
ASYMPTOTICS OF SPHERICAL FUNCTIONS FOR LARGE RANK,

AN INTRODUCTION

Jacques Faraut

This paper has been written following a talk given as an introduction
to the work of Okounkov and Olshanski about asymptotics of spherical
functions for compact symmetric spaces as the rank goes to infinity. This
topic belongs to the asymptotic harmonic analysis, i.e. the study of the
asymptotics of functions related to the harmonic analysis on groups or
homogeneous spaces as the dimension goes to infinity. Such questions
have been considered long time ago, for instance by Krein and Schoenberg
for Euclidean spaces, spheres and real hyperbolic spaces, which are
Riemannian symmetric spaces of rank one. The behaviour is very different
when the rank is unbounded, and new phenomenons arise in that case.

In this introductory paper we present the scheme developped by Ok-
ounkov and Olshanski for studying limits of spherical functions on a com-
pact symmetric space G(n)/K(n) as the rank n goes to infinity. These
limits are identified as spherical functions for the Olshanski spherical pair
(G,K), with

G =
∞⋃

n=1

G(n), K =
∞⋃

n=1

K(n).

We will explain results and methods in the special case of the unitary
groups U(n). This amounts to studying asymptotics of Schur functions.
The proof uses a binomial formula for Schur functions involving shifted
Schur functions. This presentation is based on two papers: [Okounkov-
Olshanski, 1998c], for the type A, and [Okounkov-Olshanski,2006], for the
type BC. The case of the unitary groups have been considered by Vershik
and Kerov, following a slightly different method ([1982]).

In Section 5 we present without proof general results by Okounkov and
Olshanski for series of classical compact symmetric spaces, and finally in
Section 6 we consider the cases for which there is a determinantal formula
for the spherical functions.
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1. Olshanski spherical pairs. — Let us recall first what is a spherical
function for a Gelfand pair. A pair (G,K), where G is a locally compact
group, and K a compact subgroup, is said to be a Gelfand pair if the
convolution algebra L1(K\G/K) of K-biinvariant integrable functions on
G is commutative. Fix now a Gelfand pair (G,K). A spherical function
is a continuous function ϕ on G which is K-biinvariant, ϕ(e) = 1, and
satisfies the functional equation∫

K

ϕ(xky)α(dk) = ϕ(x)ϕ(y) (x, y ∈ G),

where α is the normalized Haar measure on the compact group K. The
characters χ of the commutative Banach algebra L1(K\G/K) are of the
form

χ(f) =
∫

G

f(x)ϕ(x)m(dx),

where ϕ is a bounded spherical function (m is a Haar measure on the
group G, which is unimodular since (G,K) is a Gelfand pair).

If the spherical function ϕ is of positive type (i.e positive definite), there
is an irreducible unitary representation (π,H) with dimHK = 1, where
HK denotes the subspace of K-invariant vectors in H, such that

ϕ(x) =
(
u|π(x)u

)
,

with u ∈ HK , ‖u‖ = 1. The representation (π,H) is unique up to
equivalence. An irreducible unitary representation (π,H) with dimHK =
1 is said to be spherical , and the set Ω of equivalence classes of spherical
representations will be called the spherical dual for the pair (G,K).
Equivalently Ω is the set of spherical functions of positive type. We will
denote the spherical functions of positive type for the Gelfand pair (G,K)
ϕ(λ;x) (λ ∈ Ω, x ∈ G).

Consider now an increasing sequence of Gelfand pairs
(
G(n),K(n)

)
:

G(n) ⊂ G(n+ 1), K(n) ⊂ K(n+ 1), K(n) = G(n) ∩K(n+ 1),

and define

G =
∞⋃

n=1

G(n), K =
∞⋃

n=1

K(n).

We say that (G,K) is an Olshanski spherical pair. A spherical function
for the Olshanski spherical pair (G,K) is a continuous function ϕ on G,
ϕ(e) = 1, which is K-biinvariant and satisfies

lim
n→∞

∫
K(n)

ϕ(xky)αn(dk) = ϕ(x)ϕ(y) (x, y ∈ G),
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where αn is the normalized Haar measure on K(n). As in the case
of a Gelfand pair, if ϕ is a spherical function of positive type, there
exists a spherical representation (π,H) of G (i.e irreducible, unitary, with
dimHK = 1) such that

ϕ(x) =
(
u|π(x)u

)
,

with u ∈ HK , ‖u‖ = 1. In the same way the spherical dual Ω is identified
with the set of spherical functions of positive type. Such a function will
be written ϕ(ω;x) (ω ∈ Ω, x ∈ G).

On Ω, seen as the set of spherical functions of positive type, we will
consider the topology of uniform convergence on compact sets.

We will consider the following question. Let Ωn be the spherical dual
for the Gelfand pair

(
G(n),K(n)

)
, and let us write a spherical function of

positive type for
(
G(n),K(n)

)
as ϕn(λ, x) (λ ∈ Ωn, x ∈ G(n)). For which

sequences (λ(n)), with λ(n) ∈ Ωn, does there exist ω ∈ Ω such that

lim
n→∞

ϕn(λ(n);x) = ϕ(ω;x) (x ∈ G) ?

In the cases we will consider, there is, for each n, a map

Tn : Ωn → Ω,

such that, if
lim

n→∞
Tn(λ(n)) = ω,

for the topology of Ω, then

lim
n→∞

ϕn(λ(n);x) = ϕ(ω;x).

It is said that (λ(n)) is a Vershik-Kerov sequence.
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2. The unitary group. — For a compact group U , we consider the
pair

G = U × U, K = {(u, u) | u ∈ U} ' U.

Then G/K ' U . A K-biinvariant function f on G is identified to a central
function ϕ on U by

f(x, y) = ϕ(xy−1).

The convolution algebra L1(K\G/K) is isomorphic to the convolution
algebra L1(U)central of central integrable functions on U , which is com-
mutative. Hence (G,K) is a Gelfand pair. We will say that a continuous
central function ϕ is spherical if ϕ(e) = 1, and∫

U

ϕ(xuyu−1)α(du) = ϕ(x)ϕ(y) (x, y ∈ U),

where α is the normalized Haar measure on U . In fact it amounts to
saying that the corresponding function f on G is spherical for the Gelfand
pair (G,K).

If (π,H) is an irreducible representation of U , then the normalized
character

ϕ(u) =
χπ(u)
χπ(e)

, χπ(u) = tr
(
π(u)

)
,

is a spherical function, and all spherical functions are of that form. Hence
the spherical dual Ω for the pair (G,K) is the dual Û of the compact group
U .

For U = U(n), the unitary group, the spherical dual Ωn = Û(n) is
identified to the set of signatures

λ = (λ1, . . . , λn), λi ∈ Z, λ1 ≥ · · · ≥ λn.

The character χλ of an irreducible representation in the class λ is given by
a Schur function. Define, for t = (t1, . . . , tn) ∈ (C∗)n, α = (α1, . . . , αn) ∈
Zn,

Aα(t) = det(tαi
j ).

For a signature λ, the Schur function sλ is given by

sλ(t) =
Aλ+δ(t)
V (t)

,

where δ = (n − 1, n − 2, . . . , 1, 0), V (t) = Aδ(t) is the Vandermonde
determinant:

V (t) =
∏
i<j

(ti − tj).

For a diagonal matrix u = diag(t1, . . . , tn),

χλ(u) = sλ(t).
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3. The infinite dimensional unitary group. — The infinite
dimensional unitary group U(∞) is defined as

U(∞) =
∞⋃

n=1

U(n).

One associates to U(∞) the following inductive limit of Gelfand pairs:

G(n) = U(n)× U(n), K(n) =
{
(u, u) | u ∈ U(n)

}
,

G =
∞⋃

n=1

G(n) = U(∞)× U(∞),

K =
∞⋃

n=1

K(n) =
{
(u, u) | u ∈ U(∞)

}
.

Let us first state the following result by Voiculescu [1976]. Consider a
power series

Φ(t) =
∞∑

m=0

cmt
m,

with

cm ≥ 0, Φ(1) =
∞∑

m=0

cm = 1, |t| ≤ 1.

Define the function ϕ on U(∞) by

ϕ(g) = det Φ(g).

This means that the function ϕ is central, and,
if g = diag(t1, . . . , tn, 1, . . .), then

ϕ(g) = Φ(t1) . . .Φ(tn).

Theorem 3.1 (Voiculescu, 1976). — The function ϕ is of positive
type if and only if Φ has the following form

Φ(t) = eγ(t−1)
∞∏

k=1

1 + βk(t− 1)
1− αk(t− 1)

,

with

αk ≥ 0, 0 ≤ βk ≤ 1, γ ≥ 0,
∞∑

k=1

(αk + βk) <∞.
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We propose to call such a function a Voiculescu function. Let Ω0 be
the set of triples ω = (α, β, γ) as above. We will write

Φ(t) = Φ(ω; t),

and consider on Ω0 the topology corresponding to the uniform convergence
of the functions Φ(ω; ·) on the unit circle. This topology can be expressed
in terms of the parameters α, β, γ as follows: for a continuous function u
on R, put

Lu(ω) =
∞∑

k=1

αku(αk) +
∞∑

k=1

βku(−βk) + γu(0).

Then the topology of Ω0 coincides with the initial topology defined by the
functions Lu (i.e. the coarser topology for which all the functions Lu are
continuous).

The Voiculescu function Φ(ω; t) is meromorphic in t, with poles 1+ 1
αk

.
It is holomorphic in the disc |t| < r, with r = 1 + inf 1

αk
. Its logarithmic

derivative is holomorphic near 1:

d

dz
log Φ(ω; 1 + z) =

∞∑
m=0

amz
m,

with

a0 = γ +
∞∑

k=1

αk +
∞∑

k=1

βk,

am =
∞∑

k=1

αm+1
k + (−1)m

∞∑
k=1

βm+1
k , m ≥ 1.

Observe that
am = Lum

(ω) with um(s) = sm.

Theorem 3.2. — The spherical functions of positive type on U(∞)
are the following ones

ϕ(ω+, ω−; g) = det Φ(ω+; g) det Φ(ω−; g−1),

with ω+, ω− ∈ Ω0.
[Vershik-Kerov,1982], [Boyer,1983].

Hence the spherical dual of the Olshanski spherical pair (G,K) associ-
ated to U(∞) is the set Ω = Ω0 × Ω0 of pairs (ω+, ω−).
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We will now describe the sequences of signatures (λ(n)) with

λ(n) = (λ(n)
1 , . . . , λ(n)

n ) ∈ Ωn,

for which there exists ω = (ω+, ω−) such that

lim
n→∞

ϕn(λ(n); g) = ϕ(ω+, ω−; g).

We will first consider the case of positive signatures. We say that a
signature λ is positive if the numbers λi are ≥ 0, and we will denote
by Ω+

n the set of positive signatures in Ωn. One defines the Frobenius
parameters a = (ai) and b = (bi) of a positive signature λ as follows

ai = λi − i if λi > i, ai = 0 otherwise,
bj = λ′j − j + 1 if λ′j > j − 1, bj = 0 otherwise,

where λ′ is the transpose signature. For instance, if λ = (6, 4, 4, 2, 1), then
a = (5, 2, 1, 0, 0), b = (5, 3, 1, 0, 0).

We define the map

Tn : Ω+
n → Ω0, λ 7→ ω = (α, β, γ),

by

αk =
ak

n
, βk =

bk
n
, γ = 0.

Theorem 3.3. — Let λ(n) = (λ(n)
1 , . . . , λ

(n)
n ) be a sequence of positive

signatures. Assume that

lim
n→∞

Tn

(
λ(n)

)
= ω,

for the topology of Ω0. Then, for g ∈ U(∞),

lim
n→∞

ϕn(λ(n); g) = det Φ(ω; g),

uniformly on each U(k).
[Vershik-Kerov,1982], [Okounkov-Olshanski,1998c].
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Example

For two numbers p, k ∈ N with p ≥ k, consider the positive signature

λ = (p, . . . , p, 0, . . .),

where p is repeated k times. The Young diagram of λ is a rectangle with
sides p and k. The Frobenius parameters are a = (ai) with

ai = p− i if i ≤ k, ai = 0 if i > k,

and b = (bj) with

bj = k − j + 1 if j ≤ k, bj = 0 if j > k.

Observe that ∑
ai +

∑
bj = kp.

For a continuous function u on R,

Lu

(
Tn(λ)

)
=

k∑
i=1

p− i

n
u
(p− i

n

)
+

k∑
j=1

k − j + 1
n

u
(
−k − j + 1

n

)
.

Consider now two sequences (p(n)) and (k(n)), and let (λ(n)) be the
corresponding sequence of signatures. Assume that

p(n) ∼
√
n, k(n) ∼

√
n.

Then
lim

n→∞
Lu

(
Tn(λ(n))

)
= u(0).

This means that
lim

n→∞
Tn

(
λ(n)

)
= ω,

with ω = (0, 0, 1), i.e. αk = 0, βk = 0, γ = 1. Therefore

lim
n→∞

ϕn(λ(n); g) = det
(
exp(g − I)

)
= etr(g−I).
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We consider now the general case. To a signature λ one associates two
positive signatures λ+ and λ−: if

λ1 ≥ · · ·λp ≥ 0 ≥ λp+1 ≥ · · · ≥ λn,

then

λ+ = (λ1, . . . , λp, 0, . . .), λ− = (−λn, . . . ,−λp+1, 0, . . .).

One adds as many zeros as necessary to get positive signatures λ+, λ− in
Ω+

n Then we define the map

Tn : Ωn → Ω = Ω0 × Ω0

by extending the map Tn previously defined:

Tn(λ) =
(
Tn(λ+), Tn(λ−)

)
.

Theorem 3.4. — Let (λ(n)) be a sequence of signatures, with
λ(n) ∈ Ωn. Assume that

lim
n→∞

Tn(λ(n)) = ω = (ω+, ω−).

Then, for g ∈ U(∞),

lim
n→∞

ϕn(λ(n); g) = det Φ(ω+; g) det Φ(ω−; g−1)

uniformly on each U(k).
We will prove Theorem 3.3 in Section 5. For the proof of Theorem

3.4 see [Okounkov-Olshanski,1998c], and also [Faraut,2008]. The proof of
Theorem 3.3 will involve a binomial formula for Schur functions.

4. Binomial formula for Schur functions. — We will use a formula
for Schur expansions due to Hua ([Hua,1963], Theorem 1.2.1).

Proposition 4.1 (Hua’s formula). — Consider n power series:

fi(w) =
∞∑

m=0

c(i)m wm,

which are convergent for |w| < r for some r > 0. Define the function F
on Cn by

F (z) = F (z1, . . . , zn) =
det

(
fi(zj)

)
V (z)

|zj | < r.
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Then F admits the following Schur expansion:

F (z) =
∑

m1≥···≥mn≥0

amsm(z),

with
am = det

(
c
(i)
mj+n−j

)
.

In particular

lim
z1,...,zn→0

det fi(zj)
V (z)

= F (0) = a0 = det
(
c
(i)
n−j

)
.

For a positive signature m = (m1, . . . ,mn), the shifted Schur function
s∗m is defined, for a signature λ = (λ1, . . . , λn) by

s∗m =
det

(
[λi + δi]mj+δj

)
det

(
[λi + δi]δj

) ,

where δi = n− i, and

[a]k = a(a− 1) . . . (a− k + 1).

The functions s∗m(λ) are shifted symmetric functions. The ordinary Schur
function sm(x) is symmetric, i.e.

sm(. . . , xi, xi+1, . . .) = sm(. . . , xi+1, xi, . . .),

while the shifted Schur function s∗m(λ) satisfies:

s∗m(. . . , λi, λi+1, . . .) = s∗m(. . . , λi+1 − 1, λi + 1, . . .).

The algebra of symmetric functions is denoted by Λ, and the algebra
of shifted symmetric functions will be denoted by Λ∗. (See [Okounkov-
Olshanski,1998a] and [1998b].)

Theorem 4.2 (Binomial formula).

sλ(1 + z1, . . . , 1 + zn)
sλ(1, . . . , 1)

=
∑

m1≥···≥mn≥0

δ!
(m + δ)!

s∗m(λ)sm(z).

For n = 1 this is nothing but the classical binomial formula:

(1 + z)λ =
∞∑

m=0

1
m!

[λ]mwm.

10



Proof. The theorem is a straightforward application of Hua’s formula
(Proposition 4.1) in the case

fi(w) = (1 + w)λi+δi =
∞∑

m=0

1
m!

[λi + δi]mwm.

One observes that

sλ(1, . . . , 1) =
V (λ+ δ)
V (δ)

=
det

(
[λi + δi]δj

)
δ!

.

If λ is a positive signature, then s∗m(λ) = 0 if m 6⊆ λ, and

sλ(1 + z1, . . . , 1 + zn)
sλ(1, . . . , 1)

=
∑
m⊆λ

δ!
(m + δ)!

s∗m(λ)sm(z).

If, in Theorem 4.2, one takes z1 = z, z2 = 0, . . . , zn = 0, then one
obtains Lemma 3 in [Vershik-Kerov,1982]:

sλ(1 + z, 1, . . . , 1)
sλ(1, . . . , 1)

= 1 +
∞∑

m=1

1
n(n+ 1) . . . (n+m− 1)

h∗m(λ)zm.

The shifted complete symmetric function h∗m(λ) is denoted by Φm(λ) in
[Vershik-Kerov,1982]. By using the fact that the value of a determinant
does not change when adding to a column a linear combination of the
other ones, one obtains, with `i = λi + n− i,

h∗m(λ) =
1

V (`)

∣∣∣∣∣∣∣∣
[`1]m+n−1 [`1]n−2 . . . 1
[`2]m+n−1 [`2]n−2 . . . 1

...
...

...
[`n]m+n−1 [`n]n−2 . . . 1

∣∣∣∣∣∣∣∣
=

1
V (`)

∣∣∣∣∣∣∣∣
[`1]m+n−1 `n−2

1 . . . 1
[`2]m+n−1 `n−2

2 . . . 1
...

...
...

[`n]m+n−1 `n−2
n . . . 1

∣∣∣∣∣∣∣∣ .
By expanding now [x]m+n−1 in powers of x:

[x]m+n−1 = x(x− 1) . . . (x−m− n+ 2)

=
m∑

k=0

em−k

(
0,−1, . . . ,−(m+ n− 2)

)
xk+n−1

+ terms of degree < n− 1,
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where ek is the k-th elementary symmetric function, one obtains the
formula from Lemma 3 in [Vershik-Kerov,1982]:

h∗m(λ) =
m∑

k=0

em−k

(
0,−1, . . . ,−(m+ n− 2)

)
hk(`).

5. Proof of Theorem 3.3. — We follow the method of proof of
[Okounkov-Olshanski,1998c].

a) The morphism Λ → C(Ω0)

One defines an algebra morphism Λ → C(Ω0) which maps a symmetric
function f to a continuous function f̃ on Ω0. Since the power sums

pm(x1, . . . , xn, . . .) =
∑

i

xm
i

generate Λ as an algebra, this morphism is uniquely determined by their
images p̃m. One puts, for ω = (α, β, γ) ∈ Ω0, with α = (αk), β = (βk),

p̃1(ω) =
∞∑

k=1

αk +
∞∑

k=1

βk + γ,

p̃m(ω) =
∞∑

k=1

αm
k + (−1)m−1

∞∑
k=1

βm
k (m ≥ 2).

The functions p̃m are continuous on Ω0. In fact, as we saw above,
p̃m(ω) = Lu(ω), with u(s) = sm−1 (m ≥ 1).

Proposition 5.1. — The functions h̃m(ω) are the Taylor coefficients
of the Voiculescu function Φ(ω; t) at t = 1: for z ∈ C, |z| < r = inf 1

αk
,

Φ(ω; 1 + z) =
∞∑

m=0

h̃m(ω)zm.

Proof. One starts from the generating function of the complete symmetric
functions hm:

H(x; z) =
∞∑

m=0

hm(x)zm =
n∏

j=1

1
1− xjz

.

Its logarithmic derivative is given by

d

dz
logH(x; z) =

∞∑
m=0

pm+1(x)zm.
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On the other hand, as we saw in Section 3,

d

dz
log Φ(ω; 1 + z) =

∞∑
m=0

p̃m+1(ω)zm.

Therefore the coefficients cm(ω) defined by

Φ(ω; 1 + z) =
∞∑

m=0

cm(ω)zm,

are images, by the morphism f 7→ f̃ , of the complete symmetric functions
hm: cm(ω) = h̃m(ω).

Corollary 5.2. — For z = (z1, . . . , zn) ∈ Cn, |zj | < r,

n∏
j=1

Φ(ω; 1 + zj) =
∑

m1≥...≥m1≥0

s̃m(ω)sm(z).

Proof. Observe that the statement of Proposition 5.1 can be written:

H̃(ω; z) = Φ(ω; 1 + z),

and apply the morphism f 7→ f̃ to both sides of the Cauchy identity

n∏
j=1

H(x; zj) =
n∏

i,j=1

1
1− xizj

=
∑

m1≥...≥mn≥0

sm(x)sm(z).

b) Asymptotics of shifted symmetric functions

Proposition 5.3. — Consider a sequence (λ(n)) of positive signatures
with λ(n) ∈ Ω+

n , and let ω ∈ Ω0. Assume that, for the topology of Ω0,

lim
n→∞

Tn(λ(n)) = ω.

Then, for every shifted symmetric function f∗ ∈ Λ∗,

lim
n→∞

1
nm

f∗(λ(n)) = f̃(ω),

where m is the degree of f∗, and f is the homogeneous part of degree m
in f∗.
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We will prove the statement in the special case f∗ = q∗m:

q∗m(λ) =
∑
i≥1

([λi − i+ 1]m − [−i+ 1]m).

The function q∗m(λ) is shifted symmetric of degree m and the homogeneous
part of degree m is equal to the Newton power sum pm(λ). Since
the functions q∗m(λ) generate Λ∗ as an algebra, the statement of the
proposition will be proven.

Lemma. — Let a = (ai), b = (bj) be the Frobenius parameters of the
positive signature λ. Then

q∗m(λ) =
∑
i≥1

[1 + ai]m −
∑
j≥1

[1− bj ]m.

Proof of Proposition 5.3
Let a(n) = (a(n)

i ) and b(n) = (b(n)
j ) be the Frobenius parameters of the

positive signature λ(n), and ω = (α, β, γ) ∈ Ω0, with α = (αk), β = (βk).
By assumption, for every continuous function u on R,

lim
n→∞

Lu

(
Tn(λ(n))

)
= Lu(ω),

or

lim
n→∞

(∑
i≥1

a
(n)
i

n
u
(a(n)

i

n

)
+

∑
j≥1

b
(n)
j

n
u
(
−
b
(n)
j

n

))

=
∞∑

k=1

αku(αk) +
∞∑

k=1

βku(−βk) + γu(0).

Consider the sequence of the functions

un(s) =
1

nms
[ns+ 1]m.

Then
Lun

(
Tn(λ(n))

)
=

1
nm

q∗m(λ(n)).

On the other hand the sequence un(s) converges to the function u(s) =
sm−1 uniformly on compacts sets in R, and

Lu(ω) = p̃m(ω).

It follows that
lim

n→∞

1
nm

q∗m(λ(n)) = p̃m(ω).
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c) End of the proof of Theorem 3.3

To finish the proof one applies the following:

Proposition 5.4. — Let ψn be a sequence of C∞-functions on the
torus Tk of positive type, with ψn(0) = 1, and ψ an analytic function in a
neighborhood of 0. Assume that, for every α = (α1, . . . , αk) ∈ Nk,

lim
n→∞

∂αψn(0) = ∂αψ(0).

Then ψ has an analytic extension to Tk, and ψn converges to ψ uniformly
on Tk.

For the proof, see for instance [Faraut,2008], Proposition 3.11.

We consider a sequence of positive signatures (λ(n)) such that

lim
n→∞

Tn(λ(n)) = ω.

Put, with tj = eiθj ,

ψn(t1, . . . , tk) = ϕn

(
λ(n); diag(t1, . . . , tk, 1, . . .)

)
,

ψ(t1, . . . , tk) =
k∏

j=1

Φ(ω; tj).

By Theorem 4.2,

ψn(1 + z1, . . . , 1 + zk) =
∑

mk≥···≥m1≥0

δ!
(m + δ)!

s∗m(λ(n))sm(z1, . . . , zk).

Then, by Proposition 5.3,

lim
n→∞

1
n|m| s

∗
m(λ(n)) = s̃m(ω),

and, by Corollary 5.2,∑
m1≥···≥mk

s̃m(ω)sm(z1, . . . , zk) =
k∏

j=1

Φ(ω; 1 + zk) = ψ(1 + z1, . . . , 1 + zk).

Finally, observing that

(m + δ)!
δ!

∼ n|m| (n→∞),

we obtain, by Proposition 5.4,

lim
n→∞

ψn(t1, . . . , tk) = ψ(t1, . . . , tk),

uniformly on Tk. In fact, the Taylor coefficients of ψn, as a function on
Tk, are finite linear combinations of the coefficients in the Schur expansion
of ψn(1 + z1, . . . , 1 + zn).
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6. Inductive limits of compact symmetric spaces. — One knows
that, if G/K is a Riemannian symmetric space, then (G,K) is a Gelfand
pair. Let G(n)/K(n) be a compact symmetric space of rank n, and

g(n) = k(n) + p(n)

be a Cartan decomposition of the Lie algebra g(n) of G(n). Fix a Cartan
subspace a(n) ⊂ p(n), a(n) ' Rn, and put A(n) = exp a(n) ' Tn. Let Rn

denote the system of restricted roots for the pair
(
a(n)C, g(n)C

)
.

a) Classical series of type A

We consider one of the following series of compact symmetric spaces.

G(n) K(n) d

U(n) O(n) 1
U(n)× U(n) U(n) 2
U(2n) Sp(n) 4

The system Rn of restricted roots is of type An−1. For a suitable basis
(e1, . . . , en) of a(n), the restricted roots are

αij = εi − εj (i 6= j)

((ε1, . . . , εn) is the dual basis), with multiplicities d = 1, 2, 4.
These symmetric spaces appear as Shilov boundaries of bounded

symmetric domains of tube type. In particular the symmetric space
U(n)/O(n) can be seen as the space of symmetric unitary n × n matri-
ces. The subgroup A(n) can be taken as the subgroup of unitary diagonal
matrices.

The space U(n)/O(n) can also be seen as the Lagrangian manifold
Λ(n), the manifold of n-Lagrangian subspaces in R2n.

The spherical dual Ωn of the Gelfand pair
(
G(n),K(n)

)
is parametrized

by signatures

λ = (λ1, . . . , λn), λi ∈ Z, λ1 ≥ · · · ≥ λn.

The restricted highest weight of the spherical representation corresponding
to λ is

∑n
i=1 λiεi.

The restriction to A(n) ' Tn of the spherical function ϕn(λ;x) is a
normalized Jack function: for a = (t1, . . . , tn),

ϕn(λ; a) =
Jλ(t1, . . . , tn;α)
Jλ(1, . . . , 1;α)

,
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with α = 2
d . For d = 2 it is a Schur function. (See [Stanley,1989] for

definition and properties of Jack functions, and also [Macdonald,1995],
Section VI.10.)

The Jack functions are orthogonal with respect to the following inner
product:

(P |Q) =
∫

Tn

P (t)Q(t)|V (t)|dβ(dt),

where β is the normalized Haar measure on Tn. With tj = eiθj ,

|V (t)|d =
∏
j<k

4
∣∣ sin

θj − θk

2

∣∣d,
β(dt) =

1
(2π)n

dθ1 . . . dθn.

We consider now the Olshanski spherical pair (G,K) with

G =
∞⋃

n=1

G(n), K =
∞⋃

n=1

K(n).

We state without proof the main results by Okounkov and Olshanski
([1998c]). The spherical dual for the pair (G,K) is, as in the case of the
infinite dimensional unitary group, parametrized by a pair ω = (ω+, ω−),
i.e. Ω = Ω0 × Ω0. For ω ∈ Ω0, ω = (α, β, γ), with α = (αk), β = (βk),
define

Φ(d)(ω; t) = eγ(t−1)
∞∏

k=1

1 + βk(t− 1)(
1− 2

dαk(t− 1)
) d

2
(t ∈ T).

For d = 2, it is the Voiculescu function we considered in Section 3.

Theorem 6.1. — The spherical functions of positive type, for the
Olshanski spherical pair (G,K), are given, for a = (t1, . . . , tn, 1, . . .) ∈
A ' T(∞), by

ϕ(ω; a) =
n∏

j=1

Φ(d)(ω+; tj)Φ(d)(ω−;
1
tj

),

with ω = (ω+, ω−) ∈ Ω.
One defines the map Tn : Ωn → Ω = Ω0 × Ω0 as in the case of the

unitary groups (see Section 3).

Theorem 6.2. — Let (λ(n)) be a sequence of signatures with λ(n) ∈
Ωn. If

lim
n→∞

Tn(λ(n)) = ω = (ω+, ω−),
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then, with a = (t1, . . . , tk, 1, . . .) ∈ A,

lim
n→∞

ϕn(λ(n); a) =
k∏

j=1

Φ(d)(ω+; tj)Φ(d)(ω−;
1
tj

).

Since there is no simple formula for the Jack functions for α 6= 1, the
proof for d 6= 2 is more difficult than in the case of the unitary groups.
However it follows the same lines. The first step is a binomial formula for
the normalized Jack functions.

b) Classical series of type BC

We consider the following series of compact symmetric spaces.

G(n) K(n) Rn d p q

1 O(2n)×O(2n) O(2n) Dn 2 0 0
2 O(2n+ 1)×O(2n+ 1) O(2n+ 1) Bn 2 2 0
3 Sp(n)× Sp(n) Sp(n) Cn 2 0 2

4 Sp(n) U(n) Cn 1 0 1
5 O(4n) U(2n) Cn 4 0 1
6 O(4n+ 2) U(2n+ 1) BCn 4 4 1

7 O(2n+ k) O(n) × O(n + k) BCn 1 k 0
8 U(2n+ k) U(n) × U(n + k) BCn 2 2k 1
9 Sp(2n+ k) Sp(n)× Sp(n+ k) BCn 4 4k 3

The possible roots and multiplicities are

α ±εi ± εj εi 2εi

mα d p q

Series 1, 2, and 3 are compact groups seen as symmetric spaces.
Series 4, 5, and 6 are compact Hermitian symmetric spaces.
Series 7, 8, and 9 are Grassmann manifolds: spaces of n-subspaces

in F2n+k, with F = R, C, or H, d = dimRF, p = dk, q = d − 1.
If k = 0, the root system Rn is of type Cn. The symmetric space
U(2n+ k)/U(n)× U(n+ k) is Hermitian as well.
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For series 7, 8, and 9 the Cartan subgroup A(n) can be taken as the
group of the following matrices

a(θ) =

 cos θ
2 0 − sin θ

2
0 Ik 0

sin θ
2 0 cos θ

2

 ,

with θ = (θ1, . . . , θn), and

cos
θ

2
= diag

(
cos

θ1
2
, . . . , cos

θn

2
)
, sin

θ

2
= diag

(
sin

θ1
2
, . . . , sin

θn

2
)

We assume that the multiplicities d, p, q don’t depend on n. The spherical
dual Ωn is parametrized by positive signatures:

λ = (λ1, . . . , λn), λi ∈ N, λ1 ≥ · · · ≥ λn ≥ 0.

The restriction to A(n) ' Tn of the corresponding spherical function
is a normalized Jacobi polynomial. (See Hypergeometric and Special
Functions, by G. Heckman, in [Heckman-Schichtkrull,1994], for definition
and properties of Jacobi polynomials associated to a root system.) For
a = (t1, . . . , tn) ∈ A(n),

ϕn(λ; a) =
Pλ(t1, . . . , tn)
Pλ(1, . . . , 1)

.

The polynomials Pλ are orthogonal with respect to the inner product

(P |Q) =
∫

Tn

P (t)Q(t)|D(t)|β(dt),

with, if tj = eiθj ,

D(t) =
∏
i<j

(
sin

θi + θj

2

)d(
sin

θi − θj

2

)d n∏
i=1

(
sin

θi

2

)p

(sin θi)q.

By putting xi = cos θi = 1
2 (ti + t−1

i ), the inner product is carried over an
integral on [−1, 1]n with the weight

∏
i<j

|xi − xj |d
n∏

i=1

(1− xi)α(1 + xi)β ,

with α = 1
2 (p + q − 1), β = 1

2 (q − 1). We will write Pλ for the Jacobi
polynomial in the variables xi:

Pλ(x1, . . . , xn) = Pλ(t1, . . . , tn), xi = 1
2 (ti + t−1

i ).
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As in 6.a), we define, for ω ∈ Ω0,

Φ(d)(ω; t) = eγ(t−1)
∞∏

k=1

1 + βk(t− 1)(
1− 2

dαk(t− 1)
) d

2
(t ∈ T).

Theorem 6.3. — The spherical dual for the pair (G,K) is parame-
trized by Ω0. The spherical functions are given, for a = (t1, . . . , tn, 1, . . .) ∈
A ' T(∞), by

ϕ(ω; a) =
n∏

j=1

Φ(d)(ω; tj)Φ(d)(ω;
1
tj

),

with ω ∈ Ω0.
One defines the map Tn : Ωn → Ω0 as in the case of the unitary groups

for positive signatures.

Theorem 6.4. — Let (λ(n)) be a sequence of signatures, with
λ(n) ∈ Ωn. If

lim
n→∞

Tn(λ(n)) = ω,

then, for a = (t1, . . . , tk, 1, . . .),

lim
n→∞

ϕn(λ(n); a) =
k∏

j=1

Φ(d)(ω; tj)Φ(d)(ω;
1
tj

).

7. The case d = 2. Determinantal formula, binomial formula
for multivariate Jacobi polynomials. — In this last section, we will
present, in case d = 2, a determinantal formula for the multivariate Jacobi
polynomials, and then a binomial formula.

In their paper, Berezin and Karpelevič gave a determinantal formula for
the spherical functions on the Grassmann manifolds U(p+q)/U(p)×U(q)
([1958], see also [Takahashi, 1977], [Hoogenboom,1982] ). In fact such a
determinantal formula exists in all cases with d = 2.

Let µ be a positive measure on R with infinite support and finite
moments: for all m ∈ N, ∫

R
|t|mµ(dt) <∞.

By orthogonalizing the monomials tm, one obtains a sequence of orthogo-
nal polynomials pm(t):∫

R
p`(t)pm(t)µ(dt) = 0 if ` 6= m.
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For a positive signature λ, define the multivariate polynomials Pλ

Pλ(x1, . . . , xn) =
det

(
pλi+δi

(xj)
)

V (x)
,

where λ is a positive signature, and, as above, δ = (n − 1, . . . , 1, 0).
The symmetric polynomials Pλ are orthogonal with respect to the inner
product

(P |Q) =
∫

Rn

P (x1, . . . , xn)Q(x1, . . . , xn)V (x1, . . . , xn)2µ(dx1) . . . µ(dxn).

If the polynomials pm are normalized such that

pm(t) = tm + lower order terms,

then
Pλ(x1, . . . , xn) = sλ(x1, . . . , xn) + lower order terms,

Consider now the measure µ on R given by∫
R
f(t)µ(dt) =

∫ 1

−1

f(t)(1− t)α(1 + t)βdt,

with α, β > −1. Then the orthogonal polynomials with respect to this
measure are the Jacobi polynomials pm(t) = p

(α,β)
m (t). The multivariable

polynomials P (α,β)
λ given by, for x = (x1, . . . , xn),

P
(α,β)
λ (x) =

det
(
p
(α,β)
λi+δi

(xj)
)

V (x)
,

are orthogonal for the inner product

(P |Q) =
∫

[−1,1]n
P (x)Q(x)

∏
i<j

(xi − xj)2
n∏

i=1

(1− xi)α(1 + xi)βdx1 . . . dxn,

and are, up to a constant factor, the Jacobi polynomials associated with
the root system of type BCn and the multiplicity (d, p, q), with d = 2.

Normalized by the condition p
(α,β)
m (1) = 1, the Jacobi polynomials

p
(α,β)
m admit the following hypergeometric representation:

p(α,β)
m (t) = 2F1

(
−m,m+ α+ β + 1;α+ 1;

1− t

2

)
=

m∑
k=0

(−m)k(m+ α+ β + 1)k

(α+ 1)k

1
k!

(1− t

2

)k

.
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Let us introduce the notation:

σ =
α+ β + 1

2
, ` = m+ σ,

[`, σ]k =
(
`2 − σ2

)
. . .

(
`2 − (σ + k − 1)2

)
.

The binomial formula for the Jacobi polynomial p(α,β)
m can be written:

p(α,β)
m (1 + w) =

m∑
k=0

a
(m)
k wk =

m∑
k=0

1
k!

[`, σ]k
(α+ 1)k

(w
2

)k

.

By Hua’s formula,

P
(α,β)
λ (1, . . . , 1) = det

(
a
(λi+δi)
δj

)
= 2−

n(n−1)
2

1
δ!

n∏
i=1

1
(α+ 1)δi

V (`21, . . . , `
2
n),

with `i = λi + δi + σ. Since

det
(
[`i, σ]δj

)
= V (`21, . . . , `

2
n).

Theorem 7.1.

P
(α,β)
λ (1 + z1, . . . , 1 + zn)

P
(α,β)
λ (1, . . . , 1)

=
∑
µ⊆λ

2−|µ|
δ!

(µ+ δ)!

∏n
i=1(α+ 1)δi∏n

i=1(α+ 1)µi+δi

S∗µ(λ)sµ(z1, . . . , zn),

with

S∗µ(λ) =
det

(
[`i, σ]µj+δj

)
V (`21, . . . , `2n)

, `i = λi + δi + σ.

Proof. This is once more an application of Hua’s formula (Proposition
4.1). In the present case

fi(w) = p
(α,β)
λi+δi

(1 + w) =
λi+δi∑
k=0

a
(λi+δi)
k wk =

λi+δi∑
k=0

1
k!

[`i, σ]k
(α+ 1)k

2−kwk,

with `i = λi + δi + σ. Then we get

P
(α,β)
λ (1 + z1, . . . , 1 + zn) =

∑
µ1≥...≥µn≥0

aµsµ(z1, . . . , zn),

with

aµ = det
(
c
(λi+δi)
µj+δj

)
=

1
(µ+ δ)!

1∏n
i=1(α+ 1)µi+δi

det
(
[`i, σ]µj+δj

)
.

Observe that, if µ 6⊆ λ, then aµ = 0.
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