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1. Introduction. To a finite dimensional Euclidean complex vector space V one
associates the Heisenberg group H = V × R with the product

(z, t)(z′, t′) =
(
z + z′, t+ t′ + Im(z|z′)

)
.

Let K be a closed subgroup of the unitary group U(V ). An element k ∈ K defines
an automorphism of H: k · (z, t) = (k · z, t). In 1980, A. Hulanicki and F. Ricci have
considered the case of V = Cn, and K = Tn acting diagonaly. They observed that
(G,K) with G = K n H is a Gelfand pair, and determine the corresponding spherical
functions. These functions can be expressed in terms of Laguerre polynomials. By using
a Tauberian theorem for the associated spherical Fourier transform, A. Hulanicki and F.
Ricci established a tangential convergence theorem for harmonic functions on balls in Cn.
In 1980, in a conference in Wis la organized by A. Hulanicki, A. Korányi gave a talk about
the following result: let G/K be a Riemannian symmetric space of rank one, with the
Iwasawa decomposition G = KAN , M being the centralizer of A in K, then (MN,M)
is a Gelfand pair. In particular, if G = SU(1, n + 1), then N is the Heisenberg group
H = Cn × R, and M = U(n). A natural question arised: for which subgroup K ⊂ U(V )
is the pair (G,K) a Gelfand pair ? (G = K nH). The answer has been given by Carcano
[1987]: (G,K) is a Gelfand pair if and only if K acts on the space of polynomials P(V )
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multiplicity free. These Gelfand pairs and the associated spherical functions have been
studied in a series of papers by C. Benson, J. Jenkins, G. Ratcliff (among them [1992],
[1998]). The subgroups K ⊂ U(V ) acting irreducibly on V and on P(V ) multiplicity free
have been classified by Kac [1980]. (A complete classification of linear multiplicity free
actions, extending [Kac,1980], is given in [Benson-Racliff,1996], and [Leahy,1998].) This
subject is now available in a book form: [Wolf,2007], Chapter 13.

If K acts multiplicity free on P(V ), hence (G,K) is a Gelfand pair. A spherical
function for (G,K) can be seen as a K-invariant function on H. That is why we make the
following definition: a continuous complex valued function ϕ on H is said to be spherical
if it satisfies the following functional equation:∫

K

ϕ(z + k · z′, t+ t′ + Im(z|k · z′)
)
α(dk) = ϕ(z, t)ϕ(z′, t′),

for (z, t), (z′, t′) ∈ H (α denotes the normalized Haar measure on K). The bounded
spherical functions are the characters of the commutative convolution Banach algebra
L1(H)K of K-invariant integrable functions on H. We will consider the case of V =
M(n, p; C) (p ≥ n), with the inner product given by (z|w) = tr (zw∗), and K = U(n)×U(p)
acting on V by: k · z = uzv∗ if k = (u, v). We will determine the spherical functions in
that case, and then study the asymptotics of these spherical functions for large n and p.

In Section 2 we establish some series expansions in the Fock space F(V ) with a
subgroup K ⊂ U(V ) acting on V multiplicity free. In case of V = M(n, p; C) and K =
U(n)×U(p), we describe explicitely the decomposition of the Fock space. Then, in Section
3, in that case we determine the spherical functions of positive type of the associated
Gelfand pair (G,K), with G = K nH, H = V × R.

In Section 4 we recall the notion of Olshanski spherical pair. Such a pair (G,K) is
the inductive limit of an increasing sequence of Gelfand pairs

(
G(n),K(n)

)
. We recall the

method, due to Okounkov and Olshanski, for studying the asymptotics of the spherical
functions for the pair

(
G(n),K(n)

)
, and the convergence to the spherical functions for the

pair (G,K).
Then we come back to the special case of the Gelfand pairs associated to the Heisen-

berg group H = V × R, with V = M(n, p; C), and K = U(n) × U(p). In Section 5, n is
kept fixed and p goes to infinity. The Olshanski spherical pair (G,K) is of finite rank: the
spherical functions for the pair (G,K) depend on a finite number of real parameters. In
Section 6, we consider V = M(n, n + q), with q fixed, and n goes to infinity. Then the
rank of the Olshanski spherical pair (G,K) is infinite: the spherical functions for the pair
(G,K) depend on an infinite number of real parameters.

I would like to thank the referee for his careful reading of the manuscript, and for his
valuable comments. They have been very useful to improve the paper.

2. Preliminaries about the Fock space. Let Z be a finite dimensional complex
manifold, and K a compact group acting on Z by holomorphic automorphisms. Then K
acts on the space O(Z) of holomorphic functions:(

π(k)f
)
(z) = f(k−1 · z).
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Let H ⊂ O(Z) be a K-invariant Hilbert subspace: there is a K-invariant Hilbert structure
on H, and the injection H ↪→ O(Z) is continuous.

Lemma 2.1. Assume H irreducible. Then, for f ∈ H,∫
K

|f(k · z)|2α(dk) =
1
d
K(z, z)‖f‖2,

where K denotes the reproducing kernel of H, α the normalized Haar measure of K, and
d = dimH.

Proof. Let Kz denote the coherent state Kz(w) = K(w, z). By the reproducing property,
f(z) = (f |Kz), hence

f(k · z) = (f |Kk·z) = (f |π(k)Kz).

Therefore ∫
K

|f(k · z)|2α(dk) =
∫
K

|
(
π(k)Kz|f

)
|2α(dk) =

1
d
‖Kz‖2‖f‖2,

by the Schur orthogonality relations. Furthermore ‖Kz‖2 = K(z, z).

More generally, for f1, f2 ∈ H,∫
K

f1(k · z)f2(k · z)α(dk) =
1
d
K(z, z)(f1|f2).

We assume that K acts multiplicity free on O(Z): every K-invariant Hilbert subspace
H ⊂ O(Z) decomposes multilicity free:

H =
⊕̂
µ∈M

Hµ,

into a Hilbert sum of irreducible K-invariant Hilbert subspaces Hµ.

Proposition 2.2. For f ∈ H, then

f(z) =
∑
µ∈M

fµ(z) (fµ ∈ Hµ)

(the series converges in H, and uniformly on compact sets), and∫
K

|f(k · z)|2α(dk) =
∑
µ∈M

1
dµ
Kµ(z, z)‖fµ‖2 (dµ = dimHµ).
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For f1, f2 ∈ H, ∫
K

f1(k · z)f2(k · z)α(dk) =
∑
µ∈M

1
dµ
Kµ(z, z)(f1,µ|f2,µ).

Let Z = V be a finite dimensional Euclidean complex vector space, and K a closed
subgroup of the unitary group U(V ) acting multiplicity free on O(V ), or equivalently
acting multiplicity free on the space P(V ) of polynomials on V . The Fock space F(V ) is
the space of holomorphic functions f on V such that

‖f‖2 =
1
πN

∫
V

e−‖z‖
2
|f(z)|2m(dz) <∞

(m denotes the Euclidean measure on V , N = dimV .) The reproducing kernel of F(V ) is

K(z, w) = e(z|w).

The Fock space decomposes multiplicity free:

F(V ) =
⊕̂
µ∈M

Hµ.

Let Kµ denotes the reproducing kernel of Hµ. Then

e(z|w) =
∑
µ∈M

Kµ(z, w).

By Proposition 2.2, for f(z) = e(z|w) (w fixed), we get

Proposition 2.3.∫
K

e2Re(k·z|w)α(dk) =
∑
µ∈M

1
dµ
Kµ(z, z)Kµ(w,w).

Consider first V = Cp, K = U(p). Let Hm denote the space of polynomials homoge-
neous of degree m. The irreducible K-invariant Hilbert subspaces are the spaces Hm,

Km(z, w) =
1
m!

(z|w)m, dimHm =
(m+ p− 1)!
m!(p− 1)!

=
(p)m
m!

.

(Recall the Pochhammer symbol: (α)m = α(α+ 1) . . . (α+m− 1).) Hence M = N. Then,
for f ∈ F(Cp),

f(z) =
∞∑
m=0

fm(z) (fm ∈ Pm),
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we obtain ∫
U(p)

|f(k · z)|2βp(dk) =
∞∑
m=0

1
(p)m

‖z‖2m‖fm‖2

(βp is the normalized Haar measure on U(p)), and∫
U(p)

e2Re(k·z|w)βp(dk) =
∞∑
m=0

1
(p)m

1
m!
‖z‖2m‖w‖2m.

More generally, consider V = M(n, p; C) (n ≤ p), with the inner product (z|w) =
tr (zw∗), and K = U(n)×U(p) acting on M(n, p; C) by k · z = uzv∗ (u ∈ U(n), v ∈ U(p)).
For a partition m of length `(m) ≤ n: m = (m1, . . . ,mn) with mi ∈ N, m1 ≥ . . . ≥ mn ≥
0, let Hm denote the space of polynomials on V generated by the polynomials π(k)∆m

(k ∈ K), where
∆m(z) = ∆1(z)m1−m2∆2(z)m2−m3 . . .∆n(z)mn ,

with
∆k(z) = det(zij

)
1≤i,j≤k (k ≤ n).

The polynomial ∆m is a highest weight vector for the restriction πm of π to Hm with
respect to the subgroup T−n × T+

p , where T−n is the group of lower triangular matrices
in GL(n,C), and T+

p of upper triangular matrices in GL(p,C). The representation πm

is equivalent to the tensor product of the irreducible representation of U(n) with high-
est weight (m1, . . . ,mn) with the irreducible representation of U(p) with highest weight
(m1, . . . ,mn, 0, . . . , 0). Recall that the character χm of the representation of U(n) with
highest weight m can be expressed in terms of the Schur function sm:

χm

(
diag(t1, . . . , tn)

)
= sm(t1, . . . , tn).

Hence the dimension dm of Hm is given by

dm = sm(1n)sm(1p),

where 1q = (1, . . . , 1, 0, . . .) (1 is repeated q times). We will use the following expansion,
for x ∈M(n,C),

etr x =
∑
m

1
h(m)

χm(x),

where h(m) is the product of the hook-lengths of the partition m ([Macdonald,1995],p.66).
This number h(m) does not depend on n. It can also be written, if `(m) ≤ n,

1
h(m)

=
sm(1n)
(n)m

.

where (α)m denotes the generalized Pochhammer symbol:

(α)m =
n∏
j=1

(α− j + 1)mj .
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(Observe that the definition of (α)m depends on n.)

Proposition 2.4. (i) The reproducing kernel Km of Hm is given by

Km(z, w) =
1

h(m)
χm(zw∗).

(ii) Let
f(z) =

∑
m

fm(z) (f ∈ Hm),

be the expansion of a function f ∈ F(V ). Then∫
U(n)×U(p)

|f(uzv∗)|2βn(du)βp(dv) =
∑
m

1
(n)m

1
(p)m

h(m)χm(zz∗)‖fm‖2.

(iii) For f(z) = e(z|w) one obtains∫
U(n)×U(p)

e2Re(uzv∗|w)βn(du)βp(dv) =
∑
m

1
(n)m

1
(p)m

χm(zz∗)χm(ww∗).

Note that, for n = 1, these formulae agree with the formulae given above in case
V = Cp.

Proof of (ii). By Proposition 2.2,∫
U(n)×U(p)

|f(uzv∗)|2αn(du)αp(dv) =
∑
m

1
dm

1
h(m)

χm(zz∗)‖fm‖2,

and

dm = sm(1n)sm(1p) =
(n)m
h(m)

(p)m
h(m)

.

3. Spherical functions. We come back to the Gelfand pair we introduced in Section
1. There are two kinds of spherical functions. The spherical functions of first kind are
associated to the Bargmann representation, and the ones of second kind to characters.

a) Spherical functions of positive type and first kind

We recall first the Fock realization of the Bargmann representation. (See for instance
[Faraut,1987].) For λ ∈ R∗ one considers the Fock space Fλ(V ) of holomorphic functions
ψ on V such that

‖ψ‖2λ =
( |λ|
π

)N ∫
V

|ψ(ζ)|2e−|λ|‖ζ‖
2
m(dζ) <∞,
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and the representation Tλ of the Heisenberg H = V × R on Fλ(V ) defined by, if λ > 0,(
Tλ(z, t)ψ

)
(ζ) = eλ

(
it− 1

2‖z‖
2−(ζ|z)

)
ψ(ζ + z),

and Tλ(z, t) = T−λ(z̄,−t) for λ < 0.
We consider a closed subgroup K ⊂ U(V ). The group K acts on Fλ(V ):

π(k)ψ(ζ) = ψ(k−1ζ),

and
π(k)Tλ(z, t)π(k−1) = Tλ(k · z, t).

We assume that K acts multiplicity free on P(V ). Then the Fock space Fλ(V ) decomposes
multiplicity free:

Fλ(V ) =
⊕
µ∈M

Hµ.

Define as usual, for f ∈ L1(H),

Tλ(f) =
∫
H

Tλ(z, t)f(z, t)m(dz)dt.

If the function f is K-invariant, then, for every µ ∈ M, the subspace Hµ is an eigenspace
of Tλ(f): for ψ ∈ Hµ,

Tλ(f)ψ = f̂(λ, µ)ψ.

The map f 7→ f̂(λ, µ) is a character of the commutative convolution algebra L1(H)K . It
can be written

f̂(λ, µ) =
∫
H

f(z, t)ϕ(λ, µ; z, t)m(dz)dt,

with a spherical function ϕ(λ, µ; ·). Suppose first λ > 0. We can write, if ψ ∈ Hµ,∫
H

eλ
(
it− 1

2‖z‖
2−(ζ|z)

)
ψ(ζ + z)f(z, t)m(dz)dt = f̂(λ, µ)ψ(ζ).

Fix e ∈ V , and ψ ∈ Hµ such that ψ(e) = 1. Then,

ϕ(λ, µ; z, t) = eiλte−
1
2λ‖z‖

2
∫
K

e−λ(e|k·z)ψ(e+ k · z)α(dk).

By using Proposition 2.2, it is possible to obtain an expansion of the spherical function
ϕ(λ, µ; ·)

We consider the case of V = M(n, p; C), K = U(n)× U(p). We choose e = ( In 0 ),
and ψ(z) = Φm(z0), with z0 = ze∗, the projection of z onto M(n; C). Here Φm is the
spherical polynomial, which is the normalized character:

Φm(x) =
χm(x)
χm(In)

(
x ∈M(n; C)

)
.
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(See [Faraut-Korányi,1994], Chapter XI.) Then we can write∫
K

e−λ(e|k·z)ψ(e+ k · z)α(dk) =
∫
K

f1(k · z)f2(k · z)α(dk),

with
f1(z) = Φm(In + z0),

f2(z) = e−λtr (z0).

We will expand both functions. We saw that

e−λtr (z0) =
∑
k

(−λ)|k|
1

(n)k
sk(1n)χk(z0).

For expanding Φm(In + z0), we need the binomial formula for the Schur functions, which
can be written

sm(1 + z1, . . . , 1 + zn)
sm(1n)

=
∑
k⊂m

1
(n)k

s∗k(m)sk(z1, . . . , zn),

where s∗m is the shifted Schur function ([Okounkov-Olshanski,1998a] Theorem 5.1, see also
[Faraut,2008] Theorem 2.8). Hence we get the following expansion

Φm(In + z0) =
∑
k⊂m

1
(n)k

s∗k(m)χk(z0).

By Proposition 2.4 we obtain∫
K

e−λ(e|k·z)ψ(e+ k · z)α(dk) =
∑
k⊂m

(−λ)|k|
1

(p)k
1

(n)k
s∗k(m)χk(zz∗),

since
‖χk(z0)‖2 = (n)k.

Proposition 3.1. The spherical functions of positive type of first kind admit the
following expansion:

ϕ(λ,m; z, t) = eiλte−
1
2λ‖z‖

2 ∑
k⊂m

(−λ)|k|
1

(p)k
1

(n)k
s∗k(m)χk(zz∗).

and, for λ < 0, ϕ(λ,m; z, t) = ϕ(−λ,m; z, t).

The relation ϕ(−λ,m; z, t) = ϕ(λ,m; z, t) comes from the fact that z and z̄ are in the
same K-orbit. By this relation it suffices to consider the case λ > 0, and in further proofs
we will assume λ > 0.
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The spherical functions ϕ(λ,m; z, t) can be expressed in terms of the multivariate
Laguerre polynomials L(ν−1)

m as defined in [Faraut-Korányi,1994] p.343 with a slightly
different parametrisation (see also [Faraut-Wakayama,2008], p.10). In case d = 2 (with the
notation of [Faraut-Korányi,1994]), for x ∈M(n; C),

L
(ν−1)
m (x)

L
(ν−1)
m (0)

=
∑
k⊂m

1
(n)k

1
(ν)k

s∗k(m)χk(−x).

Therefore

ϕ(λ,m; z, t) = eiλte−
1
2λ‖z‖

2 L
(p−1)
m (λzz∗)

L
(ν−1)
m (0)

= eiλt
Ψ(p)

m

(
1
2λzz

∗)
Ψ(p)

m (0)
.

where Ψ(ν)
m is the multivariate Laguerre function,

Ψ(ν)
m (x) = e−tr (x)L(ν−1)

m (2x).

(There are similar results and proofs in [Dib,1990], Section III.)

2) Spherical functions of positive type and second kind

These functions are obtained by averaging Euclidean characters: For w ∈ V , let
ρ1 ≥ . . . ≥ ρn ≥ 0 denote the eigenvalues of the positive Hermitian matrix ww∗. We define

Ψ(ρ; z) =
∫
U(n)×U(p)

e2i<tr (uzv∗w∗)βn(du)βp(dv).

By Proposition 2.4 one obtains:

Proposition 3.2.

ψ(ρ; z) =
∑
k

(−1)|k|
1

(p)k
1

(n)k
sk

(
ρ)χk(zz∗).

The set Σ of spherical functions of positive type will be called the spherical dual of
the Gelfand pair (G,K). In fact, in our case, it coincides with the set of bounded spher-
ical functions (see [Benson-Ratcliff,1992]). One considers on Σ the topology of uniform
convergence on compact sets. Let Σ1 be the set of spherical functions of the first kind,
and Σ2 of the second kind. Hence Σ = Σ1 ∪ Σ2. We embed Σ in Rn+1 as follows: to the
spherical function of the first kind ϕ(λ,m; z, t) corresponds the point (λ, |λ|m1, . . . , |λ|mn),
and to the spherical function of the second kind ψ(ρ; z) corresponds (0, ρ1, . . . , ρn). Then
this map is a homeomorphism from Σ onto its image (a multidimensional Heisenberg fan).
This is a consequence of:
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Proposition 3.3. As λ→ 0, λmi → ρi,

limϕ(λ,m; z, t) = ψ(ρ; z),

uniformly on compact sets in H.

Proof. Recall that, by Propositions 3.1,

ϕ(λ,m; z, t) = eiλte−
1
2λ‖z‖

2 ∑
k⊂m

(−λ)|k|
1

(p)k
1

(n)k
s∗k(m)χk(zz∗),

and by Proposition 3.2,

ψ(ρ; z) =
∑
k

(−1)|k|
1

(p)k
1

(n)k
sk

(
ρ)χk(zz∗).

Since
s∗k(m) = sk(m) + terms of degree < |k|,

the statement follows from:

Lemma 3.4. Let (ψn) be a sequence of C∞ functions on Rd of positive type, and ψ an
analytic function on a neighborhood of 0. Assume that, for every k = (k1, . . . , kd) ∈ Nn,

lim
n→∞

∂kψn(0) = ∂kψ(0).

Then ψ has an analytic extension to Rd, and ψn converges to ψ uniformly on compact sets
in Rd.

(Lemma 4.2 in [Okounkov-Olshanski,1998b]. See also Proposition 3.10 in [Faraut,2008].)

We will use the following notation: for σ ∈ Σ,

ϕ(σ; z, t) = eiλte−
1
2 |λ|‖z‖

2 ∑
k

(−1)|k|
1

(n)k
1

(p)k
ak(σ)χk(zz∗).

If σ = (λ,m) ∈ Σ1, then
ak(σ) = λ|k|s∗k(m)

if k ⊂ m, and ak(m) = 0 otherwise. If σ = ρ ∈ Σ2, then λ is taken to be 0, and

ak(σ) = sk(ρ).

Observe that, for a partition k, ak(σ) is a continuous function on Σ.
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We will need in Sections 5 and 6 the expansion at order 4 with respect to x of the
function given on Σ × R by ϕ(σ;xE11, 0) where E11 denotes the matrix with entry 1 at
the place (1,1) and 0 elsewhere.

Recall that, for k = [k] := (k, 0, . . .) (k ∈ N), sk(x1, . . . , xn) = hk(x1, . . . , xn) is the
complete symmetric function. In particular

h1(ρ1, . . . , ρn) = ρ1 + · · ·+ ρn,

h2(ρ1, . . . , ρn) =
∑
i<j

ρiρj .

Also, for k = [k], s∗k(m1, . . . ,mn) is the shifted complete symmetric function,

h∗1(m1, . . . ,mn) = m1 + · · ·+mn,

h∗2(m1, . . . ,mn) =
∑
i<j

(mi − 1)mj .

Recall that, if x = (x1, 0, . . . , 0), then sk(x1, 0, . . . , 0) = 0 except if k = [k] (k ∈ N), and
then
s[k](x1, 0, . . . , 0) = xk1 .

Lemma 3.5.

ϕ(σ;xE11, 0) = 1−An,p(σ)x2 +Bn,p(σ)x4 + · · · ,
with, if σ = (λ,m) ∈ Σ1,

An,p(σ) = λ
(1

2
+

1
np
h∗1(m)

)
,

Bn,p(σ) = λ2
(1

8
+

1
2np

h∗1(m) +
1

n(n+ 1)p(p+ 1)
h∗2(m)

)
,

and, if σ = ρ ∈ Σ2,

An,p(σ) =
1
np
h1(ρ),

Bn,p(σ) =
1

n(n+ 1)p(p+ 1)
h2(ρ).

Proof. If σ = (λ,m) ∈ Σ1, then

ϕ(σ;xE11, 0) = e−
1
2λx

2
m1∑
k=0

(−λ)k
1

(n)k
1

(p)k
h∗k(m)x2k

=
(

1− 1
2
λx2 +

1
8
λ2x4 + · · ·

)
(

1− λ

np
h∗1(m)x2 +

λ2

n(n+ 1)p(p+ 1)
h∗2(m)x4 + · · ·

)
= 1− λ

(1
2

+
1
np
h∗1(m)

)
x2+

+ λ2
(1

8
+

1
2np

h∗1(m) +
1

n(n+ 1)p(p+ 1)
h∗2(m)

)
x4 + · · · ,
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and, if σ = ρ ∈ Σ2,

ϕ(σ, xE11, 0) =
∞∑
k=0

(−1)k
1

(n)k
1

(p)k
hk(ρ)x2k

= 1− 1
np
h1(ρ)x2 +

1
n(n+ 1)p(p+ 1)

h2(ρ)x4 + · · ·

4. Olshanski spherical pairs. Let
(
G(n),K(n)

)
be an increasing sequence of

Gelfand pairs,
G(n) ⊂ K(n), K(n) = G(n) ∩K(n+ 1),

and define

G =
∞⋃
n=1

G(n), K =
∞⋃
n=1

K(n).

We consider on G the inductive limit topology; then K is a closed subgroup of G. Such
pairs (G,K) have been introduced and studied in [Olshanski,1990], and we call them
Olshanski spherical pairs. In general G is not locally compact, and K is not compact. A
K-biinvariant continuous function ϕ on G is said to be spherical if

lim
n→∞

∫
K(n)

ϕ(xky)αn(dk) = ϕ(x)ϕ(y),

where αn denotes the normalized Haar measure on K(n).
Let P denote the set ofK-biinvariant continuous functions ϕ onG which are of positive

type, with ϕ(e) = 1.

Theorem 4.1. For ϕ ∈ P the following properties are equivalent
- ϕ is spherical,
- ϕ is extremal in the convex set P,
- ϕ is pure. This means that the unitary representation associated to ϕ by the Gelfand-

Naimark-Segal construction is irreducible.

([Olshanski,1990], §23, see also [Faraut,2008], Chapter 1.)
Recall that, by the Gelfand-Naimark-Segal construction, given a K-biinvariant contin-

uous function ϕ of positive type, one obtains a unitary representation π of G on a Hilbert
space H, such that

ϕ(x) =
(
u|π(x)u

)
,

where u is a K-invariant cyclic vector in H.
In the case of a Gelfand pair, the equivalence of these properties are classical. It has

been proven in [Olshanski,1990] that it holds for an Olshanski spherical pair as well.
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Theorem 4.2. Let ϕ be a spherical function of positive type for the pair (G,K).
There exists a sequence (ϕn), for which ϕn is a spherical function of positive type for the
pair

(
G(n),K(n)

)
, such that

ϕ(x) = lim
n→∞

ϕn(x),

uniformly on compact sets of G.

([Olshanski,1990], Theorem 22.10.)
Given an Olshanski spherical pair (G,K), there is a natural program:
- Determine the spherical functions,
- Determine the set Ω of spherical functions of positive type. We will call Ω the

spherical dual of the pair (G,K).
In several examples we know, this is done by obtaining the functions in Ω as limits of

spherical functions for the Gelfand pairs
(
G(n),K(n)

)
, according to Theorem 4.2.

- A further point which will not be considered in the present paper is: For ϕ ∈ Ω
describe a realization of the irreducible representation of G associated to ϕ by the Gelfand-
Naimark-Segal construction.

Let us give a general scheme for studying spherical functions for the pair (G,K) as
limits of spherical functions for the pairs

(
G(n),K(n)

)
. This scheme is essentially the one

used in [Okounkov-Olshanski,1998b] (See also [Olshanski-Vershik,1996]). Notice that the
restriction to G(n) of a spherical function for the pair (G,K) is not spherical in general.

Let Ωn denote the spherical dual of the pair
(
G(n),K(n)

)
, and Ω the one of (G,K).

For µ ∈ Ωn we write ϕn(µ;x) the corresponding spherical function, and, for ω ∈ Ω, we
write ϕ(ω;x).

For each n one defines an injective map Tn : Ωn → Ω. Let (µ(n)) be a sequence with
µ(n) ∈ Ωn.

(1) In a first step, one shows that, if limn→∞ Tn(µ(n)) = ω for the topology of Ω, then

lim
n→∞

ϕn(µ(n);x) = ϕ(ω;x),

uniformly on compact subsets of G. For this step one uses Lemma 3.4.

(2) The second step is as follows: Assume that

lim
n→∞

ϕn(µ(n);x) = ϕ(x),

where ϕ is a continuous function on G. The aim of this step is to show that there is ω ∈ Ω
such that limn→∞ Tn(µ(n)) = ω. For that it is enough to show that the sequence

(
Tn(µ(n))

)
is relatively compact in Ω. In fact, if (µ(nj)) is a subsequence such that limj→∞ Tnj

(µnj)) =
ω0, then, by (1),

lim
j→∞

ϕnj
(µ(nj);x) = ϕ(ω0;x),

and ϕ(x) = ϕ(ω0;x). Hence there is only one possible limit for a subsequence. Therefore
the sequence Tn(µ(n)) itself converges. In the examples we know, it is enough to only

13



consider elements x in G(1) for showing that the sequence
(
Tn(µ(n))

)
is relatively compact.

For this second step we will use:

Lemma 4.3. Let M be a set of probability measures on Rd, relatively compact for the
weak topology (tight topology). Assume that, for every µ ∈M and k ≤ 4,

Mk(µ) :=
∫

Rd

‖x‖kµ(dx) <∞,

and that there is a constant A > 0 such that, for every µ ∈M ,

M4(µ) ≤ A M2(µ)2.

Then there is a constant C > 0 such that, for every µ ∈M ,

M2(µ) ≤ C.

([Okounkov-Olshanski,1998b], Lemma 5.2.)

Proof. Since M is relatively compact, for 0 < ε < 1
A , there is R > 0 such, for every µ ∈M ,

µ
(
{‖x‖ > R}

)
≤ ε.

By the Schwarz inequality,(∫
‖x‖>R

‖x‖2µ(dx)
)2

≤ εM4(µ) ≤ εA M2(µ)2.

Therefore
M2(µ) ≤ R2 +

∫
‖x‖>R

‖x‖2µ(dx) ≤ R2 +
√
εA M2(µ),

or

M2(µ) ≤ R2

1−
√
εA

.

5. An Olshanski spherical pair with finite rank. In this section n is fixed. We
consider the increasing sequences,

V (p) = M(n, p; C), H(p) = V (p)× R,
K(p) = U(n)× U(p), G(p) = K(p) nH(p),

the infinite dimensional Heisenberg group

H =
∞⋃
p=1

H(p),

14



and the Olshanski spherical pair

G =
∞⋃
p=1

G(p), K =
∞⋃
p=1

K(p).

a) Spherical functions

Let ϕ be a K-invariant continuous function on H. It can be written

ϕ(z, t) = Φ(zz∗, t),

where Φ is a continuous function on Herm(n,C)× R which is U(n)-invariant:

Φ(uwu∗, t) = Φ(w, t)
(
w ∈ Herm(n,C), u ∈ U(n)

)
.

Then
ϕ
(
z + k · z′, t+ t′ + Im(z|k · z′)

)
= Φ

(
(z + uz′v∗)(z + uz′v∗)∗, t+ t′ + Im(z|uz′v∗)

)
,

For v ∈ U(p), let [v]m denote the upper left m ×m-block. If z, z′ ∈ V (m) = M(n,m; C),
then
(z + uz′v∗)(z + uz′v∗)∗ and (z|uz′v∗), as functions of v, only depend on [v]m:

(z + uz′v∗)(z + uz′v∗)∗ = zz∗ + zvz′∗u∗ + uz′v∗z∗ + uz′z′∗u∗

= zz∗ + z[v]mz′∗u∗ + uz′[v]∗mz
∗ + uz′z′∗u∗,

(z|uz′v∗) = tr (zvz′∗u∗) = tr (z[v]mz′∗u∗).

We will use the following lemma about the asymptotics of the normalized Haar measure
of U(p).

Lemma 5.1. Assume p ≥ 2m. The image of the normalized Haar measure βp of
U(p) under the projection v 7→ [v]m is given as follows: If f is a continuous function on
the unit ball Bm of M(m,C) (with respect to the operator norm), then∫

U(p)

f([v]m)βp(dv) = cp,m

∫
Bm

f(w) det(Im − ww∗)p−2mm(dw),

where m is the Euclidean measure, and cp,m is the normalization constant. Furthermore,
for m fixed,

lim
p→∞

∫
U(p)

f([v]m)βp(dv) = f(0).

Proof. a) This integration formula can be obtained from the Weyl integration formula for
the compact symmetric space U(p)/U(m)×U(p−m) related to the Cartan decomposition.
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The specialization of this Weyl integration formula to our present case is written down in
[Faraut,2006], Section 5.2. We obtain∫

U(p)

f([v]m)βp(dv) =
∫

[0,π
2 ]m

∫
U(m)×U(m)

f
(
(u1diag(cos θ1, . . . , cos θm)u2

)
βm(du1)βm(du2)Dm,p(θ)dθ1 . . . dθm,

with

Dm,p(θ) = am,p
∣∣ ∏
1≤i<j≤m

sin2(θi + θj) sin2(θi − θj)
m∏
i=1

(sin 2θi)(sin θi)2(p−2m)
∣∣.

On the other hand recall the integration formula on M(m; C) related to the polar decom-
position: for an integrable function on M(m; C),∫

M(m;C)

f(w)m(dw) =
∫

Rm
+

f
(
u1diag(a1, . . . , am)u2

)
βm(du1)βm(du2)∆m(a)da1 . . . dam,

with

∆m(a) = cm
∏

1≤i<j≤m

(a2
i − a2

j )
2
m∏
i=1

ai.

(See for instance [Faraut-Korányi,1994], Proposition X.3.4.) By the change of variables
given by ai = cos θi, and the identity

sin(θi + θj) sin(θi − θj) = cos2 θj − cos2 θi,

noticing moreover that, if w = u1diag(a1, . . . , am)u2,

m∏
i=1

(sin θi)2(p−2m) =
m∏
i=1

(1− cos2 θi)p−2m = det(Im − ww∗)p−2m,

we get ∫
U(p)

f([v]m)βp(dv) = cm,p

∫
Bm

f(w) det(Im − ww∗)p−2mm(dw).

b) The proof of the second part of the lemma is standard. (See for instance Lemma
5.4 in [Faraut, 2006].)

From Lemma 5.1 it follows that

lim
p→∞

∫
U(n)×U(p)

ϕ
(
z + uz′v∗, t+ t′ + Im(z|uz′v∗)

)
βn(du)βp(dv)

=
∫
U(n)

Φ(zz∗ + uz′z′∗u∗, t+ t′)βn(du).
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Therefore the function ϕ is spherical for the Olshanski spherical pair (G,K), i.e.

lim
p→∞

∫
K(p)

ϕ
(
z + k · z′, t+ t′ + Im(z|k · z′)

)
αp(dk) = ϕ(z, t)ϕ(z′, t′),

if and only if the function Φ satisfies the following functional equation:∫
U(n)

Φ(x+ ux′u∗, t+ t′)βn(du) = Φ(x, t)Φ(x′, t′)
(
x, x′ ∈ Herm(n,C)

)
.

This equation means that, as a function of t, it is an exponential, and, as a function of
x ∈ Herm(n,C), it is a spherical function for the motion group U(n) nHerm(n,C). Such
a spherical function Ψ has the form

Ψ(α;x) =
∫
U(n)

e−tr (uxu∗α)βn(du),

with α ∈ M(n; C). This integral can be evaluated if α is diagonalizable. It only depends
on the eigenvalues x1, . . . , xn of x, and on those α1, . . . , αn of α. We can assume that
α = diag(α1, . . . , αn).

Ψ(α;x) = (δn)!
det

(
(e−αixj )1≤i,j≤n

)
V (α)V (x)

,

with δn = (n−1, . . . , 1, 0), (δn)! = 1!2! . . . (n−1)!, and where V denotes the Vandermonde
polynomial. This function admits the following expansion

Ψ(α;x) =
∑
m

(−1)|m|
1

(n)m
sm(α)χm(x).

Theorem 5.2. The spherical function for the Olshanski spherical pair (G,K) are
given by the following formulae

ϕ(λ, α; z, t) = eiλt
∫
U(n)

e−tr (uzz∗u∗α)αn(du)

= eiλt(δn)!
det

(
(e−αixj )1≤i,j≤n

)
V (α)V (x)

,

= eiλt
∑
m

(−1)|m|
1

(n)m
sm(α)χm(zz∗),

with λ ∈ C, α = diag(α1, . . . , αn), and x1, . . . , xn are the eigenvalues of x = zz∗.

b) Asymptotics of spherical functions
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In order to state the result we need some notation. As we saw in Section 3 the spherical
dual Σp of the pair

(
G(p),K(p)

)
can be identified to Σp = Σ1

p ∪ Σ2
p, with

Σ1
p = {(λ,m) | λ ∈ R∗, m is a partition, `(m) ≤ n},

Σ2
p = {ρ ∈ Rn | ρ1 ≥ · · · ≥ ρn ≥ 0}.

We also saw that the spherical function corresponding to σ ∈ Σp can be written

ϕp(σ; z, t) = eiλte−
1
2 |λ|‖z‖

2 ∑
k

1
(n)k

1
(p)k

ak(σ)χk(zz∗).

Define
Ω = {(λ, α) | λ ∈ R, α ∈ Rn, α1 ≥ · · · ≥ αn ≥ 0},

and, for ω = (λ, α),

ϕ(λ, α; z, t) = eiλte−
1
2 |λ||z|

2
∫
U(n)

e−tr (uzz∗u∗α)βn(du).

Finally define the map Tp : Σp → Ω by,

for σ = (λ,m) ∈ Σ1
p, Tp(σ) =

(
λ,

1
p
|λ|m

)
,

for σ = ρ ∈ Σ2
p, Tp(σ) =

(
0,

1
p
ρ
)
.

Theorem 5.3. If (σ(p)) is a sequence with σ(p) ∈ Σp such that

lim
p→∞

Tp(σ(p)) = ω = (λ, α),

then
lim
p→∞

ϕp(σ(p); z, t) = ϕ(λ, α; z, t),

uniformly on compact sets in H.

Proof. We will use
s∗k(x) = sk(x) + terms of order ≤ |k|,
(p)k ∼ p|k| (p→∞).

Hence,

if lim
p→∞

1
p
|λ(p)|m(p) = α, then lim

p→∞

1
(p)k

|λ(p)||k|s∗k(m(p)) = sk(α),

if lim
p→∞

1
p
ρ(p) = α, then lim

p→∞

1
(p)k

sk(ρ(p)) = sk(α).
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Therefore,

if lim
p→∞

Tp(σ(p)) = (λ, α), then lim
p→∞

1
(p)k

ak(σ(p)) = sk(α).

It follows that, by Lemma 3.4,

lim
p→∞

ϕp(σ(p); z, t) = eiλte−
1
2 |λ|‖z‖

2 ∑
k

(−1)|k|
1

(n)k
sk(α)χk(zz∗)

= ϕ(λ, α; z, t).

Corollary 5.4. For (λ, α) ∈ Ω, the spherical function ϕ(λ, α; z, t) is of positive type.

We will see that we obtain in that way all the spherical functions of positive type for
the pair (G,K).

Theorem 5.5. If (σ(p)) is a sequence with σ(p) ∈ Σp such that

lim
p→∞

ϕp(σ(p); z, t) = ϕ(z, t),

uniformly on compact sets in H, where ϕ is a continuous function on H, then the sequence
Tp(σ(p)) converges in Ω,

lim
p→∞

Tp(σ(p)) = (λ, α),

and
ϕ(z, t) = ϕ(λ, α; z, t).

Proof. For z = 0,
ϕ(0, t) = lim

p→∞
ϕp(σ(p); 0, t) = lim

p→∞
eiλ

(p)t,

uniformly on compact sets in R, with σ(p) = (λ(p),m(p)) if σ(p) ∈ Σ1
p, and λ(p) = 0 if

σ(p) ∈ Σ2
p. Hence the sequence λ(p) converges, and ϕ(0, t) = eiλt, with λ = limp→∞ λ(p).

For t = 0, z = xE11, with x ∈ R, put

ψp(x) = ϕp(σ(p);xE11, 0).

The function ψp is continuous and of positive type on R, with ψp(0) = 1. By Bochner’s
Theorem, ψp is the Fourier transform of a probability measure νp on R,

ψp(x) =
∫

R
eixyνp(dy).

As in Lemma 3.5, we write the expansion at order 4 of the function ψp as

ψp(x) = 1−An,p(σ(p))x2 +Bn,p(σ(p))x4 + · · · .
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The moments of order 2 and 4 of the measure νp are given by

M2(νp) = 2An,p(σ), M4(νp) = 24Bn,p(σ).

By Lemma 3.5 there is a constant D, which does not depend on p, such that

Bn,p(σ(p)) ≤ D
(
An,p(σ(p))

)2
.

If the sequence (ψp) converges uniformly on compact sets, then the sequence (νp) converges
for the weak topology, hence is relatively compact. Therefore, by Lemma 4.3, there is a
constant C such that

An,p(σ(p)) ≤ C.

This shows that the sequence
(
Tp(σ(p))

)
is relatively compact in Ω. By what has been said

at the end of Section 4, this proves the statement.

By Corollary 5.4, and Theorem 5.5 with Theorem 4.2 we obtain:

Corollary 5.6. The spherical functions of positive type for the pair (G,K) are the
functions ϕ(λ, α; z, t), with (λ, α) ∈ Ω.

6. An Olshanski spherical pair with infinite rank. We consider now the fol-
lowing increasing sequences, for q fixed:

V (n) = M(n, n+ q; C), H(n) = V (n)× R,
K(n) = U(n)× U(n+ q), G(n) = K(n) nH(n),

with the inductive limit

H =
∞⋃
n=1

H(n),

and the Olshanski spherical pair

G =
∞⋃
n=1

G(n), K =
∞⋃
n=1

K(n).

a) Spherical functions

Theorem 6.1. Let ϕ be a continuous function on H which is K-invariant. Then ϕ
is spherical if and only there exist λ ∈ C, and a continuous function Φ defined on [0,∞[
with Φ(0) = 1, such that

ϕ(z, t) = eλt det Φ(zz∗).
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The matrix Φ(zz∗) is defined via the functional calculus. We will use an asymptotic
property of the Haar measure of the unitary group U(n). Let Lm denote the following
subgroup of U(n):

Lm =
{(

Im 0
0 v

)
| v ∈ U(n−m)

}
,

and wm ∈ U(2m):

wm =
(

0 −Im
Im 0

)
.

Lemma 6.2. Let f be a continuous function on U(∞) which is Lm-biinvariant. Then

lim
n→∞

∫
U(n)

f(u)βn(du) =
∫
U(m)×U(m)

f(v1wmv2)βm(dv1)βm(dv2).

(See [Olshanski,1990], p.449-452, [Faraut,2006], Theorem 5.3, or [Faraut,2008], Propo-
sition 3.3.)

Proof of Theorem 6.1. By Lemma 6.2, if z, z′ ∈ V (m), then

lim
n→∞

∫
K(n)

ϕ
(
z + k · z′, t+ t′ + Im(z|k · z′)

)
αn(dk)

=
∫
U(m)×U(m)×U(m+q)×U(m+q)

ϕ
(
z + u1wmu2z

′v∗2w
∗
m+qv

∗
1 , t+ t′ + Im(z|u1wmu2z

′v∗2w
∗
m+qv

∗
1)

)
βm(du1)βm(du2)βm+q(dv1)βm+q(dv2).

Since K(m) acts trivially on the space wmV (m)w∗m+q, the integrant does not depend on
u1, v1, and since ϕ is K invariant, its does not depend on u2, v2 either. Furthermore the
spaces V (m) and wmV (m)w∗m+q are orthogonal. Therefore

lim
n→∞

∫
K(n)

ϕ
(
z + k · z′, t+ t′ + Im(z|k · z′)

)
αn(dk) = ϕ(z + wmz

′w∗m+q, t+ t′),

Hence the function ϕ is spherical if and only if it satisfies the following multiplicative
property: for z, z′ ∈ V (m),

ϕ((z + wmz
′w∗m+q, t+ t′) = ϕ(z, t)ϕ(z′, t′).

Such a function ϕ is an exponential with respect to t, and is completely determined by its
restriction to V (1) × R and this restriction is U(q + 1)-invariant: for z ∈ V (1) ' Cq+1,
t ∈ R,

ϕ(z, t) = eλtΦ(‖z‖2),
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where Φ is a continuous function [0,∞[, and λ ∈ C.

b) The topological space Ξ

Before introducing the spherical dual of the Olshanski spherical pair (G,K), we define

Ξ = {ξ = (α, γ) | α = (αj), αj ≥ 0,
∞∑
j=1

αj <∞, γ ≥ 0},

and consider on Ξ the following topology. To a continuous function ψ on [0,∞[ one
associates the function Lψ on Ξ given by

Lψ(ξ) = γψ(0) +
∞∑
j=1

αjψ(αj)
(
ξ = (α, γ)

)
.

The topology on Ξ is the initial topology with respect to the functions Lψ. Observe that
ψ 7→ Lψ(ξ) is a positive measure whose support is bounded. Hence Ξ is embeded in the
set M([0,∞[) of bounded positive measures on [0,∞[. The topology on Ξ is induced by
the weak topology on M([0,∞[). The subset of the ξ = (α, γ) for which only finitely many
αj are non zero, and γ = 0 is dense in Ξ. Furthermore, the set Ξ is closed in M([0,∞[)
([Rabaoui,2008], Theorem 4.3).

Lemma 6.3. For C > 0, the set

ΞC = {ξ = (α, γ) |
∞∑
j=1

αj + γ ≤ C}

is compact.

Proof. Since, for ψ ≡ 1, Lψ(ξ) =
∑
αj + γ, the set ΞC is closed. Seen as a subset

of M([0,∞[), ΞC is a set of measures with supports in [0, C], and total measure ≤ C,
therefore relatively compact.

The following Pólya type function will play an important role in this section:

Φ(ξ;x) = e−γx
∞∏
j=1

1
1 + αjx

(
ξ = (α, γ)

)
.

The function Φ is continuous on Ξ× [0,∞[. We will study its Taylor expansion at 0. For
that we will define an algebra morphism f 7→ f̃ from the algebra Λ of symmetric functions
into the space C(Ξ) of continuous functions on Ξ. The Newton power sums pm generate
the algebra Λ, hence this morphism is well defined as soon as their images p̃m are given:
put

p̃1(ξ) = γ +
∞∑
j=1

αj ,
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and, for m ≥ 2,

p̃m(ξ) =
∞∑
j=1

αmj .

Proposition 6.4. (i) For ξ ∈ Ξ, x ≥ 0,

Φ(ξ;x) =
∞∑
m=1

h̃m(ξ)(−x)m.

(ii) More generally, for x = (x1, . . . , xn) with xj ≥ 0,

n∏
j=1

Φ(ξ;xj) =
∑
m

s̃m(ξ)sm(−x).

Statement (ii) can be written: for y ∈ Herm(n,C), semi-positive definite,

det Φ(ξ; y) =
∑
m

s̃m(ξ)χm(−y).

Proof. Let us compute the logarithmic derivative of Φ(ξ, x) with respect to x:

− d

dx
log Φ(ξ;x) = γ +

∞∑
j=1

αj
1 + αjx

= γ +
∞∑
j=1

αj

( ∞∑
m=0

(−1)mαmj x
m

)
= γ +

∞∑
m=0

(−1)m
( ∞∑
j=1

αm+1
j

)
xm

=
∞∑
m=0

p̃m+1(ξ)(−x)m.

It means that, as a function of ξ, − d
dx log Φ(ξ, x) is the image, by the morphism f 7→ f̃ , of

the function
∞∑
m=0

pm+1(z)(−x)m.

One observes that
∞∑
m=0

pm+1(z)(−x)m = − d

dx
logH(z,−x),
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with

H(z,−x) =
∏
i

1
1 + zix

=
∞∑
m=1

hm(z)(−x)m.

By using the morphism property of the map f 7→ f̃ , one obtains

Φ(ξ;x) =
∞∑
m=1

h̃m(ξ)(−x)m.

Formula (ii) follows from (i) and the identity:

n∏
j=1

H(z,−xj) =
∑
m

sm(z)sm(−x) .

c) Asymptotics of spherical functions

As we saw at the end of Section 3 the spherical dual Σn for the Gelfand pair(
G(n),K(n)

)
can be described as Σ1

n ∪ Σ2
n, with

Σ1
n = {(λ,m) | λ ∈ R∗, m is a partition, `(m) ≤ n},

Σ2
n = {ρ ∈ Rn | ρ1 ≥ · · · ≥ ρn ≥ 0}.

For ω = (λ, ξ) ∈ Ω := R× Ξ, (z, t) ∈ H, define

ϕ(ω; z, t) = eiλte−
1
2 |λ|‖z‖

2
det Φ(ξ; zz∗),

where Φ is the Pólya type function we have introduced.
For every n define the map

Tn : Σn → Ω, σ 7→ ω = (λ, ξ) = (λ, α, γ),

with, if σ = (λ,m) ∈ Σ1
n,

αj =
1
n2
|λ|mj (1 ≤ j ≤ n), αj = 0 (j > n), γ = 0,

and, if σ = ρ ∈ Σ2
n,

λ = 0, αj =
1
n2
ρj (1 ≤ j ≤ n), αj = 0 (j > n), γ = 0.

Theorem 6.5. Let (σ(n)) be a sequence with σ(n) ∈ Σn. Assume that

lim
n→∞

Tn(σ(n)) = ω,
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for the topology of Ω. Then

lim
n→∞

ϕn(σ(n); z, t) = ϕ(ω; z, t),

uniformly on compact sets in H.

Before giving the proof we need some preliminaries. Let f∗ ∈ Λ∗ be a shifted sym-
metric function (see [Okounkov-Olshanski,1998a] for the definition), ` = degf∗, and f the
homogeneous part of degree ` of f∗. For σ ∈ Σn, define Q(f∗, σ) as follows:

if σ = (λ,m) ∈ Σ1
n, then Q(f∗, σ) = |λ|`f∗(m),

if σ = ρ ∈ Σ2
n, then Q(f∗, σ) = f(ρ).

With the notation introduced at the end of Section 3, ak(σ) = Q(s∗k, σ).

Proposition 6.6. Let (σ(n)) be a sequence with σ(n) ∈ Σn. Assume that

lim
n→∞

Tn(σ(n)) = ω = (λ, ξ),

for the topology of Ω. Then, for every f∗ ∈ Λ∗ of degree `,

lim
n→∞

1
n2`

Q(f∗, σ(n)) = f̃(ξ).

Proof. By the definition of Tn and the topology of Ξ, for every continuous function ψ on
[0,∞[,

lim
n→∞

n∑
j=1

µ
(n)
j

n2
ψ

(µ(n)
j

n2

)
=

∞∑
j=1

αjψ(αj) + γψ(0),

with
µj = |λ|mj , if σ = (λ,m) ∈ Σ1

n,

µj = ρj , if σ = ρ ∈ Σ2
n,

ω = (λ, α, γ).

The shifted power functions p∗`

p∗` (x) =
∑
i

(xi − i)` − (−i)`,

generate the algebra Λ∗. Hence it suffices to prove Proposition 6.6 in case of f∗ = p∗` . For
` = 1,

p∗1(x) =
∑
i

xi, p̃1(α, γ) =
∞∑
j=1

αj + γ.
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By taking ψ ≡ 1, one gets from the assumption

lim
n→∞

1
n2

n∑
j=1

µ
(n)
j =

∞∑
j+1

αj + γ,

or
lim
n∞

1
n2
Q(p∗1, σ

(n)) = p̃1(α, γ).

Assume ` ≥ 2, and expand p∗` :

p∗` (x) =
∑
i

(x− i)` − (−i)` =
∑
i

(∑̀
k=1

(
`

k

)
xki (−i)`−k

)
.

Hence, if σ = (λ,m) ∈ Σ1
n,

1
n2`

Q(p∗` , σ) =
n∑
j=1

( |λ|mj

n2

)`
+
`−1∑
k=1

(
`

k

) n∑
j=1

( |λ|mj

n2

)k(−j
n2

)`−k
,

and, if σ = ρ ∈ Σ2,
1
n2`

Q(p∗` , σ) =
n∑
j=1

( ρj
n2

)`
.

By taking ψ(s) = sk−1 (k ≥ 2) one gets

lim
n→∞

n∑
j=1

(µ(n)
j

n2

)k
= p̃`(α, γ) =

∞∑
j=1

αj
k.

It follows that, for k < `,

∣∣∣ n∑
j=1

(µ(n)
j

n2

)k(−j
n2

)`−k∣∣∣ ≤ 1
n

n∑
j=1

(µ(n)
j

n2

)k
= O

( 1
n

)
,

and finally

lim
n→∞

1
n2`

Q(p∗` , σ
(n)) = p̃`(α, γ).

Proof of Theorem 6.5. Recall that, for σ ∈ Σn,

ϕn(σ; z, t) = eiλte−
1
2 |λ|‖z‖

2 ∑
k

(−1)|k|
1

(n)k
1

(n+ q)k
ak(σ)χk(zz∗),
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and that ak(σ) = Q(s∗k, σ). By Proposition 6.6,

lim
n→∞

1
n2|k| ak(σ(n)) = s̃k(α, γ).

Since (n)k(n+ q)k ∼ n2|k| (n→∞), it follows, by Lemma 3.4, that

lim
n→∞

∑
k

(−1)|k|
1

(n)k
1

(n+ q)k
ak(σ(n))χk(zz∗)

=
∑
k

(−1)|k|s̃k(α, γ)χk(zz∗) = det Φ(α, γ; zz∗),

by Proposition 6.4. We have proven

lim
n→∞

ϕn(σ(n); z, t) = ϕ(ω; z, t).

By using the same method it is possible to study asymptotics of the spherical functions
as n and p go to infinity with lim p

n = c (1 ≤ c <∞).
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Institut de Mathématiques de Jussieu
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