Modules : quelques définitions (J-Y D)

Définition

- (a) Une loi de composition sur un ensemble E est une application $\star : E \times E \to E$. Suivant l'usage, on notera $x \star y$ l'image par \star de (x, y).
- (b) Un groupe est un couple (G,\star) où G est un ensemble, \star est une loi de composition sur G, et
- (i) pour tous $x, y, z \in G$, on a : $(x \star y) \star z = x \star (y \star z)$ « associativité »;
- (ii) il existe $e \in G$ tel que pour tout $x \in G$, on a : $e \star x = x \star e = x$ « élément neutre »;
- (iii) pour tout $x \in G$ il existe $x' \in G$ tel que : $x \star x' = x' \star x = e$ « inverse ».

Dans ce cas, l'élément e du (ii) est unique appelé élément neutre de G, et pour chaque $x \in G$ l'élément x' de G du (iii) est unique appelé inverse de x et noté x^{-1} .

- (c) On dit qu'un groupe (G, +) est commutatif si pour tous $x, y \in G$, on a : x + y = y + x. Dans ce cas on peut noter 0_G l'élément neutre de G et -x l'inverse (appelé opposé) d'un $x \in G$.
- (d) Un sous-groupe d'un groupe (G, \star) comme au (b) est une partie H de G vérifiant
- (i) $e \in H$;
- (ii) pour tous $x, y \in H$, on a : $x \star y^{-1} \in H$.

Dans ce cas, H muni de :la restriction de : * :à $H \times H$: est un groupe.

Définition-Proposition

Soient (G, \star) et (G', \star') des groupes.

(a) Un sous-groupe distingué de (G,\star) est un sous-groupe H de (G,\star) vérifiant :

$$x \star y \star x^{-1} \in H$$
 pour tous $x \in G$ et $y \in H$.

(Cette condition est automatiquement vérifiée quand G est commutatif.)

Dans ce cas, en notant $\dot{x} := \{x \star y \; ; \; y \in H\}$ pour tout $x \in G$ et $G/H := \{\dot{x} \; ; \; x \in G\}$, on munit G/H d'une structure de groupe avec la loi de composition — encore notée \star — définie par : $u \star v := \widehat{x \star y}$ pour $u, v \in G/H$ indépendamment du choix de $x, y \in G$ tels que $u = \dot{x}$ et $v = \dot{y}$.

(b) Un morphisme de groupes de (G, \star) dans (G', \star') est une application $f: G \to G'$ vérifiant : $f(x \star y) = f(x) \star' f(y)$ pour tous $x, y \in G$.

Dans ce cas, on a : $f(e_G) = e_{G'}$ en notant e_G et $e_{G'}$ les éléments neutres de G et G', $\operatorname{Ker} f := \{x \in G \mid f(x) = e_{G'}\}$ est un sous-groupe distingué de (G, \star) , $\operatorname{Im} f$ est un sous-groupe de G', et l'application $\tilde{f}\colon G/\operatorname{Ker} f \longrightarrow \operatorname{Im} f$ est un morphisme de groupes qui est bijectif.

$$u = \dot{x} \longmapsto \underbrace{f(x)}_{\text{ne dépend pas du choix de } x}$$

Définition

- (a) Un anneau est un triplet $(A, +, \times)$, où (A, +) est un groupe commutatif et \times est une loi de composition sur A, vérifiant
- (i) $(x \times y) \times z = x \times (y \times z)$ pour tous $x, y, z \in A$;
- (ii) $x \times (y+z) = (x \times y) + (x \times z)$ et $(x+y) \times z = (x \times z) + (y \times z)$ pour $x, y, z \in A$;
- (iii) il existe $1 \in A$ tel que pour tout $x \in A$, on a : $1 \times x = x \times 1 = x$.

Dans ce cas, l'élément 1 du (iii) est unique et appelé élément unité de A.

En outre, on appelle caractéristique de A l'entier 0 si $n1_A \neq 0$ pour tout $n \in \mathbb{N} \setminus \{0\}$, ou le plus petit entier $n \in \mathbb{N} \setminus \{0\}$ tel que $n1_A = 0$ sinon.

- (b) On dit qu'un anneau $(A, +, \times)$ est commutatif si pour tous $x, y \in A$, on a : $x \times y = y \times x$.
- (c) Un sous-anneau d'un anneau $(A, +, \times)$ comme au (a) est un sous-groupe B de (A, +) vérifiant (i) $1 \in B$;
- (ii) pour tous $x, y \in B$, on a : $x \times y \in B$.

Définition-Proposition

Soient $(A, +, \times)$ et $(A', +', \times')$ des anneaux. On note 1_A et $1_{A'}$ leur élément unité.

(a) Un idéal bilatère de $(A, +, \times)$ est un sous-groupe \mathscr{I} de (A, +) vérifiant :

$$x \times y \in \mathscr{I}$$
 et $y \times x \in \mathscr{I}$ pour tous $x \in A$ et $y \in \mathscr{I}$.

Dans ce cas, le groupe $(A/\mathscr{I}, +)$ a une structure d'anneau avec la loi \times suivante : $u \times v := \dot{x} \times y$ pour $u, v \in A/\mathscr{I}$ indépendamment du choix de $x, y \in A$ tels que $u = \dot{x}$ et $v = \dot{y}$.

(b) Un morphisme d'anneaux de $(A, +, \times)$ dans $(A', +', \times')$ est un morphisme de groupes f de (A, +) dans (A', +') vérifiant : $f(1_A) = 1_{A'}$ et $f(x \times y) = f(x) \times' f(y)$ pour tous $x, y \in A$.

Dans ce cas, on a : Ker f est un idéal bilatère de $(A, +, \times)$, Im f muni de +' et \times' est un anneau, et la bijection canonique $\tilde{f}: A/\operatorname{Ker} f \to \operatorname{Im} f$ pour l'addition est un morphisme d'anneaux.

Définition-Proposition

Soit $(A, +, \times)$ un anneau. On note 1 son élément unité.

- (a) Soit $a \in A$. On dit que a est inversible s'il existe $a' \in A$ tel que $a \times a' = a' \times a = 1$. Dans ce cas a' est unique et noté a^{-1} .
 - (b) On note A^{\times} (parfois aussi A^{*}) l'ensemble des éléments inversibles de A. L'ensemble A^{\times} muni de \times est un groupe d'élément neutre 1.
 - (c) Un *corps* est un anneau $(K, +, \times)$ qui vérifie :

 $K \neq \{0\}$ et tout élément non-nul de K est inversible.

c'est-à-dire $K^{\times} = K \setminus \{0\}$

Définition

Soit $(A, +, \times)$ un anneau. On note 1 son élément unité.

- (a) Un A-module : à gauche: est un groupe commutatif (M,+) muni de $A\times M\to M$ telle que : $(\alpha,v)\mapsto \alpha\,v$
- (i) $\alpha(v+w) = (\alpha v) + (\alpha w)$ et $(\alpha + \beta) v = (\alpha v) + (\beta v)$ pour $\alpha, \beta \in A$ et $v, w \in M$;
- (ii) $1 v = v \text{ et } \alpha(\beta v) = (\alpha \beta) v \text{ pour tous } \alpha, \beta \in A \text{ et } v \in M.$
- (b) Les groupes abéliens (G, +) s'identifient aux \mathbb{Z} -modules pour les lois $(n, v) \mapsto v + \cdots + v$.
- (c) Un A-module à droite est un groupe commutatif (M,+) muni de $M \times A \to M$ telle que : $(v,\alpha) \mapsto v\,\alpha$
- (i) $(v+w)\alpha = (v\alpha) + (w\alpha)$ et $v(\alpha+\beta) = (v\alpha) + (v\beta)$ pour $\alpha, \beta \in A$ et $v, w \in M$;
- (ii) $v = v \text{ et } (v \alpha) \beta = v (\alpha \beta) \text{ pour tous } \alpha, \beta \in A \text{ et } v \in M.$

Il s'identifie donc à un A^{opp} -module à gauche, où A^{opp} est <u>l'anneau opposé de $(A, +, \times)$ </u>, c'est-àdire l'ensemble A muni les lois $(\alpha, \beta) \mapsto \alpha + \beta$ et $(\alpha, \beta) \mapsto \beta \times \alpha$. $(A, +, \times)$ quand A est commutatif

Définition-Proposition

Soient A un anneau, et M et M' des A-modules (sous-entendu à gauche).

- (a) Un $sous-module\ de\ M$ est une partie N de M vérifiant :
- (i) $0_M \in N$;
- (ii) pour tous $\alpha, \beta \in A$ et $v, w \in N$, on a $\alpha v + \beta w \in N$.

Dans ce cas, le groupe (M/N, +) a une structure de A-module avec la loi suivante : $\alpha u := \dot{\alpha} v$ pour $\alpha \in A$ et $u \in M/N$ indépendamment du choix de $v \in M$ tels que $u = \dot{v}$.

- (b) Un idéal à gauche de A est un sous-module du A-module à gauche A pour le produit.
- (c) Un application A-linéaire de M dans M' est une application $f: M \to M'$ vérifiant : $f(\alpha v + \beta w) = \alpha f(v) + \beta f(w)$ pour tous $\alpha, \beta \in A$ et $v, w \in M$.

Dans ce cas, on a : Ker f est un sous-module M, Im f est un sous-module de M', et la bijection canonique $\tilde{f}: A/\operatorname{Ker} f \to \operatorname{Im} f$ pour l'addition est un morphisme de A-modules.