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1 Prerequisite: affine algebraic groups

For complements consult [Geck].

An algebraic group is an algebraic variety such that the multiplication and
inverse are continuous maps for the Zariski topology. We consider affine alge-
braic groups G over an algebraically closed field k, that is G = SpecA where A
is a k-algebra. The group structure gives a coalgebra structure on A (actually,
a Hopf algebra structure).

Example 1.1. We will denote Ga = Spec k[X] the additive group k+ seen as an
algebraic group. The comultiplication k[X] → k[X] ⊗ k[X] ≃ k[X,Y ] is given
by X 7→ X + Y .

Example 1.2. We will denote Gm = Spec k[t, t−1] the multiplicative group k×

seen as an algebraic group. Comultiplication is given by X 7→ XY .

A torus is an algebraic group T isomorphic to Grm; r is the rank of T. The
group of characters is X(T) = Hom(T,Gm); we have X(T) ≃ Zr since a mor-
phism k[t, t−1] → k[t1, . . . , tr, t

−1
1 , . . . , t−1

r ] is defined by the image of t, which
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must be invertible, thus be a monomial, unitary to get a coalgebra morphism.
We define the group of cocharacters Y (T) = Hom(Gm,T), which is canonically
dual to X(T): for α ∈ X(T), α∨ ∈ Y (T) we have α ◦ α∨ ∈ Hom(Gm,Gm) ≃ Z.

We define the rank of an affine algebraic group to be the rank of a maximal
subtorus.

G is affine if and only if it is linear, that is it embeds as a closed subgroup
of some GLn(k). This allows to define semi-simple (resp. unipotent) elements
of G as those whose image is such by the embedding (this is independent of the
embedding). Any g ∈ G has a unique Jordan decomposition g = gsgu where gs
is semi-simple, gu unipotent and they commute.

Proposition 1.3. Let G be a linear algebraic group over Fp. Then every el-
ement has finite order, the semi-simple elements are the p′-elements and the
unipotent elements are the p-elements.

Proof. This results from the fact that the above result holds for GLn(Fp).

Example 1.4. A torus of rank n embeds as the diagonal matrices in GLn(k)
(thus GLn(k) is of rank n). It consists of semisimple elements.

A connected semisimple group is a torus.

Example 1.5. A unipotent group embeds as a subgroup of the upper unitrian-
gular matrices in some GLn(k).

A unipotent group is nilpotent; in characteristic 0 it is necessarily connected;
a connected unipotent group is isomorphic to an affine space as an algebraic
variety.

The Borel subgroups are the maximal closed connected solvable subgroups.
They embed as a subgroup of the upper triangular matrices in some GLn(k).

The radical Rad(G) is the maximal normal closed connected solvable sub-
group; G is semisimple if Rad(G) = 1. The unipotent radical Ru(G) is the max-
imal normal closed connected unipotent subgroup. G is reductive if Ru(G) = 1.
We will write “reductive group” for “reductive algebraic linear group”.

The quotient by a closed subgroup is a variety, and by a closed normal
subgroup is an affine algebraic group; G/Ru(G) is reductive. Its radical is a
central torus.

Proposition 1.6 (Assumed). Let B be a connected solvable algebraic group,
and let T be a maximal torus. Then B = T⋉Ru(B); every semisimple element
is conjugate to an element of T.

Corollary 1.7. Let B be as above and S be a subtorus. Then NB(S) = CB(S).

Proof. If n ∈ NB(S), s ∈ S then [n, s] ∈ [B,B] ∩ S ⊂ Ru(B) ∩ S = 1.

Proposition 1.8 (Assumed). In a connected algebraic group the Borel sub-
groups are conjugate and self-normalizing; every element lies in some Borel
subgroup.
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The last two points come from the fact that in GLn, the normalizer of the
upper unitriangular matrices are the upper triangular matrices, and from the
fact that any matrix is triangularizable.

Corollary 1.9. RadG is the connected component of the intersection of all
Borel subgroups.

Proof. Indeed RadG is in at least one Borel subgroup. Since it is normal and all
Borel subgroups are conjugate, it is in their intersection. Since it is connected,
it is in the connected component. Conversely this component is solvable and
normal.

Examples of reductive groups

Example 1.10. GLn = Spec k[ti,j , det(ti,j)
−1], i, j ∈ [1 . . . n]. We have seen that

the upper triangular matrices form a Borel subgroup. The lower triangular,
conjugate to the upper triangular by the matrix of the permutation (1, n)(2, n−
1) . . ., form another, whose intersection with the first is the group of diagonal
matrices, a maximal torus. Thus GLn is reductive by 1.9.

Example 1.11. SLn = Spec k[ti,j ]/(det(ti,j) − 1). The diagonal (resp. upper
triangular) matrices are still a maximal torus (resp. Borel subgroup).

Example 1.12. PGLn is the quotient of GLn by Gm imbedded diagonally. To
see it is an affine variety, we identify it to the subgroup of g ∈ GL(Mn(k)) which
are algebra automorphisms, that is such that g(Ei,j)g(Ek,l) = δj,kg(Ei,l) where
Ei,j is the elementary matrix defined by {Ei,j}k,l = δi,jδk,l. The image of a
maximal torus (resp. a Borel subgroup) of GLn is a maximal torus (resp. a
Borel subgroup).

�
If char k = p the center Z SLp is Spec k[t]/(tp − 1) = Spec k[t]/(t − 1)p

which as a variety has a single point thus is the trivial group, but is not trivial
as a scheme! SLp and PGLp have the same points over k but are not isomorphic
as group schemes.

Example 1.13. Sp2n(k). On V = k2n with basis (e1, . . . , en, e
′
n, . . . , e

′
1), we define

the symplectic bilinear form 〈ei, ej〉 = 〈e′i, e′j〉 = 0, 〈ei, e′j〉 = −〈e′j , ei〉 = δi,j .
The group Sp2n is the subgroup of g ∈ GL2n which preserve this form. If J ′ =




1
. .
.

1



 and J =

(
J ′

−J ′

)

, we have 〈v, v′〉 = tvJv′ and g is symplectic

if tgJg = J . The matrices diag(t1, . . . , tn, t
−1
1 , . . . , t−1

n ) form a maximal torus.
The symplectic upper triangular matrices are a Borel subgroup; they consist of

the matrices

(
B BjS
0 J ′ tB−1J ′

)

where B is upper triangular and S is symmetric.

This group is indeed connected since it is the product of the connected varieties
of the upper triangular and of the symmetric matrices; solvable as a subgroup
of a solvable group; and maximal since it is in a single Borel subgroup of GL2n

(it stabilizes a single complete flag).
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Proposition 1.14. A parabolic subgroup of a connected algebraic group is a
subgroup which contains a Borel subgroup.

• A parabolic subgroup P is connected and NG(P) = P.

• To distinct parabolic subgroups containing the same Borel subgroup are not
conjugate.

Proof. As the Borel subgroups are connected, P◦ contains a Borel subgroup
B. As another Borel subgroup of G in P◦ is P◦-conjugate to B, we have
NG(P◦) = P◦NG(B) = P◦B = P◦. As P ⊂ NG(P◦) we have P = P◦.
Finally, using again that Borel subgroups of P are P-conjugate, we get that two
conjugate parabolic subgroups containing the same Borel subgroup are NG(B)-
conjugate, thus are equal since NG(B) = B.

Proposition 1.15 (Assumed). Let T be a torus of a connected algebraic group
G. Then CG(T) = NG(T)◦; the Borel subgroups of CG(T) are the B∩CG(T)
where B is a Borel subgroup of G containing T.

The Weyl group WG(T) = NG(T)/CG(T) is thus finite; it can be identified
to a finite subgroup of GL(X(T)) = GLrankG(Z).

Proposition 1.16 (Assumed). In a connected algebraic group, maximal tori
are conjugate. If T is a maximal torus, CG(T) is nilpotent.

If T is a maximal torus, by 1.15 and 1.16, CG(T) is in the intersection of
Borel subgroups containing T. Since by 1.7 for such a Borel subgroup B we have
NB(T) = CB(T), we get that w 7−→ wB induces a bijection between WG(T)
and the set of Borel subgroups containing T.

2 Prerequisites: Coxeter groups, root systems

2.1 Coxeter groups

Let W be a group generated by a set S of elements stable by taking inverses.
Let {wi, w′

i}i∈I be words in the elements of S (finite sequences of elements of
S; the set of all words on S is denoted S∗ and called the free monoid on S). We
say that 〈S | wi = w′

i for i ∈ I〉 is a presentation of W is W is the “most general
group” where the relation wi = w′

i holds. Formally, we take for W the quotient
of S∗ by the congruence relation on words generated by the relations wi = w′

i.
Let w ∈W be the image of s1 · · · sk ∈ S∗. Then this word is called a reduced

expression for w ∈ W if it is a word of minimal length representing w; we then
write l(w) = k.

We assume now the set S which generates W consists of involutions, that
is each element of S is its own inverse. Notice that reversing words is then

equivalent to taking inverses in W . For s, s′ ∈ S we will denote ∆
(m)
s,s′ the

word ss′ss′ · · ·
︸ ︷︷ ︸

m terms

. If the product ss′ has finite order m, we will just denote ∆s,s′
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for ∆
(m)
s,s′ ; then the relation ∆s,s′ = ∆s′,s holds in W . Writing the relation

(ss′)m = 1 this way has the advantage that transforming a word by the use
of this relation does not change the length — this will be useful. This kind of
relation is called a braid relation because it is the kind of relations which defines
the braid groups, groups related to the Coxeter groups which have a topological
definition.

Definition 2.1. A pair (W,S) where S is a set of involutions generating the
group W is a Coxeter system if

〈s ∈ S | s2 = 1,∆s,s′ = ∆s′,s for pairs s, s′ ∈ S such that ss′ has finite order〉

is a presentation of W .

�
We may ask if a presentation of the above kind defines always a Coxeter

system. That is, given a presentation with relations ∆
(m)
s,s′ = ∆

(m)
s′,s , is m the

order of ss′ in the defined group? This is always the case, but it is not obvious.
If W contains a set S such that (W,S) is a Coxeter system we say that W is

a Coxeter group and that S is a Coxeter generating set. Considering thatW has
a faithful reflection representation we will also sometimes call S the generating
reflections of W , and the set R of W -conjugates of elements of S the reflections
of W .

Characterizations of Coxeter groups

Theorem 2.2. Let W be a group generated by the set S of involutions. Then
the following are equivalent:

(i) (W,S) is a Coxeter system.

(ii) There exists a map N from W to the set of subsets of R, the set of W -
conjugates of S, such that N(s) = {s} for s ∈ S and for x, y ∈ W we have
N(xy) = N(y)+̇y−1N(x)y, where +̇ denotes the symmetric difference of two
sets (the sum (mod 2) of the characteristic functions).

(iii) (Exchange condition) If s1 · · · sk is a reduced expression for w ∈ W and
s ∈ S is such that l(sw) ≤ l(w), then there exists i such that sw = s1 · · · ŝi · · · sk.
(iv) W satisfies l(sw) 6= l(w) for s ∈ S, w ∈W , and (Matsumoto’s lemma) two
reduced expressions of the same word can be transformed one into the other by
using just the braid relations. Formally, given any monoidM and any morphism
f : S∗ → M such that f(∆s,s′) = f(∆s′,s) when ss′ has finite order, then f is
constant on the reduced expressions of a given w ∈W .

Note that (iii) could be called the “left exchange condition”. By symmetry
there is a right exchange condition where sw is replaced by ws.

Proof. We first show that (i)⇒(ii). The definition of N may look technical and
mysterious, but the intuition is that W has a reflection representation where
it acts on a set of roots stable under the action of W (there are two opposite
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roots attached to each reflection), that these roots are divided into positive and
negative by a linear form which does not vanish on any root, and that N(w)
records the reflections whose roots change sign by the action of w.

Computing step by step N(s1 · · · sk) by the two formulas of (ii), we find

N(s1 · · · sk) = {sk}+̇{sksk−1}+̇ · · · +̇{sksk−1···s2s1}. (1)

Let us show that the function thus defined on S∗ factors through W which will
show (ii). To do that we need N to be compatible with the relations defining
W , that is N(ss) = ∅ and N(∆s,s′) = N(∆s′,s). This is straightforward.

We now show (ii)⇒(iii). We will actually check the right exchange condition;
by symmetry if (i) implies this condition it also implies the left condition. We
first show that if s1 · · · sk is a reduced expression for w, then |N(w)| = k, that
is all the elements of R which appear on the right-hand side of (1) are distinct.
Otherwise, there would exist i < j such that sk · · · si · · · sk = sk · · · sj · · · sk;
then sisi+1 · · · sj = si+1si+2 · · · sj−1 which contradicts that the expression is
reduced.

We next observe that l(ws) ≤ l(w) implies l(ws) < l(w). Indeed N(ws) =
{s}+̇s−1N(w)s thus by the properties of +̇ we have l(ws) = l(w) ± 1. Also, if
l(ws) < l(w), we must have s ∈ s−1N(w)s or equivalently s ∈ N(w). It follows
that there exists i such that s = sk · · · si · · · sk, which multiplying on left by w
gives ws = s1 · · · ŝi · · · sk q.e.d.

We now show (iii)⇒(iv). The exchange condition implies l(sw) 6= l(w)
because if l(sw) ≤ l(w) it gives l(sw) < l(w). Given f : S∗ → M as in (iv)
we use induction on l(w) to show that f is constant on reduced expressions.
Otherwise, let s1 · · · sk and s′1 · · · s′k be two reduced expressions for the same
element w whose image by f differ. By the exchange condition there exists
i such that s′1s1 · · · sk = s1 · · · ŝi · · · sk in W , thus s′1s1 · · · ŝi · · · sk is another
reduced expression for w. If i 6= k we may apply induction to deduce that
f(s1 · · · sk) = f(s′1s1 · · · ŝi · · · sk) and similarly apply induction to deduce that
f(s′1 · · · s′k) = f(s′1s1 · · · ŝi · · · sk), a contradiction. Thus i = k and s′1s1 · · · sk−1

is a reduced expression for w such that f(s′1s1 · · · sk−1) 6= f(s1 · · · sk).
Arguing the same way, starting this time from the pair of expressions s1 · · · sk

and s′1s1 · · · sk−1, we get that s1s
′
1s1 · · · sk−2 is a reduced expression for w such

that
f(s1s

′
1s1 · · · sk−2) 6= f(s′1s1 · · · sk−1);

Going on this process will stop when we get two reduced expressions of the

form ∆
(m)
s1,s′1

, ∆
(m)
s′1,s1

, such that f(∆
(m)
s1,s′1

) 6= f(∆
(m)
s′1,s1

). We cannot have m greater

that the order of s1s
′
1 since the expressions are reduced, nor less than that order,

because the order would be smaller. And we cannot have m equal to the order
of s1s

′
1 because this contradicts the assumption.

We finally show (iv)⇒(i). (i) can be stated as: given any group G and a
morphism of monoids f : S∗ → G such that f(s)2 = 1 and f(∆s,s′) = f(∆s′,s)
then f factors through a morphism g : W → G. Let us define g by g(w) =
f(s1 · · · sk) when s1 · · · sk is a reduced expression for w. By (iv) the map g is
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well-defined. To see that g factors f we need to show that for any expression
w = s1 · · · sk we have g(w) = f(s1 · · · sk). This will follow by induction on the
length of the expression if we show that f(s)g(w) = g(sw) for s ∈ S,w ∈W . If
l(sw) > l(w) this equality is immediate from the definition of g. If l(sw) < l(w)
we use f(s)2 = 1 to rewrite the equality g(w) = f(s)g(sw) and we apply the
reasoning of the first case. Finally l(sw) = l(w) is excluded by assumption.

Finite Coxeter groups: the longest element

Proposition 2.3. Let (W,S) be a Coxeter system. Then the following proper-
ties are equivalent for an element w0 ∈W :

(i) l(w0s) < l(w0) for all s ∈ S.
(ii) l(w0w) = l(w0)− l(w) for all w ∈W .

(iii) w0 has maximal length amongst elements of W .

If such an element exists, it is unique and it is an involution, and W is finite.

Proof. It is clear that (ii) implies (iii) and that (iii) implies (i).
To see that (i) implies (ii), we will show by induction on l(w) that w0 as in

(i) has a reduced a expression ending by a reduced expression for w−1. Write
w−1 = vs where l(v) + l(s) = l(w). By induction we may write w0 = yv where
l(w0) = l(y) + l(v). The (right) exchange condition, using that l(w0s) < l(w0)
but vs is reduced, shows that w0s = ŷv where ŷ represents y with a letter
omitted. It follows that ŷvs is a reduced expression for w0.

An element satisfying (ii) is an involution since l(w2
0) = l(w0)−l(w0) = 0 and

is unique since another w1 has same length by (iii) and l(w0w1) = l(w0)−l(w1) =
0 thus w1 = w−1

0 = w0.
If w0 as in (i) exists then S is finite since S ⊂ N(w0) and W is then finite

by (iii).

Yet another characterization of Coxeter groups

Lemma 2.4. Let W be group generated by the set S of involutions and let
{Ds}s∈S be a set of subsets of W such that:

• Ds ∋ 1.

• Ds ∩ sDs = ∅.
• If for s, s′ ∈ S we have w ∈ Ds, ws

′ /∈ Ds then ws′ = sw.

Then (W,S) is a Coxeter system, and Ds = {w ∈W | l(sw) > l(w)}.
Proof. We will show the exchange condition. Let s1 · · · sk be a reduced expres-
sion for w /∈ Ds and let i be minimal such that s1 · · · si /∈ Ds; we have i > 0 since
1 ∈ Ds. From s1 · · · si−1 ∈ Ds and s1 · · · si /∈ Ds we get ss1 · · · si−1 = s1 . . . si,
whence sw = s1 · · · ŝi · · · sk thus l(sw) < l(w) and we have checked the exchange
condition in this case. If w ∈ Ds then sw /∈ Ds by the first part l(w) < l(sw)
so we have nothing to check.
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Parabolic subgroups

Lemma-Definition 2.5. Let (W,S) be a Coxeter system, let I be a subset of
S, and let WI be the subgroup of W generated by I. Then (WI , I) is a Coxeter
system. An element w ∈W is said I-reduced if it satisfies one of the equivalent
conditions:

(i) For any v ∈WI , we have l(vw) = l(v) + l(w).

(ii) For any s ∈ I, we have l(sw) > l(w).

(iii) w is of minimal length in the coset WIw.
There is a unique I-reduced element in WIw.

Proof. It is clear that (WI , I) satisfies the exchange condition (a reduced ex-
pression in WI is reduced in W by the exchange condition, and then satisfies
the exchange condition in WI) thus is a Coxeter system.

It is clear that (iii)⇒(ii) since (iii) implies l(sw) ≥ l(w) when s ∈ I. Let
us show that not (iii)⇒ not (ii). If w′ does not have minimal length in WIw

′,
then w′ = vw with v ∈ WI and l(w) < l(w′); adding one by one the terms of a
reduced expression for v to w, applying at each stage the exchange condition, we
find that w′ has a reduced expression of the shape v̂ŵ where v̂ (resp. ŵ) denotes
a subsequence of the chosen reduced expression. As l(ŵ) ≤ l(w) < l(w′), we
have l(v̂) > 0, thus w′ has a reduced expression starting by an element of I,
thus w′ does not satisfy (ii).

(i)⇒(iii) is clear. Let us show not (i)⇒ not (iii). If l(vw) < l(v) + l(w)
then a reduced expression for vw has the shape v̂ŵ where l(ŵ) < l(w). Then
ŵ ∈WIw and has a length smaller than that of w.

Finally, an element satisfying (i) is clearly unique in WIw.

Let us note that by exchanging left and right we have the notion of reduced-I
element which satisfies the mirror lemma.

Fixed points under automorphisms

Proposition 2.6. Let Γ be a group of automorphisms of the Coxeter system
(W,S), that is of automorphisms of W preserving S. Let (S/Γ)<∞ the set of or-
bits I of Γ on S such that the subgroup WI is finite. Then (WΓ, {wI}I∈(S/Γ)<∞

)
is a Coxeter system, where WΓ is the subgroup of Γ-fixed elements of W , and
where wI denotes the longest element of WI , see 2.3. Further, if wI1 · · ·wIk is
a reduced expression of some w ∈ WΓ in the above Coxeter system, we have
l(w) =

∑i=k
i=1 l(wIi), where l is the length function of (W,S).

Proof. We first show

Lemma 2.7. If for w ∈WΓ and s ∈ S we have l(ws) < l(w) then the Γ-orbit I
of s is finite, and there exists w′ such that w = w′wI with l(w) = l(w′) + l(wI).

Proof. Since Γ is an automorphism of (W,S) for any element t ∈ I we will have
l(wt) < l(w). Write w = w′v where w′ is reduced-I; then l(vt) < l(v) for any
t ∈ I which is possible only if WI is finite and v = wI , see 2.3.
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Let SΓ be the set {wI | I ∈ (S/Γ)<∞}; applying the lemma at each step
starting from the right, we find that any w ∈WΓ can be written w = wI1 · · ·wIk
where Ij ∈ SΓ and l(w) =

∑i=k
i=1 l(wIi), in particular SΓ generates WΓ.

We will use the characterization 2.4 to see that (WΓ, SΓ) is a Coxeter system,
but inverting right and left. For wI ∈ SΓ, letDwI

= {w ∈WΓ | w is reduced-I}.
We clearly have DwI

∋ 1 and DwI
∩ DwI

wI = ∅. It remains to show that if
w ∈ DwI

and wJw /∈ DwI
, then wJw = wwI . We will use the function N of

2.2(ii). We have

Lemma 2.8. For any r ∈ N(w) we have l(wr) < l(w).

Proof. Indeed if w = s1 · · · sn is a reduced expression there exists i such that
r = sn · · · si · · · sn whence wr = s1 · · · ŝi · · · sn.

It follows from the lemma that if, for r ∈ WI , w ∈ WΓ we have r ∈ N(w),
then N(wI) ⊂ N(w). Indeed l(wr) < l(w) thus w cannot be I-reduced thus by
2.7 it can be written wI1 · · ·wIk with the lengths adding and Ik = I.

In our situation w ∈ DwI
implies N(w) ∩ N(wI) = ∅ and wJw /∈ DwI

implies N(wJw) ⊃ N(wI); since N(wJw) = N(wJ )
w+̇N(w) it follows that

N(wJ )
w ⊃ N(wI). If we show that this implies wwJ = wI we are done. We

remark first that we may assume that w is J-reduced; otherwise we may replace
it by wJw since wwJw

J = wwJ . We write then N(wIw
−1) = wN(wI) +N(w−1).

Since w is J-reduced, N(w−1) ∩ N(wJ ) = ∅, and since wN(wI) meets N(wJ ),
all of N(wJ ) must be contained in N(wIw

−1) thus in wN(wI). Thus we have
N(wI) = w−1N(wJ )w whence WI = w−1WJw whence wI = w−1wJw since
w−1wJw is the only non-trivial Γ-stable element of wI .

We now prove the final remark in the statement. If wI1 · · ·wIk is a reduced
expression in (WΓ, SΓ) then by the property of Dwk

(see 2.4) we have w /∈ Dwk
;

thus by lemma 2.7 we have w = w′wIk where the lengths add. This proves the
result by induction on k.

We have seen in the proof that 1 and wI are the only Γ-stable elements of
WI .

Coxeter Diagrams

Coxeter systems are encoded by a graph with vertices S and edges encoding the
order of ss′ when it is greater than 2. This order is encoded by a single edge
when 3, a double edge when 4, a triple edge when 6, and an edge decorated by
the order when 5 or greater than 6.

The diagrams for finite irreducible (here it means connected diagrams) Cox-
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eter groups are

An :©
s1

©
s2

· · ·©
sn

Bn/Cn :©
s1

©
s2

· · · ©
sn−1

©
sn

Dn :©
s1

©s2

©
s3

©
s4

· · ·©
sn

E6 :©
1

©
3

©2

©
4

©
5

©
6

E7 :©
1

©
3

©2

©
4

©
5

©
6

©
7

E8 :©
1

©
3

©2

©
4

©
5

©
6

©
7

©
8

F4 :©
1

©
2
©
3

©
4

H3 :©
1

5 ©
2

©
3

H4 :©
1

5 ©
2

©
3

©
4

I2(e) :©
1

e ©
2

A finite Coxeter group is called a Weyl group if it is a reflection group over
Q. This selects in the above list exactly the diagrams where the order of ss′ is
always in {2, 3, 4, 6}. The group I2(6) is also denoted G2.

2.2 Root systems

In this section V is a finite dimensional real vector space and V ∗ is its dual.

Notation 2.9. A reflection s ∈ GL(V ) is an element of order 2 such that Ker(s−
Id) is an hyperplane. It follows that s has an eigenvalue −1 with multiplicity
1, and that if α ∈ V is an eigenvector for −1 and α∨ ∈ V ∗ is a linear form for
Ker(s− Id), chosen such that α∨(α) = 2, then s(x) = x− α∨(x)α.

We call α a root attached to the reflection s and α∨ the corresponding coroot.
They are unique up to inverse to each other scalings. Conversely any pair of
non-zero vectors α ∈ V, α∨ ∈ V ∗ such that α∨(α) = 2 define a reflection.

Definition 2.10. • A root system is a finite set Φ ⊂ V with a bijection
α 7→ α∨ : Φ → Φ∨ ⊂ V ∗ such that Φ generates V , and for any α ∈ Φ
we have α∨(α) = 2 and Φ is stabilized by the reflection sα of root α and
coroot α∨.

11



• The system is crystallographic if α∨(β) ∈ Z for all α, β ∈ Φ.

• The system is reduced if for any α we have Φ ∩ Rα = {α,−α}.

If the system is crystallographic, Φ and Φ∨ generate dual lattices.
Some other authors reserve the name “root system” for the systems we call

crystallographic; any finite Coxeter groups has a root system in our sense, but
only the Weyl groups have crystallographic ones.

In the following we fix a root system Φ and denote W the group generated
by {sα}α∈Φ. It is finite since its elements are determined by the permutation of
Φ they induce. Thus there exists a W -invariant scalar product (, ).

Lemma 2.11. Identifying V to V ∗ by (, ) we have α∨ = 2α
(α,α) .

Proof. Using the invariance of (, ) we get for all v ∈ V that (α, v) = (sαα, sαv) =

(−α, v − α∨(v)α) which gives α∨(v) = 2(α,v)
(α,α) .

Using the identification of lemma 2.11 allows to work in an Euclidean space
and forget Φ∨; but keeping V ∨ allows to extend the theory to infinite root
systems.

In the following we assume Φ reduced, in order to simplify somewhat the
statements and proofs — a non-reduced system BCn occurs in certain parts of
reductive group theory that we will not cover.

Theorem 2.12. Given an order on V such that every root is positive or negative
(equivalently, given a linear form which does not vanish on Φ), denote Φ+ the
set of positive roots. Then there exists a unique basis Π ⊂ Φ+ of V such that
Φ+ = Φ ∩ R≥0Π.

Proof. Note first that there exists a minimal subset Π ⊂ Φ+ such that Φ+ =
Φ ∩ R≥0Π: to obtain such a subset, starting from Φ+, just iteratively remove
elements which are a positive linear combination of others in the considered
subset.

Lemma 2.13. For a minimal Π as above (α, β) ≤ 0 for α, β ∈ Π, α 6= β.

Proof. Assume by contradiction that (α, β) > 0. Then sα(β) = β − cα where

c = 2(α,β)
α,α > 0. Either sα(β) ∈ Φ+ or −sα(β) ∈ Φ+.

In the first case by assumption sα(β) =
∑

γ∈Π cγγ with cγ ≥ 0; we rewrite
this

∑

γ∈Π−{β} cγγ + cα + (cβ − 1)β = 0. We cannot have cβ − 1 ≥ 0 since a
non-zero sum of positive vectors cannot be zero. Thus we expressed β as an
element of R≥0(Π− {β}) which contradicts the minimality of Π.

In the second case we similarly rewrite −sα(β) =
∑

γ∈Π cγγ with cγ ≥ 0 to
∑

γ∈Π−{α} cγγ+β+(cα−c)α = 0, and similarly we must have cα−c < 0 giving

an expression of α as an element of R≥0(Π− {α}) which again contradicts the
minimality of Π.

12



Let us see now that Π is a basis. We know it generates V since Φ does.
We have to exclude a linear dependence amongst its elements. Such a relation
can we written v =

∑

α∈Π1
cαα =

∑

β∈Π2
cββ where v is a nonzero vector,

where cα, cβ ≥ 0 and where Π = Π1 ⊔ Π2. But then we have 0 < (v, v) =
(
∑

α∈Π1
cαα,

∑

β∈Π2
cββ) which contradicts lemma 2.13.

We finally show that Π is unique: if there are two such bases Π 6= Π′ let
us consider α ∈ Π − Π′; express it on Π′ as α =

∑

β∈Π′ cββ then express each
involved β on Π: since β 6= α these expressions will involve a root in Π− α (we
use here that the system is reduced) and this root will remain when doing the
sum, since the coefficients are positive; this is a contradiction.

A Φ+ as above is called a positive subsystem and a Π as above a simple
subsystem.

Note that in the basis Π the coefficients of the matrix sα are 1 or −α∨(β),
thus in this basis we have W ⊂ GLn(Z) if the root system is crystallographic,
where n = |Π|.

Proposition 2.14. Two positive (resp. simple) subsystems are W -conjugate.

Proof. It is enough to consider positive subsystems since they determine simple
subsystems.

Lemma 2.15. For α ∈ Π and any β ∈ Φ+ − {α} we have sα(β) ∈ Φ+.

Proof. If β ∈ Φ+ − {α} then β =
∑

γ∈Π cγγ where at least one cγ > 0 with

γ 6= α, otherwise β ∈ Φ+ ∩R≥0α = {α}. But then sα(β) = β −α∨(β)α has the
same coefficient on γ, and as any root has all nonzero coefficients on Π of the
same sign, the root sα(β) is positive.

We use the lemma to conjugate another positive subsystem Φ′ on Φ+, us-
ing induction on |Φ+ ∩ −Φ′|. If this number is positive then Π ∩ −Φ′ 6= ∅,
otherwise Π ⊂ Φ′ which implies Φ+ ⊂ Φ′ which implies Φ+ = Φ′ since all pos-
itive subsystems have same cardinality |Φ|/2. Choose thus α ∈ Π ∩ −Φ′; since
sα(Φ

+) = (Φ+−{α})∐{−α}, the set sα(Φ+) is a positive subsystem such that
|sα(Φ+) ∩ −Φ′| = |Φ+ ∩ −Φ′| − 1.

Corollary 2.16. Every root is in the W -orbit of Π.

Proof. It is enough to show it for every positive root since sα(α) = −α. Take
α =

∑

γ∈Π cγγ ∈ Φ+ − Π; as 0 < (α, α) =
∑

γ∈Π cγ(α, γ) there exists γ ∈ Π
such that (α, γ) > 0. Then α′ = sγ(α) is still positive by 2.15 and is obtained
by removing a positive multiple of γ to α. Thus if we set h(α) =

∑

γ cγ we have

h(α′) < h(α). We can repeat this process as long as α′ /∈ Π. As Φ+ is finite this
process must eventually stop, at a root in Π.

The proof of the corollary shows more, that every root is conjugate to an
element of Π by a sequence of sγ , γ ∈ Π. In particular every sα is in the group
generated by {sγ}γ∈Π, thus W itself is generated by {sγ}γ∈Π.

We show now that W is a Coxeter group using characterization 2.4.
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Proposition 2.17. (W,S) where S = {sα | α ∈ Π} is a Coxeter system.

Proof. We apply 2.4 with Dsα = {w ∈W | w−1(α) > 0}. That Dsα∩sαDsα = ∅
is clear. Now take w ∈ Dsα such that wsα′ /∈ Dsα , that is w−1(α) > 0 and
sα′w−1(α) < 0. As sα

′ changes the sign of only α′, we must have w−1(α) = α′.
As w preserves the scalar product, it conjugates sα′ to sα, whence the result.

Lemma 2.18. (i) The set N(w) of 2.2(ii) is {sα | α ∈ Φ+, w(α) < 0}.

(ii) The element w0 of 2.3 is such that w0(Φ
+) = Φ−.

Proof. If we set N ′(w) = {sα | α ∈ Φ+, w(α) < 0} we will show by induction
on l(w) that N(w) = N ′(w): let w = vs with s ∈ S, l(w) > l(v); it follows from
the definitions of N and N ′ that N(w) = s ∪ sN(v)s and N ′(w) = s ∪ sN ′(v)s.
This proves (i).

For (ii), if w ∈ W and N(w) 6= Φ+ then there exists α ∈ Π such that
w(α) > 0. Then by 2.17 and 2.4 we have l(sαw) > l(w). If we iterate this we
have to stop at w0 and we must have N(w0) = Φ+.

Example 2.19. Root system of type An−1. Let {e1, . . . , en} be an orthonormal
basis of Rn. Then Φ = {ei − ej}i,j∈[1,...,n],i6=j is a root system of cardinality
n(n− 1) in the subspace V of dimension n− 1 it generates. The vectors where
i > j are a positive subsystem relative to the linear form x 7→ (x, ne1 + (n −
1)e2 + · · · + en). We have Π = {ei − ei+1}i=1,...,n−1. If we set αi = ei − ei+1,
we have ei− ej = αi+αi+1 + · · ·+αj for i < j. The group W is the symmetric
group, permuting the ek: sei−ej transposes ei and ej and fixes the other ek.
The Coxeter graph is©

s1

©
s2

· · · ©
sn−2

©
sn−1

.

Example 2.20. Root system of type Cn.
It is formed of the 2n2 roots in Rn given by ±2ei and ±ei ± ej . For the

same linear form as above we have Φ+ = {2ei}i ∪ {ei ± ej}i<j and Π = {e1 −
e2, . . . , en−1 − en, 2en}. Here sei−ej transposes ei and ej , sei+ej transposes ei
and −ej and s2ei transposes ei and −ei; we get for W the hyperoctaedral group,
which permutes the ±ei. The Coxeter graph is©

s1

©
s2

· · · ©
sn−1

©
sn

.

Example 2.21. we get type Bn replacing 2ei by ei.

3 Structure of reductive groups

Properties 3.1. Let G be a connected reductive group over k, and let T be a
maximal torus of G. Then

(i) The minimal closed unipotent subgroups of G normalized by T are iso-
morphic to Ga. Choosing such an isomorphism x 7→ u(x) : Ga

∼−→ U, for
t ∈ T define α(t) ∈ k× by tu(x)t−1 = u(α(t)x); then α ∈ X(T).

The collection Φ of α thus obtained has no repetition, thus is a set and
α ∈ Φ determines a subgroup Uα isomorphic to Ga.
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(ii) Φ = −Φ, and for any α ∈ Φ, there exists a homomorphism φα : SL2 → G

whose image is 〈Uα,U−α〉, and which is injective or has kernel ± Id =
Z(SL2), and is such that

φα

(
1 ∗
0 1

)

= Uα, φα

(
1 0
∗ 1

)

= U−α, α̌(x) := φα

(
x 0
0 x−1

)

∈ T.

(iii) Φ is a reduced root system in X(T) ⊗ R. We have CG(T) = T and
the natural map W := NG(T)/T → GL(X(T) ⊗ R) identifies W to the

reflection group defined by Φ; sα is the image of ṡα := φα

(
0 1
−1 0

)

.

(iv) Any closed connected subgroup of G containing T is generated by T and
the Uα it contains.

(v) A unipotent subgroup H of G normalized by T is equal to
∏

Uα⊂H Uα in
any order.

(vi) Borel subgroups containing T are in bijection with positive subsystems of
Φ: if B corresponds to Φ+ then Ru(B) =

∏

α∈Φ+ Uα.

(vii) If α 6= −β then [Uα,Uβ ] ⊂
∏

{λ,µ∈N×|λα+µβ∈Φ} Uλα+µβ .

Note that (i) implies that for w ∈W and α ∈ Φ, we have wUα = Uw(α).
In a reductive group we have CG(T) = T. Indeed CG(T) is connected by

1.15, thus by (iv) is generated by T and some Uα. But no non-trivial element
of an Uα is in CG(T) since by (i) T acts non-trivially on Uα.

(iv) can be applied to G itself. This can be used to describe ZG: by the
previous paragraph, ZG ⊂ T, and is thus the intersection of the kernels in T

of all the roots.

Example 3.2. Let G = GLn and choose for T the diagonal matrices; then
NG(T) is the set of monomial matrices. The permutation matrices are a section
(representing W ) of the quotient NG(T)/T. We have X(T) ≃ Zn. The set
Φ = ei − ej is a root system (for the natural scalar product) in the subspace

it generates (of vectors in X(T) with 0 sum). An isomorphism k+
∼−→ Uei−ej

is given by x 7→ Id+xEi,j . The positive subsystem of 2.19 defines the Borel
subgroup of upper triangular matrices. The image of φei−ej is an SL2 in position
the intersections of the lines and columns i, j.

Example 3.3. In SLn the elements ofT satisfy t1 · · · tn = 1. The coroots generate
Y (T); the kernel of the roots is diag(ζ, . . . , ζ) where ζn = 1. The Weyl group

has no section in NG(T) since

(
0 1
−1 0

)2

= − Id.

Example 3.4. In PGLn the roots generate X(T); the images of the φα are
isomorphic to PGL2.

Example 3.5. In Sp2n, with our basis e1, . . . , en, en′ , . . . , e1′ , there are 3 kinds
of Uα, associated respectively to the morphisms Ga → G given by:
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• λ 7→ Id+λEi,j − λEj′,i′ for α = ei − ej
• λ 7→ Id+λEi,j′ + λEj,i′ for α = ei + ej

• λ 7→ Id+λEi,i′ for α = 2ei

4 (B,N)-pairs

Definition 4.1. We say that two subgroups B and N of a group G form a
(B,N)-pair (called also a Tits system) for G if

(i) B and N generate G and T := B ∩N is normal in N .

(ii) The group W := N/T is generated by a set S of involutions such that:

(iii) For s ∈ S, w ∈W we have BsB.BwB ⊂ BwB ∪BswB.

(iv) For s ∈ S, we have sBs 6= B.

We will see that under the assumptions 4.1 we have S = {w ∈ W | B ∪
BwB is a group} thus S is determined by (B,N).

Proposition 4.2. If G is a connected reductive group and T ⊂ B is a pair of a
maximal torus and a Borel subgroup, then (B, NG(T)) is a (B,N)-pair for G.

Proof. We show first that B∩NG(T) = T. By 1.7 we have NB(T) = CB(T) ⊂
CG(T) = T by 3.1(iii). By definition T is normal in NG(T). To show (i) it
remains to show that B and NG(T) generate G. Since sα conjugates Uα to
Usα(α) = U−α, the group generated by B and NG(T) contains T and all the
Uα(α ∈ Φ+) by 3.1 (vi), thus by 3.1 (iv) it is equal to G.

B defines an ordering Φ+ and a basis Π and (ii) is obtained by taking for S
the {sα | α ∈ Π}.

(iv) reflects that sUα = U−α is not in B.
It remains to show (iii). Let s = sα, and write B = T

∏

β∈Φ+ Uβ . As s

normalizes T, as sUβ = Usα(β) and as sα(β) ∈ Φ+ if β ∈ Φ+ − {α}, we get
BsBwB = BsUαwB. If w−1(α) ∈ Φ+ the rhs is equal to BswB. Otherwise
we write the rhs as BsUαsswB where this time (sw)−1(α) ∈ Φ+. Let Bα be
the image by φα of the Borel of SL2 of upper triangular matrices. If c 6= 0 we
have in SL2:

(
a b
c d

)

=

(
−1/c −a
0 −c

)(
0 1
−1 0

)(
1 d/c
0 1

)

which taking images shows that sUαs ⊂ Imφα = Bα∪BαsUα, whenceBsUαsswB ⊂
BsUαswB ∪BswB where the first term is BwB since (sw)−1(α) ∈ Φ+.

Theorem 4.3. If G has a (B,N)-pair, then

(i) G =
∐

w∈W BwB (“Bruhat decomposition”).

(ii) (W,S) is a Coxeter group.
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(iii) The condition (iii) of 4.1 can be refined to

BsB.BwB =

{

BswB if l(sw) = l(w) + 1

BswB ∪BwB otherwise
.

(iv) For any t ∈ N(w) (see 2.2(ii)), we have BtB ⊂ Bw−1BwB.

(v) S = {w ∈W | B ∪BwB is a group}.
(vi) We have NG(B) = B.

Proof. Let us show (i). As B and N generate B, we have G = ∪i(BNB)i. Since
BNB = BWB we will get G = BWB if we show that BWBWB = BWB.
For this it is enough to show that BwBWB ⊂ BWB; writing w = s1 · · · sn
since BwB ⊂ Bs1B · · ·BsnB it is enough to show BsBWB ⊂ BWB; but this
results from 4.1(iii). It remains to show that BwB 6= Bw′B if w 6= w′. We show
this by induction on inf(l(w), l(w′)); assume for instance that l(w) ≤ l(w′). The
start of the induction is l(w) = 0 and the result comes from w′ 6∈ B. Otherwise,
taking s ∈ S such that l(sw) < l(w), by induction BswB is equal neither to
Bw′B nor to Bsw′B thus BswB ∩ BsB.Bw′B = ∅; as BswB ⊂ BsB.BwB it
follows that BwB 6= Bw′B.

For (ii), we use 2.4 with Ds = {w ∈W | BsBwB = BswB} (we note that if
this does not hold then BsBwB = BswB

∐
BwB). Clearly Ds ∋ 1.

If w, sw ∈ Ds, then from BsBwB = BswB and BsBswB = BwB we get
BsBsBwB = BwB, a contradiction since BsBsB = BsB

∐
B (since sBs 6= B

by 4.1(iv)).
It remains to see that w ∈ Ds, ws

′ /∈ Ds ⇒ ws′ = sw. The assumption ws′ /∈
Ds implies BsBws′B = Bsws′B

∐
Bws′B; in particular BsBws′ meets Bws′B;

multiplying on the right by s′B it follows that BsBwB meets Bws′Bs′B ⊂
(BwB

∐
Bws′B) (this last inclusion follows from 4.1 (iii) reversed, which is

obtained by taking inverses). Thus BswB = BsBwB (since w ∈ Ds) is equal
to Bws′B, or to BwB. This last cannot happen since w 6= sw, thus sw = ws′

as was to be shown.
We have also shown (iii) by the property of Ds.
Let us show (iv). If w = s1 · · · sk is a reduced expression, for all i we can

write by (iii) BwB = Bs1 · · · si−1BsiBsi+1 · · · skB and similarly for Bw−1B
whence

Bw−1BwB = Bsk · · · si+1BsiBsi−1 · · · s1Bs1 · · · si−1BsiBsi+1 · · · skB
⊃ Bsk · · · si+1BsiBsiBsi+1 · · · skB
⊃ Bsk · · · si+1BsiBsi+1 · · · skB
⊃ Bsk · · · si+1sisi+1 · · · skB

whence the result.
(v) follows immediately from (iv) which implies that B ∪ BwB can be a

group only if |N(w)| = 1.
(vi) also follows from (iv). For g ∈ BwB we have gB = B ⇔ wB = B ⇔

BwBw−1B = B which by (iv) happens only for w = 1.
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Remark 4.4. In a group with a (B,N)-pair, we call Borel subgroups the conju-
gates of B. A statement equivalent to the Bruhat decomposition is that every
pair of Borel subgroups is conjugate to a pair (B, wB) for w ∈W . We say that
the pair is in relative position w.

We callmaximal tori of G the conjugates of T . It follows that the intersection
of two Borel subgroups always contains a torus (since B and wB contain T ).

Example 4.5. In GLn a matrix m is in BwB if and only if it all bottom left
minors have same ranks as for the permutation matrix w, that is the ranks of
the submatrices mi,j on lines i, . . . , n and columns 1, . . . , j coincide. Indeed:

• The ranks of mi,j are invariant by left or right multiplication of m by an
upper triangular matrix.

• A permutation matrix w for the permutation σ is characterized by the
ranks of wi,j , given by |{k <= j | σ(k) ≥ i}|.

If {Fi} and {F ′
i} are two complete flags then the permutation matrix which

measures their relative position is given by rankwi,j = dim
Fi∩F

′

j

(Fi−1∩F ′

j
)+(Fi∩F ′

j−1)

Example 4.6. An “exotic” (B,N)-pair: G = GLn(Qp); N=monomial matrices,
B=matrices whose coefficients in the upper triangular part lie in Zp and under
the diagonal lie in pZp (B is an Iwahori subgroup, that is a subgroup of GLn(Zp)
whose reduction in GLn(Fp) falls in a Borel subgroup). Then W is of type Ãn
(“affine” An). For n = 2, W is the infinite dihedral group with Coxeter diagram

©
s

∞ ©
t
, generated by s =

(
0 1
−1 0

)

and t =

(
0 p
−p−1 0

)

.

In reductive groups, we can refine the Bruhat decomposition to the “unique
Bruhat decomposition” which is as follows:

Lemma 4.7. Let G be a connected reductive group and B = T ⋉ U be a
decomposition of B as in 1.6, where U = Ru(B). Then BwB is the direct
product UTwUw where Uw :=

∏

{α∈Φ+|w(α)<0} Uα.

Proof. Notice first that Uw is a group since if in 3.1(vii) α and β are sent
to negative roots by w the same holds for λα + µβ. We have U = U′Uw

where U′ =
∏

{α∈Φ+|w(α)>0} Uα thus wU′ ⊂ U; thus BwB = UTwU′Uw =

UTwUw. It remains to see the decomposition is unique, that is if uTwu′ = Tw
with u ∈ U, u′ ∈ Uw then u = u′ = 1. The condition implies u · wu′ ∈ T; in
particular wu′ ∈ B. But wUw ∩B = 1 since all Uα in wUw are for negative α.
Thus u′ = 1, whence u = 1.

In a connected linear algebraic group any semisimple element lies in some
maximal torus. Since every element lies in some Borel subgroup this results
from 1.6.

Proposition 4.8. Let G be as in 4.7 and let t ∈ T. Then

(i) CG(t)◦ is generated by T and the Uα such that α(t) = 1.
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(ii) CG(t) is generated by CG(t)◦ and the n ∈ NG(T) such that nt = t.

Proof. (i) is an immediate consequence of 3.1(iv).
Let us prove (ii). Conjugation by t permutes the cells BwB; for this cell

to be t-stable it must contain a representative n of w such that nt = t. Then
Tw ⊂ CG(t) and by the unique decomposition 4.7 an element utwu′ with u ∈ U,
u′ ∈ Uw is in CG(t) if and only if both u and u′ are in CG(t), thus in CG(t)◦.

4.1 Parabolic subgroups

In a group G with a (B,N)-pair, we call parabolic subgroups the groups con-
taining a Borel subgroup.

In a Coxeter system (W,S), for I ⊂ S, we denote WI the subgroup of W
generated by I (see 2.5).

Proposition 4.9. In a group G with a (B,N)-pair:

(i) the parabolic subgroups containing B are PI := BWIB for I ⊂ S.

(ii) if g ∈ G satisfies gB ⊂ PI then g ∈ PI .

(ii) reproves 1.14 by reproving that Borel subgroups of PI are PI -conjugate.

Proof. Let P be a subgroup containing B and let w ∈W be such that BwB ⊂ P .
Then Bw−1BwB ⊂ P thus by 4.3 (iv), we have BtB ⊂ P for all t ∈ N(w). If
s1 · · · sk is a reduced expression for w, we have sk ∈ P , sksk−1sk ∈ P, . . . which
inductively implies si ∈ P for all i; whence P ⊃ BWIB where I = {s1, . . . , sk};
conversely BWIB is a subgroup by the argument of 4.3(i). whence (i).

Let us show (ii). Assume gB ⊂ PI and let w ∈W be such that g ∈ Bw−1B.
Then PI ⊃ BgBg−1B = BwBw−1B whence by the same argument as (i)
w ∈WI thus g ∈ PI .

5 Isogenies

If G is a connected reductive group and T is a maximal torus, we call root
datum of G the quadruple (X,Y,Φ,Φ∨) where X = X(T), Y = Y (T) and Φ
(resp. Φ∨) are the roots (resp. coroots) relative to T. We will see that the root
datum determines G up to isomorphism.

Isogenies

An isogeny is a surjective morphism of algebraic groups with finite kernel.
Any finite normal subgroup of G is central: since conjugacy is continuous it

is trivial on a finite, thus discrete, group. A central group of a reductive group
is in every maximal torus.

Let p = char k; a p-morphism of root data (X,Y,Φ,Φ∨)
f−→ (X1, Y1,Φ1,Φ

∨
1 )

is a morphism X1
f−→ X with finite cokernel inducing a bijection Φ

τ−→ Φ1 such
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that f(τ(α)) = qαα and f∨(α∨) = qατ(α)
∨ where qα is a power of p (qα = 1 if

char k = 0) — and where f∨ : Y → Y1 denotes the transpose of f .

Theorem 5.1. Let G
φ−→ G1 be an isogeny and let T1 = φ(T). Then φ

induces a p-morphism (X(T), Y (T),Φ,Φ∨) → (X1(T1), Y1(T1),Φ1,Φ
∨
1 ) where

τ and the qα are determined by the formula φ(uα(x)) = uτ(α)(λαx
qα) for some

scalar λα. Conversely, every p-morphism is induced by an isogeny, unique up
to conjugacy by an element of T.

Proof of the first part. The isogeny φ induces X(T1)
f−→ X(T) given by α 7→

α ◦ φ and Y (T)
f∨

−−→ Y (T1) given by α∨ 7→ φ ◦ α∨. If uα is a root sub-
group, then φ(uα) is another one uτ(α), which defines a bijection τ . We define
a polynomial P by φ(uα(x)) = uτ(α)(P (x)); the compatibility with the ac-
tion of T gives φ(tuα(x)) = φ(uα(α(t)x)) = uτ(α)(P (α(t)x)) and φ(tuα(x)) =
φ(t)uτ(α)(P (x)) = uτ(α)(τ(α)(φ(t))P (x)) whence P (α(t)x) = τ(α)(φ(t))P (x)
which implies that P is a monomial; the compatibility to the group law of Ga
gives P (x + y) = P (x) + P (y). This forces P = λxqα where qα is a power of
p = char k and λ a constant (qα = 1 if char k = 0). The constants λ can be
changed by composing φ with an element of adT.

We give now some examples of isogenies, defined by the corresponding p-
morphism.

Example 5.2. The opposition automorphism: qα = 1 and τ(α) = −α for all α.
It is adw0 if w0 is central in W , and transpose ◦ inverse ◦ adw0 in type A.

Example 5.3. An automorphism of the root system: τ is defined by the chosen
automorphism and qα = 1.

Example 5.4. A split Frobenius: we assume k = Fp, we let τ(α) = α for all
α, and set all qα = q a given power of p = char k. The corresponding isogeny

G
F−→ G is called a split Frobenius and GF = G(Fq); we will see later how to

build it.

Example 5.5. We assume G has a root system Φ of type C2, and Π = {α =
e1 − e2, β = 2e2}. If char k = 2 the formulae φ(uα(x)) = uβ(x

2), φ(uα+β(x)) =
u2α+β(x

2)), φ(uβ(x)) = uα(x), φ(u2α+β(x)) = uα+β(x) define an isogeny. If

t = diag(t1, t2, t
−1
2 , t−1

1 ) ∈ T we have φ(t) = diag(t1t2, t1t
−1
2 , t−1

1 t2, t
−1
1 t−1

2 ).
One checks that φ2 raises all coordinates to the square; it is the split Frobenius
F over F2. Then for any r the isogeny φ ◦ F r has 22r+1 − 1 fixed points on the
torus. The group of fixed points GφF r

is the Suzuki group Sz(22r+1).

Theorem 5.1 shows that groups with isomorphic root data are isomorphic;
this implies the classification if we can show the existence of the corresponding
groups.

6 Rationality questions

Let k0 be a subfield of k.
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A k0-structure on a vector space V is a sub-k0-space V (k0) such that V =
V (k0)⊗k0 k.

A k0-structure on a k-algebra A is a k0-algebra of finite type A(k0) such that
A = A(k0)⊗k0 k.

A k0-structure on an affine or projective variety V is the k0-variety defined
by A(k0) where the algebra A of V has a k0-structure A(k0).

In general a k0-structure on a variety is given by a finite open affine covering
where each open affine has a k0-structure.

In our lectures, all the varieties we will need to consider will be quasi-
projective varieties, that is open subvarieties of projective varieties. We assume
all varieties quasi-projective from now on.

Definition 6.1. An algebraic variety V over k is said to be defined over k0, if
it has a k0-structure V(k0). In this case we write V = V(k0)⊗k0 k.

If the variety V has a k0-structure, an element σ ∈ Gal(k/k0) acts on V by
x⊗λ 7→ x⊗σ(λ). If k/k0 is a Galois extension, for instance if k is the separable
closure of k0, one can find V(k0) as the fixed points of the action of Gal(k/k0).
This results from

Proposition 6.2. If V is a k-vector space (resp. a k-algebra) with a continuous
action of Gal(k/k0) (as a profinite group, thus continuous means that V =
∪GV G where G runs over subgroups of finite index) (resp. compatible to the
algebra structure), the fixed points of the action define a k0-structure.

Proof. See [Springer, 11.1.6].

Example 6.3. When k is an algebraic closure Fq of Fp, we have Gal(Fq/Fq) = Ẑ;
an element of Ẑ is defined by a sequence kn ∈ Z subject to the only condition

kn ≡ km (mod m) if m divides n; this element acts on Fqn by x 7→ xq
kn
. We

have Ẑ ≃∏

p Zp.

Proposition 6.4. A subvariety (resp. subalgebra, sub-vector space) is defined
over k0 (equivalently has a k0-structure which is a subvariety (resp. subalgebra,
subspace)) if and only if it is stable under the action of Gal(k/k0).

Proof. See [Springer, 11.1.4].

Example 6.5. The affine line is A1 = Spec k[T ]. The affine line on k0, defined
by the k0-algebra k0[T ], is a k0-structure since k[T ] = k0[T ]⊗k0 k. An element
σ ∈ Gal(k/k0) acts as

∑

i aiT
i 7→∑

i σ(ai)T
i. A k-point of A1 is given by a ∈ k

(or by the ideal which is the kernel of the morphism P 7→ P (a) : k[T ]→ k); this
point is defined over k0 if a ∈ k0.

6.1 Frobenius endomorphism

Definition 6.6. Let V be an Fq-variety with an Fq-structure V(Fq). The as-
sociated geometric Frobenius endomorphism F : V → V is F0 ⊗ Id where F0

is the endomorphism of V(Fq) which raises the functions on V(Fq) to the q-th
power.
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The endomorphism Φ of V induced by (λ 7→ λq) ∈ Gal(Fq/Fq) is called the
arithmetic Frobenius endomorphism.

On an affine variety SpecA the Fq-structure is of the form A = A(Fq)⊗Fq
Fq

and the geometric Frobenius endomorphism corresponds to a morphism F ∗ :
a⊗λ 7→ aq⊗λ— in a coordinate system for the variety, the geometric Frobenius
raises each coordinate to the q-th power). The arithmetic Frobenius is given by
Φ : a ⊗ λ 7→ a ⊗ λq. The composition F ∗ ◦ Φ raises each element of A to the
q-th power, which acts trivially on the Fq-points of SpecA.

Example 6.7. On A1, the geometric Frobenius is given by F ∗ : P (T ) 7→ P (T q);
thus F ∗ ◦ Φ maps P (T ) to P (T )q. If a ∈ Fq is an Fq-point of A1, the image of
a by F ∗ ◦Φ is defined by the kernel of P 7→ P (a)q, which is the same as that of
P 7→ P (a).

Note that the geometric Frobenius endomorphism is a morphism of Fq-
varieties, while the arithmetic Frobenius endomorphism is only a morphism
of Fq-varieties. In the sequel we will only consider the geometric Frobenius
endomorphism and just call it “the Frobenius endomorphism”.

Proposition 6.8. Let V be an affine or projective Fq-variety with algebra A.

A surjective morphism A
F∗

−−→ Aq is the Frobenius endomorphism attached to an
Fq-structure on V if and only if for any x ∈ A there exists n such that F ∗n(x) =
xq

n

. The corresponding Fq-structure is A(Fq) = {x ∈ A | xq = F ∗(x)}.

Proof. If A has an Fq-structure A = A(Fq) ⊗Fq
Fq ∋ x =

∑

i xi ⊗ λi then

xq
n

=
∑

i x
qn

i ⊗ λq
n

i thus xq
n

= F ∗n(x) when n is such that all λi are in Fqn .
Conversely, if F ∗ is a surjective morphism as in the statement, since x 7→ xq

n

is injective then F ∗ must also be injective, thus bijective and we can define φ
by φ(x) = F ∗−1(xq); then if we make the topological generator of Gal(Fq/Fq)
act by φ, the assumptions of 6.2 are satisfied.

The fixed points of φ form the Fq-structure by 6.2 and are as described in
the statement.

Proposition 6.9. Let V be an Fq-variety and F be the Frobenius endomorphism
corresponding to an Fq-structure on V.

(i) If V = SpecA then A(Fq) = {x ∈ A | xq = F ∗(x)}.
(ii) A subvariety of V is defined over Fq if and only if it is F -stable; the corre-
sponding Frobenius endomorphism is the restriction of F .

(iii) Let ϕ be an automorphism of V such that (ϕF )n = Fn for some positive
integer n; then ϕF is the Frobenius endomorphism attached to another Fq-
structure on V.

(iv) If F ′ is a Frobenius endomorphism attached to another Fq-structure on V,
there exists an integer n > 0 such that Fn = F ′n.

(v) Fn is the Frobenius endomorphism attached to an Fqn-structure on V.
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(vi) Every closed subvariety of a variety defined over Fq is defined over a finite
extension of Fq. Every morphism between varieties defined over Fq is defined
over a finite extension of Fq.

(vii) The orbits of F on the set of points of V are finite, as well as the set VF ,
also denoted V(Fq), which consists of the points of V defined over Fq.

Proof. (i) is clear by the proof of 6.8 and 6.2.
(ii) reflects 6.4.
(iii) results from the fact that ϕF still satisfies 6.8.
(iv): by considering an affine open covering it is sufficient to deal with the

case V = SpecA. Then we use that A is of finite type, thus there exists n such
that F ∗n(x) = F ′∗n(x) = xq

n

for every generator x of A.
(v) results from 6.8.
(vi) has a proof similar to that of (iv): there exists n such that for any

element a in a finite set of generators of the ideal I defining the subvariety
(resp. any coefficient a of an equation of the morphism) we have F ∗na = aq

n

,
thus I ⊂

√

F ∗n(I).
Let us show (vii). As in (iv) we may assume V = SpecA. Let {a1, . . . , an}

be generators of A(Fq). A point x ∈ V is given by a morphism x : A → Fq. It
is F ∗n-fixed if for any i we have x(ai) ∈ Fqn , which happens for a sufficiently
large n. It is F ∗-fixed if x(ai) ∈ Fq, or equivalently if we are given a morphism
A(Fq)→ Fq; there is a finite number of such morphisms.

Proposition 6.10. Let V ≃ An as an Fq-variety. Then |VF | = qn for any
Fq-structure on V.

Proof. See [Geck, 4.2.4] for a (complicated) elementary proof in the case of
unipotent groups. It is an immediate consequence of the Lefschetz theorem in
ℓ-adic cohomology.

7 The Lang-Steinberg theorem

We say an algebraic group over Fq is defined over Fq if the corresponding Frobe-
nius endomorphism is a group morphism.

Let G be a reductive group over Fq, let F be the Frobenius endomorphism
attached to an Fq-structure and let T be an F -stable maximal torus (we will see
later that there always exists an F -stable maximal torus). There is a natural
Fq-structure on X(T) = Hom(T,Gm) defined by the Fq-structure F (x) = xq

on Gm (the only Fq-structure compatible with the group structure): for this
Fq-structure F acts on X(T) by (F (α))(F t) = F (α(t)) = α(t)q. On the other
hand F sends a root subgroup uα to another root subgroup uτ(α) for some
permutation τ so in the end we get F (uα(x)) = uτ(α)(λx

q) thus F is an isogeny
associated to τ and such that qα = q for any α; the p-morphism is qτ .

Note that a Frobenius endomorphism, having trivial kernel and being bi-
jective on points, is an isogeny; but it is not an isomorphism, since it is not
invertible as a morphism of varieties.
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Definition 7.1. Let G be a reductive group over Fq and let F : G→ G be an
isogeny such that some power is a Frobenius endomorphism. Then the group of
fixed points GF is called a finite group of Lie type.

7.1 The Lang-Steinberg theorem

Lemma 7.2. Let G be an affine algebraic group over Fq and F be an isogeny
such that some power is a Frobenius endomorphism. Then for g ∈ G the map
ad gF is still an isogeny such that some power is a Frobenius endomorphism.

Proof. That ad gF is still an isogeny is obvious. It thus is enough to check that
some power of ad gF is equal to the same power of F . We have (gF )n = yFn

where y = gFg . . . F
n−1

g; if n is such that g is Fn-stable then y is also Fn-stable
and if y is of order e then (xF )ne = Fne.

The fundamental theorem on connected algebraic groups over Fq is

Theorem 7.3. (Lang-Steinberg) Let G be a connected affine algebraic group
over Fq, and F an isogeny such that some power is a Frobenius endomorphism.
Then the Lang map L : g 7→ g−1.Fg is a surjective endomorphism of G.

Proof. The morphism L has fibers isomorphic toGF , thus finite, thus dim ImL =
dimG; asG is irreducible L is dominant (which means G is the closure of ImL),
thus ImL contains a nonempty open subset of G.

For a given x, the morphism g 7→ g−1.x.Fg has also finite fibers: indeed, a
fiber has cardinality the number of solutions of g−1xFg = x, that is g = xFg
and xF still has finitely many fixed points by Lemma 7.2. Thus the image of
g 7→ g−1.x.Fg contains also a nonempty open subset of G, thus meets that of L.
Thus there exists g and h such that g−1.Fg = h−1.x.Fh, thus x = L(gh−1).

[Steinberg68] has shown 7.3 under the only assumption that F is a surjective
morphism such that GF is finite.

A consequence of Lang’s theorem is that for g ∈ G the group GgF is iso-
morphic to GF . Indeed, write g = h−1F (h) then GgF = h−1GFh.

7.2 Galois cohomology exact sequence

Here we follow [Serre, §5]. If G is a profinite group acting continuously on a
set E we set H0(G,E) = EG and if E is a group (on which G acts as a group
endomorphism) Serre defines a set H1(G,E) (we do not give the definition in

general, we will give it below when G = Ẑ). If A ⊂ B is a group inclusion we
have the “Galois cohomology exact sequence”

1→ H0(G,A)→ H0(G,B)→ H0(G,B/A)
p−→ H1(G,A)

i−→ H1(G,B) (∗)

When F is a topological generator of G = Ẑ, we will denote Hi(F,E) for

Hi(Ẑ, E); in this case H1(F,E) is the set of F -classes of E, equal to the E-
conjugacy orbits in E.F , or the classes of E under the “twisted conjugacy”
e 7→ e′eF (e′−1).
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The maps in (*) are the obvious ones excepted perhaps p which maps an F -
stable coset bA to the F -class of b−1F (b) (an element of A since bA is F -stable).
The “exactness of the sequence at H0(F,B/A)” is that H0(F,B) = BF acts
naturally on H0(F,B/A) = (B/A)F and that the elements of a given orbit have
the same image in H1(F,A). For the next step, the image of p is the preimage
by i of the F -class of 1: this is an “exact sequence of pointed sets”.

The Lang theorem can be rephrased as:

Proposition 7.4. If G, F are as in 7.3, then H1(F,G) = 1.

Proposition 7.5. Let G, F be as in 7.3 and let V be a variety with an action
of F on which G acts transitively and compatibly with F . Then VF 6= ∅.

Proof. Since the action is transitive, given v ∈ V, there exists g ∈ G such that
Fv = gv. Write g−1 = h−1Fh, then F(hv) = Fhgv = hg−1gv = hv.

Lemma 7.6. Let A ⊂ B be two closed and F -stable subgroups of G, where A
is connected. then

(i) We have (B/A)F = BF /AF .

(ii) If in addition A is normal in B, the quotient map induces a bijection
H1(F,B)→ H1(F,B/A).

Proof. (i) is (*) since H1(F,A) = 1 but let us give a naive proof. By 7.5, any F -
stable coset bA contains an F -stable element, thus the natural map BF /AF →
(B/A)F is surjective. It is injective since if x, y ∈ BF are in the same A-coset,
then x−1y ∈ AF .

Let us show (ii). Surjectivity is clear. Conversely, if b, b′ ∈ B are F -conjugate
modulo A, we have ab = xb′Fx−1, with x ∈ B and a ∈ A. We must see that
ab is F -conjugate to b, that is there exists y ∈ B such that yabFy−1 = b or
equivalently a = y−1bFy. This comes from 7.2 which shows that we may still
apply Lang’s theorem to ad bF .

Proposition 7.7. Let G, F,V be as in 7.5, and let x ∈ VF and g ∈ G. Then

(i) We have gx ∈ VF if and only if g−1Fg ∈ CG(x).

(ii) The map which sends the GF -orbit of gx ∈ VF to the F -conjugacy class of
the image of g−1Fg in CG(x)/CG(x)◦ is well-defined and bijective.

Proof. The proposition translates (*) applied to the inclusion CG(x) ⊂ G, which
gives 1 → CG(x)F → GF → VF → H1(F,CG(x)) → 1 since H1(F,CG(x)) =
H1(F,CG(x)/CG(x)◦) by 7.6(ii). Again we will give a naive proof.

(i) is an immediate computation. Let us show (ii). Let x ∈ VF , h, g ∈ G be
such that hx, gx ∈ VF . Note that hx = gx if and only if h and g differ by an
element of CG(x), and then h−1Fh and g−1Fg are F -conjugate in CG(x). We
have thus a well-defined map from VF to the F -classes of CG(x). On the other
hand, if h ∈ GF , then gx and hgx have the same image g−1Fg = (hg)−1F(hg).
Thus the map goes from the GF -orbits in VF to the F -classes of CG(x). If
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g−1Fg and h−1Fh are F -conjugate by n ∈ CG(x), then gnh−1 ∈ GF and sends
hx to gx. The map is thus injective. By Lang’s theorem any element of CG(x)
is of the form g−1Fg with g ∈ G, which shows the surjectivity of the map. We
finish the proof using 7.6(ii).

Corollary 7.8. Let G as in 7.3.

(i) F -stable Borel subgroups exist and are all GF -conjugate.

(ii) Let us define a geometric conjugacy class as the intersection with GF of an
F -stable conjugacy class of G. Then a geometric conjugacy class is non-empty,
and if x is an element of such a class, the class splits under GF -conjugacy into
classes parameterized by H1(F,CG(x)/CG(x)◦).

Proof. (i) comes from 7.7 applied with V the variety of Borel subgroups, using
that for B a Borel subgroup NG(B) = B is connected.

For (ii) we apply 7.7 with V the geometric class (and the action of G by
conjugacy).

All centralizers in GLn are connected, thus geometric conjugacy classes do
not split. Indeed, the centralizer in Mn of a matrix is an affine space, thus its
intersection with GLn is an open subspace of an affine space, which is always
connected.

Example 7.9.

LetG = PGL2(Fq) where q 6≡ 0 (mod 2) and let F define an Fq-structure. If s =(
1 0
0 −1

)

then CG(s) = {Id,
(
0 1
1 0

)

} is disconnected. For λ ∈ Fq2 , λq−1 = −1

we have m =

(
0 λ−1

λ 0

)

∈ GF (since Fm = −m in GL2) and if x =

(
1 1
λ −λ

)

then xsx−1 = m and x−1Fx =

(
0 1
1 0

)

thus m is geometrically conjugate but

not GF -conjugate to s.

Similarly to (i) in 7.8 the F -stable maximal tori in an F -stable Borel sub-
group B exist and are BF -conjugate, since for a torus T the group NB(T) =
CB(T) (by 1.7) is connected by 1.15. Thus we may find an F -stable pair T ⊂ B

of a maximal torus and a Borel subgroup containing it.

Proposition 7.10. Let G be as in 7.1 and let T be an F -stable maximal torus.
Then the GF -conjugacy classes of F -stable maximal tori are parameterized by
H1(F,WG(T)); given another F -stable maximal torus gT with g ∈ G we call
type of gT with respect to T the F -class of w, the image in WG(T) of g−1Fg ∈
NG(T).

Proof. We apply 7.7 with V the variety of maximal tori of G, on which G acts
by conjugacy.

Note that the pair (gT, F ) is sent by g−1-conjugacy to the pair (T, wF ).
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Proposition 7.11. Let G as in 7.3. Then every F -stable semisimple element
lies in some F -stable maximal torus of G.

Proof. Let s ∈ G semisimple; then s ∈ CG(s)◦ by 4.8, and s being central in
this group is in all maximal tori, thus in particular in the F -stable maximal tori
of CG(s)◦ which are also maximal in G.

7.3 The relative (B,N)-pair.

Proposition 7.12. Let G be as in 7.1.

(i) Let T be an F -stable maximal torus of G. Then WF = NG(T)F /TF .
Let T ⊂ B be an F -stable pair of a maximal torus and a Borel subgroup.

Then

(ii) GF =
∐

w∈WF BFwBF , which we will recognize as the Bruhat decomposi-
tion attached to a relative (B,N)-pair (see 7.13 below).

(iii) |GF | = ql(w0)|TF |(∑w∈WF ql(w)) where q ∈ R>0 is defined by some power
F a being a split Frobenius attached to an Fqa-structure.

(iv) Ru(B)F is a Sylow p-subgroup of GF .

Proof. (i) comes from 7.6(i).
For (ii) we use the “unique Bruhat decomposition” 4.7 which implies that

an F -stable element of BwB is in BFnBF = BFnUF
w where n ∈ NG(T)F is a

representative of w.
Let us show (iii). By the proof of (ii) |GF /BF | = ∑

w∈WF |UF
w |, and using

|BF | = |TF ||UF | we get the stated formula if we show |Uw| = ql(w) (since
U = Uw0

). If F is a Frobenius attached to an Fq-structure, this results from
6.10 and the fact that Uw is an affine space of dimension l(w). We will admit
the formula in other cases — one may use 2.6 and an explicit description of UF

w .
As |GF /UF | = |TF |(∑w∈WF ql(w)) is prime to p (since T is a p′-group, and

∑

w∈WF ql(w) ≡ 1 mod. q) we see that UF is a Sylow p-subgroup of GF (we

have NGF (UF ) = BF , thus
∑

w∈WF ql(w) is the number of Sylow p-subgroups
of GF ).

Note that the fixed points of the unipotent radical of a Borel being a Sylow
p-subgroup extends to non-reductive groups, since Ru(G) is a p-group, it is in
all unipotent radicals of Borel subgroups, and being connected we have |GF | =
|(G/Ru(G))F ||Ru(G)F |.

Corollary 7.13. Let G be as in 7.12. Then (BF , NG(T)F ) is a (B,N)-pair
for GF with Weyl group WF . Recall that (WF , {wI}I∈S/F ) is a Coxeter system
where I runs over the F -orbits in S and where wI is the longest element in WI .

Proof. The corollary follows immediately from the definition of (B,N)-pairs,
from 7.12(ii) and from 2.6. We must check that for I ∈ S/F and w ∈ WF ,
then BFwBFwIB

F ⊂ BFwBF ∪BFwwIB
F . We use that either l(w)+ l(wI) =

l(wwI), in which case BFwBFwIB
F = BFwwIB

F , or w = w′wI where l(w′)+
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l(wI) = l(w′wI) in which case BFwBFwIB
F ⊂ BFw′BFwIB

FwIB
F , and

BFwIB
FwIB

F ⊂ BF ∪BFwIB
F since 1 and wI are the only F -stable elements

of WI .

We complete the order formula for GF by

Proposition 7.14. Let Tw be a torus of type w with respect to T. Then
|TF

w | = det(wF − 1 | X(T)).

Proof. It is enough to prove this formula for the pair (T, F ). Applying Hom(−,Gm)

to the exact sequence 1→ TF → T
F−1−−−→ T→ 1 (where the surjectivity on the

right is Lang’s theorem) we get 1→ X(T)
F−1−−−→ X(T)

p−→ Hom(TF ,Gm); since
the formula in the statement is the cokernel of F−1, we have to see the surjectiv-
ity of p. This comes from the fact that the dual map Hom(Hom(TF ,Gm),Gm)→
Hom(X(T),Gm) is the inclusion TF →֒ T; indeed the left-hand side is the dual
of the dual of TF , isomorphic to TF . For the right-hand side, the algebra of
T, equal to A = Fq[T1, . . . , Tn] identifies to Fq[X(T)], and Hom(X(T),Gm)
identifies to Hom(A,Fq) which is the set of points of T.

7.4 Classification of finite groups of Lie type

Let us start with G = GLn(Fq). It has a natural Fq-structure since its algebra
is Fq[Ti,j , det(Ti,j)−1] = Fq[Ti,j , det(Ti,j)−1] ⊗ Fq. If F is the corresponding
Frobenius endomorphism, we have GF = GLn(Fq); F raises all entries of a
matrix to the q-th power.

The same kind of construction can be done with SLn, the orthogonal, sym-
plectic, . . . groups. This gives the split Fq-structure, giving an isogeny F such
that τ = 1.

An example of non-split Fq-structure is the unitary group GLF
′

n where F ′ is
defined by F ′(x) = F (tx−1), where F is split. Here τ(α) = −α.

We will classify now the finite groups of Lie type which correspond to simple
algebraic groups, that is adjoint groups with an irreducible Weyl group. We
may start with an F -stable pair T ⊂ B, and, using the isogeny theorem, look at
the corresponding root datum (X(T), Y (T),Φ, Φ̌). Since the group is adjoint
X(T) is determined by Φ; in addition giving q and τ determine the pair (G, F ),
thus GF , up to isomorphism.

We have a connected (sinceG is simple) Dynkin diagram and the possibilities
for τ correspond to automorphisms of the Dynkin diagram.

The possibilities for a non-trivial τ on an irreducible root system are 2An(n ≥
2), 2Dn,

3D4 and 2E6; here the exponent on the left is the order of τ . We have
thus the following possibilities for (G, F ), where GF is simple unless noted
otherwise.

• An(n ≥ 1) — the simple algebraic group is G = PGLn ≃ PSLn .

Remark 7.15.
�

However, GF is not in general simple. The simple fi-
nite group is SLFn /Z(SL

F
n ), which in general is not GF but its derived
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subgroup. Indeed, in general PSLFn 6= SLFn /Z(SL
F
n ), (this phenomenon

(A/B)F 6= AF /BF comes from the fact that B is not connected). The
center Z SLn identifies to the group µnp′

of n-th roots of unity in Fq. The
exact sequence (*) applied to the inclusion µnp′

⊂ SLn gives 1→ µFnp′
→

SLFn → PSLFn → H1(F, µnp′
)→ 1 where H1(F, µnp′

) = µnp′
/(µnp′

)q−1 so
the cokernel is non trivial if q − 1 is not prime to np′ .

We also have the small value n = 2 and q = 2 (resp. 3) where SLF2 /Z(SL
F
2 ) =

S3 (resp. A4) is solvable.

• 2An(n ≥ 2) — Special projective unitary group PSUn ≃ PUn (the same
remark onGF applies as in the split case). Further for q = 2 and n ∈ {2, 3}
or q = 3 and n = 2 we get a non-simple group.

• Cn(n ≥ 2) — We get the projective symplectic group Sp2n(Fq)/Z(Sp(Fq))
which is simple excepted PSp4(F2) ≃ S6.

• Bn(n ≥ 2) — We get the orthogonal group SO2n+1 (B2 and C2 give
isomorphic groups, non-simple for q = 2, see above).

• Dn (resp. 2Dn)(n ≥ 4) — Projective orthogonal group PSO+
2n (resp.

PSO−
2n).

• G2 (for q = 2 the group GF is not simple; its derived subgroup, of index
2, is).

• 3D4 — The triality group.

• F4, E6,
2E6, E7, E8.

There are in addition “exceptional” isogenies which correspond to automor-
phisms of the root system up to a scalar. In each case we have an automorphism
of the Coxeter system. Such automorphisms which did not appear in the above
list are 2B2,

2F4 (resp. 2G2). To make them automorphisms of the root system
we have to scale by

√
2 (resp.

√
3). With p the square of the scaling factor, we

get a p-morphism defining an isogeny whose square is a Frobenius on a field of
characteristic p. The corresponding groups GF are the Suzuki and Ree groups,
which are simple excepted 2B2 for q = 2 (which is solvable), 2G2 for q = 3
(whose derived subgroup is simple, isomorphic to SL2(F8)), and

2F4 for q = 2
whose derived subgroup, of index 2, is simple. Adding to the above list the
alternating groups, we have all the non-sporadic finite simple groups.

8 Parabolic subgroups and Levi subgroups

8.1 Levi decompositions

Let G be reductive group. Recall that a parabolic subgroup of G is a subgroup
of G containing a Borel subgroup. Fix a pair T ⊂ B consisting of a maximal
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torus and a Borel subgroup of G. Then a subgroup containing B is called a
standard parabolic subgroup. For such a group, there exists a subset I of simple
reflections such that B and WI generate the group. More precisely, the Bruhat
decomposition yields

PI =
⊔

w∈WI

BwB.

To the set I of simple reflections corresponds a set of simple roots ΠI ⊂ Π.
We will denote by ΦI ⊂ Φ the set of roots which are linear combination of these
simple roots. Then from Section 2.2 one deduces that ΦI is a root system with
basis ΠI and Weyl group WI .

We will assume without proof that standard parabolic subgroups have a Levi
decomposition (see Definition 8.6).

Proposition 8.1. Let LI = 〈T,Uα |α ∈ ΦI〉 and UI =
∏

α∈Φ+\ΦI
Uα. Then

LI is a reductive group, UI = Ru(PI) is the unipotent radical of PI and

PI = LI ⋉ Ru(PI) = LI ⋉UI .

Remark 8.2. The fact that both UI and LI are groups, and that LI normalizes
UI is a direct consequence from Chevalley’s commutator formula (see 3.1.(vii)).

Remark 8.3. As a consequence, if Uα ⊂ PI then α ∈ ΦI ∪ Φ+. Indeed, the
image of Uα by the quotient map PI ։ LI is either trivial (in which case
α ∈ Φ+ \ ΦI) or non-trivial (in which case α ∈ ΦI).

Example 8.4. (a) For the Borel subgroup of GLn consisting of upper-triangular
matrices, the standard parabolic subgroups of GLn are upper block triangular
matrices. More precisely, given a composition n1 + n2 + · · · + nr = n of n,
the standard parabolic subgroup corresponding to I = {1, . . . , n1 − 1} ⊔ {n1 +
1, . . . , n1 + n2 − 1} ⊔ · · · ⊔ {n1 + · · ·+ nr−1 + 1, . . . , n− 1} is

PI =






GLn1
∗ ∗

GLn2
∗

(0)
. . .






and its standard Levi complement is LI ≃ GLn1
×GLn2

× · · · ×GLnr
.

(b) For the Borel subgroup of Sp4 consisting of upper-triangular matrices in
Sp4, the standard parabolic subgroups are B, Sp4 and two parabolic subgroups
corresponding respectively to the short simple root and the long simple root.
Their standard Levi complement is Lshort ≃ GL2 and Llong ≃ SL2 ×Gm

Proposition 8.5. Let I be a subset of S. Then NG(LI)/LI = NG(LI)/NG(LI)
◦

≃ NW (WI)/WI .

Proof. Recall that LI is generated by T and the one-parameter subgroups Uα

for α ∈ ΦI . Therefore if w ∈ W , then wLI = LI if and only if wΦI = ΦI .
We claim that this is equivalent to w ∈ NW (WI); indeed, α ∈ ΦI if and only if
wα ∈WI , therefore normalizing ΦI amounts to normalizing the set of reflections
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in WI . In particular, there is a well-defined map from NW (WI) to NG(LI)/LI ,
and from the Bruhat decomposition of PI we see that its kernel is exactly WI .
To prove that this map is surjective, let g ∈ NG(LI). The maximal tori T and
gT are contained in LI , and as such they are conjugate under an element of LI .
This means that there exists l ∈ LI such that gl ∈ NG(LI)∩NG(T). From the
previous argument we deduce that the image of gl in W normalizes WI , which
proves that NW (WI)/WI ≃ NG(LI)/LI .

Since LI is connected, then LI = NG(LI)
◦ then follows from the fact that

NG(LI)/LI is finite.

Definition 8.6. A Levi decomposition of a parabolic subgroup P of G is a
decomposition P = L ⋉ Ru(P). The group L ≃ P/Ru(P) is a reductive group
called a Levi subgroup of G and a Levi complement of P.

Proposition 8.7. Let P be a parabolic subgroups of G containing T.

(i) There exists a unique Levi complement of P containing T.

(ii) Two Levi complements of P are conjugate under a unique element of
Ru(P).

Proof. One can choose a Borel subgroup B of P so that P is standard for
the system of positive roots corresponding to B. The existence follows from
Proposition 8.1. In addition, if L is any Levi complement of P containing T,
then it is generated by T and the one-parameter subgroups Uα that it contains.
These are exactly the one-parameter subgroups whose image under the map
P ։ P/Ru(P) is non-trivial (see Remark 8.3), which proves (i).

The maximal tori of P are conjugate under P. Therefore (i) shows that two
Levi complements are conjugate under P, hence under Ru(P). Furthermore,
if u ∈ Ru(P) normalizes L, then for any l ∈ L, [v, l] ∈ Ru(P) ∩ L = 1 hence
v ∈ CG(L) ⊂ CG(T) = T so it must be trivial. This shows that the action of
Ru(P) on the set of Levi complements is regular (i.e. free and transitive).

We will need another characterization of parabolic subgroups which will be
useful for computing intersections of parabolic subgroups and their decomposi-
tion.

Proposition 8.8. Let P be a subgroup of G containing T. Let Ψ be the set of
roots such that Uα ⊂ P. Then

(i) P is a parabolic subgroup of G if and only if Φ = Ψ ∪ −Ψ.

(ii) If P is parabolic, then its unique Levi complement containing T is

L = 〈T,Uα |α ∈ Ψ ∩ (−Ψ)〉.

Proof. It is clear that any parabolic subgroup satisfies (i) (see Remark 8.3).
To prove the converse, let w ∈ W be such that |Ψ ∩ wΦ+| is maximal. If
wΦ+ * Ψ, then there exists a simple root α such that w(α) /∈ Ψ. Therefore
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−w(α) = w(−α) ∈ Ψ and Ψ∩wΦ+ is a proper subset of Ψ∩(wΦ+∪{w(−α)}) =
Ψ ∩ wsαΦ+ which contradicts the maximality of |Ψ ∩ wΦ+|. This proves that
wB ⊂ P, hence P is a parabolic subgroup of G. In particular, w−1

P is a
standard parabolic subgroup PI , and (ii) follows from the fact that in that case
Ψ ∩ (−Ψ) = wΦI and L = wLI .

Proposition 8.9. Let P = L⋉U and Q = M⋉V be two parabolic subgroups
with Levi complements L and M containing T. Then

(i) (P ∩Q) ·U is a parabolic subgroup of G with Levi complement L ∩M.

(ii) P ∩Q is connected and it has the following factorization:

P ∩Q = (L ∩M)⋉
(
(L ∩V) · (M ∩U) · (U ∩V)

)
.

Furthermore, the expression of an element of P ∩ Q with respect to this
factorization is unique.

Proof. Without loss of generality one can assume that P = PI , L = LI , Q =
wPJ and M = LJ with w an I-reduced element of W . Then PI ∩ wPJ ⊃
LI ∩wB = LI ∩B. Therefore (PI ∩wPJ) ·UI contains B, hence it is a parabolic
subgroup. This forces PI∩wPJ to be connected. In addition, if Uα ⊂ PI∩wPJ

and U−α ⊂ PI ∩wPJ then α ∈ ΦI and w
−1(α) ∈ ΦJ . Therefore by Proposition

8.8 the Levi complement of (PI ∩ wPJ ) · UI = (P ∩ Q) · U containing T is
LI ∩ wLJ = L ∩M.

Now U ∩ Q is a unipotent subgroup of P ∩ Q normalized by T, therefore
it is the product of the Uα’s that it contains. In particular, one can write
U ∩ Q = (U ∩M) · (U ∩ Q). Moreover, it is normalized by L ∩ V. Since
P ∩Q is generated by T and the one-parameter subgroups that it contains, it
is generated by L ∩M and the unipotent group H = (L ∩V) ⋉ U ∩Q. This
corresponds indeed to the decomposition

(Φ+∪ΦI)∩w(Φ+∪ΦJ ) = (ΦI∩wΦJ)
⊔(

(ΦI∩w(Φ+\ΦJ ))⊔((Φ+\ΦI)∩w(Φ+∪ΦJ))
)
.

Finally, since L ∩M normalizes H, we deduce the factorization of P ∩Q given
in (ii) and the uniqueness property for decompositions of elements in P∩Q.

Proposition 8.10. (i) Let P and Q be two parabolic subgroups of G with
Q ⊂ P. Then Ru(Q) ⊃ Ru(P) and given any Levi complement M of Q,
there is a unique Levi complement L of P such that M ⊂ L.

(ii) Given a Levi complement L of a parabolic subgroup P of G, the following
are equivalent:

(a) M is a Levi complement of a parabolic subgroup of L;

(b) M is a Levi complement of a parabolic subgroup of G, and M ⊂ L.

32



Proof. For (i), let T be a maximal torus of M and let L be the unique Levi
complement of P containing T (see Proposition 8.7). Then by Proposition 8.9,
L∩M is a Levi complement of (P∩Q) ·Ru(P) = P, therefore it must be equal
to M.

Let PL be a parabolic subgroup of L, and let T be a maximal torus of PL.
Then using Proposition 8.8 one checks easily that PL ⋉ Ru(P) is a parabolic
subgroup of G, and that the Levi complements of P and PL are equal, which
proves (a) ⇒ (b). Conversely, let M ⊂ L be a Levi complement of a parabolic
subgroup Q of G. By Proposition 8.8, L∩Q is a parabolic subgroup of L whose
Levi complement is L ∩M = M.

Remark 8.11. It follows from assertion (ii) that we can refer to M as a Levi
subgroup with no mention of the underlying reductive group (G or M).

8.2 Rational Levi subgroups

Maximal tori are particular Levi subgroups, and we have seen in 7.10 that the
G-conjugacy classes of F -stable maximal tori are parameterized by F -conjugacy
classes of W . We will state below a similar statement for Levi subgroups.

¿From now on we will assume that both T and B are F -stable, so that
for standard Levi subgroups we have F (LI) = LF (I). In particular LI is F -
stable if and only if F (I) = I. Now, if L is any F -stable Levi subgroup of
G, then it contains a maximal F -stable torus and there exists g ∈ G such that
(L,T′) = (gLI ,

gT) for some I ⊂ S which might not be F -stable. Consequently,
if w = g−1F (g) ∈ NG(T) then F acts on the pair (L,T′) as wF acts on the
pair (LI ,T). In particular, wF (I) = I, therefore wF normalizes WI . Up to
multiplication byWI on the left (orWF (I) on the right), the class of the element
wF in WF is uniquely determined and (I, wF ) is called the type of L. More
precisely, 7.7 yields:

Proposition 8.12. Let w ∈ W and I be a wF -stable subset of S. Then there
is a bijection between

(a) GF -conjugacy classes of F -stable Levi subgroups which are (geometrically)
conjugate to LI and

(b) wF -conjugacy classes of NW (WI)/WI .

Remark 8.13. It is important to note that an F -stable Levi subgroup L of G
might not be contained in any F -stable parabolic subgroup, for the same reason
that not every F -stable maximal torus is in an F -stable Borel subgroup. For
example wF (PI) 6= PI in general. This is a major obstruction to constructing
every representation using parabolic induction (see the next two sections). We
will say that an F -stable Levi subgroup is G-split if it is a Levi subgroup of an
F -stable parabolic subgroup of G.

Example 8.14. We have seen in Example 8.4 that the standard Levi subgroups
are of the form LI ≃ GLn1

× · · · ×GLnr
. We give here some examples of the

finite Levi that can occur:
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(a) With w = 1, we obtain the G-split Levi subgroups

LFI ≃ GLn1
(q)× · · · ×GLnr

(q).

(b) Assume n = dr and take (ni) = (m, . . . ,m). Then w = (1,m + 1, 2m +
1, . . . , (d − 1)m + 1) · · · (m, d + m, . . . , dm) permutes cyclically the sum-
mands GLm in LI = (GLm)d and we get

LwFI ≃ GLm(qd).

The case m = 1 corresponds to the Coxeter torus TwF ≃ GL1(q
n) = F×

qn .

9 Parabolic induction and restriction

Let Λ be a commutative ring with unit. Given a finite group H, we denote by
ΛH-mod the category of finite dimensional ΛH-modules. By a representation
of H over Λ we mean an object of the category ΛH-mod.

9.1 Invariants and coinvariants

Recall that given a representation M of H over Λ, and a subgroup K we can
form the following Λ-modules:

• The invariants MK of M under K:

MK = HomΛK(Λ,M) ≃ HomΛH(ΛH/K,M).

More concretely: MK ≃ {m ∈ M | ∀ k ∈ K, k · m = m}, which is the
largest ΛK-submodule of M on which K acts trivially.

• The coinvariants MK of M under K:

MK = Λ⊗ΛK M ≃ ΛH/K ⊗ΛH M.

More concretely: MK ≃ M/〈m − k · m | k ∈ K,m ∈ M〉, which is the
largest quotient of M (as a ΛK-module) on which K acts trivially.

The tensor-hom adjunction shows that ”duality”M∨ = HomΛ(M,Λ) exchanges
the two notions. More precisely, (M∨)K ≃ (MK)∨. In addition, if L is another
subgroup of H with K E L, then both MK and MK have a structure of L/K-
module, compatible with the previous isomorphism. In general, invariants and
coinvariants do not coincide. However, if the order of K is invertible in Λ, then
ΛH/K ≃ eKΛH with eK = |K|−1

∑

k∈K k so that MK ≃MK ≃ eKM . In that
case, invariants and coinvariants are exact functors.

Given a right ΛH-module N , we define N ⊗ΛKM := (N ⊗ΛM)K where the
action of K on N ⊗Λ M is diagonal, given by k · (m⊗ n) = (m · k−1 ⊗ k · n).
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Example 9.1. (a) Let X be a finite set with a left action of H, and let ΛX be
the corresponding permutation module. Let π : X −→ X/H be the canonical
quotient map. It induces linear maps π∗ : ΛX −→ ΛX/H and π∗ : ΛX/H −→
ΛX given on the basis by π∗(x) = xH and π∗(yH) =

∑

x∈yH x. As an exercise,
one checks that they induce isomorphisms (ΛX)K ≃ ΛX/H and ΛX/H ≃
(ΛX)K . In particular, invariants and coinvariants of the permutation module
ΛX are isomorphic. However, the composition π∗ ◦ π∗ = |H| IdΛX/H is not
invertible in general.

(b) If Y is another set, now with a right action of H, then we can form the
amalgamated product Y ×H X as the quotient of Y ×X by the diagonal action
of H. Then from (a) we obtain

Λ[Y ×K X] ≃ ΛY ⊗ΛK ΛX.

9.2 Parabolic induction and restriction

Recall that G is a connected reductive group over Fp. In these notes we will
focus on representations in non-defining characteristic, which means that we will
study representations over fields of characteristic different from p. Following this
assumption, we will assume from now on that

p is invertible in Λ

Under this assumption one can define a good notion of induction and restriction
for finite reductive groups.

An efficient method for constructing representations of a finite group is to
induce representations from smaller subgroups. Here, since we are interested
in finite reductive groups, we will consider induction from particular reductive
subgroups which will correspond to split Levi subgroups. Furthermore, the usual
induction from Levi subgroups is in a sense “too big” and hard to decompose
into indecomposable summands (their number depend on q). To solve this
problem, we will proceed in two steps, by first inflating the representation from
the Levi subgroup to a parabolic subgroup, and then inducing. It turns out that
this induction process, call Harish-Chandra induction or parabolic induction has
particularly nice properties.

Definition 9.2. Let P = L ⋉ U be a F -stable parabolic subgroup of G with
F -stable Levi complement L. The Harish-Chandra or parabolic induction and
restriction functors are

RG
L⊂P : ΛLF -mod −→ ΛGF -mod

M 7−→ ΛGF /UF ⊗ΛLF M
∗RG

L⊂P : ΛGF -mod −→ ΛLF -mod

N 7−→ HomΛGF (ΛGF /UF , N)
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Remark 9.3. A more concrete description is

∗RG
L⊂P(N) ≃ NUF

and RG
L⊂P(M) ≃ IndG

F

PF ◦ InfP
F

LF (M).

with LF acting on NUF

via the isomorphism PF /UF ≃ LF . To see the sec-
ond equality, we write ΛGF /UF ⊗ΛLF M ≃ ΛGF ⊗ΛPF (ΛPF /UF ⊗ΛLF M),
which shows that RG

L⊂P is isomorphic to the composition of the inflation functor

InfP
F

LF = ΛPF /UF ⊗ΛLF − and the induction functor IndG
F

PF = ΛGF ⊗ΛPF −.
Proposition 9.4. Let P = L ⋉U be a F -stable parabolic subgroup of G with
F -stable Levi complement L. Then

(i) ∗RG
L⊂P ≃ ΛUF \GF ⊗ΛGF − and RG

L⊂P ≃ HomΛLF (ΛUF \GF ,−).
(ii) RG

L⊂P and ∗RG
L⊂P are exact functors.

(iii) RG
L⊂P and ∗RG

L⊂P are biadjoint. In particular,

HomΛGF (RG
L⊂P(M), N) ≃ HomΛLF (M, ∗RG

L⊂P(N))

and HomΛGF (N,RG
L⊂P(M)) ≃ HomΛLF (∗RG

L⊂P(N),M)

(iv) RG
L⊂P and ∗RG

L⊂P preserve injectivity and projectivity.

(v) If Λ is a principal domain, then RG
L⊂P and ∗RG

L⊂P map Λ-free modules to
Λ-free modules.

Proof. Let eUF = |UF |−1
∑

u∈UF u. Since UF is a p-group, then the order of
UF is invertible in Λ, therefore eUF is a well-defined element of ΛUF ⊂ ΛGF .
From Example 9.1 we have

ΛGF /UF ≃ ΛGF eUF and ΛUF \GF ≃ eUF ΛGF .

Therefore we can write ΛGF = ΛGF eUF ⊕ ΛGF (1 − eUF ) ≃ ΛGF /UF ⊕
ΛGF (1− eUF ), from which we deduce that ΛGF /UF is a projective left ΛGF -
module and a projective (hence flat) right ΛLF -module. This proves (ii), and
from it we deduce (v). In addition, with the property of the group algebra ΛGF

to be symmetric, we have

(ΛGF /UF )∨ ≃ (ΛGF eUF )∨ ≃ eUF (ΛGF )∨ ≃ eUFΛGF ≃ ΛUF \GF

and we get (i) by using these explicit descriptions and tensor-hom adjunction.

Property (iii) comes from the usual tensor-hom adjunction. Together with
(ii), it proves (iv). Indeed, if M is projective then HomΛGF (RG

L⊂P(M),−) is
exact as the composition of the exact functors ∗RG

L⊂P and HomΛLF (M,−).

Proposition 9.5. Let P = L ⋉U and Q = M ⋉V be two F -stable parabolic
subgroups of G with F -stable Levi complements L and M. Assume that Q ⊂ P

and M ⊂ L. Then

RG
M⊂Q ≃ RG

L⊂P ◦RL
M⊂L∩Q and ∗RG

M⊂Q ≃ ∗RL
M⊂L∩Q ◦ ∗RG

L⊂P.
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Proof. Recall from Propositions 8.9 and 8.10 that L∩Q is a parabolic subgroup
of L with Levi decomposition L ∩Q = M⋉ L ∩V. Given a ΛMF -module M ,
The composition RG

L⊂P ◦RL
M⊂L∩Q(M) is given by

ΛGF /UF ⊗ΛLF ΛLF /LF ∩VF ⊗MF M.

Now, we have seen in Example 9.1 that

ΛGF /UF ⊗ΛLF ΛLF /LF ∩VF ≃ Λ[GF /UF ×LF LF /LF ∩VF ]

so it amounts to produce a bijection between the sets GF /UF ×LF LF /LF ∩VF

and GF /VF which is equivariant for the left action of GF and the right action
of MF . In addition, since the stabilizers of the various actions are connected,
it is enough to prove that the map

φ : (gU, lL ∩V) ∈ G/U×L L/L ∩V 7−→ glV ∈ G/V.

is a bijective morphism of algebraic varieties (see 7.7). It is well-defined since L
normalizes U and U ⊂ V. It is also clearly G×Mop-equivariant and surjective.
Assume that glV = g′l′V. Then l−1g−1g′l′ ∈ V = U ⋊ (L ∩ V). Up to
multiplying g on the right by an element of U and l′ by an element of L ∩V,
we can assume that l−1g−1g′l′ = 1, that is gl = g′l′. This proves that φ induces
a bijection between G/U×L L/L ∩V and G/V.

9.3 Mackey formula

We shall now prove a fundamental property for parabolic induction and restric-
tion. It is the analogue of the classical Mackey formula for usual induction and
restriction.

Theorem 9.6. Let P = L ⋉ U and Q = M ⋉ V be two F -stable parabolic
subgroups of G with F -stable Levi complements L and M. Then

∗RG
L⊂P ◦RG

M⊂Q ≃
∑

x∈LF \S(L,M)F /MF

RL
L∩xM⊂L∩xQ ◦ ∗R

xM
L∩xM⊂P∩xM ◦ ad x

where ad x : ΛM -mod −→ ΛxM -mod denotes the action of x by conjugation on
the representations and S(L,M) = {x ∈ G |L∩xM contains a maximal torus of G}.
Proof. The proof of the Mackey formula will be in several steps. We first use
Proposition 9.4.(i) to get

∗RG
L⊂P ◦RG

M⊂Q ≃ ΛUF \GF ⊗GF ΛGF /VF ⊗ΛMF −
≃ Λ[UF \GF ×GF GF /VF ]⊗ΛMF −
≃ Λ[UF \GF /VF ]⊗ΛMF −.

¿From Lemma 9.11 we deduce the following decomposition for the setUF \GF /VF :

UF \GF /VF =
⊔

x∈LF \S(L,M)F /MF

UF \PFxQF /VF . (9.7)
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Then each piece of this decomposition can be expressed in terms of smaller
subgroups using Lemma 9.10. Indeed, given x ∈ S(L,M)F /MF we have an
LF × (MF )op-equivariant bijection

LF /(L ∩ xV)F ×(L∩xM)F (xM ∩U)F \xMF ∼−→ UF \PFxQF /VF . (9.8)

where on the left-hand side, LF acts by multiplication on the left and m ∈MF

by multiplication by xm on the right. Combining Equations (9.7) and (9.8) we
get

Λ[UF \GF /VF ] ≃
⊕

x∈LF \S(L,M)F /MF

Λ[LF /(L∩xV)F ]⊗Λ(L∩xM)FΛ[(
xM∩U)F \xMF ].

Finally, we use Proposition 9.4.(i) to see that the functor

Λ[LF /(L ∩ xV)F ]⊗Λ(L∩xM)F Λ[(xM ∩U)F \xMF ]⊗ΛMF −

is isomorphic to

RL
L∩xM⊂L∩xQ ◦ ∗R

xM
L∩xM⊂P∩xM ◦ ad x

for all x ∈ S(L,M)F /MF , which yields the Mackey formula.

We now prove the results which we used for the proof of the Mackey for-
mula. The first one is a generalization to parabolic subgroups of the Bruhat
decomposition B\G/B ≃W .

Lemma 9.9. Let P = L⋉U and Q = M⋉V be two parabolic subgroups with
Levi complements L and M containing T. Then P\G/Q ≃WL\W/WM.

Proof. As shown in the proof of Proposition 8.8, there exist x, y ∈ NG(T) such
that P = xPI and Q = yPJ . Then the map g 7−→ x−1gy induces bijections
P\G/Q ∼−→ PI\G/PJ and WL\W/WM

∼−→ WI\W/WJ , therefore one can
assume that all the parabolic groups and Levi complements are standard.

By the usual Bruhat decomposition, the inclusion of NG(T) in G induces a
surjective map W ։ PI\G/PJ . We claim that it gives the expected bijection.
This amounts to showing that PIwPJ = BWIwWJB. Taking for w a I-reduced
representative, we have PIwPJ = BWIwPJ by 2.5. Now, for each vw ∈ WIw,
one can choose the corresponding reduced-J element zx ∈ vwWJ ⊂WIwWJ and
BvwPJ = BzxWJB ⊂ BWIwWJB. This proves that PIwPJ ⊂ BWIwWJB.
The other inclusion is straightforward.

Lemma 9.10. Let P = L ⋉ U and Q = M ⋉ V be two F -stable parabolic
subgroups of G with F -stable Levi complements L and M. Then the inclusion
S(L,M) →֒ G induces bijections

L\S(L,M)/M
∼−→ P\G/Q and LF \S(L,M)F /MF ∼−→ PF \GF /QF .
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Proof. The second bijection can be deduced from the first one using 7.7. Indeed,
the stabilizer of x ∈ G under the action of P×Qop is P∩xQ, which is connected
by Proposition 8.9. Similarly, the stabilizer under the action of L ×Mop is
L ∩ xM, which is a Levi subgroup (hence connected) whenever x ∈ S(L,M)
(see Proposition 8.9).

We first observe that any double coset PxQ contains an element of S(L,M).
Indeed, any pair of Borel subgroups have a common maximal torus (see 4.4),
therefore by Proposition 8.7 there exist Levi complements of P and xQ which
contain a common maximal torus. These complement are of the form uL for
u ∈ U and xvM for v ∈ V, therefore u−1xv ∈ S(L,M). Consequently, we have
a natural surjective map L\S(L,M)/M ։ P\G/Q. To prove that it is injective
we now show that |L\S(L,M)/M| ≤ |P\G/Q|. We proceed as follows: fix x0
such that L∩ x0M contains a maximal torus T. Given x ∈ S(L,M), a maximal

torus of L ∩ xM is of the form lT = xmx−1
0 T for some l ∈ L and m ∈M. This

shows that l−1xmx−1
0 ∈ NG(T). Multiplying this element by NL(T) on the

left and Nx0M(T) on the right does not change the class of x in L\S(L,M)/M.
In particular, there are at most NL(T)\NG(T)/Nx0M(T) ≃WL\W/Wx0M ele-
ments in L\S(L,M)/M. By Lemma 9.9, this number is exactly the number of
double cosets P\G/Q and we get the injectivity.

Lemma 9.11. Assume L ∩ xM contains a maximal torus. Then the map

LF /(L ∩ xV)F ×(L∩xM)F (xM ∩U)F \xMF ∼−→ UF \PFxQF /VF

(l(L ∩ xV)F , (xM ∩U)Fm) 7−→ UF lmxVF

is a LF × (MF )op-equivariant bijection.

Proof. The stabilizer of x ∈ G under the action of U × Vop is the unipotent
group U∩ xV, hence it is connected. The stabilizer of any element of LF /(L ∩
xV)F × (xM∩U)F \xMF under the diagonal action of L∩ xM is trivial, hence
connected. Therefore by 7.7 it is enough to prove the following isomorphism:

L/(L ∩ xV)×L∩xM (xM ∩U)\xM ∼−→ U\PxQ/V
(l(L ∩ xV), (xM ∩U)m) 7−→ UlmxV

The map is well-defined (since L normalizes U and M normalizes V) and it is
clearly surjective. To prove the injectivity, assume that UlmxV = Ul′m′xV.
Then there exists u ∈ U and v ∈ xV such that lm = l′uvm′. Consequently,
u−1l′

−1
l = vm′m−1 ∈ P∩xQ which decomposes as P∩xQ = (U∩xQ)⋊(L∩xQ)

by Proposition 8.9. Therefore by unicity of the decomposition P = U ⋊ L, we
have l′

−1
l ∈ L ∩ xQ. Similarly, m′m−1 ∈ P ∩ xM, and they have the same

projection on L ∩ xM. This means that there exists y ∈ L ∩ xM such that
yl′

−1
l ∈ L ∩ xV and ym′m−1 ∈ U ∩ xM. Up to multiplying l on the right

by an element of L ∩ xV and m on the left by an element of U ∩ xM we can
therefore assume that yl′

−1
l = ym′m−1 = 1 that is l′m′ = lm, which proves the

injectivity.
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In the case where P and Q are standard parabolic subgroups, we can also
use Lemmas 9.9 and 9.10 to obtain the following particular case of the Mackey
formula.

Corollary 9.12. Let I and J be two F -stable subsets of S. Then

∗RG
LI⊂PI

◦RG
LJ⊂PJ

≃
∑

w∈WF
I
\WF /WF

J

RLI

LI∩wLJ⊂LI∩wPJ
◦∗RwLJ

LI∩wLJ⊂PI∩wLJ
◦ad w.

Example 9.13. For G = GLn with standard Frobenius F , and I = J =
{1, . . . , n − 2}, we have LI ≃ GLn−1 × GL1. There are only two cosets in
WF
I \WF /WF

J ≃ Sn−1\Sn/Sn−1; they correspond to 1 and (1, n). Further-
more, LI ∩ (1,n)LJ is the standard Levi subgroup L{2,...,n−3} ≃ GL1×GLn−2×
GL1 of LI . We deduce the following formula

∗RGLn

GLn−1
◦RGLn

GLn−1
≃ Id+R

GLn−1

GLn−2
◦ ∗R

GLn−1

GLn−2

where we have omitted the parabolic subgroups involved and the copies of GL1

in the various Levi subgroups.

Exercise 9.14. Do the same computation for twisted type A, with I = J =
{2, . . . , n−2} a maximal F -stable subset of {1, . . . , n−1}. What is the difference
with the previous case?

10 Harish-Chandra theory

In this section we use the previous induction and restriction functor to decom-
pose the set of irreducible representations into series. Unlike the usual induction
and restriction for finite groups, parabolic induction from proper Levi subgroups
does not reach all the representations. The missing ones are the so-called cus-
pidal representations. Therefore the first steps towards the classification of the
irreducible representations are:

(a) Find the irreducible cuspidal representations; these representations are
usually constructed using geometric methods (Deligne-Lusztig theory) and
have been classified by Lusztig in the case where Λ = C.

(b) Determine which representation can be reach from the parabolic induction
of a cuspidal one. This amounts to studying the representation theory of
the endomorphism algebra of the induced representation, which will be
done in the next section.

Note that this program if far from being achieved for representations in positive
characteristic, and is still a very active area of research.
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10.1 Independence of the parabolic subgroup

The parabolic induction and restriction functors are defined in terms of F -stable
parabolic subgroups and their F -stable Levi complement. It turns out that they
depend only on the choice of the Levi, and not on the parabolic subgroup.

Theorem 10.1. Let L be an common F -stable Levi complement of the F -stable
parabolic subgroups P and Q. Then

∗RG
L⊂P ≃ ∗RG

L⊂Q and RG
L⊂P ≃ RG

L⊂Q.

Proof. The result over Λ is due to Howlett-Lehrer [Howlett-Lehrer] and Dipper-
Du [Dipper-Du]. It is a consequence of the existence of an isomorphism of
GF × (LF )op-modules between ΛGF eRu(P)F and ΛGF eRu(Q)F . Here, we shall
give a proof in the case Λ = C only.

We proceed by induction on the semi-simple rank of G. If G is a torus, then
L = P = Q = G and the result is obvious. Otherwise one can assume that
L 6= G. Let λ be an irreducible character of LF . By the Mackey formula and
the adjunction, we have

〈RG
L⊂Pλ ;R

G
L⊂Qλ〉GF =

∑

〈∗RL
L∩xL⊂L∩xQλ ;R

xL
L∩xL⊂P∩xL

xλ〉LF∩xLF .

If we assume by induction that the right-hand side does not depend on P and
Q, then we deduce that

〈RG
L⊂Pλ ;R

G
L⊂Qλ〉GF = 〈RG

L⊂Pλ ;R
G
L⊂Pλ〉GF = 〈RG

L⊂Qλ ;R
G
L⊂Qλ〉GF

from which we get

〈RG
L⊂Pλ−RG

L⊂Qλ ;R
G
L⊂Pλ−RG

L⊂Qλ〉GF = 0.

This proves that RG
L⊂Pλ = RG

L⊂Qλ so that RG
L⊂P does not depend on P. In

addition, we can use adjunction to show that the restriction ∗RG
L⊂P does not

depend on P either.

We will not use the parabolic subgroups anymore but we still need to assume
that all the Levi subgroups involved are F -stable complements of F -stable Levi
subgroups, that is are G-split.

10.2 Cuspidality and Harish-Chandra series

For usual induction and restriction, every representation can be reached by in-
duction from a proper subgroup. This is no longer true for parabolic induction,
the main difference being than the parabolic restriction can kill some represen-
tations. This motivates the following definition.

Definition 10.2. A ΛGF -module M is said to be cuspidal if ∗RG
L (M) = 0 for

all proper G-split Levi subgroups L.
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Recall from Proposition 9.4 that the induction and restriction functors are
adjoint. In particular, given a ΛLF -module N we have

HomLF (N, ∗RG
L (M)) ≃ HomGF (RG

L (N),M).

Consequently, in the case whereM is simple, the property of being non-cuspidal
is equivalent to the existence of a pair (L, N) an a surjective map RG

L (N) ։M .
We can even assume that N is cuspidal:

Lemma 10.3. Let M be a simple ΛGF -module. Then there exist a G-split
Levi subgroup L and a (simple) cuspidal LF -module N such that M is in the
head of RG

L (N), i.e. such that there exists a GF -equivariant surjective map
RG

L (N) ։M .

Proof. Let L to be minimal Levi subgroup for the property that ∗RG
L (M) 6= 0.

Then by transitivity of the parabolic restriction, ∗RG
L (M) is a cuspidal ΛLF -

module. Since the parabolic restriction is exact (see Proposition 9.4), we can
take for N any simple submodule of ∗RG

L (M).

Remark 10.4. Using the other adjunction one can prove that there exists a
cuspidal module LF -module N ′ such thatM is in the socle of RG

L (N ′), i.e. such
that there exists a GF -equivariant injective map RG

L (N ′) →֒M . Note however
that if Λ is not a field, it is unclear whether in that case N can be assumed to
be simple.

Definition 10.5. A cuspidal pair is a pair (L, N) where L is an G-split Levi
subgroup and N is a cuspidal simple ΛLF -module. The Harish-Chandra series
corresponding to such a pair is

Irr
(
GF |(L, N)

)
= {M ∈ Irr GF |RG

L (N) ։M}.

The previous lemma ensures that any simple representation lies in at least
one Harish-Chandra series. However, a representation can lie in different Harish-
Chandra series, but in that case they will be conjugate under GF , as shown in
the following proposition.

Proposition 10.6. Assume that Λ is a field. Let (L, N) and (L′, N ′) be two
cuspidal pairs. Then Irr

(
GF |(L, N)

)
∩Irr

(
GF |(L′, N ′)

)
6= ∅ if and only if there

exists g ∈ GF such that (L′, N ′) = g(L, N).

Proof. We first note that for g ∈ GF , we have RG
gL(

gN) ≃ g(RG
L (N)) there-

fore the series corresponding to conjugate cuspidal pairs have isomorphic con-
stituents.

To prove the converse, let M be a ΛGF -module such that RG
L (N) ։ M

and RG
L′(N ′) ։ M . Since Λ is a field, there exists a projective cover PN (resp.

PM ) of N (resp. M). Now, by Proposition 9.4, the map RG
L (PN ) ։ RG

L (N) is
surjective and by composition we get a surjective map RG

L (PN ) ։ M . Hence
PM must be a direct summand of RG

L (PN ). Now, since M is in the head of
RG

L′(N ′), it is a composition factor and we have HomGF (PM , R
G
L′(N ′)) 6= 0. We
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deduce that HomGF (RG
L (PN ), RG

L′(N ′)) 6= 0. By the Mackey formula, the latter
is isomorphic to

⊕

x∈LF \S(L,L′)F /L′F

Hom(L∩xL′)F (
∗RL

L∩xL′(PN ), ∗R
xL′

L∩xL′(xN ′))

Now, since N is cuspidal, the restriction ∗R
xL′

L∩xL′(xN ′) ≃ x
(
∗RL′

Lx∩L′(N ′)
)
is

zero whenever Lx∩L′ is a proper Levi subgroup of L′. This proves that L′ ⊂ Lx

whenever x ∈ S(L,L′)F . Exchanging the role of (L, N) and (L′, N ′) we see that
we must have an equality. Consequently, the Mackey formula takes the following
very simple form

0 6= HomGF (RG
L (PN ), RG

L′(N ′)) ≃
⊕

x∈NG(L′,L)F /LF

HomLF (PN ,
xN ′)

where NG(L′,L)F = {g ∈ G | xL′ = L}. Finally, since N ′ (hence xN ′) is simple
there is a non-zero map between PN and xN ′ if and only if N ≃ xN ′.

Let C be the set of cuspidal classes of G. When Λ is a field, the combination
of Lemma 10.3 and Proposition 10.6 yields a partition of the set of isomorphism
classes of irreducible representations of GF into Harish-Chandra series:

Irr GF =
⊔

(L,N)∈C/GF

Irr
(
GF |(L, N)

)
.

In addition, if L is a Levi subgroup of a Levi subgroup L′ of G, then by the tran-
sitivity of the induction RG

LN = RG
L′ ◦RL′

L N . Therefore ifM ∈ Irr
(
L′F |(L, N)

)

then any constituent in the head of RG
L′M lies in Irr

(
GF |(L, N)

)
. This means

Harish-Chandra series are compatible with Harish-Chandra induction.

Remark 10.7. The property that Λ is a field was needed to make sure that the
category ΛGF had enough projective objects. Note that this holds for a more
general class of rings, such as complete discrete valuation ring (e.g. Λ = Zℓ).

10.3 Endomorphism algebras

To finish this series of general results, we shall now describe the set Irr
(
GF |(L, N)

)

for a given cuspidal pair (L, N). This will be related to the representation the-
ory of the endomorphism algebra H(L, N) = EndGF (RG

L (N)). To this end, let
us consider the Hom-functor

Θ : ΛGF -mod −→ H(L, N)op-mod

M 7−→ HomGF (RG
L (N),M)

Proposition 10.8. If Λ is a field, the functor Θ induces a bijection

Irr
(
GF |(L, N)

) 1:1←→ Irr H(L, N).
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Proof. We will write H for H(L, N) and X = RG
L (N) to simplify the notation.

Let I be the annihilator of X in ΛG. We proceed in three steps, showing that

(i) X is a projective ΛG/I-module;

(ii) if M is such that IM = 0 then Θ(M) ≃ HomΛGF /I(X,M) =: Θ(M);

(iii) Θ induces a bijection between the isomorphism classes of the simple con-
stituents in the head of the projective ΛGF /I-module X and Irr H.

Choose a projective cover PN of N and let P = RG
L (PN ). We have a

surjective map P ։ X which yields an injective linear map HomGF (X,X) →֒
HomGF (P,X). Now, we have seen in the course of the proof of Proposition 10.6
that when N is cuspidal these two spaces have the same dimension. Therefore
P ։ X induces an isomorphism

HomGF (X,X)
∼−→ HomGF (P,X). (10.9)

Since P is projective, we have HomGF (P,ΛGF ) ⊗ΛGF X ≃ HomGF (P,X) via
the map f ⊗ x 7−→ (φf,x : p 7−→ f(p)x). By the isomorphism (10.9), each
φf,x : P −→ X factors through P ։ X. Consequently

Ker(P ։ X) ⊂
⋂

Ker φf,x ⊂ IP

which shows that P/IP ։ X is injective, hence bijective and (i) follows.

The inflation functor is a fully-faithful functor from ΛGF /I-mod to ΛGF -mod.
It induces an equivalence between ΛGF /I-mod and the full subcategory of
ΛGF -mod on which I acts by zero. Now, if X ։ M is a surjective morphism
of ΛGF -modules, then by equivariance IM = 0 so that M can be viewed as an
object of that category, which yields (ii).

To conclude it is enough to prove that Θ induces a bijection between the
isomorphism classes of the simple constituents in the head of the projective
ΛGF /I-module X and Irr Θ(X) = Irr H. Let M be a simple module. Since
X is projective, any non-zero map f : X ։ M is sent to a surjective map
Θ(X) = H։ Θ(M) which means that f ∈ Θ(M) generates Θ(M), and proves
that it is simple. Therefore Θ induces a well-defined map

{isoclasses of simple modules in the head of X} −→ Irr H.

This map is injective: if M and M ′ are simple modules in the head of X, then
PM is isomorphic to a direct summand of X and one can take πM ∈ H to
be the projection to this direct summand. If Θ(M) ≃ Θ(M ′) as H-modules,
then πM · f = f ◦ πM is non-zero for all non-zero f ∈ Θ(M ′) and in particular
there will be a non-zero map from PM to M ′. This forces M ′ ≃ M . For the
surjectivity, let S be a simple H-module and considerM = X⊗HS. Then using

44



tensor-hom adjunction and the fact that X is projective we obtain

Θ(V ) = HomΛGF /I(X,X ⊗H S)

≃ HomΛGF /I(X,ΛG
F /I)⊗ΛGF /I X ⊗H S

≃H⊗H S

Θ(V ) ≃S

In particular Θ(V ) 6= 0. Since Θ is exact, there exists a composition factor M
of V such that Θ(M) 6= 0, and by simplicity of S it will satisfy Θ(M) ≃ S.

Remark 10.10. Note that the proof of (iii) only uses the projectivity of X,
and nothing from the theory of Harish-Chandra induction or restriction. The
functors HomA(X,−) for X a projective A-module are sometimes called Schur
functors.

We summarize the results of this section in the following main theorem.

Theorem 10.11. Assume that Λ is a field. Let C be the set of cuspidal pairs
of GF . Then the irreducible representations of GF fall into Harish-Chandra
series

Irr GF =
⊔

(L,N)∈C/GF

Irr
(
GF |(L, N)

)
.

Furthermore, there is a natural parametrization of each series

Irr
(
GF |(L, N)

) 1:1←→ Irr
(
EndGF (RG

L (N))
)
.

11 Endomorphism algebras as Hecke algebras

We have seen in the previous section how to classify the irreducible representa-
tions of GF in terms of Harish-Chandra series. Each series can be parametrized
by means of the irreducible representations of some endomorphism algebra
H(L, N) = EndGF (RG

L (N)). The purpose of this section is to study explicity
the algebra structure of H(L, N), starting from the example of (L, N) = (T,Λ).

11.1 First example

Since a maximal torus T has a unique Levi subgroup (itself), every represen-
tation of T is cuspidal. Therefore from the previous section it makes sense to
consider the algebra

H := H(T,Λ) = EndGF (RG
T (Λ)).

By assumption T is G-split, so it is contained in an F -stable Borel subgroup
B, with unipotent radical U. By definition RG

T (Λ) = ΛGF /UF ⊗ΛTF Λ ≃
ΛGF /BF . In order to simplify the argument in this case we will now assume
that (G, F ) is split (which means that F acts trivially on W ) and q(q − 1) ∈
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Λ×. This last assumption ensures that the order of BF is invertible in Λ.
As a consequence ΛGF /BF ≃ ΛGF eBF where eBF = |BF |−1

∑

b∈BF b is the
idempotent corresponding to the trivial representation of BF . We deduce that
H and eBF ΛGF eBF are isomorphic algebras. For w ∈W , let us define

Tw = qℓ(w) eBFweBF .

Note that this element is well-defined since T ⊂ B. It follows from the Bruhat
decomposition that the family (Tw)w∈W form a Λ-basis of H.

Let w,w′ ∈W such that ℓ(ww′) = ℓ(w) + ℓ(w′). By the Bruhat decomposi-
tion every element of wBFw′ lies in BFww′BF . Consequently, for all b ∈ BF

we have eBFwbw′eBF = eBFww′eBF and we deduce that

Tww′ = TwTw′ . (11.1)

This proves that Tw = Ts1Ts2 · · ·Tsr whenever w = s1s2 · · · sr is a reduced
expression of w.

Let s ∈ S be a simple reflection. Then an element of sBF s lies either in
BF sBF or in BF . Now the group sBs∩B = B∩ sB is generated by T and the
Uα’s for α ∈ Φ+ r {αs}, therefore |BF |/|(B ∩ sB)F | = |UF

α | = q. We deduce
that

(eBF seBF )2 = eBF seBF seBF =
q − 1

q
eBF seBF +

1

q
eBF

which we can write as the quadratic relation

T 2
s = (q − 1)Ts + q. (11.2)

In fact, relations (11.1) and (11.2) generate all relations in H, as we will see
from the general theory for these algebras.

11.2 Hecke algebras

Let (W,S) be a Coxeter system. Let q = (qs)s∈S be set of indeterminates
satisfying qs = qt whenever s and t are conjugate in W .

Definition 11.3. The generic Hecke algebra Hq(W,S) is the Z[q,q−1]-algebra
generated by the elements (Ts)s∈S subject to the following relations

• (Ts − qs)(Ts + 1) = 0 for all s ∈ S (order relation)

• TsTtTs · · · = TtTsTt · · · whenever sts · · · = tst · · · in W (braid relations)

Note that the first relation can be written T 2
s = (qs − 1)Ts + qs, as in the

previous example. Each Ts is invertible with inverse

T−1
s =

1

qs
T +

1− q
q

.
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The braid relations ensure that we can define elements Tw by setting

Tw = Ts1Ts2 · · ·Tsr
for any reduced expression w = s1s2 · · · sr of w ∈ W . Indeed, by Matsumoto
Lemma this does not depend on the reduced expression.

Theorem 11.4. The family (Tw)w∈W is a basis of Hq(W,S) is over Z[qs, q−1
s ].

Proof. The fact that (Tw) generates Hq(W,S) is obvious. To show that they are
linearly independent, we construct two representations ofHq(W,S) on Z[qs, q−1

s ]W
as follows:

λ(Ts)(w) =

{
(qs − 1)sw + qsw if sw < w
sw otherwise

ρ(Ts)(w) =

{
(qs − 1)ws+ qsw if ws < w
ws otherwise

We claim that λ(Ts) and ρ(Tt) commute for any s, t ∈ S. There are many cases
to look at. For example when l(sw) > l(w) and l(swt) < l(wt), we must have
sw = wt by the exchange lemma and therefore

λ(Ts)ρ(Tt)(w) =λ(Ts)(wt) = (qs − 1)swt+ qswt

ρ(Tt)λ(Ts)(w) = ρ(Tt)(sw) = (qt − 1)swt+ qtsw = (qt − 1)swt+ qtwt

and we conclude using qs = qt since s = wtw−1.

Next we show that ρ and λ extend to algebra homomorphisms. The or-
der relation are clearly satisfied. For the braid relation, we consider two re-
duced expressions w = s1 · · · sr = t1 · · · tr of a given w ∈ W , and we set
∆ = λ(Ts1) · · ·λ(Tsr ) − λ(Tt1) · · ·λ(Ttr ). We show by induction on ℓ(v) that
∆(v) is zero: it is clear if v = 1 since ∆(1) = w − w = 0. Otherwise take s ∈ S
such that vs < v and assume that ∆(vs) = 0. Then vs < vss = v therefore
∆(v) = ∆(ρ(Ts)vs) = ρ(Ts)(∆(vs)) = 0 since ρ(Ts) commutes with each λ(Tt),
hence with ∆.

Finally, the evaluation of the family (λ(Tw))w∈W at 1 is the basis (w)w∈W of
Z[qs, q−1

s ]W , which proves that the elements Tw’s are linearly independent.

Order relations for the elements Ts are deformation of the relation s2 = 1
in the group algebra Z[W ] obtained by specializing each qs to 1. The previous
result ensures that the Hecke algebras are flat deformations of the group algebra
ZW , and we can invoke Tits’ deformation theorem to get a bijection between
IrrK H and IrrLW for suitable fields K and L. We

Proposition 11.5. There exists a finite extension K of C(q) such that the
specialization map qs 7−→ 1 induces a bijection

IrrK H 1:1←→ IrrCW
χq 7−→ χ
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Remark 11.6. Using the fact that KH is a symmetric algebra, one can actually
prove that this result remains true for any specialization of qs outside the roots
of unity.

11.3 The Hecke algebra H(L, N)

For (L, N) = (T,Λ) we constructed for each w ∈ W an endomorphism Tw
satifying Hecke relations. We are now going to extend this construction to any
cuspidal pair.

Assume that Λ is a field, which is large enough for LF . Let W (L, N) =
NG(L, N)/L be the automizer of the pair (L, N). For n ∈ N(L, N), the LF -
modules N and nN are isomorphic, therefore there exists a bijective linear map
γn : N

∼−→ N such that γn(l·x) = ln ·γn(x) for all l ∈ LF and x ∈ N . Given two
elements n, n′ ∈ N(L, N), the composition γ−1

nn′ ◦ γn′ ◦ γn is an endomorphism
of the LF -module N . Since N is simple and Λ is big enough, EndLF (N) ≃ Λ,
therefore there exists a scalar λ(n, n′) such that

γn′ ◦ γn = λ(n, n′)γww′ .

Furthermore, λ : N(L, N)×N(L, N) −→ Λ is a 2-cocycle.

Since N is cuspidal, any restriction of N to a proper G-split Levi subgroup
is zero. This simplifies the expression of the Mackey formula. More precisely,
Theorem 9.6 yields the following isomorphism of Λ-modules

H(L, N) = EndGF (RG
LN) ≃

⊕

w∈W (L,N)F

HomLF (N, nwN) (11.7)

where nw is any representative of w ∈ W (L, N)F in N(L, N)F . Note that it
is unclear how to describe the algebra structure on the right-hand side, and
this is exactly the problem we would like to address. Since N is simple and Λ
large enough, each HomLF (N, nN) is one-dimensional and generated by γn. In
particular, H(L, N) is free of rank |W (L, N)F | over Λ.

Recall that the isomorphism (11.7) comes from a decomposition ofUF \GF /UF

into double cosets UF \PFnPF /UF . Following the proof of the Mackey formula
we see that the linear maps γn correspond via (11.7) to the operators

Bn : geUF ⊗ x 7−→ geUF neUF ⊗ γn(x).

Note that this linear map is well-defined since neUF⊗γn(lx) = neUF⊗lnγn(x) =
neUF ln ⊗ γn(x) = lneUF ⊗ γn(x). Moreover it is clearly GF -equivariant, and
one can check as an exercise that it does correspond to γn via (11.7). This yields
the following result:

Lemma 11.8. For any set of representatives nw of W (L, N)F in N(L, N)F ,
the family (Bnw

)w∈W (L,N)F is a basis of H(L, N) over Λ.

48



We now fix a specific set of representatives nw of W (L, N)F in N(L, N)F

such that nww′ = nwnw′ whenever ℓ(ww′) = ℓ(w) + ℓ(w′). To simplify the
notation we will denote by ẇ = nw such representative and by Bw := Bẇ the
corresponding element of H(L, N).

Lemma 11.9. Given w,w′ ∈ W (L, N)F such that ℓ(ww′) = ℓ(w) + ℓ(w′) we
have

Bww′ = λ(ẇ, ẇ′)Bw ◦Bw′

in the algebra H(L, N).

Proof. Let α ∈ Φ+ be a positive root. Assume that w′−1
(α) < 0 and let

β = −w′−1
(α) > 0. We have w′(β) < 0 and therefore −w(α) = ww′(β) < 0

since ℓ(w) + ℓ(w′) = ℓ(ww′). This proves that w′−1
(α) > 0 or w(α) > 0.

Consequently, with U being generated by the Uα for α > 0, we have ẇuẇ′ ∈
UF ẇẇ′UF for all u ∈ UF . This proves that

eUF ẇeUF ẇ′eUF = eUF ẇẇ′eUF

and the lemma follows.

If M is a G-split Levi subgroup containing L, we can consider a smaller
Hecke algebra EndMF (RM

L (N)). Let w ∈ WM(L, N)F . Using the equation
(11.7) for M instead of G one can define an element BM,w ∈ EndMF (RM

L (N))
corresponding to γẇ. Then by construction Bw is the image of BM,w under the
parabolic induction functor RG

M. We deduce the following result:

Lemma 11.10. Let M be a G-split Levi subgroup containing L. Assume that
WM(L, N)F has order 2. Then for w ∈ NM(L, N)F the operator Bw of H
satisfies a quadratic relation.

Proof. If w = 1 it is obvious since in that case Bw is the identity. Otherwise,
EndMF (RM

L (N)) has a basis given by the identity BM,1 and BM,w. Writing
(BM,w)

2 in this basis gives a quadratic relation for BM,w and hence a quadratic
relation for Bw = RG

M(BM,w).

To finish with the description of H, and endow it with a structure of a Hecke
algebra, one would need to solve the following problems:

(P1) Describe the (normal) subgroup of WG(L, N)F generated by the non-
trivial involution in the variousWM(L, N)F whenM is such thatWM(L, N)F

has order 2.

(P2) Give the explicit quadratic equations satisfied by BM,w whenWM(L, N)F

has order 2; this is related to computing the parameters of the Hecke
algebra structure describing H.

(P3) Compute the 2-cocycle λ.
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A general solution to these problems has yet to be found. However, it has
been completely solved in the case where Λ = C, by a combination of work
by Lusztig, Howlett-Lehrer and Geck. In that case WG(L, N)F is a Coxeter
group and is generated by the various subgroups WM(L, N)F of order 2, the
quadratic relations are explicit in terms of the dimensions of the two irreducible
summands of RM

L (N) and the 2-cocycle λ is trivial. The following theorem
summarizes their results:

Theorem 11.11. Assume Λ = C and let (L, N) be a cuspidal pair. Then there
exists

• a set of involution S(L, N) ⊂ W (L, N)F making (W (L, N)F , S(L, N)) a
Coxeter system;

• for each s ∈ S(L, N), a power of q denoted by qs such that qs = qt when-
ever s and t are conjugate in W (L, N)F ;

• for each w ∈W (L, N)F a scalar λw;

such that the map

Hq(W (L, N)F , S(L, N))
∼−→ H(L, N)

Tw 7−→ λwBw

is an isomorphism of algebras.

Recall from Proposition 10.8 that the irreducible representations lying in
the Harish-Chandra series above the cuspidal pair (L, N) are parameterized by
irreducible representations of H(L, N). The previous theorem ensures that the
latter are parametrized by representations of the Coxeter group W (L, N)F (see
Proposition 11.5 and Remark 11.6).

Corollary 11.12. Let (L, N) be a cuspidal pair over C. Then

Irr
(
GF |(L, N)

) 1:1←→ IrrCW (L, N)F .

Example 11.13. Let G = GLn, and F be the Frobenius endomorphism on G

giving the general unitary group GF = GUn(q). If there exists a unipotent
cuspidal complex character ρ of GUn(q) if and only if n = t(t− 1)/2 for some
t ∈ Z≥0 (see 15.1 for the definition of unipotent characters). Furthermore, if
such a character exists it is unique, and we will denote it by ρt. If t = 0 or
t = 1, ρt is just the trivial character.

Fix t ≥ 0, n = t(t− 1)/2 and consider the group GUn+2m(q). A GUn+2m-
split Levi subgroup of GLn+2m of semisimple rank n−1 is given by the standard
Levi subgroup corresponding to the subset I = {αm+1, αm+2, . . . , αm+n−1} of
the set of simple roots {α1, . . . , αn+2m−1} of GLn+2m. Since F (αi) = αn+2m−i,
it is stable by F (see Figure 1). Therefore LI is F -stable and we have LFI ≃
GUn(q)× (F×

q2)
m. The character ρt can be inflated to an irreducible character

of LFI . It is still the unique unipotent cuspidal character of LFI and therefore
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α1 α2 αm αm+1 αm+n−1 α2m+n−1

F

I

Figure 1: Dynkin diagram of GUn+2m(q)

any element of the normalizer of LI normalizes the pair (LI , ρt). In particular
W (LI , ρt)

F = NG(LI)
F /LFI ≃ NW (WI)

F /WF
I .

The general procedure for constructing generators of NW (WI)
F /WF

I is as
follows: take α /∈ I, consider the orbit ωα = {α, F (α), . . .} of simple roots under
F , and set wα = wI∪ωα

wI . Here, if j /∈ {m, . . . , n +m} then αj is orthogonal
to every element in I so that wαj

= sjsn+2m−j , which corresponds to the
permutation (j, j+1)(n+2m− j, n+2m− j+1). Otherwise if j ∈ {m,n+m}
then wαj

corresponds to the permutation (m,n +m + 1). One can check that
these involutions endow NW (WI)

F /WF
I of a structure of Coxeter group of type

Bm. By the previous theorem, EndGF (RG
LI
ρt) is a Hecke algebra of type Bm.

The parameters of this Hecke algebra are given in Figure 2. Note that wαi
and

wαj
are conjugate if and only if i, j < m.

wαm

q2t+1

wαm−1

q2

wαm−2

q2

wα1

q2

Figure 2: Parameters of the Hecke algebra

To finish this section, we state a compatibility theorem due to Howlett-
Lehrer between parabolic induction and usual induction in the Coxeter groups.
We still work in the particular case where Λ = C.

Theorem 11.14. Assume that Λ = C. Let L ⊂ M be two quasi-simple Levi
subgroups of G and N be a simple cuspidal ΛLF -module. Then we have the
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following commutative diagrams:

Z Irr
(
GF , (L, N)

)
oo // Z IrrWG(L, N)F

Z Irr
(
MF , (L, N)

)

RG
M

OO

oo // Z IrrWM(L, N)F

Ind
WG(L,N)F

WM(L,N)F

OO

Z Irr
(
GF , (L, N)

)

∗RG
M

��

oo // Z IrrWG(L, N)F

Res
WG(L,N)F

WM(L,N)F

��
Z Irr

(
MF , (L, N)

)
oo // Z IrrWM(L, N)F

12 Alvis-Curtis-Kawanaka duality

Throughout this section we shall assume that Λ = C is the field of complex
numbers. In that case the category CGF -mod is semi-simple, and we shall focus
on its Grothendieck group K0(CGF -mod). A Z-basis of this group is given by
the complex irreducible characters, and as such any element of K0(CGF -mod)
can be thought of as a virtual character. The Harish-Chandra induction and
restriction functors induce linear maps on virtual characters that we will still
denote by RG

L and ∗RG
L .

To avoid technical difficulties, we will always assume in this section that F is
a Frobenius endomorphism. Under this assumption we will define and study the
F -rank of an algebraic group, which we will use to define the duality operator.

12.1 Fq-rank

Let T be a torus, and F be an endomorphism of T corresponding to an Fq-
structure. Then the map τ = q−1F is an linear endomorphism of X(T) ⊗ R
which has finite order (the order is 1 if and only if T is split).

Definition 12.1. The Fq-rank of a torus T is

Fq-rank(T) = dim
(
X(T)⊗ R)τ .

It is also the rank of the largest Fq-split torus in T.

Let H be an algebraic group, and F be a Frobenius endomorphism of H
defining an Fq-structure on H. Since two H-split tori of H are HF -conjugate,
the following definition makes sense:

Definition 12.2. Let H be an algebraic group endowed with an Fq-structure
via a Frobenius endomorphism F .

(i) The Fq-rank of H is the Fq-rank of any H-split maximal torus of H.
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(ii) The Fq-semisimple rank r(H) of H is the Fq-rank of H/R(H).

Remark 12.3. Let T be a H-split maximal torus of H. Using the exact sequence
0 −→ X(T/R(H)) −→ X(T) −→ X(R(H)) −→ 0 and the fact that τ has finite
order, we get

r(H) = Fq-rank(H)− Fq-rank(R(H)). (12.4)

In the case where H is a reductive group, then the semisimple rank can be
computed in terms of the root system defined from a H-split torus.

Lemma 12.5. Let G be a connected reductive group, T be a maximal torus,
and Φ = Φ(G,T) be the corresponding root system. Set V = X(T) ⊗ R and
τ = q−1F ∈ End(V ). Then

(i) Fq-rank(R(G)) = dim
(
〈Φ∨〉⊥ ∩ V τ ).

(ii) If T is G-split, r(G) = dim
(
〈Φ〉 ∩ V τ ).

Proof. By Proposition 7.10, there exists g ∈ G such that gT is G-split and
w := g−1F (g) ∈ NG(T). If B is an F -stable Borel containing gT, then Bg is
an wF -stable Borel containing T. Since w acts trivially on 〈Φ∨〉⊥, we deduce
that

dim
(
〈Φ∨〉⊥ ∩ V τ ) = dim

(
〈Φ∨〉⊥ ∩ V wτ )

and therefore we can assume that T is G-split without loss of generality.

The torus T/R(G) is a G/R(G)-split maximal, and Φ is the image of
Φ(G/R(G),T/R(G)) via the F -equivariant embedding X(T/R(G)) →֒ X(T).
SinceG/R(G) is semisimple, its root system spans the real vector spaceX(T/R(G))⊗
R and we deduce (ii). Assertion (i) follows from Equation (12.4).

Remark 12.6. If B is an F -stable Borel subgroup containing T, then from
Lemma 12.5 we deduce that for any F -stable subset I of S the Fq-semisimple
rank of the corresponding parabolic subgroup equals the number of orbits of F
on I:

r(PI) = r(LI) = |I/F |.

12.2 Duality

Let L be aG-split Levi subgroup. Then for g ∈ G, we haveRG
gL◦ad g = ad g◦RG

L

and ∗RG
gL ◦ad g = ad g ◦ ∗RG

L . In particular, the composition RG
L ◦ ∗RG

L depends
only on the GF -conjugacy class of L.

Definition 12.7. Let B be an F -stable Borel subgroup of G. The Alvis-Curtis-
Kawanaka duality is the linear map on K0(CGF -mod) defined by

DG =
∑

P⊂B

(−1)r(P)RG
L ◦ ∗RG

L

where P runs over the F -stable parabolic subgroups containing B and where L

is any F -stable Levi complement of P.
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Since any two F -stable Borel subgroups are conjugate under GF , we deduce
from the above discussion that definition of DG does not depend on B. If we
fix an F -stable maximal torus T of B, then all the parabolic subgroups and
their Levi complements can be assumed to be standard. In that case we can
use Remark 12.6 to write

DG =
∑

I⊂S, F (I)=I

(−1)|I/F |RG
LI
◦ ∗RG

LI
.

Since RG
L and ∗RG

L are adjoint maps, then DG is clearly self-adjoint. In
terms of characters, this means that given two complex characters ρ and χ of
GF we have

〈DG(ρ) ;χ〉GF = 〈ρ ;DG(χ)〉GF .

The behaviour of DG with respect to Harish-Chandra induction and restriction
is much deeper, and the proof of the following result, due to Curtis, will be at
the heart of this section.

Theorem 12.8. Let M be a G-split Levi subgroup. Then

DG ◦RG
M = RG

M ◦DM and DM ◦ ∗RG
M = ∗RG

M ◦DG.

Proof. Computing DG ◦ RG
M involves computing RG

L ◦ ∗RG
L ◦ RG

M for G-split
Levi subgroups L and M. To this end, we shall use the Mackey formula. For
each L, we fix a system of representatives RL for LF \S(L,M)F /MF . Then

DG ◦RG
M =

∑

P⊃B

(−1)r(P)RG
L ◦ ∗RG

L ◦RG
M

=
∑

P⊃B

(−1)r(P)RG
L ◦

( ∑

x∈RL

RL
L∩xM ◦ ∗R

xM
L∩xM ◦ ad x

)

=
∑

P⊃B

(−1)r(P)
( ∑

x∈RL

RG
L∩xM ◦ ∗R

xM
L∩xM ◦ ad x

)

=
∑

P⊃B

(−1)r(P)
( ∑

x∈RL

RG
Lx∩M ◦ ∗RM

Lx∩M

)

DG ◦RG
M =RG

M ◦
( ∑

P⊃B

(−1)r(P)
( ∑

x∈RL

RM
Lx∩M ◦ ∗RM

Lx∩M

))

where we used RG
L∩xM ◦ad x = RG

Lx∩M for the before to last equality (note that
x ∈ GF ).

We now want to relate the right-hand side to the duality DM. Let BM be
an F -stable Borel subgroup of M. For each x ∈ S(L,M)F , the group M∩Px is
an F -stable parabolic subgroup of M, containing the F -stable Borel subgroup
M∩Bx. Up to multipliying x by an element of MF on the right, we can assume
that M ∩Bx = BM . This yields a map

ϕP : LF \S(L,M)F /MF −→ {Pg | g ∈ GF and BM ⊂ Pg}.
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First note that this map is well-defined: if x ∈ S(L,M)F is such that Px and
Pxm contain BM , then Px ∩M and Pxm ∩M are two conjugate parabolic
subgroup which contain BM, so they must be equal. Since parabolic subgroups
are self-normalizing, then m ∈ Px ∩M and therefore Pxm = Px. The map
ϕP is also clearly surjective since F -stable Levi subgroups of P are conjugate
under PF . Finally, we show that it is injective: if Pg = Ph then hg−1 ∈ PF .
We deduce from Proposition 8.9 that Lg ∩M and Lh ∩M are both rational
Levi subgroups of M∩Pg, therefore they must be conjugate under (M∩Ug)F .
Therefore up to multipliying h on the right by an element of (M∩Ug)F , we can
assume that Lg∩M = Lh∩M. But then Lg and Lh contain a common maximal
torus of Pg so that they must be equal by Proposition 8.7. Consequently hg−1 ∈
NPF (L) = LF , which proves that g and h are equal in LF \S(L,M)F /MF .

The map (P, x) 7−→ ϕP(x) induces a bijection between the pairs (P, x)
where P ⊃ B and x ∈ LF \S(L,M)F /MF and the parabolic subgroups Q of
M containing BM. Note that this bijection preserves the Fq-semisimple rank
of the parabolic subgroups. As a consequence, we can transform the expression
of DG ◦RG

M obtained previously into

DG ◦RG
M = RG

M ◦
( ∑

Q⊃BM

(−1)r(Q)RM
L′∩M ◦ ∗RM

L′∩M

)

.

where the sum runs over the F -stable parabolic subgroups Q containing BM,
and where L′ is any F -stable Levi complement of Q containing a maximal torus
of M. For such a groupQ, we can consider the parabolic subgroup PM = Q∩M
of M containing the Borel subgroup BM of M. The group LM = L′ ∩M is an
F -stable Levi complement of Q ∩M and we can write the previous sum as

DG ◦RG
M = RG

M ◦
( ∑

PM⊃BM

( ∑

Q∩M=PM

(−1)r(Q)
)

RM
LM
◦ ∗RM

LM

)

.

where PM runs over the F -stable parabolic subgroups of M containing BM

(with Levi LM) and Q over the F -stable parabolic subgroups of G such that
Q∩M = PM. The formula stated in the theorem now follows from the following
Lemma.

Lemma 12.9. Let H be an F -stable Levi subgroup of G and R be an F -stable
parabolic subgroup of H. Then

∑

Q∩H=R

(−1)r(Q) = (−1)r(R)+Fq-rank(G)+Fq-rank(H)

where Q runs over the F -stable parabolic subgroups of G.

Proof of the Lemma. Let T be an F -stable maximal torus of H. We work in
the real vector space V = X(T)⊗ R. Recall that τ = q−1F is an isomorphism
of V of finite order. Given K a subgroup of G containing T, we denote by ΦK

the set of roots α such that Uα ⊂ K. Recall from Proposition 8.8 that if L is
the unique Levi complement of Q containing T then ΦL = ΦQ ∩ (−ΦQ). Since
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Q is F -stable, we have Fq-rank(Q) = Fq-rank(G) and therefore using Lemma
12.5 we obtain

r(Q) =Fq-rank(Q)− dim〈Φ∨
Q ∩ (−ΦQ)∨〉⊥ ∩ V τ

=Fq-rank(G)− dim〈Φ∨
Q ∩ (−ΦQ)∨〉⊥ ∩ V τ .

To a subgroup K of G containing T we associate the following set:

FK =

{

x ∈ V
∣
∣
∣
∣
∣

〈α ;x〉 = 0 for α ∈ Φ∨
K ∩ (−Φ∨

K)

〈α ;x〉 > 0 for α ∈ Φ∨
K \ (−Φ∨

K)

}

.

Given x ∈ V , we can consider Ψx = {α ∈ Φ | 〈α ;x〉 ≥ 0}. Then Φ = Ψx∪(−Ψx)
and we can use Proposition 8.8 to see that the subgroup generated by T and
Uα for α ∈ Ψx is a parabolic subgroup containing T. This has the following
consequences:

(i) Each element x ∈ V lies in a set FQ for a unique parabolic subgroup Q

containing T (with the previous notation Ψx = ΦQ).

(ii) FQ ∩ τ(FQ) 6= ∅ if and only if FQ = τ(FQ), in which case Q is F -stable.

(iii) FQ ∩ FR 6= ∅ if and only if FQ ⊂ FR, which in turn is equivalent to
ΦR = ΦQ ∩ ΦH (or equivalently R = Q ∩H).

Each set FQ is open in its support 〈Φ∨
Q ∩ (−Φ∨

Q)〉⊥, therefore its dimension
as a subvariety of V equals the dimension of this vector space. Moreover, if
τ(FQ) = FQ (i.e. if Q is F -stable) then FQ ∩ V τ is a convex set. In addition
it is non-empty since it contains the average of any orbit under τ of elements of
FQ. We deduce that

dim(FQ ∩ V τ ) = dim〈Φ∨
Q ∩ (−Φ∨

Q)〉⊥ ∩ V τ = Fq-rank(G)− r(Q).

The same argument using R instead of Q shows that the formula we want to
prove is equivalent to

∑

τ(FQ)=FQ

FQ⊂FR

(−1)dimFQ∩V τ

= (−1)dimFR∩V τ

.

By restriction to V τ , the sets FQ ∩ V τ for Q an F -stable parabolic subgroup
containing T form a partition of V τ . By (iii), the condition FQ ⊂ FR is
equivalent to the fact that the convex sets FQ ∩ V τ and FR ∩ V τ have a non-
trivial intersection. Now the sets FQ ∩ V τ are exactly the facets of the set of
hyperplanes V τ ∩ Ker 〈α ;−〉 of the vector space V τ . Therefore it is enough
to prove that given a vector space E and a convex union of facets C of an
hyperplane arrangement, we have

∑

F⊂C

(−1)dimF = (−1)dimC
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where F runs over the facets of the hyperplane arrangement such that F ⊂ C.
This is the expression of the Euler characteristic of C.

Proof of the theorem. We apply the Lemma to H = M and R = PM. Note that
the Fq-ranks of G and Q are equal since M is G-split. This gives the equality
DG ◦RG

M = RG
M ◦DM. The corresponding relation for the parabolic restriction

follows by adjunction.

¿From Theorem 12.8 we deduce two important results. First, that DG is
an involution on the space of virtual characters, and second that it sends an
irreducible character to a signed irreducible character.

Corollary 12.10. DG ◦DG is the identity map on K0(CGF -mod).

Proof. We use the expression of DG in terms of standard Levi subgroups. Using
in addition Theorem 12.8 we get

DG ◦DG =
∑

I⊂S/F

(−1)|I|RG
LI
◦ ∗RG

LI
◦DG

=
∑

I⊂S/F

(−1)|I|RG
LI
◦DLI

◦ ∗RG
LI
.

The group BI = B∩LI is a Borel subgroup of LI containing T. By Proposition
8.10, the F -stable standard parabolic subgroups of LI are of the form PJ ∩ LI
for J ⊂ I, with a Levi complement LJ . Therefore

DG ◦DG =
∑

J⊂I⊂S/F

(−1)|I|+|J|RG
LI
◦RLI

LJ
◦ ∗RLI

LJ
◦ ∗RG

LI

=
∑

J⊂I⊂S/F

(−1)|I|+|J|RG
LJ
◦ ∗RG

LJ

=
∑

J⊂S/F

(−1)|J|
(∑

I⊃J

(−1)|I|
)

RG
LJ
◦ ∗RG

LJ

which equals Id since
∑

J⊂I⊂S/F (−1)|I| = 0 whenever J 6= S/F (it is the

expansion of (1− 1)n with n being the number of elements in the complement
of J in S/F ).

Corollary 12.11. Let χ be an irreducible character of GF , and (L, ρ) be the
cuspidal pair such that χ ∈ Irr

(
GF , (L, ρ)

)
. Then (−1)r(L)DG(χ) is an irre-

ducible character of GF .

Proof. If χ is irreducible, the virtual character DG(χ) satifies

〈DG(χ) ;DG(χ)〉GF = 〈χ ;DG ◦DG(χ)〉GF = 〈χ ;χ〉GF = 1

since DG ◦ DG is the identity by Corollary 12.10. Therefore one of DG(χ) or
−DG(χ) is an irreducible character. Now we use Theorem 12.8 and the previous
corollary to get

0 < 〈χ ;RG
L (ρ)〉GF = 〈DG(χ) ;DG(RG

L (ρ))〉GF = 〈DG(χ) ;RG
L (DL(ρ))〉GF .
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But with ρ being cuspidal, we find DL(ρ) = (−1)r(L)ρ using the definition of
DL, and the result follows from the previous inequality.

13 l-adic cohomology

Given X an Fq-variety and ℓ a prime number not dividing q, Grothendieck
has constructed “l-adic cohomology groups with compact support” Hi

c(X,Qℓ)
which are finite dimensional Qℓ-vector spaces. Here compact support could have
been called “proper support”; proper morphisms are the algebraic geometry
equivalent of compact morphisms: technically they are separated, of finite type,
closed and they remain closed by base change. The important points for us is
that finite morphisms are proper, and if f ◦ g is proper and f separated, then
g is proper. In particular, a finite order automorphisms, or an endomorphism
which has a power equal to a Frobenius endomorphism, is proper.

Proposition 13.1.

(i) Hi
c(X,Qℓ) = 0 if i /∈ [0, . . . , 2 dimX].

(ii) Every proper morphism f : X→ X induces a linear map f∗ on Hi
c(X,Qℓ)

and f 7→ f∗ is functorial.

(iii) “Trace formula”: If F is the Frobenius endomorphism attached to some
Fq-structure on X, then F ∗ is invertible and |XF | = Trace(F ∗ | H∗

c (X)), where
H∗
c denote the virtual vector space

∑

i(−1)iHi
c(X,Qℓ).

The trace formula is an analogue of the Lefschetz theorem in algebraic topol-
ogy; if g ∈ Aut(X) is of finite order, we define the Lefschetz number of g on X

as L(g,X) = Trace(g∗ | H∗
c (X)).

Corollary 13.2. For g ∈ Aut(X) of finite order and F -stable, let R(t) =
−∑

n>0 |XgFn |tn. Then L(g,X) = R(t)|t=∞, and is an integer independent of
ℓ.

Proof. By 6.9 (iii) for any n > 0 the morphism gFn is a Frobenius endomor-
phism so verifies (iii) thus R(t) = −∑

n>0 Trace(gF
n | H∗

c (X))tn.
Since F and g commute we may choose a basis of H∗

c (X) where they are
both triangular. If λ1, . . . , λk are the eigenvalues of F and x1, . . . , xk those of g
we have

R(t) = −
∑

n>0

k∑

i=1

λni xit
n =

k∑

i=1

xi
−λit
1− λit

.

It follows that R(t)|t=∞ =
∑k
i=1 xi = L(g,X). The independence of ℓ follows

since ℓ does not appear in the definition of R(t). Further, the formula above
shows that R(t) is a rational fraction. As a formal series with integer coefficients,
it is a rational fraction with integer coefficients, thus L(g,X) is a rational num-
ber. It is also an algebraic integer as the trace of g on a representation, thus it
is an integer.

58



We give now the main properties of Lefschetz number, which reflect prop-
erties of ℓ-adic cohomology we will mention. Sometimes the properties result
directly from 13.2 and we will give the proof.

Proposition 13.3.

(i) Let X1 ⊂ X be a closed subvariety and let X2 be the complement open
subvariety. We then have a long exact sequence

. . .→ Hi
c(X1,Qℓ)→ Hi

c(X,Qℓ)→ Hi
c(X2,Qℓ)→ Hi+1

c (X1,Qℓ)→ . . . ;

in particular H∗
c (X) = H∗

c (X1) + H∗
c (X2). The boundary maps vanish if X1

and X2 are connected components.

(ii) Let X =
∐

j Xj be a finite partition into locally closed subvarieties; if g ∈
AutX of finite order stabilizes the partition then L(g,X) =

∑

{j|gXj=Xj}
L(g,Xj).

Proof. (ii) follows from (i). It results also from 13.2 taking a Frobenius endo-
morphism F commuting to g and stabilizing each Xj , in which case it is clear

that |XgFn | = ∑

j |X
gFn

j |.

Corollary 13.4. Let X be an Fq-variety of dimension 0. Then

(i) Hi
c(X,Qℓ) = 0 if i 6= 0 and H0

c (X,Qℓ) ≃ Qℓ[X].

(ii) Aut(X) identifies to the symmetric group on X, and H∗
c (X) ≃ Qℓ[X] is the

corresponding permutation module; for g ∈ Aut(X) we have L(g,X) = |Xg|.

Proof. These facts follow immediately from 13.1 and 13.3.

Proposition 13.5. Let X and X′ be two Fq-varieties. Then

(i) Hk
c (X×X′,Qℓ) ≃

⊕

i+j=kH
i
c(X,Qℓ)⊗Qℓ

Hj
c (X

′,Qℓ) (“Kunneth theorem”).

(ii) Let g ∈ AutX, g′ ∈ AutX′ be of finite order. Then L(g × g′,X ×X′) =
L(g,X)L(g′,X′).

Proof. (ii) follows from (i) but again can be deduced from 13.2. Let r ∗ r′
denote the Hadamard product

∑

i≥0 aibit
i of two series r =

∑

i≥0 ait
i and

r′ =
∑

i≥0 bit
i. We need to show that when r =

∑

n≥1 |XgFn |tn and r′ =
∑

n≥1 |X′g′Fn |tn then −(r ∗ r′)|t=∞ = −r|t=∞ × −r′|t=∞. This follows from
the proof of 13.2 which showed that these series are linear combination of series
t

1−λt which have this property.

Proposition 13.6. Let H ⊂ AutX be a finite subgroup, and let g ∈ CAutX(H)
of finite order. Then

(i) We have an isomorphism of Qℓ[g]-modules: Hi
c(X)H ≃ Hi

c(X/H).

(ii) L(g,X/H) = |H|−1
∑

h∈H L(gh,X).
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Proof. Note that the quotient X/H always exists since we assumed our vari-
eties quasi-projective. Again, (ii) results from (i) or from choosing a Frobenius
endomorphism F commuting to g and all elements of H; then

|(X/H)gF
n | = |H|−1

∑

h∈H

|XghFn |

Proposition 13.7. Let X ≃ An be an affine space. Then

(i) dimHi
c(X,Qℓ) =

{

1, if i=2n

0, otherwise
.

(ii) For any Frobenius endomorphism F on X defining an Fq-structure, we have
|XF | = qn.

(iii) For any g ∈ Aut(X) of finite order we have L(g,X) = 1.

Proof. (ii) and (iii) follows from (i): the endomorphism F acts on the 1-dimensional
spaceH2n

c (X,Qℓ) by some scalar λ; for anym > 0 we have |XFm | = λm thus λ is
a non-zero integer. Let A0 be the Fq-structure on A = Fq[T1, . . . , Tn] attached to
F as in (ii); then for some extension Fqn0 we have A0⊗Fq

Fqn0 ≃ Fqn0 [T1, . . . , Tn];
indeed, take n0 such that the generators of A0 lie in Fqn0 [T1, . . . , Tn]; then
A0 ⊗Fq

Fqn0 ⊂ Fqn0 [T1, . . . , Tn] which implies equality since these two Fqn0 -

vector spaces become equal after tensoring by Fq. Thus for m multiple of n0 we
have |XFm | = qmn, which proves λ = qn and gives (ii); (iii) follows.

Proposition 13.8. Let X
π−→ X′ be a surjective morphism with fibers isomor-

phic to An. Then:

(i) Hi
c(X,Qℓ) ≃ Hi−2n

c (X′,Qℓ)(−n), a “Tate twist”, which means an isomor-
phism as vector spaces and that for any Fq-structure on X the action of F on
Hi
c(X,Qℓ) is q

n times that of F on Hi−2n
c (X′,Qℓ).

(ii) If g ∈ AutX (resp. g′ ∈ AutX′) are of finite order and such that g′π = πg
then the isomorphism of (i) sends g∗ to g′∗.

(iii) In the situation of (ii) we have L(g,X) = L(g′,X′).

Proof. (iii) follows from (i) and (ii) but can also be deduced by choosing Fq-
structures on X and X′ compatible with π, g and g′. For the correspond-
ing Frobenius F we have by 13.7 that |XgFm | = ∑

y∈X′g′Fm |π−1(y)gF
m | =

|X′g′Fm |qmn, whence the result.

Proposition 13.9. Let G be a connected linear algebraic group acting on X.
Then

(i) G acts trivially on Hi
c(X,Qℓ) for all i.

(ii) For all g ∈ G we have L(g,X) = L(1,X).
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Proof. Again, (ii) follows from (i) but also from choosing Fq-structures on G

and X which make the action compatible with the corresponding Frobenius,
that is F (gx) = F (g)F (x) for all (g, x) ∈ G ×X. Then for every n, by Lang’s
theorem there exists h ∈ G such that h.F

n

h−1 = g and x 7→ h−1x gives a
bijection XgFn ≃ XFn

, thus |XgFn | = |XFn | which gives the result.

Proposition 13.10. Let g = su be the decomposition in a p′-part and a p-part
of g ∈ AutX of finite order. Then L(g,X) = L(u,Xs).

Proof. This proposition cannot be deduced from the definition of the Lefschetz
number directly; it reflects deeper properties of ℓ-adic cohomology.

14 Deligne-Lusztig induction

Here again G is a connected reductive group over Fq, with an isogeny F such
that some power is a Frobenius.

We would like to construct an induction RG
L when L is an F -stable Levi

which is not the Levi of any F -stable parabolic subgroup.

Example 14.1. In the case of the unitary group, if n 6= m, the F -stable Levi
(
Un 0
0 Um

)

is not the Levi of any F -stable parabolic subgroup; F exchanges

the upper and lower triangular matrices.

The idea of Deligne and Lusztig is to construct an Fq-variety X attached
to the unipotent radical U of a parabolic subgroup of Levi L, with commuting
actions of GF and LF on X, and use H∗

c (X) as a module to define induction.
Further, we want this construction to generalize Harish-Chandra induction, that
is when FU = U we should have H∗

c (X) ≃ Qℓ[G
F /UF ].

Definition 14.2. Let XU be the variety {gU ∈ G/U | gU ∩ F (gU) 6= ∅}. It
has an obvious left GF -action, and a right LF -action since L normalizes U.
We define

(i) Lustig induction of a Qℓ[L
F ]-module by RG

L⊂P(M) = H∗
c (XU)⊗Qℓ[L

F ]M .
If λ is the character of M , then

(RG
L λ)(g) = |LF |−1

∑

l∈LF

L((g, l),XU)λ(l−1).

(ii) Lustig restriction of a Qℓ[G
F ]-module by ∗RG

L⊂P(M) =M⊗Qℓ[G
F ]H

∗
c (XU).

If γ is the character of M , then

(∗RG
L γ)(l) = |GF |−1

∑

g∈GF

L((g, l),XU)γ(g−1).

If P is F -stable, thenU too, and gU∩F (gU) 6= ∅ if and only if gU = F (gU).
In this case XU ≃ GF /UF , a discrete variety, and H∗

c (XU) reduces to H0
c ,

which equals Qℓ[G
F /UF ].
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We will denote the variety XG
U if we need to specify the ambient group.

Note the following alternative models for XU:

XU = {gU ∈ G/U | g−1F (g) ∈ U · F (U)}
= {g(U ∩ F (U)) ∈ G/(U ∩ F (U)) | g−1F (g) ∈ F (U)}

where we have still a left action of GF and a right action of LF . Note that the
last model shows that dimXU = dimU− dim(U ∩ F (U)).

Lusztig induction is transitive, as is Harish-Chandra induction:

Proposition 14.3. (Transitivity) Let P ⊂ Q be two parabolic subgroups of G,
such that there are F -stable Levi subgroups L of P and M of Q with M ⊂ L.
Then RG

L⊂P ◦RL
M⊂L∩Q = RG

M⊂Q.

Proof. We have to show (see 9.5) that

H∗
c (XU)⊗Qℓ[L

F ] H
∗
c (XV∩L) ≃ H∗

c (XV)

where P = LU and Q = MV are the Levi decompositions. If G is a finite
group with a right action of the variety X and a left action on the variety
Y, we denote X ×G Y the quotient of X ×Y by the “diagonal” action where
g ∈ G acts by (g, g−1). From the properties 13.5 and 13.6 of the cohomology,
we see that the statement would come from XU ×LF XV∩L ≃ XV. This has
a proof similar to 9.5 since if we set V′ = V ∩ L and gU ∩ F (gU) 6= ∅ and
lV′ ∩ F (lV′) 6= ∅ then glV ∩ F (glV) 6= ∅. Conversely, if glV ∩ F (glV) 6= ∅
then g ∈ F (g) ∈ PF (P) = LUF (U), so by modifying g by some element
of L we may assume that g−1F (g) ∈ UF (U). Then gU ∩ F (gU) 6= ∅ and
glV ∩ F (glV) 6= ∅ can be written Ug−1F (g)F (U) ∩ F (lV′)V′l−1 6= ∅. As the
left term is in UF (U) and the right one in L the intersection must be 1 (since
P ∩ F (P) = L · (U ∩ F (U)) by 8.9) so lV′ ∩ F (lV′) 6= ∅.

It is conjectured that Lusztig induction satisfies “Mackey formula”:

Conjecture-Theorem 14.4. Let P and Q be two parabolic subgroups of G

and L (resp. M) and F -stable Levi of P (resp. Q). Then, conjecturally:

∗RG
L⊂P ◦RG

M⊂Q =
∑

x

RL
L∩xM⊂L∩xQ ◦ ∗R

xM
L∩xM⊂P∩xM ◦ adx,

where x runs over representatives of LF \S(L,M)F /MF , where S(L,M) = {x ∈
G | L ∩ xM contain a maximal torus of G }.

This is known in the following cases (the proofs are rather complicated):

• L or M is a torus (Deligne-Lusztig, 1983; see [Digne-Michel, 11.13]).

• When q 6= 2 orG has no component of type 2E6, E7 or E8 (see [Bonnafé-Michel]).
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As in 10.1 the Mackey formula shows the independence from P of RG
L⊂P in

the above cases.
It also allows to follow the proof of 12.8. But since εG := (−1)Fq-rank(G)

is not necessarily equal in our case to εL := (−1)Fq-rank(L) the application of
Lemma 12.9 gives

Theorem 14.5. We have DG ◦RG
L = εGεLR

G
L .

When L is a torus T and θ ∈ Irr(TF ) the characters RG
T (θ) where intro-

duced in [Deligne-Lusztig] (1976) and are called Deligne-Lusztig characters. We
will now concentrate on Deligne-Lusztig characters to simplify the exposition,
though most theorems we give have (more complicated) analogues for general
RG

L .
The RG

T (θ) generate “almost all” class functions on GF . A class fonction is
said uniform if it is a linear combination of Deligne-Lusztig characters. Lusztig
has shown that the characteristic function of a geometric conjugacy class is
uniform; thus for instance in GLn(Fq) and Un(Fq) all class functions are uniform.

For Deligne-Lusztig characters, the Mackey formula reduces to a scalar prod-
uct formula:

Corollary 14.6. Let T and T′ be to F -stable maximal tori, and θ ∈ Irr(TF ),
θ′ ∈ Irr(T′F ). Then

〈RG
T (θ), RG

T′(θ′)〉 =
{

|NGF (T, θ)/TF |, if (T, θ) and (T′, θ′) are GF -conjugate

0 otherwise.

We note in particular that RG
T (θ) is an irreducible character up to sign if θ

is in general position, that is is not invariant by a non-trivial element ofWG(T);
this is the case for almost all θ (a Zariski open set).

14.1 The character formula

We denote by Gu the set of unipotent elements of an algebraic group G.

Definition 14.7. Given T, an F -stable maximal torus of G and a Levi decom-
position B = TU of a (possibly non F -stable) Borel subgroup containing T, the
Green function QG

T : GF
u → Z is defined by u 7→ RG

T (Id)(u).

Proposition 14.8. We have QG
T (u) = |TF |−1L(u,XU).

Proof. By definition and 13.10 we have QG
T (u) = |TF |−1

∑

t∈TF L((u, t),XU) =
|TF |−1

∑

t∈TF L(u,Xt
U). But Xt

U = ∅ unless t = 1.

Proposition 14.9. (character formula for RG
T and ∗RG

T ) Let T be a F -stable
maximal torus of G and let θ ∈ Irr(TF ) and su be the Jordan decomposition of
an element of GF , then

(RG
Tθ)(su) = |CG(s)◦

F |−1
∑

{h∈GF |s∈hT}

Q
CG(s)◦

hT
(u)hθ(s) (i)
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and let γ ∈ Irr(GF ) and t ∈ TF , then

(∗RG
Tγ)(t) = |TF ||CG(t)◦

F |−1
∑

u∈CG(t)◦F
u

Q
CG(t)◦

T (u)γ(tu) (ii)

Proof. The main step is the following lemma.

Lemma 14.10. With the above notation, we have

L((su, t),XU) = |TF ||CG(t)◦
F |−1

∑

{h∈GF |ht=s−1}

Q
CG(t)◦

T (h
−1

u)

Proof. From 13.10 we get L((su, t),XU) = Trace(u | H∗
c (X

s,t
U )). Let V :=

U ∩ F (U), Ut := U ∩ CG(t)◦ and Vt := V ∩ CG(t)◦. We first show that

X
s,t
U ≃

∐

{h∈[GF /CG(t)◦F ]|sh=t−1}

X
CG(t)◦

Ut

where [GF /CG(t)◦
F
] denotes a set of representatives ofGF /CG(t)◦

F
. Choosing

the model X
CG(t)◦

Ut
= {zVt | z−1F (z) ∈ F (Ut)} and the model XG

U = {gV |
g−1F (g) ∈ F (U)}, the isomorphism is given by mapping zVt in the piece
indexed by h to hzV. This last element is in X

s,t
U since shzVt = shztV =

shtzV = hzV since sht = h. To show that each element of Xs,t
U is in the image

of a piece, we use

Lemma 14.11. Any semisimple element of tVF is VF -conjugate to t.

Proof. Let t′ be a semisimple element of tVF . Since VF is normal in the group
K = 〈t,VF 〉, t′ and VF also generate this group, since t and t′ have same image
in K/VF . By the Schur-Zassenhaus the two p′-complements 〈t〉 and 〈t′〉 of the
p-Sylow subgroup VF are conjugate, and this conjugation conjugates t to t′

since they are determined in the cyclic subgroup they generate by their image
in K/VF .

Now if gV ∈ X
s,t
U then sgVt = gV thus sg ∈ t−1V. By the lemma we

can change the representative in gV to k such that sk = t−1. Applying F we
have sF (k) = t−1 thus k−1F (k) ∈ CG(t). Since k−1F (k) ∈ F (U) it is even
in CG(t)◦ by 4.8, thus by Lang’s theorem there exists z ∈ CG(t)◦ such that
k−1F (k) = z−1F (z). Then h := kz−1 is in {h ∈ GF | ht = s−1} and zVt is in

X
CG(t)◦

Ut
. In our construction, k can be changed by CG(t)◦

F
which is why we

can choose for h a given representative modulo CG(t)◦
F
. Since uhzV = huhzV,

the element u acts on the piece X
CG(t)◦

Ut
indexed by h by uh. We thus get

Trace(u | H∗
c (X

s,t
U )) = |CG(t)◦

F |−1
∑

{h∈GF |ht=s−1}

Trace(h
−1

u|H∗
c (X

CG(t)◦

Ut
)),

whence lemma 14.10.
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We now prove proposition 14.9. Expanding 14.2 (i) by lemma 14.10 we get

(RG
Tθ)(su) =

∑

{h∈GF |h−1s∈T}

|CG(h
−1

s)0F |−1Q
CG(h

−1
s)◦

T (h
−1

u)θ(h−1s),

whence (i) of 14.9 by conjugating the inner terms by h. Expanding similarly (ii)
of 14.2 we get by lemma 14.10, using that if g = su is a Jordan decomposition
then u ∈ CG(s)0Fu

(∗RG
Tγ)(t) = |GF |−1|CG(t)◦

F |−1|TF |
∑

h∈GF

∑

u∈CG(ht)0Fu

Q
CG(t)◦

T (h
−1

u)γ(htu−1).

whence (ii) of 14.9 changing the variable on which we sum to h−1

u−1.

The Green functions can be computed by the theory of Springer represen-
tations.

Proposition 14.12. Let T be a F -stable maximal torus subgroup of G, let
γ ∈ Irr(GF ) and let s ∈ TF . Then

(∗RG
Tγ)(s) = (∗R

CG(s)◦

T (ResG
F

CG(s)◦F γ))(s).

Proof. This results from the remark that, in the character formula 14.9 for
∗RG

Tγ, the right-hand side does not change if we replace G by CG(s)◦.

Proposition 14.13. Let f be a class function on GF which depends only on
the semisimple part — that is f(su) = f(s) if su is a Jordan decomposition —
then, for any F -stable maximal torus T of G and any function θ on TF (resp.
γ on GF ), we have

(i) RG
T (θ.ResG

F

TF f) = (RG
Tθ).f

(ii) (∗RG
Tγ).Res

GF

TF f = ∗RG
T (γ.f)

(iii) ∗RG
Tf = ResG

F

TF f

Proof. The character formula 14.9(i) gives

RG
T (θ.ResG

F

TF f)(su) = |CG(s)◦
F |−1

∑

{h∈GF |s∈hT}

Q
CG(s)◦

hT
(u)hθ(s)hf(s),

which gives (i) using hf(su) = f(s) = f(su); equality (ii) results from (i) by
adjunction.

(iii) follows from the special case of (ii) where γ = IdG, and the spe-
cial case of (iii) where f = IdG. Let us prove this last fact: by definition
∗RG

T (IdG)(t) = |GF |−1
∑

g∈GF L((g, t),XU). Looking at the model XU =

{gV ∈ G/V | g−1F (g) ∈ F (U)}, we see that XU = X̃U/V, where X̃U = {g ∈
G | g−1F (g) ∈ F (U)}, so by 13.8(iii) we have L((g, t),XU) = L((g, t), X̃U).
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Now by 13.6(ii) we have |GF |−1
∑

g∈GF L((g, t), X̃U) = L(t, X̃GF

U ) and the

map g 7→ g−1F (g) gives an isomorphism X̃GF

U ≃ F (U); and by 13.7 we have
L(t, F (U)) = 1, whence the result.

Propositions 14.12 and 14.13 are still valid for RG
L , using the character for-

mula for RG
L (see [Digne-Michel, 12.5 and 12.6], or [Digne-Michel, 7.4, 7.5 and

7.6] in the setting of Harish-Chandra induction).

Proposition 14.14. Let s be the semi-simple part of an element l ∈ LF ; then

(ResL
F

CL(s)◦F
∗RG

L χ)(l) = (∗R
CG(s)◦

CL(s)◦
ResG

F

CG(s)◦F χ)(l).

Proposition 14.15. If f is a class function on GF which depends only on the
semisimple part and γ ∈ Irr(GF ), λ ∈ Irr(LF ) then

(i) RG
L (λResG

F

LF f) = (RG
L λ)f .

(ii) (∗RG
L γ).Res

GF

LF f = ∗RG
L (γf).

(iii) ∗RG
L f = ResG

F

LF f .

Corollary 14.16. (of 12.9) If s is the semi-simple part of x ∈ GF and χ ∈
Irr(GF ), then (DGχ)(x) = εGεCG(s)◦(DCG(s)◦ ◦ ResGCG(s)◦ χ)(x).

Proof. If L is a F -stable Levi subgroup of a F -stable parabolic subgroup P of

G, we have (see 9.3) RG
L ◦ ∗RG

L χ = IndG
F

PF InfP
F

LF
∗RG

L (χ), whence

(RG
L ◦ ∗RG

L χ)(x) = |PF |−1
∑

{g∈GF |gP∋x}

(InfP
F

LF
∗RG

L χ)(
g−1

x)

=
∑

{P′∼
GF P|P′∋x}

(InfP
′F

L′F
∗RG

L′χ)(x)

where in the last summation L′ is a F -stable Levi subgroup of P′. As any
F -stable parabolic subgroup of G is GF -conjugate to some P ⊃ B, we have

(DGχ)(x) =
∑

P⊃B

(−1)r(P)
∑

{P′∼
GF P|P′∋x}

(InfP
′F

L′F
∗RG

L′χ)(x)

=
∑

P′∋x

(−1)r(P′)(InfP
′F

L′F
∗RG

L′χ)(x).
(1)

By 14.14 we then get

(DGχ)(x) =
∑

P∋x

(−1)r(P)(Inf
PF∩CG(s)◦

LF∩CG(s)◦
∗R

CG(s)◦

L∩CG(s)◦χ)(x)

=
∑

P′

(
∑

{P|P∩CG(s)◦=P′}

(−1)r(P))(InfP
′F

L′F
∗R

CG(s)◦

L′ χ)(x)

where P′ runs over the set of F -stable parabolic subgroup CG(s)◦ and where
L′ is any F -stable Levi subgroup of P′. We use now that it is possible to apply
12.9 with H = CG(s)◦ (see for instance [Digne-Michel, 8.12]) and compare with
the equality (1) applied in CG(s)◦, which gives the result.
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15 The Steinberg character and applications

In this chapter we use the duality introduced in Section 12 to define and study
the famous “Steinberg character” which was originally defined by Steinberg in
1956.

Definition 15.1. The irreducible character StG = DG(IdG) where IdG is the
trivial character of GF is called the Steinberg character of GF .

We get using 14.5 and 14.15(iii)

∗RG
L StG = ∗RG

LDG(IdG) = εGεLDL
∗RG

L (IdG) = εGεLDL(IdL) = εGεL StL .

For L a G-split torus T, since StT = IdT, we get ∗RG
TStG = IdT, thus

〈StG, RG
T (IdT)〉GF = 1 thus we get by 12.11 that StG is a true character (not

the opposite of one). We have the following more precise result.

Lemma 15.2. Let T be an F -stable maximal torus of an F -stable Borel sub-

group B of G; then ResG
F

BF StG = IndB
F

TF IdT.

Proof. Using the definitions of StG and of DG we get

StG =
∑

I⊂S/F

(−1)|I| IndGF

PF
I
IdPI

,

where the notation is the same as in the proof of 12.10. So we have

ResG
F

BF (StG) =
∑

I⊂S/F

(−1)|I| ResGF

BF IndG
F

PF
I
IdPI

=
∑

I⊂S/F

(−1)|I|
∑

w∈IWF

IndB
F

BF∩wPF
I
Res

PF
I

BF∩wPF
I

IdPI
,

the last equality following from the Mackey formula for induction and restriction,
where we have denoted by IWF the set of reduced-I elements of WF , which is
a set of representatives for the double cosets BF \GF /PF

I by the existence of
the relative (B,N)-pair. But we have B ∩ wPI = B ∩ wB since Bw ∩ wPI =
∐

v∈WI
(Bw ∩ wBvB) and as the lengths add we have wBvB ⊂ BwvB thus

meets BwB only for v = 1. Using this result in the formula for ResG
F

BF StG and
exchanging the summations gives

ResG
F

BF StG =
∑

w∈W

(
∑

{I⊂S/F |w∈IWF }

(−1)|I|) IndBF

BF∩wBF IdB∩wB .

By lemma 2.8 we have w ∈ IWF if and only if I ∩ N(w) = ∅, where N is
computed in WF , so the inner sum is

∑

I∩N(w)=∅(−1)|I|, which is different

from zero only if N(w) = S/F , thus w is the longest element of WF and in that
case we have B ∩ wB = T, whence the result.
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Corollary 15.3. We have

StG(x) =

{

εGε(CG(x)◦)|CG(x)◦F |p if x is semi-simple,

0 otherwise.

Proof. Let s be the semi-simple part of x. We have

StG(x) = DG(IdG)(x) = εGεCG(s)◦(DCG(s)◦(IdCG(s)◦))(x) = εGεCG(s)◦ StCG(s)◦(x)

by 14.16. So we may assume that s is central in G. But then there exists an
F -stable Borel subgroup B which contains x. Indeed the unipotent part of x
is contained in an F -stable Borel subgroup by 7.12(iv), and s, being central,
is contained in any Borel subgroup. So by lemma 15.2 we have StG(x) =

(ResG
F

BF StG)(x) = (IndB
F

TF IdT)(x). Thus StG(x) = 0 unless x has a conjugate in
TF , that is is semi-simple, thus x = s and we get StG(x) = |BF |/|TF | = |GF |p,
the last equality by 7.12, whence the result.

Corollary 15.4. The dual of the regular representation regG of GF is DG(regG) =
γp, where γp is the function whose value is |GF |p′ on unipotent elements and 0
elsewhere.

Proof. By 14.15 we have DG(χ.f) = DG(χ).f for any χ ∈ Irr(GF ) and any
class function f on GF which depends only on the semisimple part. Applying
this to f = γp we have

DG(γp) = DG(IdG .γp) = DG(IdG)γp = StG.γp = regG,

the second equality by the definition of DG and 14.15 (i) and (ii), and the last
equality by 15.3.

Corollary 15.5. The number of unipotent elements in GF is equal to (|GF |p)2.

Proof. This results from 15.4 by writing 〈regG, regG〉 = 〈γp, γp〉.

We can now give the dimension of the (virtual) characters RG
T (θ).

Proposition 15.6. For any F -stable maximal torus T and any θ ∈ Irr(TF ),
we have dimRG

T (θ) = εGεT|GF |p′ |TF |−1.

Proof. By 14.9 the dimension we want to compute does not depend on θ. On the
other hand, taking the scalar product of the equality ∗RG

TStG = εGεT IdT with
θ, we get 〈RG

T (θ), StG〉GF = εTεGδ1,θ, whence 〈
∑

θ R
G
T (θ), StG〉GF = εTεG.

But by 14.9
∑

θ R
G
T (θ) vanishes on all elements with non-trivial semi-simple

part. Since StG vanishes outside semi-simple elements, the scalar product above
reduces to

|GF |−1|TF |StG(1) dim(RG
T (θ)).

This gives the result after replacing StG(1) by its value.
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Remark 15.7. If Tw is a maximal F -stable torus of type w ∈W (T) with respect
to some G-split torus T, we have εTw

εG = (−1)l(w), where l(w) is the length
of w in W (T).

Proof. Let V = X(T)⊗R; by 12.2 and 12.5(i) we have εG = (−1)dim(V τ ) and, as
(Tw, F ) is conjugate to (T, wF ) (see 7.10), we have εTw

= (−1)dim(V wτ ). Since τ
is an automorphism of finite order of the latticeX(T), we have (−1)dim(V )−dim(V τ ) =
det(τ), and similarly (−1)dim(V )−dim(V wτ ) = det(wτ), which gives the result as
det(w) = (−1)l(w), since the determinant of a reflection is −1.

Proposition 15.8. For any θ ∈ Irr(TF ) (resp. γ ∈ Irr(GF )) we have

• StG ⊗RG
Tθ = εGεT IndG

F

TF (θ)

• ∗RG
T (γ ⊗ StG) = εGεT ResG

F

TF γ.

Proof. As (i) is the adjoint of (ii) it is enough to prove (ii). By the charac-
ter formula 14.9, and taking in account that StG vanishes outside semisimple
elements, we have to check that for t ∈ TF we have

|TF ||CG(t)◦
F |−1Q

CG(t)◦

T (1)γ(t)StG(t) = εGεTγ(t).

This results that from the previous proposition we haveQ
CG(t)◦

T (1) = dimR
CG(t)◦

T =

|CG(t)◦
F |p′ |TF |−1εGεT, and from the value of StG(t).

We now prove that the identity and the regular representation are both linear
combinations of Deligne-Lusztig characters.

Proposition 15.9. The orthogonal projection of class functions onto the sub-
space of uniform functions is given by the operator:

p =
∑

w∈H1(F,W )

|CW (wF )|−1RG
Tw
◦ ∗RG

Tw

where w runs over representatives of the F -classes of W and we take for model
of (Tw, F ) the pair (T1, wF ) where T1 is G-split.

Proof. Since p(γ) is clearly uniform for any γ ∈ Irr(GF ), it is enough to check
that for any (T, θ) we have 〈γ,RG

T (θ)〉GF = 〈p(γ), RG
T (θ)〉GF . We have

〈p(γ), RG
T (θ)〉GF = 〈

∑

w∈H1(F,W )

|CW (wF )|−1RG
Tw
◦ ∗RG

Tw
, RG

T (θ)〉GF

= 〈
∑

w∈H1(F,W )

|CW (wF )|∗RG
Tw
, ∗RG

Tw
RG

T (θ)〉GF

but, by 14.6 we have:

∗RG
Tw
RG

T (θ) =

{∑

v∈CW (wF )
vθ if T = Tw

0 if T is not of type w
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so

〈p(γ), RG
T (θ)〉GF = 〈∗RG

T (γ), |CW (wF )|−1
∑

v∈CW (wF )

vθ〉GF = 〈γ,RG
T (θ)〉GF

the rightmost equality since RG
Tw

(vθ) = RG
Tw

(θ).

Proposition 15.10. IdG and StG are uniform functions; we have

(i) IdG =
∑

w∈H1(F,W ) |CW (wF )|−1RG
Tw

(IdTw
).

(ii) StG =
∑

w∈H1(F,W ) |CW (wF )|−1εGεTw
RG

Tw
(IdTw

).

Proof. Since by 14.13(iii) we have ∗RG
T (IdG) = IdT, expression (i) represents

p(IdG). It is enough to check that IdG has same scalar product with this
expression as with itself. But indeed we have

〈IdG,
∑

w∈H1(F,W )

|CW (wF )|−1RG
Tw

(IdTw
)〉GF

=
∑

w∈H1(F,W )

|CW (wF )|−1〈∗RG
Tw

(IdG), IdTw
〉TF

w

=
∑

w∈H1(F,W )

|CW (wF )|−1 = 1.

We get (ii) from (i) by applying duality.

Corollary 15.11. The character regG of the regular representation of GF is a
uniform function; we have

regG =
∑

w∈H1(F,W )

|CW (wF )|−1 dim(RG
Tw

(IdTw
))RG

Tw
(regTw

)

Proof. We saw in the proof of 15.4 that regG = StG · γp. Using expression (ii)
above for StG, it is enough to see that

εGεTw
RG

Tw
(IdTw

)γp = dimRG
Tw

(IdT)R
G
Tw

(regTw
).

This comes from the equality RG
Tw

(IdTw
)γp = RG

Tw
(ResG

F

TF
w
(γp)) given by 14.13,

from the fact that ResG
F

TF
w
(γp) has value |GF |p′ at 1 and 0 elsewhere, so is equal

to |GF |p′ |TF
w |−1 regTw

, and from 15.6.

15.1 Unipotent characters

We call unipotent irreducible characters the irreducible characters which occur
in some RG

T (Id).
Lusztig’s “Jordan decomposition of characters” states that the decomposi-

tion of RG
T (θ) into irreducible characters is the same as the decomposition of
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RH
T (Id) in unipotent irreducible characters for some other group H. Let us ex-

plain this; we have seen in 5 that G is defined up to isomorphism by its root
datum (X,Y,Φ,Φ∨) where for some maximal torus T we have set X = X(T),
Y = Y (T) and where Φ (resp. Φ∨) are the roots (resp. coroots) with respect to
T. Now the quadruple (Y,X,Φ∨,Φ) is the root datum of another group, called
the Langlands dual of G. If we denote G∗ this dual group, and T∗ the dual
torus (such that X(T∗) = Y (T) and Y (T∗) = X(T)), we still have an isogeny
F ∗ on G∗ by taking the dual of the p-morphism and by the proof of 7.14 we get
natural isomorphisms TF ≃ Irr(T∗F∗

) and Irr(TF ) ≃ T∗F∗

. Thus to any pair
(T, θ) where T is an F -stable maximal torus and θ ∈ Irr(TF ) corresponds a
pair (T∗F∗

, s) where T∗ is an F ∗-stable maximal torus and s ∈ T∗F∗

, and this
bijection respects GF -conjugacy classes. This allows to use the notation RG

T (s)
for RG

T (θ) when T∗ ∋ s.
Definition 15.12 (Lusztig series). Given s ∈ G∗F∗

, we define

E(GF , s) = {γ ∈ Irr(GF ) | ∃T∗ ∋ s, 〈RG
T (s), γ〉GF 6= 0}.

With this definition the unipotent characters form E(GF , 1).
We can now state Lusztig’s Jordan decomposition of characters:

Theorem 15.13. Assume G has connected center. Then there is a bijection
between E(GF , s) and E(CG∗F∗ (s), 1), and this bijection extended by linearity

maps εGR
G
T (s) to εCG∗ (s)R

CG∗ (s)
T (Id).

The condition of connected center is to ensure that CG∗(s) is a connected re-
ductive group. There is a more general statement if the center is not connected,
see [Digne-Michel, 13.23].

The decomposition of RG
Tw

(Id) into unipotent irreducible characters is thus
an important topic. To explore this, given an extension χ̃ to W ⋊ 〈F 〉 of χ ∈
Irr(W )F we define

Rχ̃ := |W |−1
∑

w∈W

χ̃(wF )RG
Tw

(Id) =
∑

w∈H1(F,W )

|CW (wF )|−1χ̃(wF )RG
Tw

(Id).

Proposition 15.14.

〈Rχ̃, Rψ̃〉GF =

{

0 unless χ̃ and ψ̃ are extensions of the same character

1 if χ̃ = ψ̃.

Proof.

〈Rχ̃, Rψ̃〉GF =
∑

v,w∈H1(F,W )

|CW (wF )|−2χ̃(wF )ψ̃(vF )〈RG
Tw

(Id), RG
Tv

(Id)〉GF

=
∑

w∈H1(F,W )

|CW (wF )|−1χ̃(wF )ψ̃(wF ).
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The Rχ̃ form an orthonormal basis, but in general they are not characters,
but Q-linear combinations of characters. However

• We can reformulate 15.10 as: RĨd = Id, and R ˜sgn = StG where Ĩd is the
trivial extension of the identity and ˜sgn the trivial extension of the “sign”
character w 7→ (−1)l(w).

• we will see that in GLn the Rχ are irreducible characters.

We assume now that F acts trivially on W to simplify the computations.
Then we do not need to take extensions and can extend the notation Rχ to
any class function on W by linearity (the following computation can be done
without assuming that L is G-split or that F acts trivially but then we would
have to define induction for F -class functions).

Lemma 15.15. Let L be a G-split Levi subgroup of G and let λ ∈ Irr(WL).
Then RG

L (Rλ) = RIndW
WL

(λ).

Proof.

RIndW
WL

(λ) =
∑

χ

〈χ, IndWWL
λ〉WRχ

= |W |−1
∑

χ,w

〈χ, IndWWL
(λ)〉Wχ(w)RG

Tw
(Id)

= |W |−1
∑

w

IndWWL
(λ)(w)RG

Tw
(Id)

= |W |−1|WL|−1|{v ∈W | vw ∈WL}|λ(w)RG
Tw

(Id)

= |WL|−1
∑

w∈WL

λ(w)RG
Tw

(Id)

= RG
L (|WL|−1

∑

w∈WL

λ(w)RL
Tw

(Id)) = RG
L (Rλ)

Applying this for λ = Id, since RId = Id by 15.10, we get that RIndW
WL

(Id) is

an actual character. It follows that in GLn, the Rχ are irreducible characters.
Indeed, in the symmetric group, any irreducible character is a linear combination
of the identity induced from various Young subgroups; this is because in the
induced IndSn

Sλ
Id from the Young subgroup indexed by the partition λ, the only

characters occuring correspond to the partitions µ which dominate λ, and the
character corresponding to λ occurs with multiplicity 1. Thus the matrix is
unitriangular.

Inverting the formula for Rχ̃, we have in general RG
Tw

(Id) =
∑

χ χ̃(wF )Rχ̃.

This is the decomposition of RG
Tw

(Id) in irreducibles in the case of GLn. In

particular if T1 is G-split we have RG
T1

Id =
∑

χ χ(1)Rχ and this is the decom-
position attached to the Hecke algebra as explained in Section 11.
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We finish with two results which hint to the rich relationship between Deligne-
Lusztig representations and modular representation theory.

Theorem 15.16 (Broué-Michel, 1986). Let ℓ 6= p be a prime; let s ∈ G∗F∗

be a
semi-simple ℓ′-element. Then

∐

t E(GF , st) is a union of ℓ-blocks, where t runs
over CG∗(s)F

∗

ℓ .

Theorem 15.17 (Bonnafé-Rouquier, 2003). In the situation of the above the-
orem, let L∗ be an F -stable Levi subgroup which contains CG∗(s). Denote by
eGs (resp. eLs ) the central idempotent of ZℓGF (resp. ZℓLF ) corresponding to
the set of characters

∐

t E(GF , st) (resp.
∐

t E(LF , st)). Then “RG
L induces

a Morita equivalence between ZℓLF eLs and ZℓGF eGs ”: more specifically there
exists a parabolic subgroup P = LU with Levi complement L such that

(i) eGs H
i
c(XU,Zℓ)eLs is non-zero for i = dimXU only;

(ii) ifM = eGs H
dimXU
c (XU,Zℓ)eLs thenM⊗LF− induces a Morita equivalence

between ZℓLF eLs and ZℓGF eGs .

15.2 Further reading

Good references on algebraic groups are the books [Borel] and [Springer].
References on the topics of these lectures are the books [Carter], [Digne-Michel],

[Geck] and [Srinivasan].
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