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OLSHANSKI SPHERICAL PAIRS RELATED

TO THE HEISENBERG GROUP

Abstract. — An Olshanski spherical pair (G,K) is the inductive
limit of a sequence of Gelfand pairs

(
G(n),K(n)

)
. A natural question

arises: how a spherical function for (G,K) can be obtained as limit of
spherical functions for

(
G(n),K(n)

)
. In this paper we consider a sequence

of Gelfand pairs
(
G(n),K(n)

)
related to the Heisenberg group.
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1. Introduction. — For a locally compact group G and a compact
subgroup K, L1(K\G/K) is the convolution algebra of K-biinvariant
integrable functions on G. Assume that (G,K) is a Gelfand pair, i.e.
the algebra L1(K\G/K) is commutative. A spherical function for the
Gelfand pair (G,K) is a continuous K-biinvariant function ϕ on G with
ϕ(e) = 1, and ∫

K

ϕ(xky)α(dk) = ϕ(x)ϕ(y) (x, y ∈ G),

(α denotes the normalized Haar measure on K). A character χ of the
commutative Banach algebra L1(K\G/K) has the form

χ(f) =
∫

G

f(x)ϕ(x)m(dx),

where ϕ is a bounded spherical function (m is a left Haar measure on
G, which is a right Haar measure as well since G is unimodular). The
Gelfand spectrum Σ of L1(K\G/K) can be identified with the set of
bounded spherical functions. We will write ϕ(σ;x) for the spherical
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function associated to σ ∈ Σ. The Gelfand spectrum is a locally compact
topological space.

Assume that G is a connected Lie group, and let D(G/K) denote the
algebra of invariant differential operators on the quotient space G/K. A
spherical function is of C∞ class, and ϕ(σ;x) is an eigenfunction of every
D ∈ D(G/K):

Dϕ(σ;x) = D̂(σ)ϕ(σ;x).

The function D̂ is continuous on Σ. Moreover the topology on Σ coincide
with the initial topology with respect to the set of functions {D̂ | D ∈
D(G/K)} ([Ferrari-Ruffino,2007]).

An Olshanski spherical pair (G,K) is the inductive limit of an increas-
ing sequence of Gelfand pairs

(
G(n),K(n)

)
:

G =
∞⋃

n=1

, G(n) K =
∞⋃

n=1

K(n),

and a spherical function for the Olshanski spherical pair (G,K) is a K-
biinvariant continuous function ϕ on G, with ϕ(e) = 1, and such that

lim
n→∞

∫
K(n)

ϕ(xky)αn(dk) = ϕ(x)ϕ(y),

where αn denotes the normalized Haar measure on K(n). Let Σn denote
the Gelfand spectrum of the Gelfand pair

(
G(n),K(n)

)
, and write φn(σ;x)

for the spherical function associated to σ ∈ Σn. We consider the following
question: for which sequences (σ(n)), with σ(n) ∈ Σn, does the sequence
ϕn(σ(n);x) converge as n goes to infinity ? Such a sequence is called a
Vershik-Kerov sequence. This question has been solved in several cases.
Kerov and Vershik have considered the case of the infinite symmetric
group: G(n) = Sn ×Sn, K(n) ' Sn [1981], and the case of the infinite
dimensional unitary group: G(n) = U(n) × U(n), K(n) ' U(n) [1982].
The case of the generalized motion group: G(n) = U(n) n Herm(n,C),
K(n) = U(n) is the subject of [Olshanski-Vershik,1996]. The papers
[Okounkov-Olshanski,1998 and 2006] are related to the case of sequences
G(n)/K(n) of compact symmetric spaces. We will consider in this
paper an Olshanski spherical pair associated to the infinite dimensional
Heisenberg group.

Let us say in which terms the Vershik-Kerov sequences can be described
in each of these cases. One introduces a topological space Σ, the ’spectrum’
of the Olshanski spherical pair (G,K), which parametrizes a family ϕ(σ;x)
of spherical functions for (G,K). The topology of Σ corresponds to the
convergence of the spherical functions ϕ(σ;x) uniformly on compact sets
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in G(n). For each n one defines an injective map Tn : Σn → Σ. Let (σ(n))
be a sequence with σ(n) ∈ Σn. Then (σ(n)) is a Vershik-Kerov sequence if
and only if the sequence Tn(σ(n)) converges for the topology of Σ:

lim
n→∞

Tn(σ(n)) = σ.

In such a case,
lim

n→∞
ϕn(σ(n);x) = ϕ(ω;x).

(See the survey [Faraut,2008], and further examples [Rabaoui,2008], [Fa-
raut,2010].)

(1) To prove the convergence one establishes generalized Taylor expan-
sions for ϕn(σ;x) and ϕ(σ;x) at the identity element of G(n) and G.
One shows that the convergence of Tn(σ(n)) to σ ∈ Σ implies the conver-
gence of the coefficients in the expansions, and further the convergence of
ϕn(σ(n);x) to ϕ(σ;x).

(2) For the converse one assumes that ϕn(σ(n);x) converges to a
continuous function ϕ on G. One looks at the restriction of these functions
to G(1), and gets that the sequence Tn(σ(n)) is relatively compact in Σ.
Therefore there is a subsequence (σ(nj)) such that Tn(σ(nj)) converges to
σ0 in Σ. By the step (1)

lim
j→∞

ϕn(σ(nj);x) = ϕ(σ0;x),

and ϕ(ω0;x) = ϕ(x). Hence there is only one possible limit for a
subsequence. Therefore the sequence Tn(σ(n)) itself converges.

In this paper we will establish such a result for an Olshanski spherical
pair related to the infinite dimensional Heisenberg group. These pairs
are inductive limits of Gelfand pairs

(
G(n),K(n)

)
where G(n) is the

semi-direct product K(n) n H(n), H(n) = W (n) × R is a Heisenberg
group, W (n) is a complex Euclidean vector space, and K(n) is a group
of automorphisms of H(n). In [Faraut,2010] we have considered the case
of W (n) = M(n, n + q; C), a space of complex rectangular matrices, and
K(n) = U(n) × U(n + q) acting on both sides on M(n, n + q; C). In the
present paper we consider the three cases W (n) = Sym(n,C), M(n,C),
and Skew(2n,C).

In Section 2 we recall the definition of shifted symmetric polynomials
and some of their properties. Then in Section 3 we introduce the three
sequences of Gelfand pairs and establish in Section 4 series expansion for
their bounded spherical functions. In next section, by using a result by
Ferrari-Ruffino we determine the Gelfand spectrum of these Gelfand pairs.
Then we define in Section 6 the Olshanski spherical pairs, inductive limits
of the Gelfand pairs which were considered in Section 3. In Sections 7 and
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8 we determine the Vershik-Kerov sequences relative to these Olshanski
spherical pairs. In Section 9 are some remarks about multivariate Laguerre
polynomials.

2. Spherical polynomials, shifted spherical polynomials. — We
consider the symmetric cone Ω of positive definite Hermitian matrices in
the Euclidean vector space V = Herm(n,F) where F = R,C or H, the
field of quaternions, with the inner product (x|y) = tr(xy). The cone Ω
is a Riemannian symmetric space, Ω = L/K0, where L is the connected
component of the group of linear automorphisms of Ω, and K0 ⊂ L is the
isotropy subgroup of the identity matrix e. The spherical functions for
the Gelfand pair (L,K0) are given by

ϕ(s;x) =
∫

K0

∆s(k · x)α(dk) (s ∈ Cn),

where ∆s is the power function

∆s(x) = ∆1(x)s1−sn∆2(x)s2−s3 . . .∆n(x)sn ,

and ∆1,∆2, . . . ,∆n are the principal minors, s = (s1, . . . , sn).
To a K0-invariant polynomial P on V one associates an invariant

differential operator DP = p
(
x, ∂

∂x

)
on V × V such that

p(g · x, ξ) = p(x, g′ξ) (g ∈ L)
p(e, ξ) = P (ξ).

The spherical function ϕ(s;x) is an eigenfunction of DP ,

DPϕ(s;x) = P ∗(s)ϕ(s;x).

The function
P ∗(s) = P

( ∂

∂x

)
ϕ(s;x)

∣∣
x=e

is a shifted symmetric polynomial in the sense that

γ(λ) = P ∗(λ+ ρ)

is symmetric, with

ρj =
d

4
(2j − n− 1), d = dimRF = 1, 2, 4.

In fact γ corresponds to DP via the Harish-Chandra isomorphism

D(G/K) ' S(Cn)Sn .
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In other words P ∗ is symmetric in the variables sj − θj, θ = d
2 . We will

say that P ∗ is θ-shifted symmetric.
Under the action of L, the space P(V ) of polynomial functions on V

decomposes multiplicity free as

P(V ) =
⊕
m

Pm,

where the summation is over the set of partitions m = (m1, . . . ,mn),
mj ∈ N, m1 ≥ · · · ≥ mn ≥ 0 of length `(m) ≤ n ([Schmid,1969], see also
[Faraut-Korányi,1994], XI.2). The space PK0

m of K0-invariant polynomials
in Pm is one dimensional, generated by the spherical polynomial Φm,
which is normalized by Φm(e) = 1. Furthermore Φm(x) = ϕ(m;x). The
shifted spherical polynomial is given by

Φ∗
m(s) = Φm

( ∂

∂x

)
ϕ(s;x)

∣∣
x=e

.

Observe that, for n = 1,

ϕ(s;x) = xs, Φm(s) = xm, Φ∗
m(s) = s(s− 1) . . . (s−m+ 1) = [s]m.

A K0-invaraint function f on V is of the form

f(x) = F (x1, . . . , xn),

where x1, . . . , xn are the eigenvalues of x, and F is a symmetric function,
i.e. invaraint under the symmetric group Sn. The spherical polynomials
are related to the Jack polynomials as follows

Φm(x) =
Pm(x1, . . . , xn; θ)
Pm(1, . . . , 1; θ)

,

with the notation of [Okounkov-Olshanski,1997], θ = d
2 (or [Macdon-

ald,1995], where the parameter is α = 2
d insead θ), and also

Φ∗
m(s1, . . . , sn) =

P ∗m(s1, . . . , sn; θ)
Pm(1, . . . , 1; θ)

.

By [Knop-Sahi,1996], for partitions m and p,

Φ∗
m(p) = 0, if m 6⊂ p,

Φ∗
m(ts) ∼ t|m|Φm

(
diag(s1, . . . , sn)

)
(t→∞).

5



Proposition 1 (Binomial formula). — For s ∈ Cn, x ∈ V ,
‖x‖op < 1,

ϕ(s; e+ x) =
∑
m

dm(
1 + θ(n− 1)

)
m

Φ∗
m(s)Φm(x),

where dm = dimPm, and, for u ∈ C,

(u)m =
n∏

j=1

(
u− θ(j − 1)

)
mj
.

Observe that θ = d
2 = 1

2 , 1 or 2, N = dimV = n + n(n − 1)θ, and
N
n = 1 + (n− 1)θ.

If s = p is a partition, then the sum is finite:

ϕ(p; e+ x) = Φp(e+ x) =
∑
m⊂p

dm(
1 + θ(n− 1)

)
m

Φ∗
m(p)Φm(x),

Proof. The spherical function ϕ(s;x) admits a holomorphic continuation
in the tube V +iΩ ⊂ VC, and the ball {z ∈ VC | ‖z−e‖op < 1} is contained
in V + iΩ. Therefore the spherical expansion of ϕ(s; z) at z = e, converges
in the ball {z ∈ VC | ‖z − e‖op < 1}. This follows from Theorem XII.3.1
in [Faraut-Korányi,1994].

The binomial formula has been established for Jack polynomials
Pm(x1, . . . , xn; θ) for all θ > 0 in [Okounkov-Olshanski,1997].

3. Gelfand pairs associated with the Heisenberg group. — For
a Euclidean complex vector space W we consider the Heisenberg group
H = W × R with the product

(z, t)(z′, t′) =
(
z + z′, t+ t′ + Im(z′|z)

)
.

The unitary group U(W ) acts on H by automorphisms:

u · (z, t) = (u · z, t).

Let K ⊂ U(W ) be a closed subgroup, and G = K nH.

Theorem 2 ([Carcano,1987]. — (G,K) is a Gelfand pair if
and only if K acts multiplicity free on P(W ), the space of holomorphic
polynomial functions on W .
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These Gelfand pairs and the associated spherical functions have been
studied by C. Benson, J. Jenkins, and G. Ratcliff in a series of papers
([1992],[1996],[1998]); see also [Dib,1990], and the book by J. Wolf [2007],
chapter 13. In the rest of the paper the space W will be the complexi-
fication W = VC of one of the real Euclidean vector spaces Herm(n,F)
we considered in Section 3, with the action of the compact group K of
complex linear automorphisms of the bounded symmetric domain of tube
type D = {z ∈W | ‖z‖op < 1}.

W K d

Sym(n,C) U(n) 1
M(n,C) U(n)× U(n) 2
Skew(2n,C) U(2n) 4

In the first case k ∈ K = U(n) acts on W by k · z = kzk′, where
k′ denotes the transpose of k. In the second case k = (k1, k2) ∈ K =
U(n) × U(n) acts by k · z = k1zk

−1
2 , and in the third case the action

is the same as in the first case. A K-invariant function f on W can
be written f(z) = F (r1, . . . , rn) where r1, . . . , rn are the eigenvalues of
zz∗. Notice that in the third case, W = Skew(2n,C), generically the
eigenvalues r1, . . . , rn have multiplicity 2. By the Schmid decomposition,
the multiplicity free condition is satisfied, and (G,K) is a Gelfand pair.

4. Bounded spherical functions. — There are two kinds of
spherical functions. The spherical functions of first kind are associated
to the Bargmann representation of H, and the ones of second kind to one
dimensional representations of H.

a) Bounded spherical functions of first kind.

For λ ∈ R∗ one considers the Fock space Fλ(W ) of holomorphic
functions ψ on W such that

‖ψ‖2λ =
( |λ|
π

)N
∫

W

|ψ(ζ)|2e−|λ|‖ζ‖
2
m(dζ) <∞,

and the representation πλ of the Heisenberg group H = W ×R on Fλ(W )
is defined, if λ > 0, by(

πλ(z, t)ψ
)
(ζ) = eλ

(
it− 1

2‖z‖
2−(ζ|z)

)
ψ(ζ + z),

and πλ(z, t) = π−λ(z̄,−t), for λ < 0. The group K acts on Fλ(W ):(
τ(k)ψ

)
(ζ) = ψ(k−1 · ζ),
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and
τ(k)πλ(z, t)τ(k−1) = πλ(k · z, t).

For the action of K, the Fock space decomposes multiplicity free:

Fλ(W ) =
⊕̂
m

Pm.

If f in L1(H) is K-invariant, then the operator

Tλ(f) =
∫

H

Tλ(z, t)f(z, t)m(dz)dt

commutes with the K-action. Therefore, by Schur’s lemma, for every m,
Pm is an eigenfunction of Tλ(f): for ψ ∈ Pm,

Tλ(f)ψ = f̂(λ,m)ψ.

The character f 7→ f̂(λ,m) of the commutative convolution algebra
L1(H)K can be written

f̂(λ,m) =
∫

H

f(z, t)ϕ(λ,m; z, t)m(dz)dt,

with a bounded spherical function ϕ(λ,m; z, t). Suppose first λ > 0. For
ψ ∈ Pm,∫

H

eλ
(
it− 1

2‖z‖
2−(ζ|z)

)
ψ(ζ + z)f(z, t)m(dz)dt = f̂(λ,m)ψ(ζ).

Taking for ψ the spherical polynomial Φm, and ζ = e, we obtain

ϕ(λ,m; z, t) = eiλte−
1
2 λ‖z‖2

∫
K

e−λ(e|k·z)Φm(e+ k · z)α(dk).

Theorem 3. — The bounded spherical functions of first kind admit
the following expansion:

ϕ(λ,m; z, t)

= eiλte−
1
2 |λ|‖z‖

2 ∑
p⊂m

dp
1((

1 + (n− 1)θ
)
p

)2 (−|λ|)|p|Φ∗
p(m)Φp(r),

where r = diag(r1, . . . , rn), and r1, . . . , rn are the eigenvalues of zz∗.
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[Dib,1990], Théorème 3.1.

Proof. Assume first λ > 0. The integral over K can be written as∫
K

e−λ(e|k·z)Φm(e+ k · z)α(dk) =
∫

K

f1(k · z)f2(k · z)α(dk),

with f1(z) = Φm(e + z), f2(z) = e−λ tr z. Let us expand both functions.
By Proposition 1,

f1(z) = Φm(e+ z) =
∑
p⊂m

dp
1(

1 + (n− 1)θ
)
p

Φ∗
p(m)Φp(z),

and, by Proposition XII.1.3 in [Faraut-Korányi,1994],

f2(z) = e−λ tr z =
∑
p

dp(−λ)|p|
1(

1 + (n− 1)θ
)
p

Φp(z).

By orthogonality∫
K

f1(k · z)f2(k · z)α(dk)

=
∑
p⊂m

(dp)2(−λ)|p|
1((

1 + (n− 1)θ
)
p

)2 Φ∗
p(m)

∫
K

|Φp(k · z)|2α(dk).

By Proposition XI.4.1 and Corollary XI.4.2 in [Faraut-Korányi,1994],∫
K

|Φp(k · z)|2α(dk) =
1
dp

Φp(r).

For λ < 0, one uses the relation

ϕ(−λ,m; z, t) = ϕ(λ,m; z,−t).

b) Bounded spherical functions of second kind.

For w ∈ W let ηw be the one dimensional unitary representation of H
given by

ηw(z, t) = e2iIm (z|w).

The character f 7→ ηw(f) of the commutative Banach algebra L1(H)K

can be written
ηw(f) =

∫
H

f(z, t)ψ(ρ; z)m(dz)dt,
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with the bounded spherical function

ψ(ρ; z) =
∫

K

e2iIm (z|k·w)α(dk),

where ρ = diag(ρ1, . . . , ρn), ρ1, . . . , ρn are the eigenvalues of ww∗.

Theorem 4. — The bounded spherical functions of second kind admit
the following expansion

ψ(ρ; z) =
∑
p

dp
1((

1 + (n− 1)θ
)
p

)2 (−1)|p|Φp(ρ)Φp(r),

where r = diag(r1, . . . , rn), and r1, . . . , rn are the eigenvalues of zz∗.
Proof. Let Kp denote the reproducing kernel of Pp in the Fock space
F1(W ). Since e(z|w) is the reproducing kernel of F1(W ),

e(z|w) =
∑
p

Kp(z, w).

Observing that
e2i(z|k·w) = e(z|k·w)e−(z|k·w),

we obtain, by orthogonality,

ψ(ρ; z) =
∑
p

(−1)|p]

∫
K

|Kp(z, k · w)|2α(dk).

We use now the relation (see Section XI.4 in [Faraut-Korányi,1994]):∫
K

|Kp(z, k · w)|2α(dk)

=
1
dp
Kp(z, z)Kp(w,w) =

dp((
1 + (n− 1)θ

)
p

)2 Φp(r)Φp(ρ).

Let Σ1 be the part of the spectrum Σ of the commutative Banach
algebra L1(H)K corresponding to the bounded spherical functions of first
kind. The set Σ1 is parametrized by pairs (λ,m) with λ ∈ R∗, and m
is a partition of length `(m) ≤ n. Let also Σ2 denote the part of Σ
corresponding to the bounded spherical functrions of second kind. The
set Σ2 is parametrized by ρ ∈ Rn, with ρ1 ≥ · · · ≥ ρn ≥ 0. By [Benson-
Jenkins-Ratcliff,1992], the spectrum is the disjoint union Σ = Σ1 ∪ Σ2.
Furthermore the bounded spherical functions are of positive type.
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We will write ϕ(σ; z, t) for the bounded spherical function associated
to σ:

ϕ(σ; z, t) = ϕ(λ,m; z, t) if σ = (λ,m) ∈ Σ1,

= ψ(ρ; z) if σ = (ρ) ∈ Σ2.

These expansions can also be written in terms of Jack polynomials
Pm(x1, . . . , xn; θ). This will be convenient for studying the asymptotics of
the spherical functions as n goes to infinity.

We use the same notation as in [Okounkov-Olshanski,1997]: let m =
(m1, . . . ,mn) be a partition viewed as a diagram. Fix a box s = (i, j) ∈ m.
One defines

a(s) = mi − j, a′(s) = j − 1,
`(s) = m′

j − i, `′(s) = i− 1,

where m′ is the transpose diagram, and

H(m; θ) =
∏
s∈m

(
a(s) + θ`(s) + 1

)
H ′(m; θ) =

∏
s∈m

(
a(s) + θ`(s) + θ

)
.

Observe that the generalized Pochhammer symbol can be written, for
u ∈ C,

(u)m =
∏
s∈m

(
u+ a′(s)− θ`′(s)

)
.

Recall also the notation Qm(x1, . . . , xn; θ) for the modified Jack polyno-
mials:

Qm(x1, . . . , xn; θ) =
H ′(k; θ)
H(k; θ)

Pm(x1, . . . , xn; θ).

By using the relation

Φm(x) =
H ′(m; θ)
(nθ)m

Pm(x1, . . . , xn; θ),

for x = diag(x1, . . . , xn), and the formula

dm =

(
1 + (n− 1)θ

)
m

(nθ)m
H(m; θ)H ′(m; θ)

,

one obtains

ϕ(λ,m; z, t) = eiλte−
1
2 |λ|‖z‖

2∑
k⊂m

(−1)|k|
1

(nθ)k
(
1 + (n− 1)θ

)
k

|λ|k|P ∗k (m; θ)Qk(r; θ),
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and

ψ(ρ; z) =
∑
k

(−1)|k|
1

(nθ)k
(
1 + (n− 1)θ

)
k

Pk(ρ; θ)Qk(r; θ).

The spherical function ϕ(σ; z, t) can be written

ϕ(σ; z, t) = eiλte−
1
2 |λ|‖z‖

2∑
k

(−1)|k|
1

(nθ)k
(
1 + (n− 1)θ)k

ak(σ)Qk(r; θ),

with
ak(σ) = |λ||k|P ∗k (m; θ) if σ = (λ,m) ∈ Σ1

n,

= Pk(ρ; θ) if σ = (ρ) ∈ Σ2
n.

We will need in Section 8 the following expansions of the function
ϕ(σ;xE11, 0) (x ∈ R). We use the notation [m] (m ∈ N) for the partition
(m, 0, . . .).

Lemma 5.

ϕ(σ;xE11, 0) = 1−An(σ)x2 −Bn(σ)x4 + · · ·

where, for σ = (λ,m) ∈ Σ1
n,

An(σ) = |λ|
(1

2
+

θ

(nθ)
(
1 + (n− 1)θ

)P ∗[1](m; θ)
)
,

and, for σ = (ρ) ∈ Σ2
n,

Bn(σ) = λ2
(1

8
+

θ

2(nθ)
(
1 + (n− 1)θ

)P ∗[1](m; θ)

+
θ(θ + 1)

2(nθ)(nθ + 1)
(
1 + (n− 1)θ

)(
2 + (n− 1)θ

)P ∗[2](m; θ)
)
.

Furthermore, there are constants D1 and D2, which do not depend on n
and σ, such that

Bn(σ) ≤ D1

(
An(σ)

)2
,

and

An(σ) ≥D2
|λ||m|
n2

, if σ = (λ,m) ∈ Σ1
n,

An(σ) ≥D2
ρ1 + · · ·+ ρn

n2
, if σ = (ρ) ∈ Σ2

n.
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Proof.
From Theorem 3, one gets

ϕ(λ,m;xE11, 0)

= e−
1
2 |λ|x

2
m1∑
k=0

(−1)k (θ)k

k!
1

(nθ)k

(
1 + (n− 1)θ

)
k

|λ|kP ∗[k](m; θ)x2k

=
(
1− 1

2
|λ|x2 +

1
8
λ2x4 + · · ·

)
(
1− θ|λ|

(nθ)
(
1 + (n− 1)θ

)P ∗[1](m; θ)x2

+
θ(θ + 1)λ2

2(nθ)(nθ + 1)
(
1 + (n− 1)θ

)(
2 + (n− 1)θ

)P ∗[2](m; θ)x4 + · · ·
)

= 1− |λ|
(1

2
+

θ

(nθ)
(
1 + (n− 1)θ

)P ∗[1](m; θ)
)
x2

+
(1

8
+

θ

2(nθ)
(
1 + (n− 1)θ

)P ∗[1](m; θ)

+
θ(θ + 1)

2(nθ)(nθ + 1)
(
1 + (n− 1)θ

)(
2 + (n− 1)θ

)P ∗[2](m; θ
)
x4 + · · · ,

and, from Theorem 4,

ψ(ρ;xE11) =
∞∑

k=0

(−1)k (θ)k

k!
1

(nθ)k

(
1 + (n− 1)θ

)
k

P[k](ρ; θ)x2k

= 1− θ

(nθ)
(
1 + (n− 1)θ

)P[1](ρ; θ)x2

+
θ(θ + 1)

2(nθ)(nθ + 1)
(
1 + (n− 1)θ

)(
2 + (n− 1)θ

)P[2](m; θ)x4 + · · ·

One uses furthermore the formulae:

P[1](x; θ) = x1 + x2 + · · · , P ∗[1](s; θ) = s1 + s2 + · · · ,

and

P[2](x; θ) =
∑

i

x2
i +

2θ
θ + 1

∑
i<j

xixj ,

P ∗[2](s; θ) =
∑

i

si(si − 1) +
2θ
θ + 1

∑
i<j

(si − 1)sj .
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5. Invariant differential operators, and topology of the
spectrum. — The following left-invariant vector fields on H form a basis
of the complexified Lie algebra hC of h = Lie(H):

T =
∂

∂t
, Zα =

∂

∂zα
+

1
2i
z̄α

∂

∂t
, Z̄α =

∂

∂z̄α
− 1

2i
zα

∂

∂t
,

where the coordinates zα are relative to an orthonormal basis of W . For
the Bargmann representation πλ, with λ > 0,

dπλ(T ) = iλ, dπλ(Zα) =
∂

∂ζα
, dπλ(Z̄α) = −λζα,

and, for the one-dimensional representation ηw,

dηw(T ) = 0, dηw(Zα) = w̄α, dηw(Z̄α) = −wα.

To a polynomial p(z̄, z) on W we associate the left-invariant differential
operator Dp = p(Z̄, Z) on H. We mean that the Zα’s are applied first,
and then the Z̄α’s. Hence

dπλ(Dp) = p
(
−λζ, ∂

∂ζ

)
, dηw(Dp) = p(−w, w̄).

A K-invariant polynomial p(z̄, z) can be written

p(z̄, z) = P (r1, . . . , rn),

where P is a symmetric polynomial in n variables, and r1, . . . , rn are the
eigenvalues of zz∗. In such a case the operator Dp commutes with the
K-action on Fλ(W ). Therefore, by Schur’s Lemma, the subspaces Pm are
eigenspaces of Dp.

Theorem 6. — Assume that p(z̄, z) is K-invariant and homogeneous
of degree `.

(i) For ψ ∈ Pm,

dπλ(Dp)ψ = (−λ)`P ∗(m1, . . . ,mn)ψ,

where P ∗ is the θ-shifted symmetric polynomial associated to P as in
Section 2. Furthermore

dηw(Dp) = (−1)`P (ρ1, . . . , ρn),

where ρ1, . . . , ρn are the eigenvalues of ww∗.

14



(ii) The spherical functions are eigenfunctions of Dp:

Dpϕ(λ,m; z, t) = (−λ)`P ∗(m1, . . . ,mn)ϕ(λ,m; z, t),

Dpψ(ρ; z, t) = (−1)`P (ρ1, . . . , ρn)ψ(ρ; z, t).

By [Ferrari-Ruffino,2007] one deduces the topology of the spectrum (see
Section 1 of the present paper):

Corollary 7. — The map Σ → Rn+1 defined by

(λ,m) ∈ Σ1 7→ (λ, |λ|m1, . . . , |λ|mn),

(ρ) ∈ Σ2 7→ (0, ρ1, . . . , ρn),

is a homeomorphism of the spectrum Σ onto its image, a multi-dimensional
Heisenberg fan.

This means in particular that

lim
λ→0,λmi→ρi

ϕ(λ,m; z, t) = ψ(ρ, z),

uniformly on compact sets in H. This can also be obtained from the
expansions of ϕ(λ,m; z, t) and ψ(ρ; z) (Theorems 3 and 4).

6. An Olshanski spherical pair. — We consider the increasing
sequences

W (n) K(n) d

Sym(n,C) U(n) 1
M(n,C) U(n)× U(n) 2
Skew(2n,C) U(2n) 4

Furthermore we consider the sequence H(n) = W (n)×R of Heisenberg
groups, and the infinite dimensional Heisenberg group

H =
∞⋃

n=1

H(n),

and also the Olshanski spherical pair (G,K),

G =
∞⋃

n=1

G(n), K =
∞⋃

n=1

K(n).
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A spherical function can be seen as a K-invariant function ϕ(z, t) on H
with ϕ(0, 0) = 1 such that

lim
n→∞

∫
K(n)

ϕ
(
z + k · z′, t+ t′ + Im (k · z′|z)

)
αn(dk) = ϕ(z, t)ϕ(z′, t).

Theorem 8. — Let ϕ be a K-invariant continuous function on H.
Then ϕ is spherical if and only if there exists λ ∈ C, and a continuous
function Φ on [0,∞[ such that

ϕ(z, t) = eλt
∏

i

Φ(ri),

where the numbers ri are the eigenvalues of zz∗.
The proof is the same as for Theorem 6.1 in [Faraut,2010].

7. The topological space Ξ and extended symmetric functions.
In the last sections of the paper we will study the limits of the spherical
functions as n goes to infinity, following the method used in [Okounkov-
Olshanski,1998]. As in [Faraut,2010], we consider the topological space

Ξ = {ξ = (α, γ) | α = (αj), αj ≥ 0,
∞∑

j=1

αj <∞, γ ≥ 0},

equipped with the initial topology with respect to the functions Lh, where
h is a continuous function on [0,∞[, defined by

Lh(ξ) = γh(0) +
∞∑

j=1

αjh(αj)
(
ξ = (α, γ)

)
.

For C > 0, the set

ΞC = {ξ = (α, γ) |
∞∑

j=1

αj + γ ≤ C}

is compact. The Pólya type function

Φ(ξ;x) = e−γx
∞∏

j=1

1
1 + αjx

is continuous on Ξ× [0,∞[. In fact

− log Φ(ξ;x) = Lh(ξ),
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with
h(t) =

1
t

log(1 + tx) (t > 0), h(0) = x.

Let Λ denote the algebra of symmetric functions. Recall that a symmetric
function is a polynomial function on C(∞) = ∪∞n=1Cn which is invariant
under the infinite symmetric group S(∞) = ∪∞n=1Sn. We consider an
algebra morphism from Λ into the algebra C(Ξ) of continuous functions
on Ξ:

Λ → C(Ξ), f 7→ f̃ ,

such that the images of the Newton power sums pm are given by

p̃1(ξ) = γ +
∞∑

j=1

αj ,

and, for m ≥ 2,

p̃m(ξ) =
∞∑

j=1

αm
j .

Since the functions pm generate Λ as an algebra, the morphism is uniquely
determined by these conditions. The function f̃ is said to be the extended
symmetric function of f . The Jack polynomial Pm(x; θ) is a symmetric
function, and, according to the definition, P̃m(ξ; θ) will denote the ex-
tended symmetric function of Pm(x; θ).

Proposition 9. — (i) The power series expansion of Φ(ξ;x)θ near
0 is given by

Φ(ξ;x)θ =
∞∑

m=0

(θ)m

m!
P̃[m](ξ; θ)(−x)m,

where, for m ∈ N, [m] denotes the partition (m, 0, . . .).
(ii) More generally∏

i

Φ(ξ;xi)θ =
∑
m

P̃m(ξ; θ)Qm(−x; θ).

Proof. Recall the Cauchy identity∏
i,j

(1− xiyj)−θ =
∑
m

Pm(x; θ)Qm(y; θ),

which, in case of y = (z, 0, . . .), reduces to

∏
i

(1− xiz)−θ =
∞∑

m=0

(θ)m

m!
P[m](x; θ)zm,

17



Essentially the proof amounts to applying the morphism f 7→ f̃ to the
Cauchy identity, in the variable y = (y1, y2, . . .).

8. Asymptotics of the spherical functions. — We saw in Section
4 that the spectrum Σn for the Gelfand pair

(
G(n),K(n)

)
decomposes as

Σn = Σ1
n ∩ Σ2

n, with

Σ1
n = {(λ,m) | λ ∈ R∗, m is a partition, `(m) ≤ n},

Σ2
n = {ρ ∈ Rn | ρ1 ≥ · · · ≥ ρn ≥ 0}.

For (λ, ξ) ∈ R× Ξ, and (z, t) ∈ H, define

ϕ(λ, ξ; z, t) = eiλte−
1
2 |λ|‖z‖

2 ∏
i

Φ(ξ; θ−2ri)θ,

where r1, . . . , rn are the eigenvalues of zz∗. For every n we define the map

Tn : Σn → R× Ξ, σ 7→ (λ, ξ) = (λ, α, γ),

with, if σ = (λ,m) ∈ Σ1
n,

αj =
1
n2
|λ|mj (1 ≤ j ≤ n), αj = 0 (j > n), γ = 0,

and, if σ = (ρ) ∈ Σ2
n,

λ = 0, αj =
1
n2
ρj (1 ≤ j ≤ n), αj = 0 (j > n), γ = 0.

Theorem 10. — Let (σ(n)) be a sequence with σ(n) ∈ Σn. Assume
that

lim
n→∞

Tn(σ(n)) = (λ, ξ)

for the topology of R× Ξ. Then

lim
n→∞

ϕn(σ(n); z, t) = ϕ(λ, ξ; z, t),

uniformly on compact sets in H.
The proof is the similar to the one of Theorem 6.5 in [Faraut,2010].

Let Λθ denote the algebra of θ-shifted symmetric functions. Let P ∗ ∈ Λθ

of degree `, and P the homogeneous part of P ∗ of degree `. Then P is
symmetric. For σ ∈ Σn, define

Q(P ∗, σ) = |λ|`P ∗(m) if σ = (λ,m) ∈ Σ1
n,

= P (ρ) if σ = (ρ) ∈ Σ2
n.
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Proposition 11. — Let (σ(n)) be a sequence with σ(n) ∈ Σn. Assume
that

lim
n→∞

Tn(σ(n)) = (λ, ξ),

for the topology of R× Ξ. Then, for every P ∗ ∈ Λθ of degree `,

lim
n→∞

1
n2`

Q(P ∗, σ(n)) = P̃ (ξ),

the extended symmetric function of P introduced in Section 6.
This is proved in the same way as Proposition 6.6 in [Faraut,2010].

Instead of the shifted power functions one considers the θ-shifted power
functions

p∗` (x) =
∑

i

(
(xi − iθ)` − (−iθ)`

)
.

Proof of Theorem 8. The spherical function ϕn(σ; z, t) can be written

ϕn(λ,m; z, t) = eiλte−
1
2 |λ|‖z‖

2∑
k

(−1)|k|
1

(nθ)k
(
1 + (n− 1)θ)k

ak(σ)Qk(r; θ),

with
ak(σ) = |λ||k|P ∗k (m; θ) if σ = (λ,m) ∈ Σ1

n,

= Pk(ρ; θ) if σ = (ρ) ∈ Σ2
n.

By Proposition 11,

lim
n→∞

1
n2|k| ak(σ(n)) = P̃k(ξ; θ).

Since, for k fixed,

(nθ)k
(
1 + (n− 1)θ

)
k
∼ θ2|k|n2|k| (n→∞),

it follows by Lemma 3.4 in (Faraut,2010], that

lim
n→∞

∑
k

(−1)|k|
1

(nθ)k
(
1 + (n− 1)θ

)
k

ak(σ(n))Qk(r; θ)

=
∑
k

(−1)|k|θ−2|k|P̃k(ξ; θ)Qk(r; θ) =
∏

i

Φ(ξ, θ−2ri)θ,

by Proposition 9.
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Theorem 12. — If (σ(n)) is a sequence with σ(n) ∈ Σn, and such
that

lim
n→∞

ϕn(σn); z, t) = ϕ(z, t),

uniformly on compact sets in H, where ϕ is a continuous function on H,
then the sequence Tn(σ(n)) converges in R× Ξ,

lim
n→∞

Tn(σ(n)) = (λ, ξ),

and
ϕ(z, t) = ϕ(λ, ξ; z, t).

By Theorems 10 and 12, a sequence σ(n) is a Vershik-Kerov sequence
if and only if the sequence Tn(σ(n)) converges in R× Ξ.

Proof. For z = 0,

ϕ(0, t) = lim
n→∞

ϕn(σ(n); 0, t) = lim
n→∞

eiλ(n)t,

uniformly on compact sets in R, with σ(n) = (λ(n),m(n)) if σ(n) ∈ Σ1
n,

and λ(n) = 0 if σ(n) ∈ Σ2
n. Hence the sequence λ(n) converges and

ϕ(0, t) = eiλt, with λ = limn→∞ λ(n). Put, for z = xE11, with x ∈ R,

ψn(x) = ϕn(σ(n);xE11, 0).

The function ψn is continuous of positive type on R, with ψn(0) = 1, hence
is the Fourier transform of a probability measure νn on R,

ψn(x) =
∫

R
eixyνn(dy).

By Lemma 5, the function ψn has the following expansion

ψn(x) = 1−An(σ(n))x2 +Bn(σ(n))x4 + · · · ,

and the moments of order 2 and 4 of the measure νn are

M2(νn) = 2An(σ(n)), M4(νn) = 24Bn(σ(n)).

Also by Lemma 5, there is a constant A, which does not depend on n,
such that

M4(νn) ≤
(
M2(νn)

)2
.

Since the sequence (ψn) converges uniformly on compact sets, the sequence
(νn) converges weakly, hence is relatively compact for the weak topology.
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By Lemma 5.2 in [Okounkov-Olshanski,1998] (see also Lemma 4.3 in
[Faraut,2010]), there is a constant C such that

A(σ(n)) ≤ C.

Form this inequality together with the last one in Lemma 5, it follows that
the sequence Tn(σ(n)) is relatively compact in R× Ξ.

9. Multivariate Laguerre polynomials. — The bounded spher-
ical functions of first kind can be expressed in terms of multivariate
Laguerre polynomials. Following [Muirhead,1982], [Dib,1990] (see also
[Lassalle,1991], [Faraut-Korányi,1994], [Baker-Forrester,1997]) the mul-
tivariate Laguerre polynomials Lα

m(x1, . . . , xn; θ) are defined, for x ∈
Herm(n,F), by

Lα
m(x) =

(
α+ 1 + (n− 1)θ)m

∑
k⊂m

(−1)|k|(
α+ 1 + (n− 1)θ

)
k

(
m
k

)
Φk(x).

(There are slight variations regarding the parameter α in the above
references.) The generalized binomial coefficients are defined by the
relation

Φm(e+ x) =
∑
k⊂m

(
m
k

)
Φk(x).

It follows that, with the notation of [Okounkov-Olshanski,1997],(
m
k

)
=
P ∗k (m; θ)
H(k; θ)

.

Therefore, for x = diag(x1, . . . , xn),

Lα
m(x; θ) =

(
α+ 1 + (n− 1)θ)m

∑
k⊂m

(−1)|k|

1
(nθ)k

(
α+ 1 + (n− 1)θ

)
k

P ∗k (m; θ)Qk(x; θ).

The bounded spherical functions of first kind can be written

ϕ(λ,m; z, t) = eiλte−
1
2 |λ|‖z‖

2 L0
m

(
|λ|r; θ)

L0
m(0; θ)

,

with r = (r1, . . . , rn), and r1, . . . , rn are the eigenvalues of zz∗.
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Let us define, for α ∈ C, s ∈ Cn, x = (x1, . . . , xn) ∈ Cn, θ = 1
2 , 1, 2.

F ∗(α, s;x) =
∑
k

(−1)|k|
1

(nθ)k
(
α+ 1 + (n− 1)θ

)
k

P ∗k (s; θ)Qk(x; θ).

We assume that
(
α + (n − 1)θ

)
k
6= 0 for every partition k. The series

converges for all s and x. To show the convergence one can use the
following Cauchy inequality which follows from Proposition 1: for every r
with 0 < r < 1,

|Φ∗
k(s)| ≤

(
1 + (n− 1)θ

)
k
r−|k|M(r, s),

where
M(s, r) = sup

‖z‖op≤r

|ϕ(s; e+ z)|.

Observe that, if s = m is a partition, the series is a finite sum and

F ∗(α,m;x) =
Lα

m(x; θ)
Lα

m(0; θ)
.

Define also, for α ∈ C, x, y ∈ Cn,

F (α;x, y) =
∑
k

(−1)|k|
1

(nθ)k
(
α+ 1 + (n− 1)θ

)
k

Pk(x; θ)Qk(y; θ).

The series converge for all x and y.

Proposition 13. — The following confluence property holds:

lim
t→∞

F ∗(α, ts;
x

t
) = F (α; s;x).

Proof. This follows from

lim
t→∞

t−|k|P ∗k (ts) = Pk(s).

In case n = 1, these properties are classical. In fact, noticing that
[s]k = (−1)k(−s)k,

F ∗(α, s;x) =
∞∑

k=0

(−1)k 1
k!(α+ 1)k

[s]kxk = 1F1(−s, α+ 1;x)

F ∗(α,m;x) = 1F1(−m,α+ 1;x) =
Lα

m(x)
Lα

m(0)
,
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and

F (α;x, y) =
∞∑

k=0

(−1)k 1
k!(α+ 1)k

xkyk = 0F1(α+ 1;−xy).

For a partition m with length `(m) ≤ n, define Tn : m 7→ ξ = (α, γ) ∈ Ξ
by

αj =
mj

n2
(1 ≤ j ≤ n), αj = 0 (j > n), γ = 0.

From Theorem 10, with λ = 1, one obtains:

Proposition 14. — Let θ = 1
2 , 1 or 2. Let m(n) be a sequence of

partitions with `(m(n)) ≤ n. Assume that

lim
n→∞

Tn(m(n)) = ξ,

for the topology of Ξ. Then

lim
n→∞

Lm(n)(x1, x2, . . . , xk, 0, . . .)
Lm(n)(0, . . . ; θ)

=
∏

i

Φ(ξ, θ−2xi).

We don’t now whether this statement holds for all θ > 0.
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