
Errata on “Representations of finite groups of Lie
type”

• In the table of contents, chapter 11: “Mackey formula” instead of “Mackay
formula”

• page 6, line 3: “irreducible” instead of “closed”.

• page 9, line 10: at the end of the line add “if G is connected”

• page 17, proposition 0.43 “semi-simple” instead of “reductive”.

• page 20, line -5: BwB ∪BswB instead of BsB ∪BswB.

• Page 23, line -1: “set” instead of “group”.

• page 24, line 10: expand LI ∩VI = 1 into: by 0.33, LI ∩VI contains no
Uα thus LI ∩VI = 1

• page 36, line -9: “for all generators of A, so that F ′n(x) = Fn(x) for all
x ∈ A” instead of “for all x ∈ A”

• page 37, line 21: “whose square” instead of “whose square or cube”.

• page 37, Exercise 3.8: add “up to conjugation by an automorphism of A1”

• page 37, replace lines -9 to -3 by:

For classical groups, that is algebraic groups such as the linear, orthogonal or
symplectic groups which are defined as groups of matrices (see chapter 15),
we define the standard Frobenius endomorphism as the restriction to G of
the endomorphism of GLn defined by Tij 7→ T qij . There are other rational

structures on such groups; for instance the unitary group is GLF
′

n where F ′ is
the Frobenius endomorphism defined by F ′(x) = F (tx−1), with F being the
standard Frobenius endomorphism on GLn.

Remark of the authors: the tentative to define a priori the “standard” ra-
tional structure on any algebraic group by an embedding into GLn, e.g. chosen
of minimal dimension and with image stable by Tij 7→ T qij, is doomed to failure
since there are usually two such embeddings (giving for instance the two ratio-
nal structures on GLn). On the other hand, one could define standard as the
existence of a maximal torus T such that F acts on X(T) by multiplication by
q.

• page 39, line 12: PSLFn /(SLFn /µ
F
n ) instead of (SLn /µn)F .

• page 39, 3.15(iii), (v) and (vi): assume G reductive.

• page 40, line -16: “over Fq” instead of “in Fq”.

• page 40, line -13: replace “it is clear” by “it can be proved (see [Sp, 11.4.7],
9.6.3 in the second edition)”
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• page 49, just before Notation, add the following paragraph:

Note that RG
L can also be described as the natural lifting from LF to PF followed

with induction from PF to GF ; similarly ∗RG
L is restriction from GF to PF

followed with the taking of fixed points under UF .

• page 52, line 1: l(v) + l(w) > l(vw) instead of l(v) + l(w) < l(vw).

• page 61 line -2: C(LF ) instead of C(GF ).

• page 62 line 2: l ∈ LF instead of l ∈ L.

• page 67 line -1: “= xM (equality by 1.18)” instead of “= xM”.

• page 68 line -13: add “rational” before “maximal”.

• page 83 line 2: “GF -varieties-MF ” instead of “LF -varieties-MF ”.

• page 83, line -6: (x, x′) = (γy, γy′) instead of (x, x′) = (γx, γx′).

• page 86, line -13: w′Z(L)0 ⊂ Z(M0) instead of w
′
Z(L)0 = Z(M0).

• page 89, line 8: Tw′ instead of bTw′ .

• page 90, line 12: suppress the (false) sentence “The values of the Green
functions are in Z by 10.6.”

• page 96, lines 6 and 7: replace “By 7.4 and 7.5 . . . γp” with “as seen in
the proof of 9.4 regG = StG γp”.

• page 97, line 7: “the Mackey formula 11.13” instead of “the Mackey for-
mula 11.12”.

• page 98, line -6: “which is |CG(s)F /C0
G(s)F | times” instead of “which is

equal to”

• page 98, line -5: In the formula replace (twice) “εG” with “εC◦G(s)”.

• pages 100–101: replace the beginning of the proof of 13.3 and 13.4 by:

Proof: Let χ be the common irreducible constituent of the statement; we may
assume that χ is a component ofRG

T (θ) and we shall show that (T, θ) and (T′, θ′)
are geometrically conjugate. We remark first that by 10.6 χ occurring in RG

T (θ)

is equivalent to χ occurring in RG
T (θ), which implies that χ∨ occurs in θ

∨ ⊗
Hi
c(L−1(U)∨) for some k (where, given a left representation χ of a group H, we

let χ∨ denote the right representation obtained by making elements act through
their inverse). As χ occurs in Hj

c (L−1(U′))⊗Q`[T
′F ]θ

′, the representation θ⊗θ′∨

of TF ×T′F occurs in the module Hi
c(L−1(U)∨) ⊗Q`[G

F ] H
j
c (L−1(U′)), which

with the notation of 11.7 is a submodule of Hi+j
c (Z). However, we have:

13.4 Lemma. If the TF -module-w(T′F ) given by θ ⊗ wθ′∨ occurs in some
cohomology group of Z′′w (see 11.8) and if n > 0 is such that Fn

w = w, then
θ ◦NFn/F = θ′ ◦NFn/F ◦ ad Fw−1.
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• page 106, line 19: “Let T” instead of “Let G”.

• page 107, lines 15 and 17: 〈Φ〉 instead of Φ.

• page 109, lines 2–3: Delete “which may be written. . . ” and replace “Let
t ∈ T be such that t−1Ft = z” by “Let t ∈ T be such that t · Ft−1 = z.

• page 110, line 4: “F -stable Levi subgroup of some parabolic subgroup”
instead of “F -stable Levi subgroup of some F -stable parabolic subgroup”.

• page 110, line -7: in equation (2), f(g) should be g.

• page 112, Theorem 13.23: replace E(GF , (s)) with the rational Lusztig
series E(GF , (s)G∗F∗ ) as defined page 136 above 14.41.

• page 113, last line of the proof of 13.24: one cannot apply (1) directly,
since CG∗(s)

F∗ is always connected, but in the formula

〈ψs(χ), R
CG∗ (s)
T∗ (IdT∗) 〉CG∗ (s)F

∗

〈RCG∗ (s)
T∗ (IdT∗), R

CG∗ (s)
T∗ (IdT∗) 〉CG∗ (s)F

∗
R
CG∗ (s)
T∗ (IdT∗)(1)

the denominator is equal to |CG∗(s)
F∗/C◦G∗(s)

F∗ | times the analogous

expression in the connected component C◦G∗(s) and R
CG∗ (s)
T∗ (IdT∗)(1) is

equal to the same coefficient times R
C◦G∗ (s)
T∗ (IdT∗)(1). Using then Frobe-

nius reciprocity in the numerator we get the same expression in the con-
nected centralizer C◦G∗(s), with ψs(χ) replaced with its restriction to
C◦G∗(s). We can now apply (1) in C◦G∗(s) and get the result since ψs(χ)
and its restriction have same dimension.

• page 114: Replace (i) in the statement of theorem 13.25 with “ For any π ∈
E(LF , (s)) there exists an integer i(π) such that the space Hi

c(L−1(U))⊗Q`

π is zero for i 6= i(π) and affords an irreducible representation of GF for
i = i(π).”

• page 114, line -14: WL∗(Tw) should be WL∗(T
∗
w).

• page 114, line -1: P′ instead of Q.

• page 115, line 6 and page 116, lines 1 and 4: 〈π, π′〉LF instead of 〈π, π′〉LF .

• page 116 line 4: H∗ should be H∗c (twice).

• page 116: replace the paragraph which begins by “We now prove theorem
13.25.” by

We now prove theorem 13.25. From 13.27 the dimension of

⊕i+j=2dπ
∨ ⊗Q`[L

F ] H
i
c(L−1(U)∨)⊗Q`[L

F ] H
j
c (L−1(U)∨)⊗Q`[L

F ] π '

π∨ ⊗Q`[L
F ] H

i
c(Z)⊗Q`[L

F ] π
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is equal to 1, so all the summands have dimension 0 except one, say

π∨ ⊗Q`[L
F ] H

i(π)
c (L−1(U)∨)⊗Q`[L

F ] H
2d−i(π)
c (L−1(U)∨)⊗Q`[L

F ] π

which has dimension 1. Suppose that the GF -module given by

Hj
c (L−1(U))⊗Q`[L

F ] π

is not 0. Let χ be one of its irreducible components. Then χ is in E(GF , (s)),
and by 13.26 (ii), it is a component of RG

T (θ) where T is a maximal torus of L
and θ is given by the geometric class of s, so χ is a component of RG

T (θ). So
χ is a component of RG

LR
L
T(θ) and in particular appears in some RG

L (π′) with
π′ ∈ E(LF , (s)). Then χ∨ occurs in some π∨ ⊗Q`[L

F ] H
k
c (L−1(U)∨) and thus

π∨ ⊗Q`[L
F ] H

j
c (L−1(U)∨)⊗Q`[G

F ] H
k
c (L−1(U))⊗Q`[L

F ] π 6= 0.

But this is a subspace of π∨ ⊗Q`[L
F ]H

j+k
c (Z,Q`)⊗Q`[L

F ] π, so this last space is

not 0, which proves by 13.27 that j = i(π). Since in that case the last space is
of dimension at most 1, we see that χ must be in addition the only irreducible

component of H
i(π)
c (L−1(U))⊗Q`[L

F ] π. Whence (i) of the theorem.

• page 116 line −6: RG
T (θ′) should be RG

T′(θ
′)

• pages 118, replace the proof of Proposition 13.30 (i) by the following (we
thank Radha Kessar for noticing the problem):

Proof. We follow [DL1, 5.11].
As s ∈ Z(G∗F

∗
), its geometric class defines a character of the rational points

of any rational maximal torus of G since, if (G,T) is dual to (G∗,T∗), the ele-
ment s is in T∗wF

∗
for any w. Let (G̃, T̃) be a dual pair to (G∗/Z(G∗),T∗/Z(G∗)).

The following can be shown:

Proposition. The quotient morphism G∗
π∗−−→G∗/Z(G∗) corresponds to an

F -equivariant morphism G̃
π−−→G with central kernel, which induces an iso-

morphism on the Uα and such that π(T̃) ⊂ T.

It follows from the isomorphism on the Uα that π(G̃′) = G′, where ′ denotes
the derived subgroup. Moreover π(T̃∩G̃′), being a maximal torus of π(G̃′) = G′

contained in T∩G′, has to be equal to T∩G′. We thus get π(Z(G̃′)) = Z(G′)
since the center consists of the elements in a maximal torus which act trivially
on the Uα. Since the kernel of π is central, we deduce that π induces an
isomorphism (T̃ ∩ G̃′)/Z(G̃′) ' (T ∩G′)/Z(G′).

Lemma. T ∩ π(G̃) = π(T̃) and TF ∩ π(G̃F ) = π(T̃F ).

Proof. Using 0.40 we can write any element of G̃ as t̃g̃ with t̃ ∈ T̃ and g̃ ∈ G̃′.
If π(t̃g̃) ∈ T, since π(g̃) ∈ G′ we have π(g̃) ∈ T ∩G′ ⊂ π(T̃). Since the kernel
of π is contained in T̃ we get g̃ ∈ T̃. If moreover we start with an element of
G̃F , since G̃′ ∩ T̃ is connected we can assume that t̃ and g̃ are F -fixed in the
above computation and we get g̃ ∈ T̃F .
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Lemma. The inclusion T ⊂ G induces an isomorphism TF /π(T̃F ) ' GF /π(G̃F ).

Proof. We have G = TG′ = Tπ(G̃), the first equality by 0.40. For g ∈ GF ,
let us write g = tπ(g̃) with t ∈ T and g̃ ∈ G̃. Since g is F -fixed we have
t−1Ft = π(g̃F g̃−1) ∈ T∩π(G̃) = π(T̃), the last equality by the previous lemma.
Since the kernel of π is contained in T̃ this implies g̃F g̃−1 ∈ T̃. By Lang’s
theorem we can write g̃F g̃−1 = t̃−11

F t̃1 with t̃1 ∈ T̃. Then t̃1g̃ is in G̃F and
tπ(t̃−11 ) = gπ(t̃1g̃)−1 is in TF . Thus we have g = tπ(t̃−11 )π(t̃1g̃) ∈ TFπ(G̃F ),
hence GF = TFπ(G̃F ). Using the second assertion of the previous lemma we
get GF /π(G̃F ) ' TF /π(T̃F ).

Now, since X(π∗(T∗)) is generated by the roots, Y (T̃) is generated by the
coroots. Let θ be the character of TF which corresponds to s. That s is
orthogonal to the roots translates to the fact that θ vanishes on the images of
the coroots, thus on π(T̃F ). Thus s defines some character ŝ of the abelian
group GF /π(G̃F ).

The character thus defined is independent of the torus used for its construc-
tion, since the characters obtained in various tori are geometrically conjugate,
and

Proposition. Geometric conjugacy is the identity on GF /π(G̃F ).

Proof. Let T′ be another F -stable torus and let n be such that there exists
x ∈ GFn

such that T′ = xT. We have to show that for t ∈ TFn

the elements
N(t) and N(xt) have same image in GF /π(G̃F ), where N : G→ G is the map

y 7→ yFy . . . F
n−1

y.
Let φG : T→ G be the map t 7→ N(t)−1N(xt), and let φG̃ be the analogous

map T̃ → G̃. We can lift φG to π ◦ φ where φ : T → G̃ is defined using
that φG (resp. φG̃) factors through T/Z(G) (resp. through T̃/Z(G̃)) and that

T/Z(G) = T̃/Z(G̃). This last fact since T/Z(G) ' (T ∩G′)/Z(G′) which is
isomorphic by π to (T̃ ∩ G̃′)/Z(G̃′) ' T̃/Z(G̃).

Take now t ∈ TFn

. Lift it to t̃ ∈ G̃, so that π(t̃) = t; then t̃−1F
n

t̃ ∈ kerπ ⊂
Z(G̃). Using that for any y in an F -stable torus we have FN(y) = y−1F

n

yN(y),
we get FφG̃(t̃) = (t̃−1F

n

t̃)−1φG̃(t̃)x(t̃−1F
n

t̃) = φG̃(t̃), the last equality since

t̃−1F
n

t̃ is central. Thus φG(t) = π(φG̃(t̃)) is in π(G̃F ).

• page 118, replace the beginning of Remark 13.31 by the following

Remark. Actually it can be shown that GF /π(G̃F ) is the semi-simple quotient
of the abelian quotient of GF . . .

• page 118, line 3: replace “is semi-simple” with “consists of semi-simple
elements”.

• page 127, line 21: replace “|H1(F,H)| = |HF |” by “|H1(F,H)| = |(H/H0)F |”.
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• page 129, line -10: The citation from Howlett is incorrect. Bl and Cl are
exceptions over F2 for any l and G2 over F2 is also an exception.

• page 130, definition 14.29: “For z ∈ H1(F,Z(G))” instead of “For z ∈
Z(G)”.

• page 131, line 14: the unipotent radical of P should be denoted by V as
stated lower; on line 15 u denotes an element of V.

• page 132, last line of the proof of 14.32: “But then, by the choice of ψ1,
the result is clear.” Unfortunately, it is not (clear that the restriction
of nψ1 is ψ1). The proof of 14.32 shows that there exists z′ such that
∗RG

L (ΓG
z ) = ΓL

z′ but does not show that z′ = hL(z).

Cédric Bonnafé has shown us the following way to fix the proof: since
Harish-Chandra induction does not depend on the parabolic, we may as
well choose for P the opposed parabolic; then the first place which changes
in the proof page 131 is the computation of n

−1

V ∩U. We find this time
that it equals n−1n0U ∩ U, where n0 is a representative of the longest
element of W . This contains no Uα with α ∈ Π iff w = 1, that is n ∈ TF .
This time it is indeed clear by definition that the restriction of Ψ1 is Ψ1.

Comparison of the above proof with the one in the book shows also that
when NGF (L) is generated by representatives of the elements wI0w

J
0 for

J ⊃ I (which happens when these elements normalize L, which is for
instance the case when L is “cuspidal”, which means that for any proper
Levi M of L the kernel of hM is non-trivial), then NGF (L) acts trivially
on the TF -orbits of regular characters of UF ∩ L.

• page 138, line 7:twice TF instead of T.

• page 142, add the following paragraph:

The results in this chapter which are specific to groups with non-connected
centre come from our joint work with G. Lehrer [The characters of the group
of rational points of a reductive group with non-connected centre, to appear in
Crelle’s Journal], who first exploited the role of H1(F,Z(G)) in his paper [On
the characters of semisimple groups over finite fields, Osaka Journal of math.
15 (1978), 77–99].

• page 146, line 6: (j′, i′) instead of (i′, j′).

• page 149, line 13: IdG instead of IdGF .

• page 150, before 15.9 insert the following text:

Once we know the unipotent characters of GF , we can easily get all characters,
using 13.30. Indeed we can take (G∗, F ∗) to be (G, F ); see examples above
13.11. Moreover the centralizer of a semi-simple element is a Levi subgroup by
2.6, and is isomorphic to a group of block-diagonal matrices. If s is rational
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semi-simple, by 4.3 the action of F on CG(s) permutes blocks of equal size and
the smallest power of F which fixes a block still acts on that block as a standard
or unitary type Frobenius endomorphism (on a bigger field), except that in the
unitary case an even power gives rise to the standard Frobenius endomorphism.
Theorem 15.8 can be extended easily to such groups. Then, as by 13.25 RG

CG(s)

is an isometry from the series E(CG(s)F , (s)) to E(GF , (s)), we get
Theorem.The irreducible characters of the linear and unitary groups are

(up to sign) the

Rχ(s) = |WI |−1
∑
w∈WI

χ̃(ww1)RG
Tww1

(s),

where CG(s) is a Levi sugroup parametrized by the coset WIw1 as in 4.3. The
character χ runs over w1-stable irreducible characters of WI and χ̃ stands for
an extension to WI .〈w1〉 of χ.

• page 154, replace lines -6 to -1 by:

Since χ+
ω0

and χ−ω0
are cuspidal, we have DG(χ+

ω0
) = −χ+

ω0
and DG(χ−ω0

) =
−χ−ω0

. We have DG(χ+
α0

) = RG
T
∗RG

Tχ
+
α0
− χ+

α0
; but ∗RG

Tχ
+
α0

= α0 since
∗RG

TR
G
T (α0)) = 2α0 and 〈RG

Tα0, χ
+
α0
〉GF = 1 so we get DG(χ+

α0
) = χ−α0

and
similarly DG(χ−α0

) = χ+
α0

; so (1) gives

χ+
α0

(uz) = χ−α0
(u1) = −χ+

ω0
(u1) = −χ−ω0

(uz) = −σ1

and
χ+
α0

(u1) = χ−α0
(uz) = −χ+

ω0
(uz) = −χ−ω0

(u1) = −σz.
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