Some new geometric structures in the Langlands program

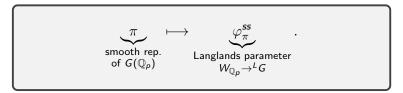
Laurent Fargues (CNRS/IMJ)

ICCM - Jan 4, 2024

More than 20 years of work on the (local) Langlands program / p-adic Hodge theory :

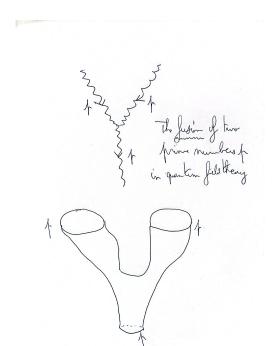
- from Harris-Taylor work for GL_n, my PHD work on the geometric realization of the local Langlands correspondence,
- going through my joint work with Fontaine on "the curve" where we gave a meaning to the notion of "holomorphic function of the variable p",
- through my geometrization conjecture I formulated at the MSRI in 2014,
- until my recent joint work with Scholze on the geometric realization of the local Langlands correspondence.

- The (local) Langlands program has been completely reformulated.
- This has allowed us to construct jointly with Scholze recently the semi-simple local Langlands correspondence

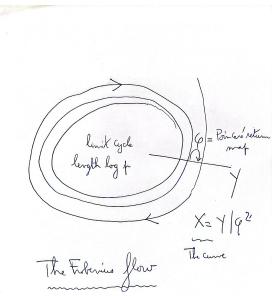


Here typically $\pi =$ local component at p of an automorphic representation of a reductive group over \mathbb{Q} and ${}^{L}G =$ Langlands dual.

Fusion

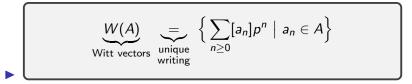


The Frobenius flow



Holomorphic functions of the variable p

•
$$A = \text{perfect } \mathbb{F}_p\text{-algebra i.e. Frob}_A : A \xrightarrow{\sim} A$$



unique p-torsion free p-adically complete lift of A

$$[a] = \lim_{\substack{n \to +\infty \\ \text{renormalization process}}} (\widehat{a^{1/p^n}})^{p^n}, \quad \widetilde{b} := \text{any lift of } b$$

Holomorphic functions of the variable p

 Addition / multiplication given by universal generalized polynomials in

$$\mathbb{F}_{p}\big[X_{i}^{1/p^{\infty}},Y_{j}^{1/p^{\infty}}\big]_{i,j\geq 0}$$

Example :

$$[a] + [b] = [a + b] + [P(a, b)]p + p^2 \cdots$$

where

$$P(X,Y) = rac{(X^{1/p} + Y^{1/p})^p - X - Y}{p} \in \mathbb{Z}[X^{1/p},Y^{1/p}]$$

Holomorphic functions of the variable *p*

- ▶ $A = \mathbb{F}_p$ -perfectoid algebra i.e. A = perfect Banach ring
- $A^+ \subset A$ ring of bounded by 1 holomorphic functions
- W(A⁺) equipped with topology=mix of *p*-adic and Banach ring top of A⁺, f ∈ W(A⁺),

$$f = \sum_{n \ge 0} [a_n] p^n = hol.$$
 fct. variable p.

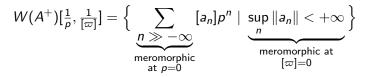
• $\varpi \in A^{\circ\circ} \cap A^{\times}$ pseudo-uniformizer, $S = \text{Spa}(R, R^+)$

$$Y_{\mathcal{S}} = \mathsf{Spa}ig(\mathcal{W}(\mathcal{A}^+), \mathcal{W}(\mathcal{A}^+)ig) \smallsetminus \mathcal{V}(p\left[arpi
ight])$$

adic space, "open punctured disk variable p"

Holomorphic fct. variable p

• $\mathcal{O}(Y_S) = a$ completion of



ightarrow non explicit Frechet ring, Fontaine's type ring

Equipped with Frobenius

$$Y_S \supset \varphi$$

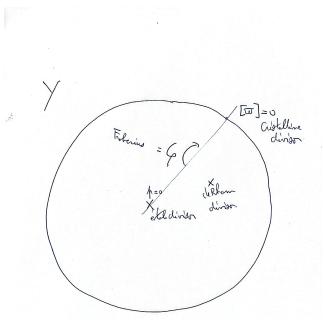
induced by Frob of the Witt vectors $\sum_{n} [a_n] p^n \mapsto \sum_{n} [a_n^p] p^n$

 Acts properly discontinuously without fixed points, continuous map

$$|Y_S| \longrightarrow]0,1[$$

if $y \mapsto t$ then $\varphi(y) \mapsto t^{1/p}$.

The space Y



Holomorphic functions variable p

- S = Spa(F), F = perfectoid field.
 - ▶ With Fontaine : develop a theory of hol. fct. for $f \in O(Y_S)$.
 - Example

Théorème (F.-Fontaine, Weierstrass factorization) If F is algebraically closed and $f = \sum_{n \ge 0} [a_n] p^n \in W(\mathcal{O}_F) = \mathcal{O}(Y_S)^+,$ $|a_0| < 1, \dots, |a_{d-1}| < 1, a_0 \neq 0 \text{ and } |a_d| = 1, \text{ can write}$ $f = unit \times (p - [z_1]) \times \dots \times (p - [z_d])$

The curve

Définition (F.-Fontaine) For $S = \mathbb{F}_p$ -perfectoid space $X_S = Y_S / \varphi^{\mathbb{Z}}$ the relative curve associated to S

Functorial in S

Can think of X_S as the family associated to the collection of curves

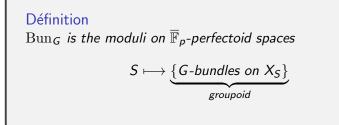
$$(X_{K(s),K(s)^+})_{s\in S}$$

For S = Spa(F), F perfectoid field, one has (F.-Fontaine)
 X_F = Noetherian analytic adic space of dimension 1

$$\underbrace{\mathcal{H}^{1}(\mathcal{O})=0}_{\text{like }\mathbb{P}^{1}} \text{ but } \underbrace{\mathcal{H}^{1}(\mathcal{O}(-1))\neq 0}_{\text{unlike }\mathbb{P}^{1}}$$

The moduli of bundles on the curve

G = reductive group over \mathbb{Q}_p



 \rightarrow *v*-stack on Perf_{$\overline{\mathbb{F}}_p$}, *v*-top= analog of fpqc topology

The moduli of bundles on the curve

```
Théorème (F.-Scholze)
```

The v-stack Bun_G is an Artin v-stack ℓ -coho. smooth of dimension 0.

 \rightarrow nice charts made of locally spatial diamonds for the $\ell\text{-coho.}$ smooth topology, $\ell\neq p$

 \rightarrow nice geometric structure, not an abstract *v*-stack

The moduli of bundles on the curve

S = Spa(F), F alg. closed \rightarrow geometric point

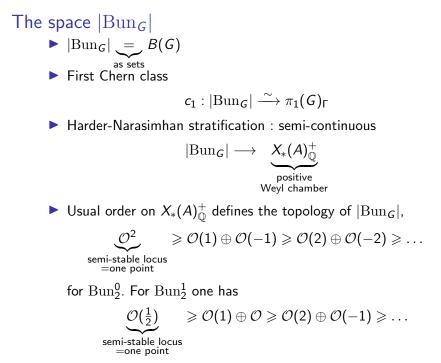
Théorème (F.-Fontaine, F.)

1. For each $\lambda \in \mathbb{Q}$, $\lambda = \frac{d}{h}$, $\mathcal{O}(\lambda) =$ stable vector bundle of rank h degree d on the curve.

$$\{\lambda_1 \geq \cdots \geq \lambda_r \mid r \in \mathbb{N}, \lambda_i \in \mathbb{Q} \} \xrightarrow{\sim} \operatorname{Bun}(F)/\sim \\ (\lambda_1, \dots, \lambda_r) \longmapsto \Big[\bigoplus_{i=1}^r \mathcal{O}(\lambda_i) \Big].$$

2. $B(G) = G(\breve{\mathbb{Q}}_p)/\sigma$ -conjugacy, $b \sim gbg^{-\sigma}$,

$$\begin{array}{rcl} B(G) & \stackrel{\sim}{\longrightarrow} & \operatorname{Bun}_{G}(F)/\sim \\ & [b] & \longmapsto & [\mathscr{E}_{b}] \end{array}$$



Étale sheaves

 $\Lambda =$ any \mathbb{Z}_{ℓ} -algebra, $\ell \neq p$

We define with Scholze

 $D_{lis}(\operatorname{Bun}_G, \Lambda)$

as a stable $\infty\text{-}\mathsf{category}$

• This is $D_{\text{ét}}(\operatorname{Bun}_G, \Lambda)$ when Λ is torsion and in general

$$D_{lis}(\operatorname{Bun}_{\mathcal{G}},\Lambda) \subset D_{\operatorname{pro-\acute{e}t},\blacksquare}(\operatorname{Bun}_{\mathcal{G}},\Lambda)$$

explicitely defined as a sub-cat

Semi-orthogonal decomposition by

 $\underbrace{D(G_b(E),\Lambda)}_{\text{smooth rep. of } G_b(E)}, \ [b] \in B(G).$

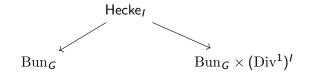
via the HN-stratification of $\operatorname{Bun}_{\mathcal{G}}$

The Hecke action

Div¹ = sheaf of degree 1 effective divisors on the curve

▶ Spa $(\tilde{\mathbb{Q}}_p)^{\diamond}/\varphi^{\mathbb{Z}} \xrightarrow{\sim} \operatorname{Div}^1$ via : if $S^{\sharp} = \operatorname{an}$ untilt of S over \mathbb{Q}_p ,

For any finite set I, moduli of modifications



along $\sum_{i \in I} D_i$, $(D_i)_{i \in I}$ collection of deg. 1 Cartier divisors

The Hecke action : from global to local

Local Hecke stack

$$\mathscr{H}\mathsf{ecke}_{l} \longrightarrow (\mathrm{Div}^{1})^{l}$$

obtained by replacing the curve by its formal completion along $\sum_{i \in I} D_i$,

Loop group interpretation

$$\mathscr{H}$$
ecke_I = $[L_I^+ G \setminus L_I G / L_I^+ G]$

where $L_I^+ G = G(\mathbb{B}_{dR,I})$, $\mathbb{B}_{dR,I}$ = generalized Fontaine's *v*-sheaf of rings of formal functions on the formal completion

Global to local map

$$\begin{array}{ccc} \mathsf{Hecke}_I & \stackrel{loc}{\longrightarrow} & \mathscr{H}\mathsf{ecke}_I \\ & & & \downarrow \\ & & & \downarrow \\ & & & \mathsf{Bun}_G \times (\mathrm{Div}^1)^I & \longrightarrow (\mathrm{Div}^1)^I \end{array}$$

The Hecke action : geometric Satake

Théorème (F.-Scholze)
Monoidal equivalence

$$\left(\operatorname{Rep}_{\Lambda}\left(({}^{L}G)'\right),\otimes\right) \xrightarrow{\sim} \left(\operatorname{Perv}^{ULA}(\mathscr{H}ecke_{I},\Lambda),\underbrace{*}_{convolution}\right)$$

here ULA : relative to $\mathscr{H}ecke_{I} \to (\operatorname{Div}^{1})'.$

The Hecke action

- Via global to local map, via pullback : can upgrade the global Hecke correspondence to a cohomological one
- ► The action of those Hecke correspondences defines monoidal ∞-functors between stable ∞-categories

$$\mathsf{Rep}_{\Lambda}\left(({}^{L}G)'\right),\otimes\right)\to\mathsf{Hom}\left(D_{\mathit{lis}}(\mathrm{Bun}_{G},\Lambda),D_{\mathit{lis}}(\mathrm{Bun}_{G}\times(\mathrm{Div}^{1})',\Lambda)\right)$$

Drinfeld lemma :

$$\underbrace{\frac{D_{lis}(\operatorname{Bun}_G,\Lambda)}{\underset{\substack{\text{condensed}\\\text{stable}\\\infty-cat}}^{BW_E^{\prime}} \xrightarrow{\sim} D_{lis}(\operatorname{Bun}_G \times (\operatorname{Div}^1)^{\prime},\Lambda)$$

The Hecke action

At the end, a sequence of monoidal functors between monoidal stable $\infty\text{-}\mathsf{categories}$

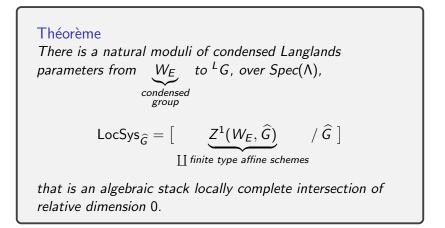
$$F_{I}: \operatorname{\mathsf{Rep}}_{\Lambda}({}^{L}G)^{I}) \longrightarrow \operatorname{\mathsf{End}}(D_{lis}(\operatorname{Bun}_{G}, \Lambda))^{BW'_{E}}$$

that is

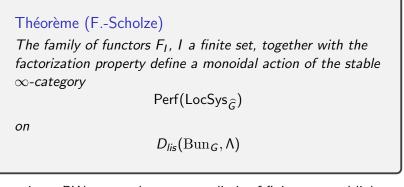
- 1. Linear over $\operatorname{Rep}_{\Lambda}(W_E^I)$ via $({}^LG)^I \to W_E^I$
- 2. Functorial in the finite set *I* (see, factorization objects à la Beilinson-Drinfeld/Kapranov)

For example (fusion property) : $\operatorname{Res}_{W_E}^{W_E^2} F_{1,2}(W_1 \boxtimes W_2) = F_1(W_1 \otimes W_2).$

The moduli of Langlands parameters



The spectral action



 \rightarrow write $\underbrace{BW_E}_{\infty\text{-groupoid}}$ as a homotopy colimit of finite sets and link to the finite sets I

The local Langlands correspondence

•
$$\pi = \text{smooth irreducible } \mathbb{Q}_{\ell}\text{-rep. of } G(E)$$

•
$$\pi \mapsto \mathscr{F}_{\pi}$$
 local system on $\operatorname{Bun}_{\mathcal{G}}^{ss,0} \simeq [*/\underline{\mathcal{G}(E)}]$

▶
$$j : \operatorname{Bun}_{G}^{ss,0} \hookrightarrow \operatorname{Bun}_{G}$$
 open immersion

► look at the spectral action on
$$j_! \mathscr{F}_{\pi}$$

• this defines
$$\varphi_{\pi}^{ss}$$

The geometrization conjecture

G quasi-split. Fix $\psi : U(E) \to \overline{\mathbb{Q}}_{\ell}^{\times}$ non-degenerate. Let

$$\underbrace{\mathcal{W}_{\psi}}_{U(E)} = j_! \operatorname{c-Ind}_{U(E)}^{G(E)} \psi \in D_{lis}(\operatorname{Bun}_G, \Lambda)$$

Whittaker sheaf

Conjecture The functor

 $\begin{array}{rcl} \operatorname{Perf}(\operatorname{LocSys}_{\widehat{G}}) & \longrightarrow & D_{lis}(\operatorname{Bun}_{G}, \overline{\mathbb{Q}}_{\ell}) \\ \mathcal{E} & \longmapsto & \underbrace{\mathcal{E} & }_{action} & \underbrace{\mathcal{E} & }_{action} & \underbrace{\mathcal{W}_{\psi}}_{non-abelian \ Fourier} \end{array}$

extends to an equivalence

$$D^b_{coh}(\operatorname{LocSys}_{\widehat{G}}) \xrightarrow{\sim} D_{lis}(\operatorname{Bun}_G, \overline{\mathbb{Q}}_\ell)^{\omega}.$$

Rethinking the Langlands program

Natural objects are not smooth rep. of G(E) but complexes in $D_{lis}(\operatorname{Bun}_G, \overline{\mathbb{Q}}_\ell)$. Let $A \in D_{lis}(\operatorname{Bun}_G, \overline{\mathbb{Q}}_\ell)$:

Théorème

- 1. A is compact \Leftrightarrow its support is finite and $\forall [b]$, $i_b^* A \in D_{ft}^b(G_b(E), \overline{\mathbb{Q}}_{\ell}).$
- 2. A is ULA $\Leftrightarrow \forall [b], \ \forall K, \ (i_b^*A)^K \in D^b_{ft}(\overline{\mathbb{Q}}_\ell)$
- ∃D_{BZ} involution of D_{lis}(Bun_G, Q_ℓ)^ω generalizing Berstein-Zelevinsky involution.