1 − q)[λn]q

[u− q]p[u]q

)
.

By using the identity
[u− q]p[u]q = [u]p+q,

we get finally

H∗(λ;u) =
∞∑

m=0

( ∑
p+q=m

h∗p(λ1 − q, . . . , λn−1 − q)[λn]q

) 1

[u]m
.

Observing that ∑
p+q=m

h∗p(λ1 − q, . . . , λn−1 − q)[λn]q = h∗m(λ),

we get

H∗(λ;u) =
∞∑

m=0

h∗m(λ)
1

[u]m
.

We use now the fact that, if two factorial expansions are equal, their coeffi-
cients are equal (See [Nörlund,1914]). Therefore

s∗(m)(λ) = h∗m(λ),

and
H∗(λ;u) = H∗(λ;u).
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Consider the logarithmic derivative of H∗(λ;u):

d

du
logH∗(λ;u) =

n∑
j=1

( 1

u+ j
− 1

u+ j − λj

)
.

It can be written as a power series in 1
u
:

d

du
logH∗(λ, u) = −

∞∑
m=0

q∗m(λ)
1

um+1
,

with

q∗m(λ) =
n∑

j=1

(
(λj − j)m − (−j)m

)
.

This provides a new family of shifted symmetric functions. The functions q∗m
can be seen as shifted analogues of the Newton power series. They will occur
in chapter 4 in the proof of Theorem 4.6.
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Chapter 3

Infinite dimensional Hermitian
matrices

In this chapter we consider the Olshanski spherical pair(
U(∞) nHerm(∞,C), U(∞)

)
.

We will present results from [Olshanski-Vershik,1996].

3.1 Gelfand pair associated to a motion group

Let V be a finite dimensional real vector space V ∼= Rn, and K a compact
subgroup of GL(V ). Define the generalized motion group G = K n V with
the product

(k1, a1) · (k2, a2) = (k1k2, a1 + k1a2), k1, k2 ∈ K, a1, a2 ∈ V. (3.1)

If ϕ is a K-biinvariant function on G, then, since

ϕ((k, a)) = ϕ((k1, 0)·(k, a)·(k2, 0)) = ϕ((k1kk2, k1a)), k1, k2, k ∈ K, a ∈ V,

the function ϕ only depends on a:

ϕ(g) = ϕ̃(a), g = (k, a) ∈ K n V, (3.2)

where ϕ̃ is aK-invariant function on V . The correspondence ϕ↔ ϕ̃ identifies
the convolution algebras L1(K\G/K) and L1(K\V ). Since the convolution
algebra L1(K\V ) is commutative, (G,K) is a Gelfand pair.

A spherical function ϕ for the Gelfand pair (G,K) satisfies the functional
equation ∫

K

ϕ((k1, a1) · (k, 0) · (k2, a2))dk = ϕ((k1, a1))ϕ((k2, a2)) (3.3)
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for any k1, k2 ∈ K, a1, a2 ∈ V , and dk is the normalized Haar measure on K.
It follows by (3.1) and (3.2) that the left hand side equals∫

K

ϕ((k1kk2, a1 + k1ka2))dk =

∫
K

ϕ̃(a1 + k1ka2)dk.

so that the functional equation (3.3) can be rewritten as∫
K

ϕ̃(a1 + k1ka2)dk = ϕ̃(a1)ϕ̃(a2).

Replacing a1 with k1a1, we finally obtain the equation∫
K

ϕ̃(a1 + ka2)dk = ϕ̃(a1)ϕ̃(a2), a1, a2 ∈ V. (3.4)

Conversely, if ϕ̃ is a K-invariant continuous function on V which satisfies
the functional equation (3.4), and if ϕ is the function on G given by (3.2),
then ϕ is a spherical function for the Gelfand pair (G,K). For that reason
we make the following definition: a K-invariant continuous function ϕ on V
is said to be spherical if∫

K

ϕ(x+ k · y)α(dk) = ϕ(x)ϕ(y).

Let us consider on V a K-invariant inner product. The spherical functions
of positive type are Fourier transform of orbital measures on V :

ϕ(λ;x) =

∫
K

e−i(k·λ,x)α(dk).

Let us check that the function ϕ(x) = ϕ(λ;x) is spherical:∫
K

ϕ(x+ k · y)α(dk) =

∫
K

(∫
K

e−i(k1·λ,x+k·y)α(dk1)
)
α(dk)

=

∫
K

e−(k1·λ,x)
(∫

K

e−i(k∗k1·λ,y)α(dk)
)
α(dk1)

= ϕ(x)ϕ(y), (3.5)

by the invariance of the Haar measure α.
Hence the spherical dual Ω can be identified with the set of K-orbits in

V : Ω ' K\V .
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3.2 The Gelfand pair (U(n) n Herm(n,C), U(n))

In the present chapter, we consider the case where V = Herm(n,C), the
space of n× n Hermitian matrices, and K = U(n). Here K acts on V by

k · x = kxk∗
(
x ∈ Herm(n,C), k ∈ U(n)

)
A spherical function is a continuous solution of the following functional equa-
tion: ∫

U(n)

ϕ(x+ kyk∗)dk = ϕ(x)ϕ(y), x, y ∈ Herm(n,C).

We consider on Herm(n,C) the following inner product (x|y) = tr(xy). By
the spectral theorem, every Hermitian matrix is diagonalizable by unitary
matrices and its eigenvalues are real, therefore

Ω ' U(n)\Herm(n,C) ' Rn/Sn.

A U(n)-invariant function ϕ(x) on Herm(n,C) only depends on the eigen-
values λ1, . . . , λn of x ∈ V , i.e., ϕ can be seen as a symmetric function of n
real variables λ1, . . . , λn.

Consider the orbital integral

I(x, y) =

∫
U(n)

etr(xuyu∗)α(du), x, y ∈ Herm(n,C),

where α is the normalized Haar measure on U(n).

Theorem 3.1 Let x and y be diagonal matrices x = diag(x1, . . . , xn) and
y = diag(y1, . . . , yn). Then we have

I(x, y) =δ!
1

V (x)V (y)
det(exiyj)

=
∑

m1≥···≥mn≥0

δ!

(m + δ)!
sm(x1, . . . , xn)sm(y1, . . . , yn).

Proof
Let χm be the character of the irreducible representation of U(n) with

highest weight m = (m1, . . . ,mn). By the Weyl character formula, it can be
expressed as a Schur function: if z1, . . . , zn are the eigenvalues of the matrix
u ∈ U(n), then, χm(u) = sm(z1, . . . , zn). If m is a partition: m1 ≥ . . . ≥
mn ≥ 0, then the character χm extends as a polynomial function on the
vector space M(n,C) of n× n complex matrices.
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By Proposition 2.4,

I(x, y) =
∑

m1≥···≥mn≥0

δ!

(m + δ)!
dm

∫
U(n)

χm(xuyu∗)α(du).

Using the functional equation of the characters :∫
U(n)

χm(xuyu∗)α(du) =
1

dm

χm(x)χm(y),

(see Proposition 4.1 below) we get

I(x, y) =
∑

m1≥···≥mn≥0

δ!

(m + δ)!
χm(x)χm(y).

Furthermore, by Proposition 2.3, this equals

δ!

V (x)V (y)
det(exiyj).

3.3 Multiplicative property of spherical func-

tions

Let G(n) = U(n) n Herm(n,C) and K(n) = U(n). We regard Herm(n,C) as
the subspace of Herm(n+ 1,C) by

Herm(n,C) 3 x 7→
( x 0

0 0

)
∈ Herm(n+ 1,C).

Define the Olshanski spherical pair (G,K) as the inductive limit of the
Gelfand pairs

(
G(n), K(n)

)
:

G =
∞⋃

n=1

G(n) = U(∞) n Herm(∞,C), K =
∞⋃

n=1

K(n) = U(∞).

For m ≤ n, define the subgroup Km(n) of K(n) by

Km(n) =

{( Im 0
0 v

)∣∣∣∣∣v ∈ U(n−m)

}
' K(n−m)

and the subgroup Km of K by Km =
⋃∞

n=mKm(n).
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Proposition 3.2 (Weyl’s integral formula) Let f be a continuous Km(n)-
biinvariant bounded function on K(n). If 2m ≤ n, then∫

K(n)

f(k)αn(dk) =

∫
[0, π

2
]m

∫
K(m)×K(m)

f(h1a(θ)h2)αm(dh1)αm(dh2)Dm,n(θ)dθ1 · · · dθm,

where

a(θ) =



cos θ1 − sin θ1

. . . . . . 0
cos θm − sin θm

sin θ1 cos θ1

. . . . . . 0
sin θm cos θm

0 0 In−2m


and

Dm,n(θ) = am,n

∣∣∣∣∣ ∏
1≤i<j≤m

sin2(θi + θj) sin2(θi − θj) ·
m∏

i=1

(sin 2θi)(sin θi)
2(n−2m)

∣∣∣∣∣ .
The constant am,n is such that

∫
[0, π

2
]m
Dm,n(θ)dθ1 · · · dθm = 1.

Using Proposition 3.2 we obtain:

Proposition 3.3 Let f be a Km-biinvariant continuous bounded function on
K. Then

lim
n→∞

∫
K(n)

f(k)αn(dk) =

∫
K(m)×K(m)

f(h1wmh2)αm(dh1)αm(dh2)

with

wm = a
(π

2
, . . . ,

π

2

)
=

 0 −Im 0
Im 0 0
0 0 In−2m

 .

Proof
It follows from the following

Lemma Let X be a compact space, and µ a positive measure such that every
nonempty open set has a positive measure. Let δ ≥ 0 be a continuous function
on X which attains its maximum at only one point x0. Define

1

an

=

∫
X

δ(x)nµ(dx),

37



and, for a continuous function f on X,

Ln(f) = an

∫
X

f(x)δ(x)nµ(dx).

Then
lim

n→∞
Ln(f) = f(x0).

Corollary 3.4 Let ϕ be a K-invariant continuous bounded function on Herm(∞,C).
If x = diag(x1, . . . , xm, 0, 0, . . . ) and y = diag(y1, . . . , ym, 0, 0, . . . ), then

lim
n→∞

∫
K(n)

ϕ(x+ kyk∗)αn(dk) = ϕ(diag(x1, . . . , xm, y1, . . . , ym, 0, 0, . . . )).

Proof
Since the function K 3 k 7→ ϕ(x+ kyk∗) is Km-biinvariant, we can apply

Proposition 3.3:

lim
n→∞

∫
K(n)

ϕ(x+kyk∗)αn(dk) =

∫
K(m)×K(m)

ϕ(x+h1wmh2yh
∗
2w

−1
m h∗1)αm(dh1)αm(dh2).

One sees that

x+ h1wmh2yh
∗
2w

−1
m h∗1 =

x 0 0
0 h2yh

∗
2 0

0 0 0

 .

Hence we have the desired statement.

Theorem 3.5 (Multiplicative property) Let ϕ be a continuous bounded
function on Herm(∞,C) with ϕ(0) = 1, which is U(∞)-invariant. Then ϕ
is spherical if and only if there exists a continuous function Φ on R with
Φ(0) = 1 such that

ϕ(diag(x1, x2, . . . , xn, 0, 0, . . . )) = Φ(x1)Φ(x2) · · ·Φ(xn). (3.6)

This can be written, by using functional calculus,

ϕ(x) = det Φ(x).
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Proof
Assume ϕ spherical. Then, for x = diag(x1, . . . , xm, 0, 0, . . . ),

y = diag(y1, . . . , ym, 0, 0, . . . ),

lim
n→∞

∫
U(n)

ϕ(x+ kyk∗)αn(dk) = ϕ(x)ϕ(y).

By Corollary 3.4

ϕ(x)ϕ(y) = ϕ(diag(x1, . . . , xm, y1, . . . , ym, 0, 0, . . . )).

Hence ϕ(diag(x1, . . . , xm, 0, 0, . . . )) = Φ(x1) · · ·Φ(xm), where Φ is the restric-
tion of ϕ to R = Herm(1,C).

Conversely, if ϕ has the property (3.6), by Corollary 3.4,

lim
n→∞

∫
U(n)

ϕ(x+ kyk∗)αn(dk) = ϕ(x)ϕ(y).

Therefore ϕ is spherical.

3.4 Pólya functions

We will describe the functions Φ occuring in Theorem 3.5 when the spherical
function is of positive type. We say that a continuous function Φ on R , with
Φ(0) = 1, is a Pólya function if the function ϕ defined on Herm(∞,C) by

ϕ(x) = det Φ(x)

is of positive type. It amounts to saying that, for every n, the function ϕ
defined on Herm(n,C) by

ϕ(x) = det Φ(x)

is of positive type. This formula means that ϕ is K-invariant, and

ϕ
(
diag(x1, . . . , xn, 0, . . .)

)
= Φ(x1) . . .Φ(xn).

Theorem 3.6 The Pólya functions are the following ones:

Φ(z) = e−iβze−
γ
2
z2

∞∏
k=1

eiαkz

1 + iαkz
(z ∈ R),

where β ∈ R, γ ≥ 0, αk ∈ R with

∞∑
k=1

α2
k <∞.
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The name Pólya refers to the following result by Pólya:

Let Ψ be an entire function with Ψ(0) = 1. Then Ψ is the uniform limit
on compact sets in C of polynomials with only real zeros if and only if Ψ has
the following form

Ψ(s) = e−βse−
γ
2
s2

∞∏
k=1

eαks(1− αk),

where β ∈ R, γ ≥ 0, αk ∈ R with

∞∑
k=1

α2
k <∞.

Such an entire function Ψ is said to belong to the Pólya-Laguerre class.

First let us check that the function given by the formula of Theorem 3.6
is a Pólya function.

If Φ(z) = e−βz, with β ∈ R, then

ϕ(x) = det Φ(x) = e−iβ tr(x)

is of positive type.
If Φ(z) = e−

γ
2
z2

, with γ > 0, then

ϕ(x) = det Φ(x) = e−
γ
2

tr(x2)

is a Gaussian function, which is of positive type.
Consider the following Wishart distribution, image by the map

ξ 7→ y = αξξ∗, Cn → Herm(n,C),

of the Gaussian measure
π−ne−‖ξ‖

2

m(dξ)

on Cn (m is the Euclidean measure). Its Fourier transform is

Ŵ (x) = π−n

∫
Herm(n,C

e−i(x|y)W (dy) = π−n

∫
Cn

e−iα(x|ξξ∗)e−‖ξ‖
2

m(dξ)

= π−n

∫
Cn

e−(I+iαx)ξ|ξ)m(dξ)

= det(I + iαx)−1.
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Therefore, if Φ(z) = (1 + iαz)−1, then

det Φ(x) = det(I + iαx)−1,

and Φ is a Pólya function.
Since products and limits of functions of positive type are of positive type,

it follows that the function given in the formula of Theorem 3.6 is a Pólya
function.

Pólya functions have been considered by Schoenberg in connection with
totally positive functions. Recall that a function f on R is said to be totally
positive if

det
(
f(si − tj)

)
1≤i,j≤n

≥ 0,

for all reals numbers s< ≤ sn, t1, . . . , tn.

Theorem 3.7 (Schoenberg,1951) Pólya functions, for which

γ +
∞∑

k=1

α2
k > 0,

(i.e. not of the form e−iβz,) are Fourier transforms of totally positive inte-
grable functions f with ∫

R
f(t)dt = 1.

From Theorem 3.5 and 3.6 one obtains:

Theorem 3.8 (Pickrell,1991) The spherical functions of positive type for
the Olshanski spherical pair

(
U(∞) nHerm(∞,C), U(∞)

)
are given by the

following functions ϕ on H(erm(∞,C):

ϕ(x) = det Φ(x),

where Φ is a Pólya function. This means that

ϕ
(
diag(x1, . . . , xn, 0, . . .)

)
= Φ(x1) . . .Φ(xn).

The spherical unitary dual Ω can be identified with the set of triples
ω = (α, β, γ) where β ∈ R, γ ≥ 0, αk ∈ R with

∞∑
k=1

α2
k <∞.
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More precisely, to an element ω in Ω corresponds the set {αk}. One should
consider an element ω up to permutation of the numbers αk. The Pólya
function corresponding to ω will be written Φ(ω; z):

Φ(ω; z) = e−iβze−
γ
2
z2

∞∏
k=1

eiαkz

1 + iαkz
.

For a continuous function f on R we define the function Lf on Ω by

Lf (ω) = γf(0) +
∞∑

k=1

α2
kf(αk).

We consider on Ω the initial topology associated to the functions Lf , and the
function ω 7→ β. For z fixed, the function ω 7→ Φ(ω, z) is continuous on Ω
for that topology. This can be seen by looking at the logarithmic derivative

d

dz
Φ(ω; z) = −iβ −

(
γ + p2(α)

)
z − i

∞∑
m=2

pm+1(α)(−iz)n,

where, for m ≥ 2,

pm(α) =
∞∑

k=1

αm
k .

Observe that

γ + p2(α) = Lf (ω), with f(s) = 1,

pm(α) = Lf (ω), with f(s) = sm−2 (m ≥ 3).

3.5 Convergence of probability measures and

functions of positive type

Let µ be a positive measure on Rd. Define

D(µ) = {x ∈ Rd |
∫

Rd

e(x|ξ)µ(dξ) <∞}.

If D(µ) 6= ∅, the Fourier-Laplace of the measure µ is defined for z in the tube
Rd + iD by

Fµ(z) =

∫
Rd

e−i(z|ξ)µ(dξ).
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Theorem 3.9 Assume that the interior Ω of D(µ) is not empty. Then the
Fourier-Laplace transform Fµ of µ is holomorphic in the tube Rd + iΩ.

Proof
a) Assume first that the open ball B(0, R) ⊂ Ω: for every y with ‖y‖ < R,∫

Rd

e(y|ξ)µ(dξ) <∞.

We will show that, for every r with 0 < r < R,∫
Rd

er‖ξ‖µdξ) <∞.

For ‖y‖ > r, observe that the set

{ξ ∈ Rd | (y|ξ) ≥ r‖ξ‖}

is a conical neighbourhood of the semi-axis R+y. One can find a finite number
of points y1, . . . , yN , with ‖yi‖ < R, and decompose Rd in a disjoint union of
conical sets E1, . . . , EN such that, for ξ ∈ Ei,

(yi|ξ) ≥ r‖ξ‖.

Therefore ∫
Ei

er‖ξ‖µ(dξ) ≤
∫

Ei

e(yi|ξ)µ(dξ) <∞,

and ∫
Rd

e(r‖ξ‖µ(dξ) =
N∑

i=1

∫
Ei

er‖ξ‖µ(dξ) <∞.

It follows that the Fourier-Laplace transform of µ is holomorphic on the tube
Rd + iB(0, R).

b) Assume now that B(y0, R) ⊂ Ω. Applying the result of a) to the mea-
sure e(y0|ξ)µ(dξ) proves that the Fourier-Laplace of the measure µ is holomor-
phic on the tube Rd + iB(y0, R).

Proposition 3.10 Let ψ be an analytic function in a neighborhood of 0 in
Rd, with ψ(0) = 1. Assume that there is a probability measure µ on Rd with
finite moments such that, for every α = (α1, . . . , αd),∫

Rd

(−iξ)αµ(dξ) = ∂αψ(0).

Then ψ extends as an analytic function on Rd which is the Fourier transform
of the measure µ: ψ = µ̂. Furthermore, if such a probability measure exists,
it is unique.
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Proof
Assume that the function ψ is holomorphic in the ball B(0, R) ⊂ Cd. For

a 6= 0 fixed in Rd with ‖a‖ < R, consider the function fa in one variable
defined by

fa(w) = ψ(aw).

The function fa is holomorphic in the disc D(0, ρ) with radius ρ = R
‖a‖ > 1.

The derivatives of fa at 0 are given by

f (m)
a (0) =

((
a1

∂

∂x1

+ · · ·+ ad
∂

∂xn

)m

ψ

)
(0)

=

∫
Rd

(a| − iξ)mµ(dξ).

Let us evaluate the function fa at i and −i:

1

2

(
fa(i) + fa(−i)

)
=

∞∑
k=0

1

(2k)!
f (2k)

a (0)(−1)k

=
∞∑

k=0

1

(2k)!

∫
Rd

(a|ξ)2kµ(dξ)

=

∫
Rd

cosh(a|ξ)µ(dξ).

It follows that, for every a with ‖a‖ < R,∫
Rd

e(a|ξ)µ(dξ) <∞.

As we saw in the proof of Proposition 3.9, the Fourier-Laplace transform Fµ
of the measure µ is holomorphic in the tube Rd + iB(0, R). Looking at the
derivatives at 0 one checks that ψ = Fµ in a neighbourhood of 0. Uniqueness
of the measure µ follows from uniqueness of the analytic continuation.

Proposition 3.11 Let ψn be a sequence of C∞-functions on Rd of positive
type with ψn(0) = 1, and ψ an analytic function on a neighborhood of 0.
Assume that, for every α = (α1, . . . , αd),

lim
n→∞

∂αψn(0) = ∂αψ(0).

Then ψ has an analytic extension to Rd, and ψn converges to ψ uniformly
on compacts subsets of Rd.
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Proof
The function ψn is the Fourier transform of a probability measure µn:

ψn(x) =

∫
Rd

e−i(x|ξ)µn(dξ).

Since
lim

n→∞
∆ψn(0) = ∆ψ(0),

where ∆ is the Laplace operator of Rd, it follows that there is a constant
C > 0 such that ∫

Rd

‖ξ‖2µn(dξ) ≤ C.

Therefore the set {µn} is relatively compact for the weak topology (tight
topology), and there exists a subsequence µnk

which converges to a prob-
ability measure µ for the weak topology. Furthermore, for every N > 0,
since

lim
n→∞

(I + ∆)Nψn(0) = (I + ∆)Nψ(0),

there is a contant CN > 0 with∫
Rd

(1 + ‖ξ‖2)Nµn(dξ) ≤ CN .

Consider the function f defined by

f(ξ) = (1 + ‖ξ‖2)N
(
1− ‖ξ‖

2

R2

)
,

if ‖ξ‖ < R, and f(ξ) = 0 for ‖ξ‖ > R. The function f is continuous with
compact support. Then

lim
k→∞

∫
Rd

f(ξ)µnk
(dξ) =

∫
Rd

f(ξ)µ(dξ).

It follows that, for every R∫
Rd

(1 + ‖ξ‖2)N
(
1− ‖ξ‖

2

R2

)
µ(dξ) ≤ CN ,

and, by the Lebesgue monotone convergence theorem, as R→∞, that∫
Rd

(1 + ‖ξ‖2)Nµ(dξ) ≤ CN .
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We will show that, if p is a polynomial, then

lim
k→∞

∫
Rd

p(ξ)µnk
(dξ) =

∫
Rd

p(ξ)µ(dξ).

Fix N such that 2N > degree p. The function f defined by

f(ξ) =
p(ξ)

(1 + ‖ξ‖2)N

is continuous and vanish at infinity. Fix ε > 0. There is a continuous function
g with compact support such that, for ξ ∈ Rd,∣∣∣ p(ξ)

(1 + ‖ξ‖2)N
− g(x)

∣∣∣ ≤ ε.

There is k0 such that, for k ≥ k0,∣∣∣ ∫
Rd

g(ξ)(1 + ‖ξ‖2)Nµnk
(dx)−

∫
Rd

g(ξ)(1 + ‖ξ‖2)Nµ(dξ)
∣∣∣ ≤ ε.

By decomposing∫
Rd

p(ξ)µnk
(dξ)−

∫
Rd

p(ξ)µ(dξ)

=

∫
Rd

p(ξ)

(1 + ‖ξ‖2)N
(1 + ‖ξ‖2)Nµn(dξ)−

∫
Rd

g(ξ)(1 + ‖ξ‖2)Nµnk
(dξ)

+

∫
Rd

g(ξ)(1 + ‖ξ‖2)Nµnk
(dξ)−

∫
Rd

g(ξ)(1 + ‖ξ‖2)Nµ(dξ)

+

∫
Rd

g(ξ)(1 + ‖ξ‖2)Nµ(dξ)−
∫

Rd

p(ξ)

(1 + ‖ξ‖2)N
(1 + ‖ξ‖2)Nµ(dξ),

one obtains ∣∣∣ ∫
Rd

p(ξ)µnk
(dξ)−

∫
Rd

p(ξ)µ(dξ)
∣∣∣ ≤ 2εCN + ε.

Observe that

∂ψn(0) =

∫
Rd

(−iξ)αµn(dξ).

Therefore ∫
Rd

(−iξ)αµ(dξ) = lim
k→∞

∫
Rd

(−iξ)αµnk
(dξ)

= lim
k→∞

∂αψnk
(0) = ∂αψ(0).
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Since the function ψ is analytic near 0, there is at most one probability
measure µ such that ∫

Rd

(−iξ)αµ(dξ) = ∂αψ(0).

Therefore the sequence µn itself converges weakly to µ. The Fourier-Laplace
transform µ̂ of µ is holomorphic in a tube Rd + iω, coincides with ψ in a
neighborhood of 0, and ψn converges to ψ on compact sets.

3.6 Asymptotics of orbital integrals

For the Gelfand pair (U(n) n Herm(n,C), U(n)), the spherical functions are
Fourier transforms of orbital measures. More specifically, for a spherical func-
tion ϕ on Herm(n,C), there exists a diagonal matrix λ = diag(λ1, . . . , λn),
λi ∈ R, such that

ϕ(x) = ϕn(λ;x) =I(−ix, λ)

=

∫
U(n)

e−i tr(xuλu∗)αn(du).

By Theorem 3.1 the orbital integral I(−ix, λ) can be expanded as follows :

ϕn(x, λ) = I(−ix, λ
∑

m1≥···≥mn≥0

δ!

(m + δ)!
sm(λ)sm(−ix). (3.7)

(see Theorem 3.1.) We will study the asymptotics of ϕn(x, λ) as n goes to
infinity..

In order to study Taylor expansions of the spherical functions which are
given by orbital integrals, we introduce an algebra morphism f 7→ f̃ which
maps a symmetric function f onto a continuous function f̃ on Ω:

Λ→ C(Ω), f 7→ f̃ .

Recall that pm denotes the Newton power sum,

pm(x) =
∞∑

k=1

xm
k .

This morphism is such that

p̃1(ω) = β,

p̃2(ω) = γ +
∞∑

k=1

α2
k,
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and, for m ≥ 3,

p̃m(ω) =
∞∑

k=1

αm
k .

Observe that the functions p̃m are continuous on Ω. In fact, for m ≥ 2,
p̃m(ω) = Lϕ(ω) with ϕ(s) = sm−2.

Proposition 3.12 (i)For ω ∈ Ω, the Taylor expansion of Φ(ω, z) is given
by:

Φ(ω, z) =
∞∑

m=0

h̃m(ω)(−iz)m.

(ii) For ω ∈ Ω and z1, . . . , zk ∈ C,

k∏
j=1

Φ(ω, zj) =
∑
m

s̃m(ω)sm(−iz1, . . . ,−izk),

where the sum runs over all partitions m.

Proof
(i) (i) amounts to saying that

H̃(ω,−iz) = Φ(ω, z).

where z is seen as a parameter. Recall the generating function of the complete
symmetric functions hm:

H(z; z) =
∞∑

m=0

hm(x)zm =
m∏

j=1

1

1− xjz
.

Taking the logarithmic derivatives one obtains:

d

dz
logH(x; z) = − d

dz

n∑
j=1

log(1− xjz)

=
n∑

j=1

xj

1− xjz

=
∞∑

m=0

pm+1(x)z
m.
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On the other hand,

d

dz
log Φ(ω; z) = −iβ −

(
γ +

∞∑
k=1

p2(α)
)
z − i

∞∑
m=2

pm+1(α)(−iz)m

=
d

dz
log H̃(ω;−iz).

Since Φ(ω, 0) = 1 and H̃(ω, 0) = 1, the statement follows.

(ii) Recall the Cauchy identity (Proposition 2.5):

∑
m

sm(x1, x2, . . . )sm(y1, . . . , yk) =
∞∏
i=1

k∏
j=1

1

1− xiyj

=
k∏

j=1

H(x, yj).

Apply the morphism f 7→ f̃ to both sides of this equality with yj = −izj.
Then the statement follows by (i).

Define the map

Tn : Ωn ' Rn → Ω, λ = (λ1, . . . , λn) 7→ ω = (α, β, γ)

given by

αk =
λk

n
, β =

λ1 + · · ·+ λn

n
, γ = 0.

Theorem 3.13 Consider a sequence (λ(n)) with λ(n) ∈ Ωn ' Rn. Assume
that, for the topology of Ω,

lim
n→∞

Tn(λ(n)) = ω.

Then, for every f ∈ Λ, homogeneous of degree m,

lim
n→∞

1

nm
f(λ(n)) = f̃(ω).

Proof
It is enough to prove the result for f = pm since the Newton power sums

pm generate Λ.

For m = 1,

p1(λ
(n)) = λ

(n)
1 + · · ·+ λ(n)

n , p̃1(ω) = β.
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By the assumption, the limit of 1
n
p1(λ

(n)) is equal to β so that limn→∞
1
n
p1(λ

(n)) =
p̃1(ω).

For m = 2,

p2(λ
(n)) = (λ

(n)
1 )2 + · · ·+ (λ(n)

n )2, p̃2(ω) = γ +
∞∑

k=1

α2
k.

By assumption (Tn(λ(n)) → ω for the topology of Ω. This means that, for
every continuous function ϕ on R,

lim
n→∞

n∑
j=1

(λ(n)
j

n

)2

ϕ
(λ(n)

j

n

)
=

∞∑
k=1

α2
kϕ(αk) + γϕ(0).

In particular, taking ϕ ≡ 1,

lim
n→∞

n∑
j=1

(λ(n)
j

n

)2

=
∞∑

k=1

α2
k + γ,

or

lim
n→∞

1

n2
p2(λ

(n)) = p̃2(ω).

For m ≥ 3 take ϕ(s) = sm−2 (note that ϕ(0) = 0). This completes the
proof of the statement.

Finally, we state the main theorem of this section about the asymptotics,
as the dimension n goes to infinity, of the orbital integrals .

ϕn(λ;x)) =

∫
U(n)

e−i tr(xuλu∗)αn(du)

for a fixed diagonal matrix x in Herm(∞,C), i.e., for a point (x1, x2, . . . ) in
R(∞).

Theorem 3.14 As in Theorem 3.13, we consider a sequence (λ(n)), with
λ(n) ∈ Ωn ' Rn, and assume that, for the topology of Ω,

lim
n→∞

Tn(λ(n)) = ω.

Then, for x = (x1, . . . , xk, 0, 0, . . . ) in Rk ⊂ R(∞),

lim
n→∞

ϕn(λ(n), x) =
k∏

j=1

Φ(ω, xj).

The convergence is uniform on compact sets of Rk.
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Proof
Assume first k = 1, i.e., let x = (z, 0, . . . ) with z ∈ R. Then by (3.7), the

function ϕn(x, a) can be expanded as follows:

ϕn(λ(n);x) =
∞∑

m=0

(n− 1)!

(m+ n− 1)!
hm(λ(n))(−iz)m.

For m fixed, since

(n− 1)!

(m+ n− 1)!
∼ 1

nm
(n→∞),

we get

lim
n→∞

(n− 1)!

(m+ n− 1)!
hm(λ(n)) = h̃m(ω).

by Theorem 3.13. Now by applying Proposition 3.11 about the convergence
of C∞ functions of positive type, we obtain

lim
n→∞

ϕn(λ(n);x) =
∞∑

m=0

h̃m(ω)(−iz)m.

Finally, by Theorem 3.13,

∞∑
m=0

h̃m(ω)(−iz)m = Φ(ω, z).

Next assume k ≥ 2. Let x = (z1, . . . , zk, 0, . . . ). Then

ϕn(λ(n);x) =
∑

m1≥···≥mn≥0

δ!

(m + δ)!
sm(λ(n))sm(−iz1, . . . ,−izk, 0, . . . ).

For m fixed,
δ!

(m + δ)!
∼ 1

n|m| (n→∞),

with |m| = m1 +m2 + · · · . Hence, by Theorem 3.13,

lim
n→∞

δ!

(m + δ)!
sm(λ(n)) = s̃m(ω).

Similarly, by Theorem ??

lim
n→∞

ϕn(λ(n);x) =
∑

m:partitions

s̃m(ω)sm(−iz1, . . . ,−izk, 0, . . . ).
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And finally, by Theorem 3.13,

∑
m:partitions

s̃m(ω)sm(−iz1, . . . ,−izk, 0, . . . ) =
k∏

j=1

Φ(ω, zj).

The converse of Theorem 3.13 has been proven by Olshanski and Vershik
[1996]: if, for every f ∈ Λ, the sequence

1

nm
f(λ(n)), (m is the degree of f,

has a limit, then the sequence Tn(λ(n)) converges in Ω.

3.7 Hermitians matrices with entries in F =

R, C, or H

More generally let Herm(n,F) denote the space of n × n Hermitian ma-
trices with entries in F = R, C, or H, the quaternion field. For F = R,
Herm(n,R) = Sym(n,R), the space of real symmetric matrices. Let also
U(n,F) denote the group of unitary matrices with entries in F:

U(n,R) = O(n), U(n,C) = U(n), U(n,F) ' Sp(n).

We consider in this section the following sequences of Gelfand pairs

G(n) = U(n,F) nHerm(n,F), K(n) ' U(n,F),

and the corresponding Olshanski spherical pairs

G =
∞⋃

n=1

G(n) = U(∞,F) nHerm(∞,F),

K =
∞⋃

n=1

K(n) = U(∞,F).

We will review some results from [Bouali,2007].
The multiplicative property (Theorem 3.5) still holds. Let d = dimRF =

1, 2, or 4.
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Theorem 5.1 The spherical functions of positive type are given by, if x =
diag(x1, . . . , xn, 0, . . .), by

ϕ(x) = Φ(x1) . . .Φ(xn),

with

Φ(z) = e−iβze−
1
2
γz2

∞∏
k=1

eiαkz(
1 + i2

d
αkz
) d

2

,

with β ∈ R, γ ≥ 0, α = (αk), αk ∈ R,

∞∑
k=1

α2
k <∞.

The spherical dual is hence the same space Ω as in Section 3.
The spherical functions for the Gelfand pair

(
U(n,F)nHerm(n,F), U(n,F)

)
are Fourier transforms of orbital measures:

ϕ(λ;x) =

∫
U(n,F)

e−i tr(xuyu∗)αn(du),

where λ is a real diagonal matrix: λ = diag(λ1, . . . , λn). The spherical
dual is Ωn ' Rn as in the case F = C. One can consider the same maps
Tn : Ωn → Ω as in Section 3. By using expansions of the orbital integrals in
terms of spherical polynomials, one proves:

Theorem 3.15 Let (λ(n)) be a sequence of diagonal matrices, with λ(n) ∈
Ωn ' Rn, and let ω ∈ Ω. Assume that, for the topology of Ω,

lim
n→∞

Tn(λ(n)) = ω.

then, for x ∈ Herm(∞,F),

lim
n→∞

ϕn(λ(n);x) = det Φ(ω;x),

uniformly on Herm(k,F).
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Chapter 4

Infinite dimensional unitary
group

We consider the Olshanski spherical pair (U(∞)× U(∞), U(∞)), where

U(∞) =
∞⋃

n=1

U(n).

The story developps similarly to the one in the previous chapter about infinite
dimensional Hermitian matrices.

4.1 Gelfand pair associated with a compact

group

Consider a compact group U . Let G = U×U and K = {(u, u) ∈ G | u ∈ U}.
If a function f on G is right K-invariant, then

f(uu0, vu0) = f(u, v), u0, u, v ∈ U.

In particular, taking u0 = v−1, we obtain f(uv−1, e) = f(u, v). Therefore we
obtain the identification

C(G/K) ' C(U); f ←→ F ;F (u) = f(u, e), (4.1)

where C(G/K) is the space of right K-invariant continuous functions on G
and C(U) is the space of continuous functions on U . Furthermore, if f is left
K-invariant, then

f(u0u, u0v) = f(u, v), u0, u, v ∈ U,
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so that, under the identification (4.1),

F (u0uu
−1
0 ) = F (u), u0, u ∈ U,

i.e. the function F is central. Therefore we obtain the following identification

C(K\G/K) ' C(U)central; f ←→ F ;F (u) = f(u, e), (4.2)

where C(K\G/K) is the space of K-biinvariant continuous functions on G
and C(U)central is the space of central continuous functions on U . In the same
way L1(K\G/K) ' L1(U)central as convolution algebras. Hence L1(K\G/K)
is a commutative convolution algebra and so (G,K) is a Gelfand pair.

Let ϕ be a spherical function on G. Then the function ϕ satisfies the
equation∫

U

ϕ(x1uy1, x2uy2)du = ϕ(x1, x2)ϕ(y1, y2), x1, x2, y1, y2 ∈ U,

where du denote the normalized Haar measure on U . Taking x1 = x, y1 = y,
and x2 = y2 = e, we get∫

U

ϕ(xuy, u)du = ϕ(x, e)ϕ(y, e), x, y ∈ U.

For ϕ̃(x) = ϕ(x, e), we obtain the following functional equation∫
U

ϕ̃(xuyu−1)du = ϕ̃(x)ϕ̃(y), x, y ∈ U. (4.3)

Conversely, if a function ϕ̃ ∈ L1(U)central satisfies the equation (4.3), then
the function ϕ defined by ϕ(u, v) = ϕ̃(uv−1) is a spherical function for the
Gelfand pair (G,K). Hence we make the following definition:

A continuous central function ϕ in U is said to be spherical if it satisfies
the functional equation∫

U

ϕ(xuyu−1)du = ϕ(x)ϕ(y), x, y ∈ U.

Let Û be the set of equivalence classes of irreducible representations of
U . For each λ ∈ Û , denote by πλ a representation of U in the class λ on a
vector space Hλ. Denote its character by χλ:

χλ(x) = tr(πλ(x)), x ∈ U.

Then dλ = χλ(e) is the dimension of Hλ.
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Proposition 4.1 The characters satisfies the following functional equation:∫
U

χλ(xuyu
−1)du =

1

dλ

χλ(x)χλ(y), x, y ∈ U. (4.4)

Proof
LetMλ denote the subspace of C(U) generated by the matrix coefficients

of the representation πλ. Observe that the character χλ is a central func-
tion which belongs to Mλ. As representations spaces for U × U , the space
Mλ is isomorphic to the space L(Hλ) of endomorphisms of Hλ. By Schur’s
Lemma, It follows that the only central functions in Mλ are the functions
proportionnal to χλ. For x fixed, consider the function ψ defined on U by

ψ(y) =

∫
U

χλ(xuyu
−1)du.

The function ψ is central and belongs toMλ. It follows that

ψ(y) = Cχλ(y).

Evaluating both sides at e we obtain

Cdλ = χλ(x).

Therefore ∫
U

χλ(xuyu
−1)du =

1

dλ

χλ(x)χλ(y).

Hence

ϕ(λ;u) =
χλ(u)

χλ(e)

is a spherical function. One shows that all spherical functions are obtained in
that way. Therefore the spherical dual of the Gelfand pair (G,K) is identified

with Û .
In this case the Bochner-Godement theorem (Theorem 1.2) says: the

central continuous functions ϕ of positive type on U are given by

ϕ(u) =
∑
λ∈bU

aλϕ(λ;u),

with
aλ ≥ 0,

∑
λ∈bU

aλ <∞.
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4.2 Unitary groups

We consider the case where U is the unitary group U(n). Let

T = U(1) = {t ∈ C | |t| = 1}.

We identify Tn with the subgroup of U(n) which consists of diagonal matrices
t = diag(t1, . . . , tn). For a diagonal matrix t = diag(t1, . . . , tn), denote by
V (t) the Vandermonde polynomial V (t) =

∏
1≤j<k≤n(tj − tk).

First we recall Weyl’s integral formula. For any central and integrable
function f on U(n),∫

U(n)

f(x)αn(dx) =
1

n!

∫
Tn

f(t)|V (t)|2β(dt), (4.5)

where αn is the normalized Haar measure on U(n), and β is the normalized
Haar measure on Tn, i.e.,

β(dt) =
n∏

j=1

dθj

2π
, tj = eiθj , 0 ≤ θj ≤ 2π.

Second we recall Weyl’s character formula and dimension formula. The
set Û = Û(n) is parameterized by signatures

λ = (λ1, . . . , λn) ∈ Zn, λ1 ≥ · · · ≥ λn.

The corresponding character χλ agrees with the Schur function on Tn:

χλ(diag(t1, . . . , tn)) = sλ(t) =
det(t

λj+n−j
i )1≤i,j≤n

V (t)
.

The dimension of the representation associated to λ is given by

dλ = sλ(1, . . . , 1) =
V (λ+ δ)

V (δ)
,

where δ = (n− 1, . . . , 1, 0). We proved this equality in Proposition 2.2.

The spherical dual Ωn of the Gelfand pair
(
U(n)×U(n), U(n)

)
is identified

to the set of signatures λ = (λ1, . . . , λn). We will denote by ϕn(λ;u) the
corresponding spherical function:

ϕn(λ;u) =
χλ(u)

χλ(e)
.

Its restriction to Tn is given by

ϕn(λ; diag(t1, . . . , tn)
)

=
sλ(t1, . . . , tn)

sλ(1, . . . , 1)
.
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4.3 Voiculescu functions

We consider now the increasing sequence of Gelfand pairs

G(n) = U(n)× U(n), K(n) = {(u, u) | u ∈ U(n)} ' U(n),

and the inductive limit, the Olshanski spherical pair (G,K):

G =
∞⋃

n=1

G(n) = U(∞)× U(∞),

K =
∞⋃

n=1

{(u, u) | u ∈ U(∞)} ' U(∞). (4.6)

A spherical function ϕ for the pair (G,K) can be seen as a continuous central
function ϕ on U(∞) such that, for x, y ∈ U(∞),

lim
n→∞

∫
U(n)

ϕ(xuyu∗)αn(du) = ϕ(x)ϕ(y),

where αn is the normalized Haar mesure on U(n). As in the case of the
Olshanski spherical pair we considered in Chapter 3, a spherical function ϕ
is multiplicative in the following sense:

Theorem 4.2 Let ϕ be a central bounded continuous function on U(∞).
The function ϕ is spherical if and only if there exists a continuous function
Φ on T with Φ(1) = 1 such that

ϕ(u) = det Φ(u).

This means that

ϕ
(
diag(t1, . . . , tn)

)
= Φ(t1) . . .Φ(tn).

The proof is similar to the one of Theorem 3.5. We will now describe
the functions Φ occuring in Theorem 4.2 when the spherical function ϕ is of
positive type. Let us first state an important result by Voiculescu (1976).
Let Φ be the following power expansion

Φ(t) =
∞∑

m=0

cmt
m,

with

cm ≥ 0,
∞∑

m=0

cm = 1.
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The series converges for |z| ≤ 1, and Φ is a continuous function of positive
type on U(1) = {t ∈ C | |t| = 1} and Φ(1) = 1.

We propose to say that the function Φ is a Voiculescu function if the
function ϕ defined on U(∞) by ϕ(u) = det Φ(u) is of positive type. Observe
that, for u = diag(t1, . . . , tn, 1, 1, . . .),

ϕ(u) = Φ(t1) . . .Φ(tn).

Theorem 4.3 The Voiculescu functions are the following ones:

Φ(z) = eγ(z−1)

∞∏
k=1

1 + βk(z − 1)

1− αk(z − 1)
,

with

αk ≥ 0, 0 ≤ βk ≤ 1, γ ≥ 0,
∞∑

k=1

(αk + βk) <∞.

([Voiculescu,1976], Proposition 1.)

Let us prove the easy part of the theorem: the function Φ given by this
formula is a Voiculescu function.

- Consider the function

F (t) =
1

1− at
,

with 0 ≤ a < 1. Then

n∏
j=1

F (tj) =
n∏

j=1

1

1− atj
=

∞∑
m=0

hm(t)am,

and, for u ∈ U(n),

detF (u) = det(I − au)−1 =
∞∑

m=0

amχ(m)(u).

Therefore, f(u) = detF (u) is of positive type. For α ≥ 0 the function

Φ(t) =
1

1− α(1− t)
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is a Voiculescu function. In fact

Φ(t) =
1

α+ 1

1

1− α
1+α

t
, and 0 ≤ α

α+ 1
< 1.

- Put now
F (t) = 1 + bt.

Then, for t = (t1, . . . , tn) ∈ Tn,

n∏
j=1

F (tj) =
n∏

j=1

(1 + btj) =
n∑

k=0

ek(t)b
k,

and, for u ∈ U(n),

f(u) = detF (u) = det(I + bu) =
n∑

k=0

bkχ(1k)(u)

is of positive type for b ≥ 0. For 0 ≤ β ≤ 1, the function

Φ(t) = 1 + β(t− 1) = (1− β)
(
1 +

β

1− β
t
)

is a Voiculescu function.

- The product of two functions of positive type is of positive type, and a
limit of functions of positive type is of positive type as well. For γ ≥ 0, put

F (t) = eγt = lim
k→∞

(
1 +

γ

k
t
)k

.

Then, for u ∈ U(n),

detF (u) = eγ tr u = lim
k→∞

det
(
I +

γ

k
u
)k

is of positive type. Therefore, for γ ≥ 0, the function

Φ(z) = eγ(t−1)

is a Voiculescu function.
It can be shown that

eγ tr u =
∑

m1≥···≥mn≥0

γ|m|

(n)m
χm(u),
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with the notation

(α)m =
n∏

i=1

(α− i+ 1)mi
.

Finally, by these three examples, the function Φ given by the formula in
Theorem 4.3 is a Voiculescu function.

Let Ω0 denote the set of parameters ω = (α, β, γ) with α = (αk), αk ≥ 0,
β = (βk), 0 ≤ βk ≤ 1, γ ≥ 0, and

∞∑
k=1

αk <∞,
∞∑

k=1

βk <∞.

We will write

Φ(t) = Φ(ω; t) = eγ(t−1)

∞∏
k=1

1 + βk(t− 1)

1− αk(t− 1)
.

For a continuous function f on R we define the function Lf on Ω0 by

Lf (ω) = γf(0) +
∞∑

k=1

αkf(αk) +
∞∑

k=1

βkf(−αk),

and we consider on the set Ω0 the initial topology associated to the functions
Lf , for f ∈ C(R). For t fixed, the function ω 7→ Φ(ω, t) is continuous on Ω0.
This can be seen by looking at the logarithmic derivative:

d

dz
log Φ(ω; 1 + z) = p1(α) + p1(β) + γ +

∞∑
m=1

(
pm+1(α) + (−1)mpm+1(β)

)
zm,

where pm(α) is the Newton power sum:

pm(α) =
∞∑

k=1

αm
k .

Theorem 4.4 The spherical functions of positive type for the Olshanski
spherical pair

G = U(∞)× U(∞), K = U(∞)

are given by, for u ∈ U(∞),

ϕ(u) = det Φ(ω+;u) det Φ(ω−, u−1),
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where ω+, ω− ∈ Ω0.
This can be written more explicitely, for u = diag(t1, . . . , tn, 1, 1, . . .),

tj ∈ T,

ϕ
(
diag(t1, . . . , tn, 1, 1, . . .)

)
= Φ(ω+, t1) . . .Φ(ω+; tn)Φ

(
ω−;

1

t1

)
. . .Φ

(
ω−;

1

tn

)
=

n∏
j=1

(
eγ+(tj−1)

∞∏
k=1

1 + β−k (tj − 1)

1− α+
k (tj − 1)

)( n∏
j=1

e
−γ−
(

1
tj
−1
) ∞∏

k=1

1 + β−k
(

1
tj
− 1
)

1− α−k
(

1
tj
− 1
)),

with ω+ = (α+, β+, γ+), ω− = (α−, β−, γ−).

([Vershik-Kerov, 1981], [Boyer, 1983])

We will write
ϕ(u) = ϕ(ω+, ω−;u).

Hence the spherical dual of the Olshanski spherical pair
(
U(∞×U(∞), U(∞)

)
can be identified to Ω = Ω0 × Ω0.

4.4 Asymptotics of spherical functions of the

unitary group

Recall that, for a signature λ = (λ1, . . . , λn), λi ∈ Z, λ1 ≥ · · · ≥ λn,

ϕn(λ;u) =
χλ(u)

χλ(e)
, u ∈ U(n),

where χλ is the character of an irreducible representation of U(n) in the class
associated to λ. Recall also that

ϕλ(diag(t1, . . . , tn)) =
sλ(t1, . . . , tn)

sλ(1, . . . , 1)
.

We will consider the asymptotics of ϕn(λ;u) as n goes to infinity. This will
be parallel to the section 3.5 about the asymptotics of orbital integrals. In a
first step we will consider the case where λ is a partition: λ = (λ1, . . . , λn),
λ1 ≥ · · · ≥ λn ≥ 0.

In order to study the Taylor expansion of the spherical functions, Okunkov
and Olshanski introduced an algebra morphism Λ → C(Ω0) which maps a
symmetric function to a continuous function f̃ on Ω0. Since the algebra
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Λ is generated by the power Newton sums pm, this morphism is uniquely
determined by their images p̃m. One puts, for ω = (α, β, γ) ∈ Ω0,

p̃1(ω) =
∞∑

k=1

αk +
∞∑

k=1

βk + γ,

p̃m(ω) =
∞∑

k=1

αm
k + (−1)m−1

∞∑
k=1

βm
k (m ≥ 2).

The functions p̃m are continuous. In fact

p̃m(ω) = Lf (ω),

with f(s) = sm−1 (m ≥ 1).

Proposition 4.5 (i) For z ∈ C, |z| < r = (1/ supαk),

Φ(ω; 1 + z) =
∞∑

m=0

h̃m(ω)zm.

(ii) For z = (z1, . . . , zn) ∈ Cn, |zj| < r,

n∏
j=1

Φ(ω, 1 + zj) =
∑

m1≥···≥mn≥0

s̃m(ω)sm(z).

Proof
Recall the generating function for the complete symmetric functions hm:

for x = (x1, . . . , xn),

H(x; z) =
∞∑

m=0

hm(z)zm =
n∏

j=1

1

1− xjz
.

Statement (i) can be written

Φ(ω; 1 + z) = H̃(ω; z),

where z is considdered as a parameter. Since

Φ(ω; 1) = 1, H(x, 0) = 1,

it amounts to showing

d

dz
log Φ(ω; 1 + z) =

d

dz
log H̃(ω, z),
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and this holds. In fact

d

dz
logH(x; z) =

∞∑
m=0

pm+1(x)z
m,

therefore

d

dz
log H̃(ω; z) =

∞∑
m=0

p̃m+1(ω)zm =
d

dz
log Φ(ω; 1 + z).

Statement (ii) follows from (i) by applying with respect to x the morphism
f 7→ f̃ to both sides of the Cauchy identity:

n∏
j=1

H(x; zj) =
n∏

i,j=1

1

1− xizj

=
∑

m1≥···≥mn≥0

sm(x)sm(z).

Let us also observe that, by applying to both sides of the Jacobi-Trudi identy
(Proposition 2.7):

sm(x) = det
(
hmi−i+j(x)

)
1≤i,j≤n

,

one gets
s̃(m)(ω) = det

(
h̃mi−i+j(ω)

)
1≤i,j≤n

.

Hence, by Voiculescu’ formula (Proposition 2.6), one obtains (ii).

Let λ = (λ1, λ2, . . .) be a partition: the λi are in N, and λ1 ≥ λ2 ≥ . . . ≥ 0.
The number λi is the number of boxes in the i-th row of the Young diagram
of λ. The conjugate partition λ′ = (λ′1, λ

′
2, . . .) is associated to the transpose

diagram. For instance, if λ = (6, 4, 4, 2, 1), then λ′ = (5, 4, 3, 3, 1, 1). The
Frobenius parameters a = (a1, a2, . . .) and b = (b1, b2, . . .) of the partition λ
are defined by

ai = λi − i if λi > i, ai = 0 otherwise,

bj = λ′j − j + 1 if λ′j > j − 1, bj = 0 otherwise.

For instance, if λ = (6, 4, 4, 2, 1), then

a = (5, 2, 1, 0, . . .), b = (5, 3, 1, 0, . . .).

Observe that ∑
λi =

∑
ai +

∑
bj.
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Let Ω+
n denote the set of partitions of length ≤ n. Recall that the length

of a partition λ = (λ1, λ2, . . .) is the largest i with λi > 0. One defines the
map

Tn : Ω+
n → Ω0

as follows. If λ = (λ1, . . . , λn) ∈ Ω+
n is a partition of lenth≤ n, with Frobenius

parameters a = (a1, a2, . . .), b = (b1, b2, . . .), then ω = Tn(λ) is the triple
ω = (α, β, γ) with

αk =
ak

n
, βk =

bk
n
, γ = 0.

Observe that 0 ≤ βk ≤ 1, since bk ≤ n.
Recall that Λ∗ denote the algebra of shifted symmetric functions.

Theorem 4.6 Consider a sequence λ(n) of partitions with λ(n) ∈ Ω+
n , and

let ω ∈ Ω0. Assume that, for the topology of Ω0,

lim
n→∞

Tn(λ(n)) = ω.

Then, for every shifted symmetric function f ∗ ∈ Λ∗,

lim
n→∞

1

nm
f ∗(λ(n)) = f̃(ω),

where m is the degree of f ∗, and f ∈ Λ is the homogeneous part of degree m
of f ∗.

Proof
We will prove the statement in the special case f ∗ = q∗m:,

q∗m(λ) =
∑
i≥1

([λi − i+ 1]m − [−i+ 1]m).

Recall that these functions appeared at the end of Section 2.4. The function
q∗m is of degree m, and the homogeneous part of degree m is equal to the
Newton power sum pm(λ). We will show:

lim
n→∞

1

nm
q∗m(λ(n)) = p̃m(ω). (4.7)

Since the functions q∗m(λ) generate Λ∗, the statement of the theorem will be
proven.

Lemma 4.7
q∗m(λ) = m

∑
(i,j)∈λ

[j − i]m−1.

Here (i, j) runs over all squares (i, j) in the Young diagram of λ.
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Proof
By the relation [u+ 1]m − [u]m = m[u]m−1, one obtains

m
∑

(i,j)∈λ

[j − i]m−1 =m
∑
i≥1

λi∑
j=1

[j − i]m−1

=
∑
i≥1

λi∑
j=1

([j − i+ 1]m − [j − i]m)

=
∑
i≥1

([λi − i+ 1]m − [−i+ 1]m).

Lemma 4.8 Let a = (ai) and b = (bj) be the Frobenius parameters of λ.
Then

q∗m(λ) =
∑
i≥1

[ai + 1]m −
∑
j≥1

[1− bj]m.

Proof
We first observe that

q∗1(λ) =
∑
i≥1

λi =
∑
i≥1

ai +
∑
j≥1

bj.

Let m ≥ 2. One decomposes q∗m(λ) as

q∗m(λ) = m
∑

(i,j)∈λ
j>i

[j − i]m−1 +m
∑

(i,j)∈λ
i≥j

[j − i]m−1.

We see that

m
∑

(i,j)∈λ
j>i

[j − i]m−1 = m
∑
i≥1

λi∑
j=i+1

[j − i]m−1 = m
∑
i≥1

ai∑
j=1

[j]m−1

=
∑
i≥1

ai∑
j=1

([j + 1]m − [j]m) =
∑
i≥1

([ai + 1]m − [1]m)

=
∑
i≥1

[ai + 1]m, since [1]m = 0 for m ≥ 2,
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and

m
∑

(i,j)∈λ
i≥j

[j − i]m−1 = m
∑
j≥1

λ′j∑
i=j

[j − i]m−1 = m
∑
j≥1

bj−1∑
i=0

[−i]m−1

=
∑
j≥1

bj−1∑
i=0

([1− i]m − [−i]m) = −
∑
j≥1

([1− bj]m − [1]m) = −
∑
j≥1

[1− bj]m.

We complete now the proof of Theorem 4.6.

Proof
Let a(n) = (a

(n)
i ) and b(n) = (b

(n)
j ) be the Frobenius parameters of the

partition λ(n), and ω = (α, β, γ) ∈ Ω0 with α = (αk), β = (βk). Consider the
measures σn and σ on R given, for a continuous function ϕ on R, by∫

R
ϕ(s)σn(ds) =

∑
i≥1

a
(n)
i

n
ϕ

(
a

(n)
i

n

)
+
∑
j≥1

b
(n)
j

n
ϕ

(
−
b
(n)
j

n

)
,∫

R
ϕ(s)σ(ds) =

∑
k≥1

αkϕ(αk) +
∑
k≥1

βkϕ(−βk) + γϕ(0).

By assumption, for a continuous function ϕ on R,

lim
n→∞

∫
R
ϕ(s)σn(ds) =

∫
R
ϕ(s)σ(ds). (4.8)

Observe that the measures σn and σ are positive, and∫
R
σn(ds) = q∗1(λ

(n)),

∫
R
σ(ds) = p̃1(ω).

There exists A > 0 such that

supp(σn) ⊂ [−A,A], supp(σ) ⊂ [−A,A].

By taking

ϕn(s) =
1

nms
[ns+ 1]m =

1

nm−1
(ns+ 1)(ns− 1)(ns− 2) · · · (ns−m+ 2),

we obtain
1

nm
q∗m(λ(n)) =

∫
R
ϕn(s)σn(ds)
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Note that
lim

n→∞
ϕn(s) = ϕ(s) := sm−1, (4.9)

and the convergence is uniform on compact sets.
We can write

1

nm
q∗m(λ(n))− p̃m(ω)

=

∫
R
ϕn(s)σn(ds)−

∫
R
ϕ(s)σn(ds) +

∫
R
ϕ(s)σn(ds)−

∫
R
ϕ(s)σ(ds).

Let ε > 0. There is a positive integer n1 such that, if n ≥ n1,∣∣∣∣∫
R
ϕ(s)σn(ds)−

∫
R
ϕ(s)σ(ds)

∣∣∣∣ < ε on [−A,A],

and a positive integer n2 such that, if n ≥ n2,

|ϕn(s)− ϕ(s)| < ε on [−A,A].

Furthermore, there exists a constant c > 0 such that
∫

R σn(ds) < c. There-
fore, for n ≥ max{n1, n2},∣∣∣∣ 1

nm
q∗m(λ(n))− p̃m(ω)

∣∣∣∣
≤
∫

R
|ϕn(s)− ϕ(s)|σn(ds) +

∣∣∣∣∫
R
ϕ(s)σn(ds)−

∫
R
ϕ(s)σ(ds)

∣∣∣∣
≤(c+ 1)ε.

Hence we have proven (4.8).

The converse of Theorem ?? has been proven by Okunkov and Olshanski
[OKAL-1998c] (Kerov and Vershik [VEKE-1982]): if, for every f ∗ ∈ Λ∗, the
sequence

1

nm
f ∗(λ(n)),

has a limit, where m is the degree of f ∗, then the sequence Tn(λ(n)) converges
in Ω.

Theorem 4.9 As in Theorem 4.6, consider a sequence (λ(n)) of partitions,
with λ(n) ∈ Ω+

n , and ω ∈ Ω0. Assume that, for the topology of Ω0,

lim
n→∞

Tn(λ(n)) = ω.
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Then, for u ∈ U(∞),

lim
n→∞

ϕn(λ(n);u) = det Φ(ω, u),

uniformly on each U(k). More explicitely,

lim
n→∞

ϕn

(
λ(n); diag(t1, . . . , tk, 1, . . . , 1)

)
=

k∏
j=1

Φ(ω, tj).

Proof
By Theorem 2.8,

ϕn

(
λ(n); diag(1 + z1, . . . , 1 + zk, 1, . . . , 1) =

sλ(n)(1 + z1, . . . , 1 + zk, 1, . . . , 1)

sλ(n)(1, . . . , 1)

=
∑

m1≥···≥mn≥0

δ!

(m + δ)!
s∗m(λ(n))sm(z1, . . . , zk, 1, . . . , 1).

For m fixed,
δ!

m + δ)!
∼ 1

n|m| (n→∞),

with |m| = m1 + · · ·mn. Hence, by Theorem 4.6,

lim
n→∞

δ!

(m + δ)!
s∗m(λ(n)) = s̃m(ω).

On the other hand, by Proposition 4.5,

∑
m1≥···≥mn≥0

s̃m(ω)sm(z) =
k∏

j=1

Φ(ω; 1 + zj).

Proposition 3.11 applies for a sequence of functions of positive type on Tk.
It follows that

lim
n→∞

ϕn

(
λ(n); diag(1 + z1, . . . , 1 + zk, 1, . . . , 1)

)
=

k∏
j=1

Φ(ω; 1 + zj),

and, for u ∈ U(∞),

lim
n→∞

ϕn(λ(n);u) = det Φ(ω;u),

uniformly on U(k).
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We consider now the case of a general signature. To a signature λ one
associates two partitions λ+ and λ−: if

λ ≥ · · · ≥ λp ≥ 0 ≥ λp+1 ≥ · · · ≥ λn,

then
λ+ = (λ1, . . . , λp), λ

− = (−λn, . . . ,−λp+1).

We define the map Tn : Ωn → Ω = Ω0×Ω0, in extending the map previously
defined, by putting

Tn(λ) =
(
Tn(λ+), Tn(λ−)

)
.

One extends also the map f 7→ f̃ as an algebra morphism Λ → C(Ω).
This map is such that

H(x; z) =
∞∑

m=0

hm(x)zm =
∞∏

j=1

1

1− xjz

maps to

Φ(ω+; 1 + z)Φ
(
ω−;

1

1 + z

)
.

In other words the images h̃m(ω+, ω−) of the complete symmetric functions
hm(x) are the coefficients of the following power series:

Φ(ω+, 1 + z)Φ
(
ω−;

1

1 + z

)
=

∞∑
m=0

h̃m(ω+, ω−)zm.

It follows that
n∏

j=1

Φ(ω+; 1 + zj)Φ
(
ω−;

1

1 + z

)
=

∑
m1≥...≥mn≥0

s̃m(ω+, ω−)sm(z1, . . . , zn).

We extend now Theorem 1.6:

Theorem 4.10 Consider a sequence λ(n) of signatures, with λ(n) ∈ Ωn, and
let ω = (ω+, ω−) ∈ Ω. Assume that

lim
n→∞

Tn(λ(n)) = ω = (ω+, ω−).

Then, for every shifted symmetric function f ∗ ∈ Λ∗,

lim
n→∞

1

nm
f ∗(λ(n)) = f̃(ω),

where m is the degree of f ∗, and f ∈ Λ is the homogeneous part of degree m
in f ∗.
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By theorem 2.10, the generating function H∗(λ, u) for the shifted com-
plete symmetric functions factorizes as

H∗(λ;u) =

p∏
i=1

u+ i

u+ i− λi

n∏
i=p+1

u+ i

u+ i− λi

,

and this can be written:

Lemma 4.11

H∗(λ;u) = H∗(λ+;u)H∗(λ−;−u− n− 1).

Proof of Theorem 4.10
By Theorem 4.7,

lim
n→∞

1

nm
h∗m(λ(n)+) = h̃m(ω+),

lim
n→∞

1

nm
h∗m(λ(n)−) = h̃m(ω−).

And by Lemma 4.10 and Theorem 2.10,

∞∑
m=0

h∗m(λ(n))
1

[u]m
=
( ∞∑

p=0

h∗p(λ
(n)+)

1

[u]p

)( ∞∑
q=0

h∗q(λ
(n)−)

1

[−u− n− 1]q

)
.

This formula needs some comment. In fact the series of the left hanside
and the first series of the right handside converge for −Reu large, while the
second series of the right handside converges for Re u large. But each series
can be seen as a formal series in 1

u
, and the equality has to be understood as

equality of formal series in 1
u
, that is in the algebra C[[ 1

u
]]. In general, to a

modified factorial expansion

F (u) =
∞∑

m=0

am
1

[u]m
,

one can associate a formal seires in 1
u
:

F (u) =
∞∑

k=0

1

uk
.
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In fact

1

[u]m
=

1

u(u− 1) . . . (u−m+ 1)

=
1

um

1(
1− 1

u

)
. . .
(
1− m−1

u

) =
∞∑

k=m

ck,m
1

uk
,

with ck,k = 1, and

∞∑
m=0

1

[u]m
=

∞∑
m=0

am

( ∞∑
k=m

ck,m
1

uk

)
=

∞∑
k=0

ck
1

uk
,

with

ck =
k∑

m=0

ck,mam.

We will consider on the algebra C[[ 1
u
]] the topology of the coefficient

convergence-wise topology.

We continue the proof of Theorem 4.10 and put u = nv. Then

[u]m = nmv
(
v − 1

n

)
. . .
(
v − m− 1

n

)
.

Put also v′ = −v − 1, then

[−u− n− 1]q = [nv′ − 1]q = nq
(
v′ − 1

n

)
. . .
(
v′ − q

n

)
.

We obtain

∞∑
m=0

1

nm
h∗m(λ(n))

1

v
(
v − 1

n

)
. . .
(
v − m−1

n

)
=

( ∞∑
p=0

1

np
h∗p(λ

(n)+)
1

v
(
v − 1

n

)
. . .
(
v − p−1

n

))
( ∞∑

q=0

1

nq
h∗q(λ

(n)−)
1(

v′ − 1
n

)
. . .
(
v′ − q

n

)).
It follows that

am := lim
n→∞

1

nm
h∗m(λ(n)) exists,
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and
∞∑

m=0

am
1

vm
=
( ∞∑

p=0

h̃p(ω
+)

1

vp

)( ∞∑
q=0

h̃q(ω
−)

1

v′q

)
.

One puts

z =
1

v
, z′ =

1

v′
,

then
1

1 + z
= 1 + z′

We obtains

∞∑
m=0

amz
m =

( ∞∑
p=0

h̃p(ω
+)zp

)( ∞∑
q=0

h̃q(ω
−)z′q

)
= Φ(ω+, 1 + z)Φ(ω−,

1

1 + z
).

Hence, finally am = h̃m(ω), and we have proven

lim
n→∞

1

nm
h∗m(λ(n)) = h̃m(ω+, ω−).

We can now extend Theorem 4.9.

Theorem 4.12 Consider a sequence (λ(n)) of signatures, with λ(n) ∈ Ωn,
and let ω = (ω+, ω−) ∈ Ω. Assume that

lim
n→∞

Tn(λ(n)) = ω = (ω+, ω−).

Then, for u ∈ U(∞),

lim
n→∞

ϕn(λ(n);u) = det Φ(ω+, u) det Φ(ω−;u−1),

uniformy on each U(k).

Proof The proof is the same as the one of Theorem 4.9. On one hand

ϕn

(
λ(n); diag(1+z1, . . . , 1+zk, 1, . . . , 1)

)
=

∑
m1≥···≥mn≥0

δ!

(m + δ)!
s∗m(λ(n))sm(z1, . . . , zk),

and, by Theorem 4.10,

lim
n→∞

δ!

m + δ!
s∗m(λ(n)) = s̃m(ω+, ω−).
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On the other hand we saw that

∑
m1≥···≥mn≥0

s̃m(ω+, ω−)sm(z1, . . . , zk) =
k∏

j=1

Φ(ω+; 1 + zj)Φ
(
ω−;

1

1 + zj

)
.

By Proposition 3.11, it follows that, uniformly on Tk,

lim
n→∞

ϕn

(
λ(n); diag(t1, . . . , tk, 1, . . . , 1))

)
=

k∏
j=1

Φ(ω+; tj)Φ
(
ω−,

1

tj

)
.

Hence, uniformly on U(k),

lim
n→∞

ϕn(λ(n);u) = det Φ(ω+;u) det Φ(ω−;u−1).

Theorems 4.10 and 4.12 are consistent with the following property of the
spherical functions of the unitary group U(n):

ϕn(λ;u−1) = ϕn(λ;u),

where, if λ = (λ1, . . . , λn), then λ = (−λn, . . . ,−λ1). In fact λ is the highest
weight of the contragredient representation of the representation with highest
weight λ.
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Chapter 5

Inductive limits of compact
symmetric spaces

In this last chapter we will present without proof the main results by Okunkov
and Olshanski about the spherical functions of inductive limits of compact
Riemannian symmetric spaces.

5.1 Inductive limits of compact Riemannian

symmetric spaces of type A

We consider one of the following sequences of compact Riemannian pairs :

G(n) = U(n), K(n) = O(n), d = 1

G(n) = U(n)× U(n), d = 2

G(n) = U(2n), K(n) = Sp(n), d = 4

n is the rank, d is the multiplicity, the system of restricted roots is of type
An−1, A(n) = exp a(n) ' Tn is a Cartan subgroup.

Ωn is the spherical unitary dual for the pair (G(n), K(n)), parametrized
by signatures λ1 ≤ λn.

Ω = Ω0 × Ω0

Define

Φ(ω; z) = eγ(z−1)

∞∏
k=1

1 + βk(z − 1)(
1− 2

d
αk(z − 1)

) d
2

.
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Theorem 5.1 The spherical functions for the pair (G,K) are given,
for a = (z1, . . . , zn, 1, . . .) ∈ A, by

ϕ(ω; a) =
n∏

j=1

Φ(ω+; zj)Φ(ω−;
1

zj

).

One defines the map Tn as in the case of the unitary group (d = 2).
The spherical functions for the pair

(
G(n), K(n)

)
are given by Jack poly-

nomials: for λ = (λ1, . . . , λn) ∈ Ωn, a = (z1, . . . , zn) ∈ A(n),

ϕ(λ; z1, . . . , zn) =
Pλ(z1, . . . , zn; θ)

Pλ(1, . . . , 1; θ)

(
θ =

d

2

)
.

Theorem 5.2 Let λ(n) = λ
(n)
1 , . . . , λ

(n)
n ) be a sequence of signatures, with

λ(n) ∈ Ωn. If
lim

n→∞
T (λ(n)) = ω = (ω+, ω−),

then

lim
n→∞

ϕ(λ(n); z1, . . . , zk, 1, . . .) =
k∏

j=1

Φ(ω+, zj)Φ(ω−;
1

zj

).

The proof uses a binomial formula for Jack polynomials.

5.2 Inductive limits of compact Riemannian

symmetric spaces of type BC

n is the rank, the system of rerestricted roots is of type BCn

roots : ±εi ± εj, ±εi, ±2εi,
multiplicities : d, p, q.
Let us assume that the multiplicities don’t depend on n.
The spherical unitary dual Ωn is parametrized by positive signatures (or

partitions): λ = (λ1, . . . , λn),with

λ1 ≥ . . . , λn ≥ 0, λi ∈ N.

The spherical functions are given by multivariate Jacobi polynomials:

ϕ(λ; z1, . . . , zn) =
Jλ(z1, . . . , zn; θ, a, b)

Jλ(1, . . . , 1; θ, a, b)
.
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The spherical unitary dual is Ω = Ω0.
As in Section 5.1, one defines

Φ(ω; z) = eγ(z−1)

∞∏
k=1

1 + βk(z − 1)(
1− 2

d
αk(z − 1)

) d
2

.

Theorem 5.3 The spherical functions for the pair (G,K) are given,
for a = (z1, . . . , zn, 1, . . .) ∈ A, by

ϕ(ω; a) =
n∏

j=1

Φ(ω; zj)Φ(ω;
1

zj

).

Observe that the formula does not depend on p and q.

One defines the map Tn as in the case of the unitary group for positive
signatures.

Theorem 5.4 Let λ(n) = λ
(n)
1 , . . . , λ

(n)
n ) be a sequence of signatures, with

λ(n) ∈ Ωn. If
lim

n→∞
T (λ(n)) = ω,

then

lim
n→∞

ϕ(λ(n); z1, . . . , zk, 1, . . .) =
k∏

j=1

Φ(ω, zj)Φ(ω;
1

zj

).

Observe that the limit does not depend on p and q.
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