UPMC 2012-2013

Cours de Géométrie affine et euclidienne (LM 323) Feuille d'exercices numéro 1.

On fixe un corps commutatif k.

Exercice 1. Soient a et b deux nombres réels et soit \mathscr{F} le sous-ensemble de \mathbb{R}^3 défini par le système d'équations

$$\begin{cases}
2x + y - z = a \\
x - 2y + z = b
\end{cases};$$

montrez que \mathscr{F} est un sous-espace affine de \mathbb{R}^3 (on en donnera un point et l'espace directeur; la réponse dépend en partie de a et b); quelle est sa dimension?

Exercice 2. Soit $u \in \mathbb{Q}$. Vérifiez que les deux sous-ensembles \mathscr{F} et \mathscr{G} de \mathbb{Q}^4 respectivement définis par les équations

sont des sous-espaces affines de \mathbb{Q}^4 , dont on donnera pour chacun un point, l'espace directeur et la dimension. Pour quelle valeur de u s'intersectent-ils? Donner alors un point, l'espace directeur et la dimension de l'intersection.

Exercice 3. Soit \mathscr{F} le sous-espace affine de \mathbb{C}^4 passant par (1;0;i;-1) et dont l'espace directeur est engendré par (1;1;i;-i) et (0;1+i;1;-1); donnez un système d'équations cartésiennes de \mathscr{F} .

Exercice 4. Soit $\mathscr E$ un espace affine sur un corps k et soient A et B deux points distincts de $\mathscr E$.

- i) Montrez qu'il existe une et une seule droite affine de $\mathscr E$ passant par A et B; on la note (AB).
- ii) Montrez que si k est de caractéristique différente de 2, un sous-ensemble non vide \mathscr{F} de \mathscr{E} en est un sous-espace affine si et seulement si $(AB) \subset \mathscr{F}$ pour tout couple (A,B) d'éléments distincts de \mathscr{F} (en fait, il suffit que k soit différente de $\mathbb{Z}/2\mathbb{Z}$, c'est-à-dire ait au moins trois éléments; mais la preuve sous cette hypothèse est plus difficile; vous pouvez essayer d'y réfléchir).

Exercice 5. Soit \mathscr{E} un k-espace affine sur un corps ayant au moins trois éléments et soient \mathscr{F}_1 et \mathscr{F}_2 deux sous-espaces affines de \mathscr{E} ; on suppose que k a au moins trois éléments. Donnez une condition nécessaire et suffisante sur \mathscr{F}_1 et \mathscr{F}_2 pour que leur réunion soit un sous-espace affine de \mathscr{E} .

Exercice 6. On suppose que k est de caractéristique différente de 2 (autrement dit, $2 \neq 0$ dans k); soit \mathscr{E} un k-espace affine.

- i) Si A et B sont deux points de $\mathscr E$, montrez qu'il existe un unique point M de $\mathscr E$ tel que $\stackrel{\rightarrow}{MA} + \stackrel{\rightarrow}{MB} = 0$; on l'appelle le milieu de AB.
- ii) Soient A, B, C, D quatre points de \mathscr{E} . Montrez que $\overrightarrow{AB} = \overrightarrow{CD}$ si et seulement si AD et BC ont même milieu.
 - iii) Donnez un contre-exemple à l'assertion i) lorsque $k = \mathbb{Z}/2\mathbb{Z}$.

Exercice 7. Soit \mathscr{E} le $\mathbb{Z}/3\mathbb{Z}$ -espace affine $(\mathbb{Z}/3\mathbb{Z})^2$.

- i) Combien $\mathscr E$ a-t-il de points? Combien une droite de $\mathscr E$ a-t-elle de points? Combien de droites de $\mathscr E$ passent par un point donné? Combien $\mathscr E$ a-t-il de droites?
- ii) On considère le «triangle» ABC de $\mathscr E$ où A=(0,0), où B=(1,0) et où C=(-1,1). Calculez les coordonnées des milieux de AB, BC et AC, puis l'équation des «médianes» du triangle, c'est-à-dire des droites passant par un sommet et le milieu des deux autres. Montrez que les médianes sont ici ... parallèles!
- iii) Traitez à nouveau la question ii) mais en supposant que l'on travaille dans $(\mathbb{Z}/5\mathbb{Z})^2$; vérifiez que les médianes sont cette fois-ci concourantes.

Exercice 8. On note $\mathscr{C}^{\infty}(\mathbb{R})$ le \mathbb{R} -espace vectoriel des fonctions indéfiniment dérivables de \mathbb{R} dans \mathbb{R} . Soit $f \in \mathscr{C}^{\infty}(\mathbb{R})$ et soit n un entier. Montrez que le sous-ensemble de $\mathscr{C}^{\infty}(\mathbb{R})$ formé des fonctions g telles que $g^{(n)} = f$ est un sous-espace affine de $\mathscr{C}^{\infty}(\mathbb{R})$; donnez son espace directeur, vérifiez qu'il est de dimension finie et donner sa dimension. L'espace $\mathscr{C}^{\infty}(\mathbb{R})$ est-il lui-même de dimension finie?

Exercice 9. Soit $\mathscr E$ un k-espace affine d'espace directeur E et soit $\mathscr F$ une partie de $\mathscr E$ telle $\{\overrightarrow{MN}\}_{M\in\mathscr F,N\in\mathscr F}$ soit un sous-espace vectoriel de E. La partie $\mathscr F$ est-elle nécessairement un sous-espace affine de $\mathscr E$?

Exercice 10. Soit \mathscr{E} un k-espace affine et soient \mathscr{F} et \mathscr{G} deux sous-espaces affines de \mathscr{E} . Discuter des configurations possibles (nature de l'intersection, dimension du sous-espace engendré) de \mathscr{E} , \mathscr{F} et \mathscr{G} dans chacun des cas suivants :

```
i) dim \mathscr{E} = 3, dim \mathscr{F} = 1, dim \mathscr{G} = 2;
```

- ii) dim $\mathscr{E} = 3$, dim $\mathscr{F} = 2$, dim $\mathscr{G} = 2$;
- iii) dim $\mathscr{E} = 4$, dim $\mathscr{F} = 2$, dim $\mathscr{G} = 2$;
- iv) dim $\mathscr{E} = 4$, dim $\mathscr{F} = 2$, dim $\mathscr{G} = 3$.

Exercice 11. Soit $\mathscr E$ un k-espace affine de dimension 3 et soient $\mathscr D$ et $\mathscr D'$ deux droites de $\mathscr E$ non parallèles et d'intersection vide.

- i) Montrez qu'il existe un unique plan $\mathscr P$ contenant $\mathscr D$ et parallèle à $\mathscr D'$; on définit de même $\mathscr P'$.
- ii) Soit $M \in \mathscr{E}$. Montrez que les assertions suivantes sont équivalentes :
 - a) il existe une droite Δ contenant M et rencontrant \mathscr{D} et \mathscr{D}' ;
 - b) $M \in (\mathscr{E} (\mathscr{P} \cup \mathscr{P}')) \cup \mathscr{D} \cup \mathscr{D}'$.

Exercice 12. Soit $n \ge 1$ et soit (P_0, \ldots, P_n) une famille de points d'un k-espace affine $\mathscr E$. Soit $\mathscr F$ (resp. $\mathscr G$) le sous-espace affine de $\mathscr E$ engendré par $\{P_0, \ldots, P_{n-1}\}$ (resp. $\{P_0, \ldots, P_n\}$). Montrez que l'on a $\mathscr G = \mathscr F$ ou dim $\mathscr G = \dim \mathscr F + 1$. On établira ce résultat par deux méthodes différentes : dans un premier temps, on montrera que $\mathscr G$ est le sous-espace affine engendré par $\mathscr F \cup \{P\}$ et l'on appliquera la formule du cours ; dans un second temps, on utilisera la description explicite de $\mathscr F$ et $\mathscr G$ donnée en cours.

Exercice 13. Soit $n \ge 0$ et soit (P_0, \ldots, P_n) une famille de points d'un k-espace affine; soit I un sous-ensemble non vide de $\{0, \ldots, n\}$. Montrez que si (P_0, \ldots, P_n) est une famille de points affinement indépendants, alors $(P_i)_{i \in I}$ est une famille de points affinement indépendants. Là encore, on donnera deux preuves : l'une reposant sur la caractérisation de l'indépendance affine au moyen

de la liberté d'une certaine famille de vecteurs, l'autre utilisant le critère de dimension du sous-espace affine engendré, et l'exercice ci-dessus.

Exercice 14. À quelle condition sur le réel a les quatre points

$$(1;1;a), (2;3;2a), (3;1-a;a-1), (2;3;3+a)$$

de \mathbb{R}^3 sont-ils affinement indépendants? Pour chaque valeur de a pour lequel ils ne le sont pas, donnez la dimension du sous-espace affine qu'ils engendrent, et un système d'équations cartésiennes de ce dernier.

Exercice 15. Soit \mathscr{F} le sous-ensemble de \mathbb{R}^4 formé des quadruplets (x,y,z,t) tels que x-y+2z+3t=5; montrez que c'est un sous-espace affine de \mathbb{R}^4 dont on donnera l'espace directeur; donnez un repère affine de \mathscr{F} ; complétez-le en un repère affine de \mathbb{R}^4 .

Exercice 16. Soit $\mathscr E$ un k-espace affine, soit $n \ge 0$ et soit (P_0, \ldots, P_n) une famille de points affinement indépendants de $\mathscr E$. Soit $i \in \{0, \ldots, n\}$; soit $\mathscr F$ (resp. $\mathscr G$) l'espace affine engendré par les P_j pour $j \le i$ (resp. $j \ge i$). Donnez les dimensions de $\mathscr E$ et $\mathscr F$; décrire leur intersection. Indication : si vous ne voyez pas ce qui se passe, commencez par penser au cas d'un triplet de points dans $\mathbb R^2$ (triangle non aplati) ou d'un quadruplet de points dans $\mathbb R^3$ (tétraèdre non aplati).