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Abstract The Markov-Krein transform maps a positive measure on the
real line to a probability measure. It is implicitely defined through an
identity linking two holomorphic functions. We propose an explicit for-
mula whose proof is obtained by considering boundary values of holo-
morhic functions. This transform appears in several classical questions in
analysis and probability theory: Markov moment problem, Dirichlet dis-
tributions, orbital measures. An asymptotic property for this transform
involves Thorin-Bondesson distributions.
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1. Introduction. — The starting point of this work is an observation
by Okounkov about the orbital measures for the action of the unitary
group U(n) on the space Herm(n,C) of n × n Hermitian matrices. The
projection of such a measure on the straight line generated by a rank
one matrix is a probability measure on R, the density of which is a
spline function, i.e. a piecewise polynomial function (see [Olshanski-
Vershik,1996], Proposition 8.2 p.172). More generally we consider the
action of the unitary group U(n,F) on the space Herm(n,F), for F = R,
C, or H, the skew field of quaternions, and the projection µ of an orbital
measure. In general the density of µ is not a spline function. The measure
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µ satisfies the remarkable formula∫
R

1

(z − t)n
d
2
µ(dt) =

n∏
i=1

1

(z − ai)
d
2
,

where a1, . . . , an are the eigenvalues of an Hermitian matrix in the orbit,
and d = dimRF = 1, 2 or 4. This formula is a special case of the Markov-
Krein relation∫

R

1
(z − t)κ

µ(dt) = exp
(
−

∫
R

log(z − u)ν(du)
)
,

where µ is a probability measure, ν a positive measure, and κ = ν(R), the
total measure of ν. In fact, taking

ν =
n∑
i=1

d

2
δai
,

one gets the first formula. In Section 3 it will be proven that given a
positive measure ν with compact support, there is a unique probability
measure µ with compact support satisfying the Markov-Krein relation.
Hence we get a map: the Markov-Krein transform associates to the
positive measure ν the probability measure µ. We will see in Section
2 that this transform is related to the Dirichlet distributions in case ν
is a discrete measure. An explicit formula for this transform is given in
Section 4 by using boundary values of holomorphic functions. This formula
is related to the one obtained in [Cifarelli-Regazzini,1990]. In Section 6 we
consider a sequence (νn) of positive measures and the sequence (µn) of the
Markov-Krein transforms. We study the asymptotic of µn in case νn(R)
goes to infinity. The result we will establish involves Thorin-Bondesson
distributions (or extended generalized gamma convolutions, EGGC), a
class of probability measures introduced by Thorin ([1977], [1978], see
also [Bondesson,1992]). The Markov-Krein transform shows up in several
questions of classical analysis. We have mentionned its relation to orbital
measures. It appears in the solution of the Markov moment problem by
Krein and Nudel’man [1977]. The problem is as follows: Given a sequence
(cn) of Hausdorff moments,

cn =
∫

[a,b]

tnσ(dt),

under which condition is the positive measure σ absolutely continuous with
respect to the Lebesgue measure: σ(dt) = ω(t)dt, with 0 ≤ ω(t) ≤ 1 ?
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We revisit that problem in Section 7. Finally we consider in last section
spline distributions with equidistant knots, and recall an example studied
by Tricomi [1933]. A large part of the book by Kerov [2003] is devoted
to the Markov-Krein correspondence in the framework of the asymptotic
analysis for the representations of the symmetric group. It has been a
source of inspiration for our work.

This paper originates in Chapter 2 of the Thèse de Doctorat of the
second author [Fourati,2011b]. The work benefited of the support of the
CMCU program 10G 1503 (Programme Hubert Curien France-Tunisie,
Analyse Harmonique & Probabilités).

2. The generalized spline distributions Mn(a; τ). — We recall
definitions and results from [Fourati,2011a]. For τ = (τ1, . . . , τn) ∈ (R∗+)n

(n ≥ 2), the Dirichlet distribution D(τ)
n is the probability measure on the

simplex

∆n−1 = {u = (u1, . . . , un) ∈ Rn | ui ≥ 0, u1 + · · ·+ un = 1}

defined by∫
∆n−1

f(u)D(τ)
n (du) =

1
Cn(τ)

∫
∆n−1

f(u)uτ1−1
1 . . . uτn−1

n α(du),

where α is the uniform probability measure on ∆n−1, i.e. the normalized
restriction to ∆n−1 of the Lebesgue measure on the hyperplane u1 + · · ·+
un = 1, and

Cn(τ) =
∫

∆n−1

uτ1−1
1 . . . uτn−1

n α(du).

The evaluation of the constant Cn(τ) gives

Cn(τ) = (n− 1)!
Γ(τ1) . . .Γ(τn)

Γ(|τ |)
,

where |τ | = τ1 + · · ·+ τn.
For a = (a1, . . . , an) ∈ Rn, with a1 ≤ · · · ≤ an, the probability measure

Mn(a; τ) on R is the image of the Dirichlet distribution D(τ)
n by the map

∆n−1 → R, u 7→ a1u1 + · · ·+ anun,

i.e., for a continuous function F on R,∫
R
F (t)Mn(a; τ ; dt) =

∫
∆n−1

F (a1u1 + · · ·+ anun)D(τ)
n (du).
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The support of Mn(a; τ) is compact, supp
(
Mn(τ ; a)

)
⊂ [a1, an]. If

τ1 = · · · = τn = 1, then Mn(a, τ) is a spline distribution (see [Curry-
Schoenberg,1966]). For τi > 0, we will say that Mn(a; τ) is a generalized
spline distribution.

For instance, for n = 2,∫
R
F (t)M2(a; τ ; dt)

=
Γ(τ1 + τ2)
Γ(τ1)Γ(τ2)

∫ 1

0

F
(
a1(1− u) + a2u

)
(1− u)τ1−1uτ2−1du.

By the change of variable t = a1(1− u) + a2u we get∫
R
F (t)M2(a; τ ; dt)

=
(a2 − a1)−(τ1+τ2−1)

B(τ1, τ2)

∫ a2

a1

F (t)(t− a1)τ2−1(a2 − t)τ1−1dt.

We define the function log z on C\]−∞, 0] and, for α ∈ C, the function
zα as follows : if z = reiθ, with r > 0, −π < θ < π, then log z = log r+ iθ,
and zα = eα log z = rαeiαθ.

Theorem 2.1. — The probability measure Mn(a; τ) satisfies the
relation ∫

R

1
(z − t)|τ |

Mn(a; τ ; dt) =
n∏
i=1

( 1
z − ai

)τi

,

for z ∈ C\]−∞, an].
This is a special case of the Markov-Krein relation we will consider in

next Section.

Proof.
Assume first Re z > an. We will evaluate in two ways the integral

I(a, z) =
∫

Rn
+

exp
(
−

n∑
i=1

(z − ai)xi
)
xτ1−1

1 . . . xτn−1
n dx1 . . . dxn.

First, by the theorem of Fubini,

I(a, z) =
n∏
i=1

∫ ∞

0

e−xi(z−ai)xτi−1
i dxi =

n∏
i=1

Γ(τi)
(z − ai)τi

.
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Second, we will use the following integration formula: if the function f is
integrable on Rn+, then∫

Rn
+

f(x)dx1 . . . dxn =
1

(n− 1)!

∫ ∞

0

(∫
∆n−1

f(ru)α(du)
)
rn−1dr.

Hence we get

I(a, z) =
1

(n− 1)!∫ ∞

0

(∫
∆n−1

e−r(z−a1u1−···−anun)uτ1−1
1 . . . uτn−1

n α(du)
)
r|τ |−1dr

=
Γ(|τ |)

(n− 1)!

∫
∆n−1

uτ1−1
1 . . . uτn−1

n

(z − a1u1 − · · · − anun)|τ |

= Cn(τ)
Γ(|τ |)

(n− 1)!

∫
∆n−1

D
(τ)
n (du)

(z − a1 − a1 − · · · anun)|τ |

= Γ(τ1) . . .Γ(τn)
∫

R

1
(z − t)|τ |

Mn(a; τ ; dt).

From both evaluations of I(a, z) one gets the formula of Theorem 2.1.
Since both handsides of the formula are holomorphic in C\]−∞, an], the
formula holds for z ∈ C\]−∞, an] by analytic continuation.

The moments of the measure Mn(a; τ),

Mn(a; τ ;m) =
∫

R
tmMn(a; τ ; dt),

are given by

Mn(a; τ ;m) =
m!

(κ)m

∑
|λ|=m

(τ1)λ1 . . . (τn)λn

λ1! . . . λn!
aλ1
1 . . . aλn

n ,

where λ ∈ Nn, |λ| = λ1 + · · ·+ λn.
In case of τ1 = · · · = τn = θ we will write Mθ

n(a; dt) and Mθ
n(a;m), and

then

Mθ
n(a;m) =

(θ)m
(nθ)m

P[m](a1, . . . , an; θ),

where P[m](a1, . . . , an; θ) is the Jack polynomial associated to the partition
[m] = (m, . . . , 0) with parameter θ. In the special case of θ = 1,

M1
n(a;m) =

m!(n− 1)!
(n+m− 1)!

hm(a1, . . . , an),
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where hm is the complete symmetric function. It can be written

M1
n(a;m) =

m!(n− 1)!
(n+m− 1)!

1
V (a1, . . . , an)

∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1
a1 a2 . . . an
...

... . . .
...

an−2
1 an−2

2 . . . an−2
n

am+n−1
1 am+n−1

2 . . . am+n−1
n

∣∣∣∣∣∣∣∣∣∣
,

where V (a1, . . . , an) is the Vandermonde polynomial:

V (a1, . . . , an) =
∏
i<j

(aj − ai),

and the Fourier Laplace transform of M1
n(a; dt),

M̂1
n(a; z) =

∫
R
eztM1

n(a; dt),

is given by

M̂1
n(a; z) = (n− 1)!

1
V (a1, . . . , an)

∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1
a1 a2 . . . an
...

... . . .
...

an−2
1 an−2

2 . . . an−2
n

ea1z ea2z . . . eanz

∣∣∣∣∣∣∣∣∣∣
.

3. The Markov-Krein transform. — Let ν be a nonzero positive
measure on R such that∫

R
log(1 + |u|)ν(du) <∞,

and µ a probability measure on R. We say that the measures µ and ν are
linked by the Markov-Krein relation if, for z ∈ C \ R,∫

R

1
(z − t)κ

µ(dt) = exp
(
−

∫
R

log(z − u)ν(du)
)
,

where κ = ν(R), the total measure of ν. By Theorem 2.1, the measures
µ = Mn(τ ; a) and

ν =
n∑
i=1

τiδai
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are linked by the Markov-Krein relation. In fact, in this case, the Markov-
Krein relation becomes∫

R

1
(z − t)κ

µ(dt) =
n∏
i=1

( 1
z − ai

)τi

, κ = τ1 + · · ·+ τn.

Let us assume that the measures µ and ν are compactly supported, and
denote by hm and pm the moments:

hm =
∫

R
tmµ(dt), pm =

∫
R
tmν(dt).

(Observe that κ = ν(R) = p0.)

Proposition 3.1. — The measures µ and ν are linked by the Markov-
Krein relation if and only if the moments hm and pm of µ and ν satisfy
the relation, for sufficiently small z,

∞∑
m=0

(κ)m
m!

hmz
m = exp

( ∞∑
m=1

pm
m
zm

)
.

It follows that hm can be written as a polynomial in p1, . . . , pm,

hm =
m!

(κ)m

m∑
k=1

1
k!

∑
αi≥1,α1+···+αk=m

pα1

α1
· · · pαk

αk
.

Theorem 3.2. — For a given nonzero positive measure ν on R with
compact support, there is a unique probability measure µ with compact
support such that the measures ν and µ are linked by the Markov-Krein
relation: for z ∈ C \ R,∫

R

1
(z − t)κ

µ(dt) = exp
(
−

∫
R

log(z − u)ν(du)
)
,

where κ = ν(R).
By definition the Markov-Krein transform is the map which associates

to the positive measure ν the probability measure µ.

Proof. If the measure µ exists, it is unique, since, by Proposition 3.1, the
moments of µ are determined by those of ν.

Assume supp(ν) ⊂ [a, b]. There is a sequence ν(n) of measures with
finite support in [a, b],

ν(n) =
n∑
i=1

τ
(n)
i δ

a
(n)
i
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which converges weakly to ν. By Theorem 2.1 the measures ν(n) and
µ(n) = Mn(τ (n); a(n)) are linked by the Markov-Krein relation. The
moment p

(n)
m of νn converges to the corresponding moment pm of ν.

Observe that h(0)
m = 1, and, for m ≥ 1, by Proposition 3.1, the moments

h
(n)
m have limits hm . The numbers hm are moments of a probability

measure µ, and µ is the weak limit of µ(n). Furthermore the measures µ
and ν are linked by the Markov-Krein relation.

4. An explicit formula for the Markov-Krein transform. — We
recall first the definition of hyperfunctions of one variable and some of their
elementary properties (see for instance [Morimoto,1993]). Let U ⊂ R be
open and W ⊂ C a complex open neighborhood of U . The space B(U) of
hyperfuncions on U is defined as

B(U) = O(W \ U)/O(W ),

where, for V ⊂ C open, O(V ) is the space of holomorphic functions on V .
For F ∈ O(W \ U), the equivalence class of F is denoted by [F ]. Define

F+ =
{
F on W+

0 on W− , F− =
{

0 on W+

−F on W−.

(W± = {z ∈ W | ±Im z > 0}.) The hyperfunctions [F+] and [F−] are
denoted by F (x+ i0) and F (x− i0), and called the boundary values of F .
Hence

[F ] = F (x+ i0)− F (x− i0).

Intuitively [F ] is the jump of F along U . An hyperfunction f ∈ B(U)
vanishes on an open set U0 ⊂ U if there is a representative F of f which is
holomorphic on (W \ U) ∪ U0. The support supp(f) of the hyperfunction
f ∈ B(U) is the smallest closed set C ⊂ U such that f vanishes on U \C.
The space of hyperfunctions on U with support contained in C is denoted
by BC(U).

An analytic functional on a compact set K ⊂ R is a linear form on the
space A(K) of analytic functions in a neighborhood of K,

A(K) =
⋂
U⊃K

O(U),

where U is a complex open neighborhood of K. The space of analytic
functionals on K is denoted by A′(K). The Cauchy transform GT of
T ∈ A′(K) is defined by

GT (z) = − 1
2iπ

〈Tt,
1

z − t
〉.
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The function GT is holomorphic on C \K, and defines an hyperfunction
[GT ]. The map Φ : T 7→ f = [GT ] is an isomorphism from A′(K) onto
BK(R). It follows that the space D′K of distributions supported in K can
be seen as a subspace of BK(R).

Let U ⊂ R be open, and ε > 0. A function F defined on

{z = x+ iy | x ∈ U, 0 < |y| < ε}

is said to be of moderate growth along U if, for every K ⊂ U compact,
there is a constant C > 0 and an integer N > 0 such that

|F (x+ iy)| ≤ C

|y|N
(x ∈ K, 0 < |y| < ε).

Let T ∈ A′(K), f ∈ BK(R) its image by the isomorphism Φ, and F
a representative of f . Then T is a distribution if and only if F is of
moderate growth along R. In such a case, for ϕ ∈ D(R),

〈T, ϕ〉 = lim
ε→0

∫
R

(
F (t+ iε)− F (t− iε)

)
ϕ(t)dt.

Furthermore supp(T ) = supp(f).
For α ∈ C the distribution Yα is defined, for Reα > 0, by

〈Yα, ϕ〉 =
1

Γ(α)

∫ ∞

0

ϕ(t)tα−1dt
(
ϕ ∈ D(R)

)
,

and admits an analytic continuation for α ∈ C. These distributions Yα
satisfy

Yα ∗ Yβ = Yα+β , Y0 = δ, Y−m = δ(m) (m ∈ N).

In particular Yα ∗ Y−α = δ.
Recall that, for α ∈ C, the holomorphic function zα in C\] −∞, 0] is

defined as follows: if z = reiθ with r > 0, −π < θ < π, then zα = rαeiαθ.
The function zα is of moderate growth along R, and

[zα] = −2iπ
1

Γ(−α)
Y̌α+1.

In particular, for m ∈ N, [zm] = 0, and, for m ≥ 1,

[z−m] = −2iπ
1

(m− 1)!
δ(m−1).

We will now give an explicit formula for the Markov-Krein transform.
Let ν be a positive measure on R with compact support, κ = ν(R). Recall
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that the Markov-Krein transform µ of ν is the unique probability measure
µ such that ∫

R

1
(z − t)κ

µ(dt) = exp
(
−

∫
R

log(z − u)ν(du)
)

(Theorem 3.2). Furthermore the support of µ is compact.

Theorem 4.1. — Let q be the holomorphic function defined on C\R
by

q(z) = exp
(
−

∫
R

log(z − u)ν(du)
)
.

Then q is of moderate growth, and

µ = − 1
2iπ

Γ(κ)Y̌κ−1 ∗ [q].

Observe that, if κ = 1, then µ = − 1
2iπ [q].

Lemma 4.2. — Let the function f be holomorphic on C \R, and µ a
measure on R with compact support. Then the function F , defined by

F (z) =
∫

R
f(z − t)µ(dt),

is holomorphic on C \R. If f is of moderate growth along R, then F is of
moderate growth as well and

[F ] = [f ] ∗ µ.

Proof of theorem 4.1.
The Markov-Krein relation can be written∫

R

1
(z − t)κ

µ(dt) = q(z).

By Lemma 4.2 the function q is of moderate growth along R, and

[z−κ] ∗ µ = [q].

We saw that
[z−κ] = −2iπ

1
Γ(κ)

Y̌1−κ.

Therefore, since Y̌κ−1 ∗ Y̌1−κ = δ,

µ = − 1
2iπ

Γ(κ)Y̌κ−1 ∗ [q].
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The logarithmic potential of the measure ν is defined on R by

Uν(x) =
∫

R
log

1
|x− u|

ν(du),

with values in ]−∞,∞].

Theorem 4.3. — If expUν is locally integrable and κ = ν(R) ≥ 1,
then the probability measure µ has a density h. Define

g(x) =
1
π

sin
(
πν(]x,∞[) expUν(x).

(i) If κ = 1, then h(x) = g(x).
(ii) If κ > 1, then

h(x) = (κ− 1)
∫ ∞

x

(s− x)κ−2g(s)ds.

This formula is related to a formula given in [Cifarelli-Regazzini, 1990]
(Part (ii) of Theorem 1, with τ = ∞, A(τ) = 0). The proof is there
obtained by using results of Widder and Hirschman about generalized
Stieltjes transforms.

Proof.
By Theorem 4.1 it amounts to show that the distribution − 1

2iπ [q] is
defined by the locally integrable function g. Define

H(z) =
∫

R
log

1
z − u

ν(du).

The function log z can be written

log z = log |z|+ iArg (z),

and
Arg (x± i0) =

{ 0 if x > 0,
±π if x < 0.

It follows that
H(x± i0) = Uν(x)∓ iπν([x,∞[),

and

− 1
2iπ

[q](x) = − 1
2iπ

(
expH(x+ i0)− expH(x− i0)

)
= − 1

2iπ
expUν(x)

(
e−iπν([x,∞[) − eiπν([x,∞[)

)
=

1
π

expUν(x) sin
(
πν([x,∞[)

)
= g(x).
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Examples

1) Assume the measure ν to be discrete

ν =
n∑
i=1

τiδai
(a1 < · · · < an, n ≥ 3).

Then its Markov-Krein transform is the probability measure
Mn(a1, . . . , an; τ1, . . . , τn). In that case

q(z) =
n∏
i=1

( 1
z − ai

)τi

.

a) Assume τ1 = · · · = τn = 1. Then q is a rational function which can
be written

q(z) =
n∑
i=1

ci
1

z − ai
, with ci =

∏
j 6=i

1
aj − ai

.

Therefore

[q] = −2iπ
n∑
j=1

ciδai
.

Since
Y̌n−1 ∗ δa =

1
(n− 2)!

(a− x)n−2
+ ,

the measure µ has a density h given by

h(x) = (n− 1)
∑
ai>x

ci(ai − x)n−2.

This density is a spline function with knots a1, . . . , an: the function h is
of class Cn−3, and its restriction to each interval [aj , aj+1] is a polynomial
of degree ≤ n− 2. In this case Mn(a; τ) is a spline distribution.

b) Assume 0 < τi < 1 (1 ≤ i ≤ n), κ = τ1 + · · · + τn ≥ 1. Then the
function

expUν(x) =
n∏
i=1

|x− ai|−τi

is locally integrable and

g(x) =
1
π

sin
(
π

∑
ai>x

τi
) n∏
i=1

|x− ai|−τi .
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If κ = 1, then the density h of µ is equal to g. For κ > 1, the density h of
µ is given by

h(x) = (κ− 1)
∫ x

0

(s− x)κ−2g(s)ds.

We have assumed the measures ν and µ to be compactly supported.
In fact it is possible to define the Markov-Krein transform of a positive
measure ν on R such that∫

R
log(1 + |u|)ν(du) <∞.

As an example let us consider the Cauchy measure

ν(du) =
1
π

1
1 + u2

du.

In [Yamato,1984] it is shown that the Markov-Krein transform µ of ν
is equal to ν (See also [Cifarelli-Regazzini, 1990]). In fact, by residue
Theorem, one gets the following formula for the Cauchy-Stieltjes transform
of the Cauchy measure:

Gν(z) =
∫

R

1
z − t

1
π

dt

1 + t2
=

{ 1
z+i if Im z > 0,
1
z−i if Im z < 0 .

Similarly one gets also∫
R

log(z − u)
1
π

du

1 + u2
=

{
log(z + i) if Im z > 0,
log(z − i) if Im z < 0 .

Therefore, for z ∈ C \ R∫
R

1
z − t

1
π

dt

1 + t2
= exp

(
−

∫
R

log(z − u)
1
π

du

1 + u2

)
.

It is possible to establish this result by using the formula of Theorem
4.3. The logarithmic potential Uν of ν is given by

Uν(x) =
∫

R
log

1
|x− u|

1
π

du

1 + u2
= −1

2
log(1 + x2).

Furthermore

ν(]x,∞[) =
1
π

∫ ∞

x

du

1 + u2
=

1
π

(π
2
−Arctg x

)
,
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and

sinπν(]x,∞[) = sin
(π

2
−Arctg x

)
= cos(Arctg x) =

1√
1 + x2

.

By Theorem 4.3 the density of the Markov-Krein transform µ of ν is given
by

g(x) =
1
π

expUν(x) sinπν(]x,∞[) =
1
π

1
1 + x2

.

Moreover let us consider, for κ > 1, the measure

νκ(du) =
κ

π

du

1 + u2
.

One gets, by residue Theorem,∫
R

1
(z − t)κ

1
π

dt

1 + t2
=

{
1

(z+i)κ if Im z > 0,
1

(z−i)κ if Im z < 0 .

Therefore the Markov-Krein transform of νκ is equal to ν1:∫
R

1
(z − t)κ

1
π

dt

1 + t2
= exp

(
−

∫
R

log(z − u)
κ

π

du

1 + u2

)
.

5. Thorin-Bondesson distributions. — For ξ ∈ R∗, τ > 0, let
γ(ξ, τ) denote the gamma distribution on R with density

Y (ξu)
|ξ|τ

Γ(τ)
e−ξu|u|τ−1.

The Fourier-Laplace transform ϕ of γ(ξ, τ) is given by

ϕ(z) =
∫

R
eztγ(ξ, τ ; dt) =

( ξ

ξ − z

)τ
.

It is defined for Re z < ξ if ξ > 0, and for Rez z > ξ if ξ < 0, and admits
a holomorphic extension to C \ [ξ,∞[ if ξ > 0, and to C\]−∞, ξ] if ξ < 0.

A Thorin-Bondesson distribution (or extended generalized gamma con-
volution, EGGC) is a probability measure µ on R which is a limit for the
tight topology of convolution products of gamma distributions

µ = lim
n→∞

( n∏
i=1

)∗
γ(ξ(n)

i , τ
(n)
i ).
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(See [Thorin,1977,1978], [Bondesson,1992]). The set Te of Thorin-
Bondesson distributions is closed for the tight topology and a semi-group
for the convolution. In [Schilling-Song-Vondraček,2012], Chapter 9 is de-
voted to the measures in the Bondesson class, denoted BO. These mea-
sures are sub-probabilities supported by [0,∞[. The probability measures
in the Bondesson class are precisely the Thorin-Bondesson distributions
(in our terminology) which are supported by [0,∞[.

The Fourier-Laplace transform ϕ of

γ(ξ1, . . . , ξn; τ1, . . . , τn) := γ(ξ1, τ1) ∗ · · · ∗ γ(ξn, τn)

is given by

ϕ(z) =
∫

R
eztγ(ξ1, . . . , ξn; τ1, . . . , τn; dt) =

n∏
i=1

( ξi
ξi − z

)τi

.

It is defined for |Re z| < σ, with σ = inf |ξi|, and admits a holomorphic
continuation to C\]−∞,−σ]∪ [σ,∞[. Let us observe that the function ϕ
can be written

ϕ(z) = exp
(∫

R
log

( ξ

ξ − z

)
ν(dξ)

)
,

with

ν =
n∑
i=1

τiδξi
.

Its logarithmic derivative

Φ(z) =
ϕ′(z)
ϕ(z)

=
n∑
i=1

τi
1

ξi − z

is a Pick function. In fact

Im Φ(z) = Im z
n∑
i=1

τi
|ξi − z|2

= Im z

∫
R

1
|u− z|2

ν(du).

Recall that a Pick function is a holomorphic function Φ defined in C \ R
such that Φ(z̄) = Φ(z), and Im Φ(z) ≥ 0 if Im z > 0. By a theorem of
Nevanlinna a Pick function admits the following representation

Φ(z) = β + γz +
∫

R

1 + zξ

ξ − z
η(dξ),

15



with β ∈ R, γ ≥ 0 and η is a bounded positive measure on R. Furthermore

β = Re Φ(i), γ = lim
y→∞

1
y
Im Φ(iy), η =

1
2iπ

1
1 + ξ2

[Φ].

Let us observe that this representation can be written

Φ(z) = β + γz +
∫

R

( 1
ξ − z

− ξ

1 + ξ2

)
ν(dξ),

with ν(dξ) = (1 + ξ2)η(dξ).

The measure γ(ξ1, . . . , ξn; τ1, . . . , τn) is infinitely divisible. In fact, for
t > 0, the measures

µt = γ(ξ1, . . . , ξn; tτ1, . . . , tτn)

form a continuous semi-group of probability measures. Since a limit of
infinitely divisible probability measures is infinitely divisible as well, every
measure µ in Te is infinitely divisible. Its Fourier-Laplace transform is of
the form

ϕ(z) =
∫

R
eztµ(dt) = eψ(z),

where ψ is a continuous function on iR. Let Be denote the set of continuous
functions ψ(z) on iR such that eψ(z) is the Fourier-Laplace transform of a
measure µ in Te. The Fourier-Laplace transform of the gamma distribution
γ(ξ, τ) is

ϕ(z) =
( ξ

ξ − z

)τ
.

Hence the function

ψ(z) = log
ξ

ξ − z

belongs to Be. Observe that, for β ∈ R∗,

lim
n→∞

( n
β

n
β − z

)n
= lim
n→∞

(
1− β

n
z
)−n

= eβz

is the Fourier-Laplace transform of

lim
n→∞

γ
(n
β

;n
)

= δβ .

16



Hence δβ ∈ Te, and the function ψ(z) = βz belongs to Be. Similarly, for
α > 0,

lim
n→∞

( √
2n
α√

2n
α − z

)n( −
√

2n
α

−
√

2n
α − z

)n
= lim
n→∞

(
1− 1

n

α

2
z2

)−n
= eα

z2
2

is the Fourier-Laplace transform of

lim
n→∞

(
γ
(√

2n
α
, n

)
∗ γ

(
−

√
2n
α
, n

))
.

Hence the function z2

2 belongs to Be.
Theorem 5.1. — Let ψ be a continuous function on iR, with

ψ(0) = 0. The following properties are equivalent.
(i) The function ψ belongs to Be: For every t > 0, the function etψ is

the Fourier-Laplace transform of a probability measure in Te.
(ii) The restriction of ψ to iR∗ admits a holomorphic extension to C\R,

the derivative of which is a Pick function.
(iii) The function ψ admits the representation

ψ(z) = βz + γ
z2

2
+

∫
R∗

(
log

ξ

ξ − z
− ξz

1 + ξ2

)
ν(dξ),

with β ∈ R, γ ≥ 0, and ν is a positive measure on R∗ such that∫
0<|ξ|≤1

log
1
|ξ|
ν(dξ) <∞,

∫
|ξ|≥1

1
ξ2
ν(dξ) <∞,

or, equivalently ∫
R∗

log
(
1 +

1
ξ2

)
ν(dξ) <∞.

Furthermore

β = Reψ′(i), γ = lim
y→∞

1
y
Imψ′(iy), ν =

1
2iπ

[ψ′].

This is a reformulation of results in [Bondesson,1992], Section 7. By
the change of variable ξ 7→ u = 1

ξ , we get the representation

ψ(z) = βz + γ
z2

2
−

∫
R∗

(
log(1− uz) +

uz

u2 + 1
)
ν0(du),

17



where the measure ν0, image of the measure ν by this map, satisfies∫
R∗

log(1 + u2)ν0(du) <∞.

Observe that

Reψ(i) = −1
2

(
γ +

∫
R∗

log(1 + u2)ν0(du)
)
.

To the measure ν0 on R∗ we associate the bounded positive measure ν̃ on
R defined by, for a bounded continuous function on R,∫

R
f(u)ν̃(du) = γf(0) +

∫
R∗
f(u) log(1 + u2)ν0(du).

Noticing that

lim
u→0

1
u2

(
log(1− uz) +

uz

u2 + 1

)
= −1

2
z2,

we obtain the following representation

ψ(z) = βz −
∫

R

(
log(1− uz) +

uz

1 + u2

) ν̃(du)
log(1 + u2)

.

By modifying slightly the statement of Theorem 7.1.1 in [Bondesson,1992],
one gets the following one. On the set Be we consider the topology of
uniform convergence on compact sets in iR, and on the set M(R) of
positive bounded measures, the tight topology.

Theorem 5.2. — The map

Be → R×M(R), ψ 7→ (β, ν̃)

is a homeomorphism.
Example: Symmetric stable laws

For 0 < α ≤ 2, the function ψ defined on iR by ψ(iy) = −|y|α belongs
to Be. It extension to C \ R is given by

ψ(z) = −(−iz)α, if Im z > 0,
= −(iz)α, if Im z < 0

,

which is a Pick function. If 0 < α < 2, the function ψ admits the following
representation

ψ(z) =
α

π
cos(α− 1)

π

2

∫
R∗

(
log

ξ

ξ − z
− ξz

1 + ξ2

)
|ξ|α−1dξ.
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If α = 2, then ψ(z) = z2. In that case β = 0, γ = 2, and ν = 0.

6. An asymptotic property for the Markov-Krein transform.
In this section we consider a sequence (νn) in Mc(R) and the sequence
(µn) of the Markov-Krein transforms: for z ∈ C \ R,∫

R
(1− zt)−κnµn(dt) = exp

(∫
R
− log(1− zu)νn(du)

)
,

where κn = νn(R). We will study the convergence of the sequence (µn)
assuming that κn = νn(R) goes to infinity.

We consider first a simple example. Recall that
Mn(a1, . . . , an; τ1, . . . , τn) is the Markov-Krein transform of the discrete
measure ν =

∑n
i=1 τiδai

.

Proposition 6.1. — Fix ξ ∈ R∗ and τ > 0. For the tight topology

lim
n→∞

M2(0,
n

ξ
;n, τ) = γ(ξ; τ).

Proof.
Assume ξ > 0. For a bounded continuous function f on R,∫

R
f(t)M2(0,

n

ξ
;n, τ ; dt)

=

(
n
ξ

)−(n+τ−1)

B(n, τ)

∫ n
ξ

0

f(t)
(n
ξ
− t

)n−1

tτ−1dt

=
ξτ

nτ Γ(n)Γ(τ)
Γ(n+τ)

∫ n
ξ

0

f(t)
(
1− tξ

n

)n−1

tτ−1dt.

Hence

lim
n→∞

∫
R
f(t)M2(0,

n

ξ
;n, τ); dt =

ξτ

Γ(τ)

∫ ∞

0

f(t)e−ξttτ−1dt.

More generally

Proposition 6.2. — Fix ξ1, . . . , ξk ∈ R∗ and τ1, . . . , τk > 0. For the
tight topology

lim
n→∞

Mk+1

(
0,
n

ξ1
, . . . ,

n

ξk
;n, τ1, . . . , τk

)
= γ(ξ1, . . . , ξk; τ1, . . . , τk).
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Proof.
Put

νn = nδ0 +
k∑
i=1

τiδ( n
ξi

),

µn = Mk+1

(
0,
n

ξ1
, . . . ,

n

ξk
;n, τ1, . . . , τn

)
.

By Theorem 2.1

∫
R

1
(z − t)κn

µn(dt) = z−n
k∏
i=1

1(
z − n

ξi

)τi
,

with κn = τ1 + · · ·+ τk + n. This relation can also be written

∫
R

1(
1− tz

n

)κn
µn(dt) =

k∏
i=1

( ξi
ξi − z

)τi

.

The two first moments of νn are given by

p
(n)
1 =

k∑
i=1

τi
( n
ξi

)
= n

n∑
i=1

τi
ξ
,

p
(n)
2 =

k∑
i=1

τ2
i

(n
ξ

)2 = n2
k∑
i=1

(τi
ξi

)2
.

Therefore the second moment of µn, given by

h
(n)
2 =

2
κn(κn + 1)

(
(p(n)

1 )2 + p
(n)
2

)
,

is bounded. It follows that the sequence (µn) is relatively compact.

Lemma 6.3. — Let (µn) be a sequence in M(R) which converges for
the tight topology to a measure µ, and let (κn) be a sequence of positive
numbers going to infinity. Then

lim
n→∞

∫
R

(
1− i

yt

κn

)−κn

µn(dt) =
∫

R
eiytµ(dt),

uniformly on compact sets.
(See [Curry-Schoenberg,1966], Lemma 3, p.92.)
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We continue the proof of Proposition 6.2. Let µ0 be the limit of a
converging subsequence (µnj

). Then, by Lemma 6.3, for z ∈ iR,

∫
R
eztµ0(dt) =

k∏
i=1

( ξi
ξi − z

)τi

.

It follows that µ0 = γ(ξ1, . . . , ξk; τ1, . . . , τk), and it is the only possible
limit for a converging subsequence. This proves that the sequence (µn)
converges with the limit γ(ξ1, . . . , ξk; τ1, . . . , τk).

Proposition 6.4. — Assume that limn→∞ κn = ∞, and that the
sequence (µn) converges to a probability measure µ for the tight topology.
Then µ is a Thorin-Bondesson distribution. Moreover, every Thorin-
Bondesson distribution is obtained in that way.
Proof.

Define
Fn(z) =

∫
R

(
1− zt

κn

)−κn

µn(dt).

Then, by Lemma 6.3,

lim
n→∞

Fn(iy) = F (iy) :=
∫

R
eityµ(dt),

uniformly on compact sets in R. On the other hand

Fn(z) = exp
(∫

R
− log

(
1− zu

κn

)
νn(dt)

)
= exp

(∫
R
− log(1− zu)ν̃n(du)

)
,

where ν̃n is the image of νn by the dilation of ratio 1
κn

. By Theorem 5.1
there are Thorin-Bondesson distributions µ̃n such that, for z ∈ iR,

Fn(z) =
∫

R
eztµ̃n(dt).

By Lévy-Cramer Theorem,

lim
n→∞

µ̃n = µ

for the tight topology. Since the set Te of Thorin-Bondesson distributions
is closed for the tight topology, it follows that µ is a Thorin-Bondesson
distribution.
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The set of such limits is closed. On the other hand, by Proposition 6.2,
this set contains the gamma convolutions γ(ξ1, . . . , ξk; τ1, . . . , τk). Hence
this set is dense in Te. Being closed and dense it is equal to Te.

The following theorem describes the representation for the Fourier-
Laplace transform of the Thorin-Bondesson distribution µ, limit of the
sequence (µn). Define

βn =
∫

R
uν̃n, σn(du) = u2ν̃n(du),

where ν̃n is, as before, the image of νn by the dilation of ratio 1
κn

.

Theorem 6.5. — Assume that βn and σn have limits,

lim
n→∞

βn = β, lim
n→∞

σn = σ

(for the tight topology). Then µn has a limit µ whose Fourier-Laplace
transform is given by∫

R
eztµ(dt) = exp

(
βz −

∫
R

log(1− zu) + zu

u2
σ(du)

)
.

Observe that

lim
u→0

log(1− zu) + zu

u2
= −z

2

2
.

Therefore the function

u 7→ log(1− zu) + zu

u2

has a continuous extension to R, and the formula in the theorem can be
written∫

R
eztµ(dt) = exp

(
βz +

1
2
γz2 −

∫
R∗

(
log(1− zu) + zu

)
τ(du)

)
,

with γ = σ({0}), and τ is the measure on R∗ given by τ(du) = 1
u2σ(du).

Proof.
Let us prove that the sequence (µn) is relatively compact. For that we

will show that the second moments h(n)
2 of the measures µn are bounded.

We know that
h

(n)
2 =

2
κn(κn + 1)

(
(p(n)

1 )2 + p
(n)
2

)
,
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where p(n)
m are the moments of order m of the measures νn. Since

p
(n)
1 = κnβn, p

(n)
2 = κ2

nσn(R),

we get

h
(n)
2 =

2κn
κn + 1

(
β2
n + σn(R)

)
.

The sequences
(
σn(R)

)
and (βn) are converging, and hence the sequence(

h
(n)
2

)
is bounded. Therefore the sequence (µn) is relatively compact. Let

µ0 be the limit of a converging subsequence of (µn). We get∫
R
eztµ0(dt) = exp

(
βz −

∫
R

log(1− zu) + zu

u2
σ(du)

)
.

This shows that there exists only one possible limit for a converging
subsequence. Therefore the sequence (µn) converges.

Let us consider the case where

νn =
n∑
k=1

τ
(n)
i δ

a
(n)
i

,

where a(n) = (a(n)
1 , . . . a

(n)
n ) and τ (n) = (τ (n)

1 , . . . , τ
(n)
n ) are n-uples of real

numbers. Then µn = Mn(τ (n); a(n)), and

κn =
n∑
i=1

τ
(n)
i , βn =

n∑
i=1

τ
(n)
i α

(n)
i , σn =

n∑
i=1

κ
(n)
i (α(n)

i )2δ
α

(n)
i

,

with α(n)
i = 1

κn
a
(n)
i .

Theorem 6.6. — Assume that the numbers τ (n)
i are bounded from

below: τ (n)
i ≥ τ with τ > 0. Assume that the measure σn converges to a

measure σ for the tight topology.
(i) Then σ has the form

σ =
∞∑
j=1

τjα
2
jδαj + γδ0,

where (αj) is a sequence of real numbers, τj ≥ τ , and γ ≥ 0.
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(ii) Assume moreover that limn→∞ βn = β. Then the measure µn =
Mn(τ (n), a(n)) converges to a Thorin-Bondesson distribution µ such that∫

R
eztµ(dt) = e

1
2γz

2
eβz

∞∏
j=1

( e−αjz

1− zαj

)κj

.

Proof.
Part (i) follows from

Lemma 6.7. — Let (µn) be a sequence of discrete measures of the
form

µn =
n∑
i=1

κ
(n)
i δ

α
(n)
i

,

where α(n)
i and κ

(n)
i are real numbers. Assume that κ(n)

i ≥ κ > 0 for all
n and i, and that µn converges to µ for the vague topology. Then µ is of
the form

µ =
∞∑
j=1

κiδαj ,

where (αj) is a sequence of real numbers and κi ≥ κ.

Part (ii) follows from Theorem 6.5.

For a1 < a2 < · · · < an, τ1 = . . . = τn = 1, the probability measure
Mn(a1, . . . , an; 1, . . . , 1) is a spline distribution. In that special case the
following theorem has been established by Schoenberg and Curry:

Theorem 6.8. — Assume that a sequence
µn = Mn(a

(n)
1 , . . . , a

(n)
n ; 1, . . . , 1) converges to a measure µ. Then µ is a

Pólya distribution: its Fourier-Laplace transform is a Pólya function,

Φ(z) =
∫
eztµ(dt),= e

1
2γz

2
eβz

∞∏
j=1

e−αjz

1− zαj
,

with

γ ≥ 0, β ∈ R, αj ∈ R,
∞∑
j=1

α2
j <∞.

Conversely every Pólya distribution is the limit of such a sequence of spline
distributions.

([Curry-Schoenberg,1996], Theorem 6, p.93.)
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7. The Markov-Krein transform and the Markov moment
problem. — The map

ν 7→ (µ, κ), Mc(R) →M1
c(R)× R+,

where µ is the Markov-Krein transform of ν and κ = ν(R), is injective,
but not surjective. It is an open question to determine the image of this
map. We will present a result by Kerov which is related to that question.
Kerov made the following definition: a continuous diagram supported by
a compact interval [a, b] is a real function ω defined on R satisfying

|ω(u1)− ω(u2)| ≤ |u1 − u2| (u1, u2 ∈ R),

and there is c ∈ R such that ω(u) = |u − c| for u 6∈ [a, b] ([Kerov,2003],
p.48 and p.150).

The terminology comes from the representation theory of the symmetric
group. By the theorem of Ascoli-Arzela, the set D[a, b] of continuous
diagrams supported by [a, b] is compact for the topology of uniform
convergence.

To a continuous diagram ω ∈ D[a, b] we associate the distribution
νω = 1

2ω
′′ (the second derivative is taken in the distribution sense). Then

〈νω, 1〉 = 1 and νω is a probability measure if and only if ω is convex. The
map ω 7→ ν′′ω is injective, and, if νω is a measure, then

ω(u) =
∫

R
|u− x|νω(dx).

Theorem 7.1. — The map which associates to a continuous diagram
ω ∈ D[a, b] the Markov transform µ of νω is a homeomorphism from D[a, b]
onto the set M1[a, b] of probability measures on [a, b].

([Kerov,2003], p.152.)

The Markov-Krein transform µ of νω is determined by the relation∫
[a,b]

1
z − t

µ(dt) = exp
(
−〈νω, log(z − u)〉

)
.

Proof.
The main step in the proof is as follows. Consider interlacing sequences

a1 < b1 < a2 < · · · < bn−1 < an.
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Then there is a continuous diagram ω such that

νω =
1
2
ω′′ =

n∑
i=1

δai −
n−1∑
i=1

δbi .

It is called a rectangular diagram: a piecewise affine function, each affine
segment has slope ±1. Then

F (z) := exp
(
−〈νω, log(z − u)〉

)
=

∏n−1
i=1 (z − bi)∏n
i=1(z − ai)

.

is a rational function with simple poles at a1, . . . , an which can be written

F (z) =
n∑
i=1

αi
z − ai

.

From the interlacing property it follows that the numbers αi are positive,
and the probability measure

µ =
n∑
i=1

αiδai

is the Markov-Krein transform of νω. One can see that the Markov-Krein
transform is a bijection from the set of measures

ν =
n∑
i=1

δai −
n−1∑
i=1

δbi ,

with interlacing sequences: a1 < b1 < a2 < · · · < bn−1 < an, onto the set
of probability measures

µ =
n∑
i=1

αiδai .

Then one shows that this map extends continuously from D[a, b] onto
M1[a, b].

In general the distribution νω is not a measure. In fact let us produce
an example of a continuous diagram such that νω is not a measure. Take
[a, b] = [0, 1] and consider the sequence of measures

νn =
2n+1∑
k=1

(−1)k−1δ 1
k
,
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and the sequence of rectangular diagrams

ωn(u) =
∫

R
|u− x|νn(dx).

Then
νn+1 − νn = −δ 1

2n+2
+ δ 1

2n+3
,

and
sup |ωn+1(u)− ωn(u)| ≤

1
2n+ 2

− 1
2n+ 3

.

Hence the sequence (ωn) converges uniformly to a continuous diagram ω.
In the distribution sense

1
2
ω′′ = lim

n→∞
νn.

Since

‖νn‖ =
2n+1∑
k=1

1
k

is unbounded, ω′′ is not a measure by the theorem of Banach-Steinhaus.

Consider the first derivative ω′ of a continuous diagram. It is a
measurable function f on R such that

−1 ≤ f(u) ≤ 1, f(u) = −1 for u < a, f(u) = 1 for u > b,

and the function h(u) = 1
2 (ω′ + 1) satisfies

0 ≤ h(u) ≤ 1, h(u) = 0 if u < a, h(u) = 1 if u > b.

The function h(u)−Y (u− b) has compact support and derivative νω− δb.
Therefore

〈νω − δb, log(z − u)〉 = 〈h− Y (u− b),
1

z − u
〉 =

∫ b

a

1
z − u

h(u)du.

If µ is the Markov-Krein transform of νω,∫
R

1
z − t

µ(dt) = exp
(
−

∫ b

a

h(u)
z − u

du− log(z − b)
)

=
1

z − b
exp

(
−

∫ b

a

h(u)
z − u

du
)
.
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Corollary 7.2 (Krein-Nudel’man). — The map which associates
to the function h the probability measure µ such that∫

[a,b]

1
z − t

µ(dt) =
1

z − b
exp

(
−

∫ b

a

h(u)
z − u

du
)

is a bijection form the set of measurable functions h on [a, b], satisfying
0 ≤ h(u) ≤ 1, onto M1([a, b]).

[Krein-Nudel’man,1977], p.395,396.
Recall the Markov moment problem. Consider a sequence (cm) of

Hausdorff moments:

cm =
∫

[a,b]

umdσ(du),

with σ ∈ M1([a, b]). The problem is to determine under which condition
the measure σ is absolutely continuous with respect to the Lebesgue
measure: σ(du) = h(u)du, with 0 ≤ h(u) ≤ 1.

Theorem 7.3 (Krein-Nudel’man). — The sequence (cm) is a
Markov moment sequence if and only if the sequence (am), defined by

∞∑
m=0

am
zm+1

=
1

z − b
exp

(
−

∞∑
m=0

cm
zm+1

)
,

is a Hausdorff moment sequence: there is µ ∈M1([a, b]) such that

am =
∫

[a,b]

tmµ(dt).

[Krein-Nudel’man,1977], p.243.

8. Example of Tricomi. — In this last section we revisit an
example studied by Tricomi [1933] (see also [Schoenberg,1946], [Curry-
Schoenberg,1966], Example 4 p.104). We consider spline distributions
with equidistant knots: aj = a+ ju, with a ∈ R, u > 0, j = 0, . . . , n, and

µn = Mn+1(a, a+ u, . . . a+ nu; 1, . . . , 1).

It is the Markov-Krein transform of the measure

µn =
n∑
j=0

δaj
.
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From the formula
cj =

∏
i 6=j

1
ai − aj

,

in Section 4, Example 1, we get

cj = (−1)j
1
un

1
j!(n− j)!

.

Therefore the density hn of the measure µn is given by

hn(t) =
1
un

1
(n− 1)!

n∑
j=0

(−1)j
(
n

j

)
(t− a− ju)n−1

+ .

This formula is also given in a slightly different form in [Uspensky,1937]
(Example 3 p.277), and is essentielly due to Laplace (Mémoire sur les
probabililtés, 1778, 1781 , § IX, p.404 [Laplace,1893]). One can check that
supp(hn) = [a, a+ n]. In fact, for t ≥ a+ n,

hn(t) =
1
hn

1
(n− 1)!

n∑
j=0

(−1)j
(
n

j

)
(t− a− ju)n−1.

and, for any polynomial p with deg(p) ≤ n− 1,

n∑
j=0

(−1)j
(
n

j

)
p(x− j) ≡ 0.

Recall that the divided differences are defined as follows: for a1 < a2 <
· · · < an, and a function f on R,

f [a1, a2] =
f(a2)− f(a1)

a2 − a1
,

f [a1, a2, . . . , an] =
f [a2, . . . , an]− f [a1, . . . an−1]

an − a1
,

and the Hermite-Genocchi formula: for a function f of class Cn−1,

f [a1, . . . , an] =
1

(n− 1)!

∫
R
f (n−1)(t)Mn(a1, . . . , an; 1, . . . , 1; dt).

(See for instance [Faraut,2005], Theorem 1.1.) In the present case,

f [a, a+ u, a+ 2u, . . . , a+ nu] =
1
n!

(∆n
uf)(a),
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where ∆u is defined by

(∆uf)(t) =
f(t+ u)− f(t)

u
.

The Hermite-Genocchi formula can be written in this special case, for a
function f of class Cn,

(
∆n
uf

)
(u) =

∫
R
f (n)(t)µn(dt).

For the special case f(t) = etz, we get

(euz − 1
u

)n
eaz = zn

∫
R
etzµn(dt).

Hence the Fourier-Laplace transform of µn is given by

µ̂n(z) = eza
(zuz − 1

uz

)n
.

Therefore the measure µn equals the following convolution product:

µn = δa ∗ µ∗n,

with ∫
R
f(t)µ(dt) =

1
u

∫ u

0

f(t)dt.

Taking a = −nu2 , we get

µn = Mn+1

(
−nu

2
,−(n− 2)

u

2
, . . . , (n− 2)

u

2
, n
u

2
; 1, . . . , 1

)
.

The density hn(t) of µn is given by

hn(t) =
1
2π

∫
R

( sin ux
2

ux
2

)n
eitxdx.

The measure µn is the Markov-Krein transform of

µn =
n∑
k=0

δak
, with ak = (2k − n)

u

2
,
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and κn = νn(R) = n+ 1. Then, with the notation of Section 6,

σn =
n∑
k=0

(α(n)
k )2δ

α
(n)
k

, with α(n)
k =

(2k − n)
n+ 1

u

2
,

and

supp(σn) ⊂
[
− n

n+ 1
u

2
,

n

n+ 1
u

2
]
,

σn(R) =
1

(n+ 1)2
u2

4

n∑
k=0

(2k − n)2 =
1

(n+ 1)2
u2

4
n(n+ 1)(n+ 2)

3
.

We take now u = 2
√

3
n . Then

supp(σn) ⊂
[
−
√

3n
n+ 1

,

√
3n

n+ 1
]
,

and
σn(R) =

n+ 2
n+ 1

.

Hence
lim
n→∞

σn = δ0.

By Theorem 6.3, the measure µn converges to the normal Gaussian
measure:

lim
n→∞

µn(dt) =
1√
2π
e−

t2
2 dt.

From the proof of Theorem VI.1 it follows that

lim
n→∞

n∏
k=0

(
1− z

ak
κn

)
= lim
n→∞

n∏
k=0

(
1− z

2k − n

n+ 1

√
3
n

)
= e−

z2
2 .

Observe that the Fourier-Laplace transform of µn is given by

µ̂n(z) =
∫

R
eztµn(dt) =

( sinh z
√

3
n

z
√

3
n

)n
,

and that

lim
n→∞

( sinh z
√

3
n

z
√

3
n

)n
= e

z2
2 .
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Since
µn = µ∗n1 ,

where µ1 is the measure given by∫
R
f(t)µ1(dt) =

1
u

∫ u
2

−u
2

f(t)dt,

the convergence of µn to the normal Gaussian measure also follows from
the central limit theorem.
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functions IV. The fundamental spline functions and their limits, J.
Analyse Math., 17, 71–107.

Faraut, J. (2005). Noyau de Peano et intégrales orbitales, Global J. of
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functions, Theory and Applications. De Gruyter.

32



Schoenberg, I.J. (1946). Contribution to the problem of approximation
of equidistant data by analytic functions, Quart. Appl. Math., 4,
45–99 & 112–141.

Thorin, O. (1977). On the infinite divisibility of the lognormal distribu-
tion, Scand. Actuar. J., no.3, 121–148.

Thorin, O. (1978). An extension of the notion of a generalized Γ-
convolution, Scand. Actuar., no.3, 141–149.
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