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In Random Matrix Theory, one considers a probability measure on the
space of n× n real symmetric matrices, or Hermition matrices. One studies
the eigenvalues which are random variables, and their distribution. The main
problems are about the asymptotics of the distribution of the eigenvalues as
n→∞.

We will consider the following questions

- Density of the statistical distribution of the eigenvalues
- Limit of the statistical distribution of the eigenvalues
- Probability, for a matrix, to be positive definite
- Conditional statistical distribution of the eigenvalues under the condi-

tion that the matrix is positive definite
- The Sylvester index of a random matrix

We will present two analytic method:

Orthogonal polynomials

The method gives explicit results, but is only valid for Hermitian matrices.

Logarithmic Potential Theory, or Log-Gas method

It is called Log-Gas method, because of the analogy with Thermodynam-
ics, and is related to the Electrostatistic Model of Stieltjes.

Main sources
M. L. Mehta, Random matrices, Academic Press, 1991

P. Deift, Orthogonal polynomials and random matrices: a Riemann-
Hilbert approach, A. M. S. & Courant Institute, 1998.

L. Pastur & M. Shesherbina, eigenvalues distribution of large random
matrices, A. M. S. 2010.

S. M. Majumdar, C. Nadal, A. Scardicchio, & P. Vivo, How many eigen-
values of a Gaussian random matrix are positive ? Physical Review, 83
(2011), 041105.

I have been very pleased to take part in this Summer School. I thank
Peter Eichelsbacher and Michael Voit for inviting me to give this minicourse.
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1 The probability space (Hn,Pn)
For F = R, C, or H, Hn = Herm(n,F) denotes the space of n×n Hermitian
matrices with entries in F. On Herm(n,F) we consider a probability measure
of the form

P(dx) =
1

Cn
e−trQ(x)m(dx),

Q is real valued function defined on R, and, for a matrix x, Q(x) is defined
via the functional calculus. m is the Euclidean measure on Hn associated to
the inner product (x | y) = tr(xy), and Cn is a normalization constant:

Cn =

∫
Hn

e−trQ(x)m(dx).

Main example: Gaussian probability

Q(t) = γt2 (γ > 0). Then

Cn =

∫
Hn

e−γtr (x2)m(dx) =
(√π

γ

)N
,

where

N = dimRHn = n+
β

2
n(n− 1), β = dimRF = 1, 2, 4.

This probability is invariant under the group Un = U(n,F) of n × n
unitary matrices with entries in F, acting on Hn by the transformations

x 7→ uxu∗ (u ∈ U(n,F).

- U(n,R) = O(n), the orthogonal group,
- U(n,C) = U(n), the unitary group,
- U(n,H) ' Sp(n), the compact symplectic group.

For Q(t) = t2, and F = R, the probability space (Hn,Pn) is called the
Gaussian Orthogonal Ensemble: GOE. For F = C, the Gaussian Unitary
Ensemble: GUE, and for F = H, the Gaussian Symplectic Ensemble, GSE.
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Empirical eigenvalue distribution

The empirical eigenvalue distribution of a matrix x ∈ Hn is the random
measure M

(x)
n on R defined by

M (x)
n =

1

n

n∑
i=1

δ
λ
(x)
i
,

where λ
(x)
1 , . . . λ

(x)
n are the eigenvalues of x. Observe that, for B ⊂ R,

M (x)
n (B) =

1

n
#{eigenvalues of x in B}.

For a function ϕ on R,∫
R
ϕ(t)M (x)

n (dt) =
1

n

n∑
i=1

ϕ(λ
(x)
i ) =

1

n
tr
(
ϕ(x)

)
.

Statistical distribution of the eigenvalues

The statistical distribution of the eigenvalues is the expectation of the
empirical distribution of the eigenvalues, it is the measure Mn on R defined
by, for a Borel set B ⊂ R,

Mn(B) = En

(
M (x)

n (B)
)
.

For a bounded measurable function ϕ,∫
R
ϕ(t)Mn(dt) = En

(∫
R
ϕ(t)M (x)

n (dt)
)

=
1

n

∫
Hn

tr
(
ϕ(x)

)
Pn(dx).

One of the main problems in Random Matrix Theory is to determine the
asymptotic of the statistical distribution of the eigenvalues Mn as n→∞.
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Empirical distribution of the eigenvalues, GUE, n=2000
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Statistical distribution of the eigenvalues, GUE, n=30
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Weyl integration formula

We recall the notation:
Hn = Herm(n,F), F = R,C, or H , Un = U(n,F).
By the classical spectral theorem, every matrix x ∈ Hn can be diagonal-

ized in an orthogonal basis, and the eigenvalues are real. This can be said as
follows: the map

Un ×Dn → Hn, (u, t) 7→ utu∗,

is surjective, where Dn denotes the space of real diagonal matrices.

Theorem 1.1. If f is an integrable function on Hn, then∫
Hn

f(x)m(dx) = cn

∫
Dn

∫
Un

f(utu∗)αn(du)|Vn(t)|βdt1 . . . dtn,

where t = diag(t1, . . . , tn),

Vn(t) =
∏
j<k

(tk − tj)

is the Vandermonde polynomial, αn is the normalized Haar measure of the
compact group Un, cn is a positive constant, β = dimRF = 1, 2, or 4.

If the function f is Un-invariant:

f(uxu∗) = f(x) (u ∈ Un),

then f only depends on the eigenvalues λ1, . . . , λn of x:

f(x) = F (λ1, . . . , λn),

where the function F is defined on Rn, and symmetric:

F (λσ(1), . . . , λσ(n)) = F (λ1, . . . , λn),

for σ ∈ Sn, the symmetric group. In that case the Weyl integration formula
simplifies:∫

Hn

f(x)m(dx) = cn

∫
Rn
F (λ1, . . . , λn)|Vn(λ)|βdλ1 . . . dλn.
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Let us come back to the probability measure on Hn of the form

Pn(dx) =
1

Cn
e−tr

(
Q(x)
)
m(dx).

If the function f on Hn is Un-invariant, then∫
Hn

f(x)Pn(dx) =

∫
Rn
F (λ)qn(λ)dλ1 . . . λn,

with

qn(λ) =
1

Zn
e−
(
Q(λ1)+···+Q(λn)

)
|Vn(λ|β,

and

Zn =

∫
Rn
e−
(
Q(λ1+···+Q(λn)

)
|Vn(λ)|β.

Zn is sometimes called the partition function, in analogy to the partition
function which is defined in Thermodynamics.

For Q(t) = 1
2
t2, Zn is the Mehta integral:

Zn =

∫
Rn
e−

1
2
‖x‖2|Vn(x)|βdx1 . . . dxn = (2π)

n
2

n∏
j=1

Γ
(
j β

2
+ 1
)

Γ
(
β
2

+ 1
) .

In general there is no explicit evaluation of the integral Zn. However we will
see that it is possible to determine asymptotics for Zn by using logarithmic
potential theory.

2 Point process (or Point field)

Consider n particules in a space X. An n-point configuration is a possible
position (x1, . . . , xn) of the particules. The set Confn(X) of the n-point
configurations can be identified with Xn/Sn. An n-point process (or n-
point field) is the probability space (Confn(X),Pn), where Pn is a probability
measure on Confn(X). This probability measure can be seen as a probability
measure on Xn which is symmetric, i.e. invariant under permutations.
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Correlation functions

The correlation measure ρm (1 ≤ m ≤ n) is the symmetric measure on
Xm defined by, if ϕ is a function on Xm,

〈ρm, ϕ〉 = E
(∑

ϕ(x1, . . . , xm)
)
,

where the summation is taken over all ordered m-tuples of particules chosen
from the point configuration.

If a reference measure µ is given on X, the density Rm of ρm, if it exists,
is called the correlation function:

〈ρ, ϕ〉 =

∫
Xm

ϕ(x1, . . . , xm)Rm(x1, . . . , xm)µ(dx1) . . . µm(dxm).

Assume that
Pn(dx) = pn(x1, . . . , xn)µ(dx1) . . . µ(dxn),

where pn is a symmetric function on Xn. Then

Rm(x1, . . . , xm)

=
n!

(n−m)!

∫
Xn−m

pn(x1, . . . , xm, xm+1, . . . , xn)µ(dxm+1) . . . µ(dxn).

In particular, for m = n,

Rn(x1, . . . , xn) = n!pn(x1, . . . , xn),

and, for n = 1,

R1(x1) = n

∫
Xn−1

pn(x1, x2, . . . , xn)µ(dx2) . . . µ(dxn).

Determinantal point process

Recall the Fredholm notation. If K(x, y) is a kernel on X, then, for
x1, . . . , xm, y1, . . . , ym ∈ X,

K

(
x1 . . . xm
y1 . . . ym

)
= det1≤i,j≤m

(
K(xi, yj).
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The point process (Confn(X),Pn) is said to be determinantal if there is
a kernel Kn(x, y) such that, for 1 ≤ m ≤ n,

Rm(x1, . . . , xm) = Kn

(
x1 . . . xm
x1 . . . xm

)
.

The n-point process of the eigenvalues

Recall the probability space (Hn,Pn), with

Pn(dx) =
1

Cn
e−trQ(x)m(dx).

By the Weyl integration formula, and considering the n eigenvalues as par-
ticules on the line we get an n-point process with X = R, and the probability

Pn(dλ1, . . . , λn) = qn(λ1, . . . , λn)dλ1 . . . dλn,

with

qn(λ1, . . . , λn) =
1

Zn
e−
(
Q(λ1)+···+Q(λn)

)
.|Vn(λ)|β.

We will see in next section that, for β = 2 (F = C), and if the function e−Q(t)

admits moments of all order: for all m ≥ 0,∫
R
|t|me−Q(t)dt <∞,

the n-point process of the eigenvalues is determinantal. Therefore, in that
case, it will be possible to evaluate the density wn(t) of the statistical eigen-
value distribution Mn(dt), because of the following proposition.

Proposition 2.1. The statistical distribution Mn of the eigenvalues has a
density wn,

wn(t) =
1

n
R1(t).

Proof.
Let ϕ be a bounded measurable function on R. then

f(x) :=
1

n
tr
(
ϕ(x)

)
=

1

n

(
ϕ(λ1) + · · ·+ ϕ(λn)

)
,

10



where λ1, . . . , λn are the eigenvalues of x. Apply the Weyl integration formula
to the U(n,F)-invariant function f :∫

R
ϕ(t)Mn(dt) =

∫
Hn

f(x)Pn(dx)

=
1

n

n∑
i=1

∫
Rn
ϕ(λi)qn(λ)dλ1 . . . dλn

=

∫
Rn
ϕ(λ1)qn(λ)dλ1 . . . dλn =

∫
R
ϕ(t)wn(t)dt,

with

wn(t) =

∫
Rn−1

qn(t, λ2, . . . , λn) =
1

n
R1(t).

3 Orthogonal polynomials

Let µ be a positive measure on R. We assume that the support of µ is infinite,
and, for all m ≥ 0, ∫

|t|mµ(dt) <∞.

Consider a probability measure on Rn of the form

Pn(dx) =
1

Zn

∏
i<j

(xj − xi)2µ(dx1) . . . µ(dxn),

where Zn is a normalization constant:

Zn =

∫
Rn

∏
1<j

(xj − xi)2µ(dx1) . . . µ(dxn).

We will see in this section that the n-point process (Confn(R),Pn) is deter-
minantal.

On the space P of polynomials in one variable with real coefficients one
considers the inner product

(p|q) =

∫
R
p(t)q(t)µ(dt),
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for which P is a pre-Hilbert space. The monomials 1, t, . . . , tm, . . . are inde-
pendent, and, by the Gram-Schmidt orthogonalization, one gets a sequence
{pm} of orthogonal polynomials: pm is of degree m, and∫

R
pm(t)qn(t)µ(dt) = 0 if m 6= n.

We assume that
pm(t) = tm + · · · ,

and we define

dm =

∫
R
pm(t)2µ(dt.

Example: Hermite polynomials

Let µ be the Gaussian measure

µ(dt) = e−t
2

dt.

The Hermite polynomials Hm are orthogonal in L2(R, µ).

Hm(t) = (−1)met
2
( d
dt

)m
e−t

2

.

Since Hm(t) = 2mtm + · · · , we define

pm(t) = 2−mHm(t),

and one gets
dm = 2−mm!

√
π.

Evaluation of Zn

Proposition 3.1. Recall that

Zn =

∫
Rn

∏
1≤i<j≤n

(xj − xi)2µ(dx1) . . . µ(dxn).

Then
Zn = n!d0d1 . . . dn−1.
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Proof.
Notation: for m = (m1, . . . ,mn) the polynom pm in n variables is given by

pm(x1, . . . , xn) = pm1(x1) . . . pmn(xn).

The polynoms pm are orthogonal for the inner product

(p | q) =

∫
Rn
p(x)q(x)µ(dx1) . . . µ(dxn),

and
‖p‖2 = dm1 . . . dmn .

For a permutation σ ∈ Sn,

σ ·m = (mσ(0),mσ(1), . . . ,mσ(n−1)).

Define also
δ = (0, 1, . . . , n− 1).

Recall the Vandermonde determinant

Vn(x) =
∏

1≤i<j≤n

(xj − xi)2 =

∣∣∣∣∣∣∣∣∣
1 1 . . . 1
x1 x2 . . . 1
...

...
...

xn−1
1 xn−1

2 . . . xn−1
n

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
p0(x1) p0(x2) . . . p0(xn)
p1(x1) p1(x2) . . . p1(xn)

...
...

...
pn−1(x1) pn−1(x2) . . . pn−2(xn)

∣∣∣∣∣∣∣∣∣ =
∑
σ∈Sn

ε(σ)pσ·δ(x).

The third equality comes from the following observation: one does not
change the value of a determinant if one adds to a column a linear combina-
tion of the other ones. Therefore∫

Rn
Vn(x)2µ(dx1) . . . µ(dxn) = n!d0d1 . . . dn−1.
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Example: the Gaussian case

The measure µ is Gaussian:

µ(dt) = e−t
2

dt.

Therefore

Zn = n!d0d1 . . . dn−1 = n!
n−1∏
j=0

(2−jj!
√
π) = π

n
2 2−

n(n−1)
2

n∏
j=0

j!.

This is in agreement with the evaluation of Mehta’s integral, for β = 2:

Zn =

∫
Rn
e−

1
2
‖t‖2|Vn(x)|βdx1 . . . dxn = (2π)

n
2

n∏
j=1

Γ
(
j β

2
+ 1
)

Γ
(
β
2

+ 1
) .

Christoffel-Darboux kernel

Let Sn be the orthogonal projection of L2(R, µ) onto the space Pn−1 of
polynomials of degree ≤ n− 1.

(Snf)(x) =
n−1∑
k=0

1

dk
(f | pk)pk(x) =

∫
R
Kn(x, y)f(y)µ(dy),

where Kn is the following kernel, called the Christoffel-Darboux kernel,

Kn(x, y) =
n−1∑
k=0

1

dk
pk(x)pk(y).

Proposition 3.2. For x 6= y,

Kn(x, y) =
1

dn−1

pn(x)pn−1(y)− pn−1(x)pn(y)

x− y
,

and

Kn(x, x) =
1

dn−1

(
p′n(x)pn−1(x)− pn(x)p′n−1(x)

)
.
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The proof uses the three terms recursion formula. Define bm:

pm(x) = xm + bmx
m−1 + · · ·

and

βm = bm − bm+1, γm =
dm
dm−1

.

With this notation

xpm(x) = pm+1(x) + βmpm(x) + γmpm−1(x).

Mehta’s formulas

Recall the n-point process
(
Confn(R),Pn

)
, with

Pn(dx) =
1

Zn
Vn(x)2µ(dx1) . . . µn(dxn).

We will now prove that the n-point process (Confn(R),Pn), is determinantal:

Rm(x1, . . . , xm) = Kn

(
x1 x2 . . . xm
y1 y2 . . . ym

)
:= det

(
Kn(xi, yj)

)
1≤i,j≤n.

where Kn is the Christoffel-Darboux kernel.

Lemma 3.3.
1

Zn
Vn(x)2 =

1

n!
Kn

(
x1 . . . xn
x1 . . . xn

)
.

Proof.
Consider the matrix A = (aij) with

aij =
1√
dj
pj(xi), i = 1, . . . , n, j = 0, . . . n− 1.

Then

detA =
1√

d0 . . . dn−1

Vn(x).
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The entries of B = AAT are

bij =
n−1∑
k=0

1√
dk
pk(xi)

1√
dk
pk(xj) = Kn(xi, xj).

Recall that Zn = n!d0 . . . dn−1. The formula follows.

For 1 ≤ m ≤ n, the correlation function Rm is defined on Rm by

Rm(x1, . . . , xm) =
n!

(n−m)!

1

Zn

∫
Rn−m

Vn(x1, . . . , xm, xm+1, . . . , xn)2µ(dxm+1) . . . µ(dxn).

Theorem 3.4. (Mehta) The n-point process of the eigenvalues is determi-
nantal:

Rm(x1, . . . , xm) = Kn

(
x1 . . . xm
x1 . . . xm

)
.

In particular, for n = 1, R1(x) = Kn(x, x).

We will prove the proposition by a backwards recursion on m. By the
lemma, the formula holds for m = n. For the recursion we will use the
following lemma.

Lemma 3.5. Let K be the kernel of the orthogonal projection P of L2(R, µ)
onto a subspace of dimension n,

(Pf)(x) =

∫
R
K(x, y)f(y)µ(dy).

Then ∫
R
K

(
x1 . . . xm
x1 . . . xm

)
µ(dxm) = (n−m+ 1)K

(
x1 . . . xm−1

x1 . . . xm−1

)
.

Proof.
The kernel K satisfies the following properties
- Since P ∗ = P , then

K(y, x) = K(x, y)

- Since P ◦ P = P , then∫
R
K(x, u)K(u, y)µ(du) = K(x, y).
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- Since trP = n, then ∫
R
K(x, x)µ(dx) = n.

With entries aij = K(xi, xj), consider the matrix Am = (aij)1≤i,j≤m, and
write

Am =

(
Am−1 α
α∗ γ

)
.

Then
detAm = detAm−1 · γ − α∗Ãm−1α,

where Ãm−1 is the matrix of the cofactors ãij of Am−1.

Therefore∫
R
K

(
x1 . . . xm
x1 . . . xm

)
µ(dxm) = K

(
x1 . . . xm−1

x1 . . . xm−1

)∫
R
K(xm, xm)dxm

−
m−1∑
i,j=1

aij

∫
R
K(xj, xm)K(xm, xi)µ(dxm)

= nK

(
x1 . . . xm−1

x1 . . . xm−1

)
−

m−1∑
i,j=1

ãijK(xj, xi)

= (n−m+ 1)K

(
x1 . . . xm−1

x1 . . . xm−1

)
.

since
m−1∑
i,j=1

ãijaji = detAm−1.

Density of the statistical eigenvalue distribution

We apply the preceding results to the case where

µ(dt) = e−Q(t)dt.

By defining

ϕm(t) =
1√
dm

e−
1
2
Q(t)pm(t),
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we get an orthonormal basis of L2(R). We define also a modified Christoffel-
Darboux kernel

Kn(s, t) =
n−1∑
k=0

ϕk(s)ϕk(t)

= e
1
2

(
Q(s)+Q(t)

)
Kn(s, t)

=

√
dn
dn−1

ϕn(s)ϕn−1(t)− ϕn−1(s)ϕn(t)

s− t
,

and

Kn(t, t) =

√
dn
dn−1

(
ϕ′n(t)ϕn−1(t)− ϕ′n−1(t)ϕn(t)

)
.

The statistical distribution of the eigenvalues has the following density

wn(t) =
1

n
Kn(t, t) =

1

n

√
dn
dn−1

(
ϕ′n(t)ϕn−1(t)− ϕ′n−1(t)ϕ(t)

)
.

Formula for the density wn(t) in the GUE case

In the GUE case Q(t) = t2.

pm(t) = 2−mHm(t), dm = 2−mm!
√
π,

dn
dn−1

=
n

2
.

The functions ϕm are the following Hermite functions

ϕm(t) =
1√
dm

e−t
2

Hm(t),

and

Kn(t, t) =

√
n

2

(
ϕ′(t)ϕn−1(t)− ϕ′n−1(t)ϕn(t)

)
,

wn(t) =
1√
2n

(
ϕ′(t)ϕn−1(t)− ϕ′n−1(t)ϕn(t)

)
.

Taking the derivative

w′n(t) =
1√
2n

(
ϕ′′n(t)ϕn−1(t)− ϕ′′n−1(t)ϕn(t)

)
.
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The Hermite polynomial Hn is a solution of the following differential equation

y′′ − 2ty′ + 2ny = 0,

from which one deduces

ϕ′′n(t) + (2n+ 1)ϕn(t) = t2ϕn(t).

We get

w′n(t) = −
√

2

n
ϕn(t)ϕn−1(t).

Proposition 3.6. The density wn is the Schwartz function given by

wn(t) = −
√

2

n

∫ t

−∞
ϕn(s)ϕn−1(s)ds.

Remark. Let f be a Schwartz function on R. If∫
R
f(s)ds = 0,

then the function F defined by

F (t) =

∫ t

−∞
f(s)ds,

is a Schwartz function.

Let α
(n)
1 < α

(n)
2 < · · · < α

(n)
n denote the zeros of the Hermite polynomial

Hn. The derivative w′n(t) vanishes at α
(n)
1 , . . . , α

(n)
n , and α

(n−1)
1 , . . . α

(n−1)
n−1 .

The zeros of Hn−1 interlace the zeros of Hn:

α
(n)
1 < α

(n−1)
1 < α

(n)
2 ≤ · · ·α(n−1)

n−1 < α(n)
n .

The function wn admits a local maximum at each zero α
(n)
i of Hn and a local

minimum at each zero α
(n−1)
i of Hn−1.
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Graph of the function wn, for n = 11
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4 Theorem of Wigner

The Fourier transform of the statistical distribution of the eigen-
values

We assume that Q(t) = t2. Recall the Laguerre polynomials:

Lαm(x) = ex
x−α

n!

( d
dx

)m
(e−xxm+α).
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Proposition 4.1. The Fourier transform of the statistical distribution of the
eigenvalues

M̂n(τ) =

∫
R
e−itτMn(dt),

is given by

M̂n(τ) =
1

n
e−

τ2

4 L1
n−1

(τ 2

4

)
.

Proof.
Recall that

wn(t) =
1

n
Kn(t, t) =

1

n

n1∑
k=0

ϕk(t)
2.

We determine first the Fourier transform of

Wr(t) =
∞∑
k=0

rkϕk(t)
2. (0 < r < 1).

By using the classical formula of Mehler:

∞∑
k=0

1

2kk!
Hk(x)2 =

1√
1− r2

e2x2 r
1+r ,

one gets

Wr(t) =
1√
π

1√
1− r2

e−
1−r
1+r

t2 .

This is a Gaussian function, whose Fourier transform is given by

Ŵr(τ) =
1

1− r
e−

1+r
1−r

τ2

4 .

We consider the product of two power series:( ∞∑
k=0

rk
)( ∞∑

k=0

ϕk(t)
2rk
)

=
∞∑
k=0

( n∑
k=0

ϕk(t)
2
)
rn

=
∞∑
n=0

Kn+1(t, t)rn.

or
1

1− r
Wr(t) =

∞∑
n=0

K(t, t)rn.
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Therefore
1

1− r
Ŵr(τ) = e

τ2

4
1

(1− r)2
e−

r
1−r

τ2

2 .

and one recognizes the generating function of the Laguerre polynomials L1
n:

= e−
τ2

4

∞∑
n=0

rnL1
n

(τ 2

2

)
.

Recall the Lévy-Kramér Theorem: let µn be a sequence of probability mea-
sures on R such that, for every τ ∈ R,

lim
n→∞

µ̂n(τ) = ϕ(τ),

the function ϕ being continuous at 0. Then the sequence µn converges for
the tight topology to a probability measure µ, whose Fourier transform is
equal to ϕ: for every continuous bounded function f on R,

lim
n→∞

∫
R
f(t)µn(dt) =

∫
R
f(t)µ(dt).

Semi-circle law σa: for a > 0,∫
R
f(t)σa(dt) =

2

πa2

∫ a

−a
f(t)
√
a2 − t2dt.

Theorem 4.2. (Theorem of Wigner) After scaling, the statistical distribu-
tion of the eigenvalues Mn converges to the semi-circle law σa with a =

√
2,

for the tight topology. Precisely, for every continuous bounded function f on
R,

lim
n→∞

∫
R
f
( t√

n

)
Mn(dt) =

1

π

∫ √2

−
√

2

f(u)
√

2− u2du.

Proof.
By the Lévy-Cramér Theorem it amounts to showing that

lim
n→∞

M̂n

( τ√
n

)
= σ̂a(τ).

Introduce the function

F (τ) =
2

π

∫ 1

−1

e−itτ
√

1− t2dt.
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Up to a simple factor it is a Bessel function:

J1(τ) =
τ

2
F (τ).

One uses power series expansions:

M̂n

( τ√
n

)
= e−

τ2

4n

n−1∑
k=0

(−1)kck(n)
1

k!(k + 1)!

(τ 2

2

)k
,

with

ck(n) =
(n− 1)(n− 2) . . . (n− k)

nk
,

and

F (τ
√

2) =
∞∑
k=0

(−1)k
1

k!(k + 1)!

(τ 2

2

)k
.

It follows that
lim
n→∞

M̂n

( τ√
n

)
= F (

√
2τ) = σ̂√2(τ).

5 The probabilities An(B)

For a Borel set B ⊂ R, one denotes by An(B) the probability, for a random
matrix x, to have no eigenvalues in B: the set B is a gap in the spectrum of
x. Let λmax be the largest eigenvalue of the random matrix x. Then

Pn({λmax ≤ α}) = An(]α,∞[).

The probability for a random matrix x to be positive definite is given by

An(]−∞, 0[) = Pn(Ωn),

where Ωn ⊂ Herm(n,F) denote the cone of positive definite Hermitian ma-
trices. We will see that, using the fact that the n-process of the eigenvalues
is determinantal, the probabilities An(B) can be evaluated in terms of Fred-
holm determinants.
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Fredholm determinant

Let (X,µ) be a measured space with µ(X) <∞, and K(x, y) a bounded
measurable kernel on X. For z ∈ C, the Fredholm determinant D(z) =
Det(I − zK) is defined by the series

D(z) = Det(I − zK) = 1− z
∫
X

K(x, x)µ(dx) + · · ·

+
(−1)n

n!
zn
∫
Xn

K

(
x1 . . . xn
x1 . . . xn

)
µ(dx1) . . . µ(dxn) + · · · .

One shows that this series converges for all z ∈ C, and define an entire
function of z. Define the integral operator

(Lf)(x) =

∫
X

K(x, y)f(y)µ(dy).

If L is of finite rank, then

Det(I − zK) = det(I − λL).

Theorem 5.1. (Mercer) Assume X to be a compact topological space, and
supp(µ) = X. If the kernel K is continuous, Hermitian, of positive type,
then L is nuclear, and

Det(I − zK) =
∏
k

(1− zαk),

where αk are the positive eigenvalues of L.

Recall the modified Christoffel-Darboux kernel

Kn(s, t) =
n−1∑
k=0

ϕk(s)ϕk(s).

Proposition 5.2. Assume B ⊂ R to be of finite measure µ(B) <∞. Then

An(B) = DetB(I −Kn).

The index B means that the kernel Kn(s, t) is restricted to B.

24



Let χ be the characteristic function of the set B. Then the characteristic
function of the set {∀j, xj 6∈ B} is

n∏
j=1

(
1− χ(xj)

)
.

Therefore

An(B) =

∫
Rn

n∏
j=1

(
1− χ(xj)

)
qn(x1, . . . , xn)dx1 . . . dxn.

More generally we will compute

A(z) =

∫
Rn

n∏
j=1

(
1− zχ(xj)

)
qn(x1, . . . , xn)dx1 . . . dxn.

Recall the formulas for the elementary symmetric functions

σ1(α1, . . . , αn) = α1 + · · ·αn,
σ2(α1, . . . , αn) =

∑
i<j

αiαj,

. . . . . .
σn(α1, . . . , αn) = α1 . . . αn,

and
n∏
j=1

(1− zαj) = 1− σ1z + σ2z
2 − · · ·+ (−1)nσnz

n.

Therefore

n∏
j=1

(
1− zχ(xj)

)
=

n∑
k=0

(−1)kzkσk
(
χ(x1), . . . , χ(xn)

)
.

We compute now the integral of each term. By using the symmetry of the
function q we obtain∫

Rn
σk
(
χ(x1), . . . , χ(xn)

)
qn(x1, . . . , xn)dx1 . . . dxn

=

(
n
k

)∫
Rn
χ(x1) . . . χ(xk)qn(x1, . . . , xn)dx1 . . . dxn
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=
1

k!

∫
Bk
Rk(x1, . . . , xk)dx1 . . . dxk,

where Rk is the k-th correlation function.

We get finally

A(z) =
n∑
k=0

(−1)k

k!
zk
∫
Bk
Rk(x1, . . . , xk)dx1 . . . dxk.

We use now the fact that the n-point process of the eigenvalues is determi-
nantal and get

A(z) =
n∑
k=0

(−1)k

k!
zk
∫
Bk
Kn

(
x1 . . . xk
x1 . . . xk

)
dx1 . . . dxk

= DetB(I − zKn).

Asymptotics of the probability An(B)

Define the kernel K,

K(ξ, η) =
1

π

sin(ξ − η)

ξ − η
.

Theorem 5.3. Let B ⊂ R be a Borel set. Then

lim
n→∞

An

( 1√
2n
B
)

= DetB(I −K).

Define

K̃n(ξ, η) = Kn

( 1√
2n
ξ,

1√
2n
η)

1√
2n
.

By using asymptotics of the Hermite functions ϕn, on shows that

lim
n→∞

K̃n(ξ, η) = K(ξ, η).

In case B = [−a, a], consider the integral operator L with kernel K:

(Lf)(ξ) =

∫ a

−a
K(ξ, η)f(η)dη.
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The eigenfunctions ψj of L are prolate spheroidal wave functions: Lψj =
αjψj, and

DetB(I −K) =
∞∏
j=1

(1− αj).

One can show that the eigenvalues αj go to zero very rapidly (See [Mehta,1991]).

6 Logarithmic potential theory

Energy, equilibrium measure

Let Σ ⊂ R be a interval and Q a function defined on Σ with values on
]−∞,∞], continuous on int(Σ). If Σ is unbounded, it is assumed that

lim
|x|→∞

(
Q(x)− log(x2 + 1)

)
=∞.

Some examples

- Σ = R, Q(x) = x2.
- Σ = [−1, 1], Q(x) = α log 1

1−x + β log 1
1+x

.

- Σ = [0,∞[, Q(x) = x+ α log 1
x
.

If µ is a probability measure supported by Σ, the energy E(µ) of µ is
defined by

E(µ) =

∫
Σ×Σ

log
1

|x− y|
µ(dx)µ(dy) +

∫
Σ

Q(x)µ(dx)

=

∫
Σ

Uµ(x)µ(dx) +

∫
Σ

Q(x)µ(dx),

where Uµ is the logarithmic potential of the measure µ:

Uµ(x) =

∫
Σ

log
1

|x− y|
µ(dy).

One shows that the energy E(µ) is bounded from below: E(µ) ≥ m, where

m = inf
x∈Σ

(
Q(x)− log(x2 + 1)

)
.

We define
E∗ = inf{E(µ) | µ ∈ Prob(Σ)}.
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Theorem 6.1. There is a unique probability measure µ∗ ∈ Proba(Σ) such
that

E(µ∗) = E∗.

The support of µ∗ is compact.

µ∗ is called the equilibrium measure.

Prokhorov’s criterium

Consider on Prob(R) the tight topology. For a set of measures M ⊂
Prob(R) to be relatively compact it is necessary and sufficient that, for any
ε > 0, there is a compact set K ⊂ R such that, for all measures µ in M ,

µ(K) ≥ 1− ε.

As a consequence: let M ⊂ Prob(R). Assume that there is a measurable
function h ≥ 0 such that

lim
|x|→∞

h(x) =∞,

and a constant C such that, for all µ ∈M ,∫
R
h(x)µ(dx) ≤ C.

Then M is relatively compact.

a) Existence One shows that the map

µ 7→ E(µ)

is lower semi-continuous for the tight topology:
If µn is a sequence in Prob(R) supported by Σ which converges to the

measure µ for the tight topology, one shows that

E(µ) ≤ lim inf
n→∞

E(µn).

It follows that, for C > E∗, the set

MC = {µ ∈ Proba(Σ) | E(µ) ≤ C}
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is closed. We will prove that this set is relatively compact by using Prokhorov’s
criterium. Define

k(x, y) = log
1

|x− y|
+

1

2
Q(x) +

1

2
Q(y).

Then

E(µ) =

∫
Σ×Σ

k(x, y)µ(dx)µ(dy).

Define
h(x) = Q(x)− log(x2 + 1).

Then

k(x, y) ≥ 1

2
h(x) +

1

2
h(y)

and, for µ ∈MC , ∫
Σ

h(x)µ(dx) ≤ C.

We have proved that MC is compact. Therefore there exists µ = µ∗ ∈
Prob(Σ) such that

E(µ∗) = E∗ := inf{E(µ) | µ ∈ Prob(Σ)}.

b) One shows that a measure µ ∈ Proba(Σ) with E(µ) = E∗ is compactly
supported.

c) Uniqueness One shows that the map

µ 7→ E(µ),

restricted to the set of compactly supported measures in Prob(Σ), is strictly
convex. Consider µ1 6= µ2 ∈ Prob(Σ), and, for 0 ≤ t ≤ 1, the energy of
(1− t)µ1 + tµ2:

E
(
(1− t)µ1 + tµ2

)
= at2 + bt+ c,

with

a =

∫
R

log
1

|x− y|
ν(dx)ν(dy), ν = µ1 − µ2.

The coefficient a is > 0 by the following Fourier analysis lemma:
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Lemma 6.2. Let ν be a signed measure on R with compact support and zero
integral. Then ∫

R2

log
1

|x− y|
ν(dx)ν(dy) =

∫ ∞
0

|ν̂(t)|2

t
dt,

where ν̂ is the Fourier transform of ν:

ν̂(t) =

∫
R
eitxν(dx).

The following statement, which is not the best possible, works for the
examples we have in mind.

Proposition 6.3. Let µ ∈ Proba(Σ) with compact support. Assume that the
potentiel Uµ of µ is continuous and that there is a constant C such that
(i) Uµ(x) + 1

2
Q(x) ≥ C on Σ,

(ii) Uµ(x) + 1
2
Q(x) = C on supp(µ).

Then µ is the equilibrium measure: µ = µ∗.

The constant C is called the (modified) Robin constant. Observe that

E∗ = C +
1

2

∫
Σ

Q(x)µ∗(dx).

The idea of the proof is that µ∗ should be a critical point of the energy under
the condition µ(Σ) = 1. The differential of the energy should be proportional
to the linear form µ→ µ(Σ). For two measures µ and ν,

E(µ+ ν) = E(µ) + 2

∫
Σ

(
Uµ(x) +

1

2
Q(x)

)
ν(dx)

+

∫
Σ2

log
1

|x− y|
ν(dx)ν(dy).

This gives Uµ∗(x) + 1
2
Q(x) = C. This argument is not correct, because one

has to take into account that the minimum is relative to the set of positive
measures µ with µ(Σ) = 1.

Examples

a) Σ = [−1, 1], Q(x) = 0. Then the equilibrium measure µ∗ is the arcsinus
law: ∫

[−1,1]

ϕ(x)µ∗(dx) =
1

π

∫ 1

−1

ϕ(x)
dx√

1− x2
.
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b) Σ = R, Q(x) = x2. Then the equilibrium measure µ∗ is the semi-circle
law: ∫

R
ϕ(x)µ∗(dx) =

1

π

∫ √2

−
√

2

ϕ(x)
√

2− x2dx.

c) Σ =]0,∞[, Q(x) = x + (c − 1) log 1
x

(c > 1). Then the equilibrium
measure is the Marchenko-Pastur law∫

]0,∞[

ϕ(x)µ∗(dx) =
1

2π

∫ b

a

ϕ(x)
√

(x− a)(b− x)
dx

x
,

with a = (
√
c− 1)2, b = (

√
c+ 1)2.

7 Pastur’s formula

Theorem 7.1. Let Σ = R, and Q a polynomial of even degree 2k (k ≥ 1),
convex. Then the equilibrium measure µ∗ is given by∫

R
f(x)µ∗(dx) =

1

π

∫ b

a

f(x)q(x)
√

(x− a)(b− x)dx,

where q is the polynomial of degree 2k − 2 given by

q(x) =
1

2π

∫ b

a

Q′(x)−Q′(t)
x− t

dt√
t− a)(b− t)

.

The numbers a and b are determined by the conditions∫ b

a

Q′(t)√
t− a)(b− t)

dt = 0,

∫ b

a

tQ′(t)√
(t− a)(b− t)

dt = 2π.

Example

For Q(x) = x2,
Q′(x)−Q′(t)

x− t
= 2.

Hence

q(z) =
1

π

∫ b

a

dt√
(t− a)(b− t)

= 1.
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The numbers a and b are determined by∫ b

a

2t√
(t− a)(b− t)

dt = 0,

∫ b

a

2t2√
(t− a)(b− t)

dt = 2π.

The first equation gives a+ b = 0, and the second a2 = b2 = 2. Therefore µ∗

is the semi-circle law of radius
√

2.

For the proof of Pastur’s formula we will use some complex analysis. The
Cauchy-Stieltjes transform of a bounded measure µ on R is the function
defined on C \ supp(µ) by

Gµ(z) =

∫
R

1

z − t
µ(dt).

The Cauchy-Stieltjes transform is holomorphic.

We will use some properties of the boundary value distribution of a holo-
morphic function. Let f be holomorphic in C \ R. It is said of moderate
growth near R if, for every compact set K ⊂ R, there are ε > 0, N > 0, and
C > 0 such that

|f(x+ iy)| ≤ C

|y|N
(x ∈ K, 0 < |y| ≤ ε).

Then the formula, with ϕ ∈ D(R),

〈T, ϕ〉 = lim
ε→0,ε>0

∫
R
ϕ(t)

(
f(t+ iε)− f(t− iε)

)
dt,

defines a distribution on R which is denoted by T = [f ], and called the
difference of boundary values of f . One shows that the function extends as
a holomorphic function in C \ supp([f ]). In particular, if [f ] = 0, then f
extends as a holomorphic function in C.

Theorem 7.2. Let µ be a bounded positive measure on R.
(i) The Cauchy-Stieltjes transform Gµ is of moderate growth near R, and

[Gµ] = −2iπµ.

(ii) Assume that the support of µ is compact. Let F be holomorphic in
C \ R, of moderate growth near R, such that

|F ] = −2iπµ, and lim
|z|→∞

F (z) = 0,

then F = Gµ.
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Example 1
Consider the probability measure µ on R defined, for a < b, by∫

R
f(t)µ(dt) =

1

π

∫ b

a

f(t)
dt√

(t− a)(b− t)
.

The function F , defined, for z 6∈ [a, b], by

F (z) =
1√

z − a)(z − b)
,

satisfies
[F ] = −2iπµ, lim

|z|→∞
F (z) = 0.

Therefore Gµ = F .

Example 2
The semi-circle law σa of radius a is defined by∫

R
f(t)σa(dt) =

2

πa2

∫ a

−a
f(t)
√
a2 − t2dt.

The function f defined, for z 6∈ [−a, a], by

F (z) =
√
z2 − a2,

satisfies [f ] = iπa2µ. Consider the Laurent expansion of f at infinity:

f(z) = z

√
1− a2

z2
= z − a2

2

1

z
+ · · · .

The function F , defined for z 6∈ [−a, a], by

F (z) = − 2

a2
f(z) +

a2

2
z,

satisfies
[F ] = −2iπσa, lim

|z|→∞
F (z) = 0.

Therefore

Gσa(z) =
a2

2
z − 2

a2

√
z2 − a2.
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Proof of Pastur’s formula
Taking the derivatives in the relation (ii) of Proposition 6.3 one gets

vp

∫
1

x− y
µ(dy) =

1

2
Q′(x) on supp(µ)

(vp : valeur principale). Such an equation has been considered by Tricomi.
The boundary value of Gµ is as follows:

lim
ε→0,ε>0

Gµ(x+ iε) = vp

∫
1

x− y
µ(dy)− iπµ.

Therefore (ii) of Proposition 6.3 leads to the relation

ReGµ(x) =
1

2
Q′(x)

(
x ∈ supp(µ)

)
.

For instance, for a =
√

2, the semi-circle law σa satisfies the relation

ReGσa(x) =
1

2
Q′(x) = x,

if Q(x) = x2.

Let us assume that the equilibrium measure is of the form

µ(dt) = u(t)dt,

where u is an integrable function with support [a, b]. We will determine the
Cauchy-Stieltjes transform of µ,

G(z) =

∫ b

a

u(t)

z − t
dt,

by using the relation

ReG(x) =
1

2
Q′(x), for a ≤ x ≤ b.

Put

G̃(z) =
G(z)√

(z − a)(z − b)
.
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The function G̃ is holomorphic in C \ [a, b], and

[G̃] = −i Q′(t)√
(t− a)(b− t)

χ(t),

where χ is the charasteristic function of [a, b]. Furthermore

G̃(z) ∼ 1

z2
(|z| → ∞).

By the previous theorem

G(z) =
1

2π

∫ b

a

1

z − t
Q′(t)√

(t− a)(b− t)
dt,

which can be written

G̃(z) = − 1

2π

Q′(z)−Q′(t)
z − t

dt√
t− a)(b− t)

dt+Q′(z)
1

2π

∫ b

a

1

z − t
dt√

(t− a)(b− t)
dt.

We have seen that

1

π

∫ b

a

1

z − t
dt√

(t− a)(b− t)
. =

1√
(z − a)(z − b)

.

Therefore

G̃(z) = −q(z) +
1

2
Q′(z)

1√
(z − a)(z − b)

,

and

G(z) = −q(z)
√

(z − a)(z − b) +
1

2
Q′(z).

Let us take the difference of the boundary values:

[G] = −2iq(t)
√

(t− a)(b− t)χ(t).

Since [G] = −2iπµ, we get

u(t) =
1

π
q(t)

√
(t− a)(b− t)χ(t).

Consider the Laurent development at infinity of G̃:

G̃(z) =
1

2π

1

z − t
Q′(t)√

(t− a)(b− t)
dt =

a0

z
+
a1

z2
+ · · ·
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with

a0 =
1

2π

∫ b

a

Q′(t)
√

(t− a)(b− t)dt, a1 =
1

2π

tQ′(t)√
(t− a)(b− t)

dt.

From this one gets the Laurent development of G:

G(z) = G̃(z)
√

(z − a)(b− z)

=
(a0

z
+
a1

z2
+ · · ·

)(
z − a+ b

2
− (a− b)2

8

1

z
+ · · ·

)
= a0 +

(
a1 − a0

a+ b

2

)1

z
+ · · ·

Observing that G(z) ∼ 1
z
, we get the conditions a0 = 0, a1 = 1. Under these

conditions µ(dt) = u(t)dt is a probability measure. In fact, the function q is
positive since the function Q is convex. One shows that

d

dx
Uµ(x) +

1

2
Q′(x) = −q(x)

√
(a− x)(b− x), if x < a,

= 0, if a ≤ x ≤ b,
= q(x)

√
(x− a)(x− b), if x ≥ b.

Therefore there is a constant C such that

Uµ(x) +
1

2
Q(x) = C, if a ≤ x ≤ b,

≥ C everywhere.

This establish that µ is actually the equilibrium measure.

8 Generalized theorem of Wigner

We come back to the n-point process of the eigenvalues. Σ ⊂ R is an interval.
Q is a continuous function on Σ such that

lim
t→∞

Q(t)− log(1 + t2) =∞,

and β > 0.
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On Confn(Σ) we consider the probability

Pn(dx) =
1

Zn

∫
Σn

exp
(
−n

n∑
i=1

Q(xi)
)
|V (x)|βdx1 . . . dxn.

The partition function Zn is given by

Zn =

∫
Σn

exp
(
−n

n∑
i=1

Q(xi)
)
|V (x)|βdx1 . . . dxn.

and the statistical distribution of the eigenvalues Mn by∫
Σ

f(t)Mn(dt) =

∫
Σn

( 1

n

n∑
i=1

f(xi)
)
Pn(dx).

We have modified the definitions by a different scaling. This makes pos-
sible to treat more general functions Q. In the Gaussian case: Σ = R, and
Q(t) = t2, the function Q being homogeneous, we get the simple relations∫

Rn
ϕ(

x√
n

)Pn(dx) =

∫
Rn
ϕ(y)Pn(dy),∫

R
f
( t√

n

)
Mn(dt) =

∫
R
f(u)Mn(du).

Zn = nN(β)Zn,

with N(β) = n+ β
2
n(n− 1).

The asymptotic of the partition function Zn and the limit of the statistical
distribution Mn of the eigenvalues are related to the following problem in
logarithmic potential theory:

Energy on Prob(Σ):

E(µ) =
β

2

∫
Σ2

log
1

|s− t|
µ(ds)µ(dt) +

∫
Σ

Q(t)µ(dt).

Equilibrium energy:

E∗ = inf{E(µ) | µ ∈ Prob(Σ)},

and µ∗ is the equilibrium measure.
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Theorem 8.1. (i) The asymptotic of the partition function is given by

lim
n→∞

1

n2
logZn = −E∗.

(ii) For a bounded continuous function f

lim
n→∞

∫
Σ

f(t)Mn(dt) =

∫
Σ

f(t)µ∗(dt).

The idea of the proof comes from Laplace integrals, i.e. integrals of the
form

Z(λ) =

∫
U

e−λϕ(x)a(x)m(dx),

where U is an open set in Rn, ϕ is a continuous function on U , a is contin-
uous, positive and integrable, m is the Lebesgue measure. Furthermore one
assumes that

lim
‖x‖→∞

ϕ(x) =∞,

and ϕ attains its infimum in only one point x0. One considers also the
integral, where f is continuous and bounded:

I(λ; f) =
1

Z(λ)

∫
U

f(x)e−λϕ(x)a(x)m(dx).

Proposition 8.2.

lim
λ→∞

1

λ
logZ(λ) = −ϕ(x0),

lim
λ→∞

I(λ; f) = f(x0).

However, in the situation of the integral defining the partition function
Zn, the situation is less simple because the number n of integration variables
goes to infinity. The integrant can be written

exp−n2
(β

2

∑
i 6=j

log
1

|xi − xj|
1

n2
+

n∑
i=1

Q(xi)
1

n
.

Heuristacally

Zn =

∫
Σn

exp
(
−n2E

(
µ(x)
))
dx1 . . . dxn,
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with

µ(x) =
1

n

n∑
i=1

δxi .

But this is not correct since E(µ(x)) =∞.
The proof of Theorem 8.1 is somewhat sophisticated and we will not give

it (see [Deift,1998], also [Faraut,2014]).

9 Electrostatistic model of Stieltjes

In the proof of Theorem 8.1 one has to consider points x(n) = (x
(n)
1 , . . . , x

(n)
n )

in Σn where the function

exp
(
−n

n∑
i=1

Q(xi)
)
|V (x)|β

attains its maximum. In this section we look at the Gaussian case, and see
that such a point x(n) is related to the zeros of the Hermite polynomials.
This has been observed by Stieltjes as he was studying the distribution of
the zeros of the classical orthogonal polynomials.

Consider the function F on Rn:

F (x) = e−‖x‖
2

Vn(x)2.

The function F is ≥ 0, continuous and

lim
‖x‖→∞

F (x) = 0.

We will determine the points where F attains its maximum.
Let E = − logF ,

E(x) = 2
∑
i<j

log
1

|xi − xj|
+

n∑
i=1

x2
i .

Stieltjes considers that it is the energy of a system of n particules in R. We
will determine the points where the function E attains its minimum.
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Proposition 9.1. The function E attains its minimum at the n! points whose
coordinates are the n zeros of the Hermite polynomial Hn.

Proof.
Such a point is a critical point.

∂E

∂xj
= −2

∑
i 6=j

1

xj − xi
+ 2xj.

x = (x1, . . . , xn) is critical for E if∑
i 6=j

1

xj − xi
= xj.

To a critical point x we associate the polynomial

px(t) = (t− x1)(t− x2) . . . (t− xn).

Consider the logarithmic derivative

p′x(t)

px(t)
=

n∑
i=1

1

t− xi
.

Fix j and write,
p′x(t)

px(t)
− 1

t− xj
=
∑
i 6=j

1

t− xi
.

Lemma 9.2. f is of class C2 on R, f(t0) = 0, f ′(t0) 6= 0. Then

lim
t→t0

(f ′(t)
f(t)

− 1

t− t0

)
=

f ′′(t0)

2f ′(t0)
.

By the lemma, as t→ xj, we get

p′′x(xj)

2p′x(xj)
= xj, or p′′x(xj)− 2xjp

′
x(xj) = 0.

Hence the polynomial p′′x(t)−2tp′x(t) vanish at the n points x1, . . . , xn, there-
fore is proportional to px:

p′′x(t)− 2tp′x(t) = Cpx(t).
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Looking at the coefficient of tn, we get C = −2n: the polynomial px satisfies
the differential equation

p′′x(t)− 2tp′x(t) + 2npx(t) = 0.

A polynomial which is solution of this differential equation is proportional
to the Hermite polynomial Hn.

10 Wishart Unitary Ensemble or Laguerre

Unitary Ensemble

Ωn : cone of positive definite n×n Hermitian matrices in the real vector space
Hn = Herm(n,C). For p > n − 1, the Wishart law W p

n is the probability
measure on Ωn defined by∫

Ωn

f(x)W p
n(dx) =

1

Zn(p)

∫
Ωn

f(x)e−trx(detx)n−pm(dx).

The function Zn(p) is the gamma function of the cone Ωn:

Zn(p) =

∫
Ωn

e−trx(det)p−nm(dx)

= (2π)
n(n−1)

2

n∏
j=1

Γ(p− j + 1).

The n-point process of the eigenvalues is given by the following measure
on Rn:

Pn(dx) =
1

Zn(p)
e−(x1+...+xn)

n∏
j=1

xn−pj Vn(x)2.

Let Mp
n denote the statistical distribution of the eigenvalues.

Consider Σ =]0,∞[, and

Q(t) = t+ (c− 1) log
1

t
.
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Recall the energy of a probability measure µ

E(µ) =

∫
Σ2

log
1

|s− t|
µ(ds)µ(dt) +

∫
Σ

Q(t)µ(dt).

It can be shown that the equilibrium measure is given by the Pastur’s formula.
It is the Marchenko-Pastur law µc:∫

Σ

f(t)µc(dt) =
1

2π

∫ b

a

f(t)
√

(t− a)(b− t)dt
t
,

where a = (
√
c− 1)2, b = (

√
c+ 1)2.

We can apply the generalized Wigner Theorem. Assume that p depends
on n: p = p(n).

Theorem 10.1. Assume that

lim
n→∞

p(n)

n
= c ≥ 1.

Then, for a bounded continuous function f on R,

lim
n→∞

∫
Σ

f
( t
n

)
Mp

n(dt) =

∫
Σ

f(t)µc(dt).

For 0 < c < 1, The Marchenko-Pastur has an atom at 0:∫
Σ

f(t)µc(dt) = (1− c)f(0) +
1

2π

∫ b

a

f(t)
√

(t− a)(b− t)dt
t
.

The proof has to be modified in that case.

11 The probability for a matrix to be positive

Let (Hn,Pn) be a Gaussian ensemble, and Ωn ⊂ Hn the cone of positive
definite matrices. What can be said about the numbers pn = Pn(Ωn), the
probability for a matrix x, to be positive positive ?

It is the probability that all eigenvalues are > 0. If the eigenvalues were
independant random variables, this probability would be 1

2n
. But it is not

the case. For n = 2, one computes easily

p2 =
2−
√

2

4
' 0.14,
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much less that 1
4

= 0.25.

For n ≤ 5, the numbers pn can be obtained from computations which can
be found in Kuriki’thesis (1992). In case of Vn = Sym(n,R) (β = 1) :

p1 = 0, 5

p2 =
2−
√

2

4
' 0, 14

p3 =
π − 2

√
2

4π
' 0, 023

p4 =
(4−

√
2)π − 8

16π
' 0, 002

p5 =
3π − 8−

√
2

24π
' 0, 00014

Actually pn goes to 0 very rapidly.

The probability pn = Pn(Ωn) is given by the integral

pn =
1

Cn

∫
Ωn

exp−tr (x2)m(dx),

with

Cn =

∫
Hn

exp−tr (x2)m(dx).

By using the Weyl integration formula,

pn =
Z+
n

Zn
,

with

Zn =

∫
Rn
e−

β
2

(x2
1+···+x2

n)|Vn(x)|βdx1 . . . dxn,

and

Z+
n =

∫
Rn+
e−

β
2

(x2
1+···+x2

n)|Vn(x)|βdx1 . . . dxn,

For simplicity we will only consider the case of GUE: β = 2.
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Let E∗ be the equilibrium energy for Σ = R, Q(t) = t2: the minimum of

E(µ) =

∫
R2

log
1

|s− t|
µ(ds)µ(dt) +

∫
R
Q(t)µ(dt),

for all µ ∈ Prob(R),
Then

lim
n→∞

1

n2
logZn = −E∗.

Let also E∗+ be the equilibrium energy for Σ = [0,∞[, Q(t) = t2: the
minimum of

E(µ) =

∫
R2

+

log
1

|s− t|
µ(ds)µ(dt) +

∫
R+

Q(t)µ(dt),

for all µ ∈ Prob(R+),
Then

lim
n→∞

1

n2
logZ+

n = −E∗+.

In the case (R, Q(t) = t2), the equilibrium measure is the semi-circle law,
and the equilibrium energy is

E∗ =
3

4
+

1

2
log 2.

In the case (R+, Q(t) = t2), the equilibrium measure has been determined
by Dean and Majumdar, and the equilibium energy is

E∗+ =
3

4
+

1

2
log 2 +

1

2
log 3.

Theorem 11.1. (Dean & Majumdar)

lim
n→∞

log pn = −1

2
log 3.

For the probability space (Hn,Pn), consider the conditionnal statistical
distribution of the eigenvalues with the condition :x ∈ Ωn, i.e. the matrice x
is positive definite, or the eigenvalues of x are > 0: for a function ϕ on R,∫

R
ϕ(t)M+

n (dt) = En

(
trϕ(x) | x ∈ Ωn

)
.

Let µ∗+ be the equilibrium measure in case (R+, Q(t) = t2)
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Theorem 11.2. (Dean & Majumdar)
The conditional statistical distribution M+

n converges to µ∗+, as n→∞.

By using a formula similar to Pastur’s formula, one obtains the density
of the Dean-Majumdar law: for a function f on R,∫

R
f(t)µ∗+(dt) =

1

π

∫ b

0

f(t)
(
t+

b

2

)√b− t
t
dt,

with b = 2
3

√
6.

As we did in Section 8 we rescale the Gaussian probability:

Pn(dx) =
1

Cn
exp
(
−ntr(x2)

)
Vn(x)2m(dx).

Consider the condition, for a matrix x, that its eigenvalues are all > σ. The
conditional statistical distribution Mσ

n of the eigenvalues is given by, for a
Borel ser B ⊂ R,

Mσ
n(B) = En

(
M (x)

n (B) | spectrum(x) ⊂ [σ,∞[
)
,

and for a function ϕ defined on R,∫
ϕ(t)Mσ

n(dt) = En
(
tr (x) | spectrum(x) ⊂ [σ,∞[

)
.

For the associated problem in Logarithmic Potential Theory, Σ = [σ,∞[,
Q(t) = t2. Let µ∗σ be the equilibrium measure. For a continuous bounded
function f on R,

lim
n→∞

∫
f(t)Mσ

n(dt) =

∫
f(t)µ∗σ(dt).

For σ ≤
√

2, the conditional statistical distribution of the eigenvalues is
the semi-circle law.

For σ = 0, the conditional statistical distribution of the eigenvalues is the
Dean-Majumdar law.

For σ ≥ −
√

2, the equilibrium measure µ∗σ has been determined in [Dean-
Majumdar,2008]:∫

f(t)µ∗σ(dt) =
1

π

∫ b

a

f(t)

√
b− t
t− q

(
t+

b− a
2

)
dt,
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with a = σ, b = 1
3
σ + 2

3

√
σ2 + 6. ONe checks that, for σ∗σ is nothing but the

semi-circle law, and that, for σ = 0, µ∗0is the Dean-Majumdar law.
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12 The Sylvester index of a random Hermi-

tian matrix

For an n × n Hermitian matrix x let k be the number of eigenvalues which
are ≥ 0, and ` the number of negative eigenvalues (k+` = n). The pair (k, `)
is the Sylvester index of the matrix x. We consider the following conditional
statistical distribution of the eigenvalues: for a Borel set B ⊂ R,

M(k,`)
n (B) = En

(
Mx)

n (B) | index(x) = (k, `)
)
.

One is interested in the asymptotic of M(k,`)
n as n → ∞ and k

`
→ δ, for

0 ≤ δ ≤ 1.
The associated problem in Logarithmic Potential Theory is as follows:

the conditional equilibrium energy is defined by

E∗δ = inf{E(µ) | µ ∈ Proba(R), µ([0,∞[) = δ}.
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It is shown in [Majumdar et al.,2011] that there is a unique probability
measure µ∗δ on R such that µ∗δ([0,∞[) = δ and E(µ∗δ) = E∗δ . Furthermore,
for a continuous bounded function f on R,

lim
n→∞, k

`
→δ

∫
f(t)M(k,`)

n (dt) =

∫
f(t)µ∗δ(dt.

Consider the following family of probability measures on R. Let a, b, c
be real numbers such that a < b < 0 < c. Define the measure µ(a,b,c) on R,
supported by [a, b] ∪ [0, c], by∫

f(t)µ(a,b,c)(dt) =
1

π

∫
[a,b]∪[0,c]

f(t)

√
t− a)(t− b)(c− t)

t
dt.

If
a+ b+ c = 0, a2 + b2 + c2 = 4,

then µ(a,b,c) is a probability measure and µ = µ(a,b,c) satisfies

ReGµ(x) = x on supp(µ).

Furthermore if µ(a,b,c)([0, c]) = δ, then µ(a,b,c) is the equilibrium measure,

µ(a,b,c) = µ∗δ .

Observe the limit cases: if

a = −
√

2, b = 0, c =
√

2,

then δ = 1
2

and µ(a,b,c) is the semi-circle law. If

a = b = −1

3

√
6, c =

2

3

√
6,

then δ = 1, and µ(a,b,c) is the Dean-Majumdar law.
The condition µ(a,b,c)([0, c]) = δ is difficult to handle. It involves elliptic

integrals. See [Pérez Castillo,2016].
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