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The central question of the theory of random matrices is to determine
the asymptotic behavior of the eigenvalues of large random symmetric
or Hermitian matrices. In the case of the unitary Gaussian ensemble,
i.e. the space of Hermitian matrices equipped with a unitarily invariant
Gaussian probability, Mehta’s formulae express the eigenvalue density in
terms of the Christoffel-Darboux kernel of the Hermite polynomials. In
fact orthogonal polynomials are a powerful tool in this theory. We will
present in this course methods in the theory of random matrices which
are using orthogonal polynomials.
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I. INTRODUCTION

For F = R,C or H, letHn = Herm(n,F) be the space of n×n Hermitian
matrices with entries in F. OnHn one considers the probability law defined
by

Pn(dx) =
1
Cn

exp
(
−γtr(x2)

)
mn(dx),

where γ is a positive parameter, mn is the Euclidean measure associated
with the inner product

(x|y) = tr(xy),

and

Cn =
∫

Hn

exp
(
−γtr(x2)

)
mn(dx) =

(√
π

γ

)N

,

where

N = dimRHn = n+
β

2
n(n− 1), β = dimRF = 1, 2, 4.

1



This probability is invariant under the group Un = U(n; F) of n×n unitary
matrices with entries in F, acting on Hn by the transformations

x 7→ uxu∗ (u ∈ Un).

For F = R, it is the orthogonal group O(n), for F = C it is the unitary
group U(n), and for F = H, it is isomorphic to the symplectic group Sp(n),
maximal compact subgroup of the complex symplectic group Sp(n,C).

The probability space (Hn,Pn) is called Gaussian orthogonal ensemble
for F = R, Gaussian unitary ensemble for F = C, and Gaussian symplectic
ensemble for F = H.

The general problem in the theory of random matrices is to study
asymtotics of probabilities related to the eigenvalues of a random matrix
for large n.

a) Statistical distribution of the eigenvalues
If B ⊂ R is a Borel set, one denotes by ξn,B the random variable defined

by

ξn,B(x) =
1
n

#{eigenvalues of x in B}.

Let µn(B) be its expectation,

µn(B) = En(ξn,B).

Then µn is a probability measure on R, it is the statistical distribution of
the eigenvalues. If χB is the characteristic function of the set B, then

ξn,B(x) =
1
n

(
χB(λ1) + · · ·+ χB(λn)

)
,

if λ1, . . . , λn are the eigenvalues of x. In the sense of symbolic calculus
this can be written

ξn,B(x) =
1
n

trχB(x).

Therefore
µn(B) =

1
n

∫
Hn

trχB(x)Pn(x).

More generally, if ϕ is a bounded measurable function on R,∫
R
ϕ(t)µn(dt) =

1
n

∫
Hn

tr
(
ϕ(x)

)
Pn(dx).

Question : what can be said about the asymptotics of µn as n goes to
infinity ? The answer is given by the following theorem of Wigner.
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The semi-circle law σa of radius a is the probability measure defined on
R by ∫

R
ϕ(t)σa(dt) =

2
πa2

∫ a

−a

ϕ(t)
√
a2 − t2dt.

The theorem of Wigner says that, after scaling, the measure µn

converges to the semi-circle law σa of radius

a =

√
β

γ
.

Theorem (Wigner). — Let ϕ be a bounded continuous function on
R. Then

lim
n→∞

∫
R
ϕ
( t√

n

)
µn(dt) =

2
πa2

∫ a

−a

ϕ(u)
√
a2 − u2du.

This means that, for large n, the density of eigenvalues is approxima-
tively

2
πa2

√
na2 − λ2,

if |λ| ≤ a
√
n, and 0 if |λ| ≥ a

√
n.

In the original proof Wigner considers the moments of the measure µn:

Mk(µn) =
∫

R
tkµn(dt) =

1
n

∫
Hn

tr(xk)Pn(dx),

and by combinatorial computations determines the asymptotics of Mk(µn)
as n goes to infinity: for k fixed,

M2k(µn) ∼
( β

4γ

)k (2k)!
k!(k + 1)!

nk.

Note that the moments of odd order vanish. On the other hand it is easy
to compute the moments of the semi-circle law:

M2k(σa) =
(a2

4

)k (2k)!
k!(k + 1)!

.

In fact

M2k(σa) =
2
πa2

∫ a

−a

t2k
√
a2 − t2dt =

2a2k

π

∫ 1

0

uk− 1
2
√

1− udu

=
2a2k

π
B

(
k +

1
2
,
3
2

)
=

2a2k

π

Γ
(
k + 1

2

)
Γ
(

3
2

)
Γ(k + 2)

=
a2k

22k

(2k)!
k!(k + 1)!

.
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The proof by Pastur uses the Cauchy transform. Recall that the Cauchy
transform of a probability measure µ on R is the function Gµ defined on
C \ R by

Gµ(z) =
∫

R

1
z − t

µ(dt).

For µ = µn, writing Gµn = Gn,

Gn(z) =
1
n

∫
Hn

tr
((
zI − x)−1

)
Pn(dx).

After scaling one has to look at the functions

G̃n(z) =
√
nGn(

√
nz).

The proof amounts to showing that the functions G̃n converge,

lim
n→∞

G̃n(z) = f(z),

and that the limit f is a holomorphic function satisfying

f(z)2 − 4
a2
zf(z) +

4
a2

= 0.

Since =Gn(z) < 0 and hence =f(z) < 0 for =z > 0, necessarily

f(z) =
2
a2

(
z −

√
z2 − a2

)
,

which is the Cauchy transform of the semi-circle law σa.

The proof we will present uses the Fourier transform,

µ̂n(τ) =
∫

R
e−itτµn(t) =

1
n

∫
Hn

tr
(
exp(−iτx)

)
Pn(dx).

We will see that it can be computed in terms of Laguerre polynomials.
The convergence to the semi-circle law will follow by using the classical
Lévy-Cramér theorem.

More general results are obtained by using logarithmic potential theory.
One defines the energy of a probability measure µ by

I(µ) =
∫

R2
log

1
|s− t|

µ(ds)µ(dt) +
∫

R
V (t)µ(dt).
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For V (t) = γt2, the semi-circle law appears as equilibrium measure:
measure which realizes the minimum of the energy.

b) Local behaviour : the probabilities An(m, θ)
For θ > 0, and 0 ≤ m ≤ n, one denotes by An(m, θ) the probability

that a matrix x ∈ Hn has m eigenvalues in the interval [−θ, θ]. By using
orthogonal polynomials one can evaluate the probability An(m, θ) in terms
of Fredholm determinants, and its behaviour as n→∞. In particular we
will see that, for m = 0,

lim
n→∞

An

(
0,

θ√
2n

)
= Det[−θ,θ](I −K),

where Det is the Fredholm determinant, and K is the kernel

K(ξ, η) =
1
π

sin(ξ − η)
ξ − η

,

restricted to the square [−θ, θ]× [−θ, θ].

c) In the last chapter we consider the Wishart unitary ensemble. In
that case there is an analogue Wigner Theorem: It is Marchenko-Pastur
Theorem which describes the asymptotic of the statistical distribution of
the eigenvalues for a Wishart random matrix.
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II ORTHOGONAL POLYNOMIALS

1. Heine’s formulae. — Let µ be a positive measure on R. We
assume that the support of µ is infinite, and that, for all m ≥ 0,∫

R
|t|mµ(dt) <∞.

Hence, for all j ∈ N, the moment of order j,

mj =
∫

R
tjµ(dt),

is defined. On the space P of polynomials in one variable with real
coefficients one considers the inner product

(p|q) =
∫

R
p(t)q(t)µ(dt),

for which P is a pre-Hilbert space. The monomials 1, t, . . . , tm, . . . are
independent, and, by the Gram-Schmidt orthogonalization, one gets a
sequence {pm} of orthogonal polynomials: pm is of degree m, and∫

R
pm(t)pn(t)µ(dt) = 0 if m 6= n.

If {pm} is a sequence of orthogonal polynomials we will write

pm(t) = amt
m + · · · ,

dm =
∫

R
pm(t)2µ(dt).

Example: Hermite polynomials. The measure µ is Gaussian :

µ(dt) = e−t2dt.

The Hermite polynomial Hm is defined by

Hm(t) = (−1)met2
( d

dt

)m

e−t2 .

Notice that am = 2m. By integrating by parts one shows that

dm = 2mm!
√
π.
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In fact, for any polynomial p,∫
R
Hm(t)p(t)e−t2dt =

∫
R
p(m)(t)e−t2dt,

and ∫
R
e−t2dt =

√
π.

Let us consider the matrix of the moments of the measure µ:

Mij = mi+j =
∫

R
ti+jµ(dt).

It is the matrix of the quadratic form p 7→ ‖p‖2 with respect to the basis
{1, t, . . . , tm, . . .}. One defines

Dn = det
(
(Mij)0≤i,j≤n−1

)
.

Proposition II.1.1.

Dn =
1
n!

∫
Rn

∏
1≤i<j≤n

(xj − xi)2µ(dx1) . . . µ(dxn).

Proof. The determinant Dn can be written as an integral on Rn:

Dn =
∫

Rn

∣∣∣∣∣∣∣∣
x0

1 x1
2 . . . xn−1

n

x1
1 x2

2 . . . xn
n

...
...

...
xn−1

1 xn
2 . . . x2n−2

n

∣∣∣∣∣∣∣∣µ(x1) . . . µ(dxn)

=
∫

Rn

∣∣∣∣∣∣∣∣
1 1 . . . 1
x1 x2 . . . xn
...

...
...

xn−1
1 xn−1

2 . . . xn−1
n

∣∣∣∣∣∣∣∣x
0
1 · x1

2 · x2
3 · · ·xn−1

n µ(dx1) . . . µ(dxn).

This integral does not change under a permutation σ ∈ Sn of
{1, . . . , n}. Therefore

Dn =
1
n!

∑
σ∈Sn

ε(σ)

∫
Rn

∣∣∣∣∣∣∣∣
1 1 . . . 1
x1 x2 . . . xn
...

...
...

xn−1
1 xn−1

2 . . . xn−1
n

∣∣∣∣∣∣∣∣x
0
σ(1)x

1
σ(2) . . . x

n−1
σ(n)µ(dx1) . . . µ(dxn).
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By the classical evaluation of the Vandermonde determinant

∆(x) =
∏

1≤i<j≤n

(xj − xi) =

∣∣∣∣∣∣∣∣
1 1 . . . 1
x1 x2 . . . xn
...

...
...

xn−1
1 xn−1

2 . . . xn−1
n

∣∣∣∣∣∣∣∣
=

∑
σ∈Sn

ε(σ)x0
σ(1)x

1
σ(2) . . . x

n−1
σ(n),

the result is established.

We assume that the orthogonal polynomials are normalized by the
condition

pm(t) = tm + · · · ,
i.e. am = 1.

Proposition II.1.2.

Dn = d0d1 . . . dn−1.

Proof. Consider the polynomials in n variables pm defined, for m =
(m1,m2, . . . ,mn) ∈ Nn, x = (x1, x2, . . . , xn), by

pm(x) = pm1(x1)pm2(x2) . . . pmn(xn).

They are orthogonal for the inner product

(p|q) =
∫

Rn

p(x)q(x)µ(dx1) . . . µ(dxn),

and
‖pm‖2 = dm1dm2 . . . dmn .

Consider the expansion of the Vandermonde polynomial in this basis:

∆(x) =

∣∣∣∣∣∣∣∣
1 1 . . . 1
x1 x2 . . . xn
...

...
...

xn−1
1 xn−1

2 . . . xn−1
n

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
p0(x1) p0(x2) . . . p0(xn)
p1(x1) p1(x2) . . . p1(xn)

...
...

...
pn−1(x1) pn−1(x2) . . . pn−1(xn)

∣∣∣∣∣∣∣∣
=

∑
σ∈Sn

ε(σ)p0(xσ(1) . . . pn−1(xσ(n)).
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The second equality comes from the fact that the value of a determinant
does not change if one adds to a row a linear combination of the other
ones. Hence

∆(x) =
∑

σ∈Sn

ε(σ)pσ·δ(x),

where
σ ·m = (mσ(0),mσ(1), . . . ,mσ(n)),

and δ = (0, 1, . . . , n − 1). From the orthogonality of the polynomials pm
it follows that ∫

Rn

∆(x)2µ(dx1) . . . µ(dxn) = n!d0 . . . dn−1.

This gives a way to evaluate the constant Zn which will appear in
Section 2 of Chapter III:

Zn =
∫

Rn

e−(λ2
1+···+λ2

n)∆(λ)2dλ1 . . . dλn.

Corollary II.1.3.

Zn = π
n
2 2−

n(n−1)
2

n∏
j=2

j!.

Proof. Take
µ(dt) = e−t2dt.

The polynomials are then proportional to the Hermite polynomials:

pm(t) = 2−mHm(t),

and
dm = ‖pm‖2 = 2−mm!

√
π.

Therefore

cn = n!Dn = n!d0 . . . dn−1

= n!π
n
2

n−1∏
j=0

2−jj! = π
n
2 2−

n(n−1)
2

n∏
j=0

j!.
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Let us consider the polynomials pn defined by

pn(t) =

∣∣∣∣∣∣∣∣
M00 M01 . . . M0,n−1 1
M1,0 M1,1 . . . M1,n−1 t

...
...

...
...

Mn,0 Mn,1 . . . Mn,n−1 tn

∣∣∣∣∣∣∣∣ .
This is a sequence of orthogonal polynomials in L2(R, µ) for which

an = Dn, dn = DnDn+1.

In fact one sees that the integral∫
R
tjpn(t)µ(dt)

is zero if j < n, and equals Dn if j = n. One shows also

pn(t) =
1
n!

∫
Rn

n∏
i=1

(t− xi)∆(x)2µ(dx0) . . . µ(dxn−1).

2. Christoffel-Darboux kernel. — Let Sn be the orthogonal
projection of L2(R, µ) onto the space of polynomials of degree ≤ n − 1.
If {pk} is a sequence of orthogonal polynomials, this projection can be
written, for f ∈ L2(R, µ),

Snf(x) =
n−1∑
k=0

1
dk

(f |pk)pk(x) =
∫

R
Kn(x, y)f(y)µ(dy),

where Kn is the following kernel, called the Christoffel-Darboux kernel,

Kn(x, y) =
n−1∑
n=0

1
dk
pk(x)pk(y).

In order to get a simpler form for this kernel we will use a recurrence
relation satisfied by the polynomials pn. We will use the following notation

pn(x) = anx
n + bnx

n−1 + · · ·

dn =
∫

R
pn(x)2µ(dx).
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Proposition II.2.1.

xpn(x) = αnpn+1(x) + βnpn(x) + γnpn−1(x),

where
αn =

an

an+1
, βn =

bn
an

− bn+1

an+1
, γn =

an−1

an

dn

dn−1
.

Proof. The polynomial xpn(x) is a linear combination of the polynomials
p0, . . . , pn+1:

xpn(x) =
n+1∑
k=0

cnkpk(x),

where
cnk =

1
dk

∫
R
xpn(x)pk(x)µ(dx).

Notice that cnk = 0 if k > n + 1. Furthermore dkcnk = dnckn, hence
cnk = 0 if k < n− 1. Therefore

xpn(x) = αnpn+1(x) + βnpn(x) + γnpn−1(x),

with
αn = cn,n+1, βn = cn,n, γn = cn,n−1.

Identifying the coefficients of xn+1 and xn we get

an = αnan+1, bn = αnbn+1 + βnan.

From these relations, and taking into account that dn−1γn = dnαn−1, we
get the stated formulas.

Example
Recall that the Hermite polynomials are defined by

Hn(x) = (−1)nex2
( d

dx

)n

e−x2
.

One gets from this the generating function

w(x, t) =
∞∑

n=0

tn

n!
Hn(x) = e2xt−t2 .

In fact the Taylor expansion of the function f(x) = e−x2
can be written

f(x− t) =
∞∑

n=0

f (n)(x)
n!

(−t)n =
∞∑

n=0

tn

n!
Hn(x)e−x2

.
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The generating function w(x, t) satisfies

∂w

∂t
− (2x− 2t)w = 0.

Therefore

∞∑
n=1

tn−1

(n− 1)!
Hn(x)− 2x

∞∑
n=0

tn

n!
Hn(x) + 2

∞∑
n=0

tn+1

n!
Hn(x) = 0.

By looking at the coefficients of tn one gets

xHn(x) = 1
2 Hn+1(x) + nHn−1(x).

From the recurrence relation one gets the following formulas for the
Christoffel-Darboux kernel

Proposition II.2.2.

Kn(x, y) =
αn−1

dn−1

pn(x)pn−1(y)− pn−1(x)pn(y)
x− y

,

and
Kn(x, x) =

αn−1

dn−1

(
p′n(x)pn−1(x)− pn(x)p′n−1(x)

)
.

Proof. From the recurrence relation one obtains

1
dk

(x− y)pk(x)pk(y)

=
αk

dk
pk+1(x)pk(y) +

βk

dk
pk(x)pk(y) +

γk

dk
pk−1(x)pk(y)

− αk

dk
pk(x)pk+1(y)−

βk

dk
pk(x)pk(y)− γk

dk
pk(x)pk−1(y).

Since
γk

dk
=
αk−1

dk−1
,

this can be written

1
dk

(x− y)pk(x)pk(y) =
αk

dk

(
pk+1(x)pk(y)− pk(x)pk+1(y)

)
− αk−1

dk−1

(
pk(x)pk−1(y)− pk−1(x)pk(y)

)
.
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Therefore

(x− y)Kn(x, y) =
n−1∑
k=0

1
dk

(x− y)pk(x)pk(y)

=
αn−1

dn−1

(
pn(x)pn−1(y)− pn−1(x)pn(y)

)
− α0

d0

(
p1(x)p0(y)− p0(x)p1(y)

)
+

1
d0

(x− y)p0(x)p0(y).

The last line vanishes since

p0(x) = a0, p1(x)− p1(y) = a1(x− y), α0 =
a0

a1
.

One obtains Kn(x, x) as a limit. In fact

Kn(x, y) =
αn−1

dn−1

(pn(x)− pn(y)
x− y

pn−1(y)− pn(y)
pn−1(x)− pn−1(y)

x− y

)
,

and, as y → x,

Kn(x, x) =
αn−1

dn−1

(
p′n(x)pn−1(x)− pn(x)p′n−1(x)

)
.
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III. SEMI-CIRCLE LAW AND WIGNER THEOREM

1. Weyl integration formula. — We recall the notation: Hn =
Herm(n,F), F = R,C, or H, Un = U(n,F). By the spectral theorem
every matrix x ∈ Hn can be diagonalized in an orthogonal basis. The
eigenvalues are real. This can be said as follows: The map

Un ×Dn → Hn, (u, a) 7→ uau∗,

is surjective, where Dn denote the space of real diagonal matrices.

Theorem III.1.1 (Weyl integration formula). — If f is an
integrable function on Hn, then∫

Hn

f(x)mn(dx) = cn

∫
Dn

∫
Un

f(uau∗)αn(du)|∆(a)|βda1 . . . dan,

where a = diag(a1, . . . , an),

∆(a) =
∏
j<k

(ak − aj)

is the Vandermonde determinant, αn is the normalized Haar measure of
the compact group Un, cn is a positive constant, and β = dimRF = 1, 2,
or 4.

If the function f is Un-invariant,

f(uxu∗) = f(x) (u ∈ Un),

then f only depends on the eigenvalues λ1, . . . , λn of x,

f(x) = F (λ1, . . . , λn),

where the function F is defined on Rn, and is symmetric,

F (λσ(1), . . . , λσ(n)) = F (λ1, . . . , λn),

for σ ∈ Sn, the symmetric group. In that case the Weyl integration
formula simplifies:∫

Hn

f(x)mn(dx) = cn

∫
Rn

F (λ1, . . . , λn)|∆(λ)|βdλ1 . . . dλn.
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2. The density of the statistical distribution of the eigenvalues.
Let V be a continuous real function on R such that, for all m ≥ 0,∫

R
|t|me−V (t)dt <∞.

The main example will be V (t) = γt2 (γ > 0). One considers on the space
Hn the probability measure

Pn(dx) =
1
Cn

e− tr
(
V (x)

)
mn(dx),

with

Cn =
∫

Hn

e− tr
(
V (x)

)
mn(dx).

If the function f is Un-invariant,

f(uxu∗) = f(x) (u ∈ Un),

it only depends on the eigenvalues λ1, . . . , λn of x,

f(x) = F (λ1, . . . , λn),

where F is a symmetric function. From the Weyl integration formula it
follows that ∫

Hn

f(x)Pn(dx) =
∫

Rn

F (λ)qn(λ)dλ1, . . . dλn,

with
qn(λ) =

1
Zn

e−
(
V (λ1)+···+V (λn)

)
|∆(λ|β ,

and

Zn =
∫

Rn

e−
(
V (λ1)+···+V (λn)

)
|∆(λ)|βdλ1 . . . dλn.

In particular, if

f(x) =
1
n

tr
(
ϕ(x)

)
,

where ϕ is a bounded measurable function on R, then

f(x) =
1
n

(
ϕ(λ1) + · · ·+ ϕ(λn)

)
,
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and ∫
Hn

f(x)Pn(dx) =
1
n

n∑
i=1

∫
Rn

ϕ(λi)qn(λ)dλ1 . . . dλn

=
∫

Rn

ϕ(λ1)qn(λ)dλ1 . . . dλn

=
∫

R
ϕ(t)wn(t)dt,

with

wn(t) =
∫

Rn−1
qn(t, λ2, . . . , λn)dλ2 . . . dλn.

In particular, if ϕ = χB , the characteristic function of the Borel set B,

f(x) =
1
n

(
χB(λ1) + · · ·+ χB(λn)

)
=

1
n

#{eigenvalues of x ∈ B} = ξn,B(x),

and

µn(B) = En(ξn,B) =
∫

B

wn(t)dt.

This means that the measure µn is absolutely continuous with respect to
the Lebesgue measure, with density wn.

3. Mehta’s formulae. — From now on we assume that F = C, hence
Hn = Herm(n,C), β = 2. Let us consider the orthogonal polynomials pm

with respect to the weight e−V (t)dt:∫
R
pk(t)pm(t)e−V (t)dt = 0 if k 6= m,

normalized by the condition

pm(t) = tm + · · ·

Let dm denote the square of the norm of pm,

dm =
∫

R
|pm(t)|2e−V (t)dt.

Recall that ∆ denotes the Vandermonde polynomial. Since the value of a
determinant does not change if one adds to a row a linear combination of
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the other ones,

∆(λ) =

∣∣∣∣∣∣∣∣
1 1 . . . 1
λ1 λ2 . . . λn
...

...
...

λn−1
1 λn−1

2 . . . λn−1
n

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
p0(λ1) p0(λ2) . . . p0(λn)
p1(λ1) p1(λ2) . . . p1(λn)

...
...

...
pn−1(λ1) pn−1(λ2) . . . pn−1(λn)

∣∣∣∣∣∣∣∣ .
Therefore

∆(λ) =
∑

σ∈Sn

sign(σ)p0(λσ(1))p1(λσ(2)) . . . pn−1(λσ(n)).

The terms of this sum are orthogonal in the space

L2
(
Rn,⊗n

i=0e
−V (λi)dλi

)
,

hence

Zn =
∫

Rn

e−
(
V (λ1)+···V (λn)

)
∆(λ)2dλ1 . . . dλn = n!d0d1 . . . dn−1.

Define

ϕm(t) =
1√
dm

e−
1
2 V (t)pm(t).

The functions ϕm are orthonormal in L2(R). Define also

Kn(s, t) =
n−1∑
k=0

ϕk(s)ϕk(t).

Up to the exponential factor e−
1
2

(
V (s)+V (t)

)
it is the Christoffel-Darboux

kernel for the orthogonal polynomials pm. It is also the kernel of the or-
thogonal projection of L2(R) onto the subspace generated by ϕ0, . . . , ϕn−1.
We will use the following notation introduced by Fredholm: for a kernel
K(s, t),

K

(
s1 s2 . . . sm

t1 t2 . . . tm

)
= det

(
K(si, tj)

)
1≤i,j≤m

.
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Proposition III.3.1 (Mehta’s formula 1).

qn(λ1, . . . , λn) =
1
n!
Kn

(
λ1 . . . λn

λ1 . . . λn

)
.

Proof. Recall that

qn(λ1, . . . , λn) =
1
Zn

e−
(
V (λ1)+···+V (λn)

)
∆(λ)2,

Zn = n!d0 . . . dn−1,

∆(λ) = det
(
pi(λj)

)
0≤i≤n−1,1≤j≤n

,

ϕm(t) =
1√
dm

e−
1
2 V (t)pm(t).

Putting everything together one obtains

qn(λ1, . . . , λn) =
1
n!

det
(
ϕi(λj)

)2
.

Consider the matrix A =
(
ϕi(λj)

)
. The entries bij of the matrix B = ATA

are given by

bij =
n−1∑
k=0

ϕk(λi)ϕk(λj) = Kn(λi, λj),

hence

detB = Kn

(
λ1 . . . λn

λ1 . . . λn

)
.

Proposition III.3.2 (Mehta’s formula 2). — The density wn of
the measure µn, the statistical distribution of the eigenvalues, is given by

wn(t) =
1
n
Kn(t, t).

Proof. The correlation function Rm (0 ≤ m ≤ n) is the function in m
variables defined by

Rm(λ1, . . . , λm)

=
n!

(n−m)!

∫
Rn−m

qn(λ1, . . . , λm, λm+1, . . . , λn)dλm+1 . . . dλn.

In particular, for m = n,

Rn(λ1, . . . , λn) = n!qn(λ1, . . . , λn),
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and, for m = 1,

R1(λ1) = n

∫
Rn−1

qn(λ1, λ2, . . . , λn)dλ2 . . . dλn = nwn(λ1).

By a backwards recursion on m we will prove that

Rm(λ1, . . . , λm) = Kn

(
λ1 . . . λm

λ1 . . . λm

)
.

For m = n it is Formula 1, and, for m = 1, it is Formula 2. It will follow
from the next lemma.

Lemma III.3.3. — Let K be the kernel of the orthogonal projection
P of L2(R) onto a subspace of dimension n. Then∫

R
K

(
t1 . . . tm
t1 . . . tm

)
dtm = (n−m+ 1)K

(
t1 . . . tm−1

t1 . . . tm−1

)
.

Proof. The kernel K satisfies
- K(t, s) = K(s, t) since P ∗ = P ,
-

∫
R K(s, u)K(u, t)du = K(s, t), since P ◦ P = P ,

-
∫

R K(t, t)dt = n, since trP = n.
Let Am be the m×m Hermitian matrix with entries

aij = K(ti, tj) (1 ≤ i, j ≤ m).

We write it as

Am =
(
Am−1 α
α∗ γ

)
,

with
α =

(
K(ti, tm)

)
(1 ≤ i ≤ m− 1), γ = K(tm, tm).

The determinant of Am can be evaluated as follows

detAm = detAm−1 · γ − α∗Ãm−1α,

where Ãm−1 is the matrix of the cofactors ãij of Am−1. By integrating
with respect to tm we obtain∫

R
K

(
t1 . . . tm
t1 . . . tm

)
dtm =K

(
t1 . . . tm−1

t1 . . . tm−1

) ∫
R
K(tm, tm)dtm

−
m−1∑
i,j=1

ãi,j

∫
R
K(tj , tm)K(tm, ti)dtm

= nK

(
t1 . . . tm−1

t1 . . . tm−1

)
−

∑
i,j=1

ãijK(tj , ti).
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Since
m−1∑
j=1

ãijaji = detAm−1,

we obtain finally∫
R
K

(
t1 . . . tm
t1 . . . tm

)
dtm = (n−m+ 1)K

(
t1 . . . tm−1

t1 . . . tm−1

)
.

4. Fourier transform of the statistical distribution of the
eigenvalues. — We assume now that V (t) = γt2 (γ > 0). In that
case

pm(t) = 2−mγ−
m
2 Hm(

√
γt),

where Hm is the Hermite polynomial of degree m:

Hm(x) = (−1)mex2
( d

dx

)m

(e−x2
),

and
dm =

∫
R
|pm(t)|2e−γt2dt = 2−mγ−m− 1

2m!
√
π.

The Hermite functions

ϕm(t) =
1√
dm

e−
1
2 γt2pm(t)

constitute a Hilbert basis of L2(R).
Recall that the density wn of the measure µn, the statistical distribution

of the eigenvalues of a random matrix, is given by

wn(t) =
1
n
Kn(t, t) =

1
n

n−1∑
k=0

ϕk(t)2.

We will compute its Fourier transform. In fact we will determine first the
Fourier transform of

Wr(t) =
∞∑

k=0

rkϕk(t)2 (|r| < 1).

For that we will use the following classical formula of Mehler:

∞∑
k=0

1
2kk!

Hk(x)Hk(y)rk =
1√

1− r2
e

2xyr−(x2+y2)r2

1−r2 ,
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(see for instance [Lebedev,1972] p.65-66) which gives, for y = x,

∞∑
k=0

1
2kk!

Hk(x)2rk =
1√

1− r2
e2x2 r

1+r .

From this formula we get

Wr(t) =
√
γ

π

1√
1− r2

e−γ 1−r
1+r t2 .

This is a Gauss function. Recall that∫
R
e−itτe−αt2dt =

√
π

α
e−

τ2
4α (α > 0).

Here α = γ 1−r
1+r . Therefore

Ŵr(τ) =
∫

R
e−itτWr(t)dt

=
1

1− r
e−

1+r
1−r

τ2
4γ = e−

τ2
4γ

1
1− r

e−
r

1−r
τ2
2γ .

If one is familiar with classical orthogonal polynomials, one recognizes the
generating function for the Laguerre polynomials

Lα
m(x) = exx

−α

n!

( d

dx

)m

(e−xxm+α).

In fact
∞∑

k=0

Lα
k (x)rk =

1
(1− r)α+1

e−
r

1−r x (|r| < 1)

(see for instance [Lebedev, 1972], p.77), and we obtain

Ŵr(τ) = e−
r2
4γ

∞∑
k=0

rkL0
k

( τ2

2γ

)
.

Since Wr has been defined as

Wr(t) =
∞∑

k=0

rkϕk(t)2,

it follows that:
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Proposition III.4.1.∫
R
e−itτϕk(t)2dt = e−

τ2
4γ L0

k

( τ2

2γ

)
.

But we want to compute the Fourier transform of

Kn(t, t) =
n−1∑
k=0

ϕk(t)2.

Let us consider the product of the two Taylor series( ∞∑
k=0

rk
)( ∞∑

k=0

ϕk(t)2rk
)

=
∞∑

n=0

( n∑
k=0

ϕk(t)2
)
rn =

∞∑
n=0

Kn+1(t, t)rn,

or
1

1− r
Wr(t) =

∞∑
n=0

Kn+1(t, t)rn.

On the other hand

1
1− r

Ŵr(τ) = e−
τ2
4γ

1
(1− r)2

e−
r

1−r
τ2
2γ

= e−
τ2
4γ

∞∑
n=0

rnL1
n

( τ2

2γ

)
.

Theorem III.4.2. — The Fourier transform of the measure µn, the
statistical distribution of the eigenvalues, is given by

µ̂n(τ) = ŵn(τ) =
1
n
e−

τ2
4γ L1

n−1

( τ2

2γ

)
.

5. Tight topology and Lévy-Cramér Theorem. — On the
set M(R) of bounded positive measure on R we will consider the tight
topology. It corresponds to the pointwise convergence on the space Cb(R)
of bounded continuous functions on R. For that topology a sequence µn

of measures converges to the measure µ if, for every f ∈ Cb(R),

lim
n→∞

∫
R
f(t)µn(dt) =

∫
R
f(t)µ(dt).
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The following sets form a basis for the neighborhoods of the measure µ0:
for f1, . . . , fN ∈ Cb(R), ε > 0,

V(f1, . . . , fN ; ε)

=
{
µ ∈ M(R) |

∣∣∣ ∫
R
fk(t)µ(dt)−

∫
R
fk(t)µ0(dt)

∣∣∣ < ε (k = 1, . . . , N)
}
.

One can show that this topology is metrizable.
A sequence µn converges to µ if and only if
- for every f ∈ Cc(R), the space of continuous functions on R with

compact support,

lim
n→∞

∫
R
f(t)µn(dt) =

∫
R
f(t)µ(dt),

- limn→∞ µn(R) = µ(R).

The Fourier transform of a measure µ ∈ M(R) is defined by

µ̂(τ) =
∫

R
e−itτµ(dt).

The function µ̂ is bounded,

|µ̂(τ)| ≤ µ̂(0) = µ(R),

and uniformly continuous. If the sequence µn converges to µ, then, for
every τ ∈ R,

lim
n→∞

µ̂n(τ) = µ̂(τ),

and the convergence is uniform on compact sets.

Theorem III.5.1(Lévy-Cramér). — Let µn be a sequence in M(R)
such that, for every τ ∈ R,

lim
n→∞

µ̂n(τ) = ϕ(τ),

the function ϕ being continuous at 0. Then the sequence µn converges to
a measure µ ∈ M(R) whose Fourier transform is equal to ϕ.
Proof. Put

C = sup
n
µn(R) = sup

n
µ̂n(0),

then
|µ̂n(τ)| ≤ µ̂n(0) ≤ C, |ϕ(τ)| ≤ ϕ(0) ≤ C.
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Consider the linear forms Tn defined on the space C0(R) of continuous
functions on R vanishing at infinity by

Tn(f) =
∫

R
f(t)µn(dt).

Then
|Tn(f)| ≤ C‖f‖∞.

The Fourier transform of a function g ∈ L1(R) belongs to C0(R) (it is the
Riemann-Lebesgue property), and

Tn(ĝ) =
∫

R
ĝ(t)µn(dt) =

∫
R
g(τ)µ̂n(τ)dτ.

By the Lebesgue dominated convergence theorem

lim
n→∞

Tn(ĝ) =
∫

R
g(τ)ϕ(τ)dτ.

Since the space F
(
L1(R)

)
is dense in C0(R), it follows that Tn(f) converges

for all f ∈ C0(R). The limit T (f) is a positive linear form on C0(R). By
the Riesz theorem there exists a positive measure µ on R such that, for
all f ∈ Cc(R),

T (f) =
∫

R
f(t)µ(dt).

The functions in C0(R) are integrable with respect to µ, and for f ∈ C0(R),

T (f) =
∫

R
f(t)µ(dt).

Let us consider the Poisson approximation of unity:

pk(τ) =
1
π

1
1 + k2τ2

, p̂k(t) = e−
|t|
k .

We get

T (p̂k) =
∫

R
p̂k(t)µ(dt) =

∫
R
pk(τ)ϕ(τ)dτ.

By the Lebesgue monotone convergence theorem,

lim
k→∞

∫
R
p̂k(t)µ(dt) =

∫
R
µ(dt) (≤ ∞).
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On the other hand, since ϕ is continuous at 0,

lim
k→∞

∫
R
pk(τ)ϕ(τ)dτ = ϕ(0).

Therefore the measure µ is bounded and∫
R
µ(dt) = ϕ(0) = lim

n→∞
µ̂n(0) = lim

n→∞

∫
R
µn(dt).

Finally µn converges to µ, and ϕ is the Fourier transform of µ.

6. Convergence to the semi-circle law. — Let us introduce the
function

Fν(τ) =
Γ(ν + 1)

√
πΓ(ν + 1

2 )

∫ 1

−1

e−itτ (1− t2)ν− 1
2 dt.

Up to a simple factor it is a Bessel function:

Jν(τ) =
1

Γ(ν + 1)

(τ
2

)ν

Fν(τ).

(see for instance [Lebedev,1972], p. 114). The power series expansion of
Fν is as follows

Fν(τ) =
∞∑

k=0

(−1)k Γ(ν + 1)
Γ(k + ν + 1)

1
k!

(τ
2

)2k

.

The Fourier transform of the semi-circle law σa of radius a equals

σ̂a(τ) =
2
πa2

∫ a

−a

e−itτ
√
a2 − t2dt = F1(aτ).

Theorem III.6.1 (Wigner). — After scaling, the measure µn, the
statistical distribution of the eigenvalues, converges to the semi-circle law
σa of radius

a =
√

2
γ
,

for the tight topology. Precisely, for every f ∈ Cb(R),

lim
n→∞

∫
R
f
( t√

n

)
µn(dt) =

2
πa2

∫ a

−a

f(u)
√
a2 − u2du.
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Proof. By the Lévy-Cramér theorem it amounts to showing that

lim
n→∞

µ̂n

( τ√
n

)
= σ̂a(τ).

We computed µ̂n in Section 4:

µ̂n(τ) =
1
n
e−

τ2
4γ L1

n−1

( τ2

2γ

)
.

The expansion of the Laguerre polynomial Lα
n is given by

Lα
n(x) =

n∑
k=0

(n+ α)!
(k + α)!

(−x)k

k!(n− k)!

(see for instance [Lebedev, 1972], p.77). Hence we obtain

µ̂n(
τ√
n

) = e−
τ2
4γn

n−1∑
k=0

(−1)kck(n)
1

k!(k + 1)!

(√
2
γ

τ

2

)2k

,

with

ck(n) =
(n− 1)(n− 2) . . . (n− k)

nk
.

Notice that k ≤ n− 1, and

lim
n→∞

ck(n) = 1, 0 ≤ ck(n) ≤ 1.

By the convergence of the majorant series

∞∑
k=0

1
k!(k + 1)!

R2k,

one obtains the limit:

lim
n→∞

µ̂n

( τ√
n

)
=

∞∑
k=0

(−1)k 1
k!(k + 1)!

(√
2
γ

τ

2

)2k

= F1

(√
2
γ
τ
)

= σ̂a(τ).
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IV. THE PROBABILITIES An(m,B)

1. Fredholm determinant. — Let (X,µ) be a measured space such
that µ(X) <∞. One considers the following integral equation

ϕ(x)− λ

∫
X

K(x, y)ϕ(y)µ(dy) = f(x).

One assumes that K is a bounded measurable kernel on X×X, and that f
is measurable and bounded. One looks for a measurable bounded solution
ϕ. For small λ one can solve the equation by iteration. For that one
defines the sequence of functions: u0(x) = f(x),

un+1(x) =
∫

X

K(x, y)un(y)µ(dy).

Then
|un(x)| ≤

(
Mµ(X)

)n‖f‖∞,

where M = sup |K(x, y)|. Therefore, if |λ| < r = 1/
(
Mµ(X)

)
, then the

series

ϕ(x) =
∞∑

n=0

λnun(x)

converges uniformly on X. It is the unique solution of the integral
equation. One defines the iterated kernels K(n) by K(1) = K, and

K(n)(x, y) =
∫

X

K(n−1)(x, z)K(z, y)µ(dz).

The series

Γ(x, y;λ) =
∞∑

n=1

λn−1K(n)(x, y)

converges uniformly on X ×X for |λ| < r. Its sum Γ(x, y;λ) is called the
resolvent kernel because

ϕ(x) = f(x) + λ

∫
X

Γ(x, y;λ)f(y)µ(dy).

As a function of λ, Γ(x, y;λ) is holomorphic for |λ| < r.

27



The Fredholm determinant has been introduced in order to prove that
the resolvent kernel Γ(x, y;λ) admits a meromorphic continuation to C.
It is defined by the following series

D(λ) = Det(I − λK)

= 1− λ

∫
X

K(x, x)µ(dx) + · · ·

+
(−λ)n

n!

∫
Xn

K

(
x1 . . . xn

x1 . . . xn

)
µ(dx1) . . . µ(dxn) + · · ·

Proposition IV.1.1. — The series converges for all λ ∈ C and D(λ)
is an entire function.
Proof. To prove the convergence one uses the Hadamard inequality: let A
be a n× n complex matrix, and let A1, . . . , An denote the columns, then

|detA| ≤ ‖A1‖ . . . ‖An‖.

(||Aj || denotes the Euclidean norm of Aj .) It follows that

∣∣K (
x1 . . . xn

x1 . . . xn

) ∣∣ ≤ (√
nM2)n = n

n
2Mn.

If an denotes the coefficient of λn in the series defining D(λ),

|an| ≤ un =
1
n!
n

n
2Mnµ(X)n,

and
un+1

un
=

1√
n+ 1

(
1 +

1
n

)n
2
Mµ(X)

has limit 0. It follows that the radius of convergence is infinite.

One defines also

D(x, y;λ)

= K(x, y) +
∞∑

n=1

(−λ)n

n!

∫
Xn

K

(
x x1 . . . xn

y x1 . . . xn

)
µ(dx1) . . . µ(dxn).

As D(λ) does, this series converges for all λ.

Theorem IV.1.2 (Fredholm). — For |λ| < r,

Γ(x, y;λ) =
D(x, y;λ)
D(λ)

.
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Therefore the resolvent kernel has a meromorphic continuation to C.

Proof. Put
D0(x, y;λ) = D(λ)Γ(x, y;λ).

It is well defined for small λ, and satisfies

D0(x, y;λ) = K(x, y)D(λ) + λ

∫
X

K(x, z)D0(z, y;λ)µ(dz).

Put also

D(λ) =
∞∑

n=0

(−λ)n

n!
an,

D0(x, y;λ) =
∞∑

n=0

(−λ)n

n!
An(x, y).

Notice that a0 = 1, A0(x, y) = K(x, y). By identifying the coefficients of
λn we get

An(x, y) = K(x, y)an − n

∫
X

K(x, z)An−1(z, y)µ(dz).

Define also

Bn(x, y) =
∫

Xn

K

(
x x1 . . . xn

y x1 . . . xn

)
µ(dx1) . . . µ(dxn).

We will see that the sequences An and Bn of kernels satisfy the same
recursion relation. Since

A0(x, y) = K(x, y), B0(x, y) = K(x, y),

it will follow that, for every n, An(x, y) = Bn(x, y), and

D0(x, y;λ) = D(x, y;λ).

Let us expand the determinant

K

(
x x1 . . . xn

y x1 . . . xn

)
=

∣∣∣∣∣∣∣∣
K(x, y) K(x, x1) . . . K(x, xn)
K(x1, y) K(x1, x1) . . . K(x1, xn)

...
...

...
K(xn, y) K(xn, x1) . . . K(xn, xn)

∣∣∣∣∣∣∣∣
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with respect to the entries of the first row:

= K(x, y)K
(
x1 . . . xn

x1 . . . xn

)
−K(x, x1)K

(
x1 x2 . . . xn

y x2 . . . xn

)
+ · · ·+ (−1)kK(x, xk)K

(
x1 x2 . . . xk xk+1 . . . xn

y x1 . . . xk−1 xk+1 . . . xn

)
+ · · ·+ (−1)nK(x, xn)K

(
x1 x2 . . . xn

y x1 . . . xn−1

)
.

Integrating with respect to x1, . . . , xn, and noticing that∫
Xn

K(x, xk)K
(
x1 x2 . . . xk xk+1 . . . xn

y x1 . . . xk−1 xk+1 . . . xn

)
µ(dx1) . . . µ(dxn)

= (−1)k−1

∫
X

K(x, z)Bn−1(z, y)µ(dz),

we obtain

Bn(x, y) = K(x, y)an − n

∫
X

K(x, z)Bn−1(z, y)µ(dz).

We introduce the following notation, for a kernel K,

Sn(K) =
1
n!

∫
Xn

K

(
x1 . . . xn

x1 . . . xn

)
µ(dx1) . . . µ(dxn),

Tn(K) =
∫

X

K(n)(x, x)µ(dx)

=
∫

Xn

K(x1, x2)K(x2, x3) . . .K(xn, x1)µ(dx1) . . . µ(dxn).

By definition

D(λ) = Det(I − λK) =
∞∑

n=0

(−λ)nSn(K).

Proposition IV.1.3. — For |λ| < r,

D′(λ)
D(λ)

= −
∞∑

n=0

Tn+1(K)λn.
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Proof. By definition

Γ(x, y;λ) =
∞∑

n=1

λn−1K(n)(x, y) (|λ| < r),

therefore ∫
X

Γ(x, x;λ)µ(dx) =
∞∑

n=1

λn−1Tn(K).

By Theorem IV.1.2

Γ(x, y;λ) =
D(x, y;λ)
D(λ)

.

Recall that

D(x, y;λ)

= K(x, y) +
∞∑

n=1

(−λ)n

n!

∫
Xn

K

(
x x1 . . . xn

y x1 . . . xn

)
µ(dx1) . . . µ(dxn).

Then ∫
X

D(x, x;λ)µ(dx) = S1(K) +
∞∑

n=1

(n+ 1)Sn+1(K)(−λ)n

= −D′(λ).

We will need two further properties.

Proposition IV.1.4. — Let Kj be a sequence of bounded measurable
kernels on X such that, for every j, x, y,

lim
j→∞

Kj(x, y) = K(x, y) (∀x, y ∈ X),

|Kj(x, y)| ≤M.

Then, for every λ ∈ C,

lim
j→∞

Det(I − λKj) = Det(I − λK),

and the convergence is uniform in λ on compact sets.
Let (X,µ), (Y, ν) be two measured spaces such that µ(X) < ∞,

ν(Y ) <∞, and ϕ : X → Y a measurable map. One assumes that there is
a bounded measurable function h on X such that, for f ∈ L1(Y, ν),∫

Y

f(y)ν(dy) =
∫

X

f
(
ϕ(x)

)
h(x)µ(dx).
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Proposition IV.1.5. — For a bounded measurable kernel K on Y ,
let us denote by K̃ the kernel defined on X as

K̃(x, x′) = K
(
ϕ(x), ϕ(x′)

)
h(x′).

Then
Det(I − λK̃) = Det(I − λK).

2. Finite rank kernels. — A finite rank kernel is of the form

K(x, y) =
n∑

i=1

fi(x)gi(y).

We assume that the functions fi are linearly independent. To the kernel
K one associates the integral operator L defined by

L̃f(x) =
∫

X

K(x, y)f(y)µ(dy).

The space E generated by the functions fi is invariant under L̃. Let L
denote its restriction to E. The matrix A = (aij) of L with respect to the
basis {fi} is

aij =
∫

X

fj(y)gi(y)µ(dy).

Further

tr(L) =
n∑

i=1

aii =
n∑

i=1

∫
X

fi(x)gi(x)µ(dx) =
∫

X

K(x, x)µ(dx),

tr(Lm) =
∫

X

K(m)(x, x)µ(dx) = Tm(K).

Theorem IV.2.1.

Det(I − λK) = det(I − λL).

The left hand side denotes the Fredholm determinant, the right hand
side the usual one.

Proof. Put d(λ) = det(I − λL). Then

d′(λ)
d(λ)

= −
∞∑

m=0

tr(Lm+1)λm.
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In fact, if α1, . . . , αn are the eigenvalues of L, then

d(λ) = det(I − λL) =
n∏

j=1

(1− λαj),

and, for small λ,

d′(λ)
d(λ)

= −
n∑

j=1

αj

1− λαj
= −

n∑
j=1

( ∞∑
m=0

αm+1
j λm

)
= −

∞∑
m=0

( n∑
j=1

αm+1
j

)
λm = −

∞∑
m=0

tr(Lm+1)λm.

Therefore, since Tm+1(K) = tr(Lm+1),

D′(λ)
D(λ)

=
d′(λ)
d(λ)

.

Furthermore, since D(0) = 1, d(0) = 1, it follows that

D(λ) = d(λ).

Let Λm(L) be the operator on the exterior power ΛE of E such that

Λm(L)(v1 ∧ · · · ∧ vm) = (Lv1) ∧ · · · ∧ (Lvm) (v1, . . . , vm ∈ E).

The eigenvalues of Λm(L) are the numbers αj1αj2 . . . αjm
(j1 < j2 < · · · <

jm), and its trace is

tr
(
Λm(L)

)
=

∑
j1<···<jm

αj1 . . . αjm = σm(α1, . . . , αn),

where σm is the m-th elementary symmetric function. Hence

det(I − λL) =
n∑

m=0

(−1)m tr
(
Λm(L)

)
λm.

Corollary IV.2.2.

tr
(
Λm(L)

)
= Sm(K) =

1
m!

∫
Xm

K

(
x1 . . . xm

x1 . . . xm

)
µ(dx1) . . . µ(dxm).
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The number tr
(
Λ(L)

)
can be expressed as a sum of determinants of

order m extracted from the matrix A of L:

tr
(
Λ(L)

)
=

∑
#I=m

∆I(A),

where I ⊂ {1, . . . , n} has m elements, and ∆I(A) is the associated
determinant: if I = {j1, . . . , jm}, then

∆I(A) = det
(
ajkj`

)
1≤k,`<m

.

It is possible to prove Corollary IV.2.2 by showing directly that

1
m!

∫
Xm

K

(
x1 . . . xm

x1 . . . xm

)
µ(dx1) . . . µ(dxm) =

∑
#I=m

∆I(A).

(See [Katz-Sarnak,1999] p.142-143.)

Notice that tr
(
Λm(L)

)
= 0 if m > n.

Exercise
If K is the kernel of the orthogonal projection P on a linear subspace

E ⊂ L2(X,µ) of dimension n, then∫
Xm

K

(
x1 . . . xm

x1 . . . xm

)
µ(dx1) . . . µ(dxm) =

{
n!

(n−m)! if m ≤ n,
0 if m > n.

3. The probabilities An(m,B). — We consider on
Hn = Herm(m,C) the probability measure

Pn(dx) =
1
Cn

e− tr
(
V (x)

)
mn(dx),

where V is a continuous function on R such that

∀m ≥ 0,
∫

R
|t|me−V (t)dt <∞.

Recall that (see Section III.2), if f is a U(n)-invariant function, then

f(x) = F (λ1, . . . , λn),

where F is a symmetric function, λ1, . . . , λn are the eigenvalues of x, and∫
Hn

f(x)Pn(dx) =
∫

Rn

F (λ1, . . . , λn)qn(λ1, . . . , λn)dλ1 . . . dλn.
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For a Borel set B ⊂ R, An(m,B) denotes the probability that a random
matrix x has exactly m eigenvalues in B. For m = 0, An(0, B) is the
probability for B to be a hole in the spectrum. Let λmax denote the
largest eigenvalue. Then

Pn

(
{λmax ≤ α}

)
= An(0, ]α,∞[).

We will see that the probability An(0, B) can be expressed as a Fredholm
determinant. Recall that the kernel

Kn(s, t) =
n−1∑
k=0

ϕk(s)ϕk(t)

has been introduced in Section III.3.

Proposition IV.3.1. — Assume that the Borel set B is of finite
Lebesgue measure. Then

An(0, B) = DetB(I −Kn).

The index B means that the kernel Kn(s, t) is restricted to B.
Proof. Let χ be the characteristic function of the set B. Then the
characteristic function of the set {∀j, λj 6∈ B} is

n∏
j=1

(
1− χ(λj)

)
.

Therefore

An(0, B) =
∫

Rn

n∏
j=1

(
1− χ(λj)

)
qn(λ1, . . . , λn)dλ1 . . . dλn.

More generally we will compute

A(z) =
∫

Rn

n∏
j=1

(
1− zχ(λj)

)
qn(λ1, . . . , λn)dλ1 . . . dλn.

Recall the formulae for the elementary symmetric functions:

σ1(α1, . . . , αn) = α1 + · · ·+ αn,

σ2(α1, . . . , αn) =
∑
i<j

αiαj ,

...
σn(α1, . . . , αn) = α1 . . . αn,
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and
n∏

j=1

(1− zαj) = 1− σ1z + σ2z
2 − · · ·+ (−1)nσnz

n.

Therefore
n∏

j=1

(
1− zχ(λj)

)
=

n∑
k=0

(−1)kzkσk

(
χ(λ1), . . . , χ(λn)

)
.

We compute now the integral of each term. By using the symmetry of the
function qn we obtain∫

Rn

σk

(
χ(λ1), . . . , χ(λn)

)
qn(λ1, . . . , λn)dλ1 . . . dλn

=
(
n

k

) ∫
Rn

χ(λ1) . . . χ(λk)qn(λ1, . . . , λn)dλ1 . . . dλn

=
1
k!

∫
Bk

Rk(λ1, . . . , λk)dλ1 . . . dλk,

where Rk is the k-th correlation function (see Section III.3). We get finally

A(z) =
n∑

k=0

(−1)k

k!
zk

∫
Bk

Rk(λ1, . . . , λk)dλ1 . . . dλk.

As we saw in the proof of Proposition III.3.2 (Mehta’s formula 2), this is
also equal to

A(z) =
n∑

k=0

(−1)k

k!
zk

∫
Bk

Kn

(
λ1 . . . λk

λ1 . . . λk

)
dλ1 . . . dλk,

and this is precisely the definition of the Fredholm determinant for the
restriction of the kernel Kn to B:

A(z) = DetB(I − zKn).

Proposition IV.3.2.

An(m,B) =
1
m!

(
− d

dz

)m

DetB(I − zKn)
∣∣
z=1

.

Proof. The probability An(m,B) can be written

An(m,B) =
∫

Rn

∑
#I=m

∏
i∈I

χ(λi)
∏
j 6∈I

(
1− χ(λj)

)
qn(λ1, . . . , λn)dλ1 . . . dλn,
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where the summation is taken over all subsets I ⊂ {1, . . . , n} with m
elements. On the other hand one can establish the following formula

(
− d

dz

)m n∏
i=1

(1− zαi) = m!
∑

#I=m

∏
i∈I

αi

∏
j 6∈I

(1− zαj).

Notice that

A(0) =
n∑

m=0

An(m,B) = 1,

and

A′(0) =
n∑

m=0

mAn(m,B) = µn(B)

is the expectation of the number of eigenvalues in the set B.
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V. ASYMPTOTICS OF THE PROBABILITIES An(m,B)

1. Hermite polynomials and functions. — The Hermite polyno-
mials are defined by

Hn(x) = (−1)nex2
( d

dx

)n

e−x2
= 2nxn + · · ·

They are orthogonal with respect to the Gaussian measure µ(dx) =
e−x2

dx: ∫
R
Hm(x)Hn(x)e−x2

dx = 0 if m 6= n,

and
dn =

∫
R
Hn(x)2e−x2

dx = 2nn!
√
π.

In Section 2 of Chapter II we saw the following formula for the generating
function:

w(x, t) :=
∞∑

n=0

tn

n!
Hn(x) = e2xt−t2 .

Therefore
∞∑

n=0

tn

n!
Hn(x) =

( ∞∑
j=0

(2x)j

j!

)( ∞∑
k=0

(−t2)k

k!

)
,

and

Hn(x) =
[ n
2 ]∑

k=0

(−1)k n!
k!(n− 2k)!

(2x)n−2k.

From this one deduces that

H ′(x) = 2nHn−1(x).

Notice that

H2n(0) = (−1)n (2n)!
n!

, H2n+1(0) = 0,

H ′
2n(0) = 0, H ′

2n+1(0) = 2(−1)n (2n+ 1)!
n!

.

The Hermite function ϕn is defined by

ϕn(x) =
1√
dn

e−
x2
2 Hn(x).
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The system {ϕn} is a Hilbert basis of L2(R). Let us recall the Christoffel-
Darboux kernel as defined in Section 3 of Chapter III:

Kn(x, y) =
n−1∑
k=0

ϕk(x)ϕk(y) = e−
x2+y2

2

n−1∑
k=0

1
dk
Hk(x)Hk(y).

From Proposition II.2.2 it follows that

Proposition V.1.1. — For x 6= y,

Kn(x, y) =
√
n

2
ϕn(x)ϕn−1(y)− ϕn−1(x)ϕn(y)

x− y
,

and
Kn(x, x) = nϕn−1(x)2 −

√
n(n− 1)ϕn(x)ϕn−2(x).

2. Asymptotics of the Hermite functions. — The Hermite
function u = ϕn is an eigenfunction of the oscillator operator:

u′′ − x2u = −(2n+ 1)u (E).

In fact, it follows from the recursion formula

Hn+1(x)− 2xHn(x) + 2nHn−1(x) = 0,

and the relation H ′
n(x) = 2nHn−1(x). For x small one considers the

equation
u′′ + (2n+ 1)u = x2u (E)

as a perturbation of the equation

u′′ + (2n+ 1)u = 0. (E0)

The solutions of (E0) are

A cos(
√

2n+ 1x) +B sin(
√

2n+ 1x).

Solving the differential equation

u′′ + (2n+ 1)u = g(x)

by using the Lagrange variation of constants method, one obtains

u(x) = u(0) cos(
√

2n+ 1x) + u′(0)
sin(

√
2n+ 1x)√
2n+ 1

+
∫ x

0

sin
(√

2n+ 1(x− y)
)

√
2n+ 1

g(y)dy.
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Let r(x) denote this last integral. For g(x) = x2u(x), by the Schwarz
inequality

|r(x)| ≤ 1√
2n+ 1

(∫ x

0

y4dy
) 1

2
(∫ x

0

u(y)2dy
) 1

2
,

and, if u is square integrable,

|r(x)| ≤ 1√
5

1√
2n+ 1

(∫ ∞

0

u(y)2dy
) 1

2 |x| 52 .

One establishes finally:

Proposition V.2.1.

ϕn(x) = αn cos
(√

2n+ 1x− n
π

2

)
+ rn(x),

with

|rn(x)| ≤ 1
2
√

5
1√

2n+ 1
|x| 52 .

For n = 2m,

α2m = ϕ2m(0) =
(2m)!
m!

1√
d2m

,

and, if n = 2m+ 1,

α2m+1 = ϕ′2m+1(0)
1√

4m+ 3
= 2

(2m+ 1)!
m!

1√
d2m+1

1√
4m+ 3

.

As n→∞ ,

αn ∼
1√
π

( 2
n

) 1
4
.

The last equivalence is obtained by using the Stirling formula

n! ∼
√

2πnn+ 1
2 e−n.

3. Asymptotics of the probabilities An(m,B). — One considers
on Hn = Herm(n,C) the Gaussian probability measure

Pn(dx) =
1
Cn

e− tr(x2)mn(dx).
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i.e., from now on, V (t) = t2 with our previous notation. Recall that, for
a Borel set B ⊂ R, An(m,B) is the probability that a Hermitian matrix
x has m eigenvalues in B. In Section IV.3 we saw that

An(0, B) = DetB(I −Kn),

where Kn is the Christoffel-Darboux kernel:

Kn(s, t) =
1
n

n−1∑
k=0

ϕk(s)ϕk(t),

and
An(m,B) =

1
m!

(
− d

dz

)m

DetB(I − zKn)
∣∣
z=1

.

Let K be the kernel

K(ξ, η) =
1
π

sin(ξ − η)
ξ − η

.

Theorem V.3.1. — Let B ⊂ R be a bounded Borel set. Then

lim
n→∞

An

(
0,

1√
2n
B

)
= DetB(I −K).

Proof. Using results of Section IV.1 we can write

An

(
0,

1√
2n
B

)
= Det 1√

2n
B(I −Kn) = DetB(I − K̃n),

where

K̃(ξ, η) = Kn

( 1√
2n
ξ,

1√
2n
η
) 1√

2n

=
√
n

2
1

ξ − η

(
ϕn

( 1√
2n
ξ
)
ϕn−1

( 1√
2n
η
)
− ϕn−1

( 1√
2n
ξ
)
ϕn

( 1√
2n
η
))

.

By using the asymptotics of the Hermite functions ϕn which have been
established in Section 2 one shows that

lim
n→∞

K̃n(ξ, η) = K(ξ, η),

and that there exists a constant M > 0 such that, for ξ, η ∈ B,

∀n, |K̃n(ξ, η)| ≤M.
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It follows that

lim
n→∞

DetB(I − K̃n) = DetB(I −K).

Corollary V.3.2. — Let B ⊂ R be a bounded Borel set. Then

lim
n→∞

An

(
m,

1√
2n
B

)
=

1
m!

(
− d

dz

)m

DetB(I − zK)
∣∣
z=1

.

Proof. We saw that

An

(
m,

1√
2n
B

)
=

1
m!

(
− d

dz

)m

Det 1√
2n

B(I − zKn)
∣∣
z=1

,

and this can be written

=
1
m!

(
− d

dz

)m

DetB(I − zK̃n)
∣∣
z=1

.

Since
lim

n→∞
DetB(I − zK̃n) = DetB(I − zK)

uniformly in z on compact sets in C,

lim
n→∞

(
− d

dz

)m

DetB(I − zK̃n) =
(
− d

dz

)m

DetB(I − zK).

Remark
The convergence to the semi-circle law we saw in Section III.6 corre-

sponds to asymptotics of ϕn(x
√
n) as n → ∞. It is a convergence of

global character. The convergence of the probabilities An(m,B) has a
local character. It corresponds to asymptotics of ϕn

(
x√
n

)
.

4. Asymptotics of the probabilities An(0, B) in terms of the
eigenvalues of a nuclear operator. — An operator A on a Banach
space E is said to be nuclear (or of trace class) if it can be written

Av =
∞∑

n=1

〈fn, v〉en,

with en ∈ E, fn ∈ E′, and

∞∑
n=1

‖en‖ ‖fn‖ <∞.
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Assume now that E = H is a Hilbert space. Let {en} be a Hilbert basis
of H. If the operator A is nuclear, then the series

∞∑
n=1

(Aen|en)

is absolutely convergent, and the sum does not depend on the Hilbert
basis. By definition it is the trace of A:

tr(A) =
∞∑

n=1

(Aen|en).

A nuclear operator is compact. Conversely let A be a compact operator.
Then A∗A is compact and selfadjoint ≥ 0. Let αn be the non zero
eigenvalues of A∗A. The numbers µn =

√
αn are called the characteristic

values (or singular values) of A. One shows that the operator is nuclear if
and only if

‖A‖1 :=
∞∑

n=1

µn <∞,

and ‖ · ‖1 is a norm on the space L1(H) of nuclear operators on H, and

| tr(A)| ≤ ‖A‖1.

If A is a nuclear operator, then Λm(A) acting on the m-th exterior power
Λm(H) of H is nuclear too, and

‖Λm(A)‖1 ≤
‖A‖m

1

m!
.

The Fredholm determinant of I − λA is defined by

d(λ) = det(I − λA) = 1 +
∞∑

m=1

(−1)m tr
(
Λm(A)

)
λm.

It is an entire function of λ, and, for small λ,

d′(λ)
d(λ)

= −
∞∑

m=0

tr(Am+1)λm.

By the inequality above

|det(I +A)| ≤ exp(‖A‖1).
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One shows that, for two nuclear operators A and B,

|det(I +A)− det(I +B)| ≤ ‖A−B‖1 exp(‖A‖1 + ‖B‖1 + 1).

Therefore the function A 7→ det(I +A) is continuous on the space L1(H)
of nuclear operators.

Let the operator A be nuclear and selfadjoint, and let αk be the non
zero eigenvalues of A, each being repeated according to the dimension of
the corresponding eigenspace. Then

‖A‖1 =
∑

k

|αk|,

tr(A) =
∑

k

αk,

det(I − λA) =
∏
k

(1− λαk).

An operator A on the Hilbert space H is said to be Hilbert-Schmidt if,
for a Hilbert basis {en},

(‖A||2)2 :=
∑
m,n

|(Aen|em)|2 <∞.

This number does not depend on the basis, and ‖A‖2 is the Hilbert-
Schmidt norm of A. A Hilbert-Schmidt operator is compact. Conversely
let A be a compact operator, with characteristic values µn. Then A is
Hilbert-Schmidt if and only if

∞∑
n=1

µ2
n <∞,

and this sum is equal to (||A||2)2. If the operator A is Hilbert-Schmidt
and selfadjoint with non zero eigenvalues λn, then

(‖A‖2)2 =
∞∑

n=1

λ2
n.

The space L2(H) of Hilbert-Schmidt operators is a Hilbert space for the
inner product

(A|B)2 =
∑
n,m

(Aen|em)(Ben|em) =
∑

n

(Aen|Ben) =
∑

n

(B∗Aen|en).
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The product of two Hilbert-Schmidt operators is nuclear, and

‖AB‖1 ≤ ‖A‖2 ‖B‖2, tr(AB) = tr(BA) = (A|B∗)2.

Assume now that H = L2(X,µ), where (X,µ) is a measured space.
Then a Hilbert-Schmidt operator A is an integral operator:

Af(x) =
∫

X

K(x, y)f(y)µ(dy),

where K(x, y) is a square integrable kernel: K ∈ L2(X ×X,µ⊗ µ), and

L2(H) ' L2(X ×X,µ⊗ µ),

(‖A‖2)2 =
∫

X×X

|K(x, y)|2µ(dx)µ(dy).

If A and B are Hilbert-Schmidt operators with kernels H and K, then
C = AB is an integral operator

Cf(x) =
∫

X

L(x, y)f(y)µ(dy),

with kernel
L(x, y) =

∫
X

H(x, z)K(z, y)µ(dz).

The operator C is nuclear and

tr(C) =
∫

X

L(x, x)µ(dx).

Assume furthermore that X is a compact topological space, that the
measure µ is bounded with supp(µ) = X. Let the kernel K be continuous
and Hermitian:

K(y, x) = K(x, y),

and of positive type: for any x1, . . . , xN ∈ X, and c1, . . . , cN ∈ C,

N∑
i,j=1

K(xi, xj)cic̄j ≥ 0.

The operator A on L2(X,µ) associated to K:

Af(x) =
∫

X

K(x, y)f(y)µ(dy),
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is positive selfadjoint and compact. Let αk be the non zero eigenvalues of
A, and ψk the corresponding normalized eigenfunctions:∫

X

K(x, y)ψk(y)µ(dy) = αkψk(x),∫
X

|ψk(x)|2µ(dx) = 1.

Theorem V.4.1 (Mercer). — Let the kernel K be continuous,
Hermitian, and of positive type. Then

a) For x, y ∈ X,

K(x, y) =
∞∑

k=1

αkψk(x)ψk(y).

The convergence is uniform on X ×X.
b) The operator A is nuclear and

tr(A) =
∫

X

K(x, x)µ(dx).

For such an operator both definitions of Fredholm determinant agree:

Det(I − λK) = det(I − λA).

Let us come back to the kernel K:

K(x, y) =
sin(x− y)
x− y

.

It is continuous on R and of positive type. In fact it is the limit of the
kernels Kn which are of positive type. One can see it also directly:

sinx
x

=
1
2

∫ 1

−1

eitxdt,

therefore

N∑
j.k=1

K(xj , xk)cj c̄k =
1
2π

∫ 1

−1

∣∣ N∑
j=1

eitxjcj
∣∣2dt ≥ 0.

46



The operator P on L2(R) with kernel K is the projection on the
subspace of the functions whose Fourier transform support is ⊂ [−1, 1].
In fact

P̂ f = χ[−1,1]f̂ .

Take now B = [−θ, θ] (θ > 0), and let A be the operator defined on
L2([−θ, θ]) by

Af(x) =
∫ θ

−θ

K(x, y)f(y)dy.

It is positive selfadjoint and nuclear by Mercer’s theorem. Let αk be its
eigenvalues (they are all positive). We can write A = QBPQB , where QB

is the projection given by

QBf(x) = χB(x)f(x).

It follows that, as a selfadjoint operator, 0 ≤ A ≤ I, 0 ≤ αk ≤ 1, and

det(I −A) =
∏
k

(1− αk) ≤ 1.

Finally

lim
n→∞

An

(
0, [− 1√

2n
θ,

1√
2n
θ]

)
=

∏
k

(1− αk).

If we were able to evaluate the infinite product
∏

k(1− αk) as a function
of θ, it should give information about the asymptotic spacing of the small
eigenvalues.

Exercise
Define

f(z) =
∏
k

(1− zαk).

Prove that

1
m!

(
− d

dz

)m

f(z) =
∑

j1<···<jm

αj1

1− zαj1

. . .
αjm

1− zαjm

.
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VI WISHART UNITARY ENSEMBLE

1. The Wishart unitary ensemble. — Let Ωn be the cone of
positive definite n × n Hermitian matrices in the vector space Hn =
Herm(n,C). For p > n−1, the Wishart lawW p

n is the probability measure
on Ωn defined by∫

Ωn

f(x)W p
n(dx) =

1
Γn(p)

∫
Ωn

f(x)e− tr(x)(detx)p−nmn(dx),

for a bounded measurable function f , where mn is the Euclidean measure
associated to the inner product (x|y) = tr(xy) onHn, and Γn is the gamma
function of the cone Ωn:

Γn(p) =
∫

Ωn

e− tr(x)(detx)p−nmn(dx).

The probability space (Ωn,W
p
n) is called the Wishart unitary ensemble.

In fact the Wishart law W p
n is invariant for the action of the unitary group

U(n) given by the transformations

x 7→ uxu∗ (u ∈ U(n).

Proposition VI.1.1.

Γn(p) = (2π)
n(n−1)

2

n∏
j=1

Γ(p− j + 1).

Proof. Let Tn ⊂ GL(n; C) be the group of upper triangular matrices with
positive diagonal entries. The map

Tn → Ωn, t 7→ x = tt∗,

is a diffeomorphism. If f is an integrable function on Ωn with respect to
mn,∫

Ωn

f(x)mn(dx) = 2
n(n−1)

2

∫
Tn

f(tt∗)
n∏

j=1

t2j−1
jj

n∏
j=1

dtjj

∏
j<k

d(<tjk)d(=tjk).

Therefore

Γn(p) = 2
n(n−1)

2

∫
Tn

e
−
(∑n

j=1
t2jj+

∑
j<k

|tjk|2
) n∏

j=1

t
2(p−n)
jj

n∏
j=1

t2j−1
jj

n∏
j=1

dtjj

∏
j<k

d(<tjk)d(=tjk).
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By using the classical formulae∫ ∞

−∞
e−t2dt =

√
π,

∫ ∞

0

e−t2tαdt = 1
2 Γ

(α+ 1
2

)
,

one obtains

Γn(p) = (2π)
n(n−1)

2

n∏
j=1

Γ(p− j + 1).

The Laplace transform of the Wishart law has a simple expression:

Proposition VI.1.2. — For ζ = ξ+ iη ∈ Hn + iHn 'M(n,C), with
ξ + I ∈ Ωn,

LW p
n(ζ) =

∫
Ωn

e− tr(ζx)W p
n(dx) = det(I + ζ)−p.

Proof. One starts from the formula∫
Ωn

e− tr(x)(detx)p−nmn(dx) = Γn(p),

and changes the variable: one puts x = gx′g∗ with g ∈ GL(n,C). Then

mn(dx) = |det g|2nmn(dx′),

and ∫
Ωn

e− tr(x)(detx)p−nmn(dx)

= |det g|2p

∫
Ωn

e− tr(gx′g∗)(detx′)p−nmn(dx′).

Therefore, for y = g∗g,∫
Ωn

e− tr(x′y)(detx′)p−nmn(dx′) = Γn(p)(det y)−p.

Since, for y ∈ Ωn, there exists g ∈ GL(n,C) such that y = g∗g, the
proposition is proven for =(ζ) = η = 0.

The two functions ζ 7→ LW p
n(ζ) and ζ 7→ det(I + ζ)−p are holomorphic

in the open set

{ζ = ξ + iη | ξ + I ∈ Ωn} = (Ωn − I) + iHn,
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and are equal for ζ = ξ, ξ+I ∈ Ωn. Hence they are equal in (Ωn−I)+iHn.

On the space M(n, p; C) of n × p complexes matrices let us denote by
P the Gaussian probability measure

P(dξ) =
1
πnp

e− tr(ξξ∗)m(dξ).

We consider the map

Q : M(n, p; C) → Ωn, ξ 7→ ξξ∗.

Proposition VI.1.3. — If p ≥ n, then the image by the map Q of
the Gaussian probability P is the Wishart law W p

n .
This means that, for a function f on Ωn which is integrable with respect

to W p
n , ∫

M(n,p;C)

f(x)W p
n(dx) =

∫
Ωn

f(ξξ∗)P(dξ).

Proof. The measure µ = Q(P) is the measure on Ωn such that, for a
function f on Ωn, measurable and bounded,∫

Ωn

f(x)µ(dx) =
∫

M(n,p;C)

f
(
Q(ξ)

)
P(dξ).

Let us compute the Laplace transform of the image µ = Q(P. By taking

f(x) = e− tr(xζ),

with ζ = ξ + iη ∈ Hn + iHn, ξ + I ∈ Ωn, we obtain

Lµ(ζ) =
1
πnp

∫
M(n,p;C)

e− tr(ζξξ∗)e− tr(ξξ∗)m(dξ)

=
1
πnp

∫
M(n,p;C)

e− tr
(
(I+ζ)ξξ∗

)
m(dξ)

= det(I + ζ)−p.

By the injectivity of the Laplace transform, this proves the proposition.

If p < n, then the image of P is a well defined probability measure
supported on the boundary ∂Ωn of Ωn. It is singular with respect to
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the Euclidean measure. We will denote it also by W p
n . In fact it can be

obtained by analytic continuation from W p
n , p > n− 1, with respect to p.

Therefore we obtain a family of probability measures W p
n for p in the so

called Wallach set
{0, 1, . . . , n− 1}∪]n− 1,∞[.

2. The statistical distribution of the eigenvalues. — Assume
p > n− 1, and let f be a U(n)-invariant function on Ωn:

f(uxu∗) = f(x).

The function f only depends on the eigenvalues of x,

f(x) = F (λ1, . . . , λn),

where F is a symmetric function on Rn
+. If f is integrable with respect to

W p
n , it follows from the Weyl integration formula (Theorem III.1.1) that∫

Ωn

f(x)W p
n(dx) =

∫
Rn

+

F (λ1, . . . , λn)qp
n(λ1, . . . , λn)dλ1 . . . dλn,

with

qp
n(λ1, . . . , λn) =

1
Zp

n
e−(λ1+···+λ1)∆(λ)2

n∏
j=1

λp−n
j ,

where

Zp
n =

∫
Rn

+

e−(λ1+···+λ1)∆(λ)2
n∏

j=1

λp−n
j dλ1 . . . λn.

As we did for the Gaussian unitary ensemble we will study the asymp-
totics of the statistical distribution of the eigenvalues, i.e. we will study,
as n and p go to infinity, the asymptotics of the probability measure µp

n

defined on [0,∞[ by, if f is a bounded measurable function,∫
[0,∞[

f(t)µp
n(dt) =

∫
Ωn

1
n

tr
(
f(x)

)
W p

n(dx).

For p > n − 1 this measure is absolutely continuous with respect to the
Lebesgue measure,

µp
n(dt) = wp

m(t)dt,

with
wp

n(t) =
∫

R+

q(t, λ2, . . . , λn)dλ1 . . . dλn.
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We will use Mehta’s formulae to express this density wp
n in terms of the

Christoffel-Darboux kernel for the Laguerre polynomials. Recall that the
Laguerre polynomials Lα

n (α > −1) are defined by

Lα
n(x) =

1
n!
exx−α

( d

dx

)n

(e−xxn+α).

The Laguerre polynomials Lα
n are orthogonal with respect to the inner

product

(p|q) =
∫ ∞

0

p(x)q(x)e−xxαdx,

and

dα
n =

∫ ∞

0

(
Lα

n(x)
)2
e−xxαdx =

Γ(n+ α+ 1)
n!

.

We define the Laguerre functions as

ϕα
n(x) =

1√
dα

n

Lα
n(x)e−

x
2 x

α
2 .

They constitute a Hilbert basis of L2(R+). We define also the Christoffel-
Darboux kernel

Kα
n (x, y) =

n−1∑
k=0

ϕα
k (x)ϕα

k (y).

Proposition VI.2.1. — For p > n − 1, the density of the measure
µp

n, the statistical distribution of the eigenvalues, is given by

wp
n(t) =

1
n
Kp−n

n (t, t).

This is a special case of Proposition III.3.2.

Assume p ∈ {0, 1, . . . , n − 1}. A matrix ξ ∈ M(n, p; C) can be
decomposed as

ξ = u



α1

. . .
αp

0 . . . 0
...

...
0 . . . 0


v,
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with α1 ≥ 0, . . . , αp ≥ 0, u ∈ U(n), v ∈ U(p). The p eigenvalues of the p×p
Hermitian matrix ξ∗ξ are λ1 = α2

1, . . . , λp = α2
p, and the n eigenvalues of

the n×n Hermitian matrix ξξ∗ are λ1, . . . , λp, 0, . . . , 0. Hence, for x = ξξ∗,

tr
(
ϕ(x)

)
= ϕ(λ1) + · · ·+ ϕ(λp) + (n− p)ϕ(0).

Therefore

Proposition VI.2.2. — For p ∈ {0, 1, . . . , n − 1}, the measure µp
n

is given by∫
[0,∞[

ϕ(t)µp
n(dt) =

(
1− p

n

)
ϕ(0) +

1
n

∫ ∞

0

ϕ(t)Kn−p
p (t, t)dt.

3. Convergence to the Marchenko-Pastur law. — The Mar-
chenko-Pastur law µc (c > 0) is the probability measure on [0,∞[ given
by∫

[0,∞[

ϕ(t)µc(dt) = max{1− c, 0}ϕ(0) +
1
2π

∫ b

a

ϕ(t)
√

(t− a)(b− t)
dt

t
,

where a = (
√
c− 1)2, b = (

√
c+ 1)2.

Remark
It is possible to check that the measure µc depends continuously on c

with respect to the tight topology.

Assuming that p depends on n: p = p(n), in such a way that

lim
n→∞

p(n)
n

= c,

we will see that, after scaling, the measure µp
n converges to the Marchenko-

Pastur law µc as n goes to infinity.

Theorem V.3.1(Marchenko-Pastur). — Assume that

lim
n→∞

p(n)
n

= c.

Then, for a bounded continuous function on R+,

lim
n→∞

∫
[0,∞[

ϕ
( t
n

)
µp

n(dt) =
∫

[0,∞[

ϕ(t)µc(dt).
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We will present a proof due to H. Haagerup and S. Thorbjørnsen (Ran-
dom matrices with complex Gaussian entries, Exp. Math. 21 (2003),293-
337.) The method amounts to computing the Laplace transform of the
measure µp

n, and to studying the asymptotic of this Laplace transform.

Lemma VI.3.2.

d

dt

(
tKα

n (t, t)
)

=
√
n(n+ α)ϕα

n−1(t)ϕ
α
n(t).

Proof. Define

Kα
n(s, t) =

n−1∑
k=1

1
dα

k

Lα
k (s)Lα

k (t).

By Proposition II.2.2,

Kα
n(t, t) =

n!
Γ(n+ α)

(
(Lα

n−1)
′(t)Lα

n(t)− (Lα
n)′(t)Lα

n−1(t)
)
,

and

d

dt
Kα

n(t, t) =
n!

Γ(n+ α)
(
(Lα

n−1)
′′(t)Lα

n(t)− (Lα
n)′′(t)Lα

n−1(t)
)
,

By using that u = Lα
n is solution of the differential equation

tu′′ + (α+ 1− x)u′ + nu = 0,

one obtains

t
d

dt
Kα

n(t, t) + (α+ 1− t)Kα
n(t, t) =

n!
Γ(n+ α)

Lα
n−1(t)L

α
n(t).

Finally, since
Kα

n (s, t) = Kα
n(s, t)s

α
2 t

α
2 e−

s+t
2 ,

we obtain

d

dt

(
tKα

n (t, t)
)

=
d

dt

(
Kα

n(t, t)tα+1e−t
)

=
(
t
d

dt
Kα

n(t, t) + (α+ 1− t)Kα
n(t, t)

)
tαe−t

=
n!

Γ(n+ α)
Lα

n−1(t)L
α
n(t)tαe−t

=
√
n(n+ α)ϕα

n−1(t)ϕ
α
n(t).
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Lemma VI.3.3. — For p > n− 1, <λ > −1,∫ ∞

0

te−λtµp
n(dt) = np

1
(1 + λ)p+n 2F1(1− p, 1− n, 2;λ2).

Notice that 2F1(1 − p, 1 − n, 2;λ2) is a polynomial in λ. In fact, since
1− n is a negative integer,

2F1(1− p, 1− n, 2;λ2)

=
∞∑

j=0

(1− n)j(1− p)j

(2)jj!
λ2j

=
n−1∑
j=0

(n− 1)(n− 2) . . . (n− j)(p− 1)(p− 2) . . . (p− j)
j!(j + 1)!

λ2j .

Proof. We start from the following result, we will not prove: for <λ > −1,∫ ∞

0

Lα
j (t)Lα

k (t)e−λttαe−tdt

=
dα

j d
α
k

Γ(α+ 1)
λj+k

(1 + λ)α+j+k+1 2F1(−j,−k, α+ 1;
1
λ2

).

(See [Haagerup-Thorbjørnsen, 2003] p.317.) Taking j = n− 1, k = n, we
obtain ∫ ∞

0

e−λtϕα
n−1(t)ϕ

α
n(t)dt

=

√
dα

n−1d
α
n

Γ(α+ 1)
λ2n−1

(1 + λ)2n+α 2F1(−n+ 1,−n, α+ 1;
1
λ2

).

By using Lemma VI.3.2, and classical properties of the hypergeometric
function 2F1, Lemma VI.3.3 follows.

Proof of Theorem VI.3.1 a) We assume first that p > n − 1. By using
Lemma VI.3.3 we can compute∫

R+

t

n
e−λ t

nµp
n(dt) =

n

p
(1 + λ)−(p+n)

2F1(1− p, 1− n, 2;
λ2

n2
).

First

lim
n→∞

(
1 +

λ

n

)−(
p(n)+n

)
= e−(c+1)λ.

55



Now

2F1(1− p, 1− n; 2;
λ2

n2
)

=
∞∑

j=0

(1− p)j(1− n)j

(2)jj!
λ2j

n2j

=
∞∑

j=0

aj(n)
1

j!(j + 1)!
λ2j ,

with

aj(n) =
(n− 1)(n− 2) . . . (n− j)(p− 1)(p− 2) . . . (p− j)

n2j
.

Since
lim

n→∞
aj(n) = 1, |aj(n)| ≤ γj ,

with

γ = sup
p(n)
n

,

it follows that

lim
n→∞ 2F1(1− p, 1− n; 2;

λ2

n2
) =

∞∑
j=1

cj

j!(j + 1)!
λ2j = F1(2i

√
cλ).

with the notation of Section III.6. We saw that F1(rτ) is the Fourier
transform of the semi-circle law σr. The factor e−(c+1)λ corresponds to
a shift: e−i(c+1)τF1(2

√
cτ) is the Fourier transform of the probability

measure ν on R defined by∫
R
f(t)ν(dt) =

1
2π

∫ b

a

f(t)
√

(t− a)(b− t)dt,

with

a = −2
√
c+ c+ 1 = (

√
c− 1)2, b = 2

√
c+ c+ 1 = (

√
c+ 1)2.

By Lévy-Kramér Theorem (Theorem III.5.1), this shows that, for every
ϕ ∈ Cc([0,∞[),

lim
n→∞

∫
[0,∞[

t

n
ϕ
( t
n

)
µp

n(dt) =
1
2π

∫ b

a

f(t)
√

(t− a)(b− t)dt.
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It follows that there is a constant A ≥ 0 such that, for ψ ∈ Cc([0,∞[),

lim
n→∞

∫
[0,∞[

ψ
( t
n

)
µp

n(dt) = Aψ(0) +
1
2π

∫ b

a

ψ(t)
√

(t− a)(b− t)
dt

t
.

The integral

I(c) =
1
2π

∫ b

a

f(t)
√

(t− a)(b− t)
dt

t

can be evaluated:

I(c) =
{

1, if c > 1,
c, if c < 1.

Since the limit measure is a probability measure, it follows that A = 0

b) For p ∈ {0, 1, . . . , n− 1}, by Proposition VI.2.2:∫
[0,∞[

ϕ(t)µp
n(dt) =

(
1− p

n

)
ϕ(0) +

1
n

∫ ∞

0

ϕ(t)Kn−p
p (t, t)dt.

One shows as in the case p > n− 1 that, for ϕ ∈ Cc([0,∞[),

lim
n→∞

∫
[0,∞[

t

n
ϕ
( t
n

)
µp

n(dt) =
1
2π

∫ b

a

ϕ(t)
√

(t− a)(b− t)dt,

and that there exists a constant A ≥ 0 such that, for ψ ∈ Cc([0,∞[),

lim
n→∞

∫
[0,∞[

ψ
( t
n

)
µp

n(dt) = Aψ(0) +
1
2π

∫ b

a

ψ(t)
√

(t− a)(b− t)
dt

t
.

We saw that I(c) = c for c < 1. Since the limit measure is a probability
measure, it follows that A = 1− c.
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