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These notes have been written after the talks we gave in the Science Aca-
demic Lecture Workshop on Harmonic Analysis, held on 6 and 7 December
2017 in the SS college, Areacode, Malappuram (Kerala). We present a survey
of the harmonic analysis on compact groups, Abelian and non Abelian, and
explain in detail a few examples.

this workshop, organized by Professor G. Sagith has been attended by
students, scholars and faculty members. I have been very pleased to take
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invitation.

1. Classical Fourier analysis
2. Compact Abelian groups
3. Examples: Cyclic groups, Hypercubes
4. The infinite hypercube
5. Representations of compact groups
6. Characters and central functions
7. Examples: The group S3 and the group A4

1



1 Classical Fourier analysis

A function f defined on R which is 2π-periodic,

f(x+ 2π) = f(x) (x ∈ R),

can be seen as a function on the group G = R/2πZ, which is homeomorphic
to the unit circle T in C:

G = R/2πZ→ T, x 7→ eix.

Therefore the group G is compact.
The integral of a continuous function f on G, identified with a 2π-periodic

continuous function on R, is given by∫
G

f(x)µ(dx) =
1

2π

∫ 2π

0

f(x)dx =
1

2π

∫ a+2π

a

fx)dx,

for any a ∈ R.
For m ∈ Z, the function χm given by χm(x) = eimx, is 2π-periodic, and

can be seen as a function on G. It satisfies

χm(x+ y) = χm(x)χm(y).

The system {χm}m∈Z is orthonormal in L2(G, µ):

(χm|χn) = 0 if m 6= n, ‖χm‖2 = 1.

Moreover the system {χm}m∈Z is a Hilbert basis of L2(G, µ). For a function
f ∈ L1(G, µ), the Fourier coefficient f̂(m) is given by

f̂(m) = (f |χm) =

∫
G

f(x)χm(x)µ(dx) =
1

2π

∫ 2π

0

f(x)e−imxdx.

For a function f ∈ L2(G, µ),∫
G

|f(x)|2µ(dx) =
1

2π

∫ 2π

0

|f(x)|dx =
∑
m∈Z

|f̂(m)|2.

If f is a continuous function such that∑
m∈Z

|f̂(m)| <∞,
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then
f(x) =

∑
m∈Z

f̂(m)eimx.

We will see how these classical properties extend to all compact groups G.
If G is Abelian, then the extension is word for word. In general the extension
involves representation theory. We will state without proof the main facts
about Fourier analysis on compact groups, and present some examples.

2 Compact Abelian groups

A topological group is a group G equiped with a topology such that the maps

G×G→ G, (x, y) 7→ xy,
G→ G, x 7→ x−1,

are continuous.
Assume G compact. there is on G a unique probability Borel measure µ

which is invariant by right and left translations: for a continuous function f
on G, ∫

G

f(xg)µ(dx) =

∫
G

f(x)µ(dx),∫
G

f(gx)µ(dx) =

∫
G

f(x)µ(dx),

for any g ∈ G. the measure µ is the normalized Haar measure of G.
If G is finite, N = #G, then∫

G

f(x)µ(dx) =
1

N

∑
x∈G

f(x).

Assume G compact and Abelian. In this case we will use the additive no-
tation for the group law. A character χ of G is a continuous group morphism

χ : G→ T, x 7→ χ(x).
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It satisfies

χ(x+ y) = χ(x)χ(y),
χ(−x) = χ(x)−1 = χ(x).

The product of two characters is a character. Therefore the set of characters
is a group: the dual group Ĝ. The identity element in Ĝ is the trivial
character χ0 ≡ 1

Proposition 2.1. The system {χ}χ∈Ĝ is orthonormal in L2(G, µ).

Proof. For χ ∈ Ĝ define

I(χ) =

∫
G

χ(x)µ(dx).

By the translation invariance of the Haar measure, we get, for any a ∈ G,

I(χ) =

∫
G

χ(x+ a)µ(dx) = χ(a)I(χ).

If I(χ) 6= 0, then χ(a) = 1, and χ is the trivial character:∫
G

χ(x)µ(dx) =

{
1 if χ = χ0,

0 if χ 6= χ0.

Consider two characters χ1 and χ2.

(χ1|χ2) =

∫
G

χ1(x)χ2(x)µ(dx) = I(χ1χ2).

If χ1 6= χ2, then χ1χ2 is not the trivial character, and I(χ1χ2) = 0.

Theorem 2.2. The system {χ}χ∈Ĝ is a Hilbert basis of L2(G, µ)

The Fourier coefficient of a function f ∈ L1(G, µ) is defined by

f̂(χ) = (f |χ) =

∫
G

f(x)χ(x)µ(dx).
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Theorem 2.3. (Plancherel) For a function f ∈ L2(G, µ),

f(x) =
∑
χ∈Ĝ

(̂χ)χ(x)

in the L2-sense, and ∫
G

|f(x)|2µ(dx) =
∑
χ∈Ĝ

|f̂(χ)|2.

If f is continuous, and if
∑

χ∈Ĝ |f̂(χ)| <∞, then

f(x) =
∑
χ∈Ĝ

f̂(χ)χ(x),

uniformly.

3 Examples

1) The cyclic group Zn = Z/nZ
The group Zn is a finite group with n elements. A system of representa-

tives is 0, 1, . . . , n− 1. Let ω = e
2iπ
n . Observe that ωn = 1. The group G can

be seen as the group of the n-th roots of unity:

{1, ω, ω2, . . . , ωn−1},

or the group of the rotaions of the regular polygon with n vertices,(
cos k 2π

n
− sin k 2π

n

sin k 2π
n

cos k 2π
n

)
, (k = 0, 1, . . . , n− 1).
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The characters of Zn are given by

χm(x) = ωmx,

with m ∈ Zn. One checks easily the orthogonality of the characters. Observe
that

1 + ωk + ω2k + · · ·+ ω(n−1)k =
ωnk − 1

ωk − 1
.

We get

(χm|χm′) =
1

n

n−1∑
x=0

ωmxωm′x =
1

n

n−1∑
x=0

ωkx,

with k = m−m′, and

n−1∑
x=0

ωkx =

{
n if m = m′ mod n,

0 if m 6= m′ mod n.

The Fourier coefficients of a function f on G are given by,

f̂(m) =
1

n

n−1∑
x=0

f(x)ω−mx.
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Hence the matrix F of the Fourier transform is the following n× n matrix:

F =
1

n


1 1 . . . 1
1 ω−1 . . . ω−(n−1)

1 ω−2 . . . ω−2(n−1)

...
...

...

1 ω−(n−1) . . . ω−(n−1)2


Observe that

√
nF is unitary.

2) The hypercube Qn = (Z2)
n

An element x ∈ Qn is a sequence (x1, . . . , xn) where xi = 0 or 1. The
addition is given, for x = (x1, . . . , xn) and y = (y1, . . . , yn) by

x+ y = (x1 + y1, . . . , xn + yn),

where the sums xi + yi are mod 2. Observe that −x = x. The group Qn has
2n elements.

A character of Qn is of the form

χm(x) = (−1)m1x1+···+mnxn ,

with m = (m1, . . . ,mn) ∈ Qn.

(0, 0, 0) (0, 1, 0)

(1, 0, 0) (1, 1, 0)

(0, 0, 1) (0, 1, 1)

(1, 1, 1)(1, 0, 1)
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4 The infinite hypercube Q∞ = (Z2)
N

An element x ∈ Q∞ is an infinite sequence x = (x1, . . . , xn, . . .) where xi =
0 or 1. The group Q∞ is equiped with the product topology. For that
topology a fundamental system of the identity element 0 = (0, . . . , 0, . . .) is
the following family of subsets VA, where A is a finite subset of N, and

VA = {x = (x1, . . . , xn, . . .) | xi = 0 for i ∈ A}.

By Tychonov’s theorem, the topological space Q∞ is compact.
Consider the map

q : Q∞ → [0, 1], x = (x1, . . . , xn, . . .) 7→ t = q(x) =
∞∑
n=1

xn
2n
.

Hence (x1, . . . , xn, . . .) is the dyadic expansion of the real number t. The
map q is surjective, but not injective. In fact, for x = (1, 0, . . . , 0, . . .) and
y = (0, 1, . . . , 1, . . .), then q(x) = q(y):

q(x) =
1

2
, q(y) =

∞∑
n=2

1

2n
=

1

4

1

1− 1
2

=
1

2
.

But if t is not a dyadic number, i.e. a rational number of the form k
2n

, then
there is a unique x ∈ Q∞ such that t = q(x). We will define a map

d : [0, 1]→ Q∞, t 7→ d(t),

as follows. If t is not a dyadic number, then d(t) = x with x = q(t). If t is a
dyadic number, t = k

2n
, we choose the finite dyadic expansion:

d(t) = (x1, . . . , xn, 0, . . .), with xn = 1.

The map d is a right inverse of q: q ◦ d = Id.
Observe that the map d is not continuous. For instance, define

tn =
1

2
− 1

2n
,

then tn → 1
2
, but x(n) = q(tn) does not converge to x = q

(
1
2

)
. In fact

x = (1, 0, . . .), and x(n) =
(
x

(n)
i

)
, with

x
(n)
i =

{
1 if 2 ≤≤ n,

0 otherwise.
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Let µ be the normalized Haar measure of the compact group Q∞. Then
the image by the map q of µ is the Lebesgue measure on [0, 1]. This means
that, if f is a bounded measurable function on [0, 1], then∫

Q∞

f
(
q(x)

)
µ(dx) =

∫ 1

0

f(t)dt.

Let us give some hints for proving this result. Let µ be a measure on Q∞
whose image by q is the Lebesgue measure on [0, 1]. Take a = (1, 0, . . .) ∈ Q∞.
Then one checks that∫

Q∞

f
(
q(x+ a)

)
µ(dx) =

∫ 1
2

0

f
(
t+

1

2

)
dt+

∫ 1

1
2

f
(
t− 1

2

)
dt

=

∫ 1

0

f(t)dt =

∫
Q∞

f
(
q(x)

)
µ(dx).

Take now, for m ∈ N, a = (a1, . . . , an, . . .) ∈ Q∞ with am = 1, an = 0 if
n 6= m. then one checks that∫

Q∞

f
(
q(x+ a)

)
µ(dx)

=
2m−1−1∑
k=0

(∫ 2k+1
2m

2k
2m

f
(
t+

1

2m

)
dt+

∫ 2k+2
2m

2k+1
2m

f
(
t− 1

2m

)
dt
)

=

∫ 1

0

f(t)dt.

We will determine the characters of Q∞. Observe first that the hypercube
QN can be seen as a subgroup of Q∞, by the embedding

QN → Q∞, (x1, . . . , xN) 7→ (x1, . . . , xN , 0, . . .).

Observe that the restriction of a character of Q∞ to QN is a character of QN .
Denote by Q(∞) the set of sequences m = (m1,m2, . . . ,mn, . . .) with mi =

0 or 1, for which there is only a finite number of indices i such that mi = 1.

Proposition 4.1. A character χ of Q∞ is of the form

χm(x) = (−1)m1x1+···+mnxn+···,

with m ∈ Q(∞).

9



Let χ be a character of Q∞. For 0 < ε < 1 there is a neighborhood V
of 0 = (0, . . .) such that, for x ∈ V , |χ(x) − 1| ≤ ε. The neighborhood V
contains a neighborhood of the form VA where A ⊂ N is finite. Choose N
such that A ⊂ {1, . . . , N} . The restriction of the character χ to QN is of
the form

χ(x) = (−1)m1x1+···+mNxN ,

and takes the values 0 and 1. For x ∈ VA, |χ(x) − 1| ≤ ε < 1, hence
m1x1 + · · ·+mNxN = 0. This implies that mi = 0 if i 6∈ A.

By Theorem (?) the system {χm}m∈Q(∞)
is a Hilbert basis of L2(Q∞, µ).

The characters χm are related to the classical Rademacher and Walsh func-
tions.

The Rademacher function ϕ is defined on [0, 1] as folows: ϕ0(t) = 1, and,
for n ≥ 1, if d(t) = (x1, . . . , xn, . . .) is the dyadic expansion of t, then

ϕn(t) =

{
1 if xn = 0,

−1 if xn = 1,

i. e. ϕn(t) = (−1)xn . More explicitely,

if
k

2n
≤ t <

k + 1

2n
, then ϕn(t) = (−1)k (k = 0, 1, . . . , 2n − 1).

It can also be written ϕn(t) = sign(sin 2nπt).
For m = (m1, . . . ,mn, . . .) ∈ Q(∞), let n1, . . . , np be the indices for which

mn = 1. Then, if q(x) = t,

χm(x) = ψm(t) = ϕn1(t) . . . ϕnp(t).
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Graph of the Rademacher function ϕ1.
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Graph of the Rademacher function ϕ2.

0 1
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1

Graph of the Walsh function ψ(1,1) = ϕ1ϕ2

The system {ψm}m∈Q(∞)
is a Hilbert basis of L2(0, 1). It can be seen as a

corollary of Theorem. But it is a classical result whcih can be proven directly
as follows:

The system {ψm} is orthonormal in L2(0, 1)

a) Observe first that |ψm| = 1, hence ‖ψm‖2 = 1.
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b) For 0 ≤ n1 < n2 < · · · < np,∫ 1

0

ϕn1(t)ϕn2(t) . . . ϕnp(t)dt = 0.

The function ϕn1(t)ϕn2(t) . . . ϕnp−1(t) is constant on the intervals

k

2np−1
≤ t <

k + 1

2np−1
,

and the integral of ϕnp on such an interval is equal to 0.

c) For m ∈ Q(∞) one defines

supp(m) = {i ∈ N | mi = 1}.

If m 6= m′, then (ψm | ψm′) = 0. Let M = supp(m) ∩ supp(m′). Then

ψm(t)ψm′(t) =
∏
n∈M

ϕn(t).

Therefore, by b), ∫ 1

0

ψm(t)ψm′(t)dt = 0.

The system {ψm} is a Hilbert basis.

Let f ∈ L2(0, 1) such that

∀m, (f | ψm) = 0.

We will show that f ≡ 0. Define

F (t) =

∫ t

0

f(s)ds.

Then F (0) = 0, and

F (1) =

∫ 1

0

f(s)ds =

∫ 1

0

ψ0(s)ds = 0.
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Take now ψm, with m = (1, 0, . . .),∫
01f(s)ϕ1(s)ds =

∫ 1
2

0

f(s)ds−
∫

1
2

f(s)ds = 2F
(1

2

)
,

therefore F
(

1
2

)
= 0.

Take ψm with m = (0, 1, 0, . . .), and m = (1, 1, 0, . . .),∫ 1

0

f(s)ϕ2(s)ds = 2
(
F
(1

4

)
+ F

(3

4

))
= 0,∫ 1

0

f(s)ϕ1(s)ϕ2(s)ds = 2
(
F
(1

4

)
− F

(3

4

))
= 0,

therefore F
(

1
4

)
= 0, F

(
3
4

)
= 0.

Taking ψm, with

m = (0, 0, 1, 0 . . .), (1, 0, 1, 0 . . .), (0, 1, 1, 0, . . .), (1, 1, 1, 0 . . .),

we get ∫ 1

0

f(s)ϕ3(s)ds = 2
(
F
(1

8

)
+ F

(3

8

)
+ F

(5

8

)
+ F

(7

8

))
= 0,∫ 1

0

f(s)ϕ1(s)ϕ3(s)ds = 2
(
F
(1

8

)
+ F

(3

8

)
− F

(5

8

)
− F

(7

8

))
= 0,∫ 1

0

f(s)ϕ2(s)ϕ3(s)ds = 2
(
F
(1

8

)
− F

(3

8

)
− F

(5

8

)
+ F

(7

8

))
= 0,∫ 1

0

f(s)ϕ1(s)ϕ2(s)ϕ3(s)ds = 2
(
F
(1

8

)
− F

(3

8

)
+ F

(5

8

)
− F

(7

8

))
= 0,

therefore

F
(1

8

)
= F

(3

8

)
= F

(5

8

)
= F

(7

8

)
= 0.

And by going on one shows that F vanishes at every dyadic rational number.
Since the function F is continuous, and the set of dyadic rational numbers is
dense in [0, 1], F vanishes identically. This means that f is orthogonal to the
chacacteristic functions of the intervals [0, t] (0 ≤ t ≤ 1). Since the system
of these characteristic functions is total in L2(0, 1), it follows that f ≡ 0.

See [Higgens,1977], p.45, 2.4 The functions of Rademacher, Walsh and
Haar, and also [Alexist,1961], p.51, Ch.1 §7 Rademacher’s and Walsh’s or-
thogonal systems. Relations to the theory of probability.
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5 Representations of compact groups

We give first some definitions. Let G be a topological group and V a normed
complex vector space. A representation π of G on V is a group morphism

G→ GL(V ), g 7→ π(g),

i.e.
π(g1)g2) = π(g1π(g2), π(g−1) = π(g)−1,

such that, for any v ∈ V , the map g 7→ π(g)v is continuous.
A subspace W ⊂ V is invariant if, for any g ∈ G, π(g)W = W . The

representation π is irreducible if the only closed invariant subspaces are {0}
and V . In particular, if dimV = 1, the π is irreducible. Let (π1, V1), (π2, V2)
two representations of G. An it intertwining operator A is an isomorphism
A = V1 → V2, such that, for any g ∈ G,

Aπ1(g) = π2(g)A.

If such an intertwining operator exists, the representations (π1, V1) and (π2, V2)
are said to be equivalent.

Assume that V = H is a Hilbert space. A representation π of G on H is
unitary if, for any g ∈ G, π(g) is unitary.

We assume now that the group G is compact.
Let (π, V ) be an irreducible representation of G. Then the vector space

V is finite dimensional, and there is on V an inner product such that π is
unitary.

Schur orthogonality relations
Let π be a irreducible unitary representation of G on a finite dimensional

Euclidean vector space, of dimension d. Let {e1, . . . , ed} be an orthonormal
basis of V , and

(
πij(g)

)
the matrix of π(g) with respect to this basis. The

functions πij(g) are orthogonal in L2(G, µ): if (i, j) 6= k, `),∫
G

πij(x)πk`(x)µ(dx) = 0,

and ∫
G

|πij(x)|2µ(dx) =
1

d
.

14



If (π1, V1) and (π2, V2) are irreducible representations of G which are not
equivalent, then the spaceM1 of matrix coefficients of (π1, V1) and the space
M2 of matrix coefficients of (π2, V2) are orthogonal in L2(G, µ).

Peter-Weyl theorem
The set of equivalence classes of irreducible representations of G is de-

noted Ĝ. For a class λ ∈ Ĝ, one chooses a representative (π(λ),Hλ) and
denotes by dλ the dimension of the representation space Hλ. By the Schur
orthogonality relations, the system

{
√
dλπ

(λ)
ij | λ ∈ Ĝ, i, j = 1, . . . , dλ}.

Theorem 5.1. (Peter-Weyl) The system

{
√
dλπ

(λ)
ij | λ ∈ Ĝ, i, j = 1, . . . , dλ}.

is a Hilbert basis of L2(G, µ).

6 Characters and central functions

Let π be a representation of G on a finite dimensional vector space V . the
character of the representation π is the function χπ defined on G by

χπ(g) = trπ(g).

Observe that χπ(e) = dimV , and, for g, x ∈ G,

χπ(gxg−1) = χπ(g).

In fact, for two square matrices A, B, trAB = trBA. Two elements x, y ∈ G
are said to be conjugate if there exists g ∈ G such y = gxg−1. this is an
equivalence relation. An equivalence class is called a conjugacy class. A
function f on G is siad to be central if

f(gxg−1) = f(x) (x, g ∈ G),

i. e. the function f is constant on each conjugacy class. The character of a
representation is a central function. By the Schur orthogonality relations, if
π is irreducible, then∫

G

|χπ(x)|2µ(dx) =
dπ∑
i=1

∫
G

|πii(g)|2µ(dx) = 1.
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If the representations π1 and π2 are irreducible and non equivalent, then χπ1

and χπ2 are orthogonal in L2(G, µ):∫
G

χπ1(x)χπ2(x)µ(dx) = 0.

The characters of two equivalent representations are equal. Therefore we will
denote by χλ the character of any representation in the class λ ∈ Ĝ. Hence
the system {χλ}λ∈Ĝ is orthogonal in L2(G, µ).

As a consequence of the Peter-Weyl theorem (Theorem 5.1) one obtains

Theorem 6.1. The system {χλ}λ∈Ĝ is a Hilbert basis of the space L2(G, µ)c
of central functions in L2(G, µ).

Proposition 6.2. Assume the group G to be finite.
(i) #G =

∑
λ∈Ĝ d

2
λ.

(ii) #{conjugacy classes} = #Ĝ.

Property (i) follows from the Peter-Weyl theorem (Theorem 5.1), and (ii)
from Theorem 6.1.

7 Examples

1) The group S3 of permutations of three elements

The number of elements of S3 is #S3 = 3! = 6. The group S3 can be
seen as the group of isometries of the equilateral triangle.

A

B Ca

bc

16



There are 3 conjugacy classes
- C0 = {e}, where e is the identity

e =

(
1 2 3
1 2 3

)
.

- C1: the 3 transpositions(
1 2 3
1 3 2

)(
1 2 3
3 2 1

)
,

(
1 2 3
2 1 3

)
.

They correspond to the symmetries with repect to the three heights Aa, Bb,
Bc.

- C2: the two circular permutations(
1 2 3
2 3 1

)
,

(
1 2 3
3 1 2

)
.

They correspond to the rotations with angles 2π
3

and 4π
3

.

By property (i) #Ĝ = 3, Ĝ = {λ0, λ1, λ2}. The representation πλ0 is the
trivial representation. πλ2 is the one dimensional representation given by

πλ1(g) = ε(g),

the signature of the permutation g,

ε(g) = 1 if g ∈ C0, or g ∈ C2,
= −1 if g ∈ C1

Hence dλ0 = 1, dλ1 = 1, and, since by property (ii)

d2
λ0

+ d2
λ1

+ dλ2 = #S3 = 6,

a representation in the class λ2 is two dimensional: dλ2 = 2. In fact a
representative πλ2 maps S3 to the group of isometries of the equilateral
triangle. In particular(

1 2 3
1 3 2

)
7→
(
−1 0
0 1

)
,

(
1 2 3
2 3 1

)
7→

(
−1

2
−
√

3
2√

3
2
−1

2

)
.
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Character table

C0 C1 C2
# 1 3 2

χ0 1 1 1

χ1 1 -1 1

χ2 2 0 -1

From the character table one can check that the system of the characters
is orthonormal in L2(G) by using the formula

(χλ | χµ) =
1

#G

∑
i

(#Ci)χλ(Ci)χµ(Ci).

2) The group A4 of even permutations of 4 elements

The group G = A4 is a subgroup of the permutation group S4:

G = {g ∈ S4 | ε(g) = 1},
and #G = 1

2
#S4 = 1

2
4! = 12. The group G is also the group of rotations of

the regular tetrahedron.

A1

A2

A3

A4

a4
M12

M34

α
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There are 4 conjugacy classes:
- C0 = {e}, where e is the identity

e =

(
1 2 3 4
1 2 3 4

)
.

- C1: the rotation of 2π
3

around the axis A4a4 and orthogonal to the
opposite face oriented toward the vertex A4:(

1 2 3 4
2 3 1 4

)
,

and 3 similar rotations coresponding to the three other vertices. #C1 = 4.
- C3: the rotation of −2π

3
around the same axis:(

1 2 3 4
3 1 2 4

)
,

and 3 similar rotations. #C2 = 4.
- C4: the rotation of π around the line α joining the middles M12 and M34

of the two opposite edges A1A2 and A3A4:

a =

(
1 2 3 4
2 1 4 3

)
,

and two similar rotations around to the lines β and γ,

b =

(
1 2 3 4
4 3 2 1

)
, c =

(
1 2 3 4
3 4 1 2

)
.

#C4 = 3.

The subset H = {e, a, b, c} is an Abelian subgroup:

a2 = b2 = c2 = e, ab = c, ac = b, bc = a.

It is isomorphic to Z2 × Z2:

e a b c
(0, 0) (1, 0) (0, 1) (1, 1)

.

The lines α, β, γ are 2 by 2 orthogonal and the set {α, β, γ} is invariant under
the action of G = A4. The subgroup of the transformations g ∈ G which fix
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each of the lines α, β, β is the subgroup H. Hence H is a normal subgroup
and the quotient group G/H is isomorphic to Z3 acting on the set {α, β, γ}
by even permutations. For instance,

if g =

(
1 2 3 4
2 3 1 4

)
, then α 7→ β, β 7→ γ, γ 7→ α.

Recall that the characters of the Abelian group Z3 are given by, if x ∈
{0, 1, 2}, then χλ(x) = ωλx, where λ ∈ {0, 1, 2}, and ω = e

2iπ
3 . Hence, by

composition,
G→ G/H ' Z3 → T, g 7→ ġ 7→ χ1(ġ),

one obtains two one dimensional representations π1 and π2 of G.

By the property (i) of Proposition 6.2, #Ĝ = 4, Ĝ = {λ0, λ1, λ2, λ3},

dλ0 = 1, dλ1 = 1, dλ2 = 1.

By the property (ii) of Proposition 6.2,

d2
λ0

+ d2
λ1

+ d2
λ2

+ d2
λ3

= #G = 12,

therefore dλ3 = 3. A representative of λ3 is the representation π3 of G which
maps an element g to a rotation of the 3-dimensional Euclidean space fixing
the regular tetrahedron. For g ∈ C1 of C2, the trace of the rotation π3(g) is

trπ3(g) = cos
2π

3
+ cos

2π

3
+ 1 = 1 + 2 cos

2π

3
= 0.

For g ∈ C3,
trπ3(g) = −1− 1 + 1 = −1.

Character table

C0 C1 C2 C3
# 1 4 4 3

χ0 1 1 1 1

χ1 1 ω ω2 1

χ2 1 ω2 ω 1

χ3 3 0 0 -1
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