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Abstract

These lectures were given in a period of 7 weeks in Beijing by Olivier
Dudas and Jean Michel. Sections 8 to 12 were written by Olivier Dudas,
the rest by Jean Michel.
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1 Prerequisite: affine algebraic groups

For complements consult [Geck].

An algebraic group is an algebraic variety such that the multiplication and
inverse are continuous maps for the Zariski topology. We consider affine alge-
braic groups G over an algebraically closed field k, that is G = Spec A where A
is a k-algebra. The group structure gives a coalgebra structure on A (actually,
a Hopf algebra structure).

Ezample 1.1. We will denote G, = Spec k[X] the additive group kT seen as an
algebraic group. The comultiplication k[X| — k[X] ® k[X] ~ k[X,Y] is given
by X — X +Y.

Example 1.2. We will denote G,,, = Speck[t,t~!] the multiplicative group k*
seen as an algebraic group. Comultiplication is given by X — XY

A torus is an algebraic group T isomorphic to GJ,; r is the rank of T. The

group of characters is X (T) = Hom(T, G,,); we have X (T) ~ Z" since a mor-
phism k[t,t7] — k[ti,...,t.t; ..., t- 1] is defined by the image of ¢, which



must be invertible, thus be a monomial, unitary to get a coalgebra morphism.
We define the group of cocharacters Y (T) = Hom(G,,,, T), which is canonically
dual to X(T): for a € X(T),a" € Y(T) we have aoa” € Hom(G,,,G,,) ~ Z.

We define the rank of an affine algebraic group to be the rank of a maximal
subtorus.

G is affine if and only if it is linear, that is it embeds as a closed subgroup
of some GL,, (k). This allows to define semi-simple (resp. unipotent) elements
of G as those whose image is such by the embedding (this is independent of the
embedding). Any g € G has a unique Jordan decomposition g = gsg, where g
is semi-simple, g,, unipotent and they commute.

Proposition 1.3. Let G be a linear algebraic group over Fp. Then every el-
ement has finite order, the semi-simple elements are the p'-elements and the
unipotent elements are the p-elements.

Proof. This results from the fact that the above result holds for GL,(F,). O

Ezample 1.4. A torus of rank n embeds as the diagonal matrices in GL,, (k)
(thus GL,, (k) is of rank n). It consists of semisimple elements.

A connected semisimple group is a torus.

Example 1.5. A unipotent group embeds as a subgroup of the upper unitrian-
gular matrices in some GL, (k).

A unipotent group is nilpotent; in characteristic 0 it is necessarily connected;
a connected unipotent group is isomorphic to an affine space as an algebraic
variety.

The Borel subgroups are the maximal closed connected solvable subgroups.
They embed as a subgroup of the upper triangular matrices in some GL,, (k).

The radical Rad(G) is the maximal normal closed connected solvable sub-
group; G is semisimple if Rad(G) = 1. The unipotent radical R, (G) is the max-
imal normal closed connected unipotent subgroup. G is reductive if Ry (G) = 1.
We will write “reductive group” for “reductive algebraic linear group”.

The quotient by a closed subgroup is a variety, and by a closed normal
subgroup is an affine algebraic group; G/R,(G) is reductive. Its radical is a
central torus.

Proposition 1.6 (Assumed). Let B be a connected solvable algebraic group,
and let T be a mazimal torus. Then B =T x Ry (B); every semisimple element
is conjugate to an element of T.

Corollary 1.7. Let B be as above and S be a subtorus. Then Ng(S) = Cg(S).
Proof. If n € Ng(8S),s € S then [n,s] € [B,B]NnSCR,(B)NS=1. O

Proposition 1.8 (Assumed). In a connected algebraic group the Borel sub-
groups are conjugate and self-normalizing; every element lies in some Borel
subgroup.



The last two points come from the fact that in GL,, the normalizer of the
upper unitriangular matrices are the upper triangular matrices, and from the
fact that any matrix is triangularizable.

Corollary 1.9. Rad G is the connected component of the intersection of all
Borel subgroups.

Proof. Indeed Rad G is in at least one Borel subgroup. Since it is normal and all
Borel subgroups are conjugate, it is in their intersection. Since it is connected,
it is in the connected component. Conversely this component is solvable and
normal. O

Examples of reductive groups

Ezample 1.10. GL,, = Speck[t; j, det(t; ;)7'],i,j € [L...n]. We have seen that
the upper triangular matrices form a Borel subgroup. The lower triangular,
conjugate to the upper triangular by the matrix of the permutation (1,n)(2,n—
1) ..., form another, whose intersection with the first is the group of diagonal
matrices, a maximal torus. Thus GL,, is reductive by 1.9.

Example 1.11. SL,, = Speck[t; ;]/(det(t; ;) — 1). The diagonal (resp. upper
triangular) matrices are still a maximal torus (resp. Borel subgroup).

Example 1.12. PGL,, is the quotient of GL,, by G,, imbedded diagonally. To
see it is an affine variety, we identify it to the subgroup of ¢ € GL(M,,(k)) which
are algebra automorphisms, that is such that g(E; ;)g(Ex,) = 0 ,9(E;,;) where
E; ; is the elementary matriz defined by {E; ;}x; = 0; ;0k,;. The image of a
maximal torus (resp. a Borel subgroup) of GL,, is a maximal torus (resp. a
Borel subgroup).

g%lf chark = p the center Z SL,, is Speck[t]/(t? — 1) = Speck[t]/(t — 1)P
which as a variety has a single point thus is the trivial group, but is not trivial
as a scheme! SL, and PGL, have the same points over k£ but are not isomorphic
as group schemes.

Example 1.13. Sp,,,(k). On'V = k?" with basis (e1,...,en, €}, ..., €}), we define

the symplectic bilinear form (e;, e;) = (e}, €j) = 0, (e;,ej) = —(€}, e;) = d; ;.
The group Sp,,, is the subgroup of g € GLy,, which preserve this form. If J' =
1

and J = (J’

!

), we have (v,v') = 'vJv’ and g is symplectic
1
if tgJg = J. The matrices diag(ty,... ,tmt;l7 ... ;1) form a maximal torus.
The symplectic upper triangular matrices are a Borel subgroup; they consist of
B BjS
0 J/tB—lJ/
This group is indeed connected since it is the product of the connected varieties
of the upper triangular and of the symmetric matrices; solvable as a subgroup
of a solvable group; and maximal since it is in a single Borel subgroup of GLa,
(it stabilizes a single complete flag).

the matrices where B is upper triangular and S is symmetric.



Proposition 1.14. A parabolic subgroup of a connected algebraic group is a
subgroup which contains a Borel subgroup.

e A parabolic subgroup P is connected and Ng(P) = P.

e To distinct parabolic subgroups containing the same Borel subgroup are not
conjugate.

Proof. As the Borel subgroups are connected, P° contains a Borel subgroup
B. As another Borel subgroup of G in P° is P°-conjugate to B, we have
Ng(P°) = P°Ng(B) = P°B = P°. As P C Ng(P°) we have P = P°.
Finally, using again that Borel subgroups of P are P-conjugate, we get that two
conjugate parabolic subgroups containing the same Borel subgroup are Ng(B)-
conjugate, thus are equal since Ng(B) = B. O

Proposition 1.15 (Assumed). Let T be a torus of a connected algebraic group
G. Then Cg(T) = Ng(T)°; the Borel subgroups of Ca(T) are the BN Cq(T)
where B is a Borel subgroup of G containing T.

The Weyl group Wg(T) = Ng(T)/Cg(T) is thus finite; it can be identified
to a finite subgroup of GL(X(T)) = GL;ankg(Z).

Proposition 1.16 (Assumed). In a connected algebraic group, mazimal tori
are congugate. If T is a mazimal torus, Cq(T) is nilpotent.

If T is a maximal torus, by 1.15 and 1.16, Cg(T) is in the intersection of
Borel subgroups containing T. Since by 1.7 for such a Borel subgroup B we have
Ng(T) = Cg(T), we get that w — *“B induces a bijection between Wg(T)
and the set of Borel subgroups containing T.

2 Prerequisites: Coxeter groups, root systems

2.1 Coxeter groups

Let W be a group generated by a set S of elements stable by taking inverses.
Let {w;,w}}icr be words in the elements of S (finite sequences of elements of
S; the set of all words on S is denoted S* and called the free monoid on S). We
say that (S | w; = w} for i € I) is a presentation of W is W is the “most general
group” where the relation w; = w; holds. Formally, we take for W the quotient
of S* by the congruence relation on words generated by the relations w; = w}.

Let w € W be the image of s1 --- s, € S*. Then this word is called a reduced
expression for w € W if it is a word of minimal length representing w; we then
write {(w) = k.

We assume now the set S which generates W consists of involutions, that
is each element of S is its own inverse. Notice that reversing words is then
equivalent to taking inverses in W. For s,8' € S we will denote ASZ,) the
word ss'ss’---. If the product ss’ has finite order m, we will just denote A, 4

—_—— )

m terms



for ASZ,); then the relation A; s = Ay s holds in W. Writing the relation
(ss')™ = 1 this way has the advantage that transforming a word by the use
of this relation does not change the length — this will be useful. This kind of
relation is called a braid relation because it is the kind of relations which defines
the braid groups, groups related to the Coxeter groups which have a topological
definition.

Definition 2.1. A pair (W, S) where S is a set of involutions generating the
group W is a Coxeter system if

(s€S|s?=1,A, ¢ = Ay for pairs s,s' € S such that ss' has finite order)

s a presentation of W.

@We may ask if a presentation of the above kind defines always a Coxeter
system. That is, given a presentation with relations Ain;f,) = Agns), is m the
order of ss’ in the defined group? This is always the case,’but it is not obvious.

If W contains a set S such that (W, .S) is a Coxeter system we say that W is
a Coxeter group and that S is a Coxeter generating set. Considering that W has
a faithful reflection representation we will also sometimes call S the generating
reflections of W, and the set R of W-conjugates of elements of S the reflections

of W.

Characterizations of Coxeter groups

Theorem 2.2. Let W be a group generated by the set S of involutions. Then
the following are equivalent:

(i) (W, S) is a Coxeter system.

(ii) There exists a map N from W to the set of subsets of R, the set of W-
conjugates of S, such that N(s) = {s} for s € S and for x,y € W we have
N(zy) = N(y)+y 'N(x)y, where + denotes the symmetric difference of two
sets (the sum (mod 2) of the characteristic functions).

(11i) (Exchange condition) If s1--- sy is a reduced expression for w € W and

s € S is such that l(sw) < I(w), then there exists i such that sw = sy -+-8; -+ Sk.
(iv) W satisfies l(sw) # l(w) for s € S, w € W, and (Matsumoto’s lemma) two
reduced expressions of the same word can be transformed one into the other by
using just the braid relations. Formally, given any monoid M and any morphism
f 8% = M such that f(Ass) = f(Ag s) when ss’ has finite order, then f is
constant on the reduced expressions of a given w € W.

Note that (iii) could be called the “left exchange condition”. By symmetry
there is a right exchange condition where sw is replaced by ws.

Proof. We first show that (i)=-(ii). The definition of N may look technical and
mysterious, but the intuition is that W has a reflection representation where
it acts on a set of roots stable under the action of W (there are two opposite



roots attached to each reflection), that these roots are divided into positive and
negative by a linear form which does not vanish on any root, and that N(w)
records the reflections whose roots change sign by the action of w.

Computing step by step N (s ---sg) by the two formulas of (ii), we find

N(sl e Sk) = {Sk}-i-{sksk_1}-i- s -i—{sksk’lms("sl}. (1)

Let us show that the function thus defined on S* factors through W which will
show (ii). To do that we need N to be compatible with the relations defining
W, that is N(ss) =0 and N(A, ) = N(Ay ). This is straightforward.

We now show (ii)=-(iii). We will actually check the right exchange condition;
by symmetry if (i) implies this condition it also implies the left condition. We
first show that if sq - - - s is a reduced expression for w, then |N(w)| = k, that
is all the elements of R which appear on the right-hand side of (1) are distinct.
Otherwise, there would exist ¢ < j such that sj---s; - s = 5555 5k;
then s;8;41---S; = Si+18i42 - -Sj—1 which contradicts that the expression is
reduced.

We next observe that [(ws) < l(w) implies [(ws) < I(w). Indeed N(ws) =
{s}+s7tN(w)s thus by the properties of + we have I(ws) = I(w) & 1. Also, if
l(ws) < l(w), we must have s € s71N(w)s or equivalently s € N(w). It follows
that there exists ¢ such that s = s -+ s; - - - s, which multiplying on left by w
gives ws = §1---§; -+ Sk q.e.d.

We now show (iii)=(iv). The exchange condition implies [(sw) # [(w)
because if I(sw) < l(w) it gives I(sw) < l(w). Given f : S* — M as in (iv)
we use induction on [(w) to show that f is constant on reduced expressions.
Otherwise, let s --- s, and s} ---s; be two reduced expressions for the same
element w whose image by f differ. By the exchange condition there exists
i such that s{sy---sx = s1---8;-- s, in W, thus sjsy;---§; - sg is another
reduced expression for w. If i # k we may apply induction to deduce that
f(s1---sk) = f(sys1---8;---s,) and similarly apply induction to deduce that
f(sh---s) = f(shs1---8;---s), a contradiction. Thus ¢ = k and s}s1---sx_1
is a reduced expression for w such that f(s}s1---sg—1) # f(s1--- Sk)-

Arguing the same way, starting this time from the pair of expressions s; - - - sy
and s|s1 - Sk_1, we get that s1s]s7 -+ sp_o is a reduced expression for w such
that

f(s18181 - sp—2) # f(s151- 5k_1);

Going on this process will stop when we get two reduced expressions of the
form Af:lni, , AU such that f(A(m) ) # f(Ag”il). We cannot have m greater
357 1

8,81 $1,8)
that the order olf 518} since the expreséions are reduced, nor less than that order,
because the order would be smaller. And we cannot have m equal to the order
of s15] because this contradicts the assumption.

We finally show (iv)=-(i). (i) can be stated as: given any group G and a
morphism of monoids f : S* — G such that f(s)? =1 and f(As«) = f(Ass)
then f factors through a morphism g : W — G. Let us define g by g(w) =
f(s1---sk) when s;---sg is a reduced expression for w. By (iv) the map g is



well-defined. To see that g factors f we need to show that for any expression
w = 81 -8 we have g(w) = f(s1---sk). This will follow by induction on the
length of the expression if we show that f(s)g(w) = g(sw) for s € S,w € W. If
I(sw) > I(w) this equality is immediate from the definition of g. If [(sw) < I(w)
we use f(s)2 = 1 to rewrite the equality g(w) = f(s)g(sw) and we apply the
reasoning of the first case. Finally [(sw) = [(w) is excluded by assumption. [

Finite Coxeter groups: the longest element

Proposition 2.3. Let (W, S) be a Cozeter system. Then the following proper-
ties are equivalent for an element wy € W:

(i) l(wos) < l(wo) for all s € S.
(i) lwow) = l(wg) — l(w) for allw e W.
(iii) wo has mazimal length amongst elements of W.
If such an element exists, it is unique and it is an involution, and W is finite.

Proof. Tt is clear that (ii) implies (iii) and that (iii) implies (i).

To see that (i) implies (ii), we will show by induction on I[(w) that wy as in
(i) has a reduced a expression ending by a reduced expression for w=!. Write
w~! = vs where I(v) + [(s) = I(w). By induction we may write wg = yv where
l(wo) = l(y) + I(v). The (right) exchange condition, using that I(wgs) < I(wp)
but ws is reduced, shows that wys = gv where y represents y with a letter
omitted. It follows that guvs is a reduced expression for wy.

An element satisfying (ii) is an involution since I(w3) = I(wg)—I(wp) = 0 and
is unique since another w; has same length by (iii) and {(wow;) = l(wp)—1(w1) =
0 thus wy = wgl = wp.

If wy as in (i) exists then S is finite since S C N(wp) and W is then finite
by (iii). O

Yet another characterization of Coxeter groups
Lemma 2.4. Let W be group generated by the set S of involutions and let
{Ds}ses be a set of subsets of W such that:
e D,>1.
e D,NsD, =0.
o [If for s,s' € S we have w € Ds,ws’ ¢ Dy then ws' = sw.
Then (W, S) is a Coxeter system, and Dy = {w € W | l(sw) > I(w)}.

Proof. We will show the exchange condition. Let s; - -- s, be a reduced expres-
sion for w ¢ D, and let ¢ be minimal such that s1 - - - s; ¢ Dg; we have i > 0 since
1€ D,. From s1---s;-1 € Dy and s1---s; ¢ Ds we get $81--8;—1 = S1...S4,
whence sw = 81 -+ §; - - - s, thus [(sw) < I(w) and we have checked the exchange
condition in this case. If w € Dy then sw ¢ D, by the first part [(w) < I(sw)
so we have nothing to check. O



Parabolic subgroups

Lemma-Definition 2.5. Let (W, S) be a Cozeter system, let I be a subset of
S, and let Wy be the subgroup of W generated by I. Then (Wi, I) is a Coxeter
system. An element w € W is said I-reduced if it satisfies one of the equivalent
conditions:

(i) For any v € Wi, we have l(vw) = l(v) + I(w).
(it) For any s € I, we have l(sw) > l(w).

(111) w is of minimal length in the coset Wrw.
There is a unique I-reduced element in Wrw.

Proof. Tt is clear that (Wj,I) satisfies the exchange condition (a reduced ex-
pression in W7 is reduced in W by the exchange condition, and then satisfies
the exchange condition in W) thus is a Coxeter system.

It is clear that (iii)=-(ii) since (iii) implies {(sw) > I(w) when s € I. Let
us show that not (iii)= not (ii). If w’ does not have minimal length in Wjw/’,
then w' = vw with v € W and I(w) < I(w’); adding one by one the terms of a
reduced expression for v to w, applying at each stage the exchange condition, we
find that w’ has a reduced expression of the shape 91 where ¥ (resp. ) denotes
a subsequence of the chosen reduced expression. As () < I(w) < I(w’), we
have [(0) > 0, thus w’ has a reduced expression starting by an element of I,
thus w’ does not satisfy (ii).

(i)=(iii) is clear. Let us show not (i)= not (iii). If l(vw) < I(v) + l(w)
then a reduced expression for vw has the shape 0w where I(w) < I(w). Then
w € Wrw and has a length smaller than that of w.

Finally, an element satisfying (i) is clearly unique in Wjw. O

Let us note that by exchanging left and right we have the notion of reduced-1
element which satisfies the mirror lemma.

Fixed points under automorphisms

Proposition 2.6. Let I' be a group of automorphisms of the Cozeter system
(W, S), that is of automorphisms of W preserving S. Let (S/F)<oo the set of or-
bits I of T on S such that the subgroup W7 is finite. Then (W', {wr}re(s/ry...)
is a Cozeter system, where W is the subgroup of T'-fized elements of W, and
where wy denotes the longest element of Wy, see 2.8. Further, if wy, ---wy, is
a reduced expression of some w € WY in the above Cozeter system, we have
l(w) = Zi}f l(wy,), where 1 is the length function of (W, S).

Proof. We first show

Lemma 2.7. If forw € WT and s € S we have [(ws) < l(w) then the T-orbit I
of s is finite, and there exists w' such that w = w'wy with l(w) = l(w") + l(wy).

Proof. Since I is an automorphism of (W, S) for any element ¢ € I we will have
l(wt) < l(w). Write w = w'v where w’ is reduced-I; then I(vt) < I(v) for any
t € I which is possible only if Wy is finite and v = wy, see 2.3. O



Let Sr be the set {wy | I € (S/T)<w}; applying the lemma at each step
starting from the right, we find that any w € W7 can be written w = wr, - - wy,
where I; € Sp and I(w) = Zzz’f I(wy,), in particular Sp generates WL,

We will use the characterization 2.4 to see that (W7, Sr) is a Coxeter system,
but inverting right and left. For w; € Sr, let D,,, = {w € W' | w is reduced-T}.
We clearly have D,,, > 1 and D,,, N Dy, wr = 0. It remains to show that if
w € Dy, and wyw ¢ D,,, then wyw = ww;. We will use the function N of
2.2(ii). We have

Lemma 2.8. For any r € N(w) we have l(wr) < l(w).

Proof. Indeed if w = s1---s, is a reduced expression there exists 7 such that
T =8, "8 -8, whence wr = s1---8;+-Sp. O

It follows from the lemma that if, for r € Wr,w € W we have r € N(w),
then N(wy) C N(w). Indeed l(wr) < I(w) thus w cannot be I-reduced thus by
2.7 it can be written wy, - - - wy, with the lengths adding and I, = I.

In our situation w € D, implies N(w) N N(w;) = 0 and wyw ¢ D,,
implies N(wyw) D N(wy); since N(wyjw) = N(wys)Y+N(w) it follows that
N(ws)¥ D N(wyr). If we show that this implies w} = w; we are done. We
remark first that we may assume that w is J-reduced; otherwise we may replace
it by wyw since w4’ = wY. We write then N(wjw™') = “N(wy) + N(w™1).
Since w is J-reduced, N(w=1) N N(wy) = (), and since YN (w;) meets N(wy),
all of N(w;) must be contained in N(wyw™!) thus in “N(w;). Thus we have
N(wy) = wIN(wy;)w whence W; = w™ W, w whence w; = w™lw w since
w™lww is the only non-trivial I'-stable element of w;.

We now prove the final remark in the statement. If wy, ---wy, is a reduced
expression in (W, Sp) then by the property of D, (see 2.4) we have w ¢ D,,, ;
thus by lemma 2.7 we have w = w’wy, where the lengths add. This proves the
result by induction on k. O

We have seen in the proof that 1 and w; are the only I'-stable elements of
Wr.

Coxeter Diagrams

Coxeter systems are encoded by a graph with vertices S and edges encoding the
order of ss’ when it is greater than 2. This order is encoded by a single edge
when 3, a double edge when 4, a triple edge when 6, and an edge decorated by
the order when 5 or greater than 6.

The diagrams for finite irreducible (here it means connected diagrams) Cox-
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eter groups are

At 0
Bo/Cn: O—r++ O=0

S1 82 Sn—1 Sn
E 352
Dn : .. -O
S1 S3 S4 Sn
iz
Ees : O—0O O—O
1 3 4 5 6
(Pz
E: O U U U O O
1 3 4 5 6 7
532
Es : O U U O O O O
1 3 4 5 6 7 8
Fy: O—O=0——0
1 2 3 4
Hz : O—=—0—0O
1 2 3
5
Hy: O O—0O
1 2 3 1
I>(e) 2(1);(2)

A finite Coxeter group is called a Weyl group if it is a reflection group over
Q. This selects in the above list exactly the diagrams where the order of ss’ is
always in {2,3,4,6}. The group I2(6) is also denoted Gs.

2.2 Root systems

In this section V' is a finite dimensional real vector space and V* is its dual.

Notation 2.9. A reflection s € GL(V) is an element of order 2 such that Ker(s—
Id) is an hyperplane. It follows that s has an eigenvalue —1 with multiplicity
1, and that if & € V is an eigenvector for —1 and oV € V* is a linear form for
Ker(s —Id), chosen such that a¥(a) = 2, then s(z) =z — " (z)a.

We call « a root attached to the reflection s and ¥ the corresponding coroot.

They are unique up to inverse to each other scalings. Conversely any pair of
non-zero vectors o € V, &V € V* such that o¥(a) = 2 define a reflection.

Definition 2.10. e A root system is a finite set ® C V with a bijection
a—a’ P — &Y C V* such that ® generates V, and for any a €
we have a¥ () = 2 and @ is stabilized by the reflection s, of Toot a and
coroot V.

11



e The system is crystallographic if «¥(3) € Z for all a, 3 € ®.
e The system is reduced if for any o we have ® NRa = {a, —a}.

If the system is crystallographic, ® and ® generate dual lattices.

Some other authors reserve the name “root system” for the systems we call
crystallographic; any finite Coxeter groups has a root system in our sense, but
only the Weyl groups have crystallographic ones.

In the following we fix a root system ® and denote W the group generated
by {Sa}aco. It is finite since its elements are determined by the permutation of
® they induce. Thus there exists a W-invariant scalar product (, ).

Lemma 2.11. Identifying V to V* by (,) we have oV = 2%

(o,c)

Proof. Using the invariance of (, ) we get for all v € V that (o, v) = (saq, Sqv) =
(—a, v — oV (v)a) which gives oV (v) = 22 O

()

Using the identification of lemma 2.11 allows to work in an Euclidean space
and forget ®V; but keeping V'V allows to extend the theory to infinite root
systems.

In the following we assume ® reduced, in order to simplify somewhat the
statements and proofs — a non-reduced system BC,, occurs in certain parts of
reductive group theory that we will not cover.

Theorem 2.12. Given an order on'V such that every root is positive or negative
(equivalently, given a linear form which does not vanish on ®), denote ®* the
set of positive Toots. Then there exists a unique basis II C & of V such that
Pt =P NR>Il.

Proof. Note first that there exists a minimal subset II C ®* such that & =
® NR>oIl: to obtain such a subset, starting from ®*, just iteratively remove
elements which are a positive linear combination of others in the considered
subset.

Lemma 2.13. For a minimal II as above (a, B) < 0 for o, 8 € I, a0 # 3.

Proof. Assume by contradiction that (o, 8) > 0. Then s,(8) = 8 — ca where
c= z(a,ﬁ) > 0. Either 5,(3) € &t or —s,(8) € ®*.

In the first case by assumption s,(8) = Zwen cyy with ¢y > 0; we rewrite
this > ey ¢y +ca+ (¢g —1)8 = 0. We cannot have cg — 1 > 0 since a
non-zero sum of positive vectors cannot be zero. Thus we expressed 8 as an
element of R>o(II — {8}) which contradicts the minimality of II.

In the second case we similarly rewrite —sa(8) = >_ ey ¢4y With ¢, > 0 to
> er— (a} GV B+ (ca —c)a = 0, and similarly we must have ¢, — ¢ < 0 giving
an expression of « as an element of R>o(IT — {«}) which again contradicts the
minimality of II. O
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Let us see now that II is a basis. We know it generates V since ® does.
We have to exclude a linear dependence amongst its elements. Such a relation
can we written v = ZQEHI Cqt = E,Benz cgf where v is a nonzero vector,
where ¢q,c3 > 0 and where IT = II; U II;. But then we have 0 < (v,v) =
(X wem, Ca; D gem, ¢sB) which contradicts lemma 2.13.

We finally show that II is unique: if there are two such bases IT # II' let
us consider @ € II — IT'; express it on IT' as o = ZBGH’ cgf then express each
involved 8 on II: since 8 # « these expressions will involve a root in IT — « (we
use here that the system is reduced) and this root will remain when doing the
sum, since the coefficients are positive; this is a contradiction. O

A ®T as above is called a positive subsystem and a II as above a simple
subsystem.

Note that in the basis IT the coefficients of the matrix s, are 1 or —a¥(8),
thus in this basis we have W C GL,,(Z) if the root system is crystallographic,
where n = [II|.

Proposition 2.14. Two positive (resp. simple) subsystems are W -conjugate.

Proof. Tt is enough to consider positive subsystems since they determine simple
subsystems.

Lemma 2.15. For a € Il and any 8 € T — {a} we have s,(3) € .

Proof. If B € ®* — {a} then § = 3 _yc,y where at least one ¢, > 0 with
v # a, otherwise 3 € ®* NR>pa = {a}. But then s,(8) = 8 — aV(B)« has the
same coefficient on ~y, and as any root has all nonzero coefficients on II of the
same sign, the root s,(8) is positive. O

We use the lemma to conjugate another positive subsystem ® on &, us-
ing induction on |®* N —®'|. If this number is positive then IT N —® # (,
otherwise IT C ® which implies ®* C @ which implies ®+ = &’ since all pos-
itive subsystems have same cardinality |®|/2. Choose thus « € II N —®’; since
Sa(®1) = (&7 —{a}) [[{—a}, the set s,(PT) is a positive subsystem such that
[$a(@T) N —&'| = [&T N —'| — 1. O

Corollary 2.16. FEvery root is in the W-orbit of 11.

Proof. Tt is enough to show it for every positive root since s,(a) = —a. Take
a=3 cncyy € 2T —1I as 0 < (@) = 30y ¢y(a,7) there exists v € II
such that (o,7) > 0. Then o/ = s,(«) is still positive by 2.15 and is obtained
by removing a positive multiple of v to a. Thus if we set h(a) = Z'v ¢, we have
h(a') < h(a). We can repeat this process as long as o/ ¢ II. As ® is finite this
process must eventually stop, at a root in II. O

The proof of the corollary shows more, that every root is conjugate to an
element of II by a sequence of s,y € II. In particular every s, is in the group
generated by {s,}yem, thus W itself is generated by {s,}em.

We show now that W is a Coxeter group using characterization 2.4.
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Proposition 2.17. (W, S) where S = {s4 | « € I} is a Cozeter system.

Proof. We apply 2.4 with D, = {w € W | w™(a) > 0}. That D, Ns,Ds, =0
is clear. Now take w € D, such that ws, ¢ Ds,_, that is w™!(a) > 0 and
serw™ () < 0. As s, changes the sign of only o/, we must have w™!(a) = '.
As w preserves the scalar product, it conjugates sos to s, whence the result. [

Lemma 2.18. (i) The set N(w) of 2.2(ii) is {sq | @ € T, w(a) < 0}.
(11) The element wo of 2.3 is such that wo(®T) = &~

Proof. 1f we set N'(w) = {s | @ € ®T,w(a) < 0} we will show by induction
on [(w) that N(w) = N'(w): let w = vs with s € S,l(w) > I(v); it follows from
the definitions of N and N’ that N(w) = sUsN(v)s and N'(w) = sU sN'(v)s.
This proves (i).

For (ii), if w € W and N(w) # ®* then there exists a € II such that
w(a) > 0. Then by 2.17 and 2.4 we have I(sqw) > l(w). If we iterate this we
have to stop at wp and we must have N(wg) = ®+. O

Ezample 2.19. Root system of type A,_1. Let {e1,...,e,} be an orthonormal
basis of R". Then ® = {e; — €;}; je[1,...n],ixj IS @ r0oOt system of cardinality
n(n — 1) in the subspace V of dimension n — 1 it generates. The vectors where
i > j are a positive subsystem relative to the linear form z — (x,ne; + (n —
1)es + -+ e,). We have Il = {e; — €41 }i=1,.. n—1. If we set o; = e; — €41,
we have e; —e; = o + ;41 + -+ for ¢ < j. The group W is the symmetric
group, permuting the eg: s, _.; transposes e; and e; and fixes the other e.
The Coxeter graph is O O e O O.
s1

S2 Sn—2 Sn—1

Ezample 2.20. Root system of type C,,.
It is formed of the 2n? roots in R™ given by +2e; and +e; + e;. For the
same linear form as above we have @ = {2¢;}; U {e; £ ¢;}ic; and II = {e; —

€2,...,n_1 — €n,2e,}. Here sc, ., transposes e; and e;, ¢, y¢; transposes e;

and —e; and sy, transposes e; and —e;; we get for W the hyperoctaedral group,

which permutes the +e;. The Coxeter graph is () O e O==0.
s1 So Sn—1 Sn

Erample 2.21. we get type B, replacing 2e; by e;.

3 Structure of reductive groups

Properties 3.1. Let G be a connected reductive group over k, and let T be a
maximal torus of G. Then

(i) The minimal closed unipotent subgroups of G normalized by T are iso-
morphic to G,. Choosing such an isomorphism z +— u(z) : G, — U, for
t € T define a(t) € k* by tu(z)t™! = u(a(t)z); then o € X(T).
The collection ® of « thus obtained has no repetition, thus is a set and
«a € @ determines a subgroup U, isomorphic to G,.
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(ii) ® = —®, and for any a € @, there exists a homomorphism ¢, : SLs - G
whose image is (U,, U_,), and which is injective or has kernel +1d =
Z(SLz), and is such that

¢a (é I) = Ua, ¢a <i ?) = U—a, (5{(1‘) = gf)a (g :L‘91> cT.

(iii) @ is a reduced root system in X(T) ® R. We have Cg(T) = T and
the natural map W := Ng(T)/T — GL(X(T) ® R) identifies W to the

reflection group defined by ®; s, is the image of 55, := @, _01 (1)>

(iv) Any closed connected subgroup of G containing T is generated by T and
the U, it contains.

(v) A unipotent subgroup H of G normalized by T is equal to HUQ cu Ua in
any order.

(vi) Borel subgroups containing T are in bijection with positive subsystems of
®: if B corresponds to ®* then Ry(B) = [[,cq+ Ua-

(vii) If v # —f then [Ua, Ug] C 115 penx patusedy Uratus:

Note that (i) implies that for w € W and o € ®, we have “U, = Uy (q)-

In a reductive group we have Cg(T) = T. Indeed Ce(T) is connected by
1.15, thus by (iv) is generated by T and some U,. But no non-trivial element
of an U, is in Cg(T) since by (i) T acts non-trivially on U,,.

(iv) can be applied to G itself. This can be used to describe ZG: by the
previous paragraph, ZG C T, and is thus the intersection of the kernels in T
of all the roots.

Ezample 3.2. Let G = GL,, and choose for T the diagonal matrices; then
Ng(T) is the set of monomial matrices. The permutation matrices are a section
(representing W) of the quotient Ng(T)/T. We have X(T) ~ Z". The set
® = e; — e is a root system (for the natural scalar product) in the subspace
it generates (of vectors in X (T) with 0 sum). An isomorphism k™ = U,, _,
is given by = — Id+xFE; ;. The positive subsystem of 2.19 defines the Borel
subgroup of upper triangular matrices. The image of ¢, ¢, is an SLy in position
the intersections of the lines and columns i, j.

Ezample 3.3. In SL,, the elements of T satisfy ¢; - - - ¢,, = 1. The coroots generate
Y (T); the kernel of the roots is diag((,...,{) where (" = 1. The Weyl group

has no section in Ng(T) since (_01 (1) ) = —1Id.

Ezample 3.4. In PGL, the roots generate X (T); the images of the ¢, are
isomorphic to PGLs.

Example 3.5. In Sp,,,, with our basis e1,...,en,€n,..., €1/, there are 3 kinds
of U,, associated respectively to the morphisms G, — G given by:

15



e A —1d -I—)\Ei’j — )\Ej/’i/ for a = e; — €;
o A= Id+AE; j» + AE; i+ for a = e; + ¢
o A= Id+AE; ; for a = 2e;

4 (B, N)-pairs

Definition 4.1. We say that two subgroups B and N of a group G form a
(B, N)-pair (called also a Tits system) for G if

(i) B and N generate G and T := BN N is normal in N.

(ii) The group W := N/T is generated by a set S of involutions such that:
(i1i) For s € S, w € W we have BsB.BwB C BwB U BswB.

(iv) For s € S, we have sBs # B.

We will see that under the assumptions 4.1 we have S = {w € W | BU
BwB is a group} thus S is determined by (B, N).

Proposition 4.2. If G is a connected reductive group and T C B is a pair of a
maximal torus and a Borel subgroup, then (B, Ng(T)) is a (B, N)-pair for G.

Proof. We show first that BN Ng(T) = T. By 1.7 we have Ng(T) = Cg(T) C
Ce(T) = T by 3.1(iii). By definition T is normal in Ng(T). To show (i) it
remains to show that B and Ng(T) generate G. Since s, conjugates U, to
U, (o) = U_4, the group generated by B and Ng(T) contains T and all the
U, (o € @) by 3.1 (vi), thus by 3.1 (iv) it is equal to G.

B defines an ordering ®* and a basis IT and (ii) is obtained by taking for S
the {sq | @ € II}.

(iv) reflects that *U, = U_, is not in B.

It remains to show (iii). Let s = s,, and write B = THB€<I>+ Ug. As s
normalizes T, as *Ug = U,_(g) and as s54(3) € & if § € &7 — {a}, we get
BsBwB = BsU,wB. If w™!(a) € ®* the rhs is equal to BswB. Otherwise
we write the rhs as BsU,sswB where this time (sw)~!(a) € ®*. Let B, be
the image by ¢, of the Borel of SLy of upper triangular matrices. If ¢ # 0 we

have in SLo:
o= 906"

which taking images shows that sU,s C Im ¢, = B,UB,sU,, whence BsU,sswB C
BsU,swB U BswB where the first term is BwB since (sw)™(a) € ®F. O

Theorem 4.3. If G has a (B, N)-pair, then
(i) G = [Lyew BwB (“Bruhat decomposition”).
(i) (W, S) is a Coxeter group.

16



(11i) The condition (iii) of 4.1 can be refined to

BswB if l(sw) = l(w) + 1

BsB.BwB =
BswB U BwB otherwise

(iv) For any t € N(w) (see 2.2(ii)), we have BtB C Bw ! BwB.
(v) S ={weW|BUBwB is a group}.
(vi) We have Ng(B) = B.

Proof. Let us show (i). As B and N generate B, we have G = U;(BN B)". Since
BNB = BWB we will get G = BWB if we show that BWBWDB = BWB.
For this it is enough to show that BwBW B C BW B; writing w = s;--- s,
since BwB C Bs1B--- Bs,B it is enough to show BsBW B C BW B; but this
results from 4.1(iii). It remains to show that BwB # Bw'B if w # w’. We show
this by induction on inf(I(w), [(w")); assume for instance that {(w) < I(w"). The
start of the induction is I(w) = 0 and the result comes from w’ ¢ B. Otherwise,
taking s € S such that [(sw) < l(w), by induction BswB is equal neither to
Bw'B nor to Bsw'B thus BswB N BsB.Bw'B = (); as BswB C BsB.BwB it
follows that BwB # Bw'B.

For (ii), we use 2.4 with Dy = {w € W | BsBwB = BswB} (we note that if
this does not hold then BsBwB = BswB ][] BwB). Clearly Dy > 1.

If w, sw € Dy, then from BsBwB = BswB and BsBswB = BwB we get
BsBsBwB = BwB, a contradiction since BsBsB = BsB][[ B (since sBs # B
by 4.1(iv)).

It remains to see that w € Dy, ws’ ¢ Dy = ws’ = sw. The assumption ws’ ¢
D, implies BsBws' B = Bsws' B[] Bws'B; in particular BsBws' meets Bws'B;
multiplying on the right by s'B it follows that BsBwB meets Bws'Bs'B C
(BwB]] Bws'B) (this last inclusion follows from 4.1 (iii) reversed, which is
obtained by taking inverses). Thus BswB = BsBwB (since w € Dy) is equal
to Bws'B, or to BwB. This last cannot happen since w # sw, thus sw = ws’
as was to be shown.

We have also shown (iii) by the property of Dj.

Let us show (iv). If w = s;1--- s is a reduced expression, for all i we can
write by (iii) BwB = Bsy---8;_1Bs;Bs;i+1 -+ sxB and similarly for Bw~'B
whence

Bw_leB = BSk cee SZ'+1BS7;BSZ',1 e Slle s SileSiBSZ'+1 s SkB
D BSk tee Sl'_;,_lBSiBSiBSH_l cee SkB
D Bsg--- Si+1BSiBSi+1 --- sk B
D Bsg--- Si+18iSit+1 s B
whence the result.

(v) follows immediately from (iv) which implies that B U BwB can be a
group only if |[N(w)| = 1.

(vi) also follows from (iv). For ¢ € BwB we have 9B = B < “B = B &
BwBw™'B = B which by (iv) happens only for w = 1. O
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Remark 4.4. In a group with a (B, N)-pair, we call Borel subgroups the conju-
gates of B. A statement equivalent to the Bruhat decomposition is that every
pair of Borel subgroups is conjugate to a pair (B, *B) for w € W. We say that
the pair is in relative position w.

We call mazimal toriof G the conjugates of T'. It follows that the intersection
of two Borel subgroups always contains a torus (since B and “B contain 7).

Ezample 4.5. In GL,, a matrix m is in BwB if and only if it all bottom left
minors have same ranks as for the permutation matrix w, that is the ranks of
the submatrices m; ; on lines ¢,...,n and columns 1, ..., j coincide. Indeed:

e The ranks of m; ; are invariant by left or right multiplication of m by an
upper triangular matrix.

e A permutation matrix w for the permutation o is characterized by the
ranks of w; ;, given by |[{k <=j | o(k) > i}|.

If {F;} and {F]} are two complete flags then the permutation matrix which
FinF;]
Fi,lﬁF;)+(IJ~"iﬁFJ/71)

measures their relative position is given by rank w; ; = dim 4

Ezample 4.6. An “exotic” (B, N)-pair: G = GL,,(Q,); N=monomial matrices,
B=matrices whose coefficients in the upper triangular part lie in Z, and under
the diagonal lie in pZ,, (B is an Twahori subgroup, that is a subgroup of GL,,(Z,)
whose reduction in GL,(FF,) falls in a Borel subgroup). Then W is of type A,
(“affine” A,). For n = 2, W is the infinite dihedral group with Coxeter diagram

oo (0 1 _ 0 P
CS)—(t) generated by s = <_1 O) and t = (—p_l O)'

In reductive groups, we can refine the Bruhat decomposition to the “unique
Bruhat decomposition” which is as follows:

Lemma 4.7. Let G be a connected reductive group and B = T x U be a
decomposition of B as in 1.6, where U = Ry(B). Then BwB is the direct
product UTwU,, where Uy, := H{ae®+\w(a)<0} U,.

Proof. Notice first that U, is a group since if in 3.1(vil) a and S are sent
to negative roots by w the same holds for Aa + pf3. We have U = U'U,,
where U’ = H{ae<1>+|w(a)>0} U, thus YU’ C U; thus BuB = UTwU'U,, =
UTwU,,. It remains to see the decomposition is unique, that is if uTwu' = Tw
with v € U,u’ € U, then v = ' = 1. The condition implies v - “u’ € T; in
particular “u’ € B. But “U,, N B = 1 since all U, in *U,, are for negative a.
Thus v’ = 1, whence u = 1. O

In a connected linear algebraic group any semisimple element lies in some
maximal torus. Since every element lies in some Borel subgroup this results
from 1.6.

Proposition 4.8. Let G be as in 4.7 and let t € T. Then
(i) Ca(t)° is generated by T and the U, such that a(t) = 1.
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(ii) Cg(t) is generated by Ca(t)° and the n € Ng(T) such that ™t =t.

Proof. (i) is an immediate consequence of 3.1(iv).

Let us prove (ii). Conjugation by ¢ permutes the cells BwB; for this cell
to be t-stable it must contain a representative n of w such that "t = ¢t. Then
Tw C Cg(t) and by the unique decomposition 4.7 an element utwu’ with u € U,
v’ € Uy isin Cg(t) if and only if both v and v’ are in Cg(t), thus in Cg(¢)°. O

4.1 Parabolic subgroups

In a group G with a (B, N)-pair, we call parabolic subgroups the groups con-
taining a Borel subgroup.

In a Coxeter system (W,S), for I C S, we denote W; the subgroup of W
generated by I (see 2.5).

Proposition 4.9. In a group G with a (B, N)-pair:
(i) the parabolic subgroups containing B are Py := BWB for I C S.
(i) if g € G satisfies 9B C Py then g € Py.
(ii) reproves 1.14 by reproving that Borel subgroups of P; are Pr-conjugate.

Proof. Let P be a subgroup containing B and let w € W be such that BwB C P.
Then Bw™!BwB C P thus by 4.3 (iv), we have BtB C P for all t € N(w). If
S1 -8k is a reduced expression for w, we have s € P, spsix_15k € P,... which
inductively implies s; € P for all ¢; whence P O BW;B where I = {s1,...,8;};
conversely BW; B is a subgroup by the argument of 4.3(i). whence (i).

Let us show (ii). Assume 9B C Py and let w € W be such that g € Bw™!B.
Then P; D BgBg~'B = BwBw !B whence by the same argument as (i)
w € Wy thus g € Py. O

5 Isogenies

If G is a connected reductive group and T is a maximal torus, we call root
datum of G the quadruple (X,Y,®, ®V) where X = X(T), Y = Y(T) and ®
(resp. ®V) are the roots (resp. coroots) relative to T. We will see that the root
datum determines G up to isomorphism.

Isogenies

An isogeny is a surjective morphism of algebraic groups with finite kernel.
Any finite normal subgroup of G is central: since conjugacy is continuous it
is trivial on a finite, thus discrete, group. A central group of a reductive group
is in every maximal torus.
Let p = char k; a p-morphism of root data (X,Y,®, ®V) ER (X1,Y1,®q,9Y)

is a morphism X3 1, X with finite cokernel inducing a bijection ® - ®; such
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that f(7(a)) = gor and fV (V) = go7()V where q,, is a power of p (g, = 1 if
char k = 0) — and where f¥ :Y — Y] denotes the transpose of f.

Theorem 5.1. Let G % G1 be an isogeny and let Ty = ¢(T). Then ¢
induces a p-morphism (X (T),Y(T),®,®V) — (X1(T1),Y1(T1), Py, PY) where
7 and the qo are determined by the formula ¢(us(x)) = Ur(a)(Aaz?) for some
scalar \. Conversely, every p-morphism is induced by an isogeny, unique up
to conjugacy by an element of T.

Proof of the first part. The isogeny ¢ induces X (T;) ER X(T) given by a +—

ao ¢ and Y(T) EARN Y(T;) given by a¥ — ¢oaV. If u, is a root sub-

group, then ¢(u,) is another one u,(,), which defines a bijection 7. We define
a polynomial P by ¢(un(z)) = (e (P(x)); the compatibility with the ac-
tion of T gives ¢("uq(z)) = ¢(ua(a(t)z)) = ur ) (Pa(t)z)) and ¢('uy(x)) =
O, (0 (P(2)) = Uy (7(@)(6(£) P(x)) whence Pla(t)a) = 7(a)(é(t))P(x)
which implies that P is a monomial; the compatibility to the group law of G,
gives P(x +y) = P(x) + P(y). This forces P = Az? where g, is a power of
p = chark and A a constant (¢, = 1 if chark = 0). The constants A can be
changed by composing ¢ with an element of ad T. O

We give now some examples of isogenies, defined by the corresponding p-
morphism.

Ezxample 5.2. The opposition automorphism: ¢, = 1 and 7(«) = —« for all a.
It is ad wq if wyg is central in W, and transpose o inverse o ad wyg in type A.

Ezxample 5.3. An automorphism of the root system: 7 is defined by the chosen
automorphism and ¢, = 1.

Example 5.4. A split Frobenius: we assume k = E,, we let 7(a) = « for all
a, and set all g, = ¢ a given power of p = chark. The corresponding isogeny

G 5 G is called a split Frobenius and G = G(F,); we will see later how to
build it.

Ezample 5.5. We assume G has a root system ® of type Cs, and 11 = {«
e1 — ez, 3 = 2es}. If char k = 2 the formulae ¢(un(z)) = ug(z?), dp(uass(z)) =
2a+45(2%)), p(us(z)) = Uy (2), (W2a48(x)) = Uatp(x) define an isogeny. If
t = diag(ty,to,ty ' t;1) € T we have ¢(t) = diag(tite, tity 'ty oyt 115 0).
One checks that ¢? raises all coordinates to the square; it is the split Frobenius
F over Fy. Then for any 7 the isogeny ¢ o F" has 227*! — 1 fixed points on the
torus. The group of fixed points G®*" is the Suzuki group Sz(22"+1).

Theorem 5.1 shows that groups with isomorphic root data are isomorphic;
this implies the classification if we can show the existence of the corresponding
groups.

6 Rationality questions

Let kp be a subfield of k.
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A kg-structure on a vector space V is a sub-kg-space V (ko) such that V =
V (ko) @y k-

A ko-structure on a k-algebra A is a kg-algebra of finite type A(kg) such that
A = A(ko) Rk, k-

A kg-structure on an affine or projective variety V is the kg-variety defined
by A(ko) where the algebra A of V has a kg-structure A(ky).

In general a kg-structure on a variety is given by a finite open affine covering
where each open affine has a kq-structure.

In our lectures, all the varieties we will need to consider will be quasi-
projective varieties, that is open subvarieties of projective varieties. We assume
all varieties quasi-projective from now on.

Definition 6.1. An algebraic variety V over k is said to be defined over kg, if
it has a ko-structure V (ko). In this case we write V.=V (ko) Qk, k.

If the variety V has a ko-structure, an element o € Gal(k/kg) acts on V by
r@A = x®c(N). If k/kg is a Galois extension, for instance if k is the separable
closure of kg, one can find V (k) as the fixed points of the action of Gal(k/kg).
This results from

Proposition 6.2. IfV is a k-vector space (resp. a k-algebra) with a continuous
action of Gal(k/ko) (as a profinite group, thus continuous means that V. =
UgVC where G runs over subgroups of finite index) (resp. compatible to the
algebra structure), the fized points of the action define a ko-structure.

Proof. See [Springer, 11.1.6]. O

Ezample 6.3. When k is an algebraic closure F, of F,, we have Gal(F,/F,) = Z;
an element of Z is defined by a sequence k,, € Z subject to the only condition
k, =k, (mod m) if m divides n; this element acts on Fgn by o +— 24" . We
have Z ~ [, Z,.

Proposition 6.4. A subvariety (resp. subalgebra, sub-vector space) is defined

over ko (equivalently has a ko-structure which is a subvariety (resp. subalgebra,
subspace)) if and only if it is stable under the action of Gal(k/kg).

Proof. See [Springer, 11.1.4]. O

Ezample 6.5. The affine line is A = Speck[T]. The affine line on ko, defined
by the ko-algebra ko[T], is a ko-structure since k[T] = ko[T] ®k, k. An element
o € Gal(k/ko) acts as Y, a;T" — >, 0(a;)T". A k-point of A' is given by a € k
(or by the ideal which is the kernel of the morphism P +— P(a) : k[T] — k); this
point is defined over kg if a € k.

6.1 Frobenius endomorphism

Definition 6.6. Let V be an F,-variety with an F,-structure V(F,). The as-
soctated geometric Frobenius endomorphism F' : V — V s Fy ® Id where Fj
is the endomorphism of V(F,) which raises the functions on V(F,) to the g-th
power.
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The endomorphism ® of V induced by (A — A7) € Gal(F,/F,) is called the
arithmetic Frobenius endomorphism.

On an affine variety Spec A the Fg-structure is of the form A = A(F,) ®g, F,
and the geometric Frobenius endomorphism corresponds to a morphism F* :
a®A — a?®\ — in a coordinate system for the variety, the geometric Frobenius
raises each coordinate to the ¢-th power). The arithmetic Frobenius is given by
D:a®\+— a® A The composition F* o ® raises each element of A to the
g-th power, which acts trivially on the ﬁq—points of Spec A.

Ezample 6.7. On Al the geometric Frobenius is given by F* : P(T) — P(T9);
thus F* o ® maps P(T) to P(T)4. If a € F, is an F,-point of Al, the image of
a by F* o ® is defined by the kernel of P — P(a)?, which is the same as that of
P+ P(a).

Note that the geometric Frobenius endomorphism is a morphism of F-
varieties, while the arithmetic Frobenius endomorphism is only a morphism

of Fg-varieties. In the sequel we will only consider the geometric Frobenius
endomorphism and just call it “the Frobenius endomorphism”.

Proposition 6.8. Let V be an affine or projective F,-variety with algebra A.

A surjective morphism A 7y A9 is the Frobenius endomorphism attached to an
F,-structure on 'V if and only if for any x € A there exists n such that F*"(z) =
x?" . The corresponding F,-structure is A(F,) = {x € A |27 = F*(2)}.

Proof. If A has an Fg-structure A = A(F,) ®r, Fq 3 2 = >, 2; ® A; then
27" =3 2 @A thus 27" = F*"(z) when n is such that all \; are in Fyn.

Conversely, if F* is a surjective morphism as in the statement, since z — z?"
is injective then F™* must also be injective, thus bijective and we can define ¢
by ¢(z) = F*~1(2%); then if we make the topological generator of Gal(F,/F,)
act by ¢, the assumptions of 6.2 are satisfied.

The fixed points of ¢ form the F,-structure by 6.2 and are as described in
the statement. O

Proposition 6.9. Let'V be an ?q—variety and F be the Frobenius endomorphism
corresponding to an F-structure on V.
(i) If V.= Spec A then A(F,) ={x € A| 2?7 = F*(x)}.

(11) A subvariety of V is defined over Fy if and only if it is F-stable; the corre-
sponding Frobenius endomorphism is the restriction of F.

(i1i) Let ¢ be an automorphism of V such that (oF)™ = F™ for some positive
integer m; then @F is the Frobenius endomorphism attached to another IFy-
structure on V.

() If F' is a Frobenius endomorphism attached to another Fy-structure on 'V,
there exists an integer n > 0 such that F™ = F'™.

(v) F™ is the Frobenius endomorphism attached to an Fgn-structure on V.
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(vi) Every closed subvariety of a variety defined over F, is defined over a finite
extension of F,. Every morphism between varieties defined over Iy is defined
over a finite extension of F,.

(vii) The orbits of F' on the set of points of V are finite, as well as the set VI,
also denoted V(F), which consists of the points of V defined over Fy.

Proof. (i) is clear by the proof of 6.8 and 6.2.

(ii) reflects 6.4.

(iil) results from the fact that F still satisfies 6.8.

(iv): by considering an affine open covering it is sufficient to deal with the
case V = Spec A. Then we use that A is of finite type, thus there exists n such
that F*"(x) = F"*"(x) = 29" for every generator a of A.

(v) results from 6.8.

(vi) has a proof similar to that of (iv): there exists n such that for any
element a in a finite set of generators of the ideal I defining the subvariety
(resp. any coefficient @ of an equation of the morphism) we have F*"a = a?",
thus I C \/F*n(I).

Let us show (vii). As in (iv) we may assume V = Spec A. Let {ay,...,a,}
be generators of A(F,). A point x € V is given by a morphism z : A — F,. It
is F*"-fixed if for any ¢ we have z(a;) € Fgn, which happens for a sufficiently
large n. It is F*-fixed if 2(a;) € Fy, or equivalently if we are given a morphism
A(F,) — Fy; there is a finite number of such morphisms. O

Proposition 6.10. Let V >~ A™ as an ?q—variety. Then |VE| = ¢ for any
F,-structure on V.

Proof. See [Geck, 4.2.4] for a (complicated) elementary proof in the case of
unipotent groups. It is an immediate consequence of the Lefschetz theorem in
{-adic cohomology. O

7 The Lang-Steinberg theorem

We say an algebraic group over F,, is defined over F,, if the corresponding Frobe-
nius endomorphism is a group morphism.

Let G be a reductive group over Fq, let F' be the Frobenius endomorphism
attached to an F,-structure and let T be an F-stable maximal torus (we will see
later that there always exists an F-stable maximal torus). There is a natural
F,-structure on X(T) = Hom(T, G,,,) defined by the Fy-structure F(z) = z?
on Gy, (the only F,-structure compatible with the group structure): for this
F,-structure F acts on X(T) by (F(«))(ft) = F(a(t)) = a(t)?. On the other
hand F' sends a root subgroup u, to another root subgroup u,(,) for some
permutation 7 so in the end we get F'(uqa(x)) = ur(q)(Az?) thus F is an isogeny
associated to 7 and such that g, = ¢ for any «; the p-morphism is g7.

Note that a Frobenius endomorphism, having trivial kernel and being bi-
jective on points, is an isogeny; but it is not an isomorphism, since it is not
invertible as a morphism of varieties.
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Definition 7.1. Let G be a reductive group over F, and let F : G — G be an
1sogeny such that some power is a Frobenius endomorphism. Then the group of
fized points G is called a finite group of Lie type.

7.1 The Lang-Steinberg theorem

Lemma 7.2. Let G be an affine algebraic group over Fq and F be an isogeny
such that some power is a Frobenius endomorphism. Then for g € G the map
ad gF' is still an isogeny such that some power is a Frobenius endomorphism.

Proof. That ad gF is still an isogeny is obvious. It thus is enough to check that
some power of ad gF is equal to the same power of F. We have (gF)" = yF™
where y = gFg... 7" g; if n is such that g is F"-stable then y is also F"-stable
and if y is of order e then (zF)"¢ = F™e. O

The fundamental theorem on connected algebraic groups over Fq is

Theorem 7.3. (Lang-Steinberg) Let G be a connected affine algebraic group
over Fy, and F' an isogeny such that some power is a Frobenius endomorphism.

Then the Lang map L : g — g~ '.Fg is a surjective endomorphism of G.

Proof. The morphism £ has fibers isomorphic to G, thus finite, thus dim Im £ =
dim G; as G is irreducible £ is dominant (which means G is the closure of Im £),
thus Im £ contains a nonempty open subset of G.

For a given x, the morphism g — g~'.2.F¢ has also finite fibers: indeed, a
fiber has cardinality the number of solutions of g~ 'x¥g = x, that is g = g
and zF still has finitely many fixed points by Lemma 7.2. Thus the image of
g+ g~ t.x.Fg contains also a nonempty open subset of G, thus meets that of £.
Thus there exists g and h such that g=1.¥g = h=L.x.F'h, thus z = L(gh~t). O

[Steinberg68] has shown 7.3 under the only assumption that F is a surjective
morphism such that G¥ is finite.

A consequence of Lang’s theorem is that for ¢ € G the group G9% is iso-
morphic to G¥'. Indeed, write g = h~1F(h) then G9F = h=1GFh.

7.2 Galois cohomology exact sequence

Here we follow [Serre, §5]. If G is a profinite group acting continuously on a
set £ we set H(G,F) = EY and if E is a group (on which G acts as a group
endomorphism) Serre defines a set H'(G, E) (we do not give the definition in
general, we will give it below when G = Z) If A C B is a group inclusion we
have the “Galois cohomology exact sequence”

1— HY(G, A) = H°(G, B) - H(G,B/A) & HY(G,A) & H'(G,B) ()

When F is a topological generator of G = 7, we will denote H {(F,E) for
H(Z, E); in this case H'(F, E) is the set of F-classes of E, equal to the E-

conjugacy orbits in E.F, or the classes of F under the “twisted conjugacy”
e e'eF(e' ).
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The maps in (*) are the obvious ones excepted perhaps p which maps an F-
stable coset bA to the F-class of b1 F(b) (an element of A since bA is F-stable).
The “exactness of the sequence at H(F, B/A)” is that H°(F,B) = BY acts
naturally on H°(F, B/A) = (B/A)" and that the elements of a given orbit have
the same image in H'(F, A). For the next step, the image of p is the preimage
by ¢ of the F-class of 1: this is an “exact sequence of pointed sets”.

The Lang theorem can be rephrased as:

Proposition 7.4. If G, F are as in 7.3, then H'(F,G) = 1.

Proposition 7.5. Let G, F be as in 7.3 and let V be a variety with an action
of F' on which G acts transitively and compatibly with F. Then V' #£ (.

Proof. Since the action is transitive, given v € V, there exists g € G such that
Fy = gv. Write g=! = h=1Fh, then ' (hv) = Fhgv = hg~lgv = hv. O

Lemma 7.6. Let A C B be two closed and F-stable subgroups of G, where A
is connected. then

(i) We have (B/A)F = B JAF.

(i) If in addition A is normal in B, the quotient map induces a bijection

HY(F,B) — H\(F, B/A).

Proof. (i) is (*) since H(F, A) = 1 but let us give a naive proof. By 7.5, any F-
stable coset bA contains an F-stable element, thus the natural map B /AF —
(B/A)F is surjective. It is injective since if x,y € B are in the same A-coset,
then 271y € AF.

Let us show (ii). Surjectivity is clear. Conversely, if b,b’ € B are F-conjugate
modulo A, we have ab = b/ "z, with 2 € B and a € A. We must see that
ab is F-conjugate to b, that is there exists y € B such that yaby~' = b or
equivalently a = y~'®Fy. This comes from 7.2 which shows that we may still
apply Lang’s theorem to ad bF'. O

Proposition 7.7. Let G,F,V be as in 7.5, and let x € VI and g € G. Then
(i) We have gx € VI if and only if g~'Fg € Cq(x).

(ii) The map which sends the G¥ -orbit of gr € VI to the F-conjugacy class of
the image of g1 ¥g in Cq(x)/Cq(x)° is well-defined and bijective.

Proof. The proposition translates (*) applied to the inclusion Cg(x) C G, which
gives 1 —» Cg(2)f - GI' - VI — HY(F,Cg(x)) — 1 since H'(F,Cg(z)) =
H(F,Cg(z)/Ca(x)°) by 7.6(ii). Again we will give a naive proof.

(i) is an immediate computation. Let us show (ii). Let z € VI h, g € G be
such that hz,gr € V. Note that hx = gz if and only if » and g differ by an
element of Cg(z), and then h~'Fh and g~ '¥g are F-conjugate in Cg(z). We
have thus a well-defined map from V¥ to the F-classes of Cg (). On the other
hand, if h € G¥',| then go and hgx have the same image g~ '¥g = (hg) =¥ (hg).
Thus the map goes from the G¥-orbits in V¥ to the F-classes of Cq(z). If
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g g and h=1Fh are F-conjugate by n € Cg(x), then gnh~! € G and sends
hz to gz. The map is thus injective. By Lang’s theorem any element of Cg(x)
is of the form ¢g~'¥g with g € G, which shows the surjectivity of the map. We
finish the proof using 7.6(ii). O

Corollary 7.8. Let G as in 7.3.
(i) F-stable Borel subgroups exist and are all G* -conjugate.

(ii) Let us define a geometric conjugacy class as the intersection with G of an
F-stable conjugacy class of G. Then a geometric conjugacy class is non-empty,
and if x is an element of such a class, the class splits under G¥ -conjugacy into
classes parameterized by H'(F,Cg(x)/Ca(x)°).

Proof. (i) comes from 7.7 applied with V the variety of Borel subgroups, using
that for B a Borel subgroup Ng(B) = B is connected.

For (ii) we apply 7.7 with V the geometric class (and the action of G by
conjugacy). O

All centralizers in GL,, are connected, thus geometric conjugacy classes do
not split. Indeed, the centralizer in M,, of a matrix is an affine space, thus its
intersection with GL,, is an open subspace of an affine space, which is always
connected.

Ezample 7.9.
Let G = PGLy(F,) where ¢ # 0 (mod 2) and let F define an F,-structure. If s =

(é _01> then Ca(s) = {Id, <(1) é)} is disconnected. For A € F2, N1 = —1
0 !

A\ O)EGF(sinceFm——minGLg)andifx—<1 1>

Wehavem_< I

F O

1
1 _ -1 _
=m and x T = 10

then xsz™ thus m is geometrically conjugate but

not GF-conjugate to s.

Similarly to (i) in 7.8 the F-stable maximal tori in an F-stable Borel sub-
group B exist and are Bf-conjugate, since for a torus T the group Ng(T) =
Cg(T) (by 1.7) is connected by 1.15. Thus we may find an F-stable pair T C B
of a maximal torus and a Borel subgroup containing it.

Proposition 7.10. Let G be as in 7.1 and let T be an F'-stable mazximal torus.
Then the GF -conjugacy classes of F-stable maximal tori are parameterized by
HY(F,Wg(T)); given another F-stable maximal torus 9T with g € G we call
type of 9T with respect to T the F-class of w, the image in Wg(T) of g 1¥g €
Ng(T).

Proof. We apply 7.7 with V the variety of maximal tori of G, on which G acts
by conjugacy. O

Note that the pair (9T, F) is sent by g~!-conjugacy to the pair (T,wF).
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Proposition 7.11. Let G as in 7.3. Then every F-stable semisimple element
lies in some F'-stable maximal torus of G.

Proof. Let s € G semisimple; then s € Cg(s)° by 4.8, and s being central in
this group is in all maximal tori, thus in particular in the F-stable maximal tori
of Cg(s)® which are also maximal in G. O

7.3 The relative (B, N)-pair.

Proposition 7.12. Let G be as in 7.1.

(i) Let T be an F-stable maximal torus of G. Then W = Ng(T)F/TF.
Let T C B be an F-stable pair of a mazimal torus and a Borel subgroup.
Then

(it) GF = [1,ewr BFwB®, which we will recognize as the Bruhat decomposi-
tion attached to a relative (B, N)-pair (see 7.13 below).
(iii) |GF| = ¢! | TF (X cwr ¢'™)) where g € Ry is defined by some power
F® being a split Frobenius attached to an IFga-structure.

(iv) Ru(B)F is a Sylow p-subgroup of GF'.

Proof. (i) comes from 7.6(i).

For (ii) we use the “unique Bruhat decomposition” 4.7 which implies that
an F-stable element of BwB is in BfnBY = BfnUZL where n € Ng(T) is a
representative of w.

Let us show (iii). By the proof of (i) |G /B¥| =3 .+ [UL|, and using
IBY| = |TF||UF| we get the stated formula if we show |[U,| = ¢"*) (since
U = U,,). If F is a Frobenius attached to an Fy-structure, this results from
6.10 and the fact that U, is an affine space of dimension /(w). We will admit
the formula in other cases — one may use 2.6 and an explicit description of UZ.

As |GF/UR| = |TF|(X yewr ¢"™)) is prime to p (since T is a p’-group, and
Y e W F ¢"™) =1 mod. ¢q) we see that U is a Sylow p-subgroup of G (we
have Ngr (UF) = BY, thus Y o weWF ¢"™) is the number of Sylow p-subgroups
of GI). O

Note that the fixed points of the unipotent radical of a Borel being a Sylow
p-subgroup extends to non-reductive groups, since R, (G) is a p-group, it is in
all unipotent radicals of Borel subgroups, and being connected we have |G| =
[(G/Ru(G))"|IRu(G)"].

Corollary 7.13. Let G be as in 7.12. Then (BY, Ng(T)¥) is a (B, N)-pair
for GT with Weyl group W¥. Recall that (WF, {wr}res/r) is a Coxeter system
where I runs over the F-orbits in S and where wy is the longest element in Wj.

Proof. The corollary follows immediately from the definition of (B, N)-pairs,
from 7.12(ii) and from 2.6. We must check that for I € S/F and w € WF,
then BFfwBfw;BY ¢ BFwBf UBFww;BY. We use that either I(w)+1(w) =
I(wwy), in which case BFwB¥w;Bf = Bfww;B¥, or w = w'w; where [(w') +
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l(wr) = l(w'wr) in which case BFwBw;B¥ ¢ Bfw'B w;BFw;BY, and
B w;BFw;BY ¢ BFUBYw;B since 1 and w; are the only F-stable elements
of Wj. O

We complete the order formula for G by

Proposition 7.14. Let T, be a torus of type w with respect to T. Then
ITE] = det(wF — 1| X(T)).

Proof. Tt is enough to prove this formula for the pair (T, F'). Applying Hom(—, G,,)
to the exact sequence 1 — T — T Rt N (where the surjectivity on the
right is Lang’s theorem) we get 1 — X (T) £ X(T) & Hom(TF,G,,); since
the formula in the statement is the cokernel of F'—1, we have to see the surjectiv-
ity of p. This comes from the fact that the dual map Hom(Hom(T¥,G,,), G,,) —
Hom(X(T),G,,) is the inclusion T < T; indeed the left-hand side is the dual
of the dual of TF,jsomorphic to TF. For the right-hand side, the algebra of
T, equal to A = Fy[Ty,...,T,] identifies to F,[X(T)], and Hom(X(T),G,,)
identifies to Hom(A, F,) which is the set of points of T. O

7.4 Classification of finite groups of Lie type

Let us start with G = GL,(F,). It has a natural F,-structure since its algebra
is T[T ;,det(T; ;)71 = Fy[T;;,det(T; ;)] ® F,. If F is the corresponding
Frobenius endomorphism, we have G = GL,(F,); F raises all entries of a
matrix to the g-th power.

The same kind of construction can be done with SL,,, the orthogonal, sym-
plectic, ... groups. This gives the split F,-structure, giving an isogeny F' such
that 7 = 1.

An example of non-split F-structure is the unitary group GLS " where F” is
defined by F'(z) = F(*z~1), where F is split. Here 7(a) = —a.

We will classify now the finite groups of Lie type which correspond to simple
algebraic groups, that is adjoint groups with an irreducible Weyl group. We
may start with an F-stable pair T C B, and, using the isogeny theorem, look at
the corresponding root datum (X (T),Y(T),®,®). Since the group is adjoint
X(T) is determined by ®; in addition giving ¢ and 7 determine the pair (G, F),
thus G¥', up to isomorphism.

We have a connected (since G is simple) Dynkin diagram and the possibilities
for T correspond to automorphisms of the Dynkin diagram.

The possibilities for a non-trivial 7 on an irreducible root system are 2A,,(n >
2), 2D,,, 3D, and 2Fg; here the exponent on the left is the order of 7. We have
thus the following possibilities for (G, F), where G is simple unless noted
otherwise.

e A,(n > 1) — the simple algebraic group is G = PGL,, ~ PSL,, .

Remark 7.15. @However, G' is not in general simple. The simple fi-
nite group is SLZ /Z(SLY), which in general is not G¥ but its derived
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subgroup. Indeed, in general PSLY # SLE /Z(SLE), (this phenomenon
(A/B)F # AY/BF comes from the fact that B is not connected). The
center Z SLy, identifies to the group fi,, , of n-th roots of unity in F,. The
exact sequence (*) applied to the inclusion fn,, C SLy gives 1 — pr, —
SLE — PSLE — HY(F, an/) — 1 where H'(F, an/) = ,LL,,LP,/(,unp,)‘I_1 SO
the cokernel is non trivial if ¢ — 1 is not prime to n,.

We also have the small value n = 2 and ¢ = 2 (resp. 3) where SLY /Z(SLY) =
G5 (resp. 2y) is solvable.

e 2A,(n > 2) — Special projective unitary group PSU,, ~ PU,, (the same
remark on G¥ applies as in the split case). Further for ¢ = 2 andn € {2, 3}
or ¢ =3 and n = 2 we get a non-simple group.

o Cy(n > 2) — We get the projective symplectic group Sp,,, (Fq)/Z(Sp(Fy))
which is simple excepted PSp,(F3) ~ Gg.

e B,(n > 2) — We get the orthogonal group SOs,41 (B2 and Cy give
isomorphic groups, non-simple for ¢ = 2, see above).

e D, (resp. 2D,)(n > 4) — Projective orthogonal group PSOJ (resp.
PS03, ).

e (5 (for ¢ = 2 the group G* is not simple; its derived subgroup, of index
2, is).

e 3D, — The triality group.
o Fy, Eg, ?Es, Er, Eg.

There are in addition “exceptional” isogenies which correspond to automor-
phisms of the root system up to a scalar. In each case we have an automorphism
of the Coxeter system. Such automorphisms which did not appear in the above
list are 2By, 2Fy (resp. 2G3). To make them automorphisms of the root system
we have to scale by v/2 (resp. \/3) With p the square of the scaling factor, we
get a p-morphism defining an isogeny whose square is a Frobenius on a field of
characteristic p. The corresponding groups G are the Suzuki and Ree groups,
which are simple excepted 2By for ¢ = 2 (which is solvable), 2G5 for ¢ = 3
(whose derived subgroup is simple, isomorphic to SLy(Fg)), and 2F, for q = 2
whose derived subgroup, of index 2, is simple. Adding to the above list the
alternating groups, we have all the non-sporadic finite simple groups.

8 Parabolic subgroups and Levi subgroups

8.1 Levi decompositions

Let G be reductive group. Recall that a parabolic subgroup of G is a subgroup
of G containing a Borel subgroup. Fix a pair T C B consisting of a maximal
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torus and a Borel subgroup of G. Then a subgroup containing B is called a
standard parabolic subgroup. For such a group, there exists a subset I of simple
reflections such that B and W; generate the group. More precisely, the Bruhat
decomposition yields
P, = | | BuB.
weWr

To the set I of simple reflections corresponds a set of simple roots II; C II.
We will denote by ®; C ® the set of roots which are linear combination of these
simple roots. Then from Section 2.2 one deduces that ®; is a root system with
basis II; and Weyl group Wj.

We will assume without proof that standard parabolic subgroups have a Levi
decomposition (see Definition 8.6).

Proposition 8.1. Let Ly = (T, Uq | € ®1) and Uy = [[,cqp+\0, Ua- Then
L; is a reductive group, Uy = Ry (Py) is the unipotent radical of Pr and

PI = LI X Ru(PI) = LI X U[.

Remark 8.2. The fact that both U; and L; are groups, and that L; normalizes
Uy is a direct consequence from Chevalley’s commutator formula (see 3.1.(vii)).

Remark 8.3. As a consequence, if U, C P; then o € ®; U ®T. Indeed, the
image of U, by the quotient map P; — Ly is either trivial (in which case
a € &1\ @) or non-trivial (in which case o € @y).

Ezample 8.4. (a) For the Borel subgroup of GL,, consisting of upper-triangular
matrices, the standard parabolic subgroups of GL,, are upper block triangular
matrices. More precisely, given a composition ny + no + -+ + n,. = n of n,
the standard parabolic subgroup corresponding to I = {1,...,n1 — 1} U {n; +
1,...o,mp4+ne—1}U---U{ny+--4+n.—1+1,...,n—1}is

GL,, * *
P, = GL,, =*

and its standard Levi complement is Ly ~ GL,,; X GL,, X --- X GL,,..

(b) For the Borel subgroup of Sp, consisting of upper-triangular matrices in
Sp,, the standard parabolic subgroups are B, Sp, and two parabolic subgroups
corresponding respectively to the short simple root and the long simple root.
Their standard Levi complement is Lgnort ™ GL2 and Ligne >~ SLa x Gy,

Proposition 8.5. Let I be a subset of S. Then Ng(Ly)/L; = Ng(L;)/Ng(Ly)°

Proof. Recall that Lj is generated by T and the one-parameter subgroups U,
for a € ®;. Therefore if w € W, then YL; = Lj if and only if “®; = &;.
We claim that this is equivalent to w € Ny (Wy); indeed, a € ®; if and only if
wy, € Wi, therefore normalizing ®; amounts to normalizing the set of reflections
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in W;. In particular, there is a well-defined map from Ny (W7) to Ng(L;)/Ly,
and from the Bruhat decomposition of P; we see that its kernel is exactly Wj.
To prove that this map is surjective, let g € Ng(Ly). The maximal tori T and
9T are contained in Lj, and as such they are conjugate under an element of Lj.
This means that there exists | € Ly such that gl € Ng(L;) N Ng(T). From the
previous argument we deduce that the image of g/ in W normalizes W, which
proves that Ny (W;)/Wr ~ Ng(L;)/Ly.

Since L; is connected, then L; = Ng(L;)° then follows from the fact that
Ng(L[)/LI is finite. O

Definition 8.6. A Levi decomposition of a parabolic subgroup P of G is a
decomposition P = L x Ry (P). The group L ~ P/Ry(P) is a reductive group
called a Levi subgroup of G and a Levi complement of P.

Proposition 8.7. Let P be a parabolic subgroups of G containing T.
(i) There exists a unique Levi complement of P containing T.

(ii) Two Levi complements of P are conjugate under a unique element of
R.(P).

Proof. One can choose a Borel subgroup B of P so that P is standard for
the system of positive roots corresponding to B. The existence follows from
Proposition 8.1. In addition, if L is any Levi complement of P containing T,
then it is generated by T and the one-parameter subgroups U, that it contains.
These are exactly the one-parameter subgroups whose image under the map
P — P/R,(P) is non-trivial (see Remark 8.3), which proves (i

).
The maximal tori of P are conjugate under P. Therefore (i) shows that two
Levi complements are conjugate under P, hence under R, (P). Furthermore,
if u € Ry(P) normalizes L, then for any I € L, [v,]] € Ry(P) N L = 1 hence
v € Cg(L) C Ca(T) = T so it must be trivial. This shows that the action of
Ry (P) on the set of Levi complements is regular (i.e. free and transitive). O

We will need another characterization of parabolic subgroups which will be
useful for computing intersections of parabolic subgroups and their decomposi-
tion.

Proposition 8.8. Let P be a subgroup of G containing T. Let U be the set of
roots such that U, C P. Then

(i) P is a parabolic subgroup of G if and only if & = ¥ U —U.
(ii) If P is parabolic, then its unique Levi complement containing T is

L= (T,Us|acTn(-0)).

Proof. Tt is clear that any parabolic subgroup satisfies (i) (see Remark 8.3).
To prove the converse, let w € W be such that |¥ N “®*| is maximal. If
w®T ¢ U, then there exists a simple root o such that w(a) ¢ . Therefore
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—w(a) = w(—a) € ¥ and ¥N"YPT is a proper subset of UN (T U{w(—a)}) =
U N w$«®T which contradicts the maximality of [¥ N “®*|. This proves that
“B C P, hence P is a parabolic subgroup of G. In particular, v'P s a

standard parabolic subgroup P, and (ii) follows from the fact that in that case
\I/ﬂ(f\lf):w(p] and L = “L;. O

Proposition 8.9. Let P=L x U and Q =M x V be two parabolic subgroups
with Levi complements L and M containing T. Then

(i) (PNQ)-U is a parabolic subgroup of G with Levi complement L N M.

(ii) P N Q is connected and it has the following factorization:
PNQ=LNnM)x (LNV)-MnNU)-(UNV)).

Furthermore, the expression of an element of P N Q with respect to this
factorization is unique.

Proof. Without loss of generality one can assume that P =P;, L =L;, Q =
YPy; and M = L; with w an I-reduced element of W. Then P; N “P; D
L;Nn*B = L;NB. Therefore (P;N“P;)-U; contains B, hence it is a parabolic
subgroup. This forces P;N"P; to be connected. In addition, if U, C P;NYP
and U_, C P;N“P; then a € ®; and w™!(a) € ®;. Therefore by Proposition
8.8 the Levi complement of (P; N “Py;)-U; = (PN Q) - U containing T is
L;Nn"“L;=LNM.

Now U N Q is a unipotent subgroup of P N Q normalized by T, therefore
it is the product of the U,’s that it contains. In particular, one can write
UnQ = (UnNnM):(UnNQ). Moreover, it is normalized by L N'V. Since
P N Q is generated by T and the one-parameter subgroups that it contains, it
is generated by L N M and the unipotent group H = (LNV) x UN Q. This
corresponds indeed to the decomposition

(@+U®])ﬂw(@+U©J) = (<I>1ﬂw(I>J) |_| ((q)]ﬂw(q)Jr\q)J))U(((I)+\q)[)ﬂw(q)+U(I)J))).

Finally, since L "M normalizes H, we deduce the factorization of P N Q given
in (ii) and the uniqueness property for decompositions of elements in PN Q. O

Proposition 8.10. (i) Let P and Q be two parabolic subgroups of G with
Q C P. Then Ry(Q) D Ru(P) and given any Levi complement M of Q,
there is a unique Levi complement L of P such that M C L.

(i) Given a Levi complement L of a parabolic subgroup P of G, the following
are equivalent:

(a) M is a Levi complement of a parabolic subgroup of L;

(b) M is a Levi complement of a parabolic subgroup of G, and M C L.
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Proof. For (i), let T be a maximal torus of M and let L be the unique Levi
complement of P containing T (see Proposition 8.7). Then by Proposition 8.9,
LNM is a Levi complement of (PN Q)-Ry(P) = P, therefore it must be equal
to M.

Let P, be a parabolic subgroup of L, and let T be a maximal torus of Py,.
Then using Proposition 8.8 one checks easily that Pr, x Ry, (P) is a parabolic
subgroup of G, and that the Levi complements of P and P are equal, which
proves (a) = (b). Conversely, let M C L be a Levi complement of a parabolic
subgroup Q of G. By Proposition 8.8, LNQ is a parabolic subgroup of L whose
Levi complement is LN M = M. O

Remark 8.11. Tt follows from assertion (ii) that we can refer to M as a Levi
subgroup with no mention of the underlying reductive group (G or M).

8.2 Rational Levi subgroups

Maximal tori are particular Levi subgroups, and we have seen in 7.10 that the
G-conjugacy classes of F-stable maximal tori are parameterized by F-conjugacy
classes of W. We will state below a similar statement for Levi subgroups.

From now on we will assume that both T and B are F-stable, so that
for standard Levi subgroups we have (L) = Lp(;). In particular Ly is F-
stable if and only if F(I) = I. Now, if L is any F-stable Levi subgroup of
G, then it contains a maximal F-stable torus and there exists g € G such that
(L, T) = (9L, 9T) for some I C S which might not be F-stable. Consequently,
if w= g 'F(g) € Ng(T) then F acts on the pair (L, T’) as wF acts on the
pair (L;,T). In particular, “F(I) = I, therefore wF normalizes W;. Up to
multiplication by W7 on the left (or W () on the right), the class of the element
wF in WF is uniquely determined and (I, wF') is called the type of L. More
precisely, 7.7 yields:

Proposition 8.12. Let w € W and I be a wF'-stable subset of S. Then there
18 a bijection between

(a) GF-conjugacy classes of F-stable Levi subgroups which are (geometrically)
conjugate to Ly and

(b) wF-conjugacy classes of Ny (Wr)/Wr.

Remark 8.13. It is important to note that an F-stable Levi subgroup L of G
might not be contained in any F-stable parabolic subgroup, for the same reason
that not every F-stable maximal torus is in an F-stable Borel subgroup. For
example “F(P;) # Py in general. This is a major obstruction to constructing
every representation using parabolic induction (see the next two sections). We
will say that an F-stable Levi subgroup is G-split if it is a Levi subgroup of an
F-stable parabolic subgroup of G.

FEzxample 8.14. We have seen in Example 8.4 that the standard Levi subgroups
are of the form L; ~ GL,, x --- x GL,,. We give here some examples of the
finite Levi that can occur:
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(a) With w = 1, we obtain the G-split Levi subgroups

LF ~ GLy,(q) X --- X GLy, (q).

(b) Assume n = dr and take (n;) = (m,...,m). Then w = (1,m + 1,2m +
1,...,(d=1)m+1)---(m,d + m,...,dn) permutes cyclically the sum-
mands GL,, in L; = (GL,,)? and we get

LYF ~ GL,,(¢%).

The case m = 1 corresponds to the Cozeter torus T ~ GL1(q") = F .

9 Parabolic induction and restriction

Let A be a commutative ring with unit. Given a finite group H, we denote by
AH-mod the category of finite dimensional AH-modules. By a representation
of H over A we mean an object of the category AH-mod.

9.1 Invariants and coinvariants

Recall that given a representation M of H over A, and a subgroup K we can
form the following A-modules:

e The invariants M¥ of M under K:
MY = Hompg (A, M) ~ Homp g (AH/K, M).

More concretely: MX ~ {m € M|Vk € K, k-m = m}, which is the
largest AK-submodule of M on which K acts trivially.

e The coinvariants My of M under K:

More concretely: My ~ M/(m —k-m|k € K,m € M), which is the
largest quotient of M (as a AK-module) on which K acts trivially.

The tensor-hom adjunction shows that ”duality” MY = Homp (M, A) exchanges
the two notions. More precisely, (M")¥ ~ (My)V. In addition, if L is another
subgroup of H with K <! L, then both M¥ and My have a structure of L/K-
module, compatible with the previous isomorphism. In general, invariants and
coinvariants do not coincide. However, if the order of K is invertible in A, then
AH/K ~ exAH with e = |K|7' Y, i k so that M* ~ My ~ ex M. In that

case, invariants and coinvariants are exact functors.

Given a right AH-module N, we define N @5 M := (N ®, M)k where the
action of K on N ®, M is diagonal, given by k- (m®@n) = (m-k~* @k - n).
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Ezample 9.1. (a) Let X be a finite set with a left action of H, and let AX be
the corresponding permutation module. Let m : X — X/H be the canonical
quotient map. It induces linear maps 7, : AX — AX/H and 7* : AX/H —
AX given on the basis by m.(z) = xH and 7*(yH) = >_ ., 5 ©. As an exercise,
one checks that they induce isomorphisms (AX)g ~ AX/H and AX/H ~
(AX) k. In particular, invariants and coinvariants of the permutation module
AX are isomorphic. However, the composition 7, o 7* = |H|Idax, g is not
invertible in general.

(b) If Y is another set, now with a right action of H, then we can form the

amalgamated product Y x g X as the quotient of Y x X by the diagonal action
of H. Then from (a) we obtain

AlY xg X] ~ AY @ AX.

9.2 Parabolic induction and restriction

Recall that G is a connected reductive group over F,. In these notes we will
focus on representations in non-defining characteristic, which means that we will
study representations over fields of characteristic different from p. Following this
assumption, we will assume from now on that

‘ p is invertible in A ‘

Under this assumption one can define a good notion of induction and restriction
for finite reductive groups.

An efficient method for constructing representations of a finite group is to
induce representations from smaller subgroups. Here, since we are interested
in finite reductive groups, we will consider induction from particular reductive
subgroups which will correspond to split Levi subgroups. Furthermore, the usual
induction from Levi subgroups is in a sense “too big” and hard to decompose
into indecomposable summands (their number depend on ¢). To solve this
problem, we will proceed in two steps, by first inflating the representation from
the Levi subgroup to a parabolic subgroup, and then inducing. It turns out that
this induction process, call Harish-Chandra induction or parabolic induction has
particularly nice properties.

Definition 9.2. Let P = L x U be a F-stable parabolic subgroup of G with
F-stable Levi complement L. The Harish-Chandra or parabolic induction and
restriction functors are
Rf-p : AL¥ -mod — AG*-mod
M — AGY /U @pr M
*RE-p : AGF-mod — AL*-mod

N — Hompgr (AGT/UF N)
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Remark 9.3. A more concrete description is
*RE_p(N)~ NY" and RE_p(M)~IndSr oInflr (M).

with L¥ acting on NY" via the isomorphism P¥ /UF ~ L¥. To see the sec-
ond equality, we write AGY /U @, pr M ~ AGY @pr (AP /U @ppr M),
which shows that Rfcp is isomorphic to the composition of the inflation functor

InfE; = APY /U ®@,1,r — and the induction functor Indgjf =AGF @,pr —.

Proposition 9.4. Let P = L x U be a F-stable parabolic subgroup of G with
F-stable Levi complement L. Then

(i) *RE¢-p ~ AUP\GF ®,gr — and RE-p ~ Homyp,r (AUF\GF, ).
(i) Rf-p and *RE_p are exact functors.
(iii) R¢-p and *RE-p are biadjoint. In particular,
Hompgr (REcp(M), N) = Homppr (M, *REp(N))
and ~ Hompgr (N, RE-p(M)) ~ Hompr (*RE-p(N), M)

(iv) RECP and *Rf‘cp preserve injectivity and projectivity.

(v) If A is a principal domain, then Rf'cp and *Rfcp map A-free modules to
A-free modules.

Proof. Let eyr = |UF| 7! Y weur u. Since UF is a p-group, then the order of

U¥ is invertible in A, therefore eyr is a well-defined element of AU ¢ AGF.
From Example 9.1 we have

AGF/UF ~ AGFeyr and AUM\GY ~eyrAGT.

Therefore we can write AGY = AGFeyr @ AGF (1 — eyr) ~ AGF/UF @
AGT (1 —eyr), from which we deduce that AGY /U is a projective left AG¥-
module and a projective (hence flat) right AL -module. This proves (ii), and
from it we deduce (v). In addition, with the property of the group algebra AGY
to be symmetric, we have

(AGT /U ~ (AGFeyr)Y ~ eyr(AGF)Y ~ eyr AGH ~ AU\ GF

and we get (i) by using these explicit descriptions and tensor-hom adjunction.

Property (iii) comes from the usual tensor-hom adjunction. Together with
(i), it proves (iv). Indeed, if M is projective then Hompgr (RE-p(M),—) is
exact as the composition of the exact functors *Rf’cp and Homyy,»(M,—). O

Proposition 9.5. Let P =L x U and Q = M x V be two F'-stable parabolic
subgroups of G with F-stable Levi complements L and M. Assume that Q C P
and M C L. Then

G ~ PG L * DG ~ *pL * G
RMCQ ~ Rpcpo RMCLOQ and RMCQ = RMCLOQ ° "Rpcp-
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Proof. Recall from Propositions 8.9 and 8.10 that LN Q is a parabolic subgroup
of L with Levi decomposition LN Q = M x LN V. Given a AM¥-module M,
The composition Rf-p o RIMchQ (M) is given by

AGE /UF @, r ALY JLE N VE @pr M.
Now, we have seen in Example 9.1 that
AGF /U @, pr ALY JLE N VE ~ A[GF /UY xpr LY /LE N V]

so it amounts to produce a bijection between the sets G /U xy» L /LENVT
and G¥' /V¥ which is equivariant for the left action of G" and the right action
of M¥. In addition, since the stabilizers of the various actions are connected,
it is enough to prove that the map

¢:(gU,ILNV) € G/UxLL/LNV — gIV € G/V.

is a bijective morphism of algebraic varieties (see 7.7). It is well-defined since L
normalizes U and U C V. It is also clearly G x M°P-equivariant and surjective.
Assume that gIV = ¢'l'V. Then [71g71¢/l' € V = U x (LNV). Up to
multiplying g on the right by an element of U and I’ by an element of LNV,
we can assume that ["'g~'¢/l' = 1, that is gl = ¢’l’. This proves that ¢ induces
a bijection between G/U x, L/L NV and G/V. O

9.3 Mackey formula

We shall now prove a fundamental property for parabolic induction and restric-
tion. It is the analogue of the classical Mackey formula for usual induction and
restriction.

Theorem 9.6. Let P = L x U and Q = M x V be two F-stable parabolic
subgroups of G with F'-stable Levi complements L and M. Then
*RECP o RI\G/ICQ = Z R%mmMchwQ o *RLlr\w/IchmeM oad z
2€ELF\S(L,M)F /MF

where ad x : AM-mod — ATM -mod denotes the action of x by conjugation on
the representations and S(L, M) = {x € G|LN*M contains a mazimal torus of G}.

Proof. The proof of the Mackey formula will be in several steps. We first use
Proposition 9.4.(i) to get

"Ri-p o Ryjcq ~ AUM\GF ®gr AGT/VF @pr —
~ A[UN\GT xgr G/ VI @ mr —
~ A[UNGT /VF] @ apr —.
;From Lemma 9.11 we deduce the following decomposition for the set UF'\G* /V I
UG/ vF = | ] uf\PrzQf/vr. (9.7)

2ELF\S(L,M)F /MF
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Then each piece of this decomposition can be expressed in terms of smaller
subgroups using Lemma 9.10. Indeed, given z € S(L,M)¥/M¥ we have an
LY x (MF)°P_equivariant bijection

LY/(LN*V)" xgaapr (MO U)T\"MT 5 UN\P2Q/VF.  (9.8)

where on the left-hand side, L acts by multiplication on the left and m € M¥
by multiplication by *m on the right. Combining Equations (9.7) and (9.8) we
get

AUNGH/VF ~ P AL /(LN*V) @@ A("MNU)\*M"].
2ELF\S(L,M)F /MF

Finally, we use Proposition 9.4.(i) to see that the functor
ALY /(LN *V)F] @awn=myr A[("MN U)"\*M"] @amr —
is isomorphic to

R%mchmeQ o “Rpemcpnom ©ad
for all € S(L, M)¥/MF | which yields the Mackey formula. O

We now prove the results which we used for the proof of the Mackey for-
mula. The first one is a generalization to parabolic subgroups of the Bruhat
decomposition B\G/B ~ W.

Lemma 9.9. Let P=L x U and Q =M x V be two parabolic subgroups with
Levi complements L and M containing T. Then P\G/Q ~ Wp\W/Wys.

Proof. As shown in the proof of Proposition 8.8, there exist x,y € Ng(T) such
that P = ®P; and Q = YP;. Then the map g — x~'gy induces bijections
P\G/Q = P;\G/P; and W,\W/Wn — W;\W/Wj, therefore one can
assume that all the parabolic groups and Levi complements are standard.

By the usual Bruhat decomposition, the inclusion of Ng(T) in G induces a
surjective map W — P;\G/P ;. We claim that it gives the expected bijection.
This amounts to showing that P;wP; = BW;wW ;B. Taking for w a I-reduced
representative, we have P;wP ; = BW;wP ; by 2.5. Now, for each vw € Wjw,
one can choose the corresponding reduced-J element z, € vwW; C WiywW; and
BowPj; = Bz, W;B C BW;wW;B. This proves that P;wP; C BW;wWW;B.
The other inclusion is straightforward. O

Lemma 9.10. Let P = L x U and Q = M x V be two F-stable parabolic
subgroups of G with F-stable Levi complements L and M. Then the inclusion
S(L,M) — G induces bijections

L\S(L,M)/M = P\G/Q and L"\S@L,M)"/MI' = PM\GF/QF.
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Proof. The second bijection can be deduced from the first one using 7.7. Indeed,
the stabilizer of x € G under the action of P x Q°P is PN*Q, which is connected
by Proposition 8.9. Similarly, the stabilizer under the action of L x M°P is
L N *M, which is a Levi subgroup (hence connected) whenever z € S(L, M)
(see Proposition 8.9).

We first observe that any double coset PzQ contains an element of S(L, M).
Indeed, any pair of Borel subgroups have a common maximal torus (see 4.4),
therefore by Proposition 8.7 there exist Levi complements of P and *Q which
contain a common maximal torus. These complement are of the form “L for
u € U and **M for v € V, therefore u='zv € S(L,M). Consequently, we have
a natural surjective map L\S(L, M)/M — P\G/Q. To prove that it is injective
we now show that |[L\S(L,M)/M| < |P\G/Q|. We proceed as follows: fix
such that LN *°M contains a maximal torus T. Given x € S(L, M), a maximal
torus of L N M is of the form ‘T = ®™%0 T for some [ € L and m € M. This
shows that I~ 'zmaxy' € Ng(T). Multiplying this element by Ny (T) on the
left and N=opm(T) on the right does not change the class of z in L\S(L, M)/M.
In particular, there are at most Ni,(T)\Ng(T)/Nzom(T) >~ Wi, \W/Waon ele-
ments in L\S(L, M)/M. By Lemma 9.9, this number is exactly the number of
double cosets P\G/Q and we get the injectivity. O

Lemma 9.11. Assume L N *M contains a mazimal torus. Then the map

LY /(LOV)F xgnpr (CMAU)FP\*MF 5 UF\PFzQF /VF
Ln=v)F M NU)Em) — Uflmav?

is a LT x (MF)°P-equivariant bijection.

Proof. The stabilizer of x € G under the action of U x V°P is the unipotent
group U N *V, hence it is connected. The stabilizer of any element of LY /(L N
*V)E x (*M N U)F\*MF under the diagonal action of L N *M is trivial, hence
connected. Therefore by 7.7 it is enough to prove the following isomorphism:

~

L/(LNV) xprem CMNAUN\M 5 U\P2Q/V
(L N*V),CMNU)m) +— UlmaV

The map is well-defined (since L normalizes U and M normalizes V) and it is
clearly surjective. To prove the injectivity, assume that UlmzV = Ul'm/zV.
Then there exists v € U and v € *V such that im = l'uvm’. Consequently,
w1 = vm/m~! € PN*Q which decomposes as PN*Q = (UN*Q)x(LN*Q)
by Proposition 8.9. Therefore by unicity of the decomposition P = U x L, we
have I' 'l € LN *Q. Similarly, m'm~' € P N *M, and they have the same
projection on L N *M. This means that there exists y € L N *M such that
y!'" 'l e LN*V and ym'm~* € UN*M. Up to multiplying [ on the right
by an element of L N *V and m on the left by an element of U N *M we can
therefore assume that yl’_ll =ym'm~! = 1 that is I'm’ = Im, which proves the
injectivity. 0
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In the case where P and Q are standard parabolic subgroups, we can also
use Lemmas 9.9 and 9.10 to obtain the following particular case of the Mackey
formula.

Corollary 9.12. Let I and J be two F-stable subsets of S. Then

* G G -~ L x* YLy
Ry cp,oRL,cp, =~ E : Ry nvr,cL,nwp,® By Aen, cp,ner,%ad w.
weWF\WF /WF

Ezample 9.13. For G = GL,, with standard Frobenius F, and [ = J =
{1,...,n — 2}, we have Ly ~ GL,_; x GL;. There are only two cosets in
WE\WE /W ~ &,.1\6,/6,_1; they correspond to 1 and (1,n). Further-
more, L; N (1™ is the standard Levi subgroup L, n—3 =~ GL1 x GL;, 2 x
GL; of L;. We deduce the following formula
“RGEn o RGE: , ~Td+RGL" o "RGrn~!

where we have omitted the parabolic subgroups involved and the copies of GL;
in the various Levi subgroups.

Ezercise 9.14. Do the same computation for twisted type A, with I = J =
{2,...,n—2} amaximal F-stable subset of {1,...,n—1}. What is the difference
with the previous case?

10 Harish-Chandra theory

In this section we use the previous induction and restriction functor to decom-
pose the set of irreducible representations into series. Unlike the usual induction
and restriction for finite groups, parabolic induction from proper Levi subgroups
does not reach all the representations. The missing ones are the so-called cus-
pidal representations. Therefore the first steps towards the classification of the
irreducible representations are:

(a) Find the irreducible cuspidal representations; these representations are
usually constructed using geometric methods (Deligne-Lusztig theory) and
have been classified by Lusztig in the case where A = C.

(b) Determine which representation can be reach from the parabolic induction
of a cuspidal one. This amounts to studying the representation theory of
the endomorphism algebra of the induced representation, which will be
done in the next section.

Note that this program if far from being achieved for representations in positive
characteristic, and is still a very active area of research.

40



10.1 Independence of the parabolic subgroup

The parabolic induction and restriction functors are defined in terms of F-stable
parabolic subgroups and their F-stable Levi complement. It turns out that they
depend only on the choice of the Levi, and not on the parabolic subgroup.

Theorem 10.1. Let L be an common F'-stable Levi complement of the F-stable
parabolic subgroups P and Q. Then

G G G G
"Rpcp ~ *RLCQ and Rpcp =~ RLCQ'

Proof. The result over A is due to Howlett-Lehrer [Howlett-Lehrer] and Dipper-
Du [Dipper-Du]. It is a consequence of the existence of an isomorphism of
G x (L¥)°P-modules between AG¥eg pyr and AGFeg (q)r. Here, we shall
give a proof in the case A = C only.

We proceed by induction on the semi-simple rank of G. If G is a torus, then
L =P = Q = G and the result is obvious. Otherwise one can assume that
L # G. Let A be an irreducible character of L. By the Mackey formula and
the adjunction, we have

G el @
(REcpA; REcqNar = Y (*Rinencrneq); Rifercpnen "\ LraeLr -

If we assume by induction that the right-hand side does not depend on P and
Q, then we deduce that

<RI(,;CP/\§RI(,;CQ)\>GF = (RE-p\; REcpNar = <RIE;CQ)\§RIE;CQ/\>GF
from which we get
(RE-pA — RE-QX\; RE-pA — Ri-qNar = 0.

This proves that Rfcp)\ = RECQ)\ so that RECp does not depend on P. In

addition, we can use adjunction to show that the restriction *RE-p does not
depend on P either. O

We will not use the parabolic subgroups anymore but we still need to assume
that all the Levi subgroups involved are F-stable complements of F-stable Levi
subgroups, that is are G-split.

10.2 Cuspidality and Harish-Chandra series

For usual induction and restriction, every representation can be reached by in-
duction from a proper subgroup. This is no longer true for parabolic induction,
the main difference being than the parabolic restriction can kill some represen-
tations. This motivates the following definition.

Definition 10.2. A AGF-module M is said to be cuspidal if *RE (M) =0 for
all proper G-split Levi subgroups L.
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Recall from Proposition 9.4 that the induction and restriction functors are
adjoint. In particular, given a AL¥-module N we have

Homp,r (N, *RE(M)) ~ Homgr (RE(N), M).

Consequently, in the case where M is simple, the property of being non-cuspidal
is equivalent to the existence of a pair (L, N) an a surjective map RE(N) — M.
We can even assume that N is cuspidal:

Lemma 10.3. Let M be a simple AGT-module. Then there exist a G-split
Levi subgroup L and a (simple) cuspidal LY -module N such that M is in the

head of RS(N), i.e. such that there exists a G -equivariant surjective map

Proof. Let L to be minimal Levi subgroup for the property that *RE (M) # 0.
Then by transitivity of the parabolic restriction, *Rf’ (M) is a cuspidal AL*-
module. Since the parabolic restriction is exact (see Proposition 9.4), we can
take for N any simple submodule of *RE (M). O

Remark 10.4. Using the other adjunction one can prove that there exists a
cuspidal module L¥-module N’ such that M is in the socle of RS (N'), i.e. such
that there exists a GF-equivariant injective map RS (N’) < M. Note however
that if A is not a field, it is unclear whether in that case N can be assumed to
be simple.

Definition 10.5. A cuspidal pair is a pair (L, N) where L is an G-split Levi
subgroup and N is a cuspidal simple ALY -module. The Harish-Chandra series
corresponding to such a pair is

Irr (GF|(L,N)) = {M € Ir G | R§ (N) — M]}.

The previous lemma ensures that any simple representation lies in at least
one Harish-Chandra series. However, a representation can lie in different Harish-
Chandra series, but in that case they will be conjugate under G, as shown in
the following proposition.

Proposition 10.6. Assume that A is a field. Let (L,N) and (L', N') be two
cuspidal pairs. Then Irr (GF|(L, N))NIrr (GF|(L/,N”)) # 0 if and only if there
ezists g € G such that (L', N') = 9(L, N).

Proof. We first note that for ¢ € G| we have RG (IN) ~ 9(RE(N)) there-
fore the series corresponding to conjugate cuspidal pairs have isomorphic con-
stituents.

To prove the converse, let M be a AGf-module such that RE(N) - M
and RE (N') — M. Since A is a field, there exists a projective cover Py (resp.
Pyr) of N (resp. M). Now, by Proposition 9.4, the map RE (Py) — RE(N) is
surjective and by composition we get a surjective map RE(PN) — M. Hence
Py must be a direct summand of R (Py). Now, since M is in the head of
RE(N'), it is a composition factor and we have Homgr (Pyr, RS (N')) # 0. We
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deduce that Homgr (RE (Py), RS (N')) # 0. By the Mackey formula, the latter
is isomorphic to

@ Hom(LmzL/)F(*REmmL/(PN), *REIr%J.L/(wN/))
rzeLF\S(L,L/)F /L' F

Now, since N is cuspidal, the restriction *Ry%,p, (*N') = ”(*Rﬁ;ﬂL, (N")) is
zero whenever L* NL/ is a proper Levi subgroup of L. This proves that L’ C L*
whenever x € S(L, L’)¥". Exchanging the role of (L, N) and (L', N’) we see that
we must have an equality. Consequently, the Mackey formula takes the following
very simple form

0 # Homgr (R (Py), RE(N)~ @ Hompr(Py,*N')
z€Ng(L/,L)¥ /LF

where Ng (L', L)f = {g € G| “L’ = L}. Finally, since N’ (hence “*N’) is simple
there is a non-zero map between Py and *N’ if and only if N ~ *N'. O

Let C be the set of cuspidal classes of G. When A is a field, the combination
of Lemma 10.3 and Proposition 10.6 yields a partition of the set of isomorphism
classes of irreducible representations of G¥ into Harish-Chandra series:

Ir GF = |_| Irr (GF|(L,N)).
(L,N)eC/GF
In addition, if L is a Levi subgroup of a Levi subgroup L’ of G, then by the tran-
sitivity of the induction REN = RE o RE' N. Therefore if M € Irr (L’F\(L, N))

then any constituent in the head of RE M lies in Irr (G¥|(L, N)). This means
Harish-Chandra series are compatible with Harish-Chandra induction.

Remark 10.7. The property that A is a field was needed to make sure that the
category AG¥ had enough projective objects. Note that this holds for a more
general class of rings, such as complete discrete valuation ring (e.g. A = Zy).

10.3 Endomorphism algebras

To finish this series of general results, we shall now describe the set Irr (G*'|(L, N))
for a given cuspidal pair (L, V). This will be related to the representation the-
ory of the endomorphism algebra H (L, N) = Endgr (RE(N)). To this end, let
us consider the Hom-functor

©:AGF-mod — H(L,N)°P-mod
M +—— Homgr(RE(N), M)

Proposition 10.8. If A is a field, the functor © induces a bijection

Irr (GF|(L, N)) <5 Trr #(L, N).
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Proof. We will write H for H(L, N) and X = RE(N) to simplify the notation.
Let I be the annihilator of X in AG. We proceed in three steps, showing that

(i) X is a projective AG/I-module;
(i) if M is such that IM = 0 then ©(M) ~ Hompgr (X, M) =: ©O(M);

(iii) © induces a bijection between the isomorphism classes of the simple con-
stituents in the head of the projective AGY /I-module X and Irr H.

Choose a projective cover Py of N and let P = RE(Py). We have a
surjective map P — X which yields an injective linear map Homgr (X, X) <
Homgr (P, X). Now, we have seen in the course of the proof of Proposition 10.6
that when N is cuspidal these two spaces have the same dimension. Therefore
P — X induces an isomorphism

Homgr(X,X) = Homgr(P,X). (10.9)

Since P is projective, we have Homgr (P,AG") @ ygr X ~ Homgr (P, X) via
the map f ® x — (¢ : p — f(p)x). By the isomorphism (10.9), each
¢z P — X factors through P — X. Consequently

Ker(P — X) C (\Ker ¢, C IP

which shows that P/TP — X is injective, hence bijective and (i) follows.

The inflation functor is a fully-faithful functor from AG* /I-mod to AG¥'-mod.
It induces an equivalence between AGY /I-mod and the full subcategory of
AG¥-mod on which I acts by zero. Now, if X — M is a surjective morphism
of AGF-modules, then by equivariance IM = 0 so that M can be viewed as an
object of that category, which yields (ii).

To conclude it is enough to prove that © induces a bijection between the
isomorphism classes of the simple constituents in the head of the projective
AGT /I-module X and Irr ©(X) = Irr H. Let M be a simple module. Since
X is projective, any non-zero map f : X — M is sent to a surjective map
O(X) =H —» (M) which means that f € ©(M) generates ©(M), and proves
that it is simple. Therefore © induces a well-defined map

{isoclasses of simple modules in the head of X} — Irr H.

This map is injective: if M and M’ are simple modules in the head of X, then
Py is isomorphic to a direct summand of X and one can take mp; € H to
be the projection to this direct summand. If ©(M) ~ ©(M’) as H-modules,
then s - f = f 0w is non-zero for all non-zero f € ©(M’) and in particular
there will be a non-zero map from Pp; to M’. This forces M’ ~ M. For the
surjectivity, let .S be a simple H-module and consider M = X ®4 .S. Then using
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tensor-hom adjunction and the fact that X is projective we obtain

©)

(V) = Hompgr (X, X ®@u S)
~ Hompgr, (X, AG" /I) @prgr,r X @3 S
~H®yS

oV)~S

In particular ©(V) # 0. Since O is exact, there exists a composition factor M
of V such that ©(M) # 0, and by simplicity of S it will satisfy ©(M) ~ S. O

Remark 10.10. Note that the proof of (iii) only uses the projectivity of X,
and nothing from the theory of Harish-Chandra induction or restriction. The
functors Hom 4 (X, —) for X a projective A-module are sometimes called Schur
functors.

We summarize the results of this section in the following main theorem.

Theorem 10.11. Assume that A is a field. Let C be the set of cuspidal pairs
of GI'. Then the irreducible representations of G fall into Harish-Chandra
series
Ir GF = |_| Irr (GF|(L,N)).
(L,N)ec/GF

Furthermore, there is a natural parametrization of each series

Irr (GF|(L, N)) <5 Trr (Endgr (RE(N))).

11 Endomorphism algebras as Hecke algebras

We have seen in the previous section how to classify the irreducible representa-
tions of G in terms of Harish-Chandra series. Each series can be parametrized
by means of the irreducible representations of some endomorphism algebra
H(L,N) = Endgr(RE(N)). The purpose of this section is to study explicity
the algebra structure of H(L, N), starting from the example of (L, N) = (T, A).

11.1 First example

Since a maximal torus T has a unique Levi subgroup (itself), every represen-
tation of T is cuspidal. Therefore from the previous section it makes sense to
consider the algebra

H :=H(T,A) = Endgr (RS (A)).

By assumption T is G-split, so it is contained in an F-stable Borel subgroup
B, with unipotent radical U. By definition RE(A) = AGT /UF @ppr A ~
AGF /BF. In order to simplify the argument in this case we will now assume
that (G, F) is split (which means that F acts trivially on W) and ¢(q — 1) €
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AX. This last assumption ensures that the order of B is invertible in A.
As a consequence AGY/BY ~ AGFepr where egr = [B¥|7! Y, 5r b is the
idempotent corresponding to the trivial representation of B¥'. We deduce that
H and egr AGegr are isomorphic algebras. For w € W, let us define

T = ¢"“) egrwepr.

Note that this element is well-defined since T C B. It follows from the Bruhat
decomposition that the family (T )wew form a A-basis of H.

Let w,w’ € W such that {(ww') = ¢(w) + £(w’). By the Bruhat decomposi-
tion every element of wBw’ lies in Bfww/B¥. Consequently, for all b € BY
we have egrwbw’egr = egrww’egr and we deduce that

T =TT (11.1)

This proves that T, = T, Ty, ---Ts. whenever w = $159---s, is a reduced
expression of w.

Let s € S be a simple reflection. Then an element of sB¥s lies either in
B7sBf or in BY. Now the group sBsNB = BN “B is generated by T and the
U,’s for a € @ \ {a;}, therefore [BF|/|(B N *B)f| = |[UL| = q. We deduce
that
qg—1 1
EBFSEgF + — egrF

q

(egrsegr)® = egrsegrsegr =
which we can write as the quadratic relation
T? = (¢ — )T, +q. (11.2)

In fact, relations (11.1) and (11.2) generate all relations in H, as we will see
from the general theory for these algebras.

11.2 Hecke algebras

Let (W, S) be a Coxeter system. Let q = (¢s)ses be set of indeterminates
satisfying ¢, = q; whenever s and t are conjugate in W.

Definition 11.3. The generic Hecke algebra Hq (W, S) is the Zq,q']-algebra
generated by the elements (Ts)ses subject to the following relations

o (Ts —qs)(Ts+1) =0 for all s € S (order relation)
o T.T,Ts - =T, TsT; - -+ whenever sts--- =tst--- in W (braid relations)

Note that the first relation can be written T2 = (qs — 1)Ts + ¢, as in the
previous example. Each T is invertible with inverse

11—
T = — T+ —1
s g
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The braid relations ensure that we can define elements T, by setting
Tw = T81T82 e Ts,.

for any reduced expression w = s182---8, of w € W. Indeed, by Matsumoto
Lemma this does not depend on the reduced expression.

Theorem 11.4. The family (Ty,)wew s a basis of Hq(W, S) is over Z[gs, q; ']

Proof. The fact that (T.,) generates H,(W, S) is obvious. To show that they are
linearly independent, we construct two representations of H, (W, S) on Z[gs, ¢; '|W
as follows:

_ Jgs—Dsw+gow if sw<w
- sw otherwise

[ (gs —Dws+gw if ws<w
pL)w) = {WS otherwise

We claim that A(Ts) and p(7;) commute for any s,t € S. There are many cases
to look at. For example when I(sw) > l(w) and I(swt) < l(wt), we must have
sw = wt by the exchange lemma and therefore

NTo)p(Ti)(w) = NTs)(wt) = (g5 — 1)swit + gswt
P(T)ATs)(w) = p(Ti) (sw) = (g — 1)swt + gesw = (¢ — 1)swit + grwt

and we conclude using g, = ¢; since s = wtw™!.

Next we show that p and A extend to algebra homomorphisms. The or-
der relation are clearly satisfied. For the braid relation, we consider two re-
duced expressions w = $1:--8, = t1---t, of a given w € W, and we set
A = NTg,) - MTs,) — MTy,) - - AM(T%,). We show by induction on £(v) that
A(v) is zero: it is clear if v = 1 since A(1) = w —w = 0. Otherwise take s € S
such that vs < v and assume that A(vs) = 0. Then vs < vss = v therefore
A(v) = A(p(Ts)vs) = p(Ts)(A(vs)) = 0 since p(Ts) commutes with each A(T}),
hence with A.

Finally, the evaluation of the family (A(Ty))wew at 1 is the basis (w),ew of
Zlqs, q5 ']W, which proves that the elements T,,’s are linearly independent. [

Order relations for the elements T, are deformation of the relation s? = 1
in the group algebra Z[W] obtained by specializing each g5 to 1. The previous
result ensures that the Hecke algebras are flat deformations of the group algebra
ZW , and we can invoke Tits’ deformation theorem to get a bijection between
Irrg H and Irrp W for suitable fields K and L. We

Proposition 11.5. There exists a finite extension K of C(q) such that the
specialization map qs — 1 induces a bijection

Irrg H LN Irre W
Xa 7 X
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Remark 11.6. Using the fact that KH is a symmetric algebra, one can actually
prove that this result remains true for any specialization of g5 outside the roots
of unity.

11.3 The Hecke algebra #(L, N)

For (L,N) = (T,A) we constructed for each w € W an endomorphism T,
satifying Hecke relations. We are now going to extend this construction to any
cuspidal pair.

Assume that A is a field, which is large enough for LY. Let W(L,N) =
Ng (L, N)/L be the automizer of the pair (L, N). For n € N(L,N), the L-
modules V and "N are isomorphic, therefore there exists a bijective linear map
Yo : N =5 N such that v, (I-z) = ["-,(z) for all | € L and z € N. Given two
elements n,n’ € N(L, N), the composition 7;7}, 0 Ypr © ¥ is an endomorphism
of the L¥-module N. Since N is simple and A is big enough, Endp,r (N) ~ A,
therefore there exists a scalar A(n,n’) such that

Tn’ © Yn = )\(n, n/)’Yw'w’-

Furthermore, A : N(L,N) x N(L, N) — A is a 2-cocycle.
Since N is cuspidal, any restriction of N to a proper G-split Levi subgroup

is zero. This simplifies the expression of the Mackey formula. More precisely,
Theorem 9.6 yields the following isomorphism of A-modules

H(L,N) =Endgr(REN)~ @  Homyr(N,"N) (11.7)
weEW (L,N)F

where n,, is any representative of w € W (L, N) in N(L, N)¥. Note that it
is unclear how to describe the algebra structure on the right-hand side, and
this is exactly the problem we would like to address. Since N is simple and A
large enough, each Homy,» (N, "N) is one-dimensional and generated by v,. In
particular, H(L, N) is free of rank |W (L, N)¥| over A.
Recall that the isomorphism (11.7) comes from a decomposition of UF\ G /U

into double cosets UM\P¥nP¥ /U¥. Following the proof of the Mackey formula
we see that the linear maps ,, correspond via (11.7) to the operators

B, : geyr @ x — gegyrneyr @ Yn(x).

Note that this linear map is well-defined since neyr @7, (Iz) = neyr U™y, (x) =
neyrl™ @ yn(r) = Ineyr @ yu(x). Moreover it is clearly GF-equivariant, and
one can check as an exercise that it does correspond to 7, via (11.7). This yields
the following result:

Lemma 11.8. For any set of representatives n,, of W (L, N)¥' in N(L,N)F,
the family (Bn,, )wew ,nyF 15 a basis of H(L, N) over A.
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We now fix a specific set of representatives n,, of W (L, N)¥" in N(L, N)¥
such that nyw = nyne whenever L(ww’) = €(w) 4+ £(w’). To simplify the
notation we will denote by w = n,, such representative and by B, := By the
corresponding element of H (L, N).

Lemma 11.9. Given w,w’ € W(L, N)' such that {(ww') = f(w) + l(w') we
have
By = )\(d},’lbl)Bw o By

in the algebra H(L, N).

Proof. Let a € ®t be a positive root. Assume that w'~ () < 0 and let
B = —w'""(a) > 0. We have w'(8) < 0 and therefore —w(a) = ww'(8) < 0
since £(w) + ((w') = L(ww'). This proves that w' '(a) > 0 or w(a) > 0.
Consequently, with U being generated by the U, for a > 0, we have wuw’ €
Ui’ UF for all w € UF. This proves that

€UFw€UF1j)/€UF = €UFw?j)/€UF
and the lemma follows. O

If M is a G-split Levi subgroup containing L, we can consider a smaller
Hecke algebra Endygr (RM(N)). Let w € Wy (L, N)F. Using the equation
(11.7) for M instead of G one can define an element By, € Endyr (RM(N))
corresponding to 7,,. Then by construction B,, is the image of Bm,,, under the
parabolic induction functor RI\G/I. We deduce the following result:

Lemma 11.10. Let M be a G-split Levi subgroup containing L. Assume that
W (L, N)E' has order 2. Then for w € Nm(L, N)E the operator By, of H
satisfies a quadratic relation.

Proof. If w = 1 it is obvious since in that case B,, is the identity. Otherwise,
EndMF(Ri\J/I(N)) has a basis given by the identity Bnp1 and Bw . Writing
(Bm,w)? in this basis gives a quadratic relation for Bu ., and hence a quadratic
relation for B, = RIC\;/I(BM,w)~ O

To finish with the description of H, and endow it with a structure of a Hecke
algebra, one would need to solve the following problems:

(P1) Describe the (normal) subgroup of Wg (L, N) generated by the non-
trivial involution in the various Wy (L, N)¥ when M is such that Wiy (L, N)¥
has order 2.

(P2) Give the explicit quadratic equations satisfied by B ., when Wiy (L, N)¥
has order 2; this is related to computing the parameters of the Hecke
algebra structure describing H.

(P3) Compute the 2-cocycle A.

49



A general solution to these problems has yet to be found. However, it has
been completely solved in the case where A = C, by a combination of work
by Lusztig, Howlett-Lehrer and Geck. In that case Wg (L, N)¥" is a Coxeter
group and is generated by the various subgroups Wn(L, N)¥ of order 2, the
quadratic relations are explicit in terms of the dimensions of the two irreducible
summands of RM(N) and the 2-cocycle A is trivial. The following theorem
summarizes their results:

Theorem 11.11. Assume A = C and let (L, N) be a cuspidal pair. Then there
exists

e a set of involution S(L,N) C W (L, N)¥' making (W (L, N)¥',S(L,N)) a
Cozeter system;

e for each s € S(L,N), a power of q denoted by qs such that g = q; when-
ever s and t are conjugate in W (L, N)F';

e for each w € W(L, N)' a scalar \y;

such that the map

Ty, +— AwBuy
s an isomorphism of algebras.

Recall from Proposition 10.8 that the irreducible representations lying in
the Harish-Chandra series above the cuspidal pair (L, N) are parameterized by
irreducible representations of H (L, N). The previous theorem ensures that the
latter are parametrized by representations of the Coxeter group W (L, N)" (see
Proposition 11.5 and Remark 11.6).

Corollary 11.12. Let (L, N) be a cuspidal pair over C. Then
Irr (G |(L, N)) 5 Trre W(L, N)F.

Ezample 11.13. Let G = GL,,, and F' be the Frobenius endomorphism on G
giving the general unitary group Gf' = GU,(q). If there exists a unipotent
cuspidal complex character p of GU,(q) if and only if n = ¢(t — 1)/2 for some
t € Z>o (see 15.1 for the definition of unipotent characters). Furthermore, if
such a character exists it is unique, and we will denote it by p;. If ¢ = 0 or
t =1, p; is just the trivial character.

Fix t > 0, n =t(t — 1)/2 and consider the group GU,129/m(q). A GU,qom,-
split Levi subgroup of GL,, 4.2, of semisimple rank n—1 is given by the standard
Levi subgroup corresponding to the subset I = {41, @mt2, .-, @mpn—1} Of
the set of simple roots {aq, ..., an+2m—1} of GLytam. Since F(a;) = ptam—i,
it is stable by F (see Figure 1). Therefore L; is F-stable and we have LI ~
GU,(q) x (F2)™. The character p; can be inflated to an irreducible character

of LY. Tt is still the unique unipotent cuspidal character of L and therefore
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(651 Qo (0779 fam+1 aernf\l A2m4n—1
O—O0 O——0 o0—oO0 - 0—>0
F

Figure 1: Dynkin diagram of GU,, 42, (q)

any element of the normalizer of L; normalizes the pair (Ly, p;). In particular
W(Ls,p)" = Na(Ly)" /L =~ Nw(Wp)" /WT.

The general procedure for constructing generators of Ny (W) /WE is as
follows: take « ¢ I, consider the orbit w, = {a, F(a),...} of simple roots under
F, and set wy, = wiyw,wr. Here, if j ¢ {m,...,n+ m} then a; is orthogonal
to every element in I so that wa; = $;snyom—j, which corresponds to the
permutation (4,7 +1)(n+2m —j,n+2m — j+1). Otherwise if j € {m,n+m}
then w,, corresponds to the permutation (m,n 4+ m + 1). One can check that
these involutions endow Ny, (W;)¥ /WF of a structure of Coxeter group of type
B,,. By the previous theorem, Endgr (RS} pt) is a Hecke algebra of type B,,.
The parameters of this Hecke algebra are given in Figure 2. Note that w,, and
wq, are conjugate if and only if 7,7 < m.

wa”L wam—lwanL72 wal
O—O0—O0—0O - o—O
2 2 2
q2t+1 q q q

Figure 2: Parameters of the Hecke algebra

To finish this section, we state a compatibility theorem due to Howlett-
Lehrer between parabolic induction and usual induction in the Coxeter groups.
We still work in the particular case where A = C.

Theorem 11.14. Assume that A = C. Let L C M be two quasi-simple Levi
subgroups of G and N be a simple cuspidal ALY -module. Then we have the
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following commutative diagrams:
ZIhr (G, (L,N)) =<——— ZIr Wg(L,N)*
F
TRSI Indxl\G/I (<I£‘,7ZJVV ))F T

ZIrr (MF,(L,N)) ZTrr Wy (L, N)¥

ZIrr (G, (L,N)) <———— ZIr Wg(L,N)*
\L *RS R,es“:VVI\G/I(:I"’,II\;))FF l

ZIrr (MF, (L, N)) ZTrr Wi (L, N)F

12 Alvis-Curtis-Kawanaka duality

Throughout this section we shall assume that A = C is the field of complex
numbers. In that case the category CG-mod is semi-simple, and we shall focus
on its Grothendieck group Ko(CG*-mod). A Z-basis of this group is given by
the complex irreducible characters, and as such any element of Ko(CG*-mod)
can be thought of as a wirtual character. The Harish-Chandra induction and
restriction functors induce linear maps on virtual characters that we will still
denote by RE and *RE.

To avoid technical difficulties, we will always assume in this section that F' is
a Frobenius endomorphism. Under this assumption we will define and study the
F-rank of an algebraic group, which we will use to define the duality operator.

12.1 [F,-rank

Let T be a torus, and F' be an endomorphism of T corresponding to an IF-
structure. Then the map 7 = ¢ 'F is an linear endomorphism of X(T) ® R
which has finite order (the order is 1 if and only if T is split).

Definition 12.1. The Fj-rank of a torus T is
Fy-rank(T) = dim (X (T) ® R)".
It is also the rank of the largest Fy-split torus in T.

Let H be an algebraic group, and F be a Frobenius endomorphism of H
defining an F,-structure on H. Since two H-split tori of H are H -conjugate,
the following definition makes sense:

Definition 12.2. Let H be an algebraic group endowed with an Fg-structure
via a Frobenius endomorphism F'.

(i) The Fy-rank of H is the Fy-rank of any H-split mazimal torus of H.
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(i) The Fg-semisimple rank r(H) of H is the Fy-rank of H/R(H).

Remark 12.3. Let T be a H-split maximal torus of H. Using the exact sequence
0 — X(T/R(H)) — X(T) — X(R(H)) — 0 and the fact that 7 has finite
order, we get

r(H) = Fy-rank(H) — Fj-rank(R(H)). (12.4)

In the case where H is a reductive group, then the semisimple rank can be
computed in terms of the root system defined from a H-split torus.

Lemma 12.5. Let G be a connected reductive group, T be a mazimal torus,
and ® = ®(G,T) be the corresponding root system. Set V. = X(T)®@ R and
7=q 'F € End(V). Then

(i) Fq-rank(R(G)) = dim ((®¥)-NV7).
(it) If T is G-split, 7(G) = dim ((®) N V7).

Proof. By Proposition 7.10, there exists ¢ € G such that 9T is G-split and
w = g 'F(g9) € Ng(T). If B is an F-stable Borel containing 9T, then BY is
an wF-stable Borel containing T. Since w acts trivially on (®V)*, we deduce
that

dim ((@¥)* NV7) = dim ((@V)* N V*7)
and therefore we can assume that T is G-split without loss of generality.

The torus T/R(G) is a G/R(G)-split maximal, and ® is the image of
®(G/R(G), T/R(GQ)) via the F-equivariant embedding X (T/R(G)) — X(T).
Since G/R(QG) is semisimple, its root system spans the real vector space X (T/R(G))®
R and we deduce (ii). Assertion (i) follows from Equation (12.4). O

Remark 12.6. If B is an F-stable Borel subgroup containing T, then from
Lemma 12.5 we deduce that for any F-stable subset I of S the F;-semisimple
rank of the corresponding parabolic subgroup equals the number of orbits of F
on I:

r(Py)=r(L;) = |I/F|.

12.2 Duality

Let L be a G-split Levi subgroup. Then for g € G, we have RG oad g = ad goRE
and *Rf];L oadg =adgo *RS. In particular, the composition R]Cj ) *RE depends
only on the G¥-conjugacy class of L.

Definition 12.7. Let B be an F-stable Borel subgroup of G. The Alvis-Curtis-
Kawanaka duality is the linear map on Ko(CG¥-mod) defined by

Dg =Y (-1)"®Rf o *RE
PCB

where P runs over the F-stable parabolic subgroups containing B and where L
is any F'-stable Levi complement of P.
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Since any two F-stable Borel subgroups are conjugate under G¥', we deduce
from the above discussion that definition of Dg does not depend on B. If we
fix an F-stable maximal torus T of B, then all the parabolic subgroups and
their Levi complements can be assumed to be standard. In that case we can
use Remark 12.6 to write

De= Y  (-)"FIRE o*RE.
ICS, F(I)=I

Since RE and *Rf’ are adjoint maps, then Dg is clearly self-adjoint. In
terms of characters, this means that given two complex characters p and x of
G! we have

(Da(p);x)ar = (p; Da(X))ar-

The behaviour of Dg with respect to Harish-Chandra induction and restriction
is much deeper, and the proof of the following result, due to Curtis, will be at
the heart of this section.

Theorem 12.8. Let M be a G-split Levi subgroup. Then

DgoR$ =RS oDy and Dyo *RS; = *RS; o De.

Proof. Computing Dg o RE/I involves computing Rf o *RE o RS[ for G-split
Levi subgroups L and M. To this end, we shall use the Mackey formula. For
each L, we fix a system of representatives Ry, for L¥'\S(L, M) /M¥. Then

Dgo RS = Z (—1)"® RS ¢ *RE o RS,

POB

= Z ( T(P)RG ( Z RLI"W’M o *Rilr\-]/ImM oad .fL')
POB TzERL

= Z (—1)T(P)< Z RE onp 0 *RyMy 0 ad x)
POB TERL

= Z (-1 T(P ( Z RLImM ° RLmM)
POB TERL

Dg o Rl(\;/[ :RI\G/I © ( Z (_1>T(P)( Z Rll\gmM ° *RII\,/'IIQM))
POB TxERL

where we used RS .y road @ = RE, \ for the before to last equality (note that
r € GF).

We now want to relate the right-hand side to the duality Dng. Let Byg be
an F-stable Borel subgroup of M. For each x € S(L, M), the group MNP is
an F-stable parabolic subgroup of M, containing the F-stable Borel subgroup
MNB®. Up to multipliying 2 by an element of M’ on the right, we can assume
that M N B* = B),. This yields a map

p : L\S(@L,M)F'/MI" — {PY]|gec G and By C PY}.

o4



First note that this map is well-defined: if x € S(L,M)¥ is such that P® and
P*™ contain Bjs, then P N M and P* N M are two conjugate parabolic
subgroup which contain Bpg, so they must be equal. Since parabolic subgroups
are self-normalizing, then m € P* N M and therefore P*™ = P*. The map
pp is also clearly surjective since F-stable Levi subgroups of P are conjugate
under P¥. Finally, we show that it is injective: if P9 = P" then hg~' € PF.
We deduce from Proposition 8.9 that LY N M and L N M are both rational
Levi subgroups of M NPY, therefore they must be conjugate under (M NU9)E.
Therefore up to multipliying 4 on the right by an element of (M NUY)¥, we can
assume that LYNM = L"NM. But then L9 and L" contain a common maximal
torus of P9 so that they must be equal by Proposition 8.7. Consequently hg~! €
Npr (L) = LY, which proves that g and h are equal in L¥\S(L, M) /M*".

The map (P,z) — ¢p(z) induces a bijection between the pairs (P,x)
where P O B and x € LF\S(L, M)¥ /M and the parabolic subgroups Q of
M containing Byj. Note that this bijection preserves the F,-semisimple rank
of the parabolic subgroups. As a consequence, we can transform the expression
of Dg o Rl(\;,[ obtained previously into

Da o By = R§io (Y (~1) @ RMono “Rion ).
QDBMm

where the sum runs over the F-stable parabolic subgroups Q containing By,
and where L’ is any F-stable Levi complement of Q containing a maximal torus
of M. For such a group Q, we can consider the parabolic subgroup P, = QNM
of M containing the Borel subgroup Byg of M. The group Ly = L' N M is an
F-stable Levi complement of Q N M and we can write the previous sum as

DGoRS[:RI\G/Io( 3 ( 3 (71)T(Q))RII\‘/IMO*RLMM>.

PnvDOBuM QNM=P ),

where Pj; runs over the F-stable parabolic subgroups of M containing Bpg
(with Levi Lyg) and Q over the F-stable parabolic subgroups of G such that
QNM = Pypg. The formula stated in the theorem now follows from the following
Lemma.

Lemma 12.9. Let H be an F-stable Levi subgroup of G and R be an F-stable
parabolic subgroup of H. Then
Z (_1)7(Q) — (_1)7'(R)+]Fq—T'aTLk(G)+Fq—7'a7Lk(H)
QNH=R

where Q runs over the F-stable parabolic subgroups of G.

Proof of the Lemma. Let T be an F-stable maximal torus of H. We work in
the real vector space V = X(T) ® R. Recall that 7 = ¢~ 'F is an isomorphism
of V of finite order. Given K a subgroup of G containing T, we denote by ®k
the set of roots « such that U, C K. Recall from Proposition 8.8 that if L is
the unique Levi complement of Q containing T then @y, = ®q N (—Pq). Since
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Q is F-stable, we have Fy-rank(Q) = F,-rank(G) and therefore using Lemma
12.5 we obtain

r(Q) =Fgrank(Q) — dim(®g N (—@q)") NV7”

=F,rank(G) — dim(®g N (—®q)") NV,
To a subgroup K of G containing T we associate the following set:
a;z) =0 for a € DY N (—Dy,
ro Loy | e N (- 85)

(a;z) >0 for a € P\ (—Py)

Given z € V, we can consider ¥, = {ov € ® | (a;x) > 0}. Then & = ¥, U(—¥,)
and we can use Proposition 8.8 to see that the subgroup generated by T and
U, for a € ¥, is a parabolic subgroup containing T. This has the following
consequences:

(i) Each element z € V lies in a set Fq for a unique parabolic subgroup Q
containing T (with the previous notation ¥, = ®q).

(i) FqN7(Fq) # 0 if and only if Fq = 7(Fq), in which case Q is F-stable.

(i) Fq N Fr # 0 if and only if Fq C Fgr, which in turn is equivalent to
O = Pq N Py (or equivalently R = QN H).

Each set Fq is open in its support (g N (—®))*, therefore its dimension
as a subvariety of V' equals the dimension of this vector space. Moreover, if
T(FqQ) = Fq (i.e. if Q is F-stable) then Fq NV is a convex set. In addition
it is non-empty since it contains the average of any orbit under 7 of elements of
Fq. We deduce that

dim(FqNV7) = dim(®§ N (—(I>é)>L NV7T = Fgrank(G) — r(Q).

The same argument using R instead of Q shows that the formula we want to
prove is equivalent to

Z (_1)dim]~'Qr‘|VT _ (_1)dim]-'RﬁVT.

T(FQ)=Faq
]'—Q CFRr

By restriction to V7, the sets Fq N V7 for Q an F-stable parabolic subgroup
containing T form a partition of V7. By (iil), the condition Fq C Fgr is
equivalent to the fact that the convex sets Fq N V" and Fr N V" have a non-
trivial intersection. Now the sets Fq N V7 are exactly the facets of the set of
hyperplanes V7 N Ker («; —) of the vector space V7. Therefore it is enough
to prove that given a vector space E and a convex union of facets C' of an
hyperplane arrangement, we have

Z (71)dim}' _ (71)dimC

FcCC
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where F runs over the facets of the hyperplane arrangement such that F C C.
This is the expression of the Euler characteristic of C. O
Proof of the theorem. We apply the Lemma to H = M and R = Py;. Note that
the F,-ranks of G and Q are equal since M is G-split. This gives the equality
Dgo RIC\;/I = Rl(\;,I o Dy. The corresponding relation for the parabolic restriction
follows by adjunction. O

,From Theorem 12.8 we deduce two important results. First, that Dg is
an involution on the space of virtual characters, and second that it sends an
irreducible character to a signed irreducible character.

Corollary 12.10. Dg o Dg is the identity map on Ko(CG¥-mod).

Proof. We use the expression of D¢ in terms of standard Levi subgroups. Using
in addition Theorem 12.8 we get

DgoDg= » (-1)/RE o*Rf oDa
ICS/F
= > (-DYIRE oDy, o *RE,.
ICS/F

The group B; = BNL; is a Borel subgroup of L; containing T. By Proposition
8.10, the F-stable standard parabolic subgroups of L are of the form P ;N L;
for J C I, with a Levi complement L ;. Therefore

Dg o Dg = Z (_1)\1\+|JIRSI ° Rfﬂ o *Rif, o *RE,

JCICS/F

= Z (~)IHIIRE o *RE
JCICS/F

= > (X" RE, o RE,
JCS/F IDJ

which equals Id since ZJC[Cs/F(—l)m = 0 whenever J # S/F (it is the
expansion of (1 — 1)™ with n being the number of elements in the complement
of Jin S/F). O

Corollary 12.11. Let x be an irreducible character of G¥', and (L, p) be the
cuspidal pair such that x € Irr (GF, (L, p)). Then (=1)"™Dg(x) is an irre-
ducible character of GF'.

Proof. If x is irreducible, the virtual character Dg () satifies
(Da(x); Da(x))ar = (x;Da o Da(x))ar = (x;X)ar =1

since Dg o Dg is the identity by Corollary 12.10. Therefore one of Dg(x) or
—Dg(x) is an irreducible character. Now we use Theorem 12.8 and the previous
corollary to get

0 < (x:RE(p))ar = (Da(x); Da(RE (p))ar = (Da(x); Rt (DL(p)))ar-
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But with p being cuspidal, we find Dy, (p) = (—1)"™p using the definition of
Dy, and the result follows from the previous inequality. O

13 [-adic cohomology

Given X an F,-variety and ¢ a prime number not dividing g, Grothendieck
has constructed “I-adic cohomology groups with compact support” H:(X,Q,)
which are finite dimensional Q,-vector spaces. Here compact support could have
been called “proper support”; proper morphisms are the algebraic geometry
equivalent of compact morphisms: technically they are separated, of finite type,
closed and they remain closed by base change. The important points for us is
that finite morphisms are proper, and if f o g is proper and f separated, then
g is proper. In particular, a finite order automorphisms, or an endomorphism
which has a power equal to a Frobenius endomorphism, is proper.

Proposition 13.1.

(i) H(X,Q,) =0 ifi ¢ 0,...,2dimX].

(ii) Every proper morphism f : X — X induces a linear map f* on HL(X,Q,)
and f — f* is functorial.

(iti) “Trace formula”: If F is the Frobenius endomorphism attached to some

Fy-structure on X, then F* is invertible and |X¥| = Trace(F* | H}(X)), where
H} denote the virtual vector space >_,(—1)'H}(X, Q).

The trace formula is an analogue of the Lefschetz theorem in algebraic topol-
ogy; if g € Aut(X) is of finite order, we define the Lefschetz number of g on X
as £(g,X) = Trace(g" | Hz(X)).

Corollary 13.2. For g € Aut(X) of finite order and F-stable, let R(t) =
=3 o X, Then L£(g,X) = R(t)|t=c, and is an integer independent of
0.

Proof. By 6.9 (iii) for any n > 0 the morphism gF" is a Frobenius endomor-
phism so verifies (iii) thus R(t) = — >, ., Trace(gF™ | Hx(X))t".
Since F' and g commute we may choose a basis of H}(X) where they are

both triangular. If Aq,..., \; are the eigenvalues of F and x1, ...,z those of g
we have
k k it
1
R =~ 0D Nt = Y
n>0i=1 =1

It follows that R(t)|i=co = Zle x; = L£(g,X). The independence of ¢ follows
since ¢ does not appear in the definition of R(t). Further, the formula above
shows that R(t) is a rational fraction. As a formal series with integer coefficients,
it is a rational fraction with integer coefficients, thus £(g, X) is a rational num-
ber. It is also an algebraic integer as the trace of g on a representation, thus it
is an integer. O
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We give now the main properties of Lefschetz number, which reflect prop-
erties of f-adic cohomology we will mention. Sometimes the properties result
directly from 13.2 and we will give the proof.

Proposition 13.3.

(i) Let X1 C X be a closed subvariety and let Xo be the complement open
subvariety. We then have a long exact sequence

o= HY(X, Q) = HY(X, Q) = H (X,,Q,) — H(X1,Q)) — ...

in particular HX(X) = HX(X1) + HX(X2). The boundary maps vanish if Xy
and Xso are connected components.

(it) Let X = []; X; be a finite partition into locally closed subvarieties; if g €
Aut X of finite order stabilizes the partition then L(g,X) = Z{j\ng:xj} L(g,X;).

Proof. (ii) follows from (i). It results also from 13.2 taking a Frobenius endo-
morphism F' commuting to g and stabilizing each X, in which case it is clear

that [X9F"| = ¥, [X977. O

Corollary 13.4. Let X be an Fq—vam’ety of dimension 0. Then

(ii) Aut(X) identifies to the symmetric group on X, and H} (X) ~ Q,[X] is the
corresponding permutation module; for g € Aut(X) we have L(g,X) = |X9|.
Proof. These facts follow immediately from 13.1 and 13.3. O

Proposition 13.5. Let X and X' be two F,-varieties. Then

i) HF (X x X', Q) ~ @, ._, H(X,Q,)®= HI (X' Q,) (“Kunneth theorem”).
c L i+j=k *tc L) EQ, He L

(i1) Let g € Aut X, ¢’ € Aut X’ be of finite order. Then L(g X ¢, X x X') =

L(g,X)L(g, X").

Proof. (ii) follows from (i) but again can be deduced from 13.2. Let r % ¢/
denote the Hadamard product .-, a;b;jtt of two series 7 = Y i>o a;t* and
r = 3,50 bit'. We need to show that when r = > o, |X9F"[t" and v’ =
Y on>1 IX/9"F" 7 then —(r % 1')|i—oc = —T|¢t—o0 X —7'|t—oe. This follows from
the proof of 13.2 which showed that these series are linear combination of series
5 which have this property. O

Proposition 13.6. Let H C Aut X be a finite subgroup, and let g € Caurx (H)
of finite order. Then

(i) We have an isomorphism of Q,[g]-modules: H!(X)H# ~ H{(X/H).
(ii) L(g, X/H) = [H|™' 32 cpy L(gh, X).
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Proof. Note that the quotient X/H always exists since we assumed our vari-
eties quasi-projective. Again, (ii) results from (i) or from choosing a Frobenius
endomorphism F' commuting to g and all elements of H; then

= H[ Y e

heH

(/)7

Proposition 13.7. Let X >~ A™ be an affine space. Then
1, ifi=2n
0, otherwise

(i) dim H{(X, Q) = {

(it) For any Frobenius endomorphism F' on X defining an Fy-structure, we have
(X =q".
(i1i) For any g € Aut(X) of finite order we have L(g,X) = 1.

Proof. (ii) and (iii) follows from (i): the endomorphism F acts on the 1-dimensional
space H2"(X,Q,) by some scalar \; for any m > 0 we have | X" | = \™ thus \ is
a non-zero integer. Let Ay be the F,-structure on A = Fq [Ty, ..., T,] attached to
F asin (ii); then for some extension Fyno we have Ag®p, Fyno =~ Fgno [T1, ..., Tp];
indeed, take ng such that the generators of Ay lie in Fyno [T4,...,T,]; then
Ay ®F, Fgno C Fgno[T1,...,T;,] which implies equality since these two Fgno-
vector spaces become equal after tensoring by F,. Thus for m multiple of ng we
have |[XF™| = ¢™", which proves A = ¢" and gives (ii); (iii) follows. O

Proposition 13.8. Let X = X/ be a surjective morphism with fibers isomor-
phic to A™. Then:

(i) H(X,Qy) ~ H!72"(X',Q,)(—n), a “Tate twist”, which means an isomor-
phism as vector spaces and that for any Fy-structure on X the action of F' on
Hi{(X,Qy) is q" times that of F on H:7?™(X', Q).

(i1) If g € Aut X (resp. ¢’ € Aut X') are of finite order and such that ¢'m = g
then the isomorphism of (i) sends g* to g'*.

(iii) In the situation of (ii) we have L(g,X) = L(¢',X').
Proof. (iii) follows from (i) and (ii) but can also be deduced by choosing Fg-

structures on X and X’ compatible with 7, g and ¢’. For the correspond-
ing Frobenius F' we have by 13.7 that [X97"| = D yexra Fm [T (y)9F"

|X/'9"F™ |g™" whence the result. =

Proposition 13.9. Let G be a connected linear algebraic group acting on X.
Then

(i) G acts trivially on HL(X,Qy) for all i.
(i1) For all g € G we have L(g,X) = L(1,X).
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Proof. Again, (ii) follows from (i) but also from choosing F,-structures on G
and X which make the action compatible with the corresponding Frobenius,
that is F'(gx) = F(g)F(x) for all (¢g,z) € G x X. Then for every n, by Lang’s
theorem there exists h € G such that h.7"h~' = g and z — h~'z gives a
bijection X9 ~ X" thus |X9""| = |XF"| which gives the result. O

Proposition 13.10. Let g = su be the decomposition in a p'-part and a p-part
of g € Awt X of finite order. Then L(g,X) = L(u, X?).

Proof. This proposition cannot be deduced from the definition of the Lefschetz
number directly; it reflects deeper properties of /-adic cohomology. O

14 Deligne-Lusztig induction

Here again G is a connected reductive group over F,, with an isogeny F such
that some power is a Frobenius.

We would like to construct an induction RS when L is an F-stable Levi
which is not the Levi of any F-stable parabolic subgroup.

Ezxample 14.1. In the case of the unitary group, if n # m, the F-stable Levi

<Ig)” U(') > is not the Levi of any F-stable parabolic subgroup; F' exchanges

the upper and lower triangular matrices.

The idea of Deligne and Lusztig is to construct an F,-variety X attached
to the unipotent radical U of a parabolic subgroup of Levi L, with commuting
actions of G and L on X, and use H}(X) as a module to define induction.

Further, we want this construction to generalize Harish-Chandra induction, that
is when U = U we should have H}(X) ~ Q,[Gf /UT].

Definition 14.2. Let Xy be the variety {gU € G/U | gUN F(gU) # 0}. It
has an obvious left G -action, and a right L -action since L normalizes U.
We define

(i) Lustig induction of a Qu[L*]-module by RE-p(M) = H}(Xy) ®g,mLr) M-
If X\ is the character of M, then

(REM(9) = ILFI7 37 L((9,), Xu)A( ™).

leLF

(i) Lustig restriction of a Q,[G*']-module by *RE_p(M) = Mg, grHe (Xu).
If v is the character of M, then

CREVO) =G Y £((9:1), Xu)v(g ™).

geGF
If P is F-stable, then U too, and gUNF(gU) # (§ if and only if gU = F(gU).

In this case Xy ~ G /U*, a discrete variety, and H}(Xy) reduces to HY,
which equals Q,[GT/UT].
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We will denote the variety X% if we need to specify the ambient group.
Note the following alternative models for Xy:

Xu={9UeG/U|g 'F(9) e U-F(U)}
={9(UNF(U)) € G/(UNF(U)) | g~ 'F(g) € F(U)}

where we have still a left action of G¥ and a right action of L. Note that the
last model shows that dim Xy = dim U — dim(U N F(U)).
Lusztig induction is transitive, as is Harish-Chandra induction:

Proposition 14.3. (Transitivity) Let P C Q be two parabolic subgroups of G,
such that there are F-stable Levi subgroups L of P and M of Q with M C L.
Then RSCP ° RIMCLmQ = RIE;/ICQ'

Proof. We have to show (see 9.5) that
H;(Xu) ®g,rr) He(Xvaw) = HI(Xv)

where P = LU and Q = MV are the Levi decompositions. If G is a finite
group with a right action of the variety X and a left action on the variety
Y, we denote X x¢ Y the quotient of X x Y by the “diagonal” action where
g € G acts by (g,971). From the properties 13.5 and 13.6 of the cohomology,
we see that the statement would come from Xy Xp,r XyvnL =~ Xv. This has
a proof similar to 9.5 since if we set V' = VN L and gU N F(gU) # 0 and
IV'NFE(IV') # 0 then gIV N F(glV) # 0. Conversely, if gIV N F(glV) # 0
then g € F(g) € PF(P) = LUF(U), so by modifying g by some element
of L we may assume that g~1F(g) € UF(U). Then gU N F(gU) # 0 and
glV N F(glV) # 0 can be written Ug~*F(g)F(U)N F(IV')V'I= # (). As the
left term is in UF(U) and the right one in L the intersection must be 1 (since
PNF®P)=L-(UNF(U)) by 89)solV' NF(IV’') #0. O

It is conjectured that Lusztig induction satisfies “Mackey formula”:

Conjecture-Theorem 14.4. Let P and Q be two parabolic subgroups of G
and L (resp. M) and F-stable Levi of P (resp. Q). Then, conjecturally:

* G G _ L * "M
Rgcp o RMCQ = E :RmeMCLmQ o “Ryfemcpnem © ad T,
xr

where x Tuns over representatives of LI'\S(L, M)¥' /MY, where S(L,M) = {z €
G | LN *M contain a mazimal torus of G }.

This is known in the following cases (the proofs are rather complicated):
e L or M is a torus (Deligne-Lusztig, 1983; see [Digne-Michel, 11.13]).

e When ¢ # 2 or G has no component of type 2Eg, E; or Eg (see [Bonnafé-Michel]).
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As in 10.1 the Mackey formula shows the independence from P of RE p in
the above cases.

It also allows to follow the proof of 12.8. But since eg := (—1)
is not necessarily equal in our case to ep, := (—1)Ferank(L) the application of
Lemma 12.9 gives

Fg-rank(G)

Theorem 14.5. We have Dg o RE = EGsLRS‘,

When L is a torus T and 0 € Irr(TF) the characters RS (#) where intro-
duced in [Deligne-Lusztig] (1976) and are called Deligne-Lusztig characters. We
will now concentrate on Deligne-Lusztig characters to simplify the exposition,
though most theorems we give have (more complicated) analogues for general
RS,

The RS (0) generate “almost all” class functions on G¥'. A class fonction is
said uniform if it is a linear combination of Deligne-Lusztig characters. Lusztig
has shown that the characteristic function of a geometric conjugacy class is
uniform; thus for instance in GL,, (F,) and U,,(F,) all class functions are uniform.

For Deligne-Lusztig characters, the Mackey formula reduces to a scalar prod-
uct formula:

Corollary 14.6. Let T and T’ be to F-stable mazimal tori, and 0 € Irr(TF),
¢ € Irr(T'F). Then

|Ngr (T,0)/TF|, if (T,0) and (T’,0") are G -conjugate
0 otherwise.

(RS (6), RS, () = {

We note in particular that RS (0) is an irreducible character up to sign if 0
is in general position, that is is not invariant by a non-trivial element of Wg (T);
this is the case for almost all § (a Zariski open set).

14.1 The character formula

We denote by G, the set of unipotent elements of an algebraic group G.

Definition 14.7. Given T, an F'-stable mazximal torus of G and a Levi decom-
position B = TU of a (possibly non F-stable) Borel subgroup containing T, the
Green function Q$ : GI' — Z is defined by u — RS (1d)(u).

Proposition 14.8. We have QS (u) = | T |71 L(u, Xy).

Proof. By definition and 13.10 we have QF (u) = [T¥ |71 Y, .pr L((u, 1), Xu) =
ITE |71 Y cpr L(u, XY;). But X{; =0 unless ¢ = 1. O

Proposition 14.9. (character formula for R$ and *R$) Let T be a F-stable
mazimal torus of G and let 0 € Trr(TY) and su be the Jordan decomposition of
an element of G¥, then

(RE0)(su) = [Ca(s)°" 7 Y Que™ (w)"(s) (i)
{heGF|sehT}
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and let v € Irr(GF) and t € TF, then

CREN®) = TFICe° 170 Y Q™ (w(tu) (i)

ueCq(t)°l

Proof. The main step is the following lemma.

Lemma 14.10. With the above notation, we have

L((su,t), Xu) = [TFlICe°"]7H Y Qe (M)
{heGF |ht=5—1}

Proof. From 13.10 we get L£((su,t),Xy) = Trace(u | H(X3')). Let V :=
UNFU), U;:=UNCg(t)° and V; := VN Cq(t)°. We first show that

X%t ~ H XIC-;G(t)O
[hEIGF /Ca (1) F]|sh=t-1}

where [GF /Cg(t)°"] denotes a set of representatives of G¥ /Cg (t)°F. Choosing
the model Xg&"" = {2V, | 271F(2) € F(U,)} and the model X& = {gV |
g 'F(g) € F(U)}, the isomorphism is given by mapping 2V, in the piece
indexed by h to hzV. This last element is in X%t since shzVt = shztV =
shtzV = hzV since sht = h. To show that each element of X3;' is in the image
of a piece, we use

Lemma 14.11. Any semisimple element of tVF is V¥ -conjugate to t.

Proof. Let t' be a semisimple element of tVF. Since V¥ is normal in the group
K = (t,VF), ¢ and V¥ also generate this group, since ¢ and ¢’ have same image
in K/V¥. By the Schur-Zassenhaus the two p’-complements (t) and (t') of the
p-Sylow subgroup V' are conjugate, and this conjugation conjugates t to ¢’
since they are determined in the cyclic subgroup they generate by their image
in K/VF. O

Now if gV € Xf_}t then sgVt = gV thus s9 € t~'V. By the lemma we
can change the representative in gV to k such that s* = t~1. Applying F we
have s¥'(%) = ¢! thus k' F(k) € Cg(t). Since k= 'F(k) € F(U) it is even
in Cg(t)° by 4.8, thus by Lang’s theorem there exists z € Cg(t)° such that
k~'F(k) = 271F(2). Then h :=kz"'isin {h € GF' | " = s~} and 2V, is in
Xff(t)o. In our construction, k can be changed by Cg (t)oF which is why we
can choose for h a given representative modulo C(;(t)oF. Since uhzV = hu'zV,

the element u acts on the piece ch(t)o indexed by h by u". We thus get

t

Trace(u | H} (X3))) = |Ca(t)°F 7! Z Trace(hflu\H;“(ng(t)a))y
{heGF|ht=5s—1}

whence lemma 14.10. O
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We now prove proposition 14.9. Expanding 14.2 (i) by lemma 14.10 we get

—1 -1 (o -1
(REO)(s) = Y ICa(" 91T (M wen ),
{heGF | seT}
whence (i) of 14.9 by conjugating the inner terms by h. Expanding similarly (ii)

of 14.2 we get by lemma 14.10, using that if ¢ = su is a Jordan decomposition
then u € Cg(s)0F

u

(*R%’Y)(t) _ |GF|71|CG(t)oF|71|TF‘ Z Z Qgc(t)o(h—lu)/y(htufl)'

heGF ueCq("t)\F

whence (ii) of 14.9 changing the variable on which we sum to * w1, O

The Green functions can be computed by the theory of Springer represen-
tations.

Proposition 14.12. Let T be a F-stable mazimal torus subgroup of G, let
v € Irr(GF) and let s € TF. Then

* +pCal(s)° ¥
("RE7)(s) = ("RT (ResS,, ,)r 7)) (5)-

Proof. This results from the remark that, in the character formula 14.9 for
*R$, the right-hand side does not change if we replace G by Cg(s)°. O

Proposition 14.13. Let f be a class function on G which depends only on
the semisimple part — that is f(su) = f(s) if su is a Jordan decomposition —
then, for any F-stable mazimal torus T of G and any function 6 on T (resp.
v on GF'), we have

(i) R$(0.ResSr f) = (RS0).f
(i) (*R$7).Restr f = “RE(7.f)
(iii) *RS f = ResSr f
Proof. The character formula 14.9(i) gives
RE(0-ResFr f)(su) = |Ca(s)° 170 3 Qg (w)6(s)"(s).
{heGF|sehT}

which gives (i) using "f(su) = f(s) = f(su); equality (ii) results from (i) by
adjunction.

(iii) follows from the special case of (ii) where v = Idg, and the spe-
cial case of (iii) where f = Idg. Let us prove this last fact: by definition
*RE(Idg)(t) = |GF|! > gear £((9:1),Xy). Looking at the model Xy =
{gV € G/V | g7'F(g) € F(U)}, we see that Xy = Xy /V, where Xy = {g €
G | g7'F(g) € F(U)}, so by 13.8(iii) we have £((g,t), Xu) = L((g,1), Xu).
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Now by 13.6(ii) we have |GF|™'Y _or L((g,1),Xu) = L(t,XE") and the
map g — g~ 1F(g) gives an isomorphism XSF ~ F(U); and by 13.7 we have
L(t, F(U)) = 1, whence the result. O

Propositions 14.12 and 14.13 are still valid for RE, using the character for-
mula for RE (see [Digne-Michel, 12.5 and 12.6], or [Digne-Michel, 7.4, 7.5 and
7.6] in the setting of Harish-Chandra induction).

Proposition 14.14. Let s be the semi-simple part of an element | € LT ; then
B * +nCal(s)° B
(ResgL(S)OF RI(;;X)(Z) = ( RCS((G))O Resgc(s)oF X)(l)

Proposition 14.15. If f is a class function on G which depends only on the
semisimple part and v € Trr(GT), X € Trr(LY) then

(i) RE(AResfr ) = (REN)/.
.. * H *
(i) (*REv).Resgr f = *RE(vf).
(iii) *RS f = ResCr f.
Corollary 14.16. (of 12.9) If s is the semi-simple part of v € G and x €
Irr(GF), then (Dax)(z) = eceog(s)e (Dog sy © Resg'c(s)o X)(x).
Proof. If L is a F-stable Levi subgroup of a F-stable parabolic subgroup P of

G, we have (see 9.3) RE o *REx = Indg'ﬁ Inffﬁ *RE (), whence

_ Fo -1
(Rf o "REX)(@) = [P0 Y (Inffr "REX)(Y 2)
{9eGT [P}

= Y (P "REX) ()

{P'~orP|P/3z}

where in the last summation L’ is a F-stable Levi subgroup of P’. As any
F-stable parabolic subgroup of G is G'-conjugate to some P O B, we have

(Dex)(@) = > (~1)"® S (Wfpr “REX)(2)

POB {P'~orP[P/2z} (1)
/ P
=Y (=) ) (Infyr “RE ) ().
P'ox

By 14.14 we then get

r PFNCa(s)° « nCa(s)°
(DGX)(‘T) = Z(i]‘) ) (InfLFrQCz((s))O RLﬁéé(s)OX)(x)
P>z
=30 > Ui R @)

P’ {P|PNCq(s)°=P'}
where P’ runs over the set of F-stable parabolic subgroup C(s)° and where
L’ is any F-stable Levi subgroup of P’. We use now that it is possible to apply
12.9 with H = Cg(s)° (see for instance [Digne-Michel, 8.12]) and compare with
the equality (1) applied in Cg(s)°, which gives the result. O

66



15 The Steinberg character and applications

In this chapter we use the duality introduced in Section 12 to define and study
the famous “Steinberg character” which was originally defined by Steinberg in
1956.

Definition 15.1. The irreducible character Stg = Dg(Idg) where Idg is the
trivial character of G¥ is called the Steinberg character of GF'.

We get using 14.5 and 14.15(iii)
*REStg = *REDg(ldg) = eqer DL *RE (Idg) = eger, Dr(Idy,) = eger St .

For L a G-split torus T, since Stt = Idr, we get *R%Stg = Idr, thus
(Stg, R$(Idt))gr = 1 thus we get by 12.11 that Stg is a true character (not
the opposite of one). We have the following more precise result.

Lemma 15.2. Let T be an F-stable mazimal torus of an F-stable Borel sub-
F F
group B of G; then Resgp Ste = Indr]%F Idr.

Proof. Using the definitions of Stg and of Dg we get

F
Sta = (=DM Indgy Idp,,
ICS/F

where the notation is the same as in the proof of 12.10. So we have

ResSr (Ste) = D (—1)1T ResS Indgg Idp,

ICS/F
I B” Py
= E (=) E IndBanpf ReSBﬁﬂmef Idp,,
ICS/F welwr

the last equality following from the Mackey formula for induction and restriction,
where we have denoted by ‘W the set of reduced-I elements of W', which is
a set of representatives for the double cosets Bf'\G! /PL by the existence of
the relative (B, N)-pair. But we have BN “P; = BN “B since Bu NwP; =
[ ew, (Bw N wBvB) and as the lengths add we have wBvB C BwvB thus
meets BwB only for v = 1. Using this result in the formula for Resgg Ste and
exchanging the summations gives

F F
Resg[«‘ StG = Z ( Z (—1)‘1‘) IndgmeBF IdBﬂwB .
weW {ICS/FlwelWF}

By lemma 2.8 we have w € TW¥ if and only if I N N(w) = (), where N is
computed in W, so the inner sum is ZmN(w):@(—l)m, which is different

from zero only if N(w) = S/F, thus w is the longest element of W and in that
case we have BN “B = T, whence the result. O
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Corollary 15.3. We have

°F|, if x is semi-simple,

Ste () = {Scﬁ(cc(z)oﬂcc(l")

0 otherwise.
Proof. Let s be the semi-simple part of . We have

Sta(z) = Da(ldg)(2) = egece(s)° (Pog (s)° (1dog (5)°)) (%) = aecg (s) Steg(s)e ()

by 14.16. So we may assume that s is central in G. But then there exists an
F-stable Borel subgroup B which contains x. Indeed the unipotent part of z
is contained in an F-stable Borel subgroup by 7.12(iv), and s, being central,
is contained in any Borel subgroup. So by lemma 15.2 we have Stg(z) =
(Resg'bf Stg)(x) = (Ind¥§ IdTt)(x). Thus Stg(x) = 0 unless x has a conjugate in
TF | that is is semi-simple, thus z = s and we get Stg(z) = |BY|/|TF| = |GT|,,
the last equality by 7.12, whence the result. O

Corollary 15.4. The dual of the reqular representation regg of GI is Dg(regg) =
Yp, where v, is the function whose value is |GF|p/ on unipotent elements and 0
elsewhere.

Proof. By 14.15 we have Dg(x.f) = Da(x).f for any x € Irr(G!) and any
class function f on G which depends only on the semisimple part. Applying
this to f =+, we have

DG (’yp) = DG (IdG .’yp) = DG (IdG)’yp = Stc;.’yp =regag,

the second equality by the definition of Dg and 14.15 (i) and (ii), and the last
equality by 15.3. O

Corollary 15.5. The number of unipotent elements in G*' is equal to (|G'|,)?.
Proof. This results from 15.4 by writing (regg, rega) = (Yp, Vp)- O
We can now give the dimension of the (virtual) characters RS ().

Proposition 15.6. For any F-stable mazimal torus T and any 6 € Trr(TF),
we have dim RS (0) = eger|GF |, |TF| 7.

Proof. By 14.9 the dimension we want to compute does not depend on . On the
other hand, taking the scalar product of the equality *R% Stg = eger IdT with
0, we get (R$(0),Ste)gr = ereadie, whence (3, RG(0),Ste)ar = eTea.
But by 14.9 Y, R$(0) vanishes on all elements with non-trivial semi-simple
part. Since Stg vanishes outside semi-simple elements, the scalar product above

reduces to
|GF 7T |Sta (1) dim(RE(9)).

This gives the result after replacing Stg (1) by its value. O
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Remark 15.7. If T, is a maximal F-stable torus of type w € W(T) with respect
to some G-split torus T, we have ex, eq = (—1)"*), where I(w) is the length
of w in W(T).

Proof. Let V = X(T)®R; by 12.2 and 12.5(i) we have eg = (—1)3™(V") and, as
(T, F) is conjugate to (T, wF) (see 7.10), we have ex,, = (—1)3™(V"") Since 7
is an automorphism of finite order of the lattice X (T), we have (—1)dim(V)=dim(V7) —
det(7), and similarly (—1)3m(V)=dim(V*"") — det(w7), which gives the result as
det(w) = (=1)"") since the determinant of a reflection is —1. O

Proposition 15.8. For any 0 € Irr(TF) (resp. v € Irr(GF)) we have
o Stg ® RS0 = cger IndS$r (9)

L] *Rg(’}/ & St(;) = EQET Res%f Y.

Proof. As (i) is the adjoint of (ii) it is enough to prove (ii). By the charac-
ter formula 14.9, and taking in account that Stg vanishes outside semisimple
elements, we have to check that for ¢t € TF we have

IT7|Ca (0)°" 171 Q7% () ()Sta (t) = caery(t).
This results that from the previous proposition we have Qgc(t)o (1) = dim Rgc(t)o =
|Ca(t)°F |, |TF | teger, and from the value of Stg (t). O

We now prove that the identity and the regular representation are both linear
combinations of Deligne-Lusztig characters.

Proposition 15.9. The orthogonal projection of class functions onto the sub-
space of uniform functions is given by the operator:

p= Y, |Cw(wF)'RE, o"RE,
weH (F,W)

where w runs over representatives of the F-classes of W and we take for model
of (T, F) the pair (T1,wF) where Ty is G-split.

Proof. Since p(v) is clearly uniform for any v € Irr(GF), it is enough to check
that for any (T, 6) we have (v, R§(0))qr = (p(7), RE(0))gr. We have

(p(1), REO)gr =( > [Cw(wF)|'RE, o*RE RS (0)ar
weH (F,W)

=( > [Cw@F)"RE ,"RE RE(0))ar
weH(F,W)

but, by 14.6 we have:

ZUECW(wF) g it T=T,

*RG RG 0) =
T, B7 (0) {0 if T is not of type w
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SO

(), REO)ar = CRE(,ICw P Y B)ar = (3, RE(O))ar

vECW (WF)
the rightmost equality since RE (") = RE (0). O
Proposition 15.10. Idg and Stg are uniform functions; we have
(i) Idg = ZweHl(F,W) |CW(wF)|_1R%U (Idr,).
(i) Sta = X pemmw) |Cw(wF)| 'eger, RE, (Idr,, ).

Proof. Since by 14.13(iii) we have *R$ (Idg) = Idr, expression (i) represents
p(Idg). It is enough to check that Idg has same scalar product with this
expression as with itself. But indeed we have

(ldg, > [Cw(wF)['RE, (Id1,))cr
weH (F,W)

= Y [CwPF)|['(*R§, (Idg),Idr, )Tr
weHY(F,W)

= Y  [CwP)| =L

weH (F,W)
We get (ii) from (i) by applying duality. O

Corollary 15.11. The character regg of the reqular representation of G is a
uniform function; we have

rege =, |Cw(wF)|"! dim(RE (ldr,))RE, (regr,)

weHL(F,W)

Proof. We saw in the proof of 15.4 that regg = Stg - 7,. Using expression (ii)
above for Stg, it is enough to see that

eger, RE, (Idt, )7, = dim RE, (Idt)RE, (regr, ).

This comes from the equality RE (Idr, )y, = RE (Resg;T (vp)) given by 14.13,

from the fact that Res%ulT (7p) has value |G¥[,, at 1 and 0 elsewhere, so is equal
to |GF |, |TE| ! regy, , and from 15.6. O

15.1 Unipotent characters

We call unipotent irreducible characters the irreducible characters which occur
in some RE(1d).

Lusztig’s “Jordan decomposition of characters” states that the decomposi-
tion of RE () into irreducible characters is the same as the decomposition of
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R%I(Id) in unipotent irreducible characters for some other group H. Let us ex-
plain this; we have seen in 5 that G is defined up to isomorphism by its root
datum (X,Y,®,®") where for some maximal torus T we have set X = X (T),
Y = Y(T) and where ® (resp. ®V) are the roots (resp. coroots) with respect to
T. Now the quadruple (Y, X, ®¥, ®) is the root datum of another group, called
the Langlands dual of G. If we denote G* this dual group, and T* the dual
torus (such that X(T*) = Y(T) and Y(T*) = X(T)), we still have an isogeny
F* on G* by taking the dual of the p-morphism and by the proof of 7.14 we get
natural isomorphisms T ~ Trr(T*F") and Trr(TF) ~ T*¥". Thus to any pair
(T,6) where T is an F-stable maximal torus and 6 € Irr(T%) corresponds a
pair (T*F", s) where T* is an F*-stable maximal torus and s € T and this
bijection respects Gf'-conjugacy classes. This allows to use the notation R% (s)
for R () when T* 5 s.

Definition 15.12 (Lusztig series). Given s € G*I", we define
E(GT 5) = {y € rr(GF) | IT* 5 5, (RS (5),7)gr # 0}.

With this definition the unipotent characters form £(G¥,1).
We can now state Lusztig’s Jordan decomposition of characters:

Theorem 15.13. Assume G has connected center. Then there is a bijection
between (G, s) and E(Cg-r-(s),1), and this bijection extended by linearity

maps eg RS (s) to 5CG*(S)R$G*(S) (Id).

The condition of connected center is to ensure that Cg«(s) is a connected re-
ductive group. There is a more general statement if the center is not connected,
see [Digne-Michel, 13.23].

The decomposition of R%ﬂ (Id) into unipotent irreducible characters is thus
an important topic. To explore this, given an extension x to W x (F') of x €
Irr (W) ¥ we define

Ry = W[ ) X(wF)RE, (1) = > [Cw(wF)|"'Y(wF)RF, (Id).
weW weH(F,W)

Proposition 15.14.

0  wunless x and 1/; are extensions of the same character

<R>Za R@>GF = {

1 ifx=1.
Proof.
<R>"(7R1[;>GF = Z |CW(wF)|_2)2(U}F)Z(UF)<R$w (Id)’R’%v (Id)>GF
v,wEH(F,W)
= ) Cw (wF)| " (wF)(wF).
weH (F,W)
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The Ry form an orthonormal basis, but in general they are not characters,
but Q-linear combinations of characters. However

e We can reformulate 15.10 as: Ry = Id, and Rsg, = Stg where Id is the
trivial extension of the identity and sgn the trivial extension of the “sign”
character w — (—1)®),

o we will see that in GL,, the R, are irreducible characters.

We assume now that F' acts trivially on W to simplify the computations.
Then we do not need to take extensions and can extend the notation R, to
any class function on W by linearity (the following computation can be done
without assuming that L is G-split or that F' acts trivially but then we would
have to define induction for F-class functions).

Lemma 15.15. Let L be a G-split Levi subgroup of G and let A € Irr(Wy,).
Then RE (RA) = Rlnd%L (A)-

Proof.

RInd%L(A) = Z(Xa IHd%L )‘>WRX
X

= W[ (x, Indyy, (M) wx(w)RE, (1d)

= W7 ) Indyy, (A)(w) R, (1d)

= [W|THWL | {v € W | "w € WL} (w)RE, (1d)
=Wt > AMw)RE, (1d)

weWry,
=RE(WL|™" Y Aw)R%, (Id) = RE(R)

weWy,
O

Applying this for A = Id, since Ryq = Id by 15.10, we get that Rlnd%L (1) 18
an actual character. It follows that in GL,,, the R, are irreducible characters.
Indeed, in the symmetric group, any irreducible character is a linear combination
of the identity induced from various Young subgroups; this is because in the
induced Indgz Id from the Young subgroup indexed by the partition A, the only
characters occuring correspond to the partitions p which dominate A, and the
character corresponding to A occurs with multiplicity 1. Thus the matrix is
unitriangular.

Inverting the formula for Ry, we have in general R (Id) = > X(wEF) Ry
This is the decomposition of RE (Id) in irreducibles in the case of GL,. In
particular if T is G-split we have RE 1d = > x(1)R, and this is the decom-
position attached to the Hecke algebra as explained in Section 11.
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We finish with two results which hint to the rich relationship between Deligne-
Lusztig representations and modular representation theory.

Theorem 15.16 (Broué-Michel, 1986). Let £ # p be a prime; let s € G*I" be a
semi-simple ¢'-element. Then [, E(GT, st) is a union of €-blocks, where t Tuns
over Cg-(s)F"

Theorem 15.17 (Bonnafé-Rouquier, 2003). In the situation of the above the-
orem, let L* be an F-stable Levi subgroup which contains Cg~(s). Denote by
€S (resp. e&) the central idempotent of ZyGF (resp. Z,L¥) corresponding to
the set of characters [[,E(GT,st) (resp. 1, E(LY,st)). Then “RE induces
a Morita equivalence between Z,L¥ el and Z,G¥eS”: more specifically there
ezists a parabolic subgroup P = LU with Levi complement L such that

(i) eSHY(Xy,Z¢)el is non-zero for i = dim Xy only;

(ii) if M = S HIm XU (X5, Zy)el then M®y,r — induces a Morita equivalence

between Z,LE el and Z,GTe%.

15.2 Further reading

Good references on algebraic groups are the books [Borel] and [Springer].
References on the topics of these lectures are the books [Carter], [Digne-Michel],
[Geck] and [Srinivasan].

References

[Bonnafé-Michel] C. Bonnafé and J.Michel, “Computational proof of the
Mackey formula for ¢ > 2”7, J. Algebra 327 (2011), 506-526.

[Borel] A. Borel “Linear algebraic groups”, GTM 126, Springer (1991).

[Carter] R. W. Carter, “Finite groups of Lie type. Conjugacy classes and
complex characters.” Wiley-Interscience (1985).

[Deligne-Lusztig] Pierre Deligne and George Lusztig, “Representations of Re-
ductive groups over Finite fields”, Ann. of Math. 103 (1976), 103—
161.

[Digne-Michel] Frangois Digne and Jean Michel, “Representations of finite
groups of Lie type”, London math. soc. student texts 21, Cambridge
university press (1991).

[Dipper-Du] R. DIPPER AND J. DU, Harish-Chandra vertices, J. reine angew.
Math. 437 (1993), 101-130.

[Geck] Meinolf Geck, “An introduction to algebraic geometry and algebraic
groups”, Clarendon press (2003).

73



[Howlett-Lehrer] R.B. HOWLETT AND G.I. LEHRER, On Harish-Chandra in-
duction and restriction for modules of Levi subgroups, J. Algebra
165 (1994), 172-183.

[Serre] Jean-Pierre Serre, “Cohomologie Galoisienne”, (1964) 5th edition
Springer (1994).

[Springer] Tonny Springer, “Linear algebraic groups”, Progress in mathematics
9, Birkhauser (1998).

[Srinivasan] B. Srinivasan, “Representations of finite Chevalley groups”, Lec-
ture notes in mathematics, 764 (1979), Springer.

[Steinberg68] Robert Steinberg, “Endomorphisms of algebraic groups”, mem-
oirs of AMS 80, (1968).

74



