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Abstract The Markov-Krein transform maps a positive measure on the
real line to a probability measure. It is implicitely defined through an
identity linking two holomorphic functions. We propose an explicit for-
mula whose proof is obtained by considering boundary values of holo-
morhic functions. This transform appears in several classical questions in
analysis and probability theory: Markov moment problem, Dirichlet dis-
tributions, orbital measures. An asymptotic property for this transform
involves Thorin-Bondesson distributions.
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1. Introduction. — The starting point of this work is an observation
by Okounkov about the orbital measures for the action of the unitary
group U(n) on the space Herm(n,C) of n x n Hermitian matrices. The
projection of such a measure on the straight line generated by a rank
one matrix is a probability measure on R, the density of which is a
spline function, i.e. a piecewise polynomial function (see [Olshanski-
Vershik,1996], Proposition 8.2 p.172). More generally we consider the
action of the unitary group U(n,F) on the space Herm(n,F), for F = R,
C, or H, the skew field of quaternions, and the projection u of an orbital
measure. In general the density of p is not a spline function. The measure
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w satisfies the remarkable formula

n

1 1
/R s CCOR | P

i (2 — ai)%

where aq,...,a, are the eigenvalues of an Hermitian matrix in the orbit,
and d = dimglF = 1,2 or 4. This formula is a special case of the Markov-
Krein relation

| ety = exo(= [ 1otz — wptaw),

where p is a probability measure, v a positive measure, and k = v(R), the
total measure of v. In fact, taking

" d
1/2255%,

one gets the first formula. In Section 3 it will be proven that given a
positive measure v with compact support, there is a unique probability
measure p with compact support satisfying the Markov-Krein relation.
Hence we get a map: the Markov-Krein transform associates to the
positive measure v the probability measure u. We will see in Section
2 that this transform is related to the Dirichlet distributions in case v
is a discrete measure. An explicit formula for this transform is given in
Section 4 by using boundary values of holomorphic functions. This formula
is related to the one obtained in [Cifarelli-Regazzini,1990]. In Section 6 we
consider a sequence (v,,) of positive measures and the sequence (u,,) of the
Markov-Krein transforms. We study the asymptotic of u, in case v, (R)
goes to infinity. The result we will establish involves Thorin-Bondesson
distributions (or extended generalized gamma convolutions, EGGC), a
class of probability measures introduced by Thorin ([1977], [1978], see
also [Bondesson,1992]). The Markov-Krein transform shows up in several
questions of classical analysis. We have mentionned its relation to orbital
measures. It appears in the solution of the Markov moment problem by
Krein and Nudel’'man [1977]. The problem is as follows: Given a sequence
(cn,) of Hausdorff moments,

Cn = / t"o(dt),
[a,b]

under which condition is the positive measure o absolutely continuous with
respect to the Lebesgue measure: o(dt) = w(t)dt, with 0 < w(t) < 17
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We revisit that problem in Section 7. Finally we consider in last section
spline distributions with equidistant knots, and recall an example studied
by Tricomi [1933]. A large part of the book by Kerov [2003] is devoted
to the Markov-Krein correspondence in the framework of the asymptotic
analysis for the representations of the symmetric group. It has been a
source of inspiration for our work.

This paper originates in Chapter 2 of the These de Doctorat of the
second author [Fourati,2011b]. The work benefited of the support of the
CMCU program 10G 1503 (Programme Hubert Curien France-Tunisie,
Analyse Harmonique & Probabilités).

2. The generalized spline distributions M, (a;7). — We recall
definitions and results from [Fourati,2011al]. For 7 = (11,...,7,) € (R})"

(n > 2), the Dirichlet distribution D,(f) is the probability measure on the
simplex

An_]_:{u:<u1,...,un)eRn’fU/iZO, U,l—l—..._l_un:l}

defined by

(7) _ 1 T1—1 Tn—1
[ sn ) = i [ e g,

where « is the uniform probability measure on A,,_1, i.e. the normalized
restriction to A,,_1 of the Lebesgue measure on the hyperplane u; + - - -+
u, = 1, and

Cn(T):/ WU a(du).
A'n,fl
The evaluation of the constant C,(7) gives

[(r1)...T(m)

Cp(t) = (n—1)! ) ,

where |7| =711 4+ -+ + Ts.
For a = (ai,...,a,) € R", with a; < --- < a,, the probability measure
M,,(a;7) on R is the image of the Dirichlet distribution Dy by the map

An—l —>R, U= aiuy + -+ aplin,

i.e., for a continuous function F' on R,

/ F(t)M, (a;T;dt) = / Flajuy + - + anun) D) (du).
R Ap_1



The support of M,(a;7) is compact, supp(M,(t;a)) C [a1,a,). If
T = - =7, = 1, then M,(a,7) is a spline distribution (see [Curry-
Schoenberg,1966]). For 7; > 0, we will say that M, (a;7) is a generalized
spline distribution.

For instance, for n = 2,

/ F(t)Ma(a; 75 dt)
R

= —F(Tl+72) 1 a1(1 —u) 4 asu) (1l — w)™~tu™ " tdu
N F(T1)F(T2)/o Flaa(t = w) + azu)(1 ) du-

By the change of variable t = a1 (1 — u) + asu we get

/PﬁMb@ﬁMﬂ

(a2 _ al)_(T1+T2_1)

= [ FO - e e

We define the function log z on C\| — 00, 0] and, for a € C, the function

2% as follows : if z = re’, with r > 0, —m < 6 < =, then log z = log r + 16,

and z& = & logz rozezae.

THEOREM 2.1. —  The probability measure M, (a;T) satisfies the

relation
1 1T
i Mn(a; T dt) = ( ) )
/]R(Z_t)lT| (a ’ ) H zZ — Q;

for z € C\] — 00, a,].
This is a special case of the Markov-Krein relation we will consider in
next Section.

Proof.
Assume first Re z > a,,. We will evaluate in two ways the integral

I(a,z) :/]R

First, by the theorem of Fubini,

I(a,z) = H/o e‘xi(z_ai)xiﬂ'*ldxi =
i=1

4

exp(— Z(z — ai)wi>x?71 coxm T ey L day,.

n .
+ =1

n

)
H (z —a;)7

=1



Second, we will use the following integration formula: if the function f is
integrable on R’} , then

(x)dxy ... dx, = ﬁ /000 (/A f(ru)a(du))r”_ldr.

Ri n—1
Hence we get

1
(n—1)!

oo
/ </ e_r(’z_‘““l_'"_“"“")u?_1 . .u;"_la(du))rm_ldr
0 A

n—1

I(|7]) / TR T
An 1

I(a,z) =

- (n—1)! (2 —ajuy — -+ — apuy,)!"!

_ I (7)) Dy (du)
_Cn(T)(n—l)!/A (z—a1 —ay — - aguy)l7
=I'(m)...I'(m) /R mMn(a; T;dt).

From both evaluations of I(a,z) one gets the formula of Theorem 2.1.
Since both handsides of the formula are holomorphic in C\] — o0, a,], the
formula holds for z € C\| — 00, a,,] by analytic continuation.

The moments of the measure M, (a;T),

My, (a; 73m) Z/thn(a;T;dt),
R

are given by

- _ m! (T)x -+ (Ta)a, A An
M, (a;7;m) = o N ait...anm,
[A|=m
where A € N |[A| = A1 + -+ + Ay
In case of 7 = --- = 7, = 0 we will write M?(a;dt) and MY (a;m), and
then 0
D i) = Pl (an. i),
where Pp,,)(a1, ..., an;0) is the Jack polynomial associated to the partition
[m] = (m,...,0) with parameter 6. In the special case of = 1,
m!(n —1)!
ml ) = 7 /m yrresln)y
n(a7m) (n+m_1)| (al a )
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where h,, is the complete symmetric function. It can be written

M, (a;m) =
1 1 1
a a . a
m!l(n —1)! 1 ,1 ,2 " )
O : : . :
m+m—1D'V(ay,...,a,) o 0 ag_z an
a{n—l—n—l ag@—l—n—l am—i—n—l
n
where V(aq,...,a,) is the Vandermonde polynomial:
V(al, ce ,CLn) = H(aj — CLZ'),
i<j

and the Fourier Laplace transform of M!(a;dt),

Miasz) = [ e Miaia),

R
is given by
1 1 1
1 aq as .. (075
Mi(a:2) = (= Dl |
a1.....a 3 ST :
e o L an?
ealz eazz eanz
3. The Markov-Krein transform. — Let v be a nonzero positive

measure on R such that
/log(l + |u|)v(du) < oo,
R

and p a probability measure on R. We say that the measures p and v are
linked by the Markov-Krein relation if, for z € C \ R,

/Rﬁ,u(dt) = eXp(- /RlOg(z - U)V(d“)>’

where k = v(R), the total measure of v. By Theorem 2.1, the measures

= M,(7;a) and
v = ZTi‘Sai
i=1
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are linked by the Markov-Krein relation. In fact, in this case, the Markov-
Krein relation becomes

n

/Rﬁu(dt)zn(z_laiy—i, K=T1+ - +T,.

Let us assume that the measures p and v are compactly supported, and
denote by h,, and p,, the moments:

B = /R M u(dt),  pm = /R My (dt).

(Observe that k = v(R) = pg.)

PROPOSITION 3.1. — The measures . and v are linked by the Markov-
Krein relation if and only if the moments h,, and p,, of u and v satisfy
the relation, for sufficiently small z,

It follows that h,, can be written as a polynomial in p1,...,Pm,

m! = 1 Pa Da
O wD Dy D DR

k=1 " a;>1,a1++ar=m

THEOREM 3.2. —  For a given nonzero positive measure v on R with
compact support, there is a unique probability measure p with compact
support such that the measures v and p are linked by the Markov-Krein
relation: for z € C\ R,

/Rﬁu(dt) = eXp<— /Rlog(z — U)V(du)>’

where kK = V(R).

By definition the Markov-Krein transform is the map which associates
to the positive measure v the probability measure pu.

Proof. If the measure p exists, it is unique, since, by Proposition 3.1, the
moments of u are determined by those of v.
Assume supp(v) C [a,b]. There is a sequence v(™ of measures with

finite support in [a, b],
() — Z Ti(")éa@
i=1 ‘
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which converges weakly to v. By Theorem 2.1 the measures ™ and
p™ = M, (r(™;a(™) are linked by the Markov-Krein relation. The
(n) .
moment p,,” of v, converges to the corresponding moment p,, of v.
Observe that h,(g) =1, and, for m > 1, by Proposition 3.1, the moments
hgff) have limits h,, . The numbers h,, are moments of a probability
measure j, and g is the weak limit of u(™. Furthermore the measures u
and v are linked by the Markov-Krein relation. []

4. An explicit formula for the Markov-Krein transform. — We
recall first the definition of hyperfunctions of one variable and some of their
elementary properties (see for instance [Morimoto,1993]). Let U C R be
open and W C C a complex open neighborhood of U. The space B(U) of
hyperfuncions on U is defined as

B(U) = O(W\U)/O(W),

where, for V' C C open, O(V) is the space of holomorphic functions on V.
For FF € O(W \ U), the equivalence class of F' is denoted by [F]|. Define

F*:{F onW+, 10 onI/VJ_r

0 on W™ —F onW~.

(W* = {2z € W | £Imz > 0}.) The hyperfunctions [F*] and [F~] are
denoted by F(x+10) and F(z —i0), and called the boundary values of F'.
Hence

[F] = F(z +i0) — F(z — i0).

Intuitively [F] is the jump of F along U. An hyperfunction f € B(U)
vanishes on an open set Uy C U if there is a representative F' of f which is
holomorphic on (W \ U) U Uy. The support supp(f) of the hyperfunction
f € B(U) is the smallest closed set C' C U such that f vanishes on U \ C.
The space of hyperfunctions on U with support contained in C' is denoted
by Bc(U)

An analytic functional on a compact set K C R is a linear form on the
space 2A(K) of analytic functions in a neighborhood of K,

AK) = () OW).

UDK

where U is a complex open neighborhood of K. The space of analytic
functionals on K is denoted by 2/(K). The Cauchy transform Gp of
T € A (K) is defined by



The function G is holomorphic on C\ K, and defines an hyperfunction
[Gr]. The map ® : T +— f = [Gr] is an isomorphism from 2’'(K) onto
Br (R). It follows that the space D’ of distributions supported in K can
be seen as a subspace of Bx (R).

Let U C R be open, and € > 0. A function F' defined on

{z=zx+4+iy|zel, 0< |yl <e}

is said to be of moderate growth along U if, for every K C U compact,
there is a constant C' > 0 and an integer N > 0 such that

C
\F(fr+iy)|ﬁw (z €K, 0<yl <o)

Let T € A(K), f € Bg(R) its image by the isomorphism ®, and F

a representative of f. Then T is a distribution if and only if F' is of
moderate growth along R. In such a case, for ¢ € D(R),

(T, p) = lim R(F(t + ie) — F(t —ig))p(t)dt.

Furthermore supp(7") = supp(f).
For oo € C the distribution Y,, is defined, for Rea > 0, by

1 oo
Vor#) = iy | w0t (¢ € DR),
) Jo (< D)
and admits an analytic continuation for o € C. These distributions Y,
satisfy
Yo Y3 =Yoip Yo=0, Y, =6 (meN).

In particular Y, xY_, = 4.

Recall that, for o € C, the holomorphic function 2z in C\] — 00, 0] is
defined as follows: if z = re? with r > 0, —7 < 6 < 7, then 2 = r®e*®?,
The function z® is of moderate growth along R, and

1
o = i Vo1
R
In particular, for m € N, [2"] = 0, and, for m > 1,

1
ml — _9jp——  slm=1)
[27™] { ( 1)!5

We will now give an explicit formula for the Markov-Krein transform.
Let v be a positive measure on R with compact support, £ = v(R). Recall
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that the Markov-Krein transform p of v is the unique probability measure
w such that

/]R ﬁﬂ(dt) = exp<— /Rlog(z - u)y(du)>

(Theorem 3.2). Furthermore the support of p is compact.

THEOREM 4.1. —  Let q be the holomorphic function defined on C\ R
by

q(z) = exp(— /]R log(z — u)u(du))

Then q is of moderate growth, and

1 .
=——T(k)Y._ )
p= =5 L(K)Ye1*[d]
Observe that, if k = 1, then p = —5-[q].
LEMMA 4.2. —  Let the function f be holomorphic on C\R, and u a

measure on R with compact support. Then the function F, defined by

F(z) = / £z — Bulde),

is holomorphic on C\ R. If f is of moderate growth along R, then F is of
moderate growth as well and

[F] = [f] * p.

Proof of theorem 4.1.
The Markov-Krein relation can be written

/R ﬁu(dt) = 4(2).

By Lemma 4.2 the function ¢ is of moderate growth along R, and

[27"] % p = [q].
We saw that )
= _oir Lt ¥, .
[277] WF(/{) 1
Therefore, since Y. 1xY)_, = 0,
1 .
n= —TN“)Ym—l * [q]. [
s
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The logarithmic potential of the measure v is defined on R by

U"(z) = /Rlog ’ximu(du),

with values in | — 0o, 00].

THEOREM 4.3. —  If expUY is locally integrable and k = v(R) > 1,
then the probability measure p has a density h. Define

g(z) = %sin(ﬂy(]x, oo[) exp U ().

(i) If k =1, then h(x) = g(x).
(ii) If k > 1, then

oo

h(z) = (k — 1)/ (s — )" 2g(s)ds.

xT

This formula is related to a formula given in [Cifarelli-Regazzini, 1990]
(Part (ii) of Theorem 1, with 7 = oo, A(7) = 0). The proof is there
obtained by using results of Widder and Hirschman about generalized
Stieltjes transforms.

Proof.
By Theorem 4.1 it amounts to show that the distribution —5—[q] is
defined by the locally integrable function g. Define

H(z) = /Rlog . i uu(du).
The function log z can be written

log z = log |z| + iArg (2),
and

0 if x >0,

Arg(xiio):{iw if £ < 0.

It follows that
H(z £i0) = U (x) F imv([z, 00|,

and
L [q)(@) = — 5 (exp H{w + i0) — exp H(z — 0))
v ql(z) = S expH(x +1 expH(x —1
1 v —imv(|x,00 i (|x,00
=5 exp U (:B)(e ([w,00]) _ gimv(le, D)
1 )
= —exp U” (z) sin(mv([z, 0])) = g(x). []
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Ezxamples

1) Assume the measure v to be discrete
n
V:ZTZ'(SM (a1 < -+ <ap, n>3).
i=1

Then its Markov-Krein transform is the probability measure

M, (a1,...,an;T1,...,Ts). In that case
n
1 N\
=1
a) Assume 73 = --- = 7, = 1. Then ¢ is a rational function which can
be written
- 1
z) = c , with ¢; =
a(z) ‘2 —a; ' Haj a;
i=1 V)
Therefore

Since
AT p— 2
n—1%*0q = m(a—$)+ ’
the measure p has a density h given by

h(z)=(n—-1) Y ci(a; —2)" .

a; >x

This density is a spline function with knots aq,...,a,: the function h is
of class C"3, and its restriction to each interval [a;, a;11] is a polynomial
of degree < mn — 2. In this case M, (a;7) is a spline distribution.

b) Assume 0 < 7; <1 (1 <i<n),k=7 +-+7, > 1. Then the
function

expU”(z) = H |z —a;|™™
i=1

is locally integrable and

g(z) = 1 sin (7 Z Ti) H |z — a;| """
i=1

s
a; >x
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If Kk =1, then the density h of u is equal to g. For k > 1, the density h of
W is given by

h(z)=(k—1) /Ow(s — )" 2g(s)ds.

We have assumed the measures v and p to be compactly supported.
In fact it is possible to define the Markov-Krein transform of a positive
measure v on R such that

/log(l + |u])v(du) < co.
R

As an example let us consider the Cauchy measure

1 1
= _ u.
w1+ u?

v(du)

In [Yamato,1984] it is shown that the Markov-Krein transform p of v
is equal to v (See also [Cifarelli-Regazzini, 1990]). In fact, by residue
Theorem, one gets the following formula for the Cauchy-Stieltjes transform
of the Cauchy measure:

1 1 dt %ﬂ if Imz >0,
Gy(z) = —— =91 .
rz—tml4t — ifImz<O0.

z

)

Similarly one gets also

o (z—u)l du  [log(z+1i) ifImz >0,
L8 s1tw2  \log(z—i) iflmz<0.

Therefore, for z € C\ R

/ 1 l—dt =ex <—/10 (z—u)l du )
RZ—tml+t2 P R & Tl+u2/’

It is possible to establish this result by using the formula of Theorem
4.3. The logarithmic potential U" of v is given by

1 1 du 1
vig)= [ 1 it = ——log(1 + z?).
U"(x) /Rogla:—uleu? 5 og(1l+ x%)

Furthermore

Waoo) =3 [0 -

14 u?

=

(g — Arctg x),

13



and
1
V1t a2

By Theorem 4.3 the density of the Markov-Krein transform p of v is given
by

sinmv(|x, oof) = sin(% — Arctg a:) = cos(Arctgz) =

1 1
Tl + a2

g(x) = —exp UY(z)sinmv(]z, oof) =

Moreover let us consider, for k > 1, the measure

Kk du
ml+u?

Vo (du) =

One gets, by residue Theorem,

/ 1 1 dt | e ifImz>0,
g (z—O)Fml+12 (z+ ifImz<0.

DE

Therefore the Markov-Krein transform of v, is equal to vq:

/ 1 1 dt o < /10 (2 u)li du )
— =exp|(— —u)— .
R(Z—t)ﬁﬂl—FtQ P R g 7Tl+u2

5. Thorin-Bondesson distributions. — For £ € R*, 7 > 0, let
~v(&,7) denote the gamma distribution on R with density
& - 1
Y DL e 8uy|T
(€0 gy lu

The Fourier-Laplace transform ¢ of (&, 7) is given by

o(z) = /R€Zt7(§»7§dt) = <§§Z>T«

It is defined for Rez < £ if € > 0, and for Rez z > £ if £ < 0, and admits
a holomorphic extension to C\ [§, co] if £ > 0, and to C\| — o0, ] if € < 0.

A Thorin-Bondesson distribution (or extended generalized gamma con-
volution, EGGC) is a probability measure p on R which is a limit for the
tight topology of convolution products of gamma distributions

p= lim <ﬁ>*7(§i(n)>7—i(n) ).

n—oo

=1
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(See [Thorin,1977,1978], [Bondesson,1992]). The set 7. of Thorin-
Bondesson distributions is closed for the tight topology and a semi-group
for the convolution. In [Schilling-Song-Vondracek,2012], Chapter 9 is de-
voted to the measures in the Bondesson class, denoted BO. These mea-
sures are sub-probabilities supported by [0, 00[. The probability measures
in the Bondesson class are precisely the Thorin-Bondesson distributions
(in our terminology) which are supported by [0, col.
The Fourier-Laplace transform ¢ of

7(&17 s 757157—17 . ~7Tn) = 7(5177-1) *oeeo ok 7(57177—71)

is given by

go(z):/Rez’ty(&,...,§n;7'1,...,7'n;dt):ﬁ< & )T

i1 6 2

It is defined for |Rez| < o, with ¢ = inf |§;|, and admits a holomorphic
continuation to C\| — 0o, —o| U [0, 0o[. Let us observe that the function ¢

can be written
p(z) = exp(/R log<£ f Z)V(df)),

n
V= Z Ti0¢, -
i=1

with

Its logarithmic derivative

() = o'(z) _

is a Pick function. In fact

- Ti 1
i=1 1>

Recall that a Pick function is a holomorphic function ® defined in C \ R
such that ®(z) = ®(z), and Im®(2) > 0 if Imz > 0. By a theorem of
Nevanlinna a Pick function admits the following representation

1+ 2¢

R $—2

P(z) =B +vyz+ n(dg),

15



with 3 € R, v > 0 and 7 is a bounded positive measure on R. Furthermore

1 11
= Re®(i), v = lim ~Im®(iy), n = - —— [®].
f=Re®(i), v = lim “Imd(iy), n= 5o 1——75[®]

Let us observe that this representation can be written

o(2) =B+vz+/R(§iz - i) ),

with v(d€) = (1 + £2)n(df).

The measure vy(&1,...,&,; 71, ..., Ty) is infinitely divisible. In fact, for
t > 0, the measures

Ht :7(517"'7$n;t7—15"'7t7_n)

form a continuous semi-group of probability measures. Since a limit of
infinitely divisible probability measures is infinitely divisible as well, every
measure u in 7. is infinitely divisible. Its Fourier-Laplace transform is of
the form

o) = [ tuld) =),
R

where 1) is a continuous function on ¢R. Let B, denote the set of continuous
functions 1(z) on iR such that e¥(*) is the Fourier-Laplace transform of a
measure u in 7.. The Fourier-Laplace transform of the gamma distribution

(€, 7) is

o) = ()"

Hence the function

£
£E—z
belongs to B.. Observe that, for § € R*,

1im<nB ) = lim (1—éz)_ — eP?
n—oo B_Z n—oo n

Y(z) = log

is the Fourier-Laplace transform of

Jm 1 (Gin) =0

16



Hence 63 € 7., and the function ¢ (z) = Bz belongs to B.. Similarly, for
a >0,

2n

la -n 22
— ——22> = %2

lim( o )( o >zhm<1
n— 00 /Q_n_z _ /2_n_z n— 00 n 2

is the Fourier-Laplace transform of

s () 2 (o))

Hence the function % belongs to B..

THEOREM 5.1. — Let 1 be a continuous function on iR, with
¥(0) = 0. The following properties are equivalent.

(i) The function 1 belongs to B.: For every t > 0, the function e'¥ is
the Fourier-Laplace transform of a probability measure in 7,.

(ii) The restriction of 1 to iR* admits a holomorphic extension to C\R,
the derivative of which is a Pick function.

(iii) The function v admits the representation

B 22 & &z
0 =Bz + [ (lon s - g vlde),

with B8 € R, v >0, and v is a positive measure on R* such that

/ log iV(df) < 00, %I/(df) < 00,
o<iei<t 1€l €218

or, equivalently

1
/* log<1 + 5—2>I/(d€) < 00.
Furthermore
1 1
B =Ret)'(i),y = yli_{go ;Imlﬁ/(iy)a v= %W’]-

This is a reformulation of results in [Bondesson,1992], Section 7. By
the change of variable & — u = %, we get the representation

2

wl2) = Bzt — [ (lop(l—ue)+ 5 )m(dw),
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where the measure v, image of the measure v by this map, satisfies

/* log(1 + u?)vp(du) < co.

Observe that

Rey(i) = —%(7—}— /* log(1 + uz)uo(du)>.

To the measure vy on R* we associate the bounded positive measure 7 on
R defined by, for a bounded continuous function on R,

[ 7wtdn) =25+ [ fwtos(1+ ()

Noticing that

uz> 1,5

.1
lim — (log(l —uz) + 2

u—0 u2

we obtain the following representation

(log(l —u)+ 1 iZuQ) logﬁdﬁLQ) ’

ve) = oz - [

R

By modifying slightly the statement of Theorem 7.1.1 in [Bondesson,1992],
one gets the following one. On the set B, we consider the topology of
uniform convergence on compact sets in iR, and on the set M(R) of
positive bounded measures, the tight topology.

THEOREM 5.2. —  The map
B. —Rx M(R), o—(6,0)
1 a homeomorphism.
Ezxample: Symmetric stable laws
For 0 < a < 2, the function v defined on iR by ¥ (iy) = —|y|* belongs
to B.. It extension to C\ R is given by
P(z) = —(—iz)*, if Imz > 0,
= —(iz)%, if Imz <0

Y

which is a Pick function. If 0 < a < 2, the function ¢ admits the following
representation

18



If @ = 2, then (2) = 22. In that case 3 =0, v =2, and v = 0.

6. An asymptotic property for the Markov-Krein transform.
In this section we consider a sequence (v,) in M.(R) and the sequence
(j1n,) of the Markov-Krein transforms: for z € C \ R,

/R(l — 2t) 7" g (dt) = exp(/R —log(1 — zu)yn(du)>,

where k, = v,(R). We will study the convergence of the sequence (uy,)
assuming that x, = v, (R) goes to infinity.

We consider first a simple example. Recall that
M, (a1,...,an;7T1,...,Ty) is the Markov-Krein transform of the discrete
measure v = y ., T;0q, .

PROPOSITION 6.1. — Fixz £ € R* and 7 > 0. For the tight topology

lim M>(0, g;n,T) =& 7).

n—oo

Proof.
Assume & > 0. For a bounded continuous function f on R,
n
R £

n\—(n+7-1) n
(1)

_ W/j f(t)(% —t)n_ltT_ldt

§" /% N
= t)1——= tT T dt.
o J, 1 (-7

I'(n+71)
Hence
lim [ f(¢)M2(0 Bon T);dt = &7 /00 f(t)e st at. 0
n—oo Jp R I'(r) Jo
More generally
PROPOSITION 6.2. — Fiz &y,..., & € R* and 7y, ..., 7 > 0. For the
tight topology
. n n
lim Mk+1(0,§—,...,S—k;n,ﬁ,...,m) =&, Ry Ty TE)-
n—oo 1
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Proof.
Put

k
Vp = TL50 + ZTzd(gﬂ),
=1

n n

n= M1 (0, —, ..., —
H e (0go g

;n,Tl,...,Tn).
By Theorem 2.1
1 k
=l

with k,, = ™ + -+ + 7 + n. This relation can also be written

k

/RW%W) :131(55—2)

The two first moments of v,, are given by

:ZTg(g)Q :nQZ(g)Q.

Therefore the second moment of u,,, given by

2

h(n) —
2 En(kn +1)

(") +p5"),
is bounded. It follows that the sequence (u,,) is relatively compact.

LEMMA 6.3. — Let (un) be a sequence in M(R) which converges for
the tight topology to a measure u, and let (k) be a sequence of positive
numbers going to infinity. Then

tim [ (1-i%)" un(dt):/ (),

n— 00 Kn

uniformly on compact sets.
(See [Curry-Schoenberg,1966|, Lemma 3, p.92.)
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We continue the proof of Proposition 6.2. Let pg be the limit of a
converging subsequence (fi,;). Then, by Lemma 6.3, for z € iR,

k

[ eatan = TT(z5=)"

=1

It follows that puo = v(&1,---,&k;11,---,7k), and it is the only possible
limit for a converging subsequence. This proves that the sequence (uy,)
converges with the limit y(&1,..., &k 71, - o, Tk)-

PROPOSITION 6.4. —  Assume that lim,,_. k, = 00, and that the
sequence () converges to a probability measure p for the tight topology.
Then p s a Thorin-Bondesson distribution. Moreover, every Thorin-
Bondesson distribution is obtained in that way.

Proof.
Define

Fo(z) = /R(1— AN )

Kn

Then, by Lemma 6.3,

lim F,(iy) = F(iy) := /Reity,u(dt),

n—oo

uniformly on compact sets in R. On the other hand

n

- eXp(/]R —log(1 — ZU)ﬁn(dU)>;

F.(z) = exp(/R —log(1 — ﬁ)l/n(dt))

where v, is the image of v,, by the dilation of ratio F% By Theorem 5.1
there are Thorin-Bondesson distributions i, such that, for z € iR,

Fu(z) = / et i (db).
R
By Lévy-Cramer Theorem,

lim p, =p

n—oo

for the tight topology. Since the set 7. of Thorin-Bondesson distributions
is closed for the tight topology, it follows that p is a Thorin-Bondesson
distribution.
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The set of such limits is closed. On the other hand, by Proposition 6.2,
this set contains the gamma convolutions (&1, ..., &k; T1,...,7). Hence
this set is dense in 7.. Being closed and dense it is equal to 7. []

The following theorem describes the representation for the Fourier-
Laplace transform of the Thorin-Bondesson distribution u, limit of the
sequence (). Define

B = /Ruﬁn, on(du) = u2§n(du),

where v, is, as before, the image of v,, by the dilation of ratio /{L

n

THEOREM 6.5. —  Assume that (3, and o, have limits,
lim 8, =06, limo,=0
n—oo n—oo

(for the tight topology). Then p, has a limit p whose Fourier-Laplace
transform s given by

/ReZtu(dt) = exp (ﬁz - / log(1 — ZQU) + Zua(du)).

R u

Observe that
. log(1 — zu) + zu z
lim = ——.
u—0 u2 2

Therefore the function

log(1 — zu) + zu

—
u 2

u

has a continuous extension to R, and the formula in the theorem can be
written

/ReZtu(dt) = exp (ﬂz + %722 — / (log(l — zu) + zu)7(du)>,

with v = o({0}), and 7 is the measure on R* given by 7(du) = 50(du).
Proof.
Let us prove that the sequence (u,) is relatively compact. For that we

will show that the second moments hgn) of the measures ji,, are bounded.
We know that 9

h(") —
2 Kn(Kn + 1)

((p")2 +pi™),
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(n)

where p;,” are the moments of order m of the measures v,,. Since

pgn) = /’inﬁn: p;n) = Hian(R)7

we get
(n) _ 2/in

2 Kn+1(ﬁr2b+0n(R))'

The sequences (0, (R)) and (8,) are converging, and hence the sequence

(hé”)) is bounded. Therefore the sequence (p,,) is relatively compact. Let
o be the limit of a converging subsequence of (). We get

/R(thﬂo(dt) = exp(ﬁz - / log(1 = ZQU) * Zua(du)).

R u

This shows that there exists only one possible limit for a converging
subsequence. Therefore the sequence () converges. []

Let us consider the case where

n

Vp = ZTi(n)(Sa(n),

k=1

where (™) = (a§”)7 . a%n)) and 7(") = (Tl(n), e ,Ty(Ln)) are n-uples of real
numbers. Then p,, = M, (7(™;a(™), and

n n

Kn = 27—1‘(”)7 571 = zn:Ti(n)az('n)’ On = Z K'En) (Oéz(-n))zéa(n)’
=1

(3
i=1 =1

= Ll

with a

THEOREM 6.6. —  Assume that the numbers Ti(n) are bounded from
below: Ti(n) > 7 with 7 > 0. Assume that the measure o, converges to a
measure o for the tight topology.

(i) Then o has the form

oo
o= ZTja?(Saj + 7do,
j=1

where (o) is a sequence of real numbers, 7; > 7, and v > 0.
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(ii) Assume moreover that lim, .o, B, = (. Then the measure pu, =
M, (1™ a(™) converges to a Thorin-Bondesson distribution p such that

o0
e~ ME \Fi
e p(dt) = e27? P ( ) )
[ et IG—,

1=

Proof.

Part (i) follows from

LEMMA 6.7. —  Let (un) be a sequence of discrete measures of the
form

Hn = Z Rgn)éa@)’
i=1 ’
(n) (n)

where a;’ and k; ' are real numbers. Assume that /{Z(-") >k >0 for all
n and i, and that p, converges to u for the vague topology. Then p is of

the form
oo
p=_ Kiba,,
j=1
where (o) is a sequence of real numbers and k; > K.

Part (ii) follows from Theorem 6.5. []

For a1 <as < --- < a,, m =... =7, = 1, the probability measure
M, (ai,...,a,;1,...,1) is a spline distribution. In that special case the
following theorem has been established by Schoenberg and Curry:

THEOREM 6.8. —  Assume that a sequence
P = Mn(agn)7 e ,a%n); 1,...,1) converges to a measure p. Then u is a
Polya distribution: its Fourier-Laplace transform is a Pdlya function,

e*OéjZ

0() = [ utdt),= 7 ]

1—za,’
j=1 J

with
oo
v>0, BeR, o €R, Za?<oo.
j=1

Conversely every Polya distribution is the limit of such a sequence of spline
distributions.

([Curry-Schoenberg,1996], Theorem 6, p.93.)
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7. The Markov-Krein transform and the Markov moment
problem. — The map

Vi (H?H)7 MC(R) - MiGR) X R—H

where p is the Markov-Krein transform of v and x = v(R), is injective,
but not surjective. It is an open question to determine the image of this
map. We will present a result by Kerov which is related to that question.
Kerov made the following definition: a continuous diagram supported by
a compact interval [a, b] is a real function w defined on R satisfying

lw(ur) —w(uz)| < up —uz|  (u1,uz € R),

and there is ¢ € R such that w(u) = |u — ¢| for u ¢ [a,b] ([Kerov,2003],
p.48 and p.150).

The terminology comes from the representation theory of the symmetric
group. By the theorem of Ascoli-Arzela, the set D[a,b] of continuous
diagrams supported by [a,b] is compact for the topology of uniform

convergence.
To a continuous diagram w € Dla,b] we associate the distribution
Ve, = 2w’ (the second derivative is taken in the distribution sense). Then

(Vw, 1) = 1 and v, is a probability measure if and only if w is convex. The
map w — v/ is injective, and, if v, is a measure, then

() = /R = alvy (da).

THEOREM 7.1. — The map which associates to a continuous diagram
w € Dla, b] the Markov transform u of v,, is a homeomorphism from D|a, b
onto the set M*[a,b] of probability measures on [a,b].

([Kerov,2003], p.152.)

The Markov-Krein transform p of v, is determined by the relation

/[a b} 1 p(dt) = exp(—(l/w, log(z — u))>

z—1
Proof.
The main step in the proof is as follows. Consider interlacing sequences
a1 < by <ag << b1 <ag,.
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Then there is a continuous diagram w such that

1 n n—1
vV, = iw" = Zéai — Z(Sbi'
=1 =1

It is called a rectangular diagram: a piecewise affine function, each affine
segment has slope £1. Then

F(z) = exp(—(uw,log(z - u)>) - %

is a rational function with simple poles at a4, ..., a, which can be written
"«
F(z) = .
=3

From the interlacing property it follows that the numbers «a; are positive,
and the probability measure

n
K= Z ai(saz‘
=1

is the Markov-Krein transform of v,,. One can see that the Markov-Krein
transform is a bijection from the set of measures

n n—1
V= § 5ai - E 5b¢7
=1 =1

with interlacing sequences: a1 < by < as < --- < b,—1 < a,, onto the set
of probability measures
n
on = Z aidai.
i=1

Then one shows that this map extends continuously from Dla,b] onto

M*a,b). [

In general the distribution v, is not a measure. In fact let us produce
an example of a continuous diagram such that v,, is not a measure. Take
[a,b] = [0,1] and consider the sequence of measures

2n+1

Un = Z (_1>k_16%’

k=1
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and the sequence of rectangular diagrams

wn(w) :/R|u—x|yn(dx).

Then

v — Uy = —0_1 0_1
n+1 n Inr2 + Int3

and
1 1

| < — :
2n + 2 2n + 3

sup ‘Wn+1(u) — Wnp (U)

Hence the sequence (w,,) converges uniformly to a continuous diagram w.
In the distribution sense

1
—w" = lim v,.
2 n— oo
Since
2n+1

1
lvall = 3 5
k=1

is unbounded, w” is not a measure by the theorem of Banach-Steinhaus.

Consider the first derivative w’ of a continuous diagram. It is a
measurable function f on R such that

1< f(u) <1, f(u)=—1foru<a, f(u)=1 for u>0b,
and the function h(u) = 3(w’ + 1) satisfies
0<h(u) <1, h(u) =0if u < a, h(u) =1if u>b.

The function h(u) — Y (u—b) has compact support and derivative v, — dp.
Therefore

b
(Ve — 0y, log(5 — u)) = (h— Y (u — b), — >:/ L hw)du.

Z—U Z—U

If p is the Markov-Krein transform of v,

/R . i tu(dt) = exp(— /b Zh(_uztdu —log(z — b)>

= i ; exp(— /ab j(—uid@
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COROLLARY 7.2 (KREIN-NUDEL'MAN). —  The map which associates
to the function h the probability measure p such that

1 1 ® h(u)
/[a,b] z— tﬁb(dt) z—b exp(—/a z— udu>

is a bijection form the set of measurable functions h on [a,b], satisfying
0 < h(u) <1, onto M*([a,b]).

[Krein-Nudel’'man,1977], p.395,396.
Recall the Markov moment problem. Consider a sequence (c¢,,) of
Hausdorff moments:

Cm = / u™do(du),
[a,b]

with o € M*([a,b]). The problem is to determine under which condition
the measure o is absolutely continuous with respect to the Lebesgue
measure: o(du) = h(u)du, with 0 < h(u) < 1.

THEOREM 7.3 (KREIN-NUDEL'MAN). —  The sequence (¢n,) is a
Markov moment sequence if and only if the sequence (a.,), defined by

00 00
A 1 Cm
m=0 m=0

is a Hausdorff moment sequence: there is u € M*([a,b]) such that

Ay = / t" u(dt).
[a,b]

[Krein-Nudel’'man,1977], p.243.

8. Example of Tricomi. — In this last section we revisit an
example studied by Tricomi [1933] (see also [Schoenberg,1946], [Curry-
Schoenberg,1966], Example 4 p.104). We consider spline distributions
with equidistant knots: a; = a + ju, witha € R, u >0, 5 =0,...,n, and

pn, = Mpii(a,a+u,...a+nu;l,... 1).

It is the Markov-Krein transform of the measure

n
Mn = Z 5aj .
5=0
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From the formula

1
Cj = )
=i
in Section 4, Example 1, we get
o1 1
(1=
%= i

Therefore the density h,, of the measure p,, is given by
I B (n
hnt:——g —1)’ t—a—ju)ih
®) u™ (n—1)! j:O( ) (]>( @Il

This formula is also given in a slightly different form in [Uspensky,1937]
(Example 3 p.277), and is essentielly due to Laplace (Mémoire sur les
probabililtés, 1778, 1781 , § IX, p.404 [Laplace,1893]). One can check that
supp(hy) = la,a + n]. In fact, for t > a + n,

ho(t) = hinﬁ ;(_1)3‘ (S‘) (t —a— ju)" .

and, for any polynomial p with deg(p) <n — 1,

i(—l)ﬂ‘ (T,‘)p@ ~j)=0.

=0 )

Recall that the divided differences are defined as follows: for a; < a9 <
-+« < ay, and a function f on R,

flar, ) = 102 =)

az — ai

flar, as, ..., an] = f[az,...,cm;] —_fa[in,...anl]7

and the Hermite-Genocchi formula: for a function f of class C" 1!,

1
(n—1)!

fla,...,an] = / f("_l)(t)Mn(al, coyans 1o 1 dt).
R
(See for instance [Faraut,2005], Theorem 1.1.) In the present case,

1
flasat o+ 2, a+nu) = = (AL])(a),
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where A, is defined by

iy - 12010

The Hermite-Genocchi formula can be written in this special case, for a
function f of class C™,

(A" f) (u) = / £ (1) ().

For the special case f(t) = e'*, we get

Uz _ 1\ "n
<6 ) eazzzn/etz,un(dt).
u R

Hence the Fourier-Laplace transform of u,, is given by

P Lo (2 — 1IN\
fin(z) = € ( uz )

Therefore the measure u,, equals the following convolution product:

P = g % ™",

/R Ft)u(dt) = % /0 " e,

Taking a = —n3, we get

with

u u u U
oy = Mn+1(—n§,—(n—2)§,...,(n—2)§,n§;1,...71).

The density h,(t) of u, is given by
1 sin L\
ha(t) = 5 - /R<“272) e dx.
The measure u,, is the Markov-Krein transform of
[y, = Z(Sa with ap = (2k — n)g
k=0 . 2’
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and k, = ,(R) =n+ 1. Then, with the notation of Section 6,

N (a2 Lo _ 2k—n)u
On kz_o(a )(5<n),W1t ay, 1 2

and

n ou n u}

n+12'n+127

1 u? zn:(%’ _n)? 1 wnn+1)(n+2)
1 :

on(R) = (n+1)2 4 (ntr1)24 3

supp(oy) € [ —

k=0
We take now u = 2\/5. Then

V3n V3n

Supp("ﬁ) - [_n+17 n+1]7
and 4o
n
on(R) = TR
Hence

lim Op = 50.
n—00

By Theorem 6.3, the measure u, converges to the normal Gaussian
measure:

+2
lim ., (dt) e~z dt.

1
n—oo B V2T

From the proof of Theorem VI.1 it follows that
lim H(l—z—) = lim H<1—22k_n\/§) —e_%
Observe that the Fourier-Laplace transform of p,, is given by

() = [ ) = (nh—\ﬁf)

and that

sinh z
lim (—

n—oo

3
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Since
. *n
/JJTL - :ul )

where 1 is the measure given by

[ soman =+ [ s

K3
2

the convergence of p,, to the normal Gaussian measure also follows from
the central limit theorem.
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