Master of Science in Mathematics Royal University of Phnom Penh RUPP

Michel Waldschmidt
URPP - Université Royale de Phnom Penh
Centre International de Mathématiques Pures et Appliquées CIMPA
Coopération Mathématique Interuniversitaire Cambodge France

Linear Algebra

Second Assignment, October 11, 20101 hour

Exercise 1.

Determine the balanced chemical reaction when reactants are $C_{2} H_{6}$ and O_{2}, while products are CO_{2} and $\mathrm{H}_{2} \mathrm{O}$.

Exercise 2. Let u and v be two real numbers. Consider the matrix

$$
A=\left(\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 0 \\
0 & u & v
\end{array}\right)
$$

a) Compute the determinant of A.
b) Write a necessary and sufficient condition on u and v for the matrix A to be invertible.
c) Compute the adjoint A^{\prime} of A.
d) Compute the determinant of A^{\prime}.
e) Compute $A A^{\prime}$.
f) Assume the matrix A is invertible. Write the matrix A^{-1}, and use Cramer's rule for solving the system of 3 linear equations in 3 variables x, y, z :

Exercise 3. Let $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)$ be three points in the plane \mathbf{R}^{2}.
a) Using a determinant, write a necessary and sufficient condition for the existence of a line L passing through these three points.
b) Using a determinant, write a necessary and sufficient condition for the existence of a unique circle C passing through these three points.
c) Assume that there is a unique circle C passing through these three points. Using a determinant, write a necessary and sufficient condition for the circle C to pass through 0 .
Exercise 4. Consider the permutation

$$
\sigma=\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
3 & 6 & 5 & 2 & 1 & 4
\end{array}\right) \in S_{6}
$$

a) Decompose σ into a product of disjoint cycles.
b) Decompose σ into a product of transpositions.
c) Deduce the signature $\epsilon(\sigma)$ of σ.

Exercise 5. Compute the distance of the point $(2,-3)$ to the line of equation $3 x+4 y+1=0$.

Master of Science in Mathematics Royal University of Phnom Penh RUPP

Michel Waldschmidt URPP - Université Royale de Phnom Penh
Centre International de Mathématiques Pures et Appliquées CIMPA
Coopération Mathématique Interuniversitaire Cambodge France

Linear Algebra

Second Assignement, October 11, 2010 - solutions

Solution exercise 1

The chemical equation ${ }^{1}$

$$
x \mathrm{C}_{2} \mathrm{H}_{6}+y \mathrm{O}_{2} \longrightarrow z \mathrm{CO}_{2}+t \mathrm{H}_{2} \mathrm{O}
$$

gives the system of 3 homogeneous linear equations (one for each of the atoms of carbon C, hydrogen H and oxygen O) in 4 variables x, y, z, t :

$$
\left\{\begin{array}{c}
2 x=z \\
6 x=2 t \\
2 y=2 z+t
\end{array}\right.
$$

with associated array

$$
\left(\begin{array}{cccc}
2 & 0 & -1 & 0 \\
6 & 0 & 0 & -2 \\
0 & 2 & -2 & -1
\end{array}\right)
$$

The smallest solution in positive integers is $(x, y, z, t)=(2,7,4,6)$, which gives rise to the balanced chemical equation

$$
2 \mathrm{C}_{2} \mathrm{H}_{6}+7 \mathrm{O}_{2} \longrightarrow 4 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}
$$

all other solutions are $(x, y, z, t)=(2 k, 7 k, 4 k, 6 k)$ where k is a positive integer.

Solution exercise 2

a) The determinant of A is $u+v$.
b) A necessary and sufficient condition on u and v for the matrix A to be invertible is $u+v \neq 0$.
c) The adjoint A^{\prime} of A is

$$
A^{\prime}=\left(\begin{array}{ccc}
v & u & -1 \\
-v & v & 1 \\
u & -u & 1
\end{array}\right)
$$

d) ${ }^{2}$ The determinant of A^{\prime} is $(u+v)^{2}$.
e) The product $A A^{\prime}$ is the diagonal matrix

$$
\operatorname{det}(A) I_{3}=\left(\begin{array}{ccc}
u+v & 0 & 0 \\
0 & u+v & 0 \\
0 & 0 & u+v
\end{array}\right)
$$

[^0]f) If A is invertible, the matrix A^{-1} is
\[

\frac{1}{\operatorname{det}(A)} A^{\prime}=\left($$
\begin{array}{ccc}
\frac{v}{u+v} & \frac{u}{u+v} & \frac{-1}{u+v} \\
\frac{-v}{u+v} & \frac{v}{u+v} & \frac{1}{u+v} \\
\frac{u}{u+v} & \frac{-u}{u+v} & \frac{1}{u+v}
\end{array}
$$\right)
\]

Cramer's rule for solving the associated system of 3 linear equations in 3 variables x, y, z gives

$$
(u+v) x=\operatorname{det}\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & u & v
\end{array}\right)=-1, \quad(u+v) y=\operatorname{det}\left(\begin{array}{lll}
1 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & v
\end{array}\right)=1, \quad(u+v) z=\operatorname{det}\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & u & 1
\end{array}\right)=1
$$

The unique solution is given by $x=-y=-z=-1 /(u+v)$.

Solution exercise 3

a) A line L with equation $a x+b y+c=0$ passes through the three points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)$ if and only if

$$
\left\{\begin{array}{l}
a x_{1}+b y_{1}+c=0 \\
a x_{2}+b y_{2}+c=0 \\
a x_{3}+b y_{3}+c=0
\end{array}\right.
$$

The existence of such a line L is equivalent to the existence of a non-trivial solution (a, b, c) the this system of three homogeneous linear equations in three variables (a, b, c), hence it is equivalent to

$$
\operatorname{det}\left(\begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right)=0
$$

b) A necessary and sufficient condition for the existence of a unique circle C passing through these three points is that they are not on a line, hence this condition can be written

$$
\operatorname{det}\left(\begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right) \neq 0
$$

c) Let an equation of the unique circle C passing through these three points be

$$
a\left(x^{2}+y^{2}\right)+b x+c y+d=0
$$

Then C passes through 0 if and only if $d=0$, which means that the system of 3 homogeneous linear equations in 3 variables (a, b, c)

$$
\left\{\begin{array}{l}
a\left(x_{1}+y_{1}^{2}\right)+b x_{1}+c y_{1}=0 \\
a\left(x_{2}+y_{2}^{2}\right)+b x_{2}+c y_{2}=0 \\
a\left(x_{3}+y_{3}^{2}\right)+b x_{3}+c y_{3}=0
\end{array}\right.
$$

has a non-trivial solution. Hence the answer is

$$
\operatorname{det}\left(\begin{array}{lll}
x_{1}^{2}+y_{1}^{2} & x_{1} & y_{1} \\
x_{2}^{2}+y_{2}^{2} & x_{2} & y_{2} \\
x_{3}^{2}+y_{3}^{2} & x_{3} & y_{3}
\end{array}\right)=0
$$

Solution exercise 4

$$
\sigma=\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
3 & 6 & 5 & 2 & 1 & 4
\end{array}\right)=\left(\begin{array}{lllll}
1 & 3 & 5
\end{array}\right)\left(\begin{array}{lll}
2 & 6 & 4
\end{array}\right)=\left(\begin{array}{lll}
1 & 3
\end{array}\right)\left(\begin{array}{ll}
1 & 5
\end{array}\right)(26)(24) .
$$

The number of transpositions in the product in the right hand side is even, hence the signature $\epsilon(\sigma)$ is +1 . Also the number of cycles of even length is 0 , an even number.

Solution exercise 5

The distance of a point P in the plane \mathbf{R}^{2} of coordinates $\left(x_{0}, y_{0}\right)$ to a line L of equation $a x+b y+c=$ 0 is given by

$$
\frac{\left|a x_{0}+b y_{0}+c\right|}{\sqrt{a^{2}+b^{2}}} .
$$

Here $x_{0}=2, y_{0}=-3, a=3, b=4, c=1$, hence the distance of the point P of coordinates $(2,-3)$ to the line L of equation $3 x+4 y+1=0$ is

$$
\frac{|6-12+1|}{\sqrt{9+16}}=\frac{|-5|}{5}=1
$$

Let us check that the orthogonal projection H of P on L has coordinates $(13 / 5,-11 / 5)$: this point is on L since $3 \cdot 13 / 5+4 \cdot(-11 / 5)+1=0$, the vector $\overrightarrow{P H}$ is

$$
(13 / 5,-11 / 5)-(2,-3)=(3 / 5,4 / 5)
$$

hence is parallel to $(a, b)=(3,4)$, and therefore perpendicular to L. The length of $\overrightarrow{P H}$ is $\sqrt{(3 / 5)^{2}+(4 / 5)^{2}}=1$.

[^0]: ${ }^{1} \mathrm{C}_{2} \mathrm{H}_{6}$ is the formula for the molecule of Ethane, while O_{2} is the Oxygen, CO_{2} the Carbon dioxide and $\mathrm{H}_{2} \mathrm{O}$ the Water.
 ${ }^{2}$ In general, for a $n \times n$ matrix, the determinant of the adjoint A^{\prime} is $\operatorname{det}(A)^{n-1}$, because the product $A A^{\prime}$ is $\operatorname{det}(A) I_{n}$, which is a diagonal matrix with determinant $\operatorname{det}(A)^{n}$.

