Master of Science in Mathematics Michel Waldschmidt Master Training Program Royal University of Phnom Penh RUPP URPP - Université Royale de Phnom Penh Centre International de Mathématiques Pures et Appliquées CIMPA Coopération Mathématique Interuniversitaire Cambodge France

Linear Algebra

Final Exam, October 20, 2010 (3 hours)
Exercise 1. Determine whether each of the following subsets of \mathbf{R}^{2} is a subspace of \mathbf{R}^{2}. For each of the subsets which is a subspace of \mathbf{R}^{2}, give the dimension of the subspace, find a basis for the subspace, and then extend it to a basis of \mathbf{R}^{2}.
a) $E=\left\{(x, y) \in \mathbf{R}^{2} ; x y=0\right\}$.
b) $F=\left\{(x, y) \in \mathbf{R}^{2} ; x+2 y=0\right\}$.
c) $G=\left\{(x, y) \in \mathbf{R}^{2} ; x+y=1\right\}$.
d) $H=\left\{(x, y) \in \mathbf{R}^{2} ; x^{2}+y^{2}=0\right\}$.

Exercise 2. Write the characteristic polynomial of the 4×4 matrix:

$$
\left(\begin{array}{cccc}
1 & 2 & 4 & 7 \\
0 & 3 & 5 & 8 \\
0 & 0 & 6 & 9 \\
0 & 0 & 0 & 10
\end{array}\right) .
$$

Find all eigenvalues and describe the eigenspaces. Is this matrix diagonalizable?
Exercise 3. Let $\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}$ be real numbers.
a) Consider the diagonal 4×4 matrix

$$
D=\left(\begin{array}{cccc}
\lambda_{1} & 0 & 0 & 0 \\
0 & \lambda_{2} & 0 & 0 \\
0 & 0 & \lambda_{3} & 0 \\
0 & 0 & 0 & \lambda_{4}
\end{array}\right)
$$

Give a necessary and sufficient condition for the matrix D to be invertible. When D is invertible, compute D^{-1}.
b) Let V be a vector space of dimension 4 and $\left(\underline{u}_{1}, \underline{u}_{2}, \underline{u}_{3}, \underline{u}_{4}\right)$ be a basis of V. Show that there is a unique linear operator on V such that

$$
T\left(\underline{u}_{1}\right)=\lambda_{1} \underline{u}_{1}, \quad T\left(\underline{u}_{2}\right)=\lambda_{2} \underline{u}_{2}, \quad T\left(\underline{u}_{3}\right)=\lambda_{3} \underline{u}_{3}, \quad T\left(\underline{u}_{4}\right)=\lambda_{4} \underline{u}_{4} .
$$

c) Find all eigenvalues and describe the eigenspaces of T.
d) Give a necessary and sufficient condition for T to be one-to-one. When T is one-to-one, compute T^{-1}, then find all eigenvalues and describe the eigenspaces of T^{-1}.

Exercise 4. For each of the following 2×2 matrices, find the characteristic polynomial, find all eigenvalues and describe the eigenspaces. If possible, diagonalize the matrix:

$$
A_{1}=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) \quad A_{2}=\left(\begin{array}{cc}
-1 & 0 \\
0 & 3
\end{array}\right) \quad A_{3}=\left(\begin{array}{cc}
3 & 5 \\
-1 & -3
\end{array}\right) \quad A_{4}=\left(\begin{array}{cc}
3 & 4 \\
-1 & -1
\end{array}\right) .
$$

Exercise 5. Let V be a vector space of dimension 5 and W a vector space of dimension 4. Let $\mathcal{B}=\left(\underline{u}_{1}, \underline{u}_{2}, \underline{u}_{3}, \underline{u}_{4}, \underline{u}_{5}\right)$ be a basis of V and $\mathcal{C}=\left(\underline{v}_{1}, \underline{v}_{2}, \underline{v}_{3}, \underline{v}_{4}\right)$ be a basis of W. Let $T: V \rightarrow W$ be the unique linear transformation satisfying
$T\left(\underline{u}_{1}\right)=0, T\left(\underline{u}_{2}\right)=\underline{v}_{1}, T\left(\underline{u}_{3}\right)=2 \underline{v}_{1}+5 \underline{v}_{2}, T\left(\underline{u}_{4}\right)=3 \underline{v}_{1}+6 \underline{v}_{2}+8 \underline{v}_{3}, T\left(\underline{u}_{5}\right)=4 \underline{v}_{1}+7 \underline{v}_{2}+9 \underline{v}_{3}$.
a) Write the matrix for the linear transformation T with respect to the bases \mathcal{B} and \mathcal{C}.
b) Check that $T\left(\underline{u}_{2}\right), T\left(\underline{u}_{3}\right), T\left(\underline{u}_{4}\right)$ are linearly independent.
c) The range of T is $R(T)=\{T(\underline{u}) ; \underline{u} \in V\}$. What is the dimension of $R(T)$? Give a basis of $R(T)$.
d) The kernel of T is $\operatorname{ker}(T)=\{\underline{u} \in V ; T(\underline{u})=0\}$. What is the dimension of $\operatorname{ker}(T)$? Give a basis of $\operatorname{ker}(T)$.

Exercise 6. Denote by \mathcal{P}_{3} the space of polynomials of degree ≤ 3 together with the zero polynomial:

$$
\left.\mathcal{P}_{3}=\left\{a_{0}+a_{1} X+a_{2} X^{2}+a_{3} X^{3} ;\left(a_{0}, a_{1}, a_{2}, a_{3}\right) \in \mathbf{R}^{4}\right)\right\}
$$

Denote by $\mathcal{B}=\left\{1, X, X^{2}, X^{3}\right\}$ the standard basis of \mathcal{P}_{3}. Consider the linear operator $T: \mathcal{P}_{3} \rightarrow \mathcal{P}_{3}$ defined by $T(p)=p+p^{\prime}+p^{\prime \prime}+p^{\prime \prime \prime}$, where p^{\prime} denotes the derivative of p, while $p^{\prime \prime}$ denotes the derivative of p^{\prime} and $p^{\prime \prime \prime}$ denotes the derivative of $p^{\prime \prime}$.
a) Write the matrix for the operator T with respect to the basis \mathcal{B}.
b) Show that the operator T is invertible and write the matrix for T^{-1} with respect to the basis \mathcal{B}.
miw@math.jussieu.fr Michel Waldschmidt http://www.math.jussieu.fr/~miw/

Master of Science in Mathematics Michel Waldschmidt Master Training Program Royal University of Phnom Penh RUPP URPP - Université Royale de Phnom Penh Centre International de Mathématiques Pures et Appliquées CIMPA Coopération Mathématique Interuniversitaire Cambodge France

Linear Algebra

Final Exam, October 20, 2010- solutions

Solution exercise 1

a) The set E is the union of two lines, hence it is not a subspace. The points $(1,0)$ and $(0,1)$ are in E, not their sum $(1,1)$.
b) The set F is a subspace of \mathbf{R}^{2}, it is the line containing $(0,0)$ and $(2,-1)$, a basis is $\{(2,-1)\}$. We can extend this basis to a basis $\left(\underline{u}_{1}, \underline{u}_{2}\right)$ of \mathbf{R}^{2} by taking $\underline{u}_{1}=(2,-1)$, $\underline{u}_{2}=(1,0)$ for instance.
c) The set G is a line which does not contain $(0,0)$, hence it is not a subspace of \mathbf{R}^{2} (all subspaces of a vector space contain the origin).
d) The set H is $\{(0,0)\}$, hence it is a subspace of \mathbf{R}^{2} of dimension 0 , a basis is the empty set with 0 elements, we extend it to a basis of \mathbf{R}^{2} by taking any basis of \mathbf{R}^{2}, for instance the canonical basis $\{(1,0),(0,1)\}$.
Solution exercise 2
The characteristic polynomial is $(1-X)(3-X)(6-X)(10-X)$, its roots are $1,3,6,10$, hence these are the eigenvalues. Since they are distinct the matrix is diagonalizable. The eigenspace corresponding to the eigenvalue 1 is the x_{1} axis, which is the line of \mathbf{R}^{4} containing $(0,0,0,0)$ and $(1,0,0,0)$, the eigenspace corresponding to the eigenvalue 3 is the line of \mathbf{R}^{4} containing ($0,0,0,0$) and ($1,1,0,0$), the eigenspace corresponding to the eigenvalue 6 is the line of \mathbf{R}^{4} containing ($0,0,0,0$) and $(22,25,15,0)$, the eigenspace corresponding to the eigenvalue 10 is the line of \mathbf{R}^{4} containing ($0,0,0,0$) and ($86,99,81,36$).

Solution exercise 3

a) The eigenvalues of D are the elements in the diagonal, and the matrix is invertible if and only if 0 is not an eigenvalue. Hence the condition is that $\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}$ are all non-zero, which can be written $\lambda_{1} \lambda_{2} \lambda_{3} \lambda_{4} \neq 0$. If D is invertible, then the inverse matrix is

$$
D^{-1}=\left(\begin{array}{cccc}
\lambda_{1}^{-1} & 0 & 0 & 0 \\
0 & \lambda_{2}^{-1} & 0 & 0 \\
0 & 0 & \lambda_{3}^{-1} & 0 \\
0 & 0 & 0 & \lambda_{4}^{-1}
\end{array}\right)
$$

b) The operator T is defined by

$$
T\left(x_{1} \underline{u}_{1}+x_{2} \underline{u}_{2}+x_{3} \underline{u}_{3}+x_{4} \underline{u}_{4}\right)=\lambda_{1} \underline{u}_{1}+\lambda_{2} \underline{u}_{2}+\lambda_{3} \underline{u}_{3}+\lambda_{4} \underline{u}_{4} .
$$

c) The eigenvalues, eigenvectors and eigenspaces of T are exactly the same as those of D : the eigenvalues are $\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}$, the eigenspaces are the axes $x_{1}=0, x_{2}=0$, $x_{3}=0, x_{4}=0$ respectively.
d) A necessary and sufficient condition for T to be one-to-one is that D is invertible. In this case the matrix for T^{-1} with respect to the basis \mathcal{B} is D^{-1}, the eigenvalues, eigenvectors and eigenspaces of T^{-1} are exactly the same as those of D^{-1} : the eigenvalues are $\lambda_{1}^{-1}, \lambda_{2}^{-1}, \lambda_{3}^{-1}, \lambda_{4}^{-1}$, the eigenspaces are the axes $x_{1}=0, x_{2}=0$, $x_{3}=0, x_{4}=0$ respectively.

Solution exercise 4

a) The characteristic polynomial of the matrix A_{1} is X^{2}, there is a single eigenvalue which is 0 , the eigenspace is \mathbf{R}^{2}, the matrix is diagonal.
b) The characteristic polynomial of the matrix A_{2} is $(X+1)(X-3)$, there are two eigenvalues -1 and 3 , the eigenspaces are the lines $y=0$ and $x=0$ respectively, the matrix is diagonal.
c) The characteristic polynomial of the matrix A_{3} is $X^{2}-4$, the eigenvalues are $\lambda_{1}=2$ and $\lambda_{2}=-2$, the eigenspace corresponding to λ_{1} is the line defined by the eigenvector \underline{v}_{1}, the eigenspace corresponding to λ_{2} is the line defined by the eigenvector \underline{v}_{2}, with

$$
\underline{v}_{1}=\binom{5}{-1}, \quad \underline{v}_{2}=\binom{-1}{1} .
$$

The matrices

$$
P=\left(\begin{array}{cc}
5 & -1 \\
-1 & 1
\end{array}\right) \quad \text { and } \quad D=\left(\begin{array}{cc}
2 & 0 \\
0 & -2
\end{array}\right) \quad \text { satisfy } \quad P^{-1} A_{3} P=D
$$

as we check with

$$
P D=\left(\begin{array}{cc}
10 & 2 \\
-2 & -2
\end{array}\right)=A_{3} P . \quad \text { Also } \quad P^{-1}=\left(\begin{array}{cc}
1 / 4 & 1 / 4 \\
1 / 4 & 5 / 4
\end{array}\right) .
$$

d) The characteristic polynomial of the matrix A_{4} is $(X-1)^{2}$, there is a unique eigenvalue $\lambda=1$, the corresponding eigenspace is the line defined by the eigenvector $\underline{v}_{1}=(2,-1)$, hence the matrix is not diagonalizable.
Remark. If we set

$$
\underline{v}_{1}=\binom{2}{-1}, \quad \underline{v}_{2}=\binom{-1}{1}, \quad P=\left(\begin{array}{cc}
2 & -1 \\
-1 & 1
\end{array}\right), \quad \text { then } \quad P^{-1} A_{4} P=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) .
$$

Solution exercise 5

a) The matrix for the linear transformation T with respect to the bases \mathcal{B} and \mathcal{C} is the 4×5 matrix

$$
\left(\begin{array}{lllll}
0 & 1 & 2 & 3 & 4 \\
0 & 0 & 5 & 6 & 7 \\
0 & 0 & 0 & 8 & 9 \\
0 & 0 & 0 & 0 & 0
\end{array}\right) .
$$

b) The linear independence of $T\left(\underline{u}_{2}\right), T\left(\underline{u}_{3}\right), T\left(\underline{u}_{4}\right)$ follows from the fact that the matrix

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
0 & 5 & 6 \\
0 & 0 & 8
\end{array}\right) .
$$

has rank 3 .
c) The space spanned by $T\left(\underline{u}_{2}\right), T\left(\underline{u}_{3}\right), T\left(\underline{u}_{4}\right)$ is contained in $R(T)$ and has dimension 3. Also $R(T)$ is contained in the subspace spanned by $\underline{v}_{1}, \underline{v}_{2}, \underline{v}_{3}$, hence $R(T)$ has dimension ≤ 3. Therefore $R(T)$ has dimension 3 , and a basis is $\left\{\underline{v}_{1}, \underline{v}_{2}, \underline{v}_{3}\right\}$. Another basis is $T\left(\underline{u}_{2}\right), T\left(\underline{u}_{3}\right), T\left(\underline{u}_{4}\right)$.
d) Since V has dimension 5 and $R(T)$ dimension 3, the kernel of T has dimension $5-3=2$. Clearly \underline{u}_{1} is in the kernel. Another element in the kernel, linearly independent of \underline{u}_{1}, is obtained by solving the homogeneous linear system of equations, and one finds that $49 \underline{u}_{2}+22 \underline{u}_{3}+9 \underline{u}_{4}-8 \underline{u}_{5}$ is in the kernel.
Solution exercise 6
a) The matrix of T in the basis \mathcal{B} is

$$
A=\left(\begin{array}{llll}
1 & 1 & 2 & 6 \\
0 & 1 & 2 & 6 \\
0 & 0 & 1 & 3 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

b) The determinant is 1 , hence T is one-to-one. The inverse of T is

$$
A^{-1}=\left(\begin{array}{cccc}
1 & -1 & 0 & 0 \\
0 & 1 & -2 & 0 \\
0 & 0 & 1 & -3 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

miw@math.jussieu.fr Michel Waldschmidt http://www.math.jussieu.fr/~miw/

