The curve and the Langlands program

Laurent Fargues (CNRS/IMJ)

- Defined and studied in our joint work with Fontaine
- Two aspects : compact *p*-adic Riemann surface / algebraic curve
- Starting datum : $F|\mathbb{F}_p$ perfectoid field
- p=variable, Y = {0 < |p| < 1} open punctured disk, adic space</p>

$$W(\mathcal{O}_F)[\frac{1}{p},\frac{1}{[\varpi]}] = \left\{ \sum_{n \gg -\infty} [x_n] p^n \mid x_n \in F, \sup_n |x_n| < +\infty \right\}$$

 O(Y) completion of the preceding. Fontaine's ring. No explicit formula for elements of O(Y)

$$Y \stackrel{\frown}{\supset} \varphi$$
 Frobenius $X = Y/\varphi^{\mathbb{Z}}$

compact adic space $/\mathbb{Q}_p$

• $\mathcal{O}(1)$ line bundle $/X \leftrightarrow$ automorphic factor $j(\varphi, p) = p$

Schematical curve

$$\mathfrak{X} = \mathsf{Proj}ig(\oplus_{d\geq 0} \mathcal{O}(Y)^{arphi = p^d}ig)$$

GAGA type morphism

$$X \longrightarrow \mathfrak{X}$$

Theorem (F.-Fontaine)

- The curve is a curve : X is a Dedekind scheme, X noetherian regular dimension 1 adic space
- Perfectoid residue fields :

 $\forall x \in |\mathfrak{X}|, \ k(x)|\mathbb{Q}_p \ perfectoid, \ [k(x)^{\flat}:F] < +\infty$

X \ {x} = Spec(B_x), B_x Dedekind, P.I.D. if F alg. closed. (B_x, −ord_x) not euclidean i.e.

 $H^1(\mathcal{O}(-1)) \neq 0$

▶ *F* alg. closed. \Rightarrow $|\mathfrak{X}|$ = untilts of *F* up to Frob.

Vector bundles on the curve

• GAGA verified :
$$Bun_{\mathfrak{X}} \xrightarrow{\sim} Bun_X$$

• \mathfrak{X} complete \Rightarrow good Harder-Narasimhan reduction theory

$$\mu = \frac{\deg}{\mathrm{rk}}$$

• $\lambda \in \mathbb{Q} \rightsquigarrow \mathcal{O}(\lambda)$ stable slope λ vector bundle, $\lambda = \frac{d}{h}$, pushforward of $\mathcal{O}(d)$ via cyclic cover $Y/\varphi^{h\mathbb{Z}} \to Y/\varphi^{\mathbb{Z}}$

Theorem (F.-Fontaine)

F alg. closed

$$\{ \lambda_1 \geq \cdots \geq \lambda_n \mid \lambda_i \in \mathbb{Q} \} \xrightarrow{\sim} \operatorname{Bun}_{\mathfrak{X}} / \sim \\ (\lambda_1, \dots, \lambda_n) \longmapsto [\oplus_i \mathcal{O}(\lambda_i)].$$

Vector bundles on the curve : applications

Quick simple proofs of the two fundamentals theorems of *p*-adic Hodge theory :

▶ weakly admissible ⇒ admissible (Colmez-Fontaine)

▶ de Rham ⇒ pot. semi-stable (Berger)

 $\infty \in |\mathfrak{X}|$ fixed. Study Galois equivariant vector bundles and their modifications at ∞

Look at modifications of vector bundles

- φ-modules over A_{inf}
- Scholze-Weinstein

 $\blacktriangleright F = \mathbb{C}_{p}^{\flat}$

$$\mathfrak{X}^{\prime} \bigcirc \mathsf{Gal}(\overline{\mathbb{Q}}_p | \mathbb{Q}_p)$$

G-bundles

G reductive group /Q_p, Q̃_p := Q̂_p^{un}, σ = Frob, B(G) = G(Q̃_p)/σ-conj, b ~ gbg^{-σ}
b ∈ G(Q̃_p)
E_b = Y × G_φ G-bundle /X, φ acts on G via conjugation by bσ
Theorem (F)
F alg. closed

$$\begin{array}{rcl} B(G) & \stackrel{\sim}{\longrightarrow} & H^1_{\acute{e}t}(\mathfrak{X},G) \\ [b] & \mapsto & [\mathcal{E}_b] \end{array}$$

- Dictionary : reduction theory (Atiyah-Bott) for G-bundles / Kottwitz description of B(G).
- *Example* : \mathcal{E}_b semi-stable \Leftrightarrow *b* is basic (isoclinic)

G-bundles : applications

- (Chen, F, Shen) : Proof of F.-Rapoport conjecture on period spaces (*p*-adic analogs of Griffith's period spaces).
 Example : computation of *p*-adic period spaces for SO(2, n 2)
- ► Construction of local Shimura varieties (Scholze) $Sht(G, b, \mu)$ as moduli of modifications $\mathcal{E}_1 \rightsquigarrow \mathcal{E}_b$
- Newton stratification of Hodge-Tate flag manifold (Caraiani-Scholze), modification *E*_{1,x}, *x* ∈ flag manifold, *E*_{1,x} ≃ *E*_b for some *b* → stratification by the set of such [*b*]

The stack Bun_G of *G*-bundles/curve

Introduced to formulate a geometrization conjecture of the local Langlands correspondence

The stack Bun_G

$$\operatorname{Bun}_{\mathcal{G}}^{c_1=0,ss} = \left[\bullet / \underline{\mathcal{G}(\mathbb{Q}_p)} \right] \xrightarrow{\operatorname{open}} \operatorname{Bun}_{\mathcal{G}}$$

▶ <u>Aut(trivial</u> *G*-bundle) = $G(\mathbb{Q}_p)$ topological group \neq classical case \rightsquigarrow *G* algebraic group

• More generally $\forall \alpha \in \pi_1(G)_{\Gamma}$

$$\operatorname{Bun}_{G}^{c_{1}=\alpha,ss}=\left[\bullet/\underline{J_{b}(\mathbb{Q}_{p})}\right]$$

b basic, J_b inner form of G

In general each H.N. stratum is a classifying stack

$$\left[\bullet / \mathcal{J}_b
ight]$$

 $\mathcal{J}_b = \mathcal{J}_b^0 \rtimes \underline{J_b(\mathbb{Q}_p)}, \ \mathcal{J}_b^0 =$ unipotent diamond

The geometrization conjecture

•
$$\varphi = discrete Langlands parameter$$

$$\varphi: W_{\mathbb{Q}_p} \longrightarrow {}^L G$$

Conjecture

$$\varphi\longmapsto \mathscr{F}_{\varphi}$$

 S_{φ} -equivariant perverse Hecke eigensheaf on Bun_G

► s.t. the stalks of 𝔅_φ at semi-stable points gives local Langlands + internal structure of L-packets for all extended pure inner forms of G

The geometrization conjecture

For this :

- ▶ Need to give a meaning to "perverse sheaf on Bun_G"
- Need to give a meaning to the Hecke eigensheaf property : establish geometric Satake in this context

 \rightsquigarrow joint work with Scholze : give a precise statement of the conjecture + construction of the local Langlands correspondence

 $\pi \mapsto \varphi_{\pi}$

à la V. Lafforgue using $\operatorname{Bun}_{\mathcal{G}}$

Constructible and perverse étale sheaves on Bun_{G}

Joint with Scholze.

- $\Lambda \in \{\overline{\mathbb{F}}_\ell, \overline{\mathbb{Q}}_\ell\}$ étale coefficients, $\ell \neq p$
 - ▶ Bun_{G} is a (cohomologically) smooth stack of dimension 0
 - Good notion of constructible sheaf on Bun_G = reflexive sheaves w.r.t. Verdier duality
 - Fiberwise criterion of constructibility in terms of representation theory : ∀b ∈ G(Ŭ_p), the stalk at the point given by b is an admissible representation of J_b(Q_p)

Geometric Satake

Div¹ = Spa(Q_ρ)[◊]/φ^ℤ sheaf of deg. 1 effective div. on the curve

$$\operatorname{Gr}_{G}^{B_{dR}} \longrightarrow \operatorname{\mathsf{Spa}}(\mathbb{Q}_p)^\diamond$$

Scholze's B_{dR} affine grassmanian,

$$\operatorname{Gr}_{G}^{B_{dR}}/\varphi^{\mathbb{Z}} \to \operatorname{Div}^{1}$$

Beilinson-Drinfeld type affine Grassmanian

Theorem (F.-Scholze) Geometric Satake holds for $\operatorname{Gr}_{G}^{B_{dR}}$, Satake category $\simeq \operatorname{Rep}({}^{L}G, \Lambda)$. Construction of Langlands parameters

► Factorization enhancement :

$$I \text{ finite set } \rightsquigarrow \operatorname{Gr}_{G,I}^{B_{dR}} \to (\operatorname{Spa}(\mathbb{Q}_p)^\diamond)^I$$

+ factorization property when I varies.

▶ $W \in \operatorname{Rep}({}^{L}G', \Lambda) \rightsquigarrow IC_{W}$ kernel on Hecke_{I} via geo Satake

Construction of Langlands parameters

 Coupled with V. Lafforgue strategy (global function field) we construct local Langlands

- Very little known about this correspondence : surjectivity, finiteness of fibers ?
- Geometrization conjecture goes in the other direction

Langlands parameter \mapsto representation

and would give this + internal structure of L-packets

Back to the geometrization conjecture

- The GL₁-case. Classically : Abel-Jacobi morphism locally trivial fibration in simply connected alg. var. (projective spaces) in high degree
- Reduced to the following theorem

Theorem (F) For $d \ge 3$, the Abel-Jacobi morphism

$$AJ^d:\operatorname{Div}^d\longrightarrow \mathscr{P}\mathrm{ic}^d$$

is a pro-étale locally trivial fibration in simply connected diamonds. Here

$$\operatorname{Div}^d = \mathsf{Hilbert} \ \mathsf{diamond} = (\operatorname{Div}^1)^d / \mathfrak{S}_d$$

with $\operatorname{Div}^1 = \operatorname{Spa}(\mathbb{Q}_p)^{\diamond} / \varphi^{\mathbb{Z}}$.

That's only the beginning of the story !