Some new geometric structures in the Langlands program

Laurent Fargues (CNRS/IMJ)

ICCM - Jan 4, 2024

More than 20 years of work on the (local) Langlands program / p-adic Hodge theory :

- from Harris-Taylor work for GL_{n}, my PHD work on the geometric realization of the local Langlands correspondence,
- going through my joint work with Fontaine on "the curve" where we gave a meaning to the notion of "holomorphic function of the variable $p^{\prime \prime}$,
- through my geometrization conjecture I formulated at the MSRI in 2014,
- until my recent joint work with Scholze on the geometric realization of the local Langlands correspondence.
- The (local) Langlands program has been completely reformulated.
- This has allowed us to construct jointly with Scholze recently the semi-simple local Langlands correspondence

$$
\underbrace{\pi}_{\begin{array}{c}
\text { smooth rep. } \\
\text { of } G\left(\mathbb{Q}_{p}\right)
\end{array}} \longmapsto \underbrace{\varphi_{\pi}^{s s}}_{\begin{array}{c}
\text { Langlands parameter } \\
W_{\mathbb{Q}_{p}} \rightarrow L^{L} G
\end{array}}
$$

Here typically $\pi=$ local component at p of an automorphic representation of a reductive group over \mathbb{Q} and ${ }^{L} G=$ Langlands dual.

Fusion

The Frobenius flow

Holomorphic functions of the variable p

$-A=$ perfect \mathbb{F}_{p}-algebra i.e. Frob $_{A}: A \xrightarrow{\sim} A$

$$
\underbrace{W(A)}_{\text {Witt vectors }} \underbrace{=}_{\substack{\text { unique } \\ \text { writing }}}\left\{\sum_{n \geq 0}\left[a_{n}\right] p^{n} \mid a_{n} \in A\right\}
$$

unique p-torsion free p-adically complete lift of A

- $[a]=\underbrace{\lim _{n \rightarrow+\infty}\left(\widetilde{a^{1 / p^{n}}}\right)^{p^{n}}}, \tilde{b}:=$ any lift of b
renormalization process

Holomorphic functions of the variable p

- Addition / multiplication given by universal generalized polynomials in

$$
\mathbb{F}_{p}\left[X_{i}^{1 / p^{\infty}}, Y_{j}^{1 / p^{\infty}}\right]_{i, j \geqslant 0}
$$

- Example :

$$
[a]+[b]=[a+b]+[P(a, b)] p+p^{2} \cdots
$$

where

$$
P(X, Y)=\frac{\left(X^{1 / p}+Y^{1 / p}\right)^{p}-X-Y}{p} \in \mathbb{Z}\left[X^{1 / p}, Y^{1 / p}\right]
$$

Holomorphic functions of the variable p

- $A=\mathbb{F}_{p}$-perfectoid algebra i.e. $A=$ perfect Banach ring
- $A^{+} \subset A$ ring of bounded by 1 holomorphic functions
- $W\left(A^{+}\right)$equipped with topology=mix of p-adic and Banach ring top of $A^{+}, f \in W\left(A^{+}\right)$,

$$
f=\sum_{n \geq 0}\left[a_{n}\right] p^{n}=\text { hol. fct. variable } p .
$$

- $\varpi \in A^{\circ 0} \cap A^{\times}$pseudo-uniformizer, $S=\operatorname{Spa}\left(R, R^{+}\right)$

$$
Y_{S}=\operatorname{Spa}\left(W\left(A^{+}\right), W\left(A^{+}\right)\right) \backslash V(p[\varpi])
$$

adic space, "open punctured disk variable p "

Holomorphic fct. variable p

- $Y_{S}=$ Stein adic space
- $\mathcal{O}\left(Y_{S}\right)=$ a completion of

$$
W\left(A^{+}\right)\left[\frac{1}{p}, \frac{1}{[\varpi]}\right]=\{\underbrace{n \gg-\infty}_{\substack{\text { meromorphic } \\ \text { at } p=0}}\left[a_{n}\right] p^{n} \mid \underbrace{\sup \left\|a_{n}\right\|<+\infty}_{\substack{\text { meromorphic at } \\[\varpi]=0}}\}
$$

\rightarrow non explicit Frechet ring, Fontaine's type ring

- Equipped with Frobenius

$$
Y_{S} \longmapsto \varphi
$$

induced by Frob of the Witt vectors $\sum_{n}\left[a_{n}\right] p^{n} \mapsto \sum_{n}\left[a_{n}^{p}\right] p^{n}$

- Acts properly discontinuously without fixed points, continuous map

$$
\left.\left|Y_{S}\right| \longrightarrow\right] 0,1[
$$

if $y \mapsto t$ then $\varphi(y) \mapsto t^{1 / p}$.

The space Y

Holomorphic functions variable p

$S=\operatorname{Spa}(F), F=$ perfectoid field.

- With Fontaine : develop a theory of hol. fct. for $f \in \mathcal{O}\left(Y_{S}\right)$.
- Example

Théorème (F.-Fontaine, Weierstrass factorization) If F is algebraically closed and

$$
\begin{gathered}
f=\sum_{n \geq 0}\left[a_{n}\right] p^{n} \in W\left(\mathcal{O}_{F}\right)=\mathcal{O}\left(Y_{S}\right)^{+}, \\
\left|a_{0}\right|<1, \ldots,\left|a_{d-1}\right|<1, a_{0} \neq 0 \text { and }\left|a_{d}\right|=1, \text { can write } \\
f=\text { unit } \times\left(p-\left[z_{1}\right]\right) \times \cdots \times\left(p-\left[z_{d}\right]\right)
\end{gathered}
$$

The curve

Définition (F.-Fontaine)

For $S=\mathbb{F}_{p}$-perfectoid space

$$
X_{S}=Y_{S} / \varphi^{\mathbb{Z}}
$$

the relative curve associated to S

- Functorial in S
- Can think of X_{S} as the family associated to the collection of curves

$$
\left(X_{K(s), K(s)^{+}}\right)_{s \in S}
$$

- For $S=\operatorname{Spa}(F), F$ perfectoid field, one has (F.-Fontaine) $X_{F}=$ Noetherian analytic adic space of dimension 1

$$
\underbrace{H^{1}(\mathcal{O})=0}_{\text {like } \mathbb{P}^{1}} \text { but } \underbrace{H^{1}(\mathcal{O}(-1)) \neq 0}_{\text {unlike } \mathbb{P}^{1}}
$$

The moduli of bundles on the curve

$G=$ reductive group over \mathbb{Q}_{p}

Définition

Bun $_{G}$ is the moduli on $\overline{\mathbb{F}}_{p}$-perfectoid spaces

$$
S \longmapsto \underbrace{\left\{G \text {-bundles on } X_{S}\right\}}_{\text {groupoid }}
$$

$\rightarrow v$-stack on $\operatorname{Perf}_{\overline{\mathbb{F}}_{p}}, v$-top $=$ analog of fpqc topology

The moduli of bundles on the curve

Théorème (F.-Scholze)
The v-stack $\mathrm{Bun}_{\mathrm{G}}$ is an Artin v-stack ℓ-coho. smooth of dimension 0.
\rightarrow nice charts made of locally spatial diamonds for the ℓ-coho. smooth topology, $\ell \neq p$
\rightarrow nice geometric structure, not an abstract v-stack

The moduli of bundles on the curve

$$
S=\operatorname{Spa}(F), F \text { alg. closed } \rightarrow \text { geometric point }
$$

Théorème (F.-Fontaine, F.)

1. For each $\lambda \in \mathbb{Q}, \lambda=\frac{d}{h}, \mathcal{O}(\lambda)=$ stable vector bundle of rank h degree d on the curve.

$$
\begin{aligned}
\left\{\lambda_{1} \geq \cdots \geq \lambda_{r} \mid r \in \mathbb{N}, \lambda_{i} \in \mathbb{Q}\right\} & \xrightarrow{\sim} \operatorname{Bun}(F) / \sim \\
\left(\lambda_{1}, \ldots, \lambda_{r}\right) & \longmapsto\left[\bigoplus_{i=1}^{r} \mathcal{O}\left(\lambda_{i}\right)\right] .
\end{aligned}
$$

2. $B(G)=G\left(\breve{\mathbb{Q}}_{p}\right) / \sigma$-conjugacy, $b \sim g b g^{-\sigma}$,

$$
\begin{aligned}
B(G) & \sim \operatorname{Bun}_{G}(F) / \sim \\
{[b] } & \longmapsto\left[\mathscr{E}_{b}\right]
\end{aligned}
$$

The space $\left|\operatorname{Bun}_{G}\right|$

- $\left|\operatorname{Bun}_{G}\right| \underset{\text { as sets }}{=} B(G)$
- First Chern class

$$
c_{1}:\left|\operatorname{Bun}_{G}\right| \xrightarrow{\sim} \pi_{1}(G)_{\Gamma}
$$

- Harder-Narasimhan stratification : semi-continuous

$$
\left|\operatorname{Bun}_{G}\right| \longrightarrow \underbrace{X_{*}(A)_{\mathbb{Q}}^{+}}_{\begin{array}{c}
\text { positive } \\
\text { Weyl chamber }
\end{array}}
$$

- Usual order on $X_{*}(A)_{\mathbb{Q}}^{+}$defines the topology of $\left|\operatorname{Bun}_{G}\right|$,

$$
\underbrace{\mathcal{O}^{2}} \geqslant \mathcal{O}(1) \oplus \mathcal{O}(-1) \geqslant \mathcal{O}(2) \oplus \mathcal{O}(-2) \geqslant \ldots
$$

semi-stable locus
$=$ one point
for Bunn $_{2}^{0}$. For Bun $_{2}^{1}$ one has

$$
\underbrace{\mathcal{O}\left(\frac{1}{2}\right)}_{\substack{\text { semi-stable locus } \\ \text { one point }}} \geqslant \mathcal{O}(1) \oplus \mathcal{O} \geqslant \mathcal{O}(2) \oplus \mathcal{O}(-1) \geqslant \ldots
$$

Étale sheaves

$\Lambda=$ any \mathbb{Z}_{ℓ}-algebra, $\ell \neq p$

- We define with Scholze

$$
D_{l i s}\left(\operatorname{Bun}_{G}, \Lambda\right)
$$

as a stable ∞-category

- This is $D_{\text {ett }}\left(\operatorname{Bun}_{G}, \Lambda\right)$ when Λ is torsion and in general

$$
D_{\text {lis }}\left(\operatorname{Bun}_{G}, \Lambda\right) \underbrace{\subset}_{\begin{array}{l}
\text { explicitely } \\
\text { defined as } \\
\text { a sub-cat }
\end{array}} D_{\text {pro-ét }, \llbracket}\left(\operatorname{Bun}_{G}, \Lambda\right)
$$

- Semi-orthogonal decomposition by

$$
\underbrace{D\left(G_{b}(E), \Lambda\right)}_{\text {mooth rep. of } G_{b}(E)},[b] \in B(G) .
$$

via the HN -stratification of Bun_{G}

The Hecke action

- $\operatorname{Div}^{1}=$ sheaf of degree 1 effective divisors on the curve
- $\operatorname{Spa}\left(\breve{\mathbb{Q}}_{p}\right)^{\diamond} / \varphi^{\mathbb{Z}} \xrightarrow{\sim}$ Div 1 via : if $S^{\sharp}=$ an untilt of S over \mathbb{Q}_{p},

$$
S_{\substack{\text { deg. } \\ \text { Cartier } \\ \text { divisor }}}^{\leftrightharpoons} X_{S} .
$$

- For any finite set I, moduli of modifications

along $\sum_{i \in I} D_{i},\left(D_{i}\right)_{i \in I}$ collection of deg. 1 Cartier divisors

The Hecke action : from global to local

- Local Hecke stack

$$
\mathscr{H} \text { ecke } \longrightarrow\left(\text { Div }^{1}\right)^{\prime}
$$

obtained by replacing the curve by its formal completion along $\sum_{i \in I} D_{i}$,

- Loop group interpretation

$$
\mathscr{H} \text { ecke }=\left[L_{I}^{+} G \backslash L_{I} G / L_{I}^{+} G\right]
$$

where $L_{l}^{+} G=G\left(\mathbb{B}_{d R, I}\right), \mathbb{B}_{d R, I}=$ generalized Fontaine's v-sheaf of rings of formal functions on the formal completion

- Global to local map

The Hecke action : geometric Satake

Théorème (F.-Scholze)
Monoidal equivalence

$$
\left(\operatorname{Rep}_{\Lambda}\left(\left({ }^{L} G\right)^{\prime}\right), \otimes\right) \xrightarrow{\sim}(\operatorname{Perv}^{U L A}(\mathscr{H} \text { ecke, }, \Lambda), \underbrace{*}_{\begin{array}{c}
\text { convolution } \\
\text { product }
\end{array}})
$$

here ULA : relative to \mathscr{H} ecke ${ }_{I} \rightarrow\left(\mathrm{Div}^{1}\right)^{\prime}$.

The Hecke action

- Via global to local map, via pullback: can upgrade the global Hecke correspondence to a cohomological one
- The action of those Hecke correspondences defines monoidal ∞-functors between stable ∞-categories
$\left.\operatorname{Rep}_{\Lambda}\left(\left({ }^{L} G\right)^{\prime}\right), \otimes\right) \rightarrow \operatorname{Hom}\left(D_{\text {lis }}\left(\operatorname{Bun}_{G}, \Lambda\right), D_{\text {lis }}\left(\operatorname{Bun}_{G} \times\left(\operatorname{Div}^{1}\right)^{\prime}, \Lambda\right)\right)$
- Drinfeld lemma :

$$
\underbrace{D_{\text {lis }}\left(\operatorname{Bun}_{G}, \Lambda\right)^{B W_{E}^{\prime}}}_{\substack{\text { condensed } \\ \text { stabled } \\ \infty-\text { cat }}} \xrightarrow{\sim} D_{\text {lis }}\left(\operatorname{Bun}_{G} \times\left(\operatorname{Div}^{1}\right)^{\prime}, \Lambda\right)
$$

The Hecke action

At the end, a sequence of monoidal functors between monoidal stable ∞-categories

$$
\left.F_{I}: \operatorname{Rep}_{\Lambda}\left({ }^{L} G\right)^{\prime}\right) \longrightarrow \operatorname{End}\left(D_{\text {lis }}\left(\operatorname{Bun}_{G}, \Lambda\right)\right)^{B W_{E}^{\prime}}
$$

that is

1. Linear over $\operatorname{Rep}_{\Lambda}\left(W_{E}^{I}\right)$ via $\left({ }^{L} G\right)^{\prime} \rightarrow W_{E}^{I}$
2. Functorial in the finite set I (see, factorization objects à la Beilinson-Drinfeld/Kapranov)

For example (fusion property) :
$\operatorname{Res}_{W_{E}}^{W_{E}^{2}} F_{1,2}\left(W_{1} \boxtimes W_{2}\right)=F_{1}\left(W_{1} \otimes W_{2}\right)$.

The moduli of Langlands parameters

Théorème

There is a natural moduli of condensed Langlands parameters from $\underbrace{W_{E}}_{\begin{array}{c}\text { condensed } \\ \text { group }\end{array}}$ to ${ }^{L} G$, over $\operatorname{Spec}(\Lambda)$,

$$
\text { LocSys }_{\widehat{G}}=[\underbrace{Z^{1}\left(W_{E}, \widehat{G}\right)}_{\amalg \text { finite type affine schemes }} / \widehat{G}]
$$

that is an algebraic stack locally complete intersection of relative dimension 0 .

The spectral action

Théorème (F.-Scholze)

The family of functors F_{l}, I a finite set, together with the factorization property define a monoidal action of the stable ∞-category

$$
\operatorname{Perf}^{\left(\text {LocSys }_{\widehat{G}}\right)}
$$

on

$$
D_{l i s}\left(\operatorname{Bun}_{G}, \Lambda\right)
$$

\rightarrow write $\underbrace{B W_{E}}$ as a homotopy colimit of finite sets and link to ∞-groupoid the finite sets /

The local Langlands correspondence

- $\pi=$ smooth irreducible $\overline{\mathbb{Q}}_{\ell}$-rep. of $G(E)$
- $\pi \mapsto \mathscr{F}_{\pi}$ local system on $\operatorname{Bun}_{G}^{s s, 0} \simeq[* / \underline{G(E)}]$
$-j: \operatorname{Bun}_{G}^{\text {ss,0 }} \hookrightarrow \operatorname{Bun}_{G}$ open immersion
- look at the spectral action on $j!\mathscr{F}_{\pi}$
- this defines $\varphi_{\pi}^{\text {ss }}$

The geometrization conjecture

G quasi-split. Fix $\psi: U(E) \rightarrow \overline{\mathbb{Q}}_{\ell}^{\times}$non-degenerate. Let

$$
\underbrace{\mathcal{W}_{\psi}}=j!c-\operatorname{Ind}_{U(E)}^{G(E)} \psi \in D_{l i s}\left(\operatorname{Bun}_{G}, \Lambda\right)
$$

Whittaker sheaf

Conjecture

The functor

$$
\begin{aligned}
& \operatorname{Perf}\left(\operatorname{LocSyS}_{\widehat{G}}\right) \longrightarrow D_{\text {lis }}\left(\operatorname{Bun}_{G}, \overline{\mathbb{Q}}_{\ell}\right) \\
& \mathcal{E} \longmapsto \underbrace{\mathcal{E} \overbrace{*}^{\text {spectral }} \text { action }}_{\begin{array}{c}
\text { non-abelian Fourier } \\
\text { transform }
\end{array}} \mathcal{W}_{\psi}
\end{aligned}
$$

extends to an equivalence

$$
D_{\text {coh }}^{b}\left(\operatorname{LocSys}_{\widehat{G}}\right) \xrightarrow{\sim} D_{l i s}\left(\operatorname{Bun}_{G}, \overline{\mathbb{Q}}_{\ell}\right)^{\omega} .
$$

Rethinking the Langlands program

Natural objects are not smooth rep. of $G(E)$ but complexes in $D_{\text {lis }}\left(\operatorname{Bun}_{G}, \overline{\mathbb{Q}}_{\ell}\right)$. Let $A \in D_{\text {lis }}\left(\operatorname{Bun}_{G}, \overline{\mathbb{Q}}_{\ell}\right):$

Théorème

1. A is compact \Leftrightarrow its support is finite and $\forall[b]$, $i_{b}^{*} A \in D_{f t}^{b}\left(G_{b}(E), \overline{\mathbb{Q}}_{\ell}\right)$.
2. A is $U L A \Leftrightarrow \forall[b], \forall K,\left(i_{b}^{*} A\right)^{K} \in D_{f t}^{b}\left(\overline{\mathbb{Q}}_{\ell}\right)$
3. $\exists \mathbb{D}_{B Z}$ involution of $D_{\text {lis }}\left(\operatorname{Bun}_{G}, \overline{\mathbb{Q}}_{\ell}\right)^{\omega}$ generalizing Berstein-Zelevinsky involution.
