Université Paris 6

Année universitaire 2012-2013

Cours de Géométrie affine et euclidienne (LM 323)

Feuille d'exercices numéro 3.

Exercice 1. Soit \mathcal{E} un espace affine sur un corps k d'espace directeur E. Soient F et G deux sous-espaces vectoriels de E tels que $E = F \oplus G$, et soit \mathcal{G} un sous-espace affine de \mathcal{E} dirigé par G; soit u un vecteur de F, et soit \mathcal{G}' le sous-espace $t_u(\mathcal{G})$.

- i) Quel est l'espace directeur de \mathcal{G}' ? Que peut-on dire de $\mathcal{G} \cap \mathcal{G}'$?
- ii) Soit s (resp. s') la symétrie par rapport à \mathcal{G} (resp. \mathcal{G}') et parallèlement à F. Décrire aussi précisément que possible la composée $s' \circ s$.
- iii) Soit v un vecteur de E. Démontrer sans calcul que $t_v \circ s$ a une unique écriture de la forme $t_w \circ \xi$, où $w \in G$ et où ξ est une symétrie par rapport à un sous-espace \mathcal{G}'' de \mathcal{E} dirigé par G, et parallèlement à F. Explicitez w et \mathcal{G}'' en fonction des données.
- iv) Reprendre les questions ii) et iii) en remplaçant partout «symétrie par rapport à» par «projection sur».

Exercice 2. Soit \mathcal{E} un espace affine réel de dimension 4, et soit $\mathcal{R} = (O, e_1, \dots, e_4)$ un repère cartésien de \mathcal{E} . Soient A_0, A_1, A_2, A_3 et A_4 les points de \mathcal{E} de coordonnées respectives

$$(1,2,-1,3); (0,-2,1,4); (3,1,-2,1); (2,-4,1,3)$$
 et $(5,1,2,-3)$

dans \mathcal{R} . Soit G' le barycentre de $((A_0,1),(A_1,3),(A_2,7))$ et soit G'' le barycentre de $((A_3,6),(A_4,-3))$; déterminez les coordonnées de G' et G'' dans \mathcal{R} . Soit G le barycentre de $((A_0,1),(A_1,3),(A_2,7),(A_3,6),(A_4,-3))$; déterminez les coordonnées de G dans \mathcal{R} .

Exercice 3. Soit \mathcal{P} un plan affine sur un corps k de caractéristique différente de 2 et 3, et soit (ABC) un repère affine de \mathcal{P} ; on travaille en coordonnées barycentriques dans (ABC). Soit G l'isobarycentre de (ABC) et soit H le point de coordonnées (1,1,-1).

- 1) Justifiez que $G \neq H$ et donnez une équation de la droite (GH).
- 2) Soit P un point de \mathcal{P} de coordonnées (a,b,c). Donnez en fonction de a,b et c une équation de la droite passant par P et parallèle à (GH).

Exercice 4. Théorème de Menelaüs. Soit \mathcal{P} un plan affine sur un corps k, et soit (ABC) un repère affine de \mathcal{P} . Soit A' (resp. B', resp C') un point de (BC) différent de B et C (resp. un point de (AC) différent de A et C, resp. un point de (AB) différent de A et B). Montrez que A', B' et C' sont alignés si et seulement si

$$\frac{\overrightarrow{A'B}}{\overrightarrow{A'C}} \cdot \frac{\overrightarrow{B'C}}{\overrightarrow{B'A}} \cdot \frac{\overrightarrow{C'A}}{\overrightarrow{C'B}} = 1.$$

Exercice 5. Soit k un corps et soit \mathcal{E} un espace affine de dimension 3 sur k; on fixe un repère affine de \mathscr{E} et l'on travaille en coordonnées barycentriques dans celui-ci.

- 1) Soit $\mathscr P$ un sous-ensemble de $\mathscr E$. Montrez que $\mathscr P$ est un plan si et seulement si il peut être défini par une équation de la forme ax+by+cz+dt=0 avec a,b,c et d non tous nuls; à quelle condition deux telles équations définissent-elles le même plan?
 - 2) Soient $\mathscr{P},\,\mathscr{P}',\,\mathscr{P}''$ et \mathscr{P}''' quatre plans de $\mathscr{E},$ définis par les équations

$$ax + by + cz + dt = 0$$
, $a'x + b'y + c'z + d't = 0$, etc.

Interpréter géométriquement (en termes de la configuration des plans étudiés) les rangs des matrices

$$\begin{pmatrix} a & b & c & d \\ a' & b' & c' & d' \end{pmatrix}, \begin{pmatrix} a & b & c & d \\ a' & b' & c' & d' \\ 1 & 1 & 1 & 1 \end{pmatrix}, \begin{pmatrix} a & b & c & d \\ a' & b' & c' & d' \\ a'' & b'' & c' & d' \\ a'' & b'' & c'' & d'' \\ 1 & 1 & 1 & 1 \end{pmatrix} \text{ et } \begin{pmatrix} a & b & c & d \\ a' & b' & c' & d' \\ a'' & b'' & c'' & d'' \\ a''' & b''' & c''' & d''' \\ a''' & b''' & c''' & d''' \end{pmatrix}.$$

Exercice 6. Soit \mathcal{E} un espace affine $r\acute{e}el$. On dit qu'un sous-ensemble \mathcal{C} de \mathcal{E} est convexe si pour toute famille finie $(A_i)_{1\leqslant i\leqslant n}$ de points de \mathcal{C} et pour toute famille $(\lambda_i)_{1\leqslant i\leqslant n}$ de scalaires positifs ou nuls et non tous nuls, le barycentre de $((A_i,\lambda_i))$ appartient à \mathcal{C} .

- 1) Montrez que l'intersection d'une famille de parties convexes de \mathcal{E} est convexe; en déduire que si \mathcal{C} est une partie quelconque de \mathcal{E} il existe une plus petite partie convexe contenant \mathcal{C} , que l'on appelle l'enveloppe convexe de \mathcal{C} .
- 2) Si (A_1, \ldots, A_n) est une famille finie de points de \mathcal{P} , montrez que l'enveloppe convexe de $\{A_1, \ldots, A_n\}$ est égale à l'ensemble des points de la forme $\text{Bar}((A_i, \lambda_i))$ où (λ_i) est une famille de scalaires positifs non tous nuls.
- Si A et B sont deux points de \mathcal{P} , on appelle segment reliant A à B, et l'on note [AB], l'enveloppe convexe de $\{A,B\}$; d'après ce qui précède, on a $[AB] = \{\lambda A + (1-\lambda)B\}_{\lambda \in [0;1]}$.
- 3) Montrez qu'une partie \mathcal{C} de \mathcal{P} est convexe si et seulement si pour tout couple (A, B) de point de \mathcal{C} le segment [AB] est contenu dans \mathcal{C} .
- 4) Si \mathcal{C} est une partie convexe de \mathcal{P} , on dit qu'un point x de \mathcal{C} est extrémal s'il possède la propriété suivante : pour tout couple de points (A,B) de \mathcal{P} tels que $x \in [AB]$ et $[AB] \subset \mathcal{C}$ l'on a A = x ou B = x.

Déterminez les points extrémaux des parties suivantes de \mathbb{R}^2 :

$$\{(x,y), |x| \le 1 \text{ et } |y| \le 1\} \quad \{(x,y), x^2 + y^2 \le 1\}.$$

Montrez que si (A_0, \ldots, A_n) est une famille de points affinement indépendants de \mathcal{E} l'ensemble des points extrémaux de l'enveloppe convexe des A_i est exactement $\{A_i\}_{0 \leqslant i \leqslant n}$. Cela reste-t-il vrai en général sans hypothèse d'indépendance affine?

Exercice 7. Théorème de Carathéodory. Soit \mathcal{E} un espace affine réel de dimension finie n et soit (A_1, \ldots, A_p) une famille finie de points de \mathcal{E} . Soit \mathcal{C}

l'enveloppe convexe des A_i et soit Γ l'ensemble des points de $\mathcal E$ pouvant s'écrire comme le barycentre d'une famille d'au plus n+1 points parmi les A_i , affectés de coefficients positifs. On dispose d'une inclusion naturelle $\Gamma \subset \mathcal{C}$; le but de ce qui suit est de prouver l'inclusion réciproque. On procède par récurrence sur p.

- 1) Que dire si $p \leq n + 1$?
- 2) On suppose que p>n+1 et que la propriété a été démontrée au rang p.

Soit $x \in \mathcal{C}$; on écrit $x = \sum \lambda_i A_i$ avec $\lambda_i \geqslant 0$ quel que soit i et et $\sum \lambda_i = 1$. Prouvez qu'il existe j tel que A_j soit un barycentre des A_i pour $i \neq j$; on renumérote éventuellement les A_i de sorte que j = 1 et l'on écrit $A_1 = \sum_{i \geqslant 2} t_i A_i$ avec $\sum t_i = 1$. On pose $\mu_1 = 1$ et $\mu_i = -t_i$ pour tout i > 2.

3) Montrez qu'il est licite d'écrire pour tout ℓ tel que $\mu_\ell \neq 0$ l'égalité

$$a_{\ell} = \sum_{i \neq \ell} -\frac{\mu_i}{\mu_{\ell}} a_i.$$

4) Soit ℓ tel que $\mu_{\ell} \neq 0$. Donnez une expression de x comme barycentre des A_i pour $i \neq \ell$; montrez qu'il est possible de choisir ℓ de sorte que les coefficients apparaissants dans cette écriture soient tous positifs, et conclure.