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Abstract. We generalize the definition and properties of root
systems to complex reflection groups — roots become rank one
projective modules over the ring of integers of a number field k.

In the irreducible case, we provide a classification of root systems
over the field of definition k of the reflection representation.

In the case of spetsial reflection groups, we generalize as well
the definition and properties of bad primes.
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1. Introduction

The spirit of the Spetses program ([BMM], [BMM2]) is to consider
(at least some of) the complex reflections groups as Weyl groups for
some mysterious object which looks like a “generic finite reductive
group” — and which is yet unknown.

Some of the data attached to finite reductive groups, such as the
parameterization of unipotent characters, their generic degrees, Frobe-
nius eigenvalues, and also the families and their Fourier matrices, turn
out to depend only on the Q-representation of the Weyl group. But
supplementary data, such as the parameterization of unipotent classes,
the values of unipotent characters on unipotent elements, depend on
the entire root datum.

For a complex reflection group, not necessarily defined over Q, but
defined over a number field k, it thus seems both necessary and natural
to study “Zk-root data”, where Zk denotes the ring of integers of k.

Some related work has already been done in that direction, in partic-
ular by Nebe [Ne], who classified Zk-lattices invariant under the reflec-
tion group – and whose work inspired us. More recently, motivated by
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some work on p-compact groups, Grodal and others defined root data
over principal ideal domains and classify them over the ring Zp of p-adic
integers (see Def. 1.1 and Thm. 1.2 in [Gr], as well as corresponding
results in section 8 of [AnGr]).

Here we define and classify Zk-root systems1, as well as root lattices
and coroot lattices, for all complex reflection groups. Of course most
of the rings Zk are not principal ideal domains (although — quite a
remarkable fact — they are P.I.D. for the 34 exceptional irreducible
complex reflection groups) and one has naturally to replace elements
of Zk by ideals of Zk. Taking this into account, our definition of root
system mimics Bourbaki’s definition [BouLie] and of course working
with “ideal numbers” is much more appropriate, on general Dedekind
domains, than working with “numbers”, as suggested by what follows.

• A complex reflection group may occur as a parabolic subgroup
of another reflection group whose field of definition is larger.
A first problem with considering vectors (as in the usual ap-
proach of root systems) instead of one-dimensional Zk-modules
(as we do here) is that we would have “too many” of them when
restricting to a parabolic subgroup.
• In the case of the group of type B2, over a field where the ideal

generated by 2 has a square root, such asQ(
√

2) orQ(
√
−1), not

only do we find the usual system of type B2 but we also find a
system which affords the exterior automorphism 2B2. If we were
considering numbers instead of ideals, this automorphism would
exist only if the number 2 (rather than the ideal generated by
2) has a square root.

The exceptional group denoted by G29, defined over Q(
√
−1),

has a subgroup of type B2 and the normaliser of this subgroup
induces the automorphism 2B2. Our corresponding root system
has the same automorphism since 1 + i and 1− i generate the
same ideal and (1 + i)(1 − i) = 2, thus 2 has an “ideal square
root” in the ring Z[

√
−1].

Perhaps the most interesting and intriguing fact which comes out of
the classification concerns the generalisation of the notions of connec-
tion index and bad primes : in the case of spetsial reflection groups,
the order of the group is divisible by the factorial of the rank times
the connection index, and the bad primes for the corresponding Spets
make up the remainder, just as in the case of finite reductive groups
and Weyl groups.2

1By analogy with the well established terminology “cyclotomic Hecke algebras”
— a crucial notion in the Spetses program —, we propose to call these generalised
root systems “cyclotomic root systems”.

2Notice though that, as shown by Nebe [Ne], the bad primes for spetsial groups
(see Section 8) do not occur as divisors of the orders of the quotient of the root
lattice by the root lattice of maximal reflection subgroups.
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2. Complex reflection groups

We denote λ 7→ λ∗ the complex conjugation and we denote by k a
subfield of C stable by complex conjugation.

2.1. Preliminary material about reflections.
Let (V,W ) be a pair of finite dimensional k-vector spaces with a

given Hermitian pairing V ×W → k : (v, w) 7→ 〈v, w〉; that is:

• 〈-, -〉 is linear in V and semi-linear in W : for λ, µ ∈ k, v ∈ V
and w ∈ W we have 〈λv, µw〉 = λµ∗〈v, w〉.
• 〈v, w〉 = 0 for all w ∈ W implies v = 0.
• 〈v, w〉 = 0 for all v ∈ V implies w = 0.

Similarly (w, v) 7→ 〈v, w〉∗ defines a Hermitian pairing W ×V → k that
we will also denote (w, v) 7→ 〈w, v〉 when its meaning is clear from the
context.

Any vector space can be naturally endowed with a Hermitian pairing
with its twisted dual:

Definition 2.1. The twisted dual of a k-vector space V , denoted ∗V ,
is the k-vector space which is the conjugate under ∗ of the dual V ∗ of
V . In other words,

• as an abelian group, ∗V = V ∗,
• an element λ ∈ k acts on ∗V as λ∗ acts on V ∗.

The pairing V × ∗V → k : (v, φ) 7→ φ(v) is a Hermitian pairing, called
the canonical pairing associated with V .

When V is a real vector space, the twisted dual is the usual dual.
Let G(V,W ) be the subgroup of GL(V ) × GL(W ) which preserves

the pairing. The first (resp. second) projection gives an isomorphism

G(V,W )
∼−→ GL(V ) (resp. G(V,W )

∼−→ GL(W )). Composing the second
isomorphism with the inverse of the first we get an isomorphism g 7→
g∨ : GL(V )

∼−→ GL(W ). The inverse morphism has the same definition
reversing the roles of V and W , and we will still denote it g 7→ g∨ so
that (g∨)∨ = g.

In the case of the canonical pairing associated with V , the isomor-
phism g 7→ g∨ is just the contragredient tg−1.

Definition 2.2. A reflection is an element s ∈ GL(V ) of finite order
such that ker(s− 1) is an hyperplane. Define the

• reflecting hyperplane of s as Hs := ker(s− 1),
• reflecting line of s as Ls := im (s− 1),
• dual reflecting line Ms of s as the orthogonal (in W ) of Hs,
• dual reflecting hyperplane Ks of s as the orthogonal (in W ) of
Ls.

Denote by ζs the determinant of s, which is a root of unity.
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It is clear that a reflection s is determined by Hs, Ls and ζs. In turn,
Hs is determined by the dual reflecting line Ms. Note that Ms is not
orthogonal to Ls since Hs does not contain Ls. Thus giving a reflection
is equivalent to giving the following data:

Definition 2.3. A reflection triple is a triple (L,M, ζ) where

• L is a line in V and M a line in W which are not orthogonal.
• ζ ∈ k× is a root of unity.

Formulae for the reflections defined by a reflection triple are sym-
metric in V and W :

Proposition 2.4. A reflection triple (L,M, ζ) defines a pair of reflec-
tions (s, s∨) ∈ GL(V ) × GL(W ) (which preserve the pairing) by the
formulae:

s(v) = v − 〈v, y〉
〈x, y〉

(1− ζ)x,

s∨(w) = w − 〈w, x〉
〈y, x〉

(1− ζ)y,

for any non-zero x ∈ L and y ∈M .

Proof. An easy computation shows that the pair (s, s∨) of reflections
preserves the pairing 〈-, -〉. Furthermore, the reflection s defined by
this formula determines the triple (L,M, ζ), and the reflection s∨ (in
W ) determines the triple (M,L, ζ). �

As long as ζm 6= 1, the pair (sm, s∨m) is precisely the pair of reflec-
tions defined by the triple (L,M, ζm): the order of s is the order of the
element ζ ∈ k×.

To summarize, we have:

Proposition 2.5. Reflection triples are in bijection with

• reflections in GL(V ),
• reflections in GL(W ),
• pairs of reflections (s, s∨) in GL(V ) × GL(W ) which preserve

the pairing 〈-, -〉.

An element g ∈ GL(V ) acts naturally on reflection triples (L,M, ζ)
through the action of (g, g∨) on pairs (L,M). It follows from the pre-
vious proposition that g commutes with a reflection s if and only if
(g, g∨) stabilizes (Ls,Ms).

Notation 2.6. Let t = (L,M, ζ) be a reflection triple; denote by st the
corresponding reflection, and write s∨t for the reflection corresponding
to (M,L, ζ). We will also write Lt, Ht,Mt, Kt for Lst , Hst ,Mst , Kst .
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Stable subspaces.

A reflection is diagonalisable, hence so is its restriction to a stable
subspace. The next lemma follows directly.

Lemma 2.7. Let V1 be a subspace of V stable by a reflection s. Then

• either V1 is fixed by s (i.e., V1 ⊆ Hs),
• or V1 contains Ls, and then V1 = Ls⊕ (Hs ∩ V1), in which case

the restriction of s to V1 is a reflection.

In particular, the restriction of a reflection to a stable subspace is either
trivial or a reflection.

Commuting reflections.

Lemma 2.8. Let t1 = (L1,M1, ζ1) and t2 = (L2,M2, ζ2) be two reflec-
tion triples. We have the following three sets of equivalent assertions.

(I) (i) (st1 , s
∨
t1

) acts trivially on (L2,M2).
(ii) (st2 , s

∨
t2

) acts trivially on (L1,M1).
(iii) L1 ⊆ Ht2 and L2 ⊆ Ht1, in which case we say that t1 and

t2 are orthogonal.

(II) (i) (st1 , s
∨
t1

) acts by ζ1 on (L2,M2).
(ii) (st2 , s

∨
t2

) acts by ζ2 on (L1,M1).
(iii) L1 = L2 and Ht1 = Ht2, in which case we say that t1 and

t2 are parallel.

(III) (i) st1st2 = st2st1 ,
(ii) st1 stabilizes t2.

(iii) st2 stabilizes t1.
(iv) t1 and t2 are either orthogonal or parallel.

Proof. The proof of both (I) and (II) proceeds by showing the equiva-
lence of (i) and (iii), from which the equivalence between (ii) and (iii)
follows by symmetry. (III) then follows from (I), (II), and the defini-
tions. �

From now on and until the end of this section, we shall work “on
the V ” side. Nevertheless, we shall go on using notions previously
introduced in connection with an Hermitian pairing V ×W → k.

2.2. Reflection groups.

Definition 2.9. A reflection group on k is a pair (V,G), where V
is a finite dimensional k-vector space and G is a subgroup of GL(V )
generated by reflections. A reflection group is said to be finite if G is
finite, and complex if k ⊆ C.

Throughout this subsection, (V,G) denotes a reflection group.
Whenever a set of reflections S generates G, then

⋂
s∈S Hs = V G,

the set of elements fixed by G.
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Definition 2.10. A reflection group (V,G) is essential if V G = {0}.

Definition 2.11. A set of reflections is saturated if it is closed under
conjugation by the group it generates.

When S is saturated, G is a (normal) subgroup of the subgroup of
GL(V ) which stabilizes S, and the subspace VS, defined by

VS :=
∑
s∈S

Ls ,

is stable by the action of G.

Orthogonal decomposition.

Definition 2.12.

(1) Define an equivalence relation ∼ on S as the transitive closure
of: st ∼ st′ whenever t is not orthogonal to t′.

(2) The set of reflections S is said to be irreducible if it consists of
a unique ∼-equivalence class.

Lemma 2.13. Let S be a saturated set of reflections which generates
the reflection group (V,G). Then the ∼-equivalence classes of S are
stable under G-conjugacy.

Proof. This results from the stability under G-conjugacy of S and of
the relation “being orthogonal”. �

When a group G acts on a set V (which could be G itself on which G
acts by conjugation), for X ⊂ V we denote by NG(X) the normalizer
(stabilizer) of X in G, i.e., the set of g ∈ G such that g(X) = X. We
denote by CG(X) the centralizer (fixator) of X, i.e., the set of g ∈ G
such that, for all x ∈ X, g(x) = x. Notice that CG(X) / NG(X).

Lemma 2.14. Let S be a set of reflections on V .

(1) The action of NGL(V )(S) on S induces an injection:

NGL(V )(S)/CGL(V )(S) ↪→ S(S),

into the symmetric group on S.
(2) If S is saturated and irreducible, then CGL(V )(S) acts by scalars

on VS.

Proof. Item (1) is trivial. Let us prove (2).
Take any g ∈ CGL(V )(S). The pair (g, g∨) stabilizes the reflection

triples of all reflections in S. Take two non-orthogonal reflections s, s′ in
S with corresponding reflection triples (L,M, ζ), (L′,M ′, ζ ′) and choose
non-zero elements x ∈ L, y ∈ M, v ∈ L′, w ∈ M ′. Then g(x) = λx and
g(v) = µv for some non-zero scalars λ and µ.

Since S is saturated, it also contains the reflection corresponding to

the triple s · (L′,M ′, ζ ′). But s(v) = v − 〈v,y〉
〈x,y〉(1 − ζ)x, so g(s(v)) =
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µv − 〈v,y〉〈x,y〉(1− ζ)λx = αs(v) for some non-zero scalar α. In particular,

this implies µ = λ, and g acts by scalar multiplication on Ls + Ls′ .
Since S is irreducible, this shows that g acts by scalar multiplication

on Ls +Lt for any pair s, t ∈ S, hence acts by scalar multiplication on
VS. �

Lemma 2.15. The number of ∼-equivalence classes of reflections in S
is bounded by the dimension of V . In particular, it is finite.

Proof. Assume that t1 = (L1,M1, ζ1) , . . . , tm = (Lm,Mm, ζm) corre-
spond to reflections which belong to distinct ∼-equivalence classes. So
in particular all the ti are mutually orthogonal. This implies that the
Li are linearly independent: for let xi ∈ Li, yi ∈ Mi be non-zero el-
ements and assume λ1x1 + λ2x2 + · · · + λmxm = 0. The Hermitian
product with yi yields λi〈xi, yi〉 = 0, hence λi = 0. �

The following lemma is straightforward to verify.

Lemma 2.16. Let S be a set of reflections which generate the reflection
group (V,G). Let S = S1 t S2 t · · · t Sm be the decomposition of S
into ∼-equivalence classes. Denote by Gi the subgroup of G generated
by the reflections s for s ∈ Si and by Vi the subspace of V generated by
the lines Ls for s ∈ Si.

(1) The group Gi acts trivially on
∑

j 6=i Vj.

(2) For 1 ≤ i 6= j ≤ m, the groups Gi and Gj commute.
(3) G = G1G2 . . . Gm .

The above result can be refined in the case where G acts completely
reducibly on V – then the decomposition is direct (see 2.19 below).

Lemma 2.16 can be applied to obtain a criterion for finiteness of G.

Proposition 2.17. Let G be the group generated by a saturated set of
reflections S. If S is finite, then G is finite.

Proof. Consider the case where S is irreducible. By the second part of
Lemma 2.14, we know that the centralizer of S is contained in k×, so in
particular, G∩CGL(V )(S) is contained in k×. Moreover, each reflection
has finite order, so in fact G ∩ CGL(V )(S) ⊂ µ(k), the set of roots of
unity of k. Now the determinants of the elements of G belong to the
finite subgroup of µ(k) generated by the determinants of the elements
of S. Thus G ∩ CGL(V )(S) is finite.

As G is contained in NGL(V )(S), by the first part of Lemma 2.14, it
is an extension of G∩CGL(V )(S) by a subgroup of S(S). By finiteness
of S, this is a finite extension. Hence G is finite.

Finally, consider the general case G = G1 · · ·Gm, where the groups
Gi are generated by reflections in distinct equivalence classes, as in
Lemma 2.16. By the preceding comments, each Gi is finite; so G must
also be finite. �
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The case when G is completely reducible.

Proposition 2.18. Let S be a set of reflections generating the reflec-
tion group (V,G), and suppose that the action of G on V is completely
reducible. Then

(1) V = VS ⊕ V G , and
(2) the restriction from V to VS induces an isomorphism from G

onto its image in GL(VS), an essential reflection group on VS.

Proof. The subspace VS is G-stable, hence since G is completely re-
ducible there is a complementary subspace V ′ which is G-stable. We
have VS ⊃ Ls for all s ∈ S, thus (by Lemma 2.7) V ′ is contained in
Hs; it follows that V ′ ⊆

⋂
s∈S Hs ⊆ V G. So it suffices to prove that

VS ∩ V G = 0.
Since V G is stable by G, there exists a complementary subspace V ′′

which is stable by G. Whenever s ∈ S, we have Ls ⊆ V ′′ (otherwise,
by Lemma 2.7, we have V ′′ ⊆ Hr, which implies that s is trivial since
V = V G ⊕ V ′′, a contradiction). This shows that VS ⊆ V ′′, and in
particular that VS ∩ V G = 0. �

Proposition 2.19. Let S be a set of reflections generating the reflec-
tion group (V,G), and suppose that the action of G on V is completely
reducible. Denote by {Vi}i the subspaces associated to an orthogonal
decomposition as in Lemma 2.16.

(1) For 1 ≤ i ≤ m, the action of Gi on Vi is irreducible.

(2) VS =
⊕i=m

i=1 Vi .
(3) G = G1 ×G2 × · · · ×Gm

Proof. (1) The subspace Vi is stable under G, and the action of G on a
stable subspace is completely reducible. But the image of G in GL(Vi)
is the same as the image of Gi. So the action of Gi on Vi is completely
reducible.

So we write Vi = V ′i ⊕V ′′i where V ′i and V ′′i are stable by Gi. Define:

S ′i := {s ∈ Si |Ls ⊆ V ′i } and S ′′i := {s ∈ Si |Ls ⊆ V ′′i } .
By Lemma 2.7, if s ∈ S ′i, then V ′′i ⊆ Hs, and if s ∈ S ′′i , then V ′i ⊆ Hs.
Hence any two elements of S ′i and S ′′i are mutually orthogonal. Thus
one of them has to be all of Si.

(2) By Lemma 2.16, we have
∑

j 6=i Vj ⊂ V Gi . By (1), and by Propo-

sition 2.18, we then get Vi ∩
∑

j 6=i Vj = 0 .

(3) An element g ∈ Gi which also belongs to
∏

j 6=iGj acts trivially

on Vi. Since (by (1) and by Proposition 2.18) the representation of Gi

on Vi is faithful, we see that g = 1. �

Reflecting pairs.

For H a reflecting hyperplane, notice that

CG(H) = {1} ∪ {g ∈ G | ker (g − 1) = H} .
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For L a reflecting line, we have:

CG(V/L) = {1} ∪ {g ∈ G | im (g − 1) = L} .
So CG(V/L) is the group of all elements of G which stabilize L and
which act trivially on V/L; a normal subgroup of NG(L).

Similarly, if M is a dual reflecting line in W , CG(W/M) / NG(M).

Remark 2.20. Recall that orthogonality between V and W induces a
bijection between reflecting hyperplanes and dual reflecting lines, as
well as between reflecting lines and dual reflecting hyperplanes.

Then if M is the orthogonal (in W ) of the reflecting hyperplane H,
we have

CG(H) = CG(W/M) .

We will be considering the following property.

Property 2.21. The reflection group (V,G) is such that the represen-
tations of G and all its proper subgroups on V are completely reducible.

Note that this is the case in particular when G is finite.

Proposition 2.22. Let (V,G) be a reflection group with Property 2.21.

(1) Let H be a reflecting hyperplane for G. There exists a unique
reflecting line L such that CG(V/L) = CG(H).

In other words:
Let M be a dual reflecting line for G. There exists a unique
reflecting line L such that CG(V/L) = CG(W/M).

(2) Let L be a reflecting line for G. There exists a unique reflecting
hyperplane H such that CG(H) = CG(V/L).

In other words: Let K be a dual reflecting hyperplane for
G. There exists a unique reflecting hyperplane H such that
CG(K) = CG(H).

(3) If (L,H) (or (L,M), or (H,K)) is a pair as above, then
(a) CG(H) consists of the identity and of reflections s where

Hs = H and Ls = L,
(b) CG(H) is isomorphic to a subgroup of k×, and so is cyclic

if G is finite, and
(c) NG(H) = NG(L) = NG(M) = NG(K).

Proof of 2.22.
• Assume CG(H) 6= {1}. Since the action of CG(H) on V is com-

pletely reducible, there is a line L which is stable by CG(H) and such
that H⊕L = V . Such a line is obviously the eigenspace (corresponding
to an eigenvalue different from 1) for any non-trivial element of CG(H).
This shows that L is uniquely determined, and that CG(H) consists of
1 and of reflections with hyperplane H and line L. It follows also that
CG(H) ⊆ G(V/L). Notice that H and L are the isotypic components
of V under the action of CG(H).
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• Assume CG(V/L) 6= {1}. Since the action of CG(V/L) on V
is completely reducible, there is a hyperplane H which is stable by
CG(V/L) and such that L⊕H = V . Such a hyperplane is clearly the
kernel of any nontrivial element of CG(V/L). This shows that H is
uniquely determined, and that CG(V/L) ⊆ CG(H).

We let the reader conclude the proof. �

Notice the following improvement to Lemma 2.8 due to complete
reducibility.

Proposition 2.23. Let t, t′ be two reflection triples such that st and
st′ belong to a group satisfying Property 2.21. Then

(1) t and t′ are orthogonal if Lt ⊆ Ht′ or Lt′ ⊆ Ht.
(2) t and t′ are parallel if Lt = Lt′ or Ht = Ht′,

2.3. The Shephard–Todd classification.

Definition 2.24. Given (V,G) and (V ′, G′) finite reflection groups on
k, an isomorphism from (V,G) to (V ′, G′) is a k-linear isomorphism

f : V
∼−→ V ′ which conjugates the group G onto the group G′.

From now on in this subsection we assume that k ⊆ C.

The family of finite complex reflection groups denoted G(de, e, r) .

Let d, e and r be three positive integers.
Let Dr(de) be the set of diagonal complex matrices with diagonal

entries in the group µde of all de–th roots of unity. The d–th power of
the determinant defines a surjective morphism

detd : Dr(de)� µe .

Let A(de, e, r) be the kernel of the above morphism. In particular we
have |A(de, e, r)| = (de)r/e . Identifying the symmetric group Sr with
the usual r × r permutation matrices, we define

G(de, e, r) := A(de, e, r)oSr .

We have |G(de, e, r)| = (de)rr!/e , and G(de, e, r) is the group of
all monomial r × r matrices, with entries in µde, and product of all
non-zero entries in µd.

Examples 2.25.

• G(e, e, 2) is the dihedral group of order 2e.
• G(d, 1, r) is isomorphic to the wreath product µdoSr. For d = 2,

it is isomorphic to the Weyl group of type Br (or Cr).
• G(2, 2, r) is isomorphic to the Weyl group of type Dr.

The following theorem, stated in terms of abstract groups, is the
main result of [ShTo]. It is explicitly proved in [Co, 2.4, 3.4 and 5.12].

Theorem 2.26 (Shephard–Todd)). Let (V,G) be a finite irreducible
complex reflection group. Then one of the following assertions is true:
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• (V,G) ' (Cr, G(de, e, r)) for some integers d, e, r, with de ≥ 2,
r ≥ 1
• (V,G) ' (Cr−1,Sr) for some an integer r ≥ 1
• (V,G) is isomorphic to one of 34 exceptional reflection groups.

The exceptional groups are traditionally denoted G4, . . . , G37.

Remark 2.27. Conversely, any group G(de, e, r) is irreducible on Cr
except for d = e = 1 and d = e = r = 2.

Remark 2.28. Theorem 2.26 has the following consequence.
Assume that (V,G) is a complex finite reflection group where V is

r-dimensional. Choose a basis of V so that G is identified with a
subgroup of GLr(C). Now, given an automorphism σ of the field C,
applying σ to all entries of the matrices of G defines another group σG
and so another complex finite reflection group (V, σG).

Then it follows from Theorem 2.26 that there exists φ ∈ GL(V ) and
a ∈ Aut(G) such that, for all g ∈ G,

σ(g) = φa(g)φ−1 .

Definition 2.29. A finite reflection group (V,G) is said to be well-
generated if G may be generated by r reflections, where r = dim(V ).

The well-generated irreducible groups are G(d, 1, r), G(e, e, r) and all
the exceptional groups excepted G7, G11, G12, G13, G15, G19, G22, G31.

Field of definition.

The following theorem has been proved (using a case by case analysis)
by Benard [Ben] (see also [Bes1]), and generalizes a well known result
on Weyl groups.

Theorem–Definition 2.30. Let (V,G) be a finite complex reflection
group. Let QG be the field generated by the traces on V of all elements of
G. Then all irreducible QGG–representations are absolutely irreducible.

The field QG is called the field of definition of the reflection group
(V,G).

• If QG ⊆ R, then (V,G) is a (finite) Coxeter group.
• If QG = Q, then (V,G) is a Weyl group.

2.4. Parabolic subgroups.
Throughout this subsection we assume only that V is a k-vector

space of finite dimension, and that G is a finite subgroup of GL(V ).
We denote by Ref(G) the set of all reflections of G, and by Arr(G)

the set of reflecting hyperplanes of elements of Ref(G).
Notice that, since G is finite and k of characteristic zero, the kG-

module V is completely reducible.
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Definition 2.31. We denote by ArrX(G) the set of reflecting hyper-
planes containing X, and by FX the flat of X in Arr(G):

FX :=
⋂

H∈ArrX(G)

H .

The assertion (1) of the following theorem has first been proved by
Steinberg [St]. A short proof may now be found in [Le].

Theorem 2.32. Let X be a subset of V .

(1) The fixator CG(X) of X is generated by those reflections whose
reflecting hyperplane contains X.

(2) The flat FX is the set of fixed points of CG(X) and there exists a
unique CG(X)–stable subspace VX of V such that V = FX⊕VX .

(3) CG(X) = CG(FX) and NG(X)/CG(X) is naturally isomorphic
to a subgroup of GL(FX).

Proof of (2). Since CG(X) is generated by reflections whose reflecting
hyperplanes contain FX , we see that the flat FX is fixed by CG(X).
Conversely, if x ∈ V is fixed under CG(X), it is fixed by all the reflec-
tions of CG(X), hence belongs to FX .

If FX = 0, the assertion (2) is obvious. Assume FX 6= 0. Then
CG(X) 6= 1. Since FX is the trivial isotypic component of CG(X), the
space VX is the sum of all nontrivial isotypic components. �

Definition 2.33. The fixators of subsets of G in V are called parabolic
subgroups of G.

By Theorem 2.32 above, a parabolic subgroup CG(X) acts faithfully
as an essential reflection group on the uniquely defined subspace VX .

Corollary 2.34. The map F 7→ CG(F ) is an order reversing bijection
from the set of all flats of Arr(G) onto the set of parabolic subgroups of
G (where both sets are ordered by inclusion).

2.5. Linear characters of a finite reflection group.

Let (V,G) be a finite reflection group.
The following description of the linear characters of a reflection

group, inspired by the results of [Co], may be found, for example, in
[Bro2, Theorem 3.9].

Denote by Gab the quotient of G by its derived group, so that
Hom(G,C×) = Hom(Gab,C×) . Recall that Arr(G) denote the collec-
tion of reflecting hyperplanes of the reflections s for s ∈ G.

In what follows, the notation H ∈ Arr(G)/G means that H runs over
a complete set of representatives of the orbits of G on the set Arr(G)
of its reflecting hyperplanes.

Theorem 2.35.
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(1) The restrictions from G to CG(H) define an isomorphism

Hom(G,C×)
∼−→

∏
H∈Arr(G)/G

Hom(CG(H),C×) .

(2) The composition iH : CG(H)→ G→ Gab is injective, and∏
H∈Arr(G)/G

iH :
∏

H∈Arr(G)/G

CG(H)→ Gab

is an isomorphism.

Corollary 2.36. Let S be a generating set of reflections for G and
let O be the set of G-conjugates of the elements of S. Then for any
H ∈ Arr(G) the set O ∩ CG(H) generates CG(H).

Proof. The set O∩CG(H) has the same image in Gab as the set SH of
elements of S which are conjugate to an element of CG(H). If we denote
x 7→ xab the quotient map G → Gab, we have Sab =

∐
H∈Arr(G)/G S

ab
H ,

where Sab
H lies in the component CG(H) of Gab. Since S generates G,

Sab generates Gab, thus Sab
H generates CG(H). �

Definition 2.37. Let G be a finite subgroup of GL(V ) generated by
reflections. A reflection s ∈ G is said to be distinguished with respect
to G if det(s) = exp

(
2πi
d

)
where d = |CG(Hs)|.

In particular, if H is a reflecting hyperplane for a reflection of G,
every CG(H) is generated by a single distinguished reflection.

The next property has been noticed by Nebe ([Ne], §5), as a conse-
quence of [Co, (1.8) & (1.9)].

Corollary 2.38. Let S be a generating set of distinguished reflections
for G. Then any distinguished reflection of G is conjugate to an element
of S.

Proof. It follows from 2.36 and from the fact that the conjugate of a
distinguished reflection is still distinguished. �

3. Root Systems

Notation and conventions.

From now on, the following notation will be in force.
The field k is a number field, stable by the complex conjugation

denoted λ 7→ λ∗. Its ring of integers is Zk, a Dedekind domain. A
fractional ideal is a finitely generated Zk-submodule of k. Denote by
λZk the (principal) fractional ideal generated by λ ∈ k.

For a a fractional ideal, we set

a−1 := {b ∈ k | ba ⊂ Zk}, and a−∗ := (a−1)
∗
.

Since Zk is Dedekind, aa−1 = 1Zk and (λZk)−1 = λ−1Zk for λ ∈ k.
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Throughout, (V,W ) is a pair of finite dimensional k-vector spaces
with a given Hermitian pairing (see Subsection 2.1)

V ×W → k : (v, w) 7→ 〈v, w〉 .
For I a finitely generated Zk-submodule of V and J a finitely gen-

erated Zk-submodule of W , we denote by 〈I, J〉 the fractional ideal
generated by all 〈α, β〉 for α ∈ I and β ∈ J .

Let I be a rank one finitely generated Zk-submodule of V , generating
the line kI in V . Then whenever v is a nonzero element of kI, there
is a fractional ideal a of Zk such that I = av. If, similarly, J = bw for
some fractional ideal b and some w ∈ kJ , then

〈I, J〉 = ab∗〈v, w〉 .

3.1. Zk-roots.

Definition 3.1.

(1) A Zk-root (for (V,W )) is a triple r = (I, J, ζ) where
• I is a rank one finitely generated Zk-submodule of V ,
• J is a rank one finitely generated Zk-submodule of W ,
• ζ is a nontrivial root of unity in k,

such that 〈I, J〉 = (1 − ζ)Zk, the principal ideal generated by
1− ζ.

A Zk-root r = (I, J, ζ) is called a (ζ,Zk)-root.
(2) If r = (I, J, ζ) is a Zk-root, and a is a fractional ideal, we set

a · r := (aI, a−∗J, ζ) .

Two Zk-roots r1 and r2 are said to be of the same genus if there
exists a fractional ideal a such that

r2 = a · r1 .

The group GL(V ) acts on left on the set of Zk-roots, as follows: for
g ∈ GL(V ) and r = (I, J, ζ) a Zk-root, set

g · r := (g(I), g∨(J), ζ).

In particular λ ∈ k× ⊂ ZGL(V ) acts by λ · r = (λI, λ−∗J, ζ). The
action of k×IdV = ZGL(V ) preserves genera.

Remark 3.2. The pair (I, J) does not determine ζ.
Indeed one may have an equality of ideals (1 − ζ)Zk = (1 − ξ)Zk

without ζ and ξ having even the same order. For example, as soon as
ζ has a composite order, 1− ζ is invertible and so (1− ζ)Zk = Zk (see
Lemma A.3 in Appendix A).

Given a Zk-root r = (I, J, ζ), choose v ∈ kI and w ∈ kJ such that
〈v, w〉 = 1− ζ. Then the formula

x 7→ x− 〈x,w〉v



16 MICHEL BROUÉ, RUTH CORRAN, JEAN MICHEL

defines a reflection independent of the choice of v, since it is also the
reflection attached to the reflection triple (kI, kJ, ζ). We will denote
by sr this reflection.

Definition 3.3.

(1) If s is a reflection, an (s,Zk)-root is a Zk-root (I, J, ζ) where
(kI, kJ, ζ) = (Ls,Ms, ζs).

(2) If r = (I, J, ζ) is a Zk-root for (V,W ), we call r∨ = (J, I, ζ) —
a Zk-root for (W,V ) — the dual root.

Notice that the dual of an (s,Zk)-root is an (s∨,Zk)-root. Thus
sr∨ = s∨r .

Lemma 3.4.

(1) Given a Zk-root r = (I, J, ζ), given v ∈ kI and w ∈ kJ such
that 〈v, w〉 = 1 − ζ, there exists a fractional ideal a such that
I = av and J = a−∗w.

(2) For any Zk-root r = (I, J, ζ), there exists a unique reflection s
in GL(V ) such that r is an (s,Zk)-root.

(3) For any reflection s in GL(V ), the set of (s,Zk)-roots form a
single genus of roots.

Proof. (1) and (2) are clear. Let us prove (3). Let s be a reflection.
Choose v ∈ Ls and w ∈ Ms such that 〈v, w〉 = 1 − ζs. For a any

fractional ideal, define I := av, J := a−∗w . Then r = (I, J, ζs) is an
(s,Zk)-root.

Let now r′ be a root giving rise to the same reflection triple. Then
r′ = (bv, b−∗w, ζ) for some fractional ideal. We have r′ = ba−1 · r thus
r and r′ are in the same genus. �

Remark 3.5. Given a reflection s and an (s,Zk)-root r = (I, J, ζ),
Lemma 3.4, (1) ensures that J is determined by I (and similarly I
is determined by J).

Pairing between Zk-roots.

Let r1 = (I1, J1, ζ1) and r2 = (I2, J2, ζ2) be two Zk-roots. There is a
pairing on the set of Zk-roots, defined to be the fractional ideal:

n(r1, r2) := 〈I1, J2〉 .
If r = (I, J, ζ), then by definition we have n(r, r) = (1− ζ)Zk.

Principal Zk-roots.

Let I be a rank one Zk-submodule of V . The reader will easily check
that the following assertions are equivalent:

(i) I is a free Zk-module (hence of rank 1),
(ii) whenever v ∈ kI and a is a fractional ideal of k such that

I = av, then a is a principal ideal.

This implies the following result:
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Lemma–Definition 3.6. Let r = (I, J, ζ) be a Zk-root. The following
assertions are equivalent:

(i) I is a free Zk-module (hence of rank 1),
(ii) J is a free Zk-module (hence of rank 1).

If the preceding properties are true, we say that the root r is a principal
Zk-root.

Remark 3.7. If r = (I, J, ζ) is a principal Zk-root, we may choose
α ∈ kI and β ∈ kJ such that I = Zkα, J = Zkβ and 〈α, β〉 = 1 − ζ.
The vector α is then unique up to multiplication by a unit of Zk, and
it determines β (and conversely).

3.2. Zk-root systems.

Definition and first properties.

The following definition is modeled on that of Bourbaki [BouLie,
chap. VI, §1, Définition].

Definition 3.8. Let R = {r = (Ir, Jr, ζr)} be a set of Zk-roots. We say
that R is a Zk-root system if it satisfies the following conditions:

(RSI): R is finite, and the family (Ir)r∈R generates V ,
(RSII): Whenever r ∈ R, we have sr ·R = R,
(RSIII): Whenever r1, r2 ∈ R, we have n(r1, r2) ⊆ Zk.

In particular, in the case when Zk = Z, the root system above is
equivalent to that required for a root system as defined in loc.cit. (see
Remark 3.10).

If G is any of the 34 exceptional reflection groups of the classification
of finite irreducible complex reflection groups, and k = QG is the field
of definition of G, then Zk is known to be a principal ideal domain [Ne].

Principal Zk-root systems.

If Zk is a principal ideal domain, all Zk-roots are principal.

Definition 3.9. A Zk-root system is principal if all its roots are prin-
cipal.

Remark 3.7 implies that a principal Zk-root may be viewed as a triple
(A,B, ζ) where

• ζ is a root of unity,
• A = Z×k α and B = Z×k β, where α and β are nonzero elements

of V and W respectively, and
• 〈α, β〉 = 1− ζ .

Such a triple r defines the unique reflection sr with reflecting line kA
and reflecting hyperplane the orthogonal of kB.

Thus a principal Zk-root system may be viewed as a set R of triples
r = (Ar, Br, ζr)r∈R such that



18 MICHEL BROUÉ, RUTH CORRAN, JEAN MICHEL

(RSI) R is finite and the family (Ar)r∈R generates V ,
(RSII) Whenever r ∈ R, we have sr ·R = R ,

(RSIII) Whenever r1 = (A1, B1, ζ1) ∈ R and r2 = (A2, B2, ζ2) ∈ R, for
α1 ∈ A1 and β2 ∈ B2, we have 〈α1, β2〉 ∈ Zk .

Remark 3.10. If Zk = Z (which implies that G is a Weyl group), the
previous definition coincides with the usual definition of root system
attached to G: let R0 be a root system in the Bourbaki sense, then

R := {(Zα,Zα∨,−1) | α ∈ R0}
is a Z-root system in our sense. Notice that the cardinality of R0 is
twice that of R as Bourbaki has distinct roots ±α, which give rise to
a single Z-root.

Remark 3.11. Nebe’s definition of a reduced k-root system for G (see
[Ne, Def.19]) coincides with our definition of distinguished principal
Zk-root system for G (see Definition 3.24 below).

Reflections and integrality results.

We return to the general case, where Zk need not be a P.I.D.

Lemma 3.12. Given Zk-roots r1 = (I1, J1, ζ1) and r2 = (I2, J2, ζ2),

(1) (sr1 − IdV )(I2) ⊂ n(r2, r1)I1 .
(2) If n(r2, r1) ⊂ Zk, then (sr1 − IdV )(I2) ⊂ I1 .
(3) Reciprocally, if (sr1 − IdV )(I2) ⊂ I1, then n(r2, r1) ⊂ Zk.

Proof. Choose (v1, w1) ∈ kIr1 × kJr1 such that 〈v1, w1〉 = 1 − ζ1, and
denote by a1 the fractional ideal such that Ir1 = a1v1 (and so Jr1 =
a−∗1 w1).

Similarly, choose (v2, w2) ∈ kIr2 × kJr2 such that 〈v2, w2〉 = 1 − ζ2 ,
and denote by a2 the fractional ideal such that Ir2 = a2v2 (and so
Jr2 = a−∗2 w2).

Then, for all a2 ∈ a2,

(?) sr1(a2v2) = a2v2 − 〈a2v2, w1〉v1 .

In order to prove (1), write 1 =
∑

i yixi for xi ∈ a1 and yi ∈ a−1
1 .

Then the above equality (?) may be rewritten

sr1(a2v2) = a2v2 − 〈a2v2, w1〉(
∑
i

yixi)v1

= a2v2 −
∑
i

(
〈a2v2, y

∗
iw1〉xiv1

)
,

and that last equality shows (1).

Part (2) follows from (1) and from the inclusion ZkI1 ⊂ I1.

Now assume that (sr1 − IdV )(Ir2) ⊂ Ir1 . Equality (?) shows that, for
all a2 ∈ a2, 〈a2v2, w1〉v1 ∈ I1, i.e., 〈a2v2, w1〉 = a2〈v2, w1〉 ∈ a1. This
shows that a2〈v2, w1〉 ⊂ a1, hence 〈v2, w1〉 ∈ a−1

2 a1 and 〈a2v2, a
−∗
1 w1〉 ⊂

Zk, which is (3). �
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Corollary 3.13. Condition (RSIII) is equivalent to:

(RSIII)
′ Whenever r1, r2 ∈ R, we have (sr2 − Id)Ir1 ⊂ Ir2.

The group G(R).

Definition 3.14. Given a set R of Zk-roots, we denote by G(R) the
subgroup of GL(V ) generated by the family of reflections (sr)r∈R.

If G(R) = G, we say that R is a Zk-root system with group G, or a
Zk-root system for G.

Remark 3.15. By Definition 3.8, (RSII), g(r) ∈ R whenever g ∈ G(R)
and r ∈ R.

Theorem 3.16.

(1) Let R be a Zk-root system in V . Then (V,G(R)) is an essential
finite reflection group – that is, V G(R) = 0.

(2) Let (V,G) be an essential finite reflection group. Then there
exists a Zk-root system in V with group G.

Proof. (1) The set of reflections SR = {sr | r ∈ R} is finite, by (RSI); is
saturated, by (RSII); and generates G(R), by definition. Thus Propo-
sition 2.17 applies, and G(R) is finite.

(2) If X is a finite spanning set of V , the (finite) set

{g(x) | (x ∈ X)(g ∈ G)}
generates a finitely generated Zk-submodule E of V , which generates
V as a k-vector space, and which is G-stable. Since E is torsion free
(and since Zk is Dedekind), E is a lattice in V , namely there exists
a family E1, . . . , Er of rank one projective Zk-modules such that E =
E1⊕· · ·⊕Er . Notice that if L is any line in V , then L∩E 6= 0. Indeed,
since kE = V , we have L ⊂ kE, thus for each x ∈ L, x 6= 0, there is
m ∈ E and λ, µ ∈ Zk, λµ 6= 0, such that x = λ

µ
m, so λm is a nonzero

element of L ∩ E.
Let W be a vector space with a Hermitian pairing with V (for ex-

ample, the twisted dual ∗V ). For each s ∈ Ref(G), with reflecting line
Ls, dual reflecting line Ms, and determinant ζs,

• set Is := Ls ∩ E (so Is is a rank one Zk-submodule of E), and
• denote by Js the rank one Zk-submodule of W in Ms such that

〈Is, Js〉 = (1− ζs)Zk .
Then (Is, Js, ζs) is an (s,Zk)-root.

Denote by RE the set of all roots (Is, Js, ζs) for s ∈ Ref(G). It is
clear that G(RE) = G. It remains to show that RE is a Zk-root system.

(RSI) : It is clear that RE is finite. Besides, since V G = 0, we have
V =

∑
s∈Ref(G) Ls, hence the family (Is)s∈Ref(G) generates V .
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(RSII) : Let g ∈ G. Whenever s ∈ Ref(G), we have g(Ls) = Lgs,
hence g(Ls ∩ E) = Lgs ∩ E, which shows that g(Is) = Igs. It follows
immediately that RE is stable under the action of G.

(RSIII) : Let s1, s2 ∈ Ref(G), and set ri := (Ii, Ji, ζi) for i = 1, 2.
Since the image of s2 − Idv is the line Ls2 , and since s2 − IdV sends

E to E, we see that

(s2 − IdV )(I1) ⊂ E ∩ Ls2 = I2 .

This condition is equivalent to (RSIII) by Corollary 3.13. �

Remark 3.17. If r1 and r2 belong to the same root system R and
n(r1, r2) = 0 then sr1sr2 = sr2sr1 and n(r2, r1) = 0. Indeed, by item
(1) of Proposition 2.23, which is applicable since G(R) is finite, the
equality n(r1, r2) = 0 implies that the reflection triples defined by r1

and r2 are orthogonal.

Let (V,G) be a finite reflection group on k, assumed to be essential
(Definition 2.10). Let S be a set of reflections of G, and for each
s ∈ S let rs = (Is, Js, ζs) be a (s,Zk)-root (see Definitions 3.3). We set
S := {rs | s ∈ S}.

A root r is said to be distinguished with respect to a Zk-root system
R if sr is distinguished with respect to G(R).

Proposition 3.18. Assume that

(a) the set S generates G,
(b) for each s, t ∈ S, the ideal 〈Is, Jt〉 is integral.

Then

(1) the orbit R of S under G is a Zk-root system, and G = G(R),
(2) if all elements of S are distinguished, then so are the elements

of R, and the map R→ Ref(G), r 7→ sr is a bijection onto the
set of distinguished reflections of G, and

(3) if each element of S is principal, then R is principal as well.

Proof. (1) The axiom (RSI) follows from the fact that (V,G) is essen-
tial, and the axiom (RSII) is trivial. Let us prove (RSIII).

Lemma 3.19. Let s, t, u be reflections on V , with associated Zk-roots
respectively rs = (Is, Js, ζs), rt, ru. Then

〈Ists−1 , Ju〉 ⊂ 〈Is, Ju〉+ 〈It, Js〉〈Is, Ju〉 .

Proof of 3.19. By item (1) of Lemma 3.12, s(It) ⊂ It + 〈It, Js〉Is hence
〈Ists−1 , Ju〉 ⊂ 〈Is, Ju〉+ 〈It, Js〉〈Is, Ju〉 . �

We return to the proof of Proposition 3.18. Say that a set T of re-
flections of G is integral if s, t ∈ T implies 〈Is, Jt〉 ∈ Zk. The preceding
lemma shows that, given any integral set T of reflections of G, then
T ∪ {sts−1 | s, t ∈ S} is again an integral set of reflections of G. Thus
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the set of all conjugates of the elements of S is integral, which is axiom
(RSIII).

(2) Since the elements of S are all distinguished, the assertion results
from Corollary 2.36.

Part (3) is obvious. �

Case where V = W and 〈-, -〉 is positive.

Remark 3.20. If V = W and 〈-, -〉 is positive, a reflection s ∈ G is
determined by its root line and its determinant. Indeed, since s pre-
serves 〈-, -〉, we have s = s∨, so if s is associated to the reflection triple
(L,M, ζ), we have L = M .

Lemma 3.21. Assume V = W and 〈-, -〉 is positive.

(1) Let r = (I, J, ζ) be a Zk-root. Then J = (1− ζ∗)〈I, I〉−1I.
(2) Let r, r′ be two roots from a Zk-root system R. Then

n(r′, r)∗ = n(r, r)∗n(r′, r′)−1n(r′, r′∨)n(r, r∨)−1n(r, r′).

Proof.
(1) Choose v ∈ kI, w ∈ kJ such that 〈v, w〉 = 1 − ζ. There is a

fractional ideal a such that I = av and J = a−∗w. By Remark 3.20
there exists λ ∈ k such that w = λv thus 1 − ζ = λ∗〈v, v〉 and w =
(1−ζ∗)
〈v,v〉 v. Thus

J = a−∗w = (1− ζ∗) v

a∗〈v, v〉
= (1− ζ∗) av

aa∗〈v, v〉
= (1− ζ∗) I

〈I, I〉
.

Part (2) follows from (1) observing that for a root r = (I, J, ζ) we
have n(r, r) = (1− ζ)Zk and n(r, r∨) = 〈I, I〉. �

Remark 3.22. In the case where k ⊂ R, and r = (I, J,−1), r′ =
(I ′, J ′,−1), Lemma 3.21 (2) reduces to n(r′, r) = 〈I ′, I ′〉〈I, I〉−1n(r, r′)
which generalizes the case of finite Coxeter groups [BouLie, Chap 6,
§1, no. 1.1. formula (9)].

Some properties of a root system.

We return to the general case, where W need not be the same as V .
Let R be a Zk-root system. Recall that G(R) (or simply G) denotes

the group generated by the reflections defined by the elements of R.

Proposition 3.23. Let R be a Zk-root system. Then, for any reflecting
hyperplane H of G(R), the fixator of H, CG(R)(H), is generated by the
set of reflections sr (where r ∈ R) with reflecting hyperplane H.

Proof. It is a consequence of Corollary 2.36. Indeed, it suffices to notice
(see Remark 3.15) that, for r ∈ R and g ∈ G(R), then gsrg

−1 = sg(r)
and g(r) ∈ R. �

Definition 3.24. Let R be a Zk-root system.

(1) We say that R is reduced if the map r 7→ sr is injective.
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(2) We say that R is complete if the map r 7→ sr is surjective onto
Ref(G(R)).

(3) We say that R is distinguished if
(a) it consists of distinguished roots, and
(b) it is reduced.

Remarks 3.25.

(1) If all sr have order 2 (for example, the real reflection groups and
the infinite family G(e, e, r)) then:
• every distinguished root system is complete (and reduced),

and
• every complete and reduced root system is distinguished.

(2) In a reduced root system, distinct roots have different genus.

Proposition 3.26. Let R be a distinguished Zk-root system. Then
the map r 7→ sr is a bijection from R onto the set of distinguished
reflections of G(R).

Proof. It suffices to prove that, whenever H is a reflecting hyperplane
of G(R), there exists r ∈ R such that sr is the distinguished reflection
of CG(R)(H). This results from 3.23. �

The following lemma follows the lines of [Ne, Remark 20].

Proposition 3.27. Let (V,G) be a k-reflection group. Let R be a re-
duced and complete Zk-root system (resp. a distinguished Zk-root sys-
tem) with respect to G. Assume that R1, . . . ,Rm are the orbits of G
on R.

Then any other reduced and complete Zk-root system (resp. distin-
guished Zk-root system) with group G is of the form a1R1∪· · ·∪amRm

where a1, . . . , am are some fractional ideals.

Proof. We give the proof for reduced and complete systems (the proof
for the distinguished ones is similar).

Let R′ be another reduced and complete root system with respect
to G. If s is a reflection of G, and if rs ∈ R and r′s ∈ R′ are the roots
associated with s, we know by Lemma 3.4 that there exists a fractional
ideal as 6= 0 such that r′s = as · rs.

Choose i such that 1 ≤ i ≤ m and choose a reflection s such that
rs ∈ Ri. For g ∈ G, g(rs) is a Zk-root attached to g(s), hence by
hypothesis we have g(rs) = rgsg−1 . Similarly, g(r′s) = r′gsg−1 . Hence
we see that as = ag(s), thus as depends only on i. We set ai := as.
This shows that if R1, . . . ,Rm are the orbits of G on R, then for each
i = 1, . . . ,m, there exists a fractional ideal ai such that a1R1, . . . , amRm

are the orbits of G on R′. �
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Distinguishing and completing root systems.

Proposition 3.28. Any Zk-root system R contains a reduced subsys-
tem with group G(R).

Proof. Let [Arr(G(R))/G(R)] be a complete set of representatives of
orbits of G(R) on the set Arr(G(R)) of reflecting hyperplanes of G(R).
For each H ∈ [Arr(G(R))/G(R)], let us set

RefR(H) := {sr | (r ∈ R) (sr ∈ CG(R)(H))} .
By Corollary 2.36, we know that RefR(H) generates CG(R)(H). For

each H ∈ [Arr(G(R))/G(R)], choose a subset Ref0
R(H) of RefR(H)

which is minimal subject to being a generating subset of CG(R)(H).

For each element of Ref0
R(H), we choose a corresponding r ∈ R, so we

get a set {r1, . . . , rn} of elements of R.
Define R′ to be the union of the G(R)-orbits of {r1, . . . , rn}. We

claim that R′ is a reduced root system with group G(R).
It is clear that R′ is a root system with group G(R). Let us prove

that R′ is reduced. Suppose that r and g ·r = a·r are in R′ for g ∈ G(R)
for some fractional ideal a, then gn · r = an · r = r for some n which
shows that an = Zk which implies (since Zk is a Dedekind domain,
hence fractional ideals have a unique decomposition in prime ideals)
that a = Zk. �

Proposition 3.29. Let R be a complete Zk-root system. Then R con-
tains a distinguished subsystem with group G(R).

Proof. Denote by R0 the set of distinguished roots of R. Since R is
complete, any distinguished reflection of G(R) is of the form sr for
r ∈ R0.

Thus the set of reflecting lines of R0 is the same as the set of reflecting
lines of R, and this proves that condition (RSI) (see Definition 3.8) is
satisfied for R0.

Condition (RSIII) on R0 is inherited from R.
It remains to check that R0 is stable under G(R0). Notice that

G(R0) = G(R). Thus (RSII) follows from the fact that the image of a
distinguished root by an element of G(R0) is still distinguished.

Now apply Proposition 3.28 to get a reduced subsystem of R0, and
we get a distinguished root system. �

Let r = (Ir, Jr, ζ) be a Zk-root with ζ = exp(2πi
d

) with d > 2. For
1 ≤ i < d, we denote by ri the root:

ri :=

(
1− ζ i

1− ζ
Ir, Jr, ζ

i

)
,

which has the property that sir = sri .
An incomplete root system can be augmented by adjoining all of the

ri to obtain a complete root system.
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Proposition 3.30. Let R be a distinguished Zk-root system for V .

Denote by R̂ the set of roots obtained by adjoining all roots of the form

ri to R. Then R̂ is a complete reduced Zk-root system for V , whose set
of distinguished roots is R.

Proof. Since R is finite and only a finite number of roots are added to

form R̂, the condition (RSI) is immediately satisfied for R̂.

Let us check (RSII). Since all the reflections s′r for r′ ∈ R̂ belong to

G(R), it suffices to check that R̂ is stable under all sr for r ∈ R. This
results from the fact that if s(r1) = r2 then s(ri1) = ri2.

Finally, consider two roots ri1 and rj2 in R̂, where r1 and r2 are in R.
Then

n(ri1, r
j
2) =

〈(
1− ζ i1
1− ζ1

)
Ir1 , Jr2

〉
=

(
1− ζ i1
1− ζ1

)
〈Ir1 , Jr2〉 .

Since n(r1, r2) ∈ Zk by (RSIII) for R, and since
1−ζi1
1−ζ1 is always integral,

n(ri1, r
j
2) ∈ Zk as well, verifying the last condition (RSIII) for R̂.

The system R̂ is reduced since sri = sir. �

Dual root system, irreducible root systems.

Recall (see Definitions 3.3(2)) that if r = (I, J, ζ) is a Zk-root in V ,
its dual root is the Zk-root in W defined by r∨ := (J, I, ζ).

Lemma–Definition 3.31. If R is a Zk-root system in V , the set

R∨ := {r∨ | r ∈ R}

is a Zk-root system in W , called the dual root system of R.

Proof. The fact that R∨ is a Zk-root system follows directly from the
definition and the equality:

n(r∨1 , r
∨
2 ) = 〈J1, I2〉 = 〈I2, J1〉∗ = n(r2, r1)∗ .

�

Recall (Definition 2.12 (2)) that a set of reflections is irreducible if it
consists of a single equivalence class with respect to the closure of the
“is not orthogonal” relation ∼.

Definition 3.32. Let R be a set of Zk-roots, and SR be the corre-
sponding set of reflections. Then R is said to be irreducible if SR is
irreducible.

So a set of roots R is irreducible if for every pair of roots r and r′,
there is a sequence r = ri0 , ri1 , . . . , rip = r′ such that each adjacent pair
of roots in the sequence is not orthogonal – that is, n(rij , rij+1) 6= 0.
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3.3. Root systems and parabolic subgroups.

In this subsection, R denotes a Zk-root system, and G := G(R).
Let F be a flat of G in V , that is, an intersection of reflecting hyper-

planes of G in V . Recall that we denote by ArrF (G) the family of all
reflecting hyperplanes of G containing F , so that F =

⋂
H∈ArrF (G) H .

For H ∈ ArrF (G), we denote by LH the reflecting line in V attached
to H (see Proposition 2.22), by MH the orthogonal of H in W (a dual
reflecting line for G in W ), and by KH the corresponding dual reflecting
hyperplane in W .

We set

VF :=
∑

H∈ArrF (G)

LH and WF :=
∑

H∈ArrF (G)

MH .

The Hermitian pairing between V and W restricts to a Hermitian pair-
ing between VF and WF .

Let CG(F ) be the corresponding parabolic subgroup of G, the fixator
of F . We recall (see Theorem 2.32 above) that

• CG(F ) is generated by those reflections whose reflecting hyper-
planes belong to ArrF (G),
• F is the set of fixed points of CG(F ) in V ,

and CG(F ) is naturally identified with a subgroup of GL(VF ) generated
by reflections.

Let r = (I, J, ζ) ∈ R such that sr ∈ CG(F ). Then sr is a reflection in
its action on VF , and r may be viewed as a Zk-root for (VF ,WF ), since
I ⊂ VF and J ⊂ WF .

Proposition 3.33. Let R be a Zk-root system in V , and let F be a
flat of G(R) in V .

(1) The set

RF := {r | sr ∈ CG(F )}
is a Zk-root system for the parabolic subgroup CG(F ) viewed as
a reflection group acting on VF .

(2) If R is complete then RF is a complete root system for CG(F ).
(3) If R is distinguished then RF is a distinguished root system for

CG(F ).

Proof. (1) It suffices to check that RF is stable under the action of
CG(F ). It is enough to check that for r ∈ RF and t ∈ CG(F ), we have
t · r ∈ RF . But st·r = tsrt

−1, which fixes F .
Completeness and distinguishedness (items (2) and (3)) are inherited

directly from R. �

3.4. Root lattices, root bases.

Definition 3.34. Let R = { r = (Ir, Jr, ζr) } be a Zk-root system.
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(1) The root lattice QR and the coroot lattice Q∨R are defined by

QR :=
∑
r∈R

Ir and Q∨R :=
∑
r∈R

Jr .

(2) The weight lattice PR and the coweight lattice P∨R are the dual
of Q∨R and QR respectively, i.e.,

PR := {x ∈ V | 〈x,Q∨R〉 ⊆ Zk}
P∨R := { y ∈ W | 〈y,QR〉 ⊆ Zk}

The following properties are straightforward.

• QR ⊆ PR and Q∨R ⊆ P∨R .
• QR∨ = Q∨R , PR∨ = P∨R .

Definition 3.35. The group of automorphisms of a Zk-root system R
denoted Aut(R), is the group of all g ∈ GL(V ) such that g(R) = R.

In other words,

Aut(R) = {g ∈ GL(V ) | (I, J, ζ) ∈ R⇒ (g(I), g∨(J), ζ) ∈ R} .

If g ∈ Aut(R), g conjugates the reflection sr defined by a root r ∈ R
to the reflection sg(r) defined by g(r), hence

G(R) C Aut(R) .

Proposition 3.36.

(1) The lattices QR, PR, Q∨R, P∨R are all Aut(R)-stable finitely gen-
erated projective Zk-submodules of V and W respectively.

(2) The group G(R) acts trivially on PR/QR and on P∨R/Q
∨
R, hence

the group Aut(R)/G(R) acts on these quotients.
(3) The Hermitian pairing V ×W → k induces a non-degenerate

pairing of Zk(Aut(R)/G(R))–modules

PR/QR × P∨R/Q∨R −→ k/Zk .

Proof. Assertion (1) is clear. Assertion (2) results from the following
lemma, which gives an alternative description of the reflection associ-
ated with a Zk-root.

Lemma 3.37. Let r = (I, J, ζ) be a Zk-root. Assume that (αi)i∈E and
(βi)i∈E are finite families of elements of I and J respectively such that∑

i∈E

〈αi, βi〉 = 1− ζ .

Then, for all v ∈ V ,

sr(v) = v −
∑
i∈E

〈v, βi〉αi .
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Proof. For all i ∈ E, we have (see Proposition 2.4)

sr(v) = v − 〈v, βi〉
〈αi, βi〉

(1− ζ)αi , hence

〈αi, βi〉sr(v) = 〈αi, βi〉v − 〈v, βi〉(1− ζ)αi .

Summing the last equality over E, then simplifying by (1 − ζ), gives
the expected formula. �

Now (with the same notation as in the above lemma), for all v ∈ PR,
〈v, βi〉 ∈ Zk, hence 〈v, βi〉αi ∈ QR, which shows that sr acts trivially
on PR/QR.

Assertion (3) is immediate. �

Notice also that for a a fractional ideal, we have

Qa·R = aQR , Q∨a·R = a−∗Q∨R
Pa·R = aPR , P∨a·R = a−∗P∨R .

Definition 3.38. Let R1 and R2 be two Zk-root systems.

(1) Say that R1 and R2 are of the same genus if there exists a
fractional ideal a such that

R2 = a ·R1 := { a · r1 | (r1 ∈ R1) }.
(2) Say that R and R′ are lattice equivalent if there exists a frac-

tional ideal a such that QR′ = aQR and Q∨R′ = a−∗Q∨R.

Notice that if two root systems have the same genus, then they are
lattice equivalent. The converse is false, as seen in the following exam-
ple.

Example 3.39. Consider k := Q(ζ3), hence Zk = Z[ζ3] (a principal ideal
domain). Set W = V = k and G := µ3 acting on V by multiplication.
Now (1− ζ2

3 )Zk = (1− ζ3)Zk, since 1− ζ2
3 = −ζ(1− ζ3).

It is easily checked (see Section 4 below for the general case of the
cyclic groups) that there are exactly three genera of complete root
systems for G as follows: let p = (1− ζ3)Zk = (1− ζ2

3 )Zk, then

R1,1 :=
{(
Zk, p, ζ3

)
,
(
Zk, p, ζ2

3

)}
R1,p :=

{(
Zk, p, ζ3

)
,
(
p,Zk, ζ2

3

)}
Rp,1 :=

{(
p,Zk, ζ3

)
,
(
Zk, p, ζ2

3

)}
Now QR1,p = QRp,1 = Zk, and PR1,p = PRp,1 = Zk, so these two distinct
(with respect to genus) root systems are in fact lattice equivalent.

Definition 3.40. A subset Π of elements of R is said to be

• a set of root generators if QR =
∑

r∈Π Ir
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• a root lattice basis if QR =
⊕

r∈Π Ir
• a root basis if

(1) QR =
⊕

r∈Π Ir and
(2) the family (sr)r∈Π generates G(R).

Coroot generators, coroot lattice bases, coroot bases are defined anal-
ogously.

Example 3.41. As above, let us choose k := Q(ζ3), hence Zk = Z[ζ3],
V = W = k and G := µ3 acting on V by multiplication. Then each of
the root systems R1,1, R1,p, Rp,1 contains a root basis – for example,

Π =
{(
Zk, (1− ζ3)Zk, ζ3

)}
. Indeed, Π is both a root basis and a

coroot basis of R1,1. However R1,p and Rp,1 do not contain a subset
which is simultaneously a root basis and a coroot basis.

On the other hand, a distinguished root system for a well generated
group always contains a subset which is simultaneously a root basis
and a coroot basis:

Proposition 3.42. Let R be a distinguished Zk-root system. Let Π be
a subset of R such that {sr | r ∈ Π} generates G(R). Then

(1) whenever r ∈ R, there exist r0, r1, . . . , rm ∈ Π such that r =
(srm · · · sr1) · r0 ,

(2) Π is a set of root generators and a set of coroot generators,
(3) if Π consists of principal Zk-roots, then R is principal,
(4) if |Π| = dimV , then Π is a root basis and a coroot basis

Proof. Write G for G(R). Notice that it is enough to prove the results
concerning roots: the ones concerning coroots follow by considering the
contragredient operation g 7→ g∨ of G on W .

(1) Let r ∈ R. By Corollary 2.38, sr is conjugate to some sr0 for r0 ∈
Π. Thus there exist r1, . . . , rm ∈ Π with sr = srm · · · sr1sr0s−1

r1
· · · s−1

rm .
Since R is stable under G, and since wsr0w

−1 = sw.sr0 , the above equal-
ity implies that r = (srm · · · sr1) · r0 .

(2) Suppose that for r, r0, . . . , rm ∈ Π are as in (1). By Lemma 3.12,

sr1(Ir0) ⊂ Ir0 + Ir1 ,

so
sr2sr1(Ir0) ⊂ sr2(Ir0) + sr2(Ir1) ⊂ Ir0 + Ir1 + Ir2 ,

and an iteration shows that

Ir = (srm · · · sr1)(Ir0) ⊂ Ir0 + Ir1 + · · ·+ Irm .

Part (3) results from assertion (1) and from the remark that, for any
g ∈ GL(V ) and r a principal Zk-root, g(r) is still principal.

Item (4) is clear. �

Proposition 3.43. Let R be a distinguished Zk-root system. If Π is
a subset of R such that |Π| = dimV and the family (sr)r∈Π generates
G(R), then Π is a root basis and coroot basis of R.
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Proof. This results from Proposition 3.42 (4). �

Note that root bases only exist when G(R) is well generated.

Remark 3.44. When Zk is not a P.I.D., a root basis does not necessarily
provide a basis of QR as a Zk-module. Nevertheless, we shall see later
(Theorem 6.6, see also [Ne, Corollary 13]) that every reflection group
has at least one principal Zk-root system, and the root lattice of a
principal Zk-root system is always a free Zk-module.

3.5. Example: the Weyl group of type B2.

Let k be a number field. Set V = k2 with canonical basis {e1, e2} and
W = k2 with canonical dual basis {f1, f2}. The Weyl group of type B2,
denoted G, may be considered to be the subgroup of GL(V ) generated
by S = {s, t} where s and t are the automorphisms of V corresponding
respectively to the following matrices on the basis {e1, e2}:

s :=

(
−1 0
0 1

)
and t :=

(
0 1
1 0

)
.

The corresponding reflecting lines are{
Ls = kvs with vs = e1 and Lt = kvt with vt = e2 − e1 ,
Ms = kv∨s with v∨s = 2f1 and Mt = kv∨t with v∨t = f2 − f1 .

The orbits under G of the following root bases (corresponding to
generators s and t in that order) are Zk-root systems corresponding to
the types B2 and C2 respectively:

Π(B2) :=
{(
Zkvs,Zkv∨s ,−1

)
,
(
Zkvt,Zkv∨t ,−1

)}
,

Π(C2) :=

{(
2Zkvs,

1

2
Zkv∨s ,−1

)
,
(
Zkvt,Zkv∨t ,−1

)}
.

Swapping V and W , and s and t, defines an isomorphism between the
coroot system of type B2 and the root system of type C2, and vice
versa. We say that they are mutually dual root systems.

It is immediate to check that the element φ ∈ GL(V ) defined by

φ :

{
e1 7→ −e1 + e2 ,

e2 7→ e1 + e2 ,

that is, the automorphism of V with matrix

(
−1 1
1 1

)
on the basis

(e1, e2), has the following properties:

(1) φ2 = 2IdV ,
(2) it swaps s and t (by conjugation),
(3) it sends Π(B2) onto Π(C2) and Π(C2) onto 2Π(B2), hence swaps

R(B2) and R(C2), up to genus.

That is, the automorphism denoted 2B2 of G swaps, up to genus, R(B2)
and R(C2), which are thus isomorphic (up to genus).
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Lemma 3.45.

(1) The following assertions are equivalent.
(i) There exists a Zk-root system with group G which is stable

by the automorphism φ (up to genus),
(ii) there exists a principal ideal a of Zk such that a2 = 2Zk.

(2) If a = (Zka) is such that a2 = 2u with u ∈ Z×k , we set:

Πa :=
{(

aZkvs, a−∗Zkv∨s ,−1
)
,
(
Zkvt,Zkv∨t ,−1

)}
,

and denote by Ra the orbit of Πa under the group generated by
the reflections sr for r ∈ Πa. Then
(a) Ra is a Zk-root system with group G,
(b) the flips between V and W and between s and t define an

isomorphism between Ra and its coroot system (thus, Ra

is “self-dual”),
(c) φ(Ra) = aRa (thus Ra is stable by φ up to genus).

That is, the root system Ra affords an automorphism corresponding
to the automorphism 2B2 of G.

Proof. The proof of (2) is easy and left to the reader. Moreover, (2)
implies the implication (ii)⇒(i) of (1).

Let us prove (1), (i)⇒(ii). We may assume that R, the Zk-root
system for G which is stable (up to genus) under φ, has root basis:

Π :=
{(

asvs, a
−∗
s v∨s ,−1

)
,
(
atvt, a

−∗
t v∨t ,−1

)}
for some fractional ideals as, at. Now φ(R) = aR for some a ∈ k×, so

asvt = aatvt and 2atvs = aasvs ,

from which we deduce that a2at = aas = 2at. Multiplication by a−1
t

gives a2Zk = 2Zk. �

For example, set k = Q(i) or Q(
√

2). The ring Zk is a principal ideal
domain. Setting a := Z[i](1+i) or Z[

√
2]
√

2, then a = a∗ and 2Zk = a2

is the decomposition of 2Zk in Zk.
It is immediate to check that, if 2Zk = a2, there are at least three

genera of reduced Zk-root systems for G described as the orbits under
G of the following three pairs of roots:

{ (Zkvs,Zkv∨s ,−1), (Zkvt,Zkv∨t ,−1)}
{ (2Zkvs, 1

2
Zkv∨s ,−1), (Zkvt,Zkv∨t ,−1)}

{ (avs, a
−∗v∨s ,−1), (Zkvt,Zkv∨t ,−1)}.

3.6. Connection index.

Let R = {r = (Ir, Jr, ζr)} be a Zk-root system. The characteristic
ideal (see for example [Bro3, 2.3.4.2]) of the torsion Zk-module PR/QR

is defined by
r∧
QR = Ch(PR/QR)

r∧
PR ,
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where r := dimV (see [BouAlg, §4, n06]).

Remark 3.46. The characteristic ideal is the image in the group of
fractional ideals of Zk of the divisor called “contenu” in [BouAlg, §4,
n05, Definition 4].

The next definition is inspired by the definition given in [BouLie,
chap. 6, no 1.9].

Definition 3.47. The characteristic ideal of the torsion Zk-module
PR/QR is called the connection index of the root system R.

Theorem–Definition 3.48. Let (V,G) be an irreducible well gener-
ated reflection group. The connection index of a distinguished Zk-root
system R for G does not depend on the choice of R, and is called the
connection index of (V,G).

Proof of Theorem 3.48. Let r := dimV . Let R be a distinguished Zk-
root system for G. By item (4) of Proposition 3.42, since (V,G) is well
generated, by Proposition 3.43 there exists a set Π of r roots such that
QR =

⊕
r∈Π Ir and Q∨R =

⊕
r∈Π Jr .

For all r ∈ Π write Ir = arvr and Jr = a−∗r wr for some vectors vr and
wr with 〈vr, wr〉 = 1 − ζr and some fractional ideal ar. Let w′r be the
dual basis of wr and set J ′r = arw

′
r. Then PR =

⊕
r∈Π J

′
r.

Assume given another distinguished Zk-root system R′ associated
with the same set of reflections. For each r ∈ R, associated with the
reflection sr, let us denote by r′ the element of R′ associated with the
same reflection sr. Then, if r′ = (Ir′ , Jr′ , ζr) , we have Ir′ = brIr and
Jr′ = b−∗r Jr for a fractional ideal br.

Then
QR′ =

⊕
r∈Π

brIr and PR′ =
⊕
r∈Π

brJ
′
r ,

and
r∧
QR′ =

(∏
r∈Π

br
) r∧

QR ,

r∧
PR′ =

(∏
r∈Π

br
) r∧

PR .

This shows that

Ch(PR′/QR′) = Ch(PR/QR) ,

and ends the proof. �

Remark 3.49. Let V and W be as above, such that dimV = r. Let
(V,G) be a reflection group and let s1, . . . , sr be a set of reflections such
that V =

⊕r
i=1 Lsi and W =

⊕r
i=1Msi . For each i = 1, . . . r, pick vi ∈

Lsi and v∨i ∈Msi such that 〈vi, v∨i 〉 = 1− ζsi . Then the Cartan matrix
(〈vi, v∨i 〉)i,j depends only (up to conjugation by a diagonal matrix) on
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the choice of the set s1, . . . , sr, hence its determinant depends only on
such a choice.

We shall see later (Proposition 6.7) that if moreover s1, . . . , sr gener-
ate G, that determinant generates (as an ideal) the connection index,
hence in particular it does not depend (up to a unit) on the choice of
the generators s1, . . . , sr.

4. The cyclic groups

4.1. Generalities.
As an introduction, let us consider the case of the cyclic group. Let

k be a finite extension of Q which contains µd, also viewed as a one
dimensional vector space V over itself; it is paired with W = k by
〈a, b〉 := ab∗.

Let ζ := exp(2πi/d), and let G := µd = {1, ζ, . . . , ζd−1} be the cyclic
subgroup of C× of order d. We let G act on k by multiplication.

Proposition 4.1.

(1) Whenever F := (a1, a2, . . . , ad−1) is a family of ideals of Zk such
that, for each j (1 ≤ j ≤ d− 1), aj divides (1− ζj)Zk, then the
set

R(F) := {(aj, (1− ζj)∗a−∗j , ζj) | (1 ≤ j ≤ d− 1)}
is a complete reduced Zk-root system for G = µd.

(2) The family (R(F)) where F = (a1, a2, . . . , ad−1) runs over the
families as above such that a1, a2, . . . , ad−1 are relatively prime,
is a complete set of representatives for the genera of complete
reduced Zk-root systems for G.

Proof. The assertion (1) is trivial. Let us prove (2).
According to Lemma 3.4(1) a Zk-root for a reflection of G is a triple

(av, a−∗w, ζj) where v ∈ V = C and w ∈ W = C and 〈v, w〉 = 1 − ζj.
We will write this (aj, bj, ζ

j) where we have set aj = av and bj = a−∗w
and the condition becomes 〈aj, bj〉 = ajb

∗
j = (1 − ζj)Zk. This implies

that bj = ((1− ζj)a−1
j )∗ = (1− ζj)∗a−∗j .

According to definitions 3.8, 3.24.1 and 3.24.2 a complete and re-
duced Zk-root system for G is a set of roots as above

R = {(aj, bj, ζj) | (0 < j < d)} ,
subject to the integrality condition that for 1 ≤ j, k ≤ d− 1, we have

ajb
∗
k ⊆ Zk .

In other words,

R = {(aj, (1− ζ−j)a−∗j , ζj) | (1 ≤ j ≤ d− 1)} ,

where (1− ζk)aja−1
k ⊆ Zk; or equivalently:

(Rj,k) (1− ζk)aj ⊆ akZk ⊆ ak .
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Since we want to know only the genus of R, we may multiply the
family (aj)1≤j≤d−1 by an integral ideal so that the result is a family
(still denoted by (aj)1≤j≤d−1) such that all aj are integral, and they are
relatively prime (i.e., their sum is Zk).

Letting j vary in the equality Rj,k shows then that, for all k, ak
divides (1− ζk)Zk. �

Corollary 4.2.

(1) Each genus of complete root systems for the cyclic group con-
tains a root system whose root lattice is Zk.

(2) All root lattices for complete root systems for the cyclic group
are lattice equivalent.

Proof. Reasoning as in the proof of item (2) of Proposition 4.1, each
genus contains R(F) := {(aj, bj, ζ ij)}j where

∑
i ai = Zk, which shows

item (1).
Item (2) is an immediate consequence of item (1). �

Every cyclic group has at least one complete root system which is
principal and has a root basis. For example, for the family of ideals F
for which a1 = · · · = ad−1 = Zk, then the singleton {(Zk, (1−ζ)∗Zk, ζ)}
is a root basis.

The next easy remark will be useful later.

Proposition 4.3. Let G = µd be the cyclic group of order d and let
ζ := exp(2πi/d).

(1) The singleton {(Zk, (1 − ζ)∗Zk, ζ)} is a complete principal Zk-
root system, and provides a root basis.

(2) The connection index is the principal ideal (1− ζ)Zk.

4.2. The case of G = µ2.

In that case, whatever the decomposition of 2Zk into prime ideals of
Zk is, the following description results from 4.1.

Lemma 4.4. Whatever the field k is, there is only one genus of reduced
root system for µ2, represented by the singleton

{(Zk, 2Zk,−1)} ,
or by any singleton {(a, b∗,−1)} where a and b are two integral ideals
such that ab = 2Zk.

Remark 4.5. Motivated by questions related to exceptional Spetses (see
[BMM]), we consider the following cases for the field k:

Q , Q(i) , Q(ζ3) , Q(ζ12) , Q(
√
−7) , Q(

√
5, ζ3) , Q(

√
−2, ζ3) .

The prime decomposition of the ideal 2Zk in these cases is as follows:

Lemma 4.6.

(1) For k = Q or k = Q(ζ3), the ideal 2Zk is prime in Zk.
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(2) For k = Q(i), Q(ζ12), or Q(
√
−2, ζ3), 2Zk = p2 for some inte-

gral ideal p.
(3) For k = Q(

√
−7) and k = Q(

√
5, ζ3), we have 2Zk = pp∗ where

p is a prime ideal in Zk and p 6= p∗.

Proof. Note first that, for example by [Was, Theorem 11.1], the rings
Z[ζ3], Z[i], Z[ζ12] considered below are principal ideal domains.

(1) For k = Q(ζ3), we have Zk = Z[ζ3] = Z[X]/(X2 + X + 1), and
since (X2 +X + 1) is irreducible over F2, 2Zk is prime in Zk.

(2) For k = Q(i), we have Zk = Z[i] and 2Zk = ((1 + i)Zk)2.

For k = Q(ζ12), we have Zk = Z[ζ12], and 2Zk = ((1 + i)Zk)2.

For k = Q(
√
−2, ζ3), we have Zk = Z[

√
−2, ζ3] (see Exercise

4.5.13 in [MuEs]) and 2Zk = (
√
−2Zk)2.

(3) For k = Q(
√
−7), Zk = Z

[
1+
√
−7

2

]
, and 2 = 1+

√
−7

2
· 1−

√
−7

2
,

hence 2Zk is a product of two (conjugate) prime ideals: 2Zk =
pp∗, and p 6= p∗ since there is no solution in integers a and b to
the equation(

a+ b
1 +
√
−7

2

)
1−
√
−7

2
=

1 +
√
−7

2
.

Finally, consider the case k = Q(
√

5, ζ3), with Zk = Z[φ, ζ3],

where φ = 1+
√

5
2

. Since the polynomial X2−X−1 is irreducible
over F2, the prime 2 remains prime in Z[φ], and we know it
remains prime over Z[ζ3]. Now 2 = (1 + ζ3φ)(1 + ζ2

3φ), which
shows that in Zk we have again 2Zk = pp∗, and p 6= p∗, since
the only solution in rational numbers to

(a+ bφ+ cζ3 + dζ3φ)(1 + ζ3φ) = 1 + ζ2
3φ

is a = c = −d = 1
2
, b = −1.

�

4.3. A few particular cases for G = µ3.

We first remark that 1−ζ3
1−ζ23

= −ζ3 is a unit thus the ideals (1− ζ3)Zk
and (1− ζ2

3 )Zk are the same ideal j = j∗ and 3Zk = j2.
We want to consider the following cases for the field k:

Q(ζ3) , Q(ζ12) , Q(
√
−2, ζ3) .

The cases where k = Q(ζ3) and k = Q(ζ12).

In these cases j is prime (in the case k = Q(ζ12), this follows from
A.5 and the fact that 3 is a generator of (Z/4Z)×). It follows that there
are two genera of reduced complete root systems, represented by the
two systems

R1 := { (Zk, j, ζ3) , (Zk, j, ζ2
3 ) }

R2 := { (j,Zk, ζ3) , (Zk, j, ζ2
3 ) }
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The case k = Q(
√
−2, ζ3).

We first compute the factorisation of j into prime ideals in Zk.
• We have 3 = (1 +

√
−2)(1 −

√
−2) , and since µ(Q(

√
−2)) = {±1}

(see for example [Sa], 4.5) it follows that the ideal 3Zk decomposes
in a product of two different prime ideals in Z[

√
−2]:

3Zk = (1 +
√
−2)Zk · (1−

√
−2)Zk .

These ideals are different since the equation (a+b
√
−2)(1+

√
−2) =

1−
√
−2 has no solution in integers a, b.

• We know that 3Zk = j2 in Z[ζ3] (see remarks above).
• We also have:{

1 +
√
−2 = (1 + ζ3

√
−2)(−1− ζ2

3

√
−2)

1−
√
−2 = (1− ζ3

√
−2)(−1 + ζ2

3

√
−2) .

Moreover we have the products of ideals

(1 + ζ3

√
−2)Zk · (1− ζ3

√
−2)Zk = (−1− ζ2

3

√
−2)Zk · (−1 + ζ2

3

√
−2)Zk = j

• Notice that{
1− ζ2

3

√
−2 = (1− ζ3

√
−2)(ζ3 − ζ2

3 −
√
−2)

1− ζ3

√
−2 = (1− ζ2

3

√
−2)(ζ2

3 − ζ3 −
√
−2)

which shows the equality of ideals

p := (1− ζ3

√
−2)Zk = (1− ζ2

3

√
−2)Zk .

Similarly we have the equality of ideals

q := p∗ = (1 + ζ3

√
−2)Zk = (1 + ζ2

3

√
−2)Zk .

hence one has the following decomposition of 3Zk into products of
prime ideals in Z[ζ3,

√
−2]:

3Zk = pq︸︷︷︸
= j

pq︸︷︷︸
= j

.

and p 6= q since q2 = (1 +
√
−2)Zk and p2 = (1 −

√
−2)Zk are

different ideals.

Now that we have the factorization of (3) we can determine the reduced
complete root systems. Up to genus, they are of the form

Ra1,a2 := { (a1, ja
−∗
1 , ζ3) , (a2, ja

−∗
2 , ζ2

3 ) } ,
where the ideals a1 and a2 are integral, coprime, and divide j = pq.
It is an elementary arithmetic exercise to deduce now the following
classification.

Proposition 4.7. There are 9 genera of reduced complete Z[ζ3,
√
−2]-

root systems for µ3, represented by the following list:

R1,1 = { (1, pq, ζ3) , (1, pq, ζ2
3 ) } ,

Rp,q = { (p, p, ζ3) , (q, q, ζ2
3 ) } , Rq,p = { (q, q, ζ3) , (p, p, ζ2

3 ) } ,
R1,q = { (1, pq, ζ3) , (q, q, ζ2

3 ) } , Rq,1 = { (q, q, ζ3) , (1, pq, ζ2
3 ) } ,

R1,p = { (1, pq, ζ3) , (p, p, ζ2
3 ) } , Rp,1 = { (p, p, ζ3) , (1, pq, ζ2

3 ) } ,
R1,pq = { (1, pq, ζ3) , (pq, 1, ζ2

3 ) } , Rpq,1 = { (pq, 1, ζ3) , (1, pq, ζ2
3 ) } .
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5. The group G(de, e, r)

Let d and e be two natural integers such that de > 1. Let k := Q(ζde),
and let V be a k–vector space with basis (e1, e2, . . . , er). We denote
by (e′1, e

′
2, . . . , e

′
r) the dual basis of W with respect to the Hermitian

pairing between V and W .
We denote by G(de, 1, r) the group consisting of all monomial ma-

trices with coefficients in µde, isomorphic to (µde)
r oSr.

We denote by G(de, e, r) the normal subgroup of index e in G(de, 1, r)
consisting in those matrices in G(de, 1, r) whose product of nonzero
entries lies in µd. When r = 1 then d 6= 1 is not allowed.

Remark 5.1. Unless r = 2 and d = 1, the field of definition of G(de, e, r)
is Q(ζde). We will classify root systems over that field. The field of
definition of G(e, e, 2), the dihedral group of order 2e, is the maximal
real subfield of Q(ζe), namely the field Q(ζe + ζ−1

e ). The root systems
of G(e, e, 2) over that field will be treated in Subsection 5.4.

5.1. The reflections of G(de, e, r).
It is well known (see for example [Ne], proof of Lemma 5) that the

reflections Ref1(d, r) and Ref2(de, r) defined below exhaust the collec-
tion of reflections of G(de, e, r). The set of reflections of G(e, e, r) is
precisely Ref2(e, r).

Ref1(d, r): elements sik (1 ≤ i ≤ d− 1 , 1 ≤ k ≤ r) defined by

sik :

{
ek 7→ ζ idek

el 7→ el if l 6= k

Note that if d = 1 the set Ref1(d, r) is empty, while if d > 1 it
consists of reflections.

Ref2(de, r): the involutive reflections s
(j)
k,l (with 0 ≤ j ≤ de − 1 , 1 ≤

k < l ≤ r) defined by

s
(j)
k,l :


ek 7→ ζjdeel

el 7→ ζ−jde ek

em 7→ em if m 6= k, l

It is also well known (see for instance [BMR, §3]) that the following
set of r + 1 reflections generates G(de, e, r):

(5.2)
{
s

(0)
12 , s

(0)
23 , . . . , s

(0)
(r−1),r, s

(1)
(r−1),r, s

1
r

}
.

5.2. The complete reduced Zk-root system R(de, e, r).

For each reflection above we define a Zk-root – here again, i, j, k, l,m
denote natural integers such that 1 ≤ k < l ≤ r , 1 ≤ i ≤ d − 1 , 0 ≤
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j ≤ de− 1 (if d = 1 some of our objects do not exist):

rik :=
(
Zkek, (1− ζ−id )Zke′k, ζ id

)
, an sik-root (if d > 1),

r
(j)
k,l :=

(
Zk(ek − ζjdeel),Zk(e′k − ζ

j
dee
′
l),−1

)
, an s

(j)
k,l -root.

The actions of the reflections on these roots and the Cartan pairings
of roots are described below. The results follow from direct calculation.

Lemma 5.3. Action of the reflections on roots:

srαk (rβl ) = rβl srαk (r
(β)
l,m) =


r
(β)
l,m if k 6= l,m

r
(β−eα)
l,m if k = l

r
(β+eα)
l,m if k = m

s
r
(β)
l,m

(rαk ) =

rαk if k 6= l,m
rαm if k = l
rαl if k = m

srαj,k(r
(β)
l,m) =



r
(β)
l,m if {j, k}∩{l,m}=∅
r
(β−α)
k,m if j = l, k < m

r
(α−β)
m,k if j = l,m < k

r
(β+α)
l,k if l < j = m < k

r
(β+α)
j,m if j < k = l < m

r
(α−β)
j,l if j < l, k = m

r
(β−α)
l,j if l < j, k = m

r
(2α−β)
j,k if j = l, k = m

Lemma 5.4. Cartan pairings of roots:

n(rαk , r
β
l ) =

{
0 if k 6= l

(1− ζβd )Zk if k = l

n(rαk , r
(β)
l,m) =

{
0 if k 6= l,m
Zk if k = l or if k = m

n(r
(β)
l,m, r

α
k ) =

{
0 if k 6= l,m

(1− ζαd )Zk if k = l or if k = m

n(r
(α)
j,k , r

(β)
l,m) =


0 if {j, k} ∩ {l,m} = ∅
Zk if |{j, k} ∩ {l,m}| = 1(

1 + ζα−βde

)
Zk if {j, k} = {l,m}

The preceding calculations ensure that

R(de, e, r) := R1(d, r) ∪R2(de, r)

is a complete reduced root system for G(de, e, r), where:

R1(d, r) := { rik }(1≤k≤r)(1≤i≤d−1)

R2(de, r) := { r(j)
k,l }(1≤k<l≤r)(0≤j≤de−1)

For a given i, we write Ri
1(d, r) := { rik }(1≤k≤r) and for a given j,

R
(j)
2 (de, r) := { r(j)

k,l }(1≤k<l≤r) so that

R1 =
⋃

1≤i≤d−1

Ri
1 and R2(de, r) =

⋃
0≤j≤de−1

R
(j)
2 (de, r) .
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The “even” and “odd” parts of R2 are defined to be:

R0
2(de, r) :=

⋃
j=0,2...

R
(j)
2 (de, r) and R1

2(de, r) :=
⋃

j=1,3...

R
(j)
2 (de, r) .

Lemma 5.5.

(1) The set R(de, e, r) is a complete reduced Zk-root system for
G(de, e, r).

(2) The orbits of G(de, e, r) on R(de, e, r) are
• when e is even and r = 2:{

R1
1(d, 2),R2

1(d, 2), . . . ,Rd−1
1 (d, 2),R0

2(de, 2),R1
2(de, 2)

}
,

• in other cases:

{R1
1(d, r),R2

1(d, r), . . . ,Rd−1
1 (d, r),R2(de, r) }

where the sets Rj
1(d, 2) are empty if d = 1 and R2(de, r) is

empty if r = 1.

Proof. The results follow directly from Lemmas 5.3 and 5.4. �

5.3. Classifying complete reduced root systems for G(de, e, r).

While R(de, e, r) is a representative of one genus of complete re-
duced root system for G(de, e, r) over Q(ζde), there may be others, as
described by the following theorem.

The group G(de, e, r) is a reflection group over k if and only if ζde ∈
k, except for G(e, e, 2) where the field of definition is Q(ζe + ζ−1

e ).
Thus the following theorem fulfills our aim stated in the introduction:
classify Zk-root systems for reflection groups over k, except for the
case of G(e, e, 2) over its field of definition which will be considered in
Subsection 5.4.

Theorem 5.6. Given a family F = { a1, a2, . . . , ad−1, b0, b1 } of frac-
tional ideals where, unless r = 2 and de = 2pk, p prime and k > 1, we
have b0 = b1 = Zk, we define the set

RF(de, e, r) :=

( ⋃
1≤i≤d−1

ai ·Ri
1(d, r)

)
∪ b0 ·R0

2(de, r) ∪ b1 ·R1
2(de, r) .

Then every genus of complete reduced Zk-root system for G(de, e, r)
when ζde ∈ k contains exactly one root system RF(de, e, r) where F
satisfies the additional conditions

• The aj and the bj are integral,
• b0 and b1 are relatively prime divisors of (1 + ζde)Zk,
• for all i = 1, 2, . . . , d− 1, ai divides (1− ζ id)Zk, and
• for all i = 1, 2, . . . , d− 1, b0 and b1 divide ai.

Proof. By the description of the orbits of G(de, e, r) over R(de, e, r)
(see Lemma 5.5 above) and 3.27, we see that any complete reduced
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Zk-root system for G(de, e, r) over a field containing ζde is of the form
RF(de, e, r) for some fractional ideals aj and bj.

Without changing the genus, we may assume that the elements of F
are integral and relatively prime.

Now computations of the Cartan pairings (see Lemma 5.4 above)
show that the following ideals must be integral (for 1 ≤ α, β ≤ d − 1
and j, k = 0, 1):(

1− ζβd
)
aαa

−1
β , aαb

−1
j , (1− ζαd ) bja

−1
α ,

(
1 + ζ

−(j+k)
de

)
bjb
−1
k

We see that b0 and b1 divide all the ai and since the whole family is
relatively prime, it follows that b0 and b1 are relatively prime. Since
aα divides both (1− ζαd )b0 and (1− ζαd )b1, we see then that aα divides
(1− ζαd )Zk.

Finally we also see that b0 and b1 divide (1 + ζde)Zk.
When r > 2, b0 = b1 since R0

2(de, r) and R1
2(de, r) are in the same

orbit. Since they are relatively prime, they must be trivial.
When r = 2, we use that 1 + ζde is a unit unless de is of the form

2pk, see A.2. �

We remark that when k = Q(ζde), the ideal (1 + ζde)Zk is Zk or
prime, see A.4.

Corollary 5.7 (Case of G(d, 1, r)). The map

F 7→ RF(d, 1, r) =
⋃

1≤d−1

ai ·Ri
1(d, r) ∪ R2(d, r)

induces a bijection between the set of families F := { a1, a2, . . . , ad−1 }
of integral ideals such that

• for all i, ai divides (1− ζ id)Zk and
• the ideals ai are relatively prime,

and the set of genera of complete reduced Zk-root systems for G(d, 1, r).

Corollary 5.8 (Case of G(e, e, r)). Assume that r > 2. There is only
one genus of Zk-root systems for G(e, e, r), represented by the principal
root system R2(e, r).

Corollary 5.9 (The dihedral group).

(1) If e is odd there is only one genus of Z[ζe]-root system for
G(e, e, 2) represented by the principal root system R2(e, 2).

(2) If e is even, the map

(b0, b1) 7→ b0 ·R0
2(e, 2) ∪ b1 ·R1

2(e, 2)

induces a bijection between the set of pairs of relatively prime
integral ideals of Z[ζe] dividing Z[ζe](1 + ζe) and the set of gen-
era of Z[ζe]-root systems for G(e, e, 2).
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Remark 5.10. As a particular case of Corollary 5.9 above, we recover
the results already cited in Subsection 3.5 about the Z[i]-root systems
for the Weyl group of type B2.

5.4. Root systems for G(e, e, 2) on its field of definition.

The field of definition of the dihedral group G = G(e, e, 2) is k =
Q(ζe + ζ−1

e ), the largest real subfield of Q(ζe); its ring of integers is
Z[ζe + ζ−1

e ] by Proposition A.10 (2). In this section we classify root
systems of G over its field of definition. From now on we write ζ for ζe.

Lemma 5.11. The involutory reflections:

s =

(
−1 2 + ζ + ζ−1

0 1

)
and t =

(
1 0
1 −1

)
generate G, and satisfy the dihedral relation (st)e = 1.

Moreover, when e is even, (st)e/2 = −1.

Proof. The elements of G of the form (st)n are rotations. These ele-
ments have matrices:

(st)n =
1

=(ζ)

(
=(ζn + ζn+1) −=(ζn−1 + 2ζn + ζn+1)
=(ζn) −=(ζn + ζn−1)

)
,

where =(z) denotes the imaginary part of a complex number z. From
this computation the lemma is obvious. �

The reflection lines of s and t respectively are in the directions of
the standard vectors e1 =

(
1
0

)
and e2 =

(
0
1

)
respectively.

Define principal roots rs = Zk · (e1, 2e
′
1 − (2 + ζ + ζ−1)e′2,−1) and

rt = Zk · (e2,−e′1 + 2e′2,−1).

Proposition 5.12. If e is odd let R := {(st)nrs | 0 ≤ n < e}. If e is
even, let Rs := {(st)nrs | 0 ≤ n < e/2} , Rt := {(st)nrt | 0 ≤ n < e/2} ,
and R := Rs ∪Rt .

(1) In both cases R is a complete, reduced, distinguished and prin-
cipal Zk-root system for G with root basis {rs, rt}.

(2) There is a single genus of reduced Zk-root systems for G unless
e = 2pk, p prime, k ≥ 1.

In this last case, there is another genus, represented by the
principal root system given by Rs ∪ (2 + ζ + ζ−1) ·Rt.

Proof. We have:

(st)ne1 =
1

=(ζ)

(
=(ζn + ζn+1)
=(ζn)

)
.

• If e is odd, then the dihedral relation ensures that all the reflections
of G are conjugate: setting q = (e − 1)/2, we have ζq+1 = −ζ2e and

=(ζq+1) = −=(ζq). Thus (st)qe1 = =(ζq)
=(ζ)

e2 and (st)qrs = α−1rt with

α =
=(ζ)

=(ζq)
= −ζq(1 + ζ) = −2<(ζq) = <(ζ2e)
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and α2 = 2 + ζ + ζ−1 = (1 + ζ)(1 + ζ−1).
By A.2 in Appendix A, 1 + ζe is a unit unless e is of the form 2pk,

p prime, k ≥ 1. In particular, if e is odd, α is a unit in Z[ζ], which
proves that actually (st)qrs = rt.

Since n(rs, rt) = −(2 + ζ + ζ−1) and n(rt, rs) = −1, it results from
Proposition 3.18 that R is a Zk-root system for G. Thus there is a
single genus of reduced root systems by 3.27.

• If e is even, there are two conjugacy classes of reflections, of which
s and t are representatives. Thus the orbits of rs and rt are distinct, and
their size is e/2 since (st)e/2 = −1. Again the pairings are integral by
Proposition 3.18. But, this time we can scale one of the orbits by some
fractional ideal a (see 3.27), and for the pairings to remain integral we
need that a be an integral divisor of 2 + ζ + ζ−1 = (1 + ζ)(1 + ζ−1).
Thus by A.2, a can be non trivial only if e = 2pk. In this last case, by
Lemma A.12, 2 + ζ + ζ−1 is prime, so the only possible values for a are
the principal ideals Zk and (2 + ζ + ζ−1)Zk.

Proposition 3.42 ensures that {rs, rt} is always a root basis. �

The symmetric dihedral root system.

A symmetric (“self-dual”) root system for G(e, e, 2) can be obtained
by adjoining 2 cos(π

e
). This results in the “symmetric Cartan matrix”:

Csym =

(
2 −2 cos(π

e
)

−2 cos(π
e
) 2

)
This corresponds to a root system over Zk only if e is odd (see item
(2) of A.9).

Now (2 + ζ + ζ−1) =
(
2 cos(π

e
)
)2

; that is, adjoining 2 cos(π
e
) to Zk

makes (2 + ζ + ζ−1) a square. Unless e is a power of 2, (2 + ζ + ζ−1)
is a unit, so we do not get any additional root systems. However, if e
is a power of 2, we get a third, self-dual, root system. The three are:

Rs ∪Rt,
(

2 cos
(π
e

))2

·Rs ∪Rt and 2 cos
(π
e

)
·Rs ∪Rt .

The last root system in this list (with symmetric Cartan matrix) is
stable under the outer automorphism of G(e, e, 2).

5.5. Classifying distinguished root systems for G(de, e, r).

The complete reduced systems for G(e, e, r) described above are
also distinguished because all reflections, being involutive, are distin-
guished.

For G(de, e, r) with d > 1, the distinguished roots (those correspond-
ing to distinguished reflections) are those in R2(de, r) (corresponding
to involutive reflections) and R1

1(d, r).
Applying Proposition 3.29 (every complete root system contains a

distinguished root system) to Theorem 5.6 allows us to deduce the
following result directly.
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Theorem 5.13. Given a family Fr = { a, b0, b1 } of fractional ideals,
where b0 = b1 = Zk unless r = 2 and de = 2pl, p prime, l ≥ 1; define

RFr(de, e, r) := a ·R1
1(d, r) ∪ b0 ·R0

2(de, r) ∪ b1 ·R1
2(de, r) .

Then every genus of distinguished Zk-root system for G(de, e, r) over a
field containing ζde contains exactly one root system RFr(de, e, r) where
Fr satisfies the additional conditions

• a, b0 and b1 are integral,
• b0 and b1 are relatively prime divisors of (1 + ζde)Zk,
• a divides (1− ζd)Zk,
• b0 and b1 divide a.

Again, we remark that when k = Q(ζde), the ideal (1 + ζde)Zk is Zk
or prime, see Lemma A.4.

The complete root systems for G(e, e, r), including all the dihedrals
G(e, e, 2), as well as G(2, 1, r) as described in Corollaries 5.7, 5.8 and
5.9 are all distinguished by definition.

Corollary 5.14. Each genus of distinguished root system for G(d, 1, r)
contains a root system of the form:

RFr(d, 1, r) = a ·R1
1(d, r) ∪ R2(d, r) ,

where a ∈ {Zk, (1− ζd)Zk}. Thus there are two genera of distinguished
root systems of G(d, 1, r), each containing a principal root system.

Remark 5.15. It was assumed at the beginning of this section that
de > 1, excluding the case G(1, 1, r).

However it is well known that the reflections contained in the sym-
metric group Sr, that is, the Weyl group of type Ar−1, are precisely
the reflections:

Ref2(1, r) = {s(0)
k,l | 1 ≤ k < l ≤ r}

defined as above, with a single orbit of roots

R(1, 1, r) := R2(1, r) = {r(0)
k,l | 1 ≤ k < l ≤ r}

where
r
(0)
k,l = (Zk(ek − el),Zk(e′k − e′l),−1) ,

as defined above. The set R(1, 1, r) forms a complete and reduced
root system for Sr, and as the reflections are all involutive, it is also
distinguished.

Since the action of Sr on the roots consists of a single orbit, there is
a unique genus of root system, with representative given by R(1, 1, r)
above.

One may notice that (see Remark 3.11), as far as we deal with well-
generated reflection groups, the next result allows us to reduce our
classification problem to a problem which has already been solved by
Nebe [Ne].
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Theorem 5.16. All genera of distinguished root systems over the field
of definition of a well-generated irreducible complex reflection group
contain a principal root system.

Proof. Let k be the field of definition of the well-generated irreducible
complex reflection group G. If G is primitive, then Zk is a P.I.D. and
there is nothing to prove. If G = G(d, 1, r) the statement has been
given in Corollary 5.14. If G = G(e, e, r) with r > 2 the statement
has been given in Corollary 5.8. Finally, if G = G(e, e, 2) the result is
proved in Proposition 5.12. �

6. Principal root systems and Cartan matrices

6.1. Cartan matrices.

Notation 6.1. Given a distinguished Zk-root system R,

• for every distinguished reflection s of G(R), by Proposition 3.26
there is a corresponding root in R which we denote by rs
• given a set of distinguished reflections S ⊂ Ref(G(R)), we set
RS := {rs | s ∈ S}.

Definition 6.2. Let R be a principal distinguished Zk-root system. Let
S be an ordered subset of distinguished reflections of Ref(G(R)). For
each s ∈ S, choose generators αs and βs of respectively Irs and Jrs as
in Remark 3.7. The matrix with entries Cs,t = 〈αs, βt〉 for s, t ∈ S is
called a Cartan matrix for RS.

Note that all entries of such a Cartan matrix belong to Zk.
The proof of the following lemma is left to the reader.

Lemma 6.3.

(1) Two Cartan matrices for the same subset of a given principal
Zk-root system are conjugate by a diagonal matrix over Z×k .

(2) Let R and R′ be ordered subsets of two principal Zk-root sys-
tems such that the ordered sets of reflections attached to them
are equal. Then any Cartan matrix for R is conjugate to any
Cartan matrix for R′ by a diagonal matrix.

Cartan matrices and genera of principal root systems.

Theorem 6.4. Let (V,G) be an irreducible reflection group. Let R and
R′ be two principal distinguished Zk-root systems such that G(R) =
G(R′) = G. Let S be an ordered list of distinguished reflections which
generates G. If a Cartan matrix for RS is conjugate to a Cartan matrix
for R′S by a diagonal matrix of units of Zk, then R and R′ belong to
the same genus (that is, there is λ ∈ k such that R′ = λ ·R).
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Proof. For each s ∈ S, let rs ∈ RS and r′s ∈ R′S be the corresponding
roots. As in in Remark 3.7, choose αs a generator of Irs and βs a
generator of Jrs , such that 〈αs, βs〉 = 1 − ζs; similarly choose α′s a
generator of Ir′s and β′s a generator of Jr′s , such that 〈α′s, β′s〉 = 1 − ζs.
Let λs ∈ k× such that α′s = λsαs. Thus β′s = λ−∗s βs.

Let C (resp. C ′) be the Cartan matrix determined by the above
choices. Up to changing these choices by units, we may (and we do)
assume C = C ′. For any s, t ∈ S we have

Cs,t = 〈αs, βt〉 = 〈α′s, β′t〉 = λsλ
−1
t 〈αs, βt〉 .

Hence, if Cs,t 6= 0, then λs = λt . Choose s0 ∈ S. Since G is irreducible,
and S generates G, for any t ∈ S, there is a sequence s0, . . . , sl = t
such that for all j, sj ∈ S and Csj+1,sj 6= 0 for all j = 0, . . . , l−1, which
shows that λs0 = λt. Let λ := λs0 . It follows that R′S = λ ·RS.

Finally, for any r ∈ R, by the assumption on orbits there is an
expression sr = s1···sns0 for sr in terms of s0. In particular, since R is
reduced, this ensures that r = (s1 · · · sn) · rs0 . Thus the fact that RS

and R′S belong to the same genus propagates to R and R′. �

The proof of the following proposition results from the bijection given
in its second part.

Proposition 6.5. Let G be a finite subgroup of GL(V ) generated by
reflections. Assume given a family S of reflections which generates G.

Let R = {r := (Ir, Jr, ζr)} be a distinguished principal Zk-root system
such that G = G(R). We denote by Car(RS) the set of all matrices M
satisfying the following conditions:

• M is conjugate to C, a Cartan matrix of RS, by a diagonal
matrix (with diagonal entries in k×),
• the entries of M belong to Zk.

There is a bijection between

– the set of conjugacy classes of Car(RS) under the action of the
group of diagonal matrices with entries in Z×k ,

– the genera of distinguished principal Zk-root systems for G,

defined as follows.

→ For M = DCD−1 ∈ Car(RS), where D = (λs)s∈S is an in-
vertible diagonal matrix, and for s ∈ S corresponding to the

root rs ∈ R, we define r
(M)
s := λs · rs and we denote by R(M)

the orbit under G of the family (r
(M)
s )s∈S. Then R(M) is a dis-

tinguished principal Zk-root system for G, and M is a Cartan

matrix associated with R
(M)
S .

← Let R′ be a distinguished principal root system for G. By item
(1) of Theorem 6.4, we know that C(R′S) is conjugate to C(RS)
by a diagonal matrix, and this shows that a Cartan matrix for
R′S does belong to Car(RS).
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The above result is at the heart of the classification of distinguished
root systems given in Section 9.

6.2. Free root lattices.

The third assertion of the following theorem has been proved in [Ne,
Corollary 13].

Theorem 6.6. Let (V,G) be a well-generated reflection group.

(1) There exists a distinguished principal Zk-root system R with
G(R) = G.

(2) If S is a set of reflections of cardinality dimV which generates
G, and if the corresponding roots are rs = (Zkαs,Zkα∨s , ζs)s∈S,
then (αs)s∈S and (α∨s )s∈S are Zk-bases of QR and Q∨R respec-
tively.

(3) By (1) and (2), QR is a free Zk-module.

Proof. Theorem 5.16 ensures that all genera of root systems for the
well-generated imprimitive groups G(d, 1, r) and G(e, e, r) contain a
principal Zk-root system. This, together with item (4) of Proposition
3.42, imply (1) and (2) directly. �

The next result shows in particular that, for a well generated group,
the connection index can be easily computed from any Cartan matrix.

Proposition 6.7. Assume that G is generated by r = dimV reflections
(si)1≤i≤r. For each i (1 ≤ i ≤ r) choose vi ∈ Lsi, wi ∈ Msi such that
〈vi, wi〉 = 1− ζsi.

Then the connection index of G is equal to det
(
〈vi, wj〉

)
1≤i,j≤r.

Proof. The value of det
(
〈vi, fj〉

)
1≤i,j≤r is independent of the choices

of the systems vi ∈ Lsi , wi ∈ Msi such that 〈vi, wi〉 = 1 − ζsi . By
item (2) of Theorem 6.6, we may choose vi = αi and wi = α∨i so that
(αi)1≤i≤r and (α∨i )1≤i≤r are Zk-bases of respectively QR and Q∨R for
some distinguished principal Zk-root system R such that G(R) = G.

Then the statement is nothing but a translation of the proof of The-
orem 3.48. �

Remark 6.8. Let (V,G) be an irreducible and not well-generated re-
flection group. Let r = dimV and assume that G is generated by the
set of reflections S = {s1, . . . , sr+1}. Let R be a distinguished princi-
pal root system for G. For the roots rs1 , . . . rsr+1 in R corresponding to
S, we choose α1, . . . , αr+1 and β1, . . . , βr+1 as in Remark 3.7, and we
denote by C the corresponding Cartan matrix for RS.

By item (2) of Proposition 3.42,

QR =
r+1∑
i=1

Zkαi and Q∨R =
r+1∑
i=1

Zkβi .
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We will show (see Proposition 6.18 and the tables of Appendix B) that
for every irreducible, not well-generated reflection group (V,G) there
always exists at least one distinguished principal root system for which
(keeping the notation of the previous paragraph) there exists i0 and j0

such that:

QR =
⊕
i 6=i0

Zkαi and Q∨R =
⊕
i 6=j0

Zkβi .

Then the connection index of R is equal to the determinant of the
sub-matrix of C where the i0-th row and the j0-th column have been
dropped.

6.3. Principal root bases and Cartan matrices for imprimitive
well generated reflection groups.

Throughout this subsection, ζ is a root of unity, and k is a number
field containing ζ and closed under conjugation.

Recall (see Section 5) that r
(j)
kl = (Zk(ek − ζjel),Zk(e′k − ζje′l),−1).

Write α
(j)
kl for the vector ek − ζjel where 1 ≤ k < l ≤ n.

The case of G(e, e, r).

A. G(e, e, 2) with e even. The Cartan matrix of the root basis {rs, rt}
of the principal Zk-root system R of Proposition 5.12 is:

C =

(
2 −(2 + ζe + ζ−1

e )
−1 2

)
=

(
2 −4 cos2(π

e
)

−1 2

)
.

Hence:

Lemma 6.9. The connection index of G(e, e, 2) with e even is

c(e,e,2) = (1− ζe)(1− ζ−1
e ) .

B. The general case G(e, e, r) with r > 2 or e odd, r = 2.

By Corollary 5.8, there is a unique genus of Zk-root system (neces-
sarily distinguished, being in G(e, e, r)), and which contains the repre-
sentative Zk-root system

R = R(e, r) =
{
r
(j)
kl | 1 ≤ k < l ≤ r, 0 ≤ j < r

}
.

Using the notation of Section 5, the set:

S =
{
s

(0)
12 , s

(0)
23 , . . . , s

(0)
(r−1),r, s

(1)
(r−1),r

}
,

consisting of r involutive reflections, generates G(e, e, r), with corre-
sponding set of roots:

Π =
{
r
(0)
12 , r

(0)
23 , . . . , r

(0)
(r−1),r, r

(1)
(r−1),r

}
,

where r
(j)
k,l :=

(
Zk(ek − ζjeel),Zk(e′k − ζjee′l),−1

)
.



CYCLOTOMIC ROOT SYSTEMS AND BAD PRIMES 47

Again, by 3.42 (4), Π is a root basis. The Cartan matrix for Π is:

2 −1 0 · · ·
−1 2 −1 0 · · ·
0 −1 2 −1 0 · · ·
...

. . . . . . . . .
· · · 0 −1 2 −1 0 0

· · · 0 −1 2 −1 −1
· · · 0 −1 2 (1 + ζ−1

e )
· · · 0 −1 (1 + ζe) 2


In order to compute the determinant of the above matrix, we prove the
following lemma, which will also be useful later on.

Lemma 6.10. Let r ≥ 3. Consider an r × r matrix of type

Cr :=


2 −1 0 . . . 0
−1 2 ∗ . . . ∗
0 ∗ ∗ . . . ∗
...

...
...

. . .
...

0 ∗ ∗ . . . ∗

 .

Let Cr−1 (resp. Cr−2) be the (r − 1)× (r − 1)-matrix (respectively, the
(r − 2)× (r − 2)-matrix) obtained by suppressing the first row and the
first column (resp. the first two rows and the first two columns). Then

detCr = 2 detCr−1 − detCr−2 .

Proof. It is immediate by expanding with respect to the first row. �

Proposition 6.11. For all choices of e ≥ 1 and r ≥ 2, the connection
index of G(e, e, r) is

c(e,e,r) = (1− ζe)(1− ζ−1
e ) .

Proof. This results from Lemma 6.10 and from Lemma 6.9. �

The case of G(d, 1, r).

In this case, k = Q(ζd) and Zk = Z[ζd].
Let a be an integral ideal which divides (1−ζd)Zk. By Corollary 5.14

every genus of distinguished root system for G(d, 1, r) contains a Zk-
root system of the form Ra := a ·R1

1(d, r) ∪R2(d, r) where a = Zk or
(1− ζd)Zk (so is principal). In the notation of Section 5, the set:

S =
{
s

(0)
12 , s

(0)
23 , . . . , s

(0)
(r−1),r, sr

}
consisting of r reflections, generates G(d, 1, r), and has corresponding
set of roots:

Πa =
{
r
(0)
12 , r

(0)
23 , . . . , r

(0)
(r−1),r, a · r

(1)
r

}
,
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where

a · r(1)
r =

(
aer, (1− ζ−1)a−∗e′r, ζd

)
, and

r
(0)
k,l =

(
(ek − el)Zk, (e′k − e′l)Zk,−1

)
.

In particular, Π := ΠZk provides a principal Zk-basis for QRZk
.

The Cartan matrix for Π is:

2 −1 0 · · ·
−1 2 −1 0 · · ·
0 −1 2 −1 0 · · ·
...

. . . . . . . . .
· · · 0 −1 2 −1 0 0

· · · 0 −1 2 −1 0
· · · 0 −1 2 −(1− ζd)
· · · 0 0 −1 1− ζd


,

Since a is principal, then Πa is principal and its Cartan basis is obtained
by conjugating the above matrix by diag(1, . . . , 1, (1 − ζd)). Applying
Lemma 6.10 then gives:

Proposition 6.12. The connection index of G(d, 1, r) (d ≥ 2) is

c(d,1,r) = 1− ζd .

6.4. The case of not well-generated groups G(de, e, r).

We assume here that G = G(de, e, r) is not well-generated, thus
d > 1 and e > 1.

It follows from Theorem 5.13, that R := R1
1(d, r) ∪ R2(de, r) is a

distinguished Zk-root system for G, which is principal since with the
notation from Section 5, Ri

1(d, r) consists of:

rik = Zk ·
(
ek, (1− ζ−id )e′k, ζd

)
with 1 ≤ k ≤ r and 0 < i < d, and R2(de, r) consists of:

r
(j)
k,l = Zk ·

(
(ek − ζjdeel), (e

′
k − ζ

j
dee
′
l),−1

)
with 1 ≤ k < l ≤ r and 0 ≤ j < de.

Recall (Definition 3.40) that a subset Π = ((Ir, Jr, ζr))r∈Π ⊂ R is
a set of root generators if QR =

∑
i∈Π Iri . and a root lattice basis if

QR =
⊕

r∈R Ir.

Proposition 6.13. Assume that d > 1 and e > 1.

(1) The set:

Π =
{
r
(0)
12 , r

(0)
23 , . . . , r

(0)
(r−1),r, r

(1)
(r−1),r, r

1
r

}
forms a set of root generators for G = G(de, e, r).

The corresponding set of r + 1 reflections:

SΠ :=
{
s

(0)
12 , s

(0)
23 , . . . , s

(0)
(r−1),r, s

(1)
(r−1),r, s

1
r

}
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generates G and no set of r reflections will do so.
(2) If (r, de) 6= (2, 2pl) (l ≥ 1 any integer and p any prime), the

genera of distinguished root systems for G are in bijection with
the integral ideals dividing (1− ζd)Zk.

More precisely, if a is such a divisor, the corresponding genus
contains the root system with set of root generators

Πa =
{
r
(0)
12 , r

(0)
23 , . . . , r

(0)
(r−1),r, r

(1)
(r−1),r, a · r

1
r

}
.

Proof.
(1) The fact that SΠ generates G has already been observed in Sub-

section 5.1. It follows by Proposition 3.42(2) that the set Π is a set of
root generators.

(2) The (r + 1)× (r + 1) Cartan matrix C of Π is

2 −1 0 · · ·
−1 2 −1 0 · · ·
0 −1 2 −1 0 · · ·
...

. . . . . . . . .
· · · 0 −1 2 −1 0 0 0

· · · 0 −1 2 −1 −1 0
· · · 0 −1 2 1 + ζ−1

de ζd − 1
· · · 0 −1 1 + ζde 2 −ζde(1− ζd)
· · · 0 0 −1 −ζ−1

de 1− ζd


,

Theorem 5.13 ensures that (except when r = 2 and de = 2pl, p prime,
l ≥ 1), every other genus of root system for G is obtained as a·R1

1(d, r)∪
R2(de, r) where a is an integral ideal dividing (1 − ζd)Zk. This gives
rise to root systems with root generators

Πa =
{
r
(0)
12 , r

(0)
23 , . . . , r

(0)
(r−1),r, r

(1)
(r−1),r, a · r

1
r

}
.

When a = aZk is principal, these root generators are principal with
Cartan matrix Ca conjugate to C by diag(1, . . . , 1, a). �

We will describe root lattice bases for most genera of distinguished
Zk-root system for G (and all genera of principal distinguished Zk-root
systems). By Theorem 5.13, each genus corresponds to the choice of
ideals b0, b1 and a.

Remark 6.14. Assume b0, b1 and a are principal, thus b0 = b0Zk, b1 =
b1Zk and a = aZk, and let C ′ denote the matrix obtained by con-
jugating by diag(b0, . . . , b0, b1, a) the Cartan matrix C for Π. Let us
explain how to determine if the root system with Cartan matrix C ′

has a root lattice basis or coroot lattice basis and how to compute the
corresponding connection index.
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Write l1, l2 and l3 for the last three rows of C ′. These rows satisfy
the linear dependency relationship:

1

b0

l1 −
1

b1

l2 +
(1− ζde)

a
l3 = 0

Similarly, if c, c2 and c3 are the last three columns of C ′, then:

b0c1 − b1c2 +
(1− ζ−1

de )

a′
c3 = 0

where a′ is the algebraic integer such that aa′ = (1− ζd).
Denote Pij the property that li is an integral linear combination of

the other lines in {l1, l2, l3} and cj is an integral linear combination of
the other columns in {c1, c2, c3}. If Pij holds then the root system has
a root lattice basis and a coroot lattice basis, and its connection index
is detC ′ij where C ′ij is the matrix obtained from C ′ by removing the
row li and the column cj.

The bottom right corner of the matrix of cofactors of C ′ (the matrix
of the detC ′ij) has the following form: 1− ζd b1

b0
(1− ζd) a

b0
(1− ζ−1

de )
b0
b1

(1− ζd) 1− ζd a
b1

(1− ζ−1
de )

b0a
′(1− ζde) b1a

′(1− ζde) (1− ζde)(1− ζ−1
de )

 .

We describe case by case, according to values of d and e, the genera
of Zk-root systems for G when k = Q[ζde] (the field of definition of G),
and compute connection indices.

By Theorem 5.13, genera of distinguished Zk-root systems are rep-
resented by a ·R1

1(d, r) ∪ b0 ·R0
2(de, r) ∪ b1 ·R1

2(de, r) where

• a is an integral ideal dividing (1− ζd)Zk,
• b0 and b1 are relatively prime ideals dividing a and (1 + ζde)Zk.

We will first consider the cases where it is possible that b0 and b1

are non-trivial, which (see Proposition 6.13) may happen when r = 2,
e is even, and de = 2pl. For a to be non-trivial, we need that d be a
prime power, which implies that d = ph or p odd, d = 2. In the second
case 1− ζd = 2 is prime to 1 + ζde = 1− ζpl , thus b0 and b1 are trivial.
Thus the only cases where b0 or b1 could be non-trivial is:

The case r = 2, e = 2pl, d = ph, with l ≥ 0, h ≥ 1.

Let p := (1+ζde)Zk. Then 1+ζde = 1−(−ζde), and since de = 2ph+l,
−ζde has order ph+l if p is odd, and has order 2ph+l if p = 2. Thus by
Proposition A.5, we have that p is prime.

Furthermore, let e′ = e if p = 2, or e′ = e/2 otherwise. Then it
follows from Lemma A.4(2) that (1 − ζd)Zk = pe

′
. Hence every ideal

dividing (1 − ζd)Zk is principal, equal to pn for 0 ≤ n ≤ e′, thus the
above root systems are principal.
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Proposition 6.15. Let e = 2pl, d = ph, with l ≥ 0 and h ≥ 1, and
p := (1 + ζde)Zk. Write e′ = e if p = 2, or e′ = e/2 otherwise. Then
every genus of distinguished root system for G(2ph+l, 2pl, 2) contains
one of the 3e′ + 1 root systems:

a ·R1
1(d, r) ∪ b0 ·R0

2(de, r) ∪ b1 ·R1
2(de, r) ,

where

(b0, b1, a) ∈ {(Zk,Zk,Zk)}
⋃

1≤n≤e′
{(Zk, p, pn), (p,Zk, pn), (Zk,Zk, pn)} .

These root systems are all principal, have a root lattice basis and a
coroot lattice basis, and their connection index is one of Zk, p or p2.

Proof. We consider the cases p = 2 and p > 2 separately.
Suppose that p = 2. Thus d = ph, e = 2pl and e′ = e. In this

case, (1 − ζde)Zk = (1 + ζde)Zk = p. The following table exhausts the
possibilities for the root systems; we use the notation introduced in
Remark 6.14, as well as “centre-dot” notation in the b0 and b1 columns,
which indicates that b0 (respectively b1) may be either Zk or p.

b0, b1, a properties connection index
Zk,Zk,Zk P13, P23 (1− ζ−1

de )Zk = p
·, ·, p P13 or P23 (1− ζde)Zk = p
·, ·, pj for 2 ≤ j ≤ e− 1 P33 p2

·, ·, pe P32 or P31 p

Both p and p2 occur as connection index, depending on the root system,
which illustrates that for not well-generated groups, the connection
index depends on the root system.

Suppose now that p > 2. Thus d = ph, e = 2pl and e′ = pl. In this
case, (1−ζde)Zk = Zk. Again, the table below exhausts the possibilities
for the root systems; the notation is as above.

b0, b1, a properties connection index
Zk,Zk,Zk P33 Zk
Zk, p,Zk P23 Zk
p,Zk,Zk P13 Zk
·, ·, pj for 1 ≤ j ≤ e′ P33 Zk

�

In the remaining cases we know that the genera of root systems are
represented by the system aR1

1(d, r)∪R0
2(de, r)∪R1

2(de, r) where a runs
over integral ideals dividing (1− ζd)Zk.

The case d composite.
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Proposition 6.16. Assume d composite. Then G(de, e, r) has a single
genus of root systems, represented by the principal root system:

R1
1(d, r) ∪R2(de, r) ,

which has a root lattice basis and a coroot lattice basis, and connection
index Zk.

Proof. When d is composite, 1−ζd is a unit thus a is trivial. So there is
a unique genus of root system, which contains the root system given in
the statement of the proposition. This root system has root generators
Π, for which the Cartan matrix is C. The property P13 holds and the
connection index is (1− ζ−1

de )Zk = Zk. �

The case d a prime power.

Assume d = pa with p prime, a ≥ 1 and write e = phn′ with n′

prime to p. Then by Proposition A.5, we have the decomposition in
prime ideals (1− ζpa)Zk = (p1 . . . pδ)

ph , where δ = ϕ(n′)/s and s is the
multiplicative order of p mod n′.

We can say more when δ = 1 than in the other cases.

Proposition 6.17. Let d = pa, e = phn′ with p prime, a ≥ 1, h ≥ 0
and n′ prime to p and assume that p generates the multiplicative group
(Z/n′Z)× (this includes the case n′ = 1). Let G := G(de, e, r) =
G(pa+hn′, phn′, r) and p := (1− ζpa+h)Zk.

Then (assuming we are not in the case 6.15) every genus of dis-
tinguished Zk-root system for G is represented by one of the ph + 1
principal root systems

pnR1
1(d, r) ∪R0

2(de, r) ∪R1
2(de, r)

where 0 ≤ n ≤ ph. These systems have a root lattice basis and a coroot
lattice basis and connection index one of Zk, p or p2.

Proof. Since δ = 1, the ideal p is prime and (1− ζd)Zk = (1− ζpa)Zk =

pp
h
, thus the divisors a of (1 − ζd)Zk are the principal ideals pn as

described in the proposition.
The linear dependence relations noted in Remark 6.14 are still valid,

that is if n′ 6= 1 then P33 holds and the connection index is Zk. If n′ = 1
then (1− ζde)Zk = p and if a = Zk then P13 holds and the connection

index is p, if a = pp
h

then P31 holds and the connection index is p, and
if a = pn with 0 < n < ph then P33 holds and the connection index is
p2. �

When δ > 1 we can say less. There are (ph + 1)δ distinct ideals
pi dividing (1 − ζd)Zk, thus (ph + 1)δ genera of distinguished Zk-root
systems.

However, note that by Example A.6, for G(39, 3, 3) for example the pi
may be non-principal, which gives rise to genera containing no principal
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root system, which illustrates the failure of Theorem 5.16 for non well-
generated reflection groups.

There are still principal root systems for every group G(de, e, r), such
as:

R1
1(d, r) ∪R2(de, r),

which is distinguished, and:

R1(d, r) ∪R2(de, r),

which is complete and reduced. In particular, for all d, e > 1 we can
fulfill the promise of Remark 6.8:

Proposition 6.18. The principal distinguished Zk-root system

R1
1(d, r) ∪R2(de, r)

for G(de, e, r) (d > 1, e > 1) has a root lattice basis and a coroot lattice
basis. Its connection index is (1− ζ−1

ed )Zk.

Proof. See proof of Proposition 6.16. �

7. Reflection groups and root systems over R

7.1. Preliminary: positive Hermitian forms.
Let Herm(V ; k) denote the k-vector space of Hermitian forms on

V . Say that ϕ : V → W is Hermitian if for any g ∈ GL(V ) we have
ϕ◦g = g∨◦ϕ (equivalently ϕ can be represented by an Hermitian matrix
with respect to a basis (ei)i∈E of V and its dual basis (fi)i∈E of W ).
Let Herm(V,W ) denote the k-vector space of Hermitian maps from V
to W . Since the Hermitian pairing V ×W → k is non-degenerate, the
linear map {

Herm(V,W )→ Herm(V ; k) ,

ϕ 7→ ( (v1, v2) 7→ (v1 | v2)ϕ := 〈v1, ϕ(v2)〉 )

is an isomorphism. Moreover, the Hermitian form (· | ·)ϕ is:

• non-degenerate if and only if ϕ is an isomorphism,
• positive (resp. positive definite) if and only if for all v ∈ V −{0},
〈v, ϕ(v)〉 ≥ 0 (resp. 〈v, ϕ(v)〉 > 0), in which case we say that ϕ
is positive (resp. positive definite).

Let G be a finite group of GL(V ) (which may be viewed as a finite
subgroup of the subgroup of GL(V )×GL(W ) which preserves the pair-
ing). Then there exists a positive definite Hermitian kG-isomorphism

ϕ : V
∼−→ W : given any basis (e1, . . . , er) of V and its dual basis

(f1, . . . , fr) of W (that is, 〈ei, fj〉 = δi,j), the isomorphism ϕ : ei 7→ fi
is positive definite, and its average 1

|G|
∑

g∈G g
∨ϕg−1 is both G-stable

and positive definite.
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Remark 7.1. If V is an absolutely irreducible kG-module, the vector
space of kG-morphisms V → W is one dimensional, hence the space of
G-invariant Hermitian forms on V is also one dimensional.

In particular then, the trivial positive definite quadratic form on V
need not be invariant under G: consider the case where k = Q(

√
5)

and G is the dihedral group of order 10. Then there is a G-invariant
symmetric bilinear form on V = k2 whose discriminant is (5 −

√
5)/8

– since it is the determinant (up to a square in k×) of the matrix:(
1 cos(2π/5)

cos(2π/5) 1

)
.

The proof of the following lemma is immediate.

Lemma 7.2. Assume that s is a reflection in G, whose reflecting line,
reflecting hyperplane dual reflecting line, dual reflecting hyperplane are
respectively L, H, M , K (see Definition 2.2). Let ϕ : V

∼−→ W be any
positive definite Hermitian G-stable isomorphism. Then

(1) H is the orthogonal of L for the Hermitian form (· | ·)ϕ on V ,
(2) M is the orthogonal of H for the Hermitian pairing 〈·, ·〉,
(3) ϕ(L) = M and ϕ(H) = K, and
(4) for x ∈ L and v ∈ V ,

s(v) = v − (v | x)ϕ
(x | x)ϕ

(1− ζ)x .

7.2. Families of simple reflections for real reflection groups.

In this subsection, we assume that k is a subfield of the field R of real
numbers. We denote by R+ (resp. R−) the set of nonnegative (resp.
nonpositive) real numbers, and we set k+ := R+∩k and k− := R−∩k.
Thus k = k+ ∪ k− and k+ ∩ k− = {0}.

Let V be a finite dimensional k-vector space, and let G be a finite
subgroup of GL(V ). Let S be the set of reflections of G. Notice that
the determinant of a reflection is always −1, and so the reflections
s ∈ S are in bijection with pairs (Ls,Ms) where Ls is the reflecting line
of s (a line in V ) while Ms is the dual reflecting line of s (a line in W ).

We fix a positive definite Hermitian kG-isomorphism ϕ : V
∼−→ W

throughout.

Definition 7.3. We call admissible preorder on V and W a preorder
obtained as follows:

We choose a nonzero element v0 ∈ V which belongs to no reflecting
hyperplanes Hs ⊂ V for s ∈ S, and such that ϕ(v0) belongs to no
reflecting hyperplane Ks ⊂ W .

Such a choice induces a preorder on W and on V by:

• defining w ∈ W to be positive (which we denote w > 0) if
〈v0, w〉 > 0 and to be negative if −w is positive, and
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• for v ∈ V defining v > 0, if (v | v0)ϕ > 0,

The relation “v1 > v2 whenever v1 − v2 > 0” is preserved under
vector addition and positive scalar multiplication, and so makes V
(respectively W ) a preordered vector space.

For s ∈ S we set L+
s := {v ∈ Ls | v > 0} t {0} and L−s := −L+

s ; we
have Ls = L+

s t {0} t L−s . We define M+
s and M−

s similarly.
Thus an admissible preorder determines a family of positive half-lines

(L+
s )s∈S in V and a family of positive half-lines (M+

s )s∈S in W .

Definition 7.4. Given a positive definite Hermitian kG-isomorphism
ϕ : V

∼−→ W , and an admissible preorder on V and W , a family Σ of
reflections of G satisfying:

(A) V =
⊕

σ∈Σ Lσ and W =
⊕

σ∈ΣMσ, and

(B) for all s ∈ S, L+
s ⊂

∑
σ∈Σ L

+
σ and M+

s ⊂
∑

σ∈Σ M
+
σ ,

is called a family of simple reflections for G.

Proposition 7.5. Let G be a finite subgroup of GL(V ), let S be the

set of reflections of G, let ϕ : V
∼−→ W be a positive definite Hermitian

kG-isomorphism, and suppose given an admissible preorder on V and
W . Then there exists a unique family of simple reflections for G.

Thanks to Proposition 7.5 it makes sense to say that a set of reflec-
tions is a “set of simple reflections” if it is the set of simple reflections
determined by an admissible preorder.

Notice that all assertions concerning W are analogous to those con-
cerning V , so from now on we only state (and prove) assertions con-
cerning V .

We remark that there are subsets of S which satisfy the criterion (2)
of the definition of a family of simple reflections – as indeed, S itself
has that property. It turns out that a minimal such subset is precisely
a family of simple reflections.

Lemma 7.6. Suppose that Σ ⊆ S is minimal subject to satisfying:

(B) for all s ∈ S, L+
s ⊂

∑
σ∈Σ L

+
σ .

Then

(1) For all distinct reflections σ1, σ2 ∈ Σ we have (L+
σ1
| L+

σ2
)ϕ ⊂ k−.

(2) For distinct reflections σ1, σ2 ∈ Σ, and v2 ∈ L+
σ2

, then σ1(v2) =
v2 + v1 for some v1 ∈ L+

σ1
— that is, σ1(L+

σ2
) = L+

σ1σ2σ
−1
1

.

Proof. We prove first (1), arguing by contradiction: assume there are
v1 ∈ L+

σ1
and v2 ∈ L+

σ2
such that (v1 | v2)ϕ > 0. Thus

σ1(v2) = v2 − 2
(v2 | v1)ϕ
(v1 | v1)ϕ

v1 = v2 − λv1 ∈ Ls

where λ > 0 and s = σ1σ2σ
−1
1 . Either σ1(v2) is positive or negative.
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Suppose first that σ1(v2) is positive. Then σ1(v2) =
∑

σ∈Σ vσ where
each vσ ∈ L+

σ . There is some λσ2 > 0 such that vσ2 = λσ2v2, hence∑
σ∈Σ−{σ2}

vσ + λv1 = (1− λσ2)v2 .

The expression on the left indicates this is a (strictly) positive vector;
whence 1 − λσ2 > 0. So v2 ∈

∑
σ∈Σ−{σ2} L

+
σ , a contradiction with the

minimality of Σ.
If σ1(v2) is negative, then −σ1(v2) =

∑
σ∈Σ vσ for vσ ∈ L+

σ , so∑
σ∈Σ−{σ1}

vσ + v2 = (λ− λσ1)v1 .

where vσ1 = λσ1v1. Since this is an expression for a positive vector,
λ−λσ1 > 0, so v1 ∈

∑
σ∈Σ−{σ1} L

+
σ , again contradicting the minimality

of Σ.
(2) is an immediate corollary of (1). �

Proof of Proposition 7.5. As remarked earlier, there are subsets of S
which satisfy the criterion (B) for a family of simple reflections – in-
cluding S itself.

Suppose that Σ is a minimal subset of S satisfying criterion (B).
Take any partition Σ = Σ1 t Σ2 and a vector v such that:

v ∈

(∑
σ1∈Σ1

L+
σ1

)⋂(∑
σ2∈Σ2

L+
σ2

)
.

By Lemma 7.6(1), we get (v | v)ϕ ≤ 0; and since the form is definite
positive, v = 0. Thus V =

⊕
σ∈Σ Lσ (criterion (A)) holds.

Finally, we prove that such a Σ is unique. Again we argue by contra-
diction, by assuming the existence of Σ′ 6= Σ which also satisfies criteria
(A) and (B) of Definition 7.4. Choose σ0 ∈ Σ−Σ′ and vσ0 ∈ L+

σ0
. There

exists a family (vσ′)σ′∈Σ′ with vσ′ ∈ L+
σ′ such that vσ0 =

∑
σ′∈Σ′ vσ′ . Now

for each σ′ for which vσ′ 6= 0, there exists a family (vσ,σ′)σ∈Σ where
vσ,σ′ ∈ L+

σ such that vσ′ =
∑

σ∈Σ vσ,σ′ . Since σ′ 6= σ0, there exists
σ ∈ Σ, σ 6= σ0, such that vσ,σ′ 6= 0. Such a vector vσ,σ′ appears then in
the decomposition of vσ0 onto

⊕
σ∈Σ Lσ, which is a contradiction. �

Lemma 7.7. Assume given an admissible preorder on V and W , that
σ is a simple reflection and that s is any other reflection in S, distinct
from σ. Then:

(1) σ(L+
s ) = L+

σsσ−1,
(2) s(L+

σ ) = L+
sσs−1 if and only if (L+

s | L+
σ ) ≤ 0, and

(3) L+
σ is the only positive half-line made negative by σ.

Proof. For any reflections s1 and s2, s1(Ls2) = Ls1s2s−1
1

. We have to

show in each case that the positive half-line remains positive.



CYCLOTOMIC ROOT SYSTEMS AND BAD PRIMES 57

(1) Choose vs ∈ L+
s . Take σ1 6= s; then σ1(vs) ∈ Lσ1sσ−1

1
. We want

to show that it is positive. So there exist vσ ∈ L+
σ (σ ∈ Σ) for which

vs =
∑

σ∈Σ vσ . By Lemma 7.6(2),

σ1(vs) =
∑

σ∈Σ−{σ1}

(vσ + vσ,1) + σ1(vσ1) ,

where, for all σ simple reflections, vσ,1 ∈ L+
σ1

. Thus

σ1(vs) =
∑

σ∈Σ−{σ1}

vσ + u1 ,

where u1 ∈ Lσ1 . Since σ1 6= s, there is a σ ∈ Σ for which vσ is non-zero,
that is, strictly positive. So σ1(vs) is in L+

σ1sσ
−1
1

, the positive part of

Lσ1sσ−1
1

.

(2) For vσ ∈ L+
σ , we have s(vσ) = vσ − 2 (vσ |vs)

(vs|vs)vs where without loss

of generality we may assume that vs ∈ L+
s . Since σ 6= s, there is some

strictly positive vσ′ in the simple positive half-line decomposition of vs,
where σ′ 6= σ. Thus s(vσ) ∈ L+

sσs−1 if and only if (L+
s | L+

σ ) ≤ 0.
Item (3) follows from (1). �

Lemma 7.8. Let G be a finite subgroup of GL(V ). Any two families
of positive half-lines for G are conjugate under G.

Proof. Suppose we have two families of positive half-lines: L+
S :=

(L+
s )s∈S and L++

S := (L++
s )s∈S which determine families of simple roots

denoted by Σ and Σ′ respectively. We shall prove by induction on
|L+

S ∩ (−L++
S )| that Σ and Σ′ are conjugate under G.

If |L+
S ∩ (−L++

S )| = 0, then L+
S = L++

S and so L+
S and L++

S are
conjugate by the identity element of G.

If |L+
S ∩ (−L++

S )| > 0, then there exists σ0 ∈ Σ such that L+
σ0
∈

−(L++
S ). Indeed, if not, then L+

S ⊂ L
++
S , hence L+

S = L++
S . By asser-

tion (1),
σ0(L+

S ) =
(
L+
S − {L

+
σ0
}
)
t {−L+

σ0
} ,

which shows that σ0(L+
S ) is a family of positive half-lines (for the order

conjugate under σ0) such that

|σ0(L+
S ) ∩ (−L++

S )| = |L+
S ∩ (−L++

S )| − 1 .

By the induction hypothesis, we get that σ0(L+
S ) and L++

S are conjugate
under G, which shows that L+

S and L++
S are conjugate under G. �

Proposition 7.9. Let V be a finite dimensional vector space on a real
field k. Let G be a finite subgroup of GL(V ) and let S the set of all
reflections of G.

(1) G acts transitively on the set of families of simple reflections.
(2) Let Σ be a family of simple reflections.

(a) Every reflection of G is conjugate to an element of Σ.
(b) Σ generates the (normal) subgroup of G generated by S.
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Proof. Since the choice of a family of positive half-lines determines a
single family of simple reflections, item (2) of the preceding lemma
shows the transitivity of G on the families of positive half-lines.

We now turn to assertion (2)(a). Choose an admissible preorder on
V and W , and denote by L+

S := (L+
s )s∈S the corresponding family of

positive half-lines and by Σ the corresponding family of simple reflec-
tions. For each σ ∈ Σ, we choose eσ ∈ L+

σ so that (eσ)σ∈Σ is a basis
of V , and for all s ∈ S and v ∈ L+

s , we have v =
∑

σ∈Σ λσ(v)eσ with
λσ(v) ≥ 0 for all σ ∈ Σ. We set

h(v) :=
∑
σ∈Σ

λσ(v) .

For each s ∈ S, we choose an element v ∈ Ls, v 6= 0, and we denote by
Ω the union of the orbits of these vectors under G. Since S and G are
finite, so is Ω.

Denote by Ω+ the positive vectors of Ω, and define:

mΩ := min{h(v) | v ∈ Ω+} .
Let s ∈ S − Σ. Let v =

∑
σ∈Σ λσ(v)eσ ∈ Ω ∩ L+

s . Since

(v | v)ϕ =
∑
σ∈Σ

λσ(v)(v | eσ)ϕ > 0 ,

there exists σ0 ∈ Σ such that (v | eσ0)ϕ > 0. By item (1) of Lemma 7.7,

we know that v′ := σ0(v) ∈ Ω+ . Since v′ = v − 2
(v | eσ0 )ϕ

(eσ0 | eσ0 )ϕ
eσ0 , we see

that h(v′) < h(v).
This proves in particular that if, for v ∈ Ls, h(v) = mΩ, then s ∈ Σ,

and finally that there exists g ∈ G such that gsg−1 ∈ Σ, which is (2)(a).
This also proves that every element of S is conjugate to an element

of Σ by an element of the group generated by Σ, which proves that Σ
generates the subgroup of G generated by S, i.e., assertion (2)(b). �

The notion of Coxeter system is defined in [BouLie, Chap. IV, §1,
3, Déf. 1.3] .

Theorem 7.10. Let V be a finite dimensional vector space on a real
field k. Let G be a finite subgroup of GL(V ) generated by reflections,
and let S be the set of all reflections of G. Then the pair (G,Σ) is a
Coxeter system for every is a family of simple reflections Σ.

Proof. For all σ ∈ Σ, we set Pσ := {g ∈ G | g−1(L+
σ ) is positive } . We

shall check that Pσ satisfies the hypotheses of [BouLie, Ch. IV, §1, 7,
Proposition 6] and this will prove that

• (G,Σ) is a Coxeter system,
• Pσ comprises of all elements g ∈ G such that lΣ(σg) > lΣ(g),

where lΣ(g) denotes the length of the shortest decomposition of g in
terms of simple reflections.
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It is clear that Pσ ∩ σ(Pσ) = ∅. Now take g ∈ Pσ and σ′ ∈ Σ such
that gσ′ /∈ Pσ, that is g−1(L+

σ ) is positive and σ′g−1(L+
σ ) is negative.

As σ′ only changes the sign on Lσ′ , we must have g−1(Lσ) = Lσ′ , which
implies g−1σg = σ′. �

When the family of simple reflections Σ is clear from the context, we
will just write l(g) for the length of an element g of G with respect to
the generating set Σ.

Corollary 7.11. If g ∈ G and σ a simple reflection, then g(L+
σ ) > 0

is equivalent to l(gσ) = l(g) + 1.

7.3. Highest half-lines.

The definition of the highest root given in [BouLie, Ch. VI, §1.8]
seems a priori not to make sense in our setting. For instance, for the

group G(5, 5, 2) we have Zk = Z[φ] where φ = 1+
√

5
2

> 1 is a unit of Zk.
As a root is only defined up to multiplication by a unit, it will have no
well-defined “length”.

However, the following, a consequence of the definition in [BouLie],
does make sense:

Definition 7.12. Let L+
S be a family of positive half-lines. We call L+

in L+
S a highest half-line if (L+ | L+

s ) ≥ 0 for all s ∈ S.

Proposition 7.13. If lΣ(s) is maximal over the conjugacy class of s
in the Coxeter system (G,Σ), then L+

s is a highest half-line.

Proof. Let Σ be a family of simple reflections and σ ∈ Σ. We want to
show that for any positive half-line L+

s ∈ L+
S , if (L+

s | L+
σ ) < 0 then

l(σsσ) > l(s).
Indeed, suppose otherwise: since l(sσ) = l(s) + 1 we must have

l(σsσ) = l(sσ) − 1. By Corollary 7.11 this implies (sσ)−1(L+
σ ) =

σs(L+
σ ) < 0, thus σ changes the sign of s(L+

σ ). By (3) of Lemma 7.7,
L+
σ is the only half-line changed sign by σ so we have s(L+

σ ) = L+
σ .

Finally, this implies (L+
s | L+

σ ) = 0, a contradiction. �

The next lemma is a particular case of Theorem 7.17 below.

Lemma 7.14. In a dihedral group, there is exactly one highest half-line
in each conjugacy class.

Proof. This follows from Proposition 7.13 and the fact that there is
exactly one reflection of longest length in each conjugacy class of re-
flections. �

Proposition 7.15. In a finite Coxeter system two non-commuting re-
flections are conjugate if and only if they are conjugate in the dihedral
group they generate.

Proof. Let s and t be two non-commuting reflections. Let P be the
fixator of the intersection of the two reflecting hyperplanes. Then P
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is a parabolic subgroup of G of rank at most two. It is of rank two
since s and t are in P and do not commute. Up to conjugacy, we
may suppose that P is a standard parabolic subgroup, so is defined
by two vertices s1 and s2 of the Coxeter diagram (note that s1 and
s2 may be different from s and t). Then s1 and s2 must be adjacent
in the Coxeter diagram, otherwise P is of type A1 × A1 and does not
contain non-commuting reflections. It follows from the fact that s1

and s2 are adjacent and the description (see Theorem 2.35) of linear
characters of Coxeter groups that any linear character of P extends to
G. Furthermore, Theorem 2.35 ensures that linear characters separate
conjugacy classes of reflections, so it follows that s and t are conjugate
if and only if they are conjugate in P , which is a dihedral group.

Finally, if H is a dihedral subgroup of a dihedral group G, two re-
flections non-conjugate in H are not conjugate in G: for H to have two
classes of reflections, it has to have an even bond, and then H has as
many linear characters as G. �

Lemma 7.16. Assume G irreducible, and that L+
s is a highest half-line.

Then for any positive half-line L+
s′, we have (L+

s | L+
s′) > 0.

Proof. Let v ∈ L+
s and write v =

∑
σ∈Σ λσ(v)eσ ∈ L+

s where the eσ and
λσ(v) ≥ 0 are as in the proof of Proposition 7.9. Let I ⊂ Σ be the set
of σ such that λσ(v) > 0, and let J = Σ − I, containing reflections σ′

for which λσ′(v) = 0.
Now for σ′ ∈ J , we have (v | eσ′)ϕ ≥ 0 by definition of a highest

half-line, but also (eσ | eσ′) ≤ 0 for any σ ∈ I by Lemma 7.6(1). It
follows that we must have (eσ | eσ′) = 0 for any σ ∈ I, σ′ ∈ J , which
contradicts the irreducibility of G unless J = ∅.

Thus (Ls | Lσ) > 0 for all simple σ; now any v′s ∈ L+
s′ is a non-

negative linear combination of eσ, with at least one non-zero coefficient,
and so the result follows. �

Theorem 7.17. If G is a finite real reflection group, there is exactly
one highest half-line in each conjugacy class of reflections.

Proof. Suppose L+
s and L+

s′ are distinct highest half-lines in the same
conjugacy class. We will derive a contradiction.

Two conjugate reflections belong to the same irreducible component
of G, so we may assume G irreducible. Then, by Lemma 7.16, L+

s

and L+
s′ are not orthogonal, so s and s′ do not commute. Thus, by

Proposition 7.15, they are conjugate in the dihedral subgroup they
generate; and L+

s and L+
s′ are still highest half-lines in this subgroup.

This contradicts Lemma 7.14. �

7.4. Real root systems.
Our approach allows us to extend the theory of root systems for Weyl

groups to root systems for finite Coxeter groups. We spell out in this
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subsection how our definitions translate in this case. As in Subsection
7.2, we assume k ⊂ R, and we use the notation k+ and k−.

Let R be a reduced Zk-root system, and let G := G(R). For s a
reflection in G we denote by rs the element of R associated with s, and
for r ∈ R we denote by sr the reflection of G determined by r.

We assume chosen a positive definite Hermitian kG-isomorphism ϕ :
V

∼−→ W , and v0 a nonzero element of V defining an order on V and
W (as in Subsection 7.2). For r = (Ir, Jr, ζr) ∈ R, we set

I+
r := Ir ∩ V + and J+

r = Jr ∩W+ .

If Σ is the family of simple reflections determined by the choice of
the order on V (see Proposition 7.5), we set

RΣ := {r ∈ R | sr ∈ Σ} and R∨Σ := {r∨ ∈ R∨ | sr ∈ Σ} .

Theorem 7.18. Under the above hypotheses and notation,

(1) RΣ is a root basis and R∨Σ is a coroot basis,
(2) Whenever r ∈ R,

I+
r ⊂

⊕
σ∈Σ

I+
rσ .

Proof. Assertion (1) results from the fact that Σ generates G (Propo-
sition 7.9, (2)(b)) and from Proposition 3.42, (2). Assertion (2) is an
immediate consequence of Proposition 7.5, (2). �

8. Bad numbers

Let W be an irreducible Weyl group. Then

(1) By [BouLie, Ch.vi, §2, Proposition 7],

|W | = r!cW (n1 · · ·nr) .
where n1, . . . , nr are the coefficients of the longest root on the
basis of simple roots, and cW is he connection index of W .

(2) The set of bad primes for W is defined as the set of prime
divisors of the product n1 · · ·nr.

The above definition for the set of bad primes is equivalent to several
others, see [SpSt, 4.3(c)].

Theorem 3.48 ensures that the connection index for any irreducible,
well-generated complex reflection group (V,G) is well-defined, inde-
pendent of the choice of root system. Moreover, by Propositions 6.11
and 6.12, and the fact that the rings of integers for the fields of defini-
tion of the primitive reflection groups are principal, we know that the
connection index of an irreducible, well-generated complex reflection
group is always principal. We write cG for a generator of the connec-
tion index, which is then well-defined up to a unit. This allows us to
extend the definition of bad primes as follows:
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Theorem–Definition 8.1. For every irreducible well-generated com-
plex reflection group G of rank r:

(1) cGr! divides |G|.
(2) We define the bad prime ideals for G as the set of prime ideals

of Zk which divide |G|/(cGr!).

Proof. The proof of (1) is by inspection, using the values of cG given
in the tables of Appendix B for primitive well-generated groups, and
in 6.12 and 6.11 for imprimitive groups. �

Now let W denote an irreducible spetsial group – that is, either a
member of one of the imprimitive families G(e, e, r), G(d, 1, r) or a
primitive complex reflection group denoted Gn where

n ∈ {4, 6, 8, 14, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37}
according to the Shephard-Todd notation. (Note that spetsial groups
are all well-generated.) For the definitions relative to the program
“Spetses”, we refer the reader to [BMM2].

Definition 8.2. We denote by BadW the largest integral ideal a such
that, whenever S(x) ∈ Zk[x, x−1] is a Schur element of an irreducible
character of the spetsial Hecke algebra of W , then S(x)a−1 ⊂ Zk[x, x−1].

An equivalent definition, which can be more convenient to use, is
that whenever D(x) ∈ k[x] is a unipotent degree of the principal series
attached to W , then aD(x) ⊂ Zk[x].

Conjecture 8.3. BadW can also be characterized as the largest ideal
a such that whenever D(x) ∈ k[x] is any unipotent degree attached to
W , then aD(x) ⊂ Zk[x].

Remark 8.4. We were unable to answer the following question: is BadW
always a principal ideal?

It is apparent from the values of unipotent degrees computed by
Lusztig that the following theorem holds in the case of Weyl groups.

Theorem 8.5. For any spetsial complex reflection group W ,

(1) BadW divides |W |/(r!cW ).
(2) All bad prime ideals divide BadW .

or, equivalently,
BadW divides |W |/(cW r!) and |W |/(cW r!) divides a power of BadW .

It follows that the “bad primes” defined in [BK, above Proposition
1.31] are the same as ours.

Proof. For the primitive spetsial reflection groups, the proof is by in-
spection of:

• the tables of unipotent degrees of the principal series given in
[BMM2], and
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• the values of cW given in the tables of Appendix B.

The values of BadW are reported in the tables of Appendix B. In every
case, BadW is also equal to the largest integral ideal a such that for all
unipotent degrees aD(x) ⊂ Z[x]; that is, Conjecture 8.3 holds.

We now prove the theorem for the imprimitive groups G(d, 1, r). Set
ζ := exp (2πi/d). By Proposition 6.12, cW = 1− ζ, thus |W |/(cW r!) =
dr/(1 − ζ). To compute BadW , we use the formula for the unipotent
degrees given in [Ma, 3.8]. Let us recall the setup.

• The unipotent degrees of the principal series of G(d, 1, r) are
parameterized by the d-symbols S = (S0, . . . , Sd−1) of rank r
and of shape (|S0|, . . . , |Sd−1|) = (m + 1,m, . . . ,m) for m ∈ N
large enough.
• The unipotent degree attached to S is of the form PS(x)/fS

where
B PS(x) ∈ Zk[x] is a monic polynomial and
B fS = τ(d)m/(

∏
0≤i<j≤d−1(ζ i−ζj)|Si∩Sj |) up to a unit, where

τ(d) =
∏

0≤i<j≤d−1(ζ i − ζj), so that

(8.6) fS =
∏

0≤i<j≤d−1

(ζ i − ζj)m−|Si∩Sj | .

Due to the shape of the symbols, m ≥ |Si∩Sj|, and so fS ∈ Zk.
Notice also that fS depends only on the equivalence class of S,
since shifting all the Si increases by 1 all the |Si ∩ Sj|, and also
increases m by 1, thus leaving invariant fS.

To prove item (1) of the theorem, we have to show that fS divides
|W |/(r!cW ) = dr/(1−ζ). We will show this by induction on r. By [Ma,
§3.C], a symbol of the principal series is not 1-cuspidal, thus admits
a (1, 1)-hook; that is, any of the considered symbols of rank r can be
obtained from a symbol of rank r − 1 by increasing by 1 one of the
entries λ ∈ Si, λ+ 1 /∈ Si for some i.

The effect of this is to reduce by at most 1 the |Si ∩ Sj| for j 6= i,
that is to multiply fS by at most

∏
j∈[0...d−1],j 6=i(ζ

i− ζj), which is equal

to d up to a unit. But increasing r by 1 multiplies dr/(1− ζ) by d, so
the divisibility of dr/(1− ζ) by fS is preserved. It remains to show the
starting point of the induction, which is that when r = 1, fS divides
(d/(ζ − 1)). This results from [BMM2, §5.2], which finishes the proof
of item (1) for G(d, 1, r). Note that by [BMM2, §5.3] it can be seen
that Conjecture 8.3 holds in this case.

Let us prove item (2) for G(d, 1, r). First, note that for a d-symbol
S of rank r, if S ′ is the symbol of rank r + 1 obtained by increasing
by 1 the highest entry in S, then fS divides fS′ . Indeed, the numbers
m − |Si ∩ Sj| can only increase when going from S to S ′. Thus it is
sufficient to show that for r = 1 any prime ideal dividing d (which is the
same as dividing d/(1 − ζ)) divides BadW . For instance (see [BMM2,
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§5.2]) for the character denoted ρ1 in loc.cit. we have fS = d/(ζ − 1),
which proves the result (since (1−ζ)Zk = (1−ζ−1)Zk divides d/(ζ−1)).

To complete the proof, we consider the case of the groups G(d, d, r)
(r ≥ 2) following [Ma, §6]. The setup is as follows:

• The unipotent characters of the principal series are parameter-
ized by d-symbols of rank r and shape (m, . . . ,m).
• By [Ma, 6.4], the unipotent degree attached to S is of the form
PS(x)/f ′S where PS(x) ∈ Zk[x] is a monic polynomial and, up
to unit, we have f ′S = fSγ(S)/d where fS is as in equation 8.6
and γ(S) is the cardinality of the subgroup of Z/d leaving S
invariant, where i ∈ Z/d acts on S by mapping it to the symbol
S ′ such that S ′j = S(j+i) (mod d).

This time we have |W |/(r!cW ) = dr−1/((1− ζ)(1− ζ−1)) (see Propo-
sition 6.11). To show that fSγ(S)/d divides that number is equivalent
to showing that

(8.7) fSγ(S) divides
dr

(1− ζ)(1− ζ−1)

We will show this by a double induction. When γ(S) = 1 we proceed
by induction on r. Just as in the case of G(d, 1, r), the symbol admits
a (1, 1)-hook and we reduce the problem to the case of rank r− 1. The
starting case is r = 2.

In this case we may look at [Lu, 4.1] where the unipotent degrees
of the dihedral groups G(d, d, 2) are given in the form PS(x)/fS where
P is an integral polynomial and f ∈ Zk divides d/((1 − ζ)(1 − ζ−1)).
The divisibility is obvious except when d is even and fS = d/2, where
one needs Corollary A.8 below. It can be seen also that for G(d, d, 2)
Conjecture 8.3 holds.

The other case of the induction is when γ := γ(S) > 1. In this case if
we set d′ = d/γ, then S is the concatenation of γ copies of a d′-symbol
S ′ of rank r′ := r/γ.

Lemma 8.8. Up to a unit, we have fS = fγS′.

Proof. Given 0 ≤ i, j ≤ d− 1, there are unique expressions i = i′+ i′′d′

and j = j′ + j′′d′ for i′, j′ ∈ [0, . . . , d′ − 1]. Using that ζd
′

= ζγ where
ζγ := exp 2iπ/γ, and that Si = Si′ , Sj = Sj′ , we can write

fS =
∏

0≤i′′≤j′′≤γ−1

∏
0≤i′,j′≤d′−1

i′ < j′ if i′′ = j′′

(
ζ i
′
ζ i
′′

γ − ζj
′
ζj
′′

γ

)m−|Si′∩Sj′ |
We make the following observations on the above formula:

• We can assume i′ 6= j′ since the terms where i′ = j′ have zero
exponent.
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• The term indexed by i′, j′ is the negative of the term indexed
by j′, i′. Thus we can decide to retain only the terms where
i′ < j′, up to doubling the exponent when i′′ 6= j′′.

Doubling the exponent is compensated by making the product over all
i′′, j′′, giving:

fS =
∏

0≤i′′,j′′≤γ−1

∏
0≤i′<j′≤d′−1

(
ζ i
′
ζ i
′′

γ − ζj
′
ζj
′′

γ

)m−|Si′∩Sj′ |
.

Apply the formula
∏

0≤j′′≤γ−1(a− bζj′′γ ) = aγ − bγ to get:

fS =
∏

0≤i′<j′≤d′−1

(
ζγi
′ − ζγj′

)γ(m−|Si′∩Sj′ |)
,

which is what we want since ζγ = exp 2πi/d′. �

The lemma can be used to deal with the symbols for which γ > 1.
We distinguish two cases.

The first case is r′ = 1. Let us recall that fS is invariant (up to
sign) by the action of Z/d′ — this can be seen directly from its formula
or from the fact that according to [Ma] the whole unipotent degree is
invariant (up to sign) by that action. Then, up to (Z/d′)-action there
is only one d′-symbol of rank 1, given by S ′ = ({1}, {0}, . . . , {0}). A
direct computation shows that fS′ = d′ up to unit. We thus have to
show that d′γγ divides dr/((1 − ζ)(1 − ζ−1)). Using that dr = (γd′)γ

it remains to see that (1− ζ)(1− ζ−1) divides γγ−1. This follows from
item (1) of Corollary A.8 (see Appendix A).

The other case is r′ > 1. The case γ = 1, already treated above,
ensures that S ′ satisfies the condition 8.7, that is:

fS′γ(S ′) divides
d′r
′

(1− ζ ′)(1− ζ ′−1)

where ζ ′ = exp(2πi/d′). Using the fact that γ(S ′) = 1, raising both
sides to the power of γ gives:

(fγS′γ) divides
d′r
′γγ

(1− ζ ′)γ(1− ζ ′−1)γ
=

d′rγ

(1− ζ ′)γ(1− ζ ′−1)γ

It suffices now to show that d′rγ/((1− ζ ′)γ(1− ζ ′−1)γ) divides dr/((1−
ζ)(1 − ζ−1)). Using that dr = d′rγr and simplifying, it suffices to
show that (1− ζ)(1− ζ−1) divides γr−1(1− ζ ′)γ(1− ζ ′−1)γ, which is an
immediate consequence of Corollary A.8 since r > 1.

It remains to prove item (2) for G(d, d, r). By the same argument as
for G(d, 1, r) given a symbol S of rank r we may find a symbol S ′ of
rank r + 1 such that fS divides fS′ . We proceed by induction on the
rank, starting from the base case r = 2.
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For d /∈ {2, 3}, according to [Lu, 4.1], for G(d, d, 2) there is a symbol
S such that fS = d/((1− ζ)(1− ζ−1)). Then item (2) of Corollary A.8
completes the proof in this case.

For d = 2, the group G(2, 2, 2) is not irreducible and we do not
have to consider it. The group G(2, 2, 3) is the Weyl group of type
A3, and |W |/(r!cW ) = 1 and there is nothing to prove. We start the
induction at G(2, 2, 4), the Weyl group of type D4 and for the symbol
S = ({1, 2}, {0, 3}), for instance, we find fS = 2.

For d = 3, the group G(3, 3, 2) is the Weyl group of type A2, and
|W |/(r!cW ) = 1 and there is nothing to prove. We start the induction at
G(3, 3, 3), and for the symbol S = ({0, 1}, {1, 2}, {0, 2}), for instance,
we find fS = (1− ζ3) up to a unit. �

9. Classification of distinguished root systems for
irreducible primitive reflection groups

As noticed previously (see for example [Ne]), it can be checked that
whenever G is a primitive irreducible reflection group, its field of def-
inition k = QW (see 2.30) has class number 1, i.e., the ring Zk is a
principal ideal domain.

In this case, every root system is principal in the sense of Defini-
tion 3.9, and hence gives rise to a Cartan matrix as in Definition 6.2.

We present here a classification of the distinguished Zk-root systems
for primitive groups (up to genus), based on the data in the CHEVIE

package of GAP3. The classification may be summarised by looking at
Appendix B, which exhibits, for each primitive irreducible reflection
group G:

• a diagram describing its presentation;
• a Cartan matrix C which corresponds to the data in CHEVIE as

well as diagonal matrices giving Cartan matrices for all other
genera of root system by conjugation of C;
• the ring of integers of the field of definition, a generator of the

connection index and a generator of the ideal BadG.

A complete legend for the table is on page 78.
In GAP3, all vectors are row vectors, matrices operate from the right,

and in CHEVIE the pairing used is not Hermitian. Consequently, to
change from CHEVIE conventions to our conventions, one has to trans-
pose and conjugate the list of coroots. Thus the Cartan matrices given
in the tables of Appendix B are the transpose of one obtained by ap-
plying the conventions of the preceding sections.

For each primitive irreducible reflection group G, CHEVIE contains
a Cartan matrix C which satisfies the assumptions of Proposition 6.5.
Thus there exists a (principal) root system for G since C satisfies the
following set of properties:
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(1) C is the Cartan matrix of a ordered set of distinguished roots
R0 for G, whose root lines generate V and such that the corre-
sponding reflections generate G. The ordered set of reflections
corresponding to R0 are called the “standard” generators of G.

(2) The entries of C are elements of Zk. 3

(3) For each triple (αi, βi, ζi) defining an element of R0, its orbit
under G is finite, and whenever two such triples define the same
reflection they differ by the action of an element of Z×k .

It follows from the above properties that the root system R deter-
mined by C is actually distinguished. Indeed:

• all roots in R are distinguished,
• there is only one root in R attached to each distinguished re-

flection in G.

It follows from Lemma 6.3 that any other distinguished root system
R′ for the standard generators taken in the same order corresponds
to conjugating C by a diagonal matrix. So the first step to classify
genera of root systems is to determine whether C can be modified by
a diagonal matrix so that the entries remain integral.

9.1. Cases with only one genus of distinguished root systems.

By Proposition 3.27, if G has a single orbit of distinguished reflec-
tions, it has a single genus of distinguished root systems. This proves
uniformly the uniqueness (provided they exist) of distinguished root
systems for 19 of the 34 primitive irreducible reflection groups, that is
the groups Gn where n ∈ {4, 8, 12, 16, 20, 22, 23, 24, 25, 27, 29, 30, 31, 32,
33, 34, 35, 36, 37}. The existence of a distinguished root system for
these groups is shown by the CHEVIE root data and gives the Cartan
matrices (with integral entries) in Appendix B.

Proposition 9.1. For each of the groups G9, G10, G11, G14, G17, G18,
G19, G21 there is a unique genus of distinguished root systems; indeed,
the matrix corresponding to the standard generators as given in CHEVIE

is the unique one in its class modulo conjugation by diagonal matrices
with integral entries.

Proof. We first show how the proof goes for G11. The Cartan matrix
for the standard generators given in CHEVIE for G11 is: 2 ζ2

3 (
√
−3−

√
−2) 1− ζ24

1 1− ζ3 ζ13
24

1 + ζ5
24 ζ7

24 + ζ5
24 1− i

 .

3 Actually, the data in CHEVIE did not always verify (2) when there were several
G-orbits of distinguished reflections, but we have found it possible to adjust the
data by multiplying by a global scalar all roots in one of the orbits in order to satisfy
(2). These modifications have now been incorporated in the CHEVIE database.
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When we conjugate by the matrix diag(1, a, b) with a, b ∈ k we get 2 aζ2
3 (
√
−3−

√
−2) b(1− ζ24)

a−1 1− ζ3 a−1bζ13
24

b−1(1 + ζ5
24) ab−1(ζ7

24 + ζ5
24) 1− i

 .

Knowing that
√
−3−

√
−2, 1−ζ24 and 1+ζ5

24 are units (which is easily
checked in CHEVIE if not obvious), we see that for the above matrix to
have integral entries a, a−1, b, b−1 must be integral, which forces a and
b to be units and diag(1, a, b) to be a matrix of units, thus to preserve
the genus.

A similar reasoning, using the fact that particular entries of the Car-
tan matrix are units, also applies to the other cases of the proposition,
whose Cartan matrices are given in Appendix B. To help the reader
apply the above argument, the entries of the Cartan matrices which are
units are in bold in Appendix B, and the same convention is applied
for the matrices given in the next subsection. �

9.2. The cases with more than one genus.

The approach here follows the same lines as the proof of Proposi-
tion 9.1. The Cartan matrix cited in each case is the one given in
CHEVIE satisfying the conditions (1), (2) and (3) of page 66, and is also
the one given in Appendix B.

The case of G5.

The Cartan matrix C is:(
1− ζ3 1
−2ζ3 1− ζ3

)
.

A matrix diag(1, a) conjugates C to an integral matrix if and only if a
is an integral divisor of 2. Since 2 is prime in Z[ζ3], this gives rise to
two distinct genera of distinguished Zk-root systems.

The case of G6.

The Cartan matrix C is:(
2 (3+

√
3)(ζ3−1)
3

−1 1− ζ3

)
.

A matrix diag(1, a) conjugates C to an integral matrix if and only if

a is an integral divisor of (3+
√

3)(ζ3−1)
3

, which up to a unit is equal to
i + 1. In Zk = Z[ζ12], the ideal (i + 1)Zk is prime of square 2Zk. This
gives rise to 2 distinct genera of distinguished Zk-root systems.
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The case of G7.

The Cartan matrix C is: 2 ζ2
3 (1− i) −ζ2

3 (i+ 1)
ζ3(1− iζ3) 1− ζ3 −ζ3(1− i)
iζ3(1− iζ3) i+ 1 1− ζ3

 .

A matrix diag(1, a, b) conjugates C to an integral matrix if and only
if both a and b are integral divisors of i + 1, which is prime in Z[ζ12].
This gives rise to 4 distinct genera of distinguished Zk-root systems.

The group G7 has an outer automorphism induced by an element of
GL(V ), induced by the embedding of reflection groups G7 ⊂ G15, where
[G15 : G7] = 2. This automorphism exchanges the conjugacy classes of
the reflections corresponding to rows 2 and 3 of C, thus exchanges two
of the genera of the root systems and leaves the others fixed. Thus we
get one more root system than [Ne], which counts the systems up to
isomorphism.

The case of G13.

The Cartan matrix C is: 2
√

2 i− 1

1 +
√

2 2 −1 +
√
−2

−ζ8(1 +
√

2) −1−
√
−2 2

 .

Now i−1 = ζ3
8

√
2, and

√
2 = ζ3

8 (1+
√

2)(1−ζ8)2 where 1+
√

2 is a unit.
Hence in terms of ideals, in Zk = Z[ζ8] we have

√
2Zk = (1 − i)Zk =

((1− ζ8)Zk)2 (see Corollary A.7 of Appendix A).
A matrix diag(1, a, b) conjugates C to an integral matrix if and only

if a and b are equal up to a unit, and both are integral divisors of
√

2.
This gives rise to 3 distinct genera of distinguished Zk-root systems,
corresponding respectively to the values Zk, (1 − ζ8)Zk and

√
2Zk =

(1− i)Zk for aZk.

The case of G15.

The Cartan matrix C is: 2 −ζ24(1− ζ1924 ) 1
1− ζ−124 1− ζ3 1

ζ38 (1− ζ8)2 u(1− ζ8)2 2


where u = (1 +

√
2)(ζ3 + i) is a unit.

A matrix diag(1, a, b) conjugates C to an integral matrix if and only
if a is a unit and b is an integral divisor of (1−ζ8)2, which is a square in
Zk = Z[ζ24]. Hence there are 3 distinct genera of distinguished Zk-root
systems.
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The case of G26.

The Cartan matrix C is: 2 −1 0
ζ3 − 1 1− ζ3 ζ23

0 −ζ23 1− ζ3

 .

A matrix diag(1, a, b) conjugates C to an integral matrix if and only
if a and b are equal up to a unit and both are integral divisors of
1− ζ3, which is prime in Zk = Z[ζ3]. So there are 2 distinct genera of
distinguished Zk-root systems.

The case of G28 = F4.

The Cartan matrix C is:
2 −1 0 0
−1 2 −1 0
0 −2 2 −1
0 0 −1 2

 .

A matrix diag(1, a, b, c) conjugates C to an integral matrix if and
only if a is a unit and b and c are equal up to a unit and are integral
divisors of 2. Since 2 is prime in Z this leaves 2 distinct genera of
distinguished Zk-root systems.
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Appendix A. On roots of unity

A.1. Notation and summary of known properties.

For any natural integer n, we denote by

• ϕ(n) the order of the multiplicative group (Z/nZ)×,
• Φn(X) the n-th cyclotomic polynomial, monic element of Z[X]

inductively defined by the equality

Xn − 1 =
∏
d|n

Φd(X) ,

• Zn (resp. Qn) the ring (resp. the field) generated by the group
µn of all n-th roots of unity.

The following omnibus proposition states properties which are either
well known, or easy to establish.

Proposition A.1.

(1) Φn(X) =
∏

ζ of order n(X − ζ) , and deg Φn(X) = ϕ(n).

(2) If n =
∏

p∈P(n) p
vp(n) (where P(n) denotes the set of prime num-

bers dividing n), then

ϕ(n) =
∏

p∈P(n)

pvp(n)−1(p− 1) .

(3) n =
∏

(d|n)(d6=1) Φd(1) .

(4) We say that an integer n is composite if it is divisible by at
least two different prime numbers. Then

Φn(1) =
∏

ζ of order n

(1− ζ) =

{
1 if n is composite,

p if n = pm (p a prime number).

(5) (Changing X to −X)

Φd(−X) = Φ2d(X) for d odd and d > 1 ,

Φd(−X) = Φd(X) for d divisible by 4.

(6) The polynomial Φn(X) is irreducible in Z[X], hence

Qn ' Q[X]/Φn(X) and Zn ' Z[X]/Φn(X) .

(7) Let a and b be relatively prime. Then ϕ(ab) = ϕ(a)ϕ(b) , so:
(a) [Qab : Qa] = ϕ(b) ,
(b) Φb(X) is irreducible in Qa[X], hence in Za[X] ,
(c) Zab ' Za[X]/Φb(X) .

(8) Whenever p is a prime number,{
Φn(Xp) = Φn(X)Φpn(X) if p - n ,
Φn(Xp) = Φpn(X) if p | n .

In particular

Φpa(X) = Φp(X
pa−1

) .
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Corollary A.2. If m divides n, then (1 + ζm)Zn 6= Zn precisely when
m = 2pk, p prime, k ≥ 0.

Proof. By A.1(4), 1 + ζm is not a unit if −ζm is a prime power. �

A.2. Decomposition of the ideal Im,n in Zn.
Let m ∈ N divide n. If ζ and ξ are two roots of unity, both of order

m, then the elements ζ and ξ generate the same multiplicative group,
and hence each of them is a power of the other. Thus the elements
(1− ζ) and (1− ξ) are multiples of one another in the ring Zn, and so
generate the same principal ideal of Zn:

Im,n := (1− ζ)Zn = (1− ξ)Zn.

Lemma A.3. Let m and n be natural integers such that m divides n.
Then {

Im,n = Zn if m is composite,

Iϕ(m)
m,n = pZn if m = pa (p a prime number).

Proof. This is an immediate consequence of the definition of Im,n and
of item (4) of A.1. �

We now investigate the decomposition of Im,n into a product of prime
ideals of Zn. By the preceding lemma, Im,n is invertible if m is com-
posite. So from now on we assume that m = pa where p is a prime
number and a ≥ 1. The general result is provided by Proposition A.5
below; the next lemma gives the result in the particular case where
n/m is prime to p.

Lemma A.4. Let m = pa and n = pan′ be natural integers, where n′

is prime to p.

(1) If n′ = 1 (i.e., m = n), the ideal Im,m is maximal in Zm. More
precisely,

Zpa/Ipa,pa ' Fp .
(2) Let r be the order of p in the multiplicative group (Z/n′Z)× and

let d := ϕ(n′)/r. Then

Im,n = p1 · · · pd ,
where p1, · · · , pd are the maximal ideals in Zn such that Zn/pi
is a finite field with pr elements (for i = 1, 2, . . . , d).

Proof. (1) The ideal Im,m is maximal, since (by item (4) of Proposition
A.1) we have

Zm/Im,m = Z[X]/〈Φm(X), 1−X〉 = Z/Φm(1) = Z/pZ .
(2) In Fp[X], Φn′(X) splits into irreducible polynomials of degree r,

thus there are d of them. Thus the ring Fp[X]/Φn′ [X] is isomorphic to
Fpr × · · · × Fpr (d factors).
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By A.1 7(c) and the proof of (1), we have

Zpan′/Ipa,pan′ = Zpa [X]/〈Φn′ [X], Ipa,pa〉 ' Fp[X]/Φn′ [X] ,

hence

Ipa,pan′ = p1 . . . pd

where p1, . . . , pd are the maximal ideals of Zn such that Zn/pi is a field
with pr elements. �

Proposition A.5. Assume m = pa for some prime number p, and
n = pa+hn′ where n′ is an integer not divisible by p. We denote by r
the multiplicative order of p modulo n′ and we set d := ϕ(n′)/r. Then

Im,n = (p1 · · · pd)p
h

,

where p1, · · · , pd are d maximal ideals in Zn such that Zn/pi is a finite
field with pr elements (for i = 1, 2, . . . , d).

Proof. Proposition A.1(2) implies ϕ(pa+h) = phϕ(m). By Lemma A.3,

pZpa+h = I
phϕ(m)

pa+h,pa+h
= I

ϕ(m)

m,pa+h
.

Since Ipa+h,pa+h is a maximal ideal (Lemma A.4(1)), it follows from the
uniqueness of the decomposition of an ideal into a product of prime
ideals in the Dedekind domain Zn that

Im,pa+h = Ip
h

pa+h,pa+h
,

which implies

Im,n = Ip
h

pa+h,n
.

Applying item (2) of Lemma A.4, we get

Im,n = (p1 · · · pd)p
h

.

�

Example A.6. Take p = 13 , a = 1, h = 0, n′ = 3, hence n = 39, r = 1,
d = 2. Then (see proof of item (2) of A.4):

Z39/I13,39 = F13[X]/Φ3(X) .

The decomposition of Φ3(X) in F13[X] is Φ3(X) = (X − 3)(X − 9) .
Define two ideals of Z39 as follows:

p1 := I13,39 + (ζ3 − 3)Z39 ,

p2 := I13,39 + (ζ3 − 9)Z39 .

Then p1 and p2 are distinct maximal ideals of Z39 such that Z39/p1 '
Z39/p2 ' F13 , and we have

I13,39 = p1p2 .

It can be checked, for example with the PARI-GP command:
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f=bnfinit(polcyclo(39));

bnfisprincipal(f,idealprimedec(f,13)[1])

that the ideals p1 and p2 are not principal ideals.

Corollary A.7. Assume that m′ | m | n and that m is a power of a
prime p. Then

Im′,n = Im/m
′

m,n .

Proof. This is an immediate consequence of the above Proposition A.5,
since the integer r and the maximal ideals p1, . . . , pd depend only on
the pair (n, p). �

Corollary A.8. Let m be a natural integer and let ζ be a root of unity
of order m. Let n be a multiple of m.

(1) For any natural integer m′ > 1 dividing m, (1 − ζ)(1 − ζ−1)
divides m′ in Zn.

(2) If m /∈ {2, 3}, every prime factor of m divides
m

(1− ζ)(1− ζ−1)
in Zn.

Proof.
(1) We first notice that if m = m′ the result follows from the equal-

ity
∏m−1

i=1 (1 − ζ i) = m. We may thus assume m > m′, and we do
so. If m is composite, by Lemma A.3, Im,n = Zn and there is noth-

ing to prove. Otherwise, by Corollary A.7, we have Im′,n = I
m/m′
m,n ;

so in particular Im′,n, which divides m′Zn, is divisible by I2
m,n =

[(1− ζ)Zn] [(1− ζ−1)Zn].
(2) The statement is equivalent to saying that any prime factor of m

divides mZn/I2
m,n. By Lemma A.3, Im,n = Zn if m is composite. Thus

we need only consider the case where m is a prime power. Since

mZn =
m−1∏
i=1

(1− ζ i)Zn =
m−1∏
i=1

Im/ gcd(i,m) ,

then mZn is divisible by Im to the power at least ϕ(m). For m 6∈
{2, 3, 4, 6}, ϕ(m) > 2 and the assertion holds. The cases m = 2 and
3 are excluded by the hypothesis, and m = 6 is composite. By the
formula above for m = 4 we have 4Zn = I2

4,nI2,n, and by Corollary A.7,

we have I2,n = I2
4,n, completing the proof. �

A.3. On cyclotomic fields.

On real subfields of cyclotomic fields.

Proposition A.9. Let e > 1 be an integer. We set ζe := exp(2πi/e).

(1) The field Q[cos(2π/e)] is the largest real subfield of the cyclo-
tomic field Q(ζe), i.e., Q[cos(2π/e)] = Q(ζe) ∩ R .
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(2) If e is odd, Q(ζe) = Q(ζ2e) and Q[cos(2π/e)] = Q[cos(π/e)].
If e is even, Q(ζe) ( Q(ζ2e) and Q[cos(2π/e)] ( Q[cos(π/e)] .

Proof.
(1) Consider the sequence of polynomials Pn(T ) ∈ Z[T ] inductively

defined by P0(T ) = 2, P1(T ) = T , and Pn+1(T ) = TPn(T ) − Pn−1(T ).
Then, for all n ≥ 1,

Xn +X−n = Pn(X +X−1) .

Since ζe + ζ−1
e = 2 cos(2π/e), it is clear that Q[cos(2π/e)] ⊂ R∩Q(ζe).

Conversely, any real element of Q(ζe) is a Q-linear combination of
elements of the form ζj + ζ−j, hence is a Q-linear combination of
Pj(ζ + ζ−1), proving that it belongs to Q[cos(2π/e)].

(2) If e is odd, ζ2e = −ζ(e+1/2)
e , hence Q(ζe) = Q(ζ2e), and by part

(1) this implies Q[cos(2π/e)] = Q[cos(π/e)].
If e is even, ϕ(2e) = 2ϕ(e), and so Q(ζe) ( Q(ζ2e). Moreover,

i ∈ Q(ζ2e), hence an element x + iy (with x, y ∈ R) belongs to Q(ζ2e)
if and only if x and y belong to Q(ζ2e). This shows that Q(ζ2e) =
Q[cos(π/e)] ⊕ iQ[cos(π/e)], hence that [Q[cos(π/e)] : Q] = ϕ(2e)/2 =
ϕ(e). Since Q[cos(2π/e)] ( Q(ζe), this shows that Q[cos(2π/e)] (
Q[cos(π/e)] . �

By [Was, Theorem 2.6. and Proposition 2.16],

Proposition A.10.

(1) The ring of integers of Q(ζe) is Z[ζe].
(2) The ring of integers of Q(ζe + ζ−1

e ) is Z[ζe + ζ−1
e ].

The ring Z[ζe + ζ−1
e ] is not necessarily a P.I.D. For example (see [Mi,

Theorem 1.1]), Z[ζ163 +ζ−1
163] has class number 4. Nevertheless (ibidem),

Theorem A.11. Let p be a prime number. Then the ring Z[ζp + ζ−1
p ]

is a P.I.D. if p ≤ 151.

The next lemma is used in section 7 above.

Lemma A.12. Let ζ be a root of unity of order pa, where p is a prime
and a ≥ 1 is a integer. Then the principal ideal of Z[ζ+ ζ−1] generated
by (1− ζ)(1− ζ−1) = (2− ζ − ζ−1) is prime.

Proof. It suffices to prove that the norm NQ[ζ+ζ−1]/Q(2 − ζ − ζ−1) of
(2− ζ − ζ−1) is equal to p. By item (4) of Proposition A.1, we see that

NQ[ζ]/Q(1− ζ) = NQ[ζ]/Q(1− ζ−1) = p .

Since

NQ[ζ]/Q[ζ+ζ−1](1− ζ) = NQ[ζ]/Q[ζ+ζ−1](1− ζ−1) = (1− ζ)(1− ζ−1) ,

the assertion follows from the fact that

NQ[ζ]/Q = NQ[ζ+ζ−1]/Q ·NQ[ζ]/Q[ζ+ζ−1] .

�
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Further properties of cyclotomic fields.

The following property may be found, for example, in [Sa, §6.5].

Proposition A.13. Let p be an odd prime. Then the cyclotomic field
Q(ζp) contains a single quadratic extension, namely Q(

√
(−1)(p−1)/2p).

Corollary A.14. Let p be an odd prime. Then

• Q[
√
p] ⊂ Q(ζp) if p ≡ 1 (mod 4).

• Q[
√
−p] ⊂ Q(ζp) if p ≡ 3 (mod 4).

In the second case we have Q[
√
−p] ⊂ Q(ζ4p).

Let us recall that the fields Q[
√
−p] for p ≡ 3 (mod 4) are principal

ideal domains if and only if p ∈ {3, 7, 11, 19, 43, 67, 163}.
The next result shows that a cyclotomic extension cannot contain

the roots of some rational numbers.

Proposition A.15. A cyclotomic field Q(ζn) cannot contain an ele-
ment α whose minimal polynomial is Xm − a for a ∈ Q and m ≥ 3.

Sketch of proof. If Q(ζn) contains such an element α, it also contains
the Galois closure of the extension Q(α)/Q, namely Q(α, ζm). This is
impossible since the Galois group of Q(α, ζm)/Q is not abelian. �

The next theorem maybe found in [Was, Chap. 11, Theorem 11.1] .

Theorem A.16. A cyclotomic field Q(ζm) is a principal ideal domain
if and only if m ≤ 22 or m ∈ {24, 25, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38,
40, 42, 44, 45, 48, 50, 54, 60, 66, 70, 84, 90}.
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Appendix B. A table of Cartan matrices

The following table gives, for each exceptional irreducible finite com-
plex reflection group G4, . . . , G34:

• The diagram describing its presentation, using the same conven-
tions as in [Bro2, Appendix A]; a subset of nodes representing
each conjugacy class of hyperplanes have been given labels in
the set {s, t, u}.
• The Cartan matrix C of a principal distinguished Zk-root sys-

tem for the standard generators corresponding to the diagram.
If there are several genera of Zk-root systems, below C we list
the diagonal matrices which conjugate C to the Cartan matrix
for other genera are listed below C.

For badly generated groups, the rows (resp. columns) of the
Cartan matrix which are integral linear combinations of the
others are indicated by ∗. That there is always at least one
such row and column fulfills the promise of Remark 6.8.
• The value of Zk. The values of Zk for G14, G20, G21, G22 and
G27 can be readily seen using Exercise 4.5.13 in [MuEs].
• A generator of the connection index for each root system.
• A generator of the (principal) ideal BadG.

For the omitted exceptional groups G35 = E6, G36 = E7 and G37 =
E8, the diagram and the Cartan matrix are well known. We have
Zk = Z in each case, connection indices are

cE6 = 3, cE7 = 2 and cE8 = 1,

and the numbers BadG are:

BadE6 = 6,BadE7 = 6 and BadE8 = 120.

Finally, in the tables, we use the notation φ = 1+
√

5
2

.
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Name Diagram Cartan matrices Zk cG BadG

G4 ©
s
3 ©3

(
1− ζ3 ζ23
−ζ23 1− ζ3

)
Z[ζ3] 2 2

√
−3

G5 ©
s
3 ©

t
3

(
1− ζ3 1
−2ζ3 1− ζ3

)
Z[ζ3] 1

diag(1, 2)

G6 ©
s

©
t
3

(
2 (i + ζ3)(1 + i)
−1 1− ζ3

)
Z[ζ12] 1 + i 4

√
3

diag(i+ 1, 1)

G7 s© n©3 t

©3 u


∗

∗ 2 ζ23 (1− i) −ζ23 (1 + i)
∗ ζ3(1 + iζ3) 1− ζ3 −ζ3(1− i)
∗ iζ3(1 + iζ3) 1 + i 1− ζ3

 Z[ζ12] 1

diag(i+ 1, 1, i+ 1) 1

diag(i+ 1, i+ 1, 1) 1

diag(i+ 1, 1, 1) 1

G8 ©
s
4 ©4

(
1− i −i

1 1− i

)
Z[i] 1 12

G9 ©
s

©
t
4

(
2 −2+

√
2

i+1

−1 1− i

)
Z[ζ8] 1

G10 ©
s
3 ©

t
4

(
1− ζ3 1
−i− ζ3 1− i

)
Z[ζ12] 1

G11 s© n©3 t

©4 u


∗ ∗ ∗

∗ 2 ζ23 (
√
−3−

√
−2) 1− ζ24

∗ 1 1− ζ3 ζ1324

∗ 1 + ζ524 ζ724 + ζ524 1− i

 Z[ζ24] 1

G12 s© nn©
©


∗ ∗ ∗

∗ 2 −1−
√
−2 −1 +

√
−2

∗ −1 +
√
−2 2 −1−

√
−2

∗ −1−
√
−2 −1 +

√
−2 2

 Z[
√
−2] 1

G13
ns© n© t

©
5 4


∗ ∗ ∗

∗ 2
√

2 i− 1

(1 +
√
2) 2 −1 +

√
−2

−ζ8(1 +
√
2) −1−

√
−2 2

 Z[ζ8] 1

diag(1− ζ8, 1, 1) 1

diag(i+ 1, 1, 1) 1
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Name Diagram Cartan matrices Zk cG BadG

G14 ©
s

8 ©
t
3

(
2 −1

−ζ23 (
√
−3 +

√
−2) 1− ζ3

)
Z[ζ3,

√
−2] 1 12

√
−2

G15 s©
5

��© t

©3 u


∗ ∗ ∗

2 −ζ24 − ζ824 1
1− ζ−124 1− ζ3 1

∗ ζ38 (1− ζ8)2 −ζ8(ζ3 + i)
√

2 2

 Z[ζ24] 1

diag(1, 1, 1− ζ8) 1

diag(1, 1, 1 + i) 1

G16 ©
s
5 ©5

(
1− ζ5 1
−ζ5 1− ζ5

)
Z[ζ5] 1

G17 ©
s

©
t
5

(
2 1

1− ζ5 − ζ720 1− ζ5

)
Z[ζ20] 1

G18 ©
s
3 ©

t
5

(
1− ζ3 −ζ415

ζ−115 + ζ15 1− ζ5

)
Z[ζ15] 1

G19 s© n©3 t

©5 u


∗ ∗ ∗

∗ 2 1− ζ3ζ−160 −1
∗ 1 + ζ60 1− ζ3 −ζ60
∗ ζ5 − 1 + ζ720 ζ1960 + ζ1160 1− ζ5

 Z[ζ60] 1

G20 ©
s
3

5 ©3
(

1− ζ3 −ζ3φ
φ 1− ζ3

)
Z[ζ3, φ] 1

G21 ©
s

10 ©
t
3

(
2 1

1− ζ3 + φ
ζ12

1− ζ3

)
Z[ζ12, φ] 1

G22 s© n5 ©
©


∗ ∗ ∗

∗ 2 −i− φ −i+ φ
∗ i− φ 2 −1 + iφ
∗ i+ φ −1− iφ 2

 Z[i, φ] 1

G23
= H3

©
s

5 © ©

 2 −φ 0
−φ 2 −1
0 −1 2

 Z[φ] 2 2
√

5

G24 ©
s
©

�
©
�

 2 −1 −1
−1 2 (1−

√
−7)/2

−1 (1 +
√
−7)/2 2

 Z[ 1+
√
−7

2 ] 1 2
√
−7

G25 ©
s
3 ©3 ©3

1− ζ3 ζ23 0
−ζ23 1− ζ3 ζ23

0 −ζ23 1− ζ3

 Z[ζ3]
√
−3 6
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Name Diagram Cartan matrices Zk cG BadG

G26 ©
s

©
t
3 ©3

 2 −1 0
ζ3 − 1 1− ζ3 ζ23

0 −ζ23 1− ζ3

 Z[ζ3] 1 18
√
−3

diag(1, 1− ζ3, 1− ζ3)

G27 ©
s
©

�
©
�

 2 −1 −1
−1 2

ζ23 (
√
−3+

√
5)

2

−1 (
√
5−
√
−3)ζ3

2 2

 Z[ζ3, φ] 1 6
√

5

G28
= F4

©
s
© ©

u
©


2 −1 0 0
−1 2 −1 0
0 −2 2 −1
0 0 −1 2

 Z 1 24

diag(1, 1, 2, 2)

G29 ©
s
©←− ©
�
©
�


2 −1 0 0
−1 2 i+ 1 −1
0 1− i 2 −1
0 −1 −1 2

 Z[i] 1 20

G30
= H4

©
s

5© © ©


2 −φ 0 0
−φ 2 −1 0
0 −1 2 −1
0 0 −1 2

 Z[φ] 1 120

G31 ©
�
©
s
©

n
©

©
�



∗ ∗ ∗

∗ 2 i+ 1 1− i −i 0
∗ 1− i 2 1− i −1 −1
∗ i+ 1 i+ 1 2 0 −1

i −1 0 2 0
0 −1 −1 0 2

 Z[i] 1

G32 ©
s
3 ©3 ©3 ©3


1− ζ3 ζ23 0 0
−ζ23 1− ζ3 ζ23 0

0 −ζ23 1− ζ3 ζ23
0 0 −ζ23 1− ζ3

 Z[ζ3] 1 120
√
−3

G33 ©
s
©
t

6←−©
u

�
©w

�
©


2 −1 0 0 0
−1 2 −1 −ζ23 0
0 −1 2 −1 0
0 −ζ3 −1 2 −1
0 0 0 −1 2

 Z[ζ3] 2 6

G34 ©
s
©
t

6←−©
u

�
©w

�
© ©


2 −1 0 0 0 0
−1 2 −1 −ζ23 0 0
0 −1 2 −1 0 0
0 −ζ3 −1 2 −1 0
0 0 0 −1 2 −1
0 0 0 0 −1 2

 Z[ζ3] 1 42
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[Sa] P. Samuel, Théorie algébrique des nombres, Hermann (Paris), (1967).
[ShTo] G. C. Shephard and J. A. Todd, Finite unitary reflection groups, Canad.

J. Math. 6 (1954), 274–304.
[SpSt] T. Springer and R. Steinberg, Conjugacy classes, in Seminar on algebraic

groups and related finite groups (Borel ed.), Springer LNM 131 (1970).
[St] R. Steinberg, Differential equations invariant under finite reflection

groups, Trans. Amer. Math. Soc. 112 (1964), 392–400.
[Was] L. C. Washington, Introduction to cyclotomic fields, Springer Verlag

(1982).



Index

a−1, 14
admissible preorder, 54
Aut(R), 26
Arr(G), 12
ArrX(G), 12

bad prime ideals, 62
BadW , 62

Canonical pairing associated with V ,
4

Cartan matrix, 43
Complete root system, 21
Connection index of (V,G), 31
Connection index of R, 31
Coroot bases, 27
Coroot lattice, 25
Coweight lattice, 25

Distinguished reflection, 14
Distinguished root, 20
Distinguished root system, 21
Dual reflecting hyperplane, 4
Dual reflecting line, 4
Dual root system, 24

Essential, 6

Family of positive half-lines, 55
Family of simple reflections, 55
Flat, 12
Fractional ideal, 14
FX , 12

G(de, e, r), 11
Genus of Zk-roots, 15
Genus of root systems, 27
G(R) group defined by roots R, 19

Highest half-line, 59

〈I, J〉, 14
Im,n, 72
Irreducible set of reflections, 7

k−, 54
k+, 54

Lattice equivalence of root systems,
27

L−s , 55
L+
s , 55

n(r1, r2), 16

Orthogonal reflecting triples, 6

Parabolic subgroup, 13
Parallel reflecting triples, 6
Positive half-lines, 55
PR, 25
Principal root, 16

QG, 12
QR, 25
Q∨R, 25

R(de, e, r), 37
Reduced root system, 21
Ref(G), 12
Ref1(d, r), 36
Ref2(e, r), 36
Reflecting hyperplane, 4
Reflecting line, 4
Reflection, 4
Reflection triple, 4
ri, 23
Root basis, 27
Root generators, 27
Root lattice, 25
Root lattice basis, 27
R∨, 24

(s,Zk)-root, 15
Saturated set of reflections, 6
simple reflections, 55

Twisted dual, 4

Weight lattice, 25
Well-generated, 12

(ζ,Zk)-root, 15
Zk-root, 15
Zk-root system, 17
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