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Abstract. The pseudo-unitary group U(p, q) acts on the space Herm(n,C) of n × n Hermitian
matrices (n = p + q). For an orbit of convex type we study the projection of the orbit on the
subspace Herm(n − 1,C) and the projection of the associated orbital measure. By using an
explicit formula for the Fourier–Laplace transform of such an orbital measure due to Ben Säıd
and Ørsted (2005), we prove an analogue of a formula due to Baryshnikov (2001), which is
related to the action of the unitary group U(n).

1. Introduction. For a Hermitian matrix X ∈ Herm(n,C), the classical spectral the-
orem says that the eigenvalues of X are real and the corresponding eigenspaces are or-
thogonal. The unitary group U(n) acts on the space Herm(n,C) by the transformations
X 7→ uXu∗ (u ∈ U(n)). For this action every orbit contains a diagonal matrix and can
be described as

OA = {uAu∗ |u ∈ U(n)}, A = diag(a1, . . . , an).

By the spectral theorem

OA =
{
X ∈ Herm(n,C) | spectrum(X) = {a1, . . . , an}

}
.

Let p denote the projection of Herm(n,C) onto Herm(n − 1,C) which maps the matrix
X to the (n− 1)× (n− 1) left corner Y of X. The Cauchy interlacing theorem, which is
also called Rayleigh’s theorem, says that the sequence of the eigenvalues µ1 ≥ . . . ≥ µn−1
of Y interlace the sequence of the eigenvalues λ1 ≥ . . . ≥ λn of X:

λ1 ≥ µ1 ≥ λ2 ≥ . . . ≥ µn−1 ≥ λn.
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In other words the set p(OA) is equal to the set of matrices Y ∈ Herm(n − 1,C) whose
eigenvalues µ1 ≥ . . . ≥ µn−1 satisfy

a1 ≥ µ1 ≥ a2 ≥ . . . ≥ µn−1 ≥ an.

(In case of the orthogonal group O(n) acting on the space Sym(n,R) of real symmetric
matrices, we have the same results.) The orbit OA carries a U(n)-invariant measure: the
orbital measure µA. The projection p(µA) of this measure is supported by the compact
set p(OA), and the density of p(µA) is given by Baryshnikov’s formula.

The purpose of this note is to extend these results to the case of the action of the
pseudo-unitary group U(p, q) on the space Herm(n,C) (n = p+ q). We will establish an
analogue of the Cauchy interlacing theorem, and of Baryshnikov’s formula. In order to
explain our method we will give in the second section a proof of the Cauchy interlacing
theorem, and of Baryshnikov’s formula.

One can also consider, for the action of U(n) on Herm(n,C), the projections of the
orbital measure µA on the subspaces Herm(k,C) for k ≤ n − 2. Formulas for these
projections have been obtained by Olshanski [8] (see also [5]). Observe that the action
of U(n) on Herm(n,C) is nothing but the adjoint representation of the compact Lie
group U(n) on its Lie algebra u(n) = iHerm(n,C). In [9] Zubov considers the action of a
classical compact Lie group on its Lie algebra, and similar results are obtained. In a more
general setting Heckman [7] considers a compact Lie group acting on its Lie algebra and
the projection onto the Lie algebra of a closed subgroup.

In [3] projections of orbital measures are studied in the context of stochastic processes.
The method of proof by Baryshnikov, which is different from the one we present,

is inspired by the computation by Gelfand and Naimark [6] of the spherical functions
for the Riemannian symmetric space GL(n,C)/U(n). In [4], following the method of
Gelfand and Naimark, we computed the spherical functions for the ordered symmetric
space GL(n,C)/U(p, q).

2. Cauchy interlacing theorem, and Baryshnikov’s formula. The unitary group
U(n) acts on the space Herm(n,C) of Hermitian matrices by the transformations
X 7→ uXu∗. This action is nothing but the adjoint representation of the compact Lie
group U(n) on its Lie algebra u(n) = iHerm(n,C). Let p be the projection of Herm(n,C)
onto the subspace of matrices with zero entries on the last row and the last column,
identified with Herm(n− 1,C).

Theorem 2.1 (Interlacing theorem). Let X ∈ Herm(n,C) with eigenvalues λ1≥ . . .≥λn,
and its projection Y = p(X) ∈ Herm(n − 1,C) with eigenvalues µ1 ≥ . . . ≥ µn−1. The
eigenvalues of Y interlace those of X:

λ1 ≥ µ1 ≥ λ2 ≥ . . . ≥ µn−1 ≥ λn.

Proof. We first assume that the eigenvalues of X are distinct: λ1 > . . . > λn. We can
write X = uAu∗ with u ∈ U(n), and A = diag(a1, . . . , an), ai = λi. We will evaluate in
two ways the rational function

R(z) = [(zI −X)−1]n,n,

the lower right entry of the inverse matrix (zIn −X)−1.
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On one hand, by Cramer’s formulas,

R(z) = det(n−1)(zIn−1 − Y )
det(n)(zIn −X)

=
∏n−1

i=1 (z − µi)∏n
i=1(z − ai)

.

The poles of R are the eigenvalues ai of X, and the zeros are the eigenvalues µi of Y . On
the other hand, since

(zIn −X)−1 = u(zIn −A)−1u∗,

we get

R(z) = [u(zIn −A)−1u∗]n,n =
n∑

i=1
|uni|2

1
z − ai

.

The residues are the numbers wi = |uni|2, hence nonnegative. We assume further that
wi > 0 for all i. Then on each interval ]ai+1, ai[ the function R decreases from +∞ to
−∞, hence each interval ]ai+1, ai[ contains a unique zero of R and:

a1 > µ1 > a2 > µ2 > . . . > µn−1 > an.

In case the eigenvalues are not distinct or some wi vanish, the result is obtained from the
generic case by using continuity arguments.

Fig. 1. Graph of the rational function R(z), n = 5

The orbit OA carries a natural U(n)-invariant probability measure, the orbital mea-
sure µA, which is the image under the map

U(n)→ OA, u 7→ uAu∗,
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of the normalized Haar measure αn of the compact group U(n): for a function f on
Herm(n,C), ∫

OA

f(X)µA(dX) =
∫

U(n)
f(uAu∗)αn(du).

We are interested in the image µ
(n−1)
A = p(µA) of the orbital measure µA under the

projection p : Herm(n,C)→ Herm(n−1,C). For a function f defined on Herm(n−1,C),∫
Herm(n−1,C)

f(Y )µ(n−1)
A (dY ) =

∫
OA

f
(
p(X)

)
µA(dX).

The measure µ(n−1)
A is given by a formula due to Baryshnikov [1]. More precisely it is

a formula for the radial part ν(n−1)
A of µ(n−1)

A . Let us recall the definition of the radial
part of a measure µ on Herm(n,C) which is U(n)-invariant. The integral of a function f
defined on Herm(n,C) can be written as∫

Herm(n,C)
f(X)µ(dX) =

∫
(Rn)+

(∫
U(n)

f
(
udiag(t1, . . . , tn)u∗

)
αn(du)

)
ν(dt).

where ν is a measure on

(Rn)+ = {t ∈ Rn | t1 ≥ t2 ≥ . . . ≥ tn},

called the radial part of µ.

Theorem 2.2 (Baryshnikov’s formula). The radial part ν(n−1)
A of the projection µ

(n−1)
A

of the orbital measure µA is a probability measure on (Rn−1)+ supported by

{t ∈ (Rn−1)+ |a1 ≥ t1 ≥ a2 ≥ t2 ≥ . . . ≥ tn−1 ≥ an},

with density

(n− 1)! Vn−1(t1, . . . , tn−1)
Vn(a1, . . . , an) .

This means that, for a function f defined on (Rn−1)+,∫
(Rn−1)+

f(t) ν(n−1)
A (dt) = (n− 1)!

Vn(a)

∫ a1

a2

dt1

∫ a2

a3

dt2 . . .

∫ an−1

an

dtn−1 Vn−1(t)f(t).

In this formula Vn denotes the Vandermonde polynomial in n variables:

Vn(x1, . . . , xn) =

∣∣∣∣∣∣∣∣∣
xn−1

1 . . . xn−1
n

...
...

x1 . . . xn

1 . . . 1

∣∣∣∣∣∣∣∣∣ =
∏

1≤i<j≤n

(xi − xj).

The proof we will give is due to Olshanski [8]. The idea of the proof is the following
observation: for a measure µ on Herm(n,C), the Fourier–Laplace transform of the projec-
tion p(µ) of the measure µ on Herm(n−1,C) is equal to the restriction to Herm(n−1,C)
of the Fourier–Laplace transform of µ. The Fourier–Laplace transform of the orbital
measure µA is explicitly known. This is the Itzykson–Zuber–Harish–Chandra formula:
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Proposition 2.3. For Z = diag(z1, . . . , zn), the Fourier–Laplace transform of the orbital
measure µA is given by

µ̂A(Z) =
∫
OA

etr ZX µA(dX) =
∫

U(n)
etr(ZuAu∗) = En(a; z),

where
En(z; a) := δn! 1

Vn(a)Vn(z) det(eziaj )1≤i,j≤n,

and
δn = (n− 1, n− 2, . . . , 1, 0), δn! = (n− 1)!(n− 2)! . . . 2!.

Corollary 2.4. Let µ be a bounded measure on Herm(n,C) which is U(n)-invariant,
and ν its radial part. The Fourier–Laplace transform of µ, for Z = diag(z1, . . . , zn), is
given by ∫

Herm(n,C)
etr ZX µ(dX) =

∫
(Rn)+

En(z; t) ν(dt).

Proof of Theorem 2.2. We first evaluate the function

F (z) = 1∏n−1
i=1 (zi − zn)

det(eziaj )1≤i,j≤n,

for zn = 0:

F (z1, . . . , zn−1, 0) = 1
z1 · · · zn−1

∣∣∣∣∣∣∣∣∣
ea1z1 . . . eanz1

...
...

ea1zn−1 . . . eanzn−1

1 . . . 1

∣∣∣∣∣∣∣∣∣ .
By subtracting the i-th column from the (i− 1)-th column, i = n, . . . , 2, one gets

F (z1, . . . , zn−1, 0) =

∣∣∣∣∣∣∣
(ea1z1 − ea2z1)/z1 . . . (ean−1z1 − eanz1)/z1

...
...

(ea1zn−1 − ea2zn−1)/zn−1 . . . (ean−1zn−1 − eanzn−1)/zn−1

∣∣∣∣∣∣∣ .
Since, for a > b,

eaz − ebz

z
=
∫ a

b

etz dt,

we get

F (z1, . . . , zn−1, 0) =
∫ a1

a2

dt1

∫ a2

a3

dt2 . . .

∫ an−1

an

dtn−1 det(eaitj )1≤i,l≤n−1.

The function En(z; a) can be written as

En(z1, . . . , zn; a) = δn! 1
Vn(a)

1
Vn−1(z1, . . . , zn−1)F (z1, . . . , zn).

Hence we obtain

En(z1, . . . , zn−1, 0; a) = δn! 1
Vn(a)

1
Vn−1(z1, . . . , zn−1) F (z1, . . . , zn−1, 0)

= (n− 1)!
Vn(a)

∫ a1

a2

dt1

∫ a2

a3

dt2 . . .

∫ an−1

an

dtn−1 Vn−1(t)En−1(z1, . . . , zn−1; t).

By Corollary 2.4, this implies Theorem 2.2.
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3. An analogue of the Cauchy interlacing theorem for the action of the pseudo-
unitary group U(p, q) on the space Herm(n,C) of Hermitian matrices. Recall that
a matrix u belongs to the pseudo-unitary group U(p, q) if

uIp,qu
∗ = Ip,q, Ip,q =

(
Ip 0
0 −Iq

)
.

The pseudo-unitary group U(p, q) acts on the space Herm(n,C) (n = p + q) by the
transformations

X 7→ uXu∗.

Note that this action is equivalent to the adjoint action of the Lie group U(p, q) on its Lie
algebra. In this section we assume q ≥ 1. Let Ωn ⊂ Herm(n,C) be the cone of positive
definite Hermitian matrices. We will consider orbits of U(p, q) which are contained in Ωn.
Proposition 3.1. Every orbit which is contained in Ωn is of the form

OA = {uAu∗ |u ∈ U(p, q)},
where A is a diagonal matrix with positive diagonal entries.
Proof. It follows from the following decomposition of G = GL(n,C). Every g ∈ G can
be written g = udv, where u ∈ U(p, q), v ∈ U(n), d is a diagonal matrix with nonzero
diagonal elements. Since every X ∈ Ωn can be written X = gg∗, with g ∈ G, we get

X = udvv∗du∗ = ud2u∗.

For X ∈ Herm(n,C), a number λ ∈ C will be said to be a pseudo-eigenvalue of X if
there exists a nonzero vector v ∈ Cn such that

Xv = λIp,qv

or, equivalently, if λ is an eigenvalue of Ip,qX. Two Hermitian matrices X and Y in
the same U(p, q)-orbit have the same pseudo-eigenvalues. In fact, if Y = uXu∗, with
u ∈ U(p, q), then

Y − λIp,q = u(X − λIp,q)u∗.
A diagonal matrix X = diag(x1, . . . , xn) has pseudo-eigenvalues

λ1 = x1, . . . , λp = xp, λp+1 = −xp+1, . . . , λp+q = −xp+q.

Therefore, for X ∈ Ωn, the pseudo-eigenvalues of X are real, p pseudo-eigenvalues are
positive, and q ones are negative.

Consider a diagonal matrix A ∈ Ωn, with pseudo-eigenvalues a1, . . . , an,
a1 > 0, . . . , ap > 0, ap+1 < 0, . . . , ap+q < 0,

A = diag(a1, . . . , ap,−ap+1, . . . ,−ap+q).
Then the orbit

OA = {X ∈ uAu∗ |u ∈ U(p, q)},
is determined by

OA =
{
X ∈ Ωn |pseudo-spectrum(X) = {a1, . . . , an}

}
.

We fix a diagonal matrix
A = diag(a1, . . . , ap,−ap+1, . . . ,−ap+q),
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with a1 ≥ . . . ≥ ap > 0 > ap+1 ≥ . . . ≥ ap+q. The orbit OA is contained in Ωn. For
X ∈ OA, X = uAu∗ with u ∈ U(p, q), consider the projection Y = p(X) of X on the
subspace of Hermitian matrices with zeros on the last row and the last column, identified
with Herm(n−1,C). The pseudo-eigenvalues of X are the numbers ai. Restricted to Cn−1,
the matrix Y is positive definite: Y ∈ Ωn−1. We order its pseudo-eigenvalues as follows:

µ1 ≥ . . . ≥ µp > 0 > µp+1 ≥ . . . ≥ µp+q−1.

Theorem 3.2. The pseudo-eigenvalues of Y interlace the pseudo-eigenvalues of X in
the following way:

µ1 ≥ a1 ≥ µ2 ≥ a2 ≥ . . . ≥ µp ≥ ap > 0
> ap+1 ≥ µp+1 ≥ . . . ≥ ap+q−1 ≥ µp+q−1 ≥ ap+q.

Proof. We will evaluate in two different ways the rational function

R(z) =
[
(zIp,q −X)−1]

n,n
,

the lower right entry of the inverse (zIp,q −X)−1.
Observe that

zIp,q −X = u(zIp,q −A)u∗.

On one hand, by Cramer’s formulas

R(z) = det(n−1)(zIp,q−1 − Y )
det(n)(zIp,q −X)

= −
∏n−1

i=1 (z − µi)∏n
i=1(z − ai)

.

On the other hand, since zIp,q −X = u(zIp,q −A)u∗, we get

R(z) =
[
u(zIp,q −A)−1u∗

]
n,n

=
p∑

i=1

|uni|2

z − ai
−

p+q∑
i=p+1

|uni|2

z − ai
.

The poles of the rational function R are the numbers a1, . . . , an, with residues

|un1|2, . . . , |un,p|2,−|un,p+1|2, . . . ,−|un,p+q|2.

Observe that
p∑

i=1
|uni|2 −

p+q∑
i=p+1

|uni|2 = −1,

and

R(z) ∼ −1
z

(z →∞).

Moreover, the pseudo-eigenvalues of Y are the zeros of R. Inspecting the values of R near
±∞, and near the poles, one gets Theorem 3.2.
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0

Fig. 2. Graph of the rational function R(z), p = 2, q = 2

4. An analogue of Baryshnikov’s formula. As in Section 3 we assume q ≥ 1 in the
present one. The orbit OA of a diagonal matrix A in Ωn carries an unbounded positive
measure which is U(p, q)-invariant. The isotropic subgroup

{u ∈ U(p, q) |uAu∗ = A}

is compact, hence such a measure can be defined as the image of a Haar measure α on
U(p, q) ∫

OA

f(X)µA(dX) =
∫

U(p,q)
f(uAu∗)α(du).

In this section we will determine the projection µ(n−1)
A = p(µA) of the orbital measure µA

on the subspace Herm(n − 1,C). Since the measure µA is unbounded, we will have to
prove that the projection exists.

Every matrix X ∈ Ωn can be written as X = uTu∗, where T is a diagonal matrix,
T = diag(t1, . . . , tp,−tp+1, . . . ,−tp+q) where the numbers ti are the pseudo-eigenvalues
of X, and u ∈ U(p, q). Let µ be a positive measure on Ωn which is U(p, q)-invariant.
There is a positive measure ν on Rn, the pseudo-radial part of µ, such that∫

Ωn

f(X)µ(dX) =
∫
Rn

(∫
U(p,q)

f(uTu∗)α(du)
)
ν(dt).

The measure ν is supported by (R+)p × (R−)q.
We will determine the pseudo-radial part ν(n−1)

A of the projection µ(n−1)
A of the orbital

measure µA. This is an analogue of Baryshnikov’s formula.
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Theorem 4.1. Let a1, . . . , an be the pseudo-eigenvalues of the diagonal matrix A:
A = diag(a1, . . . , ap,−ap+1, . . . ,−ap+q).

We assume
a1 > . . . > ap > 0 > ap+1 > . . . > ap+q.

Then the projection µ(n−1)
A of the orbital measure µA exists. The pseudo-radial part ν(n−1)

A

of µ(n−1)
A is the measure on Rn−1 supported by the set
{t ∈ Rn−1 | t1 ≥ a1 ≥ t2 ≥ . . . ≥ ap > 0 > ap+1 ≥ tp+1 . . . ≥ tp+q−1 ≥ ap+q},

with density

C
Vn−1(t1, . . . , tn−1)
Vn(a1, . . . , an) .

For a function f defined on Rn−1,∫
Rn−1

f(t) ν(n−1)
A (dt) = C

Vn(a1, . . . , an)

∫ ∞
a1

dt1

∫ a1

a2

dt2 . . .

∫ ap−1

ap

dtp∫ ap+1

ap+2

dtp+1 . . .

∫ an−1

an

dtn−1 Vn−1(t)f(t).

We will prove this theorem by using an analogue of the Harish–Chandra–Itzykson–
Zuber integral, i.e. an explicit formula for the Fourier–Laplace transform of the orbital
measure µA:
Proposition 4.2. For Z = diag(z1, . . . , zn), with Re zi < 0 if 1 ≤ i ≤ p, and Re zi > 0
if p+ 1 ≤ i ≤ n,∫

OA

etr ZX µA(dX) =
∫

U(p,q)
etr(ZuAu∗) α(du) = CEp,q(z, a),

where
Ep,q(z, a) := 1

Vn(a)Vn(z) det(eaizj )1≤i,j≤p det(eaizj )p+1≤i,j≤n.

This is a special case of a formula obtained by Ben Säıd and Ørsted for reductive
groups G such that GC/G is an ordered symmetric space [2].
Corollary 4.3. Let µ be a U(p, q)-invariant measure on Ωn. The Laplace transform
of µ, if it exists, is given, for Z = diag(z1, . . . , zn), by∫

Ωn

etr ZX µ(dX) =
∫
Rn

Ep,q(z, t) ν(dt),

where ν is the pseudo-radial part of µ.
Proof of Theorem 4.1. The idea is the same as for the proof of Theorem 2.2. The Fourier–
Laplace transform of the projection µ

(n−1)
A is the restriction to Herm(n − 1,C) of the

Fourier–Laplace transform of µA. The Vandermonde polynomial Vn(z1, . . . , zn), restricted
to zn = 0, can be written

Vn(z1, . . . , zn−1, 0)

= Vp(z1, . . . , zp)Vq−1(zp+1, . . . , zp+q−1)
∏

1≤i≤p<j≤p+q−1
(zi − zj)

p+q−1∏
i=1

zi.
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a) Consider first

F1(z1, . . . , zp) = 1
z1 · · · zp

∣∣∣∣∣∣∣
ea1z1 . . . eapz1

...
...

ea1zp . . . eapzp

∣∣∣∣∣∣∣ .
By subtracting the (i− 1)-th column from the i-th column, i = p, p− 1, . . . , 2, one gets

F1(z1, . . . , zp) = 1
z1 · · · zp

∣∣∣∣∣∣∣
ea1z1 ea2z1 − ea1z1 . . . eapz1 − eap−1z1

...
...

...
ea1zp ea2zp − ea1zp . . . eapzp − eap−1zp

∣∣∣∣∣∣∣ .
By using the formulas∫ ∞

a

ezt dt = −1
z
eza (Re z < 0),

∫ b

a

ezt dt = 1
z

(ezb − eza),

we get

F1(z1, . . . , zp) = −
∫ ∞

a1

dt1

∫ a1

a2

dt2 . . .

∫ ap−1

ap

dtp det(ezitj )1≤i,j≤p.

b) Then consider the second factor

F2(zp+1, . . . , zp+q) = 1∏
p+1≤i≤p+q−1(zi − zp+q) det(eziaj )p+1≤i,j≤p+q.

As we saw in the proof of Theorem 2.2,

F2(zp+1, . . . , zp+q−1, 0) =
∫ ap+1

ap+2

dtp+1 . . .

∫ ap+q−1

ap+q

dtp+q−1 det(ezitj )p+1≤i,j≤p+q−1.

c) By the results of a) and b) the function Ep,q(z1, . . . , zn; a) has an analytic continu-
ation for Re zi < 0 if 1 ≤ i ≤ p, Re zi > 0 for p + 1 ≤ i ≤ p + q − 1, and Re zn ≥ 0. For
zn = 0,

Ep,q(z1, . . . , zn−1, 0; a) = 1
Vn(a)

∫ ∞
a1

dt1

∫ a1

a2

dt2 . . .

∫ ap−1

ap

dtp∫ ap+1

ap+2

dtp+1 . . .

∫ an−1

an

dtn−1 Vn−1(t)Ep,q−1(z1, . . . , zn−1; t).

d) To prove the existence of the projection µ
(n−1)
A we have to prove that if f is a

function defined on Herm(n−1,C), measurable, bounded, positive, with compact support,
then ∫

OA

f
(
p(X)

)
µA(dX) <∞.

By c), for Z = diag(z1, . . . , zn−1, 0) with Re zi < 0 if 1 ≤ i ≤ p, Re zi > 0 for p+ 1 ≤ i ≤
p+ q − 1,

lim
zn→0,Re zn>0

∫
OA

etr ZX µA(dX) = Ep,q(z1, . . . , zn−1, 0; a).

By Fatou’s Lemma it follows that if Z0 = diag(z1, . . . , zn−1, 0) with zi < 0 for 1 ≤ i ≤ p,
zi > 0 for p+ 1 ≤ i ≤ p+ q − 1,∫

OA

etr Z0X µA(dX) <∞.
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This proves that the projection µ
(n−1)
A exists. In fact we can write etr Z0X = f(p(X)),

where f is a positive continuous function on Herm(n− 1,C). Furthermore, by using the
Lebesgue dominated convergence theorem, one shows that the Fourier–Laplace transform
of the projection µ

(n−1)
A is given by

µ̂
(n−1)
A (Z) =

∫
Herm(n−1,C)

etr ZY µ
(n−1)
A (dY ) = CEp,q(z1, . . . , zn−1, 0; a)

for Z = diag(z1, . . . , zn−1), with Re zi < 0 for 1 ≤ i ≤ p, Re zi > 0 for p+1 ≤ i ≤ p+q−1.
Finally, by c) and Corollary 4.3, this finishes the proof of Theorem 4.1.

Let p(k) be the projection which maps a matrix X ∈ Herm(n,C) to the k × k upper
left corner Y ∈ Herm(k,C). One could consider the projection µ

(k)
A = p(k)(µA) of an

orbital measure µA, and look for the existence and for an explicit formula for it. So far
I know this is an open question.
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